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Abstract. The Requirements Engineering (RE) process starts with
initial requirements elicited from stakeholders – however conflicting,
unattainable, incomplete and ambiguous – and iteratively refines them
into a specification that is consistent, complete, valid and unambigu-
ous. We propose a novel RE process in the form of a calculus where the
process is envisioned as an iterative application of refinement operators,
with each operator removing a defect from the current requirements.
Our proposal is motivated by the dialectic and incremental nature of RE
activities. The calculus, which we call CaRE, casts the RE problem as an
iterative argument between stakeholders, who point out defects (ambi-
guity, incompleteness, etc.) of existing requirements, and then propose
refinements to address those defects, thus leading to the construction
of a refinement graph. This graph is then a conceptual model of an RE
process enactment. The semantics of these models is provided by Argu-
mentation Theory, where a requirement may be attacked for having a
defect, which in turn may be eliminated by a refinement.

Keywords: Requirements engineering · RE process · RE calculus ·
Argumentation theory

1 Introduction

The creation of software requirements is a very important initial stage of soft-
ware development. The original core problem in Requirements Engineering (RE)
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consists of transforming the initial requirements R elicited from stakeholders—
however informal, ambiguous, unattainable, etc.—through a systematic refine-
ment process into a specification S that (a) consists of functional requirements,
quality constraints and domain assumptions, such that (b) S is consistent, com-
plete, and realizable, and (c) S fulfills R. Variants of this problem form the
backbone of RE research, and since the late 1970’s it has been recognized that
the resulting requirements document contains a conceptual model of the envi-
ronment and the software-to-be [1,2].

To begin with, consider two RE techniques that can be viewed as research
baseline and analogues for our work. In each case, we mention 1) the basic ontol-
ogy underlying the approach, 2) the refinement process by which the require-
ments are built, and 3) the “requirements document” resulting from the enact-
ment of this process.

SADT (1977) [1] was the first widely known requirements specification
notation and methodology. The modeling ontology of SADT consists of data
and activity boxes, connected by input/output/control arrows. The refinement
methodology is structured decomposition of non-atomic boxes into aptly named
sub-boxes, which are interconnected by aptly-named arrows in appropriate ways.
Therefore, the final requirements document/model consists of a number of pages,
each describing the internal content of a box; all unexpanded boxes are viewed as
atomic/realizable. Ross [1] explicitly stated that SADT can be used to describe
not just software requirements but to communicate any idea/conceptual model,
and showed how to describe the process of model building in SADT itself.

Basic Goal-Oriented RE—GORE (1993) [3,4] is one of the most influ-
ential RE paradigms, and, in its simplest form, has an ontology consisting of
goals, connected by reduction and conflict relations. The methodology suggests
refining non-realizable goals (ones that cannot be implemented directly) using
and/or decomposition. The final requirements model then consists of the graph
of goal and decomposition nodes, with operationalisable goals as leafs.

The present paper, which extends and builds on initial work in [5], pro-
poses an approach, called CaRE, whose ontology consists of goals/requirements,
defects and refinements, the latter two of various sub-types. CaRE offers a novel
calculus of operators that can be used to critique goals using various defect
types, and to address such defects using various kinds of refinements. The CaRE
refinement methodology suggests viewing the use of the operators as a dialectic
argument between stakeholders, including requirements engineers. The result of
enacting this argument will be a refinement graph, which records goals, defects
and refinements, and for which we define a notion of “acceptability”. The set of
defect subtypes in CaRE is inspired by the IEEE/ISO Standards on Software
Requirements Specifications [6,7]. The set of refinements addressing them is
gathered from the RE literature, which contains many proposals for dealing with
specific types of problems. These include techniques for eliminating forms of con-
flict, such as inconsistencies [8] and obstacles [9]. For example, the nonAtomic
defect in CaRE marks a goal as non-operationalisable (in GORE terminology),
and the reduce operator can be used to perform and-decomposition of the goal.
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Prior RE approaches, starting with [10], viewed initial requirements R as
being satisfied by specification S under domain assumptions A, if A and S
together logically entailed R. This notion of fulfillment runs counter to require-
ments engineering practice, where stakeholder requirements are routinely weak-
ened because they are unnecessarily strong (e.g., “system shall be available
7/24”), or even dropped altogether. Such refinements can’t be accounted for
explicitly by proposals in the literature.

The CaRE process, in contrast, results in a refinement graph with nodes
corresponding to requirements: some for the initial R, some for potential speci-
fications S, and others for intermediate refinements. Some S, consisting of leaf
nodes, is said to address R if there is an “acceptable argument” that involves
refining S from R. This renders the derivation of S from R a Hegelian dialec-
tic process of thesis-antithesis-synthesis [11], also similar in spirit to the inquiry
cycle [12], though our proposal includes more structure, technical details, and
reasoning support for the RE process. Addressing a given set of requirements by
offering an acceptable argument is a weaker notion of fulfillment than satisfying
it, because it allows a requirement to be weakened or altogether dropped, as
long as there is an acceptable argument for this. Towards this end, we adopt
argumentation semantics from Dung [13].

The contributions of this work are:

– A comprehensive refinement calculus for RE, inspired by goal-oriented RE
but which adds: (i) “defects” and “refinements” to its ontology, based on a
full set of defect types from IEEE/ISO standards; (ii) a comprehensive set of
refinement operators for defects; (iii) refinement graphs, which are conceptual
models of the RE process enactment, and can serve as explanation/rationale
for the specifications obtained.

– An argumentation-based semantics of what it means for a specification
to address a set of stakeholder requirements The systematic process for
constructing CaRE refinement graphs, inspired by its argumentation-based
semantics, supports negotiation and convergence towards agreement between
stakeholders. In contrast with most previous approaches, where only a require-
ment engineer conducts analysis, with CaRE all stakeholders are involved.

– Reasoning support that, given an initial set of requirements R and a con-
structed refinement graph, returns all specifications S that address R. This
is implemented as a prototype tool that is available on the web.

2 CaRE Requirements Calculus

The proposed approach consists of a calculus and a systematic process for require-
ments elicitation, negotiation, and refinement. The calculus is based on a collection
of defect types and of refinements. The defect types are inspired by the IEEE/ISO
standards and represent issues that could be identified by stakeholders for one
or more requirements. Refinements, on the other hand, are the means for fixing
defects. By means of an iterative process of defect identification and refinement, a
refinement graph is constructed and zero or more specifications are produced.
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Defect Types: Defects can be found in individual requirements (single-target
defects) or sets thereof (multi-target defects). The single target defects are

– nonAtomic: the requirement is not operationalisable. For example, 〈g1:
“System shall schedule a meeting upon request”〉 may not be atomic since
there is no single action the system-to-be or an agent in the environment can
perform to address it.

– ambiguous: the requirement admits many interpretations because it is
vague, imprecise, or otherwise ambiguous. For example, 〈g2: “The authen-
tication process shall be easy”〉 is ambiguous since the term easy is vague.

– unattainable: the requirement is not feasible, i.e. doesn’t have a realistic solu-
tion. For example, 〈g3: “The system shall be available at all times”〉 is unattain-
able because it assumes eternal availability of power and other resources.

– unjustified: the requirement does not have an explicit motivation. For exam-
ple, 〈g4: “The system shall run on Windows operating system”〉 is missing an
explicit justification why other operating systems are not considered.

– incomplete: the requirement is missing information. For example, 〈g5: “In
case of fault, the system shall send an error message”〉 is incomplete because
it does not specify a recipient for the message.

– tooStrong: the requirement is over-restrictive. For example, 〈g6: “The web-
site shall use HTTPS protocol”〉, may be too strong if there is no sensitive
data.

– tooWeak: the requirement is too weak. For example, 〈g7: “The DB system
shall process 500 transactions/sec”〉 is too weak if the expected workload for
the system-to-be is 1,000 transactions/sec.

– rejected: the requirement is rejected. For example, in the context of an app
recommending nearby restaurants to users, a requirement such as 〈g8: “The
app shall support chatting between user and restaurant”〉 may be deemed
unacceptable.

The multitarget defects are:

– mConflict: the full set of requirements doesn’t admit any solutions, even
though subsets may do so. For example, the requirements 〈g9: “The train
control system shall stop the train if a red signal is missed”〉 and 〈g10: “The
train control system shall not apply brakes if the speed is below 30 km/h”〉
are conflicting, if the driver is in charge for speeds <30 km/h.

– mMissing: the set of requirements is incomplete. For example, a set of
requirements for a social network platform is mMissing if it does not include
any privacy requirement.

– mRedundant: here a set of requirements is too strong or redundant, as in 〈g11:
“The systemshall support authentication throughfingerprint recognition”〉and
〈g12: “The system shall support authentication through iris recognition”〉.

Refinement Operators: A refinement operator invocation, op(D,R), addresses a
defect D of some existing requirements, offering alternative (presumably better)
requirement(s) R that address the problem. Each operator takes a (set of) defec-
tive requirements, and is applicable to one or more defect types. Each defect type
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has at least one refinement operator that is applicable to it, i.e., can eliminate
defects of that type. Defects of type rejected are an exception: in this case there
is no possible fix, as the rejected requirement constitutes a dead end. Although
some operators behave similarly, we have chosen to keep them, to make the
calculus more readily usable. The operators are as follows:

– weaken: introduces a weaker requirement. For example, the unattainable
requirement g3 may be weakened into 〈g13: “The system shall be available
at all times, with interruptions of ≤2 h”〉. weaken is applicable to defects of
type unattainable, and tooStrong.

– strengthen: introduces a stronger requirement. For instance, g7 may be
strengthened into 〈g14: “The system shall process 1,200 tps”〉. strengthen is
applicable to defects of type tooWeak.

– reduce: decomposes a requirement into a set g1, ..., gn using and-refinement.
reduce is applicable to defects of type nonAtomic.

– add: introduces new requirements, and is applicable to defects of type
mMissing.

– clarify: is applicable to incomplete and ambiguous defects, and introduces
a, presumably, improved requirement.

– justify: introduces a new requirement that represents an explicit motivation
for another requirement, and is applicable to unjustified defects.

– resolve: applies to defects of type mConflict, typically moderating or drop-
ping the original requirements.

– drop: given a set of mRedundant requirements, produces a proper subset
not including redundant elements.

REQ-id: REQ-text

Single Target
Defect

Requirement

Single Refinement

Multi-target
Defect

{REQ-1, ..., REQ-m} Requirement Set

Multiple 
Refinement

DType(DEF-id:[<"claim">])

RType(REF-id)

DType(DEF-id:[<"claim">])

Alternative 
Refinement

RType-1(REF-id-1)

RType(REF-id)

RType-2(REF-id-2)

Fig. 1. Graphical notation

g00: the app shall run on 
Android

g01: the app shall be 
delivered within 

6 months

mConflict(d01: "cannot deliver 
Android app in 6 months")

g23: the app shall 
run on Android

g24: the app shall be 
delivered within 

12 months

resolve(r20)

g20: the app shall run on 
iOS

g21: the app shall be 
delivered within 6 months

resolve(r21)

unjustified(d00)

g10: the app shall run on 
all existing tablets, which 

use Android

g22: all tablets of the 
factory shall be replaced 

with iPads

justify(r10)

Fig. 2. Refinement graph example
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2.1 Incremental Construction of a Refinement Graph

The incremental CaRE requirements acquisition process starts with an initial set
of requirements. These are critiqued by stakeholders and defects in the require-
ments are identified. Then, requirements – or sets of requirements – that have
defects are refined by applying the different refinement operators, producing
new requirements. If the new requirements are acceptable, i.e. have no defects,
the original (defective) requirements are accepted. Otherwise, this process is
repeated until no new defects are identified. Thus, the result of the process is
a refinement graph in which all the leaf nodes are requirements that have no
defects. Therefore, in a sense, the acceptability of requirements is propagated
from the leaf nodes towards the higher-level nodes. Finally, specifications of a
refinement graph are determined by identifying minimal sets of leaf nodes that
make the initial requirements acceptable.

2.2 Graphical Notation and Running Example

This section presents a simple example used to illustrate our proposal, and its
graphical expression. The basic elements of the graphical notation are shown
in Fig. 1, and consist of requirements, defects (single- and multi-target), and
refinements. Each instance of these elements is associated with a unique id (REQ-
id, DEF-id, REF-id in Fig. 1).

The example, which is based on a simple elicitation case, is represented by the
refinement graph in Fig. 2. In the running example, a customer requires a new
app to be installed on the tablets of factory workers, to be used for sharing work-
flow information. The customer requires that the app runs on Android (g00).
Furthermore, the customer wants the system to be delivered within six months
(g01). The requirements analyst asks why Android is required (unjustified(d00)
defect), and the customer replies that the tablets currently used by the workers
are all Android tablets (g10, introduced with the justify refinement r10). The
requirements analyst knows that their software company has a very similar app
for iOS, but that porting and adaptation would require twelve months. Hence,
g00 and g01 are considered conflicting. In the refinement graph, an mConflict
defect is specified, and a textual motivation (the optional <“claim”> in Fig. 1) is
used to explain the nature of the defect: mConflict(d01:“cannot deliver Android
app in 6 months”). To comply with the deadline, the requirements analyst sug-
gests to develop the app for iOS (g20), so that its adaptation to the customer’s
needs is feasible within 6 months (g21). However, this would require replacing
the tablets at the factory with iPad tablets (g22). Alternatively, the require-
ments analyst suggests to develop the app for Android (g23), but to deliver it
in twelve months (g24). These two options aim at resolving conflict d01, and
are represented as alternative refinements r20 and r21. Assuming that no other
defects are found, according to the approach provided in Sect. 2.1, we have two
possible specifications: {g20, g21, g22} and {g23, g24}.
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2.3 Discussion of Design Choices

Firstly, we gained a claim of completeness with respect to the defect types of our
calculus by using the IEEE/ISO standards. However, there is no claim of mini-
mality for defect types since, e.g., unattainable is a form of tooStrong. How-
ever, there’s been much research on how to recognize and deal with unattain-
able specifically – it is a special case of conflicting requirements and domain
assumptions.

The set of refinement operators is not minimal since, e.g., add and justify
modify the graph the same way. However, operators guide users on how to deal
with defects. For example, if r is attacked as being incomplete with respect to
privacy concerns, then use of add should introduce some privacy requirements.
If, on the other hand, r is deemed unjustified, the new requirement introduced by
justify should serve as justification for r. In short, add and justify do similar
things, but for very different purposes.

CaRE might be criticized as too cumbersome for users compared to, say,
GORE approaches. This may well be the case – we need empirical studies to
judge this. However, as discussed above, CaRE is the only proposal in the RE
literature for solving the requirements problem in its greater generality. And in
any case, in addressing an open problem one may want to keep in mind Albert
Einstein’s dictum “Make things as simple as possible, but not simpler”.

3 Argumentation Semantics

Dung [13] introduced a formal Argumentation Framework (DAF), whose basic
notions are arguments and attacks (conflicts between arguments), and where
the key reasoning task is the acceptability of arguments, i.e, whether and which
arguments should or should not be accepted by an intelligent agent. Sets of
collectively acceptable arguments are called extensions.

The semantics of the CaRE calculus will be given in the form of a translation
from a refinement graph into an aspic+ argumentation theory, a structured
variant of Dung’s DAF [13]. The translation leads to arguments that represent
requirements, defects and refinements. Informally, attacks between these argu-
ments correspond to (i) the identification of a defect in a requirement or set
of requirements, and (ii) the application of a refinement to address a defect.
More precisely, in our formalisation, an argument d that represents a defect in a
requirement g attacks the argument representing g; similarly, an argument r that
represents a refinement to address a defect d attacks the argument represent-
ing d, thus possibly restoring the acceptability of the attacked requirement. The
specifications resulting from a refinement graph are computed by considering all
possible minimal extensions where the initial requirements are acceptable.
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The formalization of CaRE using aspic+ is motivated by (i) the dialectic
nature of requirements engineering, for which argumentation theory is a natural
formal choice; (ii) the flexibility of aspic+, being a meta-reasoning tool for rea-
soning over a freely chosen underlying logic, which enables us to easily consider
more structured RE languages, e.g. [14], in the future; (iii) the non-monotonic
nature of argumentation theories, which enables extending the framework to
incorporate other important features, e.g., support of conflict and dependency
relations between requirements [15].

This section first introduces the formal definition of the aspic+ structured
argumentation framework, and the formal representation of a refinement graph
and its well-formedness conditions. It then describes how a refinement graph
is translated into an aspic+ argumentation theory and, thereby, into a DAF.
We define how this enables determining the acceptability of requirements and
computing specification sets. Finally, we conclude by describing a prototype tool
implementing our calculus.

3.1 Basics of Argumentation Theory

In a DAF, arguments have an abstract representation in the form of simple
propositions, e.g., the argument “It is raining today, therefore I should stay
home” can be represented using a simple propositional symbol a. Conflicts
between arguments are given in a relation D over the set of arguments. For
example, consider another argument b, “I have to buy food, so I must go to the
store”, which obviously conflicts with a. In DAF’s terminology, this conflict is
called an attack, and is represented in the form of a tuple (a, b) in D. Given
arguments and attacks, the acceptability of arguments can be determined, infor-
mally, as follows [16]: an argument is IN (acceptable) if it is not attacked or if
all its attackers are OUT (not acceptable). An argument is OUT if it is attacked
by an argument that is IN. Otherwise, an argument is UNDECIDED.

Though powerful, the abstract representation of arguments in DAF makes
it often less practical for modeling real-world problems. The aspic+ framework
for structured argumentation [17]1 therefore extends DAF to enable the repre-
sentation of basic arguments in the form of inference rules, each having a set of
premises and a conclusion. For example, argument a above can be represented
using a (strict) inference rule, having a single premise “it is raining today” and a
conclusion “I should stay home”. One advantage of this representation is that it
explicates the structure of arguments and enables the automatic construction of
complex arguments by chaining inference rules. aspic+ relies on DAF to deter-
mine acceptability of arguments. In particular, given an argumentation theory
that includes inference rules, aspic+ identifies the different basic and complex
arguments as well as conflicts between them. Then, it constructs a DAF and
uses it to determine which arguments are accepted and which are not.

1 In this paper, we adapt a version of aspic+, by simplifying and specializing it to
support reasoning in our calculus. Our version is partially inspired by [18].
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3.2 Formal Description of Refinement Graphs

A refinement graph RG is a tuple 〈Req,Defect,Ref〉 where:

– Req ⊆ Idg × Text is a set of requirements. Each requirement has a unique
identifier (in Idg) and a natural language text description (in Text).

– Defect ⊆ Idd × DType × P(Text) × P(Idg) is a set of defects. A defect
has (i) a unique identifier (in Idd); (ii) a defect type; (iii) some natural lan-
guage explanations of the defect’s nature; and (iv) the identifier(s) of a set of
requirements found to have the defect.

– Ref ⊆ Idr ×RType× Idd ×P(Idg) is a set of refinements. A refinement has (i)
a unique identifier (in Idr); (ii) a refinement type; (iii) a defect that it aims at
addressing, and (iv) a set of other requirements, which are meant to replace
the defective one(s).

So, for example, from Fig. 2, we have the formal requirement Req(g23, The
app shall run on Android)2. The set of identifiers Idg, Idr, and Idd are disjoint;
henceforth, given a refinement graph RG = 〈Req,Defect,Ref〉, the set IdRG is
used to denote all identifiers of its elements, i.e., IdRG = Idg ∪ Idd ∪ Idr.

A refinement graph is well-formed iff every refinement addressing a defect
matches its type, as described in Sect. 2.

In addition, to make the semantics work out more easily, we assume in this
conference paper that the refinement graph is acyclic. This means that if a
requirement is to be re-used it must be given a new label.

3.3 Refinement Graph Semantics by Translation to Argumentation
Theory

Each refinement graph RG has a corresponding aspic+ argumentation the-
ory representation, denoted AT (RG). An argumentation theory is a tuple
〈L, IR,name〉 where L is a logical language (in our case simple propositional
symbols and their negation).

IR is a set of defeasible inference rules of the form ϕ1, ..., ϕn ⇒ ϕ,
n ≥ 0, where ϕ1, ..., ϕn, ϕ are from L. In case n = 0, ⇒ ϕ is equivalent to
true ⇒ ϕ, and defeasibly asserts ϕ. The intended meaning of a defeasible rule
is that if one accepts all antecedents/premises, then one must accept the con-
sequent/conclusion unless there is sufficient reason to reject it. Defeasible rules
with empty premises, of the form ⇒ ϕ, are called assumptions.

Finally, name is a partial function that gives names to (some) defeasible
rules including assumptions. For convenience, we will write ϕ1, ..., ϕn

d=⇒ ϕ for a
defeasible rule ϕ1, ..., ϕn ⇒ ϕ whose name is d.

2 Henceforth, we will use Req, Defect and Ref as predicates in Prolog: variables (in
italics) match possible values, and underscores are wildcards. In logical formulas,
wildcards are existentially quantified anonymous variables.
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Table 1. Mapping of elements of refinement graphs to aspic+ argumentation theory.

Element type Refinement graph element aspic+ representation

requirement (g) Req(idg , txt)
idg
==⇒ txt

defect (d) Defect(idd , , , IDdefective)
idd==⇒ ¬idg i for every idg i ∈ IDdefective

refinement (r) Ref(idr , , idd , IDreplace)
∧

idg i∈IDreplace ∧ Req(idg i,txti)
txti

idr==⇒ ¬idd

Translation of Refinement Graphs to aspic+. The argumentation theory
AT (RG) = 〈LRG, IRRG,nameRG〉 corresponding to a refinement graph RG =
〈Req,Defect,Ref〉 is constructed as follows3:

– The set of propositions L contains the elements of Text used in the graph,
together with the identifiers in RG, and their negations.

– The set of defeasible rules of AT (RG) is constructed on the basis of require-
ments, defects, and refinements of refinement graphs as described in Table 1.

Thus, the above formalization represents requirements and defects as
antecedent-free rules, while refinements have premises which are the require-
ments that the refinement introduces.

Note that natural language statements of defects are not currently considered
in the translation to argumentation theories. The inclusion of these elements as
well as support/conflict relations between them represent future work.

Construction of Arguments and Attacks. aspic+ constructs arguments that take
the form of inference trees. In our case, complex arguments start from leaves that
are rules with antecedent true, and are put together into larger ones by chaining
with inference rules. Due to space limitations, we do not present the rules of the
construction of arguments. Interested readers are referred to [17,18].

Figure 3 depicts the arguments constructed on the basis of the refinement
graph shown in Fig. 2. The figure shows that all the requirements in the refine-
ment graph correspond to arguments {G0, G1, G2, G3, G4, G5, G6, G7} in the the-
ory, and defects correspond to {D0,D1,D2}. Refinements take the form of defea-
sible rules whose premises are (non-initial) requirements. These lead to inference
trees where the premises are the leaves of the tree, as in {R0, R1, R2}. Notice the
structure of every argument: it includes a set of sub-conclusions, a (proper) con-
clusion, and a set of defeasible rules. For example, the sub-conclusions of argument
R1 are The app shall run on Android, The app shall be delivered in 12 months, and
¬d01; the conclusion is ¬d01; and it has a single defeasible rule r01.

3 When clear from the context, we will henceforth drop the subscript RG.
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Fig. 3. Example of construction of aspic+ arguments

Identification of Attacks. Given two aspic+ arguments A and B, A attacks B
if one of the conclusions of A conflicts with (the name of) one of the defeasible
rules of B. Note that two formulas φ and ψ conflict if they are contradictory,
i.e., if φ = ¬ψ or ψ = ¬φ.

According to the previous definition, defects attack requirements that they
point to, whereas refinements attack defects that they address. So, for example,
Fig. 3 shows that defect D0 attacks requirement G0, and then the refinement R0

attacks the defect D0.

Construction of DAFs. The purpose of argument construction and attack iden-
tification in aspic+ is to enable the construction of a DAF.

We present the construction process by example here (for details, see [17]):
starting from the theory above, one obtains a DAF that can be represented
graphically as in Fig. 4, where nodes represent arguments, and edges represent
attacks. One can easily see in the graph how arguments {D0,D1,D2}, represent-
ing defects, attack arguments {G0, G1, G2}, representing requirements. Similarly,
arguments {R0, R1, R2}, denoting refinements, attack arguments {D0, D1, D2},
denoting defects.

Fig. 4. DAF example
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Computation of DAF Extensions. The computation of the extensions of a DAF
enables the determination of the acceptability of arguments, i.e., which argu-
ments should be accepted and which should not. The computation of extensions
is based on the following concepts and definitions.

– A set A of arguments is conflict-free if it does not include two arguments that
attack each other.

– An argument a is acceptable w.r.t. to a set of arguments A iff whenever a is
attacked by an argument b then b must be attacked by some element in A.

– A set of arguments A is admissible iff A is conflict-free and every argument
a ∈ A is acceptable w.r.t. A.

– A set of arguments is complete iff if is admissible and includes every argument
a that is acceptable w.r.t. to it.

In this paper, we are interested in the computation of the so-called complete
extensions. In the previous example, the only complete extension is the set
{G0, G1, G2, G3, G4, G5, G6, G7, R0, R1, R2}. In general, if a DAF graph is acyclic
then it is guaranteed to have a single complete extension. To avoid the complex-
ity of multiple extensions, we assume in this conference paper that the original
requirements graph is acyclic.

In general, the acceptable requirements in a refinement graph RG, denoted
by AR(AT (RG)), will be the set of requirements appearing in the conclusions
of the arguments of its complete extension.

After the identification of acceptable arguments, we determine acceptable
requirements by checking the ones that appear as conclusions of acceptable argu-
ments. Thus, we determine that all the requirements are acceptable since they
are the conclusions of arguments {G0, ... , G7}.

3.4 Identification of Specification Sets

The acceptability of requirements only indicates that either they are free of
defects or their defects have been addressed. To determine the minimal sets of
requirements necessary to make the initial requirements acceptable, we compute
the minimal specification sets. In the following, suppose we are given a specific
requirements graph RG = 〈Req, Defect, Ref〉.

The initial requirements InitR are those that are not introduced by a refine-
ment. Formally, InitR={txt | ¬∃RF , id . Ref( , , ,RF ) ∧ id ∈ RF ∧ Req(id ,
txt) }

The specification elements SpecE are the “leaves” of refinement graphs. More
precisely, these requirement elements satisfy two conditions: (i) They have no
defects other than mMissing, and hence have not been further refined; the ratio-
nale for this is that mMissing, in contrast to nonAtomic say, is dealt with by the
add operator, which only leads to the introduction of other new necessary require-
ments as opposed to its replacement. This means that requirements found to be
mMissing can still be leaves in refinement trees, if they have no other defects.
(ii) And the leaves have not been introduced by a justify refinement, because
those are (higher-level) goals.
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Let a minimal set of requirements be a (minimal) subset of the requirements
Req that lead to the acceptance of the initial requirements. Formally, it is one
of the sets minimal w.r.t. set inclusion of the set RR, defined as follows:

RR = {R′ |RG ′ = 〈R′,Fault,Ref〉 ∧ R′ ⊆ Req ∧ InitR ∈ AR(AT (RG ′))}
Intuitively, the set RR is the set of all subsets of the requirements proposed dur-
ing refinements that lead to the acceptance of the initial requirements. In the run-
ning example, the sets {G3, G4, G5}, {G2, G3, G4, G5}, and {G2, G3, G4, G5, G6}
represent some of the elements of RR. The minimal requirements sets are
{G2, G3, G4} and {G2, G5, G6, G7}. Finally, the specification sets, SS, are iden-
tified by taking the intersection of specification elements and minimal require-
ments, i.e., SS = {S | ∃R.R ∈ RR ,S = (R ∩ SpecE)}. In the running example,
the sets {G3, G4} and {G5, G6, G7} represent the only specification sets.

3.5 Tool Description

We have implemented a prototype tool of the calculus. The tool aims at help-
ing requirements engineers to systematically refine, negotiate, and document the
requirements refinement process (in the form of a refinement graph). The tool
also provides reasoning support by determining the acceptability of requirements
and computing the minimal specifications. Due to space limitations, we only
present a brief description of the tool below. The tool, as well a description of the
examples in this paper and use instructions, can be downloaded at [19] (requires
Java SE Development Kit 9 to run). The tool’s input is a textual description of
a refinement graph—a GUI is left as future work. An “Argumentation Theory
Generator” module then generates an aspic+ argumentation theory for every
possible configuration of requirements. A requirements configuration is a subset
of the requirements that could lead to the acceptance of the initial requirements.
On the basis of these argumentation theories, an “ aspic+ module” identifies the
aspic+ arguments, attacks, and generates a Dung Argumentation Framework
(DAF). A “DAF module” then determines the acceptability of abstract argu-
ments by computing the complete extensions of the DAF. Finally, a “Compute
Minimal Specifications” module stores all (subsets of) requirements (RR) that
make the initial requirements acceptable and determines the minimal specifica-
tion sets (SS) by taking the intersection of specification elements and minimal
requirements (as explained in Sect. 3.4).

4 Related Work

Since requirements engineering is dialectical by nature, argumentation frame-
works have been previously used to formalise and support RE activities, includ-
ing elicitation [20], assessment [21–23], and regulatory compliance [24]. Some
works focus on specific RE issues, such as security [21,22], or requirements
conflicts [25,26]. The spirit of our work is analogous to the more comprehen-
sive frameworks of Juret et al. [27], who support the definition of goal models
through argumentation and Mirbel & Villeta [15], who manage requirements
artifacts based on argumentation-theory.
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Finally, RationalGRL [28,29] captures not only traditional GORE model
refinement, but also arguments about design decisions (e.g., “This refinement
should be OR rather than AND”), and the rationale behind them. RationalGRL
also proposes argumentation patterns to point out defects in goal models. Its
laudable focus is making goal models and their evolution understandable to RE
users.

The main feature distinguishing our work from all of the above is the inten-
tion: CaRE is an integrated calculus for deriving specifications from stakeholder
requirements. Thus the defect types used by our framework are different and
comprehensive, as are refinement operators addressing each specific defect type.
Moreover, CaRE proposes its own unified representation (refinement graphs),
with aspic+/AF only being used to give CaRE semantics rather than being an
overt part of the framework.

The only work we know of that offers a refinement calculus for the require-
ments problem is the Desirée proposal [14], which generalizes GORE approaches
with a rich set of operators for refinement and operationalization. The main
differences between CaRE and Desirée are that CaRE (a) includes defects and
defect types in its ontology, which Desiree does not, (b) casts the refinement pro-
cess as a dialectic argument among stakeholders, and (c) gives a formal semantics
of what does it mean for S to satisfy R based on Argumentation Theory.

5 Conclusion

This paper presents a novel calculus for RE through which initial stakeholder
requirements can be refined into specifications through a dialectic process. A
major advantage of our approach over existing proposals, notably GORE ones,
is that it offers a comprehensive framework for introducing into the discussion
the full range of defects recognized in RE standards, as opposed to the particular
types considered so far. It also makes all of the stakeholders active participants
in the refinement process, as opposed to traditional approaches where typically
only the requirements analyst is responsible for refining the requirements and
building models.

CaRE refinement graphs capture a more complete view of the RE process.
Significantly, they provide a conceptual model of the enactment of our require-
ments engineering process. They offer excellent support for RE documentation,
traceability, and change management since new defects or refinements can be
added to the graph monotonically, without needing to revise its previous ele-
ments.

The semantics of the calculus is given in terms of argumentation theory, by
defining a mapping from refinement graphs to constructs of the aspic+ argu-
mentation framework. Through this formalisation, we define what it means for a
specification to make initial requirements acceptable. In our proposal, the notion
of satisfaction, typical of earlier approaches, is replaced by the weaker notion of
acceptability. Our contributions include a Java implementation of a prototype



A Requirements Refinement Calculus 17

tool for the calculus A forthcoming paper will show the connection of the argu-
mentation theoretic semantics here to abduction in an essentially propositional
logic setting.

We have carried out a detailed scenario from the railway domain illustrating
the elements of our calculus and how they can be used to derive specifications
from requirements4. We still need a preliminary assessment of CaRE on an indus-
trial case-study, and a consolidation assessment of domain experts using CaRE.
Other future work includes adding further aspects of GORE ontologies (e.g.,
soft-goals, agents), and global consistency conditions on requirements graphs
(e.g., can g be marked both tooStrong and tooWeak by the same person?).
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