
Neo4j Keys

Sebastian Link(B)

School of Computer Science,
The University of Auckland, Auckland 1010, New Zealand

s.link@auckland.ac.nz

Abstract. Keys play a fundamental role in every data model. They stipulate
how real-world entities are identified in the database but also how to physically
and logically organize access to data. Neo4j is currently the most popular graph
database management system. We address fundamental questions about key con-
straints as formally defined by the Cypher language of Neo4j. Answers include
axiomatic and algorithmic solutions to their implication problem.

Keywords: Integrity · Key · Neo4j · Property graph · Reasoning

1 Introduction

Keys are a core enabler for data management. They are fundamental for understand-
ing the structure and semantics of data. Given a collection of entities, a key is a set
of attributes whose values uniquely identify an entity in the collection. Keys form the
primary mechanism to enforce entity integrity within database management systems
(DBMS) [6]. Keys are essential to many classical areas of data management, including
data modeling, database design, indexing, transaction processing, and query optimiza-
tion. Knowledge about keys enables us to i) uniquely reference entities across data
repositories, ii) minimize data redundancy at schema design time to process updates
efficiently at run time, iii) provide better selectivity estimates in cost-based query opti-
mization, iv) provide a query optimizer with new access paths that can lead to substan-
tial speedups in query processing, v) allow the database administrator to improve the
efficiency of data access via physical design techniques such as data partitioning or the
creation of indexes and materialized views, and vi) provide new insights into application
data. Keys for graphs have already been studied in academia, and the proposed notion
is very expressive [10] due to its target application of entity resolution. The notion
subsumes keys from XML as well as conditional constraints [10]. This expressiveness
has its price, for example, the associated implication problem is NP-complete, and the
associated satisfiability and validation problems are both coNP-complete [10].

While graph databases even precede the relational model of data, they have recently
experienced a surge of interest due to many new areas of applications. In particu-
lar, many commercial DBMSs have emerged and are heavily used. Neo4j is the most
popular graph DBMS1. It employs an expressive property graph model. In particular,

1 https://db-engines.com/en/ranking trend/graph+dbms.

c© Springer Nature Switzerland AG 2020
G. Dobbie et al. (Eds.): ER 2020, LNCS 12400, pp. 19–33, 2020.
https://doi.org/10.1007/978-3-030-62522-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62522-1_2&domain=pdf
http://orcid.org/0000-0002-1816-2863
https://db-engines.com/en/ranking_trend/graph+dbms
https://doi.org/10.1007/978-3-030-62522-1_2

20 S. Link

objects such as vertices and edges may have properties. Properties are pairs of a prop-
erty attribute and a property value, reflecting the NoSQL nature of graph databases. In
this article we are interested in keys as they are used in practice and defined by Neo4j.
Here, keys are expressions of the form � : K where � denotes a label and K is a finite
set of property attributes. A key � : K is satisfied by a property graph whenever every
vertex with label � has assigned a property value to every property attribute in K, and
there are no two distinct vertices that each have a label � and every property attribute
in K has been assigned matching property values for these vertices. This semantics is
reminiscent of candidate keys in relational databases: key attributes must not feature
any null-marker occurrences and no two distinct rows can carry matching values on all
attributes of the key.

Fig. 1. Our running example of a property graph (Color figure online)

For example, Fig. 1 shows a property graph G that features some staff (blue nodes)
working in the Helpline and Complaints branches of an organization (red node). The
graph satisfies the keys Helpline:{no} and Helpline:{name, phone}. While the first key
is unary, that is it has only a single property attribute, the second key is composite. Note
that G does not satisfy the keys Helpline:{no, expertise} nor Helpline:{name} (vertex
1 and 3) nor Helpline:{phone} (3 and 4). Indeed, the key Helpline:{no, expertise} is
violated by G because the vertex 1 carries the label Helpline but the property attribute
expertise has not been assigned a property value. Consequently, the familiar notion of a
superkey does not carry over from the relational model to the Neo4j graph model. That
is, supersets of keys may not be keys. As seen on the example, the reason is that vertices
may not define property values for some property attributes. Similarly, G satisfies the

Neo4j Keys 21

key Complaints:{name, email}, but violates both keys Complaints:{name} (vertex 2
and 4), and Complaints:{email} (vertex 3 and 4).

Interestingly, Neo4j property graphs can assign multiple labels to any of their ver-
tices. For instance, the property graph in Fig. 1 shows that some staff work for both the
Helpline and the Complaints branch (vertex 3 and 4). We make the interesting observa-
tion that Neo4j does not explicitly permit the specification of keys for multiple labels,
but it does permit it implicitly in the sense that vertices with multiple labels inherit
the keys explicitly specified on its singleton labels. For example, every property graph
that satisfies the two single-label keys Helpline:{no} and Complaints:{name,email}
will also satisfy the multi-label key {Helpline,Complaints}:{no,email}. Indeed, ver-
tices that carry both labels Helpline and Complaints must have property values defined
for property attributes no and email, and must have unique property value combinations
assigned to no and email. Due to the semantics that Neo4j assigns to keys as well as
the fact that vertices carry multiple labels, it is not clear what keys are implicitly sat-
isfied by a property graph, given that it satisfies keys that are enforced explicitly. For
instance, G does neither satisfy the key Helpline:{no,expertise} due to vertex 1, nor
the key {Helpline,Complaints}:{phone,email} due to vertices 3 and 4, but it does sat-
isfy the keys {Helpline}:{no,phone} and {Helpline,Complaints}:{no,email}. Hence,
the fundamental question about the implication of Neo4j keys arises: Given a set Σ of
Neo4j keys, which other Neo4j keys ϕ are implied by Σ? That is, which keys ϕ are
guaranteed to be satisfied by a property graph G, whenever it satisfies all keys in Σ?

This question is important for data management in Neo4j. In particular, i) keys
are strictly enforced by Neo4j under updates, meaning that existence and unique-
ness of property values on the property attributes of the keys are checked for
all vertices that carry the label of the key, and ii) key specification results in
the automatic creation of index structures that are used for data processing, such
as speeding up query evaluation by operators like NodeUniqueIndexSeek or
NodeUniqueIndexSeekByRange. In particular, the ability to create index struc-
tures for object sets that carry multiple labels have the potential to speed up query eval-
uation more. Another motivation to study multi-label keys is the realisation of a true
multi-label graph model. While multiple labels can be assigned to objects in Neo4j, the
co-existence of vertex labels is not being effectively utilized by the underlying DBMS,
including the lack of dedicated index structures and operators.

Contributions. We can summarize the contributions of this paper as follows. Firstly,
we define multi-labels keys for Neo4j and illustrate their use by applications. Secondly,
we study the implication problem associated with Neo4j keys. We derive an axiomatic
characterization of the implication problem, as well as an algorithm that decides the
implication problem in linear time in the input. Note that the contributions are not
restricted to Neo4j, but only to the few concepts we require from the property graph
model that Neo4j is based on. Indeed, property graphs in this model are rather general
[2].

Organization. We comment on related work in Sect. 2, recall Neo4j’s property graph
model in Sect. 3, define multi-label keys in Sect. 4, highlight applications of implied
keys in Sect. 5, establish axiomatic and algorithmic characterization of the implication

22 S. Link

problem associated with keys in Sect. 6, and finally conclude and comment on future
work in Sect. 7.

2 Related Work

Keys form arguably the most important class of integrity constraint for any data model.
For the relational model of data, a key is a set of attributes that ensures that no two
different tuples in the relation can have matching values on all the attributes of the key
[7,16]. In SQL, candidate keys form minimal sets of attributes that cannot feature any
null marker occurrences on any of their attributes and must have a unique combination
of values on the attributes across all rows of the table. Keys enforce Codd’s principle
of entity integrity, which refers to the unique representation of all real-world entities of
the underlying application domain within the database [6]. In addition, keys are fun-
damental to the most important data processing tasks. In query processing, key-foreign
key relationships form the foundation for joining tables, and thus for specifying queries
soundly. The primary key, which is a distinguished candidate key, determines the phys-
ical access model of the relation. Each candidate key and unique constraint gives rise to
an index that accelerates query processing. As an integrity constraint, keys enforce the
integrity of entities under update operations. For example, we cannot insert new rows
that have missing values on some key attribute, and we cannot insert rows that have
matching non-null values on the attributes of the key as an existing row in the relation.
In database design, the fundamental goal is to obtain a layout of the target database
in which data redundancy causing integrity constraints are transformed into keys that
prohibit the occurrence of redundant data values [8].

The significance of keys carries over to other data models, in which different notions
of keys arise that impact different areas of applications. This includes keys in incom-
plete data, such as possible and certain keys [14], key sets [11,18], and embedded
uniqueness constraints [21,22], keys in description logics [20], keys in semantic mod-
els such as the Entity-Relationship model [5,19], keys in object-relational models [13],
keys in XML [4,12], and keys over uncertain data such as probabilistic and possibilistic
keys [1,3].

Keys have not yet received much attention over graph data models with some notice-
able differences [9,10,15,17]. In [9] the authors propose a class of keys for graphs with
the primary goal to perform entity matching. The associated implication problem is
NP-complete, and those of satisfiability and validation are coNP-complete [10]. In [15]
different ways are discussed for mapping relational databases into an RDF graph, with
an emphasis on how to represent the original key and foreign key constraints in the
resulting RDF graph. A new RDF namespace for the representation of keys and for-
eign keys is proposed as well. Finally, in [17] the authors put forward some proposals
for extending the capabilities of Neo4j in specifying integrity constraints, including an
extension of uniqueness constraints limited to single property attributes to uniqueness
constraints with multiple property attributes. The authors have provided a simple pro-
totype implementation and experiments.

Keys in Neo4j, in particular their implication problem or their combinatorial behav-
ior, have not been studied in previous work. Since Neo4j is the most popular graph

Neo4j Keys 23

database in practice2, and keys are of fundamental significance, the work in this paper
starts an important line of investigation.

3 Property Graph Model

We recall the basic definitions for the property graph model [2]. For this we assume that
the following sets are pairwise disjoint: O denotes a set of objects, L denotes a finite
set of labels, K denotes a set of property attributes, and N denotes a set of values.

A property graph is a quintuple G = (V, E, η, λ, ν) where V ⊆ O is a finite set
of objects, called vertices, E ⊆ O is a finite set of objects, called edges, η : E → V ×V
is a function assigning to each edge an ordered pair of vertices, λ : V ∪ E → P(L) is
a function assigning to each object a finite set of labels, and ν : (V ∪ E) × K → N is
a partial function assigning values for properties to objects, such that the set of domain
values where ν is defined is finite. An example of a property graph is given in Fig. 1.

4 Key Constraints in Cypher

We formally define the syntax and semantics of key constraints. However, we do intro-
duce multi-labelled key constraints, which strictly generalize the key constraints from
Cypher that are restricted to a finite label.

According to the Cypher language3, node key constraints ensure that, for a given
label and set of properties: i) All the properties exist on all the nodes with that label,
and ii) The combination of the property values is unique.

The Cypher language employs the following syntax to create a key constraint:

CREATE CONSTRAINT [constraint name] ON (�:LabelName)
ASSERT (�.propertyAttribute 1,

�.propertyAttribute 2, . . ., �.propertyAttribute n)
IS NODE KEY

For example, in regards to Fig. 1 we may specify:

CREATE CONSTRAINT ON (h:Helpline)
ASSERT (h.name, h.phone) IS NODE KEY

as a key constraint on vertices with label Helpline.
We will now formally define the syntax and semantics of key constraints used by

Cypher. Strictly speaking, Cypher only permits the explicit specification of keys on a
single label. However, since vertices can carry multiple labels, keys on a single label
implicitly also specify keys on vertices that carry multiple labels. Before the formal
definition, we define the subset VL ⊆ V of vertices in a given property graph that carry
at least all the labels of given set L of labels, as follows: VL = {v ∈ V | L ⊆ λ(v)}.
For the property graph G from Fig. 1 we have V{Helpline} = {1, 3, 4}, V{Complaints} =
{2, 3, 4}, and V{Helpline, Complaints} = {3, 4}. Informally, VL is the target set of vertices
on which a key should hold.

2 https://db-engines.com/en/ranking trend/graph+dbms.
3 https://neo4j.com/docs/cypher-manual/current/administration/constraints/.

https://db-engines.com/en/ranking_trend/graph+dbms
https://neo4j.com/docs/cypher-manual/current/administration/constraints/

24 S. Link

Definition 1. For a given finite set L of labels and a given finite set K of property
attributes, a key constraint (or key) is an expression L : K where L ⊆ L and K ⊆ K. If
L is a singleton, we call L : K a single-labelled key, and otherwisemulti-labelled. For a
given property graph G = (V,E, η, λ, ν) over O, L, K, and N we say that G satisfies
the key L : K over L, and K, denoted by |=G L : K, if and only if there are no vertices
v1, v2 ∈ VL such that v1 �= v2 and for all A ∈ K, ν(v1, A) and ν(v2, A) are defined
and ν(v1, A) = ν(v2, A). ��

Note that the key L : ∅ expresses that there is at most one vertex in a property graph
that carries all the labels in L. In particular, if L = ∅, then there is at most one vertex in
the property graph. Keys with an empty set of property attributes, even for a singleton
L, cannot be defined in Neo4j. For illustration of the definition let us revisit the keys
from the introduction.

Example 1. Some keys the property graph G of Fig. 1 satisfies are: Helpline:{no},
Helpline:{name,phone}, Complaints:{name,email}, {Helpline,Complaints}:{no,
email}, and {Helpline, Complaints}:{name,phone,email}. However, some keys
the property graph G of Fig. 1 does not satisfy are: Helpline:{no,expertise},
Helpline:{name}, Helpline:{phone}, Complaints:{name}, and {Helpline, Com-
plaints}: {phone, email}.

5 Applications

We illustrate by extensions to our running example the impact of keys on the two most
common data processing tasks: updates and queries.

5.1 Update Operations

Once key constraints are specified in Cypher, queries attempting to do any of the fol-
lowing will fail: i) Create new nodes without all the properties or where the combination
of property values is not unique, ii) Remove one of the mandatory properties, and iii)
Update the properties so that the combination of property values is no longer unique.
The following are representative use cases illustrated on our running example:
i) Trying to create the following new node:

CREATE (h:Helpline {no:004, name:’Bart’, expertise:’pranks’})
will fail since no property value is specified for the property attribute phone, which

is in violation of the key constraint on Helpline:{name,phone}.
ii) Similarly, removing the value for a key property attribute such as :

MATCH (h:Helpline {name:’Homer’, phone:’000-888’})REMOVE h.phone

will not remove this property for this vertex.
iii) Updating the values of property attributes so that the combination of property values
is no longer unique, for example as in:

Neo4j Keys 25

MATCH (h:Helpline {name: ’Homer’, phone:’000-888’})
SET h.phone = ’888-000’
RETURN h.name, h.phone

will not update the property since the update would violate the key constraint.

5.2 Physical Query Optimization

Furthermore, adding a key constraint for a set of property attributes will also add a com-
posite index on those property attributes, so such an index cannot be added separately.
For our example from before, such an index creation would work as follows:

CREATE INDEX index Helpline FOR (h:Helpline)
ON (h.name, h.phone)

The index will be used when update operations are being processed to validate
whether these comply with the keys or violate any of them. However, the index is also
used to speed up the evaluation of queries. For instance, executing the following query
without an index

MATCH (h:Helpline {name: ’Homer’, phone:’000-888’})
RETURN h.no, h.name

will do a NodeByLabelScan, since the node labelHelplinewas supplied. This query
would still take long on realistically-sized property graph. However, if we create an
index as above, then the query optimizer will take advantage of the index and perform
a NodeUniqueIndexSeek search, which is very efficient.

5.3 Logical Query Optimization and Opportunities with Multiple Labels

We illustrate how the ability to decide implication for keys will enable us to optimize
queries logically, for example by rewriting them. While Neo4j does permit the assign-
ment of multiple labels to vertices, this capability does not transfer to index creation.
We will demonstrate the benefits of adding such capabilities by way of example.

Similar to SQL, the DISTINCT operator removes duplicate rows from the incoming
stream of rows. To ensure only distinct elements are returned, Distinct will pull
in data lazily from its source and build up state. This may lead to increased memory
pressure in the system. As an example query consider the following:

MATCH (s:Helpline:Complaints)
RETURN DISTINCT s.no, s.email

Note that the query looks at returning distinct combinations of number and email of
staff who work in both the Helpline and Complaints branches. If the query engine
can conclude that the key {Helpline,Complaints}:{no,email} is implied, it becomes
apparent that the DISTINCT operator becomes redundant, since by definition of the
key, the combination of these values must be unique already. Hence, the query above
can be rewritten by removing the DISTINCT clause.

26 S. Link

Fig. 2. Powerset Lattices of Keys Implied by Σ1, Σ2, and Σ3 (the given keys are marked in
magenta, implied non-given keys marked in cyan, non-implied keys marked in black) (Color
figure online)

While not featured in the current Cypher language yet, the definition of multi-label
keys and multi-label indices could further help speed up update and query operations.
The query above, for example, would engage the single-label index on Helpline based
on the single-label key {Helpline}:{no}. However, if we knew that the multi-label key
{Helpline,Complaints}:{no,email} was implied and a multi-label index would have
been created, then we could speed up the search for all query answers even more since
the number of vertices that carry both labels would be smaller than the number of ver-
tices with just the Helpline label.

6 Reasoning About Neo4j Keys

We formally define the implication problem associated with keys in Neo4j, illustrate it
on our running example, and establish axiomatic and algorithmic solutions.

Given a set L of labels and a set K of property attributes, let Σ ∪ {ϕ} denote a set
of keys over L and K. The implication problem associated with the class of keys is to
decide, given Σ ∪{ϕ}, whether Σ implies ϕ. In fact, Σ implies ϕ, denoted by Σ |= ϕ,
if and only if every property graph G that satisfies all keys in Σ also satisfies ϕ.

The ability to efficiently decide whether some key constraint ϕ is implied by Σ is
fundamental for the integrity management in Neo4j. Assume that Σ contains keys that
are meaningful for the underlying application domain and have been specified, and that
ϕ denotes another meaningful key. If ϕ is implied by Σ, then we do not need to specify
ϕ because it is specified already implicitly. However, if ϕ is not implied, then we would
need to specify it explicitly on top of all the keys in Σ. As an illustration, let us consider
three different sets of keys for our running example:Σ1 contains the keysHelpline:{no}
and Helpline:{name,phone}. Σ2 consists of the key Complaints:{name,email}, and Σ3

consists of all the keys in Σ1 and Σ2. Figure 2 shows the powerset lattice that defines
the search space for all sets of property attributes that may form a Neo4j key together
with the set of labels written at the bottom of the lattice. Sets of property attributes for

Neo4j Keys 27

keys that are given by each of the three key sets are marked in magenta, while sets of
property attributes for keys that are implied (but not given) by the three constraint sets
are marked in cyan.

6.1 Axiomatic Characterization

We will establish an axiomatization for Neo4j keys in this section. The set Σ∗ = {ϕ |
Σ |= ϕ} denotes the semantic closure of Σ, that is, the set of all keys implied by
Σ. In principle, the definition of the semantic closure does not tell us whether we can
compute it, nevermind how. It is a core reasoning task to investigate whether/how a
semantic notion can be characterized syntactically. In fact, we determine the semantic

closure Σ∗ of a set Σ of keys by applying inference rules of the form
premise

conclusion
. For

a set R of inference rules let Σ
R ϕ denote the inference of ϕ from Σ by R. That is,
there is some sequence σ1, . . . , σn such that σn = ϕ and every σi is an element of Σ
or is the conclusion that results from an application of an inference rule in R to some
premises in {σ1, . . . , σi−1}. Let Σ+

R = {ϕ | Σ
R ϕ} be the syntactic closure of
Σ under inferences by R. R is sound (complete) if for every set Σ of keys we have
Σ+

R ⊆ Σ∗ (Σ∗ ⊆ Σ+
R). The (finite) setR is a (finite) axiomatization ifR is both sound

and complete. Table 1 shows two inference rules for the implication of Neo4j keys,
which we will show to be sound and complete. We illustrate the use of the inference
rules on our running example.

Table 1. Axiomatization C of Multi-label Cypher Keys

L : K

L ∪ L′ : K
L : K1 L : K2 ∪ K3

L : K1 ∪ K2

(label-extension) (attribute-extension)

Example 2. Let Σ consist of the three keys Helpline:{no}, Helpline:{name,phone},
and Complaints:{name,email}. A single application of the attribute-extension rule to
the first two keys above will look as follows:

Helpline:{no} Helpline:{name,phone}
Helpline : {no, name}

and derive the key Helpline:{no, name}. As a second example we show the following
inference from Σ.

Helpline:{name,phone} Complaints:{name,email}
{Helpline,Complaints}:{name,phone} {Helpline,Complaints}:{name,email}

{Helpline,Complaints} : {name, phone, email}
Here, we infer the key {Helpline,Complaints}:{name,phone,email} by first apply the
label-extension rule to the second and third input key to obtain the same label set on the
left-hand side. Subsequently, we can then apply the attribute-extension rule to obtain
the final conclusion. ��

28 S. Link

Soundness. We show that any inference of keys by applying rules from C results in
keys that are implied by the given set.

Lemma 1. Let G = (V,E, η, λ, ν) be a property graph over O, L, K, and N . For all
L,L′ ⊆ L, if L ⊆ L′, then VL′ ⊆ VL.

Proof. Let v ∈ V such that v ∈ VL′ . Then L′ ⊆ λ(v). Since L ⊆ L′ it follows that
L ⊆ λ(v), too. Hence, v ∈ VL. Consequently, VL′ ⊆ VL. ��
Lemma 2. The inference rules in C are sound for the implication of Neo4j keys.

Proof. We show the soundness of the label-extension rule first. For that purpose we
assume that there is a property graph G = (V, E, η, λ, ν) that violates the Cypher
key L ∪ L′ : K. This means that i) there is some v ∈ VL∪L′ and some A ∈ K such that
ν(v,A) is undefined, or ii) there are v1, v2 ∈ VL∪L′ such that v1 �= v2 and ν(v1,K) =
ν(v2,K). From i) and Lemma 1 it would follow that there is some v ∈ VL and some
A ∈ K such that ν(v,A) is undefined. This means that G would also violate L : K.
From ii) and Lemma 1 it would follow that there are v1, v2 ∈ VL such that v1 �= v2
and ν(v1,K) = ν(v2,K). This means that G would also violate L : K. Hence, we
conclude that G would also violate the Cypher key L : K. This proves the soundness of
the label-extension rule.

It remains to show the soundness of the attribute-extension rule. For that purpose we
assume that there is a property graph G = (V,E, η, λ, ν) that violates the Cypher key
L : K1 ∪K2. Then it follows that either i) there is some v ∈ VL and some A ∈ K1 ∪K2

such that ν(v,A) is undefined, or ii), for all v ∈ VL and all A ∈ K1 ∪ K2, ν(v,A) is
defined, and there are v1, v2 ∈ VL such that v1 �= v2 and ν(v1,K1 ∪ K2) = ν(v2,K1 ∪
K2). From i) it follows that A ∈ K1 or A ∈ K2 such that ν(v,A) is undefined. Hence,
G violates L : K1 or G violates L : K2 ∪ K3. It remains to consider case ii) above. That
is, for all v ∈ VL and for all A ∈ K1 ∪K2, ν(v,A) is defined, and there are v1, v2 ∈ VL

such that v1 �= v2 and ν(v1,K1 ∪ K2) = ν(v2,K1 ∪ K2). In particular, this means that
ν(v1,K1) = ν(v2,K1). Consequently, G violates L : K1. In summary, we have shown
that any property graph that violates L : K1∪K2 will also violate L : K1 or L : K2∪K3.
This proves the soundness of the attribute-extension rule.

Example 3. We have seen in Example 2 how the keys

Helpline:{no,name} and {Helpline,Complaints}:{name,phone,email}
can be inferred from the set Σ with Helpline:{no}, Helpline:{name,phone}, and Com-
plaints:{name,email}, by using the inference rules in C. Due to the soundness of the
rules it follows that these keys are also implied by Σ. ��

Completeness. Before we establish the completeness of our inference rules for Neo4j
keys, we introduce some useful notation.

Definition 2. For a given set Σ of Neo4j keys over L and K, and a given set L ⊆ L of
labels and a given set K ⊆ K of property attributes, let ΣL = {L′ : K′ ∈ Σ | L′ ⊆ L}
denote the set of keys from Σ that are only labelled by labels in L. Furthermore, let
KL,Σ :=

⋃
L′:K′∈ΣL

K′ denote the set of property attributes that must be specified by
any nodes labelled by labels in L. ��

Neo4j Keys 29

We illustrate these new notions by our running example.

Example 4. Let Σ denote the set with Helpline:{no}, Helpline:{name,phone}, and
Complaints:{name,email}. Then we haveΣ{Complaints} = {Complaints:{name,email}},
Σ{Helpline} = {Helpline:{no},Helpline:{name,phone}}, and Σ{Helpline, Complaints} = Σ.
Also, we get K{Helpline},Σ = {no,name,phone}, K{Complaints},Σ = {name,email}, and
K{Helpline,Complaints},Σ = {no,name,phone,email}. ��
Lemma 3. Let Σ denote a set of Neo4j keys over L and K. Then the following hold:

1. If ΣL �= ∅, then L : KL ∈ Σ+.
2. For every L′ : K′ ∈ ΣL and for all K ⊆ K such that K′ ⊆ K ⊆ KL,Σ , we have

L : K ∈ Σ+.

Proof. 1. Let ΣL = {L1 : K1, . . . ,Ln : Kn} for some non-negative integer n. Since
ΣL is non-empty, it follows that n is a positive integer n > 0. Due to the soundness
of the label-extension rule it follows that for all i = 1, . . . , n, L : Ki ∈ Σ+. Due
to the soundness of the attribute-extension rule we derive L :

⋃n
i=1 Ki ∈ Σ+, but⋃n

i=1 Ki = KL,Σ . Consequently, L : KL,Σ ∈ Σ+.
2. Let L′ : K′ ∈ ΣL, and K ⊆ K such that K′ ⊆ K ⊆ KL,Σ . Since L′ : K′ ∈ ΣL,

it follows that ΣL �= ∅. Hence, property 1. of Lemma 3 implies that L : KL,Σ ∈
Σ+. Since K ⊆ KL,Σ , it follows that K ∪ KL,Σ = KL,Σ . Consequently, we have
L : K ∪ KL,Σ ∈ Σ+. We apply the label-extension rule to L′ : K′ ∈ Σ to derive
L : K′ ∈ Σ+. We can then apply the attribute-extension rule to L : K′ and L : K∪KL,Σ

to derive L : K′ ∪ K ∈ Σ+. Since K′ ⊆ K it follows that L : K ∈ Σ+. ��
Note that property 1. of Lemma 3 does not hold when ΣL = ∅. In this case, KL = ∅,

but the Neo4j key L : ∅ is satisfied by a property graph G = (V, E, η, λ, ν) if and
only if |VL| ≤ 1, that is, if there is at most one vertex in V that carries all the labels of
L.

Theorem 1. The set C forms a finite axiomatization for the implication of Neo4j keys.

Proof. The soundness of C has been established in Lemma 2. It remains to show the
completeness. Let Σ ∪ {L : K} denote a set of Neo4j keys over L and K such that
L : K /∈ Σ+. We need to show that Σ does not imply L : K.

We distinguish between two main cases. In the first main case we assume that K �⊆
KL,Σ . That is, there is some property attribute A ∈ K−KL,Σ . Let us define the property
graphG = (V, E, η, λ, ν) as follows: V = {v},E = ∅, and therefore there is nothing
to define for η, λ(v) = L, and for all B ∈ KL,Σ we define ν(v,B) := 0 and ν(v,B)
remains undefined on other property attributes. For this first main case it follows that G
violates the key L : K since v ∈ VL and ν(v,A) is undefined since A ∈ K − KL,Σ . It
remains to show in this case that G satisfies L′ : K′ for all L′ : K′ ∈ Σ. If L′ : K′ ∈ ΣL,
then we have K′ ⊆ KL,Σ . It follows that for all v ∈ VL′ and for all B ∈ K′, ν(v,B) is
defined. Since there is only one vertex in V , it follows that G must satisfy L′ : K′ ∈ ΣL.
Otherwise, L′ : K′ /∈ ΣL, which means that L′ �⊆ L. Consequently, VL′ = ∅ and G
must satisfy L′ : K′ /∈ ΣL. Hence, we have shown that Σ does not imply L : K in the
first main case.

30 S. Link

In the second main case we assume the opposite, that is, K ⊆ KL,Σ . Let us define
the property graph G = (V,E, η, λ, ν) as follows: V = {v1, v2}, E = ∅, and therefore
there is nothing to define for η, λ(v1) = L = λ(v2), for allB ∈ Kwe define ν(v1, B) =
0 = ν(v2, B), for all B ∈ KL,Σ − K we define ν(v1, B) = 0 and ν(v2, B) = 1, and
ν(v,B) and ν(v,B) remains undefined on other property attributes. It follows that G
violates L : K since there are v1, v2 ∈ VL such that v1 �= v2 and ν(v1,K) = ν(v2,K). It
remains to show that G satisfies every L′ : K′ ∈ Σ. In case a) we assume L′ : K′ /∈ ΣL,
which means that L′ �⊆ L. Consequently, VL′ = ∅ and G must satisfy L′ : K′ /∈ ΣL. In
case b) we assume L′ : K′ ∈ ΣL. Hence, ΣL �= ∅ and L : KL,Σ ∈ Σ+ by Property 1.
of Lemma 3. In particular, K′ ⊆ KL,Σ . Consequently, for all v ∈ VL′ and for all B ∈ K′

it follows that ν(v,B) is defined. In case b.1) we assume that K′ �⊆ K. Hence, there
is some A ∈ K′ − K such that ν(v1, A) = 0 �= 1 = ν(v2, A) holds. That is, L′ : K′

is satisfied by G. Finally, in case b.2) we assume that K′ ⊆ K. Hence, in this case we
have K′ ⊆ K ⊆ KL,Σ with L′ : K′ ∈ ΣL. Hence, Property 2. of Lemma 3 would
imply that L : K ∈ Σ+. This would be a contradiction to our original assumption that
L : K /∈ Σ+, so case b.2) cannot occur. We have just shown that in all possible cases,
Σ does not imply L : K. This shows the completeness of C. ��

The proof of Theorem 1 contains a general construction of property graphs showing
that a key is not implied by a given set of keys, as illustrated on our running example.

Example 5. Let Σ consist of the keys: Helpline:{no}, Helpline:{name,phone}, and
Complaints:{name,email}. The key Helpline:{no,expertise} is not implied by Σ. Fol-
lowing the construction of Theorem 1 we would create a property graph G1 with
one vertex v, label λ(v) = :Helpline and properties ν(v, no) = ν(v, name) =
ν(v, phone) = 0. In particular, KHelpline,Σ = {no, name, phone}. Indeed, the prop-
erty graph G1 satisfies all keys in Σ, but violates the key Helpline:{no,expertise}
since the value ν(v, expertise) has remained undefined. As observed before,
{Helpline,Complaints}:{phone,email} is not implied by Σ. Following the construc-
tion of Theorem 1 we would create a property graph G2 with two vertices v1
and v2, labels λ(v1) = {:Helpline, :Complaints} and properties ν(v1, phone) =
ν(v2, phone) = ν(v1, email) = ν(v2, email) = 0, and ν(v1, name) = ν(v1, no) =
0 �= 1 = ν(v2, name) = ν(v2, no). In particular, K{Helpline,Complaints},Σ =
{no, name, phone, email}, and K = {phone, email}. Indeed, G2 satisfies all keys in Σ,
but violates the key {Helpline,Complaints}:{phone,email} since the two distinct ver-
tices v1 and v2 both have labels :Helpline and :Complaints, and have matching property
values on both phone and email. ��

6.2 Algorithmic Characterization

The axiomatization of keys enables us to establish an algorithm that decides the associ-
ated implication problem. In fact, we can derive the following characterization for the
implication problem, from which we will derive such an algorithm.

Theorem 2. Let Σ ∪{L : K} denote a set of Neo4j keys over L and K. Then Σ |= L :
K if and only if K ⊆ KL,Σ and there is some L′ : K′ ∈ ΣL such that K′ ⊆ K.

Neo4j Keys 31

Proof. Sufficiency. If K ⊆ KL,Σ and there is some L′ : K′ ∈ ΣL such that K′ ⊆ K,
then the second property of Lemma 3 shows that L : K ∈ Σ+

C . The soundness of C
means that L : K is implied by Σ.

Necessity. Suppose that K �⊆ KL,Σ . This constitutes the first main case in the proof
of Theorem 1. Hence, the property graph created in that case satisfies Σ and violates
L : K. Consequently, L : K is not implied by Σ.

Suppose now that for all L′ : K′ ∈ ΣL we have that K′ ∩ (KL,Σ − K) �= ∅. Then
the property graph from the second main case in the proof of Theorem 1 satisfies Σ and
violates L : K. Consequently, L : K is not implied by Σ. ��

Algorithm 1 is based on the characterization of key implication in Theorem 2.

Theorem 3. Algorithm 1 decides the implication problem Σ |= L : K for the class of
keys in O(||Σ ∪ {L : K}||) time.
Proof. The soundness of Algorithm 1 follows from Theorem 2. The upper time bound
follows straight from the loop between steps 4–8. ��
Example 6. On the input where Σ consist of Helpline:{no}, Helpline:{name,phone},
and Complaints:{name,email}, and ϕ denotes Helpline:{no,expertise}, Algorithm 1
returns FALSE due to expertise /∈ {no,name,phone} = K{Helpline},Σ in line 9.
On input Σ and {Helpline,Complaints}:{no,email}, Algorithm 1 returns TRUE since
{no,email} ⊆ {no,name,phone,email} = K{Helpline,Complaints},Σ , Helpline:{no} ∈
Σ{Helpline,Complaints} and {no} ⊆ {no, email}. ��

Algorithm 1. Implication of Neo4j Keys
Require: Neo4j Key Set Σ ∪ {L : K}
Ensure: TRUE, if Σ |= L : K, and FALSE, otherwise
1: Unique ← FALSE;
2: Exists ← FALSE;
3: KL,Σ ← ∅;
4: for all L′ : K′ ∈ Σ do
5: if L′ ⊆ L then � This means L′ : K′ ∈ ΣL

6: KL,Σ ← KL,Σ ∪ K′; � All properties of this key exist

7: if (NOT(Unique) AND K′ ⊆ K) then
8: Unique ← TRUE; � Found an input key that makes our candidate unique

9: if K ⊆ KL,Σ then return Exists ← TRUE; � All required properties exist

10: if (Exists AND Unique) then return TRUE � Properties exist and are unique
11: else return FALSE

7 Conclusion and Future Work

We have established that Neo4j keys can be reasoned about efficiently, which is bene-
ficial to update and query operations on property graphs. In particular, multiple labels

32 S. Link

offer new opportunities for physical and logical data management. In the future, we will
study the interaction of Neo4j keys with existence and uniqueness constraints that are
also part of the Cypher language. In addition, we will also investigate different seman-
tics and different sets of constraints. An interesting proposal might be to combine Neo4j
keys with recently investigated embedded uniqueness constraints [21,22]. These would
be expressions of the form L : E : X with the semantics that for the set of vertices v
that carry all labels in L and for which ν(v,A) is defined for allA ∈ E, the combination
of property values over the property attributes in X is unique.

References

1. Balamuralikrishna, N., Jiang, Y., Koehler, H., Leck, U., Link, S., Prade, H.: Possibilistic
keys. Fuzzy Sets Syst. 376, 1–36 (2019)

2. Bonifati, A., Fletcher, G.H.L., Voigt, H., Yakovets, N.: Querying Graphs. Synthesis Lectures
on Data Management. Morgan & Claypool Publishers, San Rafael (2018)

3. Brown, P., Link, S.: Probabilistic keys. IEEE Trans. Knowl. Data Eng. 29(3), 670–682 (2017)
4. Buneman, P., Davidson, S.B., Fan, W., Hara, C.S., Tan, W.C.: Keys for XML. Comput. Netw.

39(5), 473–487 (2002)
5. Chen, P.P.: The entity-relationship model - toward a unified view of data. ACM Trans.

Database Syst. 1(1), 9–36 (1976)
6. Codd, E.F.: A relational model of data for large shared data banks. Commun. ACM 13(6),

377–387 (1970)
7. Demetrovics, J.: On the number of candidate keys. Inf. Process. Lett. 7(6), 266–269 (1978)
8. Fagin, R.: A normal form for relational databases that is based on domains and keys. ACM

Trans. Database Syst. 6(3), 387–415 (1981)
9. Fan, W., Fan, Z., Tian, C., Dong, X.L.: Keys for graphs. PVLDB 8(12), 1590–1601 (2015)
10. Fan, W., Lu, P.: Dependencies for graphs. ACMTrans. Database Syst. 44(2), 5:1–5:40 (2019)
11. Hannula, M., Link, S.: Automated reasoning about key sets. In: Galmiche, D., Schulz, S.,

Sebastiani, R. (eds.) IJCAR 2018. LNCS (LNAI), vol. 10900, pp. 47–63. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-94205-6 4

12. Hartmann, S., Link, S.: Efficient reasoning about a robust XML key fragment. ACM Trans.
Database Syst. 34(2), 1–33 (2009)

13. Khizder, V.L., Weddell, G.E.: Reasoning about uniqueness constraints in object relational
databases. IEEE Trans. Knowl. Data Eng. 15(5), 1295–1306 (2003)

14. Köhler, H., Leck, U., Link, S., Zhou, X.: Possible and certain keys for SQL. VLDB J. 25(4),
571–596 (2016). https://doi.org/10.1007/s00778-016-0430-9

15. Lausen, G.: Relational databases in RDF: keys and foreign keys. In: Christophides, V., Col-
lard, M., Gutierrez, C. (eds.) ODBIS/SWDB -2007. LNCS, vol. 5005, pp. 43–56. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-70960-2 3

16. Lucchesi, C.L., Osborn, S.L.: Candidate keys for relations. J. Comput. Syst. Sci. 17(2), 270–
279 (1978)

17. Pokorný, J., Valenta, M., Kovacic, J.: Integrity constraints in graph databases. In: The 8th
International Conference on Ambient Systems, Networks and Technologies, ANT 2017/The
7th International Conference on Sustainable Energy Information Technology, SEIT 2017,
Madeira, Portugal, 16–19 May 2017, vol. 109, pp. 975–981. Elsevier (2017). Procedia Com-
puter Science

18. Thalheim, B.: On semantic issues connected with keys in relational databases permitting null
values. Elektronische Informationsverarbeitung und Kybernetik 25(1/2), 11–20 (1989)

https://doi.org/10.1007/978-3-319-94205-6_4
https://doi.org/10.1007/s00778-016-0430-9
https://doi.org/10.1007/978-3-540-70960-2_3

Neo4j Keys 33

19. Thalheim, B.: Entity-Relationship Modeling - Foundations of Database Technology.
Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-662-04058-4

20. Toman, D., Weddell, G.E.: On keys and functional dependencies as first-class citizens in
description logics. J. Autom. Reason. 40(2–3), 117–132 (2008). https://doi.org/10.1007/
s10817-007-9092-z

21. Wei, Z., Leck, U., Link, S.: Discovery and ranking of embedded uniqueness constraints.
PVLDB 12(13), 2339–2352 (2019)

22. Wei, Z., Link, S., Liu, J.: Contextual keys. In: Mayr, H.C., Guizzardi, G., Ma, H., Pastor, O.
(eds.) ER 2017. LNCS, vol. 10650, pp. 266–279. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-69904-2 22

https://doi.org/10.1007/978-3-662-04058-4
https://doi.org/10.1007/s10817-007-9092-z
https://doi.org/10.1007/s10817-007-9092-z
https://doi.org/10.1007/978-3-319-69904-2_22
https://doi.org/10.1007/978-3-319-69904-2_22

	Neo4j Keys
	1 Introduction
	2 Related Work
	3 Property Graph Model
	4 Key Constraints in Cypher
	5 Applications
	5.1 Update Operations
	5.2 Physical Query Optimization
	5.3 Logical Query Optimization and Opportunities with Multiple Labels

	6 Reasoning About Neo4j Keys
	6.1 Axiomatic Characterization
	6.2 Algorithmic Characterization

	7 Conclusion and Future Work
	References

