
Discovering Data Models from Event Logs

Dorina Bano(B) and Mathias Weske

Hasso Plattner Institute, University of Potsdam, Potsdam, Germany
{Dorina.Bano,Mathias.Weske}@hpi.de

Abstract. Business process mining is becoming an increasingly impor-
tant field for understanding the behavioral perspective of any given orga-
nization. In a process mining project, process experts are tasked with
discovering or improving the operational business processes. They do
so by analyzing event logs, the starting point of any process mining
endeavor. Despite event logs capturing behavioral information, we argue
that they are also a rich source of domain specific information. This infor-
mation is not represented explicitly in a process model but, nevertheless,
it provides valuable contextual information. To this end, we propose a
semi-automatic approach to discover a data model that complements
traditional process mining techniques with domain specific information.
The approach is evaluated in terms of feasibility by being applied to two
real-life event logs.

Keywords: Process mining · Event log · Data model

1 Introduction

Process mining is an area of business process management that has taken
increased attention from scholars and practitioners in different domains. Some
examples of process mining techniques include: process discovery, which aims at
discover a process model from the recorded executions of a process; conformance
checking, which intends to compare event data with a given process model in
order to find deviations; and process improvement, where a business process
model is enriched with additional details about its performance [1].

The starting point of any process mining technique is an event log, which is
purely a collection of events [2]. In many real-world scenarios such event logs are
extracted from data warehouses of a given organizations [3]. After the extraction
process takes place the event logs are made available to business process mining
experts. Since the log is tailored to discovering and improving a business process
the data perspective is usually overlooked. Therefore the process mining experts
are left with an event log that does not provide explicit information about the
context the data it was extracted from. We argue that the data perspective is an
important aspects that complements the process mining procedure with useful
information. It plays an important role in the understandability of the event logs
and consecutively the process model.
c© Springer Nature Switzerland AG 2020
G. Dobbie et al. (Eds.): ER 2020, LNCS 12400, pp. 62–76, 2020.
https://doi.org/10.1007/978-3-030-62522-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62522-1_5&domain=pdf
https://doi.org/10.1007/978-3-030-62522-1_5

Discovering Data Models from Event Logs 63

In this paper, we introduce a semi-automatic two-step approach for discov-
ering a complementary UML data model from an event log which is tailored for
process mining. The discovered data model provides additional insights regard-
ing the domain specific information in the log. In addition, it can be used to
enrich the mined process with data objects, therefore, improving its readability.

The reminder of this paper is organized as follows. Section 2 briefly discusses
the basic notions needed to understand the rest of the paper. An overview of
our two-steps approach is described and illustrated in Sect. 3. Deriving an inter-
mediate representation called activity-attribute relationship diagram (A2A dia-
gram) from an event log is explained in Sect. 4. While the second step of our
approach, which discovers a data model from the A2A diagram is depicted in
Sect. 5. Section 6 briefly discussed related work. Consecutively, Sect. 7 provides
an evaluation of the approach before Sect. 8 concludes the paper.

2 Preliminaries

This section introduces the basic notions and concepts regarding the event log
and data model, which we refer to throughout this paper.

2.1 Event Log

Event logs can be extracted from different information systems. Each event
log consists of a set of cases. A case is defined as a set of events. Each event
involves several attributes such as: the case identifier; the activity name; the
timestamp representing the time when the event occurs (i.e., all illustrated in
Fig. 1); the resource, i.e. the person or device who executes the activity; the
department in which the resource belongs to etc. The first three attributes
above are meta-attributes and are mandatory for any event log that is sub-
ject to process mining. Let us denote the set of the mandatory meta-attributes
with Matt = {Case,Act, T ime}. The following definition of event log is based
on [1]:

Fig. 1. An example of the event log

64 D. Bano and M. Weske

Definition 1. (Event, event log) An event e over a set of attributes Att is
defined as e = (#att1 ,#att2 , ...,#attn) where #atti is the value of attribute
atti ∈ Att for i = 1..n. An event log El is defined as El = {e1, e2, ..., em}
where m ∈ N is the number of events.

Definition 2. (Activity-attribute access relation)
Let El be an event log and A the set of all unique activities. We define

#att(e), where att ∈ Att, the value of attribute att for event e. We say an
activity a ∈ A accesses an attribute att ∈ Att \ Matt iff ∃e ∈ El | #act(e) =
a ∧ #att(e) �= ⊥. Let us denote r = (a, att, n) the access relation between an
activity a ∈ A and an attribute att ∈ Att in the event log, where n ∈ N is the
occurrence of the relation in a log. The set of all access relations in the event log
is defined as R.

Definition 3. (No access relation) An activity a ∈ A does not access an
attribute att ∈ Att iff ∀e ∈ El,#act(e) = a ⇒ #att(e) = ⊥.

2.2 Data Model

Data model is a fundamental concept for designing and documenting software
application. Because of its simplicity, mainly during the design phase, it is used
as a mean for communication between the team members. As a target of our
approach, the data model is used as a complementary view of the mined business
process model to enhance understandability of the use-case scenario.

Below, it is provided a definition of data model withing the scope of this
paper:

Definition 4. A data model is a tuple
D = (C,Att, Aso,member, attrmulti, asomulti) where:

– C is a non-empty set of classes
– Att is a set of attributes
– Aso ⊆ C × C is a set of associations between classes
– member : C → 2Att assigns attributes to classes
– attrmulti : Att → N0 × N defines the multiplicity of any attribute in a class
– asomulti : Aso → N0 × N defines the multiplicity of any association in the

data model

3 Overview of the Data Model Discovering Approach

Before explaining our data model discovery approach let us shortly state the
assumptions. We assume that the attribute write access is explicitly represented
in the event log, in that for each event it is clear which attributes are written by
which activity. For simplicity purpose, we will refer to “write access” as simply
“access” for the rest of this paper. In existing event logs, like [4] and [5], the
access is represented by concrete values in the accessed attributes and empty

Discovering Data Models from Event Logs 65

values for the rest of attributes that are not accessed. For example, as it shown
in the event log illustrated in Fig. 1, activity A access attribute Att1 three times
while activity B access the same attribute two times. Meanwhile, Att2 is accessed
only two times by activity B. In contrast, Att2 is only accessed by activity A
and never by B.

Fig. 2. Overview of the data model discovering approach.

As a pre-processing phase, the event log is cleaned from null or 0 values. This
implies that we look at activities that in all cases write a certain attribute with
null or 0 value. In this case, the activity is considered to not access the given
attribute. For example, in the log file shown in Fig. 2 Att4 is always accessed by
both activities with value 0. In this case, we assume that Att4 is not accessed
by any activity as the value 0 may represents an initialization of this attribute
or an software error (e.g., default value).

Deriving a data model from the event log implies systematically deriving the
individual UML language [6] (our language of choice) constructs: classes, class
attributes, and the associations between classes. To this end, we will follow a
two-step approach as depicted in Fig. 2. In the first automatic step we intro-
duce a intermediate representation that captures the access relation between
all activities and all attributes from the event log. This representation is called
Activity-Attribute relationship (A2A) diagram, which is inspired from [7]. In the
second step, a set of generic rules are applied to the A2A diagram resulting in
the target data model. Afterwards, we leave the choice to the user of the app-
roach to review the generated data model. A detailed explanation of each step
is given in the following sections respectively.

4 Derivation of the A2A Diagram

The most prominent information that we have from the event log is the relation
of attributes with the activities. To that end, the A2A diagram is derived based
on Algorithm 1 as an intermediate step and it is used as input for the data
model generation. The starting step for construction such diagram is to identify
the activities and attributes from the event log. Therefore, we first derive the
set of all activities (at the model level). Second, all attributes, except the meta-
attributes (like case identifier, activity name and timestamp), are identified.

66 D. Bano and M. Weske

The next step for construction of the A2A diagram is to identify the access
relation between activities and attributes. Based on Definition 2, if an activity A
writes a value to an attribute Att1, then there is an access relation between activ-
ity A and attribute Att1 (see Fig. 2). The access occurrence number (depicted
over the access arrow in Fig. 2, Step2) represent the number of times an access
relation between an activity and attribute holds in the event log independently
of the case.
Algorithm 1: A2A diagram derivation from an event log
input : Event log El
output: A2A = (A,Att \ Matt, R) Activity-Attribute access relation

diagram
initialization A: empty set of activities, Att \ Matt: set of attributes

without the meta-attributes, R ⊆ A × Att \ Matt × N: empty set of
access relations // create a unique set of activities

[!ht] for e in El do
if #act(e) /∈ A then

add #act(e) in A ;
end

end
// populate the set R
for a in A do

for att in Att do
int n = 0 // n represents the access relation occurrence
for e in El do

if #act(e) = a ∧ #att(e) �= ∅ then
n = n + 1

end
end
add r = (a, att, n) in R

end
end
print(A2A)

5 Data Model Discovery Approach

The data model generation consist in generating the data model classes with
their attributes and the associations between the classes. For the data model
classes generation we look at the relations between two or more attributes in the
A2A diagram and consider whether they belong to the same data model class.
After exhaustively going through all the attributes and grouping them into UML
classes, we identify the UML associations between those classes. Defining the
UML associations entails specifying their multiplicity.

Below we provide a set of rules (see Fig. 3) that are applied to the A2A
diagram for grouping the attributes into data model classes. These rules are

Discovering Data Models from Event Logs 67

organized based on two aspects: not/isolated attributes and not/isolated activi-
ties. An attribute is called isolated if all the activity that access it do not access
other attributes. Likewise, an activity is isolated if all the attributes it accesses
are not accessed by any other activity.

Rule 1: Isolated Attributes, Isolated Activities
We identify the isolated access relations in the A2A diagram, in that an attribute
is accessed only by a single activity and the activity accesses only the said
attribute. In this case, the rule is to assign all isolated attributes to separate
independent UML classes. At this stage, there is no other information in the
A2A diagram that can give insights about how the generated UML classes could
be related.

Fig. 3. Rules for deriving data model classes

An example is illustrated in Fig. 3 R1, where activity A and attribute Att1
are isolated because A access only Att1 and Att1 is accessed by said activity.
The same holds for activity B and Att2. The Att1 and Att2 are assigned to a
separate UML classes (represented in Fig. 3 by a dashed-line rectangle).

Last, the isolated attributes assigned to the UML class together with their
accessing activities are removed from the A2A diagram. This action takes place
at the end of each rule.

Rule 2: Isolated Attributes, Non-isolated Activity
In this case, we search the A2A diagram for isolated attributes that are accessed
by non-isolated activities. Similar to rule R1, the attributes are isolated and,
thus, there is no additional information on how they can be grouped into classes.
Hence, the isolated attributes will be each assigned to a separated class.

As it is illustrated in Fig. 3 R2, activity A, B and C are accessing Att1 with
the different cardinalities. The same hold for Att2, which is accessed by D and E.
Based on this rule, Att1 and Att2 are placed in two independent UML classes.

68 D. Bano and M. Weske

Rule 3: Non-isolated Attributes, Isolated Activities
If at least one common activity accesses two or more attributes, then the
attributes are said to be related. We are looking specifically for related attributes
that may belong to the same class. We argue that if an activity accesses two or
more attributes with the same occurrence then these attributes are highly likely
to be contained in a single class. Therefore, we group these attributes based on
common occurrences. However, we cannot deduce from the A2A diagram alone
whether the attributes are accessed simultaneously by the activity. It may hap-
pen that in total these attributes are accessed the same amount of time by the
activity but never in the same event. This means that the attributes are highly
likely to not belong to the same class as they seem to be accessed independently.
To counter this problem we offer the following solution.

Let EA1 be a set of events from the event log where activity A accesses
attribute 1. | EA1 | denotes the access occurrence. Similarly, we define EA2 as
the set of all events where the activity A accesses attribute 2 with occurrence
| EA2 |, where | EA2 |≥| EA1 |. The decision of whether attribute 1 and 2 belong
to the same class is made based on the following function:

rel(EA1, EA2) =

⎧
⎨

⎩

one class , if EA1 ∩ EA2 = EA1

independent classes , if EA1 ∩ EA2 = ∅
dependent classes , if 0 <| EA1 ∩ EA2 |<| EA1 |

(1)

Attribute 1 and 2 belong to the same class if set EA1 is a subset of EA2

because anytime the activity A accesses attribute 1 it also accesses attribute
2. Both attributes define a new UML class, however, attribute 1 is marked as
optional because it is not always accessed when attribute 2 is accessed.

If the two sets are disjoint (i.e., EA1 ∩EA2 = ∅), then attribute 1 and 2 are
not in the same class and, moreover, these classes have no association between
them. This is due to attribute 1 and 2 happening independently of each other.

Finally, there are events in which attribute 1 and attribute 2 are accessed
simultaneously except the first case. This means that there are some events
where the attribute 1 and 2 are accessed by the same activity A but this number
of events is not the same as | EA1 |. In this case, the attributes are placed in
different classes, but the classes are still related via an bidirectional association.
The multiplicity of the association is 0..1 to * from the class containing attribute
1 to the class containing attribute 2.

In a more general case, where the number of attributes which share the same
activity with the same occurrence is more than two, we apply the above function
for every pair of attributes to determine the resulting classes.

This rule is illustrated in Fig. 3 R3. Activity A access Att1 and Att2 with the
occurrence x, Att3 and Att4 with the occurrence y and Att5 with occurrence z.
The decision of Att1 and Att2 belonging to the same UML class or not depends
on whether the events where the activity A access the Att1 are the same events
where the same activity access Att2. The same holds for the Att3 and Att4
accessed with cardinality y by the same activity.

Discovering Data Models from Event Logs 69

At last, the attribute assigned to the corresponding classes are removed from
the A2A diagram. If their accessing activities do not access other non-isolated
attributes, they are removed as well.

Rule 4: Non-isolated Attributes, Non-isolated Activities
Every relation that cannot be expressed by the previous rules is captured by this
rule. Activities and attributes are non-isolated, which mean that an attribute is
accessed by several activities and each activity accesses several attributes.

After removing the attributes and activities that satisfied the previous three
rules we are left with an A2A diagram that contains one or more disconnected
subgraphs (i.e., interconnected activities and attributes) which we are referring
to as islands. In Fig. 3 R4, there is only one island, but it can happen that
another set of non-isolated activities and attributes, which has no relation with
the first set, can be left in the A2A diagram. That is why we call these sets
islands.

To group the attributes into UML classes each island is decomposed into
smaller A2A diagram fragments for each activity. This means that the number
of the fragments is the same with the number of activities in an island. The
attributes that are accessed by the activity are represented in the respective
fragment. Hence, an attribute may appear in one or more fragments (see Fig. 4).

Fig. 4. Decomposed A2A diagram into three fragments after applying the fourth rule

The resulting fragments can satisfy either rule 1 or rule 3 but not rule
2 because the fragments contain only isolated activities. The grouping of the
attributes, then, follows the rule 1 or 3. However, since attributes may belong
to two or more distinct fragments there is a conflicts that needs to be resolved.
For example, it might happen that the same attribute is grouped either in a
standalone UML class or in a class with some other attributes depending on the
grouping results from each fragment. In this case, we leave the choice to the user
of the approach to make a decision that better fits the overall result.

Figure 4 shows an island fragmentation example. Activity A accesses
attributes Att1 and Att2 with occurrence x. The same holds for activity B except
the occurrence, which is y. Last, activity C accesses attribute Att2 with occur-
rence z. Based on this rule the A2A diagram is decomposed in three other A2A
fragments, one for each activity.

70 D. Bano and M. Weske

In the first and the second fragment we are dealing with non-isolated
attributes and isolated activities. Therefore, rule 3 is applied to derive the classes.
In the third fragment, rule 1 is applied because activity C and attribute Att2
are both isolated.

After all the classes are created, the classes can be named based on the
activity they were generated from. Finally, we have to consider the associations
between the remaining independent classes. To this end, we will consider the
most frequently accessed class as the root class, which has the highest potential
to represent the business process case notion. Then, we introduce an association
between the remaining classes and the root class. Their multiplicities are set
based on the occurrences from the A2A diagram.

6 Related Work

In [8] the authors present an approach to obtain a data model from the BPM
model, which is then useful for the design phase of the software development
process. The authors emphasize that during this phase it is important to use the
data model as a common language between the business process analysts and
software developers. The focus is on the persistent data rather then the processes’
data objects. The authors use a three phase-approach: first, the entities are
defined by considering the data stores and the roles played by the participants;
second, the relation between entities is deducted based on way the participants
and activities manipulate the data store; third, the attributes involved with
the participants and data stores are determined. The same direction is followed
in the approach presented in [9]. In this paper, we propose an approach that
takes as input an event log rather than a business process model. We argue that
discovering a business process model from an event log comes with losses in
valuable attribute and occurrence information that cannot always be captured
by the process model.

Breitmayer et al., [10] propose the discovers of the data model as an inter-
mediate step for discovering object-aware processes. Each table in the database
belongs to an object in the data model whereas the database columns represents
object attributes. By considering the primary keys and the relation between
tables in the database the relations between data objects are defined. The dis-
covered data model is a crucial step for the discovery of the process model. In
contrast, our approach relies only in the event log to discover the data model and
the data model serves as a complementary artifact to understand the process
model.

In [11], the author provides a richer event log, compared to XES, called
eXtensible Object-Centric (XOC) by considering multiple case notions called
object types. Each event may refer to any number of objects in contrast to the
traditional XES format where a single case notion is consider and every event
belongs to exactly one case. Constructing a data model from an XES event log
is more complicated than deriving it from the XOC format because of the single
case notion perspective of XES. XOC holds more information about the data

Discovering Data Models from Event Logs 71

model because the object relations can be derived from the global perspective
(rather than the case perspective) of the events.

There are other approaches, like in [12], that make use of Natural Language
Processing (NLP) for deriving a data model from natural language descriptions.
The authors argue that such a model is important for the system understand-
ability as it significantly decreases the time needed by a human to understand
the system. In this paper, we are introducing a two-step approach by following
a set of rules rather than an NLP-based approach, although, the approaches are
not mutually exclusive and could be combined to achieve better results.

7 Evaluation

The approach presented in this paper is evaluated based on two real-life event
logs, namely: Road Traffic Fine Management (RTFM) [5]; and Sepsis event log
[4]. However, for sake of writing space, we describe the evaluation of our app-
roach based on RTFM event log, which is taken from the information systems
of the Italian police. The event log contains information regarding the road-
traffic fines and includes 150.370 cases (561.470 events) that are processed by
the municipality over a three-years time period (January 2010–June 2013). To
provide a behavioral overview of the event log, we show in Fig. 5 the process
model (represented as BPMN [13]) that is discovered by applying the Induc-
tive Miner algorithm [14]. Some activities that do not access any attribute are
excluded from the process model without breaking its meaning.

Fig. 5. BPMN model discovered from the RTFM event log

The process starts with Create Fine activity. After the fine is created it can
be send to the offender via Send Fine. The offender has the option to pay the fine
immediately after it is handed over to him (Payment). If this is not the case, the
date when the offender receives the fine is registered (Insert Fine Notification).
If the payment will not take place (i.e., within 60 days) then a penalty (Add
Penalty) is added to the fine. The offender has the option to appeal against
the fine through the Judge (Appeal to Judge) or Prefecture (Send Appeal to
Prefecture). If the appeal is successful then the process ends. Otherwise the fine

72 D. Bano and M. Weske

is sent for credit collection (Send for Credit Collection) marking the process
terminations.

Before generating the A2A diagram the RTFM event log is cleaned from
the activity-attribute access relations with the value 0 (i.e., the activity always
access the attribute the value 0). For example, Create Fine activity access the
Total Payment Amount always with the value 0. The same holds for Matricola
and Resource attributes accessed by Appeal to Judge activity.

Fig. 6. The RTFM A2A diagram derived by applying Algorithm 1

Applying the first step of our main approach, as that described in Sect. 4,
the A2A diagram is generated from the event log (see Fig. 6). The activities that
do not access any attribute and all access relations discarded from the clean-up
phase are not shown in the A2A diagram. For example, Matricola is represented
as a stand-alone attribute in Fig. 6 as it is always accessed with value 0.

In the second step, the A2A diagram generated from the event log is used as
an input for discovering the data model. Figure 7 depicts the application of the
rules from the second step of the approach to the generated A2A diagram. The
rules are applied following the defined order (R1 to R4). If a rule is satisfied,
all activities and attributes related to that rule are excluded from A2A diagram
and the attributes are added in the respective classes. This is repeated until all
attributes are grouped into UML classes and there are no attributes left in A2A
diagram.

As it is shown in Fig. 7, rule R1 is fulfilled by Send Fine activity and Expense
attribute both represented as isolated in the A2A diagram. Therefore, Expense

Discovering Data Models from Event Logs 73

Fig. 7. The approach rules applied to the RTFM A2A diagram

attribute is assigned in separate independent UML classes. Since there is no
case of isolated attributes and not-isolated activities in the A2A diagram rule
number two does not apply. Subsequently, we check for isolated activities and
non-isolated attributes. There are two activities that satisfy the rule R3. First,
Insert Fine Notification accesses the Last Sent and Notification Type with differ-
ent occurrence. In this case, Function 1 is applied to check whether Insert Fine

74 D. Bano and M. Weske

Notification activity is accessing simultaneously both attributes. This happens
to be the case in the given log, i.e., in all events where Insert Fine Notifica-
tion accesses the Last Sent it also accesses Notification Type. Therefore, both
attributes are stored in one UML class, where Last Sent attribute is marked as
optional (based on Function 1). The same holds for paymentAmount and total-
PaymentAmount attributes. Both are simultaneously accessed by the Payment
activity. Therefore, they are grouped to the same data model class.

Fig. 8. UML data model generated from the RTFM event log

Lastly, based on rule R4 we check for the non-isolated activities and non-
isolated attributes in the derived islands. By applying this rule the A2A diagram
is decomposed into four fragments (see Fig. 7, rule 4). In the first three fragments
rule R1 can be applied while in the last one rule R3. In this case, the user’s
choice is to group the attributes in a single class. Fine is the most frequent
class therefore is assigned as a root class. After the association between classes
are defined the multiplicities are set based on the occurrences from the A2A
diagram. The resulting RTFM UML class is depicted in Fig. 8.

8 Conclusion

This paper presents a two-step semi-automatic approach to discover a UML
data model from an event log that is purposely designed for process mining.
The proposed approach is useful for discovering a data model that comple-
ments and increases the understandability of the discoverable process model.
The data model contains classes with their attribute, which represent the main
entities involved in the process model, and the associations between classes (the
relationships between those entities). To achieve this, we consider the relations
between activities and attributes in the event log and represent them via an A2A
diagram, which is an interim artifact of our approach.

Discovering Data Models from Event Logs 75

We argue that the discovered data model provides additional insights regard-
ing the domain specific information in the event log. The data model provides
complementary information about the entities that are subject to and cannot be
captured by a process model.

In future work we plan to extend the approach with NLP solutions to ground
the resulting model into a domain specific terminology. In addition, more than
one event log from the same organization can be considered to derive a common
data model that spans many discoverable business processes.

References

1. van der Aalst, W.M.P.: Process Mining: Data Science in Action, 2nd edn. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49851-4

2. Aalst, W.M.P.: Process mining in the large: a tutorial. In: Zimányi, E. (ed.) eBISS
2013. LNBIP, vol. 172, pp. 33–76. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-05461-2 2

3. Diba, K., Batoulis, K., Weidlich, M., Weske, M.: Extraction, correlation, and
abstraction of event data for process mining. Wiley Interdisc. Rev. Data Min.
Knowl. Discov. 10(3) (2020)

4. Mannhardt, F.: Sepsis cases-event log. Eindhoven University of Technol-
ogy, Eindhoven (2016). https://doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-
dc35f063a460

5. Mannhardt, F., de Leoni, M.: Road traffic fine management process. Eind-
hoven University of Technology, Eindhoven (2015). https://doi.org/10.4121/uuid:
270fd440-1057-4fb9-89a9-b699b47990f5

6. Rumbaugh, J., Jacobson, I., Booch, G.: Unified Modeling Language Reference
Manual, The (2nd Edition). Pearson Higher Education, London (2004)

7. van der Aalst, W.M.P.: Object-centric process mining: dealing with divergence and
convergence in event data. EasyChair Preprint no. 2301. EasyChair 2020)

8. Cruz, E.F., Machado, R.J., Santos, M.Y.: From business process modeling to data
model: a systematic approach. In: Proceedings of the 8th International Confer-
ence on the Quality of Information and Communications Technology, QUATIC
2012, Lisbon, Portugal, 2–6 September 2012, pp. 205–210. IEEE Computer Soci-
ety (2012)

9. Brdjanin, D., Banjac, D., Banjac, G., Maric, S.: An online business process model-
driven generator of the conceptual database model. In: Proceedings of the 8th
International Conference on Web Intelligence, Mining and Semantics, WIMS 2018,
Novi Sad, Serbia, 25–27 June 2018, pp. 16:1–16:9. ACM (2018)

10. Breitmayer, M., Reichert, M.: Towards the discovery of object-aware processes.
In: Manner, J., Haarmann, S., Kolb, S., Kopp, O., (eds.) Proceedings of the 12th
ZEUS Workshop on Services and their Composition, Potsdam, Germany, 20–21
February 2020. Volume 2575 of CEUR Workshop Proceedings, pp. 1–4. CEUR-
WS.org (2020)

11. Li, G., de Murillas, E.G.L., de Carvalho, R.M., van der Aalst, W.M.P.: Extracting
object-centric event logs to support process mining on databases. In: Mendling, J.,
Mouratidis, H. (eds.) CAiSE 2018. LNBIP, vol. 317, pp. 182–199. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-92901-9 16

https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1007/978-3-319-05461-2_2
https://doi.org/10.1007/978-3-319-05461-2_2
https://doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460
https://doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460
https://doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5
https://doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5
https://doi.org/10.1007/978-3-319-92901-9_16

76 D. Bano and M. Weske

12. Meziane, F., Athanasakis, N., Ananiadou, S.: Generating natural language speci-
fications from UML class diagrams. Requir. Eng. 13(1), 1–18 (2008). https://doi.
org/10.1007/s00766-007-0054-0

13. Weske, M.: Business Process Management - Concepts, Languages, Architectures,
3rd edn. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-662-59432-2

14. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Process and deviation explo-
ration with inductive visual miner. In: Proceedings of the BPM Demo Sessions
2014 Co-located with the 12th International Conference on Business Process Man-
agement, BPM 2014. CEUR-WS.org (2014)

https://doi.org/10.1007/s00766-007-0054-0
https://doi.org/10.1007/s00766-007-0054-0
https://doi.org/10.1007/978-3-662-59432-2

	Discovering Data Models from Event Logs
	1 Introduction
	2 Preliminaries
	2.1 Event Log
	2.2 Data Model

	3 Overview of the Data Model Discovering Approach
	4 Derivation of the A2A Diagram
	5 Data Model Discovery Approach
	6 Related Work
	7 Evaluation
	8 Conclusion
	References

