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Abstract. The aim of this study is to propose confidence intervals
for the difference between the coefficients of variation of inverse Gaus-
sian distributions based on the generalized confidence interval (GCI),
the adjusted generalized confidence interval (AGCI), the bootstrap per-
centile confidence interval (BPCI), and the method of variance estimates
recovery (MOVER). The performances of the proposed confidence inter-
vals were evaluated using coverage probabilities and average lengths via
Monte Carlo simulation. The results showed that the GCI and AGCI
methods were higher than or close to the nominal level in all cases. For
small sample sizes, MOVER was better than the other methods because
it provided the narrowest average length. The performances of all the
approaches were illustrated using two real data examples.
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1 Introduction

The inverse Gaussian distribution is used to describe and analyze positive and
right-skewed data and has been applied in useful applications in a variety of
fields, such as cardiology, pharmacokinetics, economics, medicine, and finance.
The inverse Gaussian distribution was first derived by Schordinger [1] for the first
passage of time of a Wiener process to an absorbing barrier and has been used
to describe the cycle time distribution of particles in the blood [2]. Liu et al. [3]
used data sets from an inverse Gaussian distribution applied to a lifetime model
for reliability analysis. Banerjee and Bhattacharyya [4] applied this distribution
in a study of market incidence models, while Lancaster [5] used it as a model
for the duration of strikes, and Sheppard [6] proposed applying it for the time
duration of injected labeled substances called tracers in a biological system. For
more informations and applications, Chhikara and Folks [7], Krishnamoorthy
and Lu [8], Tian and Wu [9], Lin et al. [10], and Ye et al. [11].
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The coefficient of variation, which is the ratio of the standard deviation to
the mean, can be used to measure data dispersion with non-homogeneous units.
It has been used in many fields, such as biology, economics, medicine, agricul-
ture, and finance. Many researchers have proposed confidence intervals for the
coefficient of variation. Wongkhao et al. [12] presented confidence intervals for
the ratio of two independent coefficients of variation of normal distributions
based on the concept of the general confidence interval (GCI) and the method
of variance estimates recovery (MOVER). Banik and Kibria [13] estimated the
population coefficient of variation and compared it with bootstrap interval esti-
mators. Mahmoudvand and Hassani [14] proposed an unbiased estimator to con-
struct confidence intervals for the population coefficient of variation of normal
distribution. Hasan and Krishnamoorthy [15] proposed two new approximate
confidence intervals for the ratio of the coefficients of variation of lognormal
populations using MOVER and the fiducial confidence intervals method. Sang-
nawakij et al. [16] proposed two confidence intervals for the ratio of coefficients
of variation of gamma distributions based on MOVER with the methods of Score
and Wald. Thangjai and Niwitpong [17] constructed confidence intervals for the
weighted coefficient of constructed of two-parameter exponential distributions
based on the adjusted method of variance estimates recovery method (adjusted
MOVER) and compared it with the general confidence interval (GCI) and the
large sample method. Yosboonruang et al. [18] proposed confidence intervals for
the coefficient of variation for a delta-lognormal distribution based on GCI and
the modified Fletcher method.

As mentioned previously, there have been many comprehensive studies on
confidence intervals for the difference between the coefficients of variation of
inverse Gaussian distributions. However, few researchers have investigated confi-
dence intervals for the parameters of inverse Gaussian distributions. For instance,
Ye et al. [11] proposed confidence intervals for the common mean of several
inverse Gaussian populations when the scalar parameters are unknown and
unequal. Tian and Wilding [19] presented confidence intervals for the ratio of
the means of two independent inverse Gaussian distribution. Krishnamoorthy
and Tian [20] developed confidence intervals for the difference between and ratio
of the means of two inverse Gaussian distributions based on GCI. The purpose
of the current study is to establish new confidence intervals for the difference
between the coefficients of variation of inverse Gaussian distributions based on
GCI, the adjusted generalized confidence interval (AGCI), the bootstrap per-
centile confidence interval (BPCI), and MOVER.

The organization of this paper are as follows. Section 2 provides preliminaries
for the difference between the coefficients of variation of inverse Gaussian distri-
butions. Simulation studies are presented in Sect. 3. Section 4 presents empirical
studies. Finally, concluding remarks are summarized in Sect. 5.
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2 Confidence Intervals for the Difference Between
the Coefficients of Variation of Inverse Gaussian
Distributions

Let X = (X1, X2,..., Xn) be an independent random sample of size n from the
two-parameter inverse Gaussian distribution, IG(μ, λ), is defined as

f(x, μ, λ) =
(

λ

2πx3

) 1
2

exp

{
−λ (x − μ)2

2μ2x

}
, x > 0, μ > 0, λ > 0, (1)

where μ and λ are the mean parameter and the scale parameter. The population
mean and variance of X are define as

E(X) = μ (2)

and
V ar(X) = μ3/λ. (3)

Then, the coefficient of variation of X is expressed by

ω = CV (X) =
√

μ

λ
(4)

and the difference between of coefficients of variation is defined as

η = ωX − ωY =
√

μX

λX
−

√
μY

λY
. (5)

2.1 The Generalized Confidence Interval (GCI) Method

Weerahandi [21] introduced the generalized confidence interval (GCI) method.
The concept of this method is to the definition of generalized pivotal quantity
(GPQ). Suppose that X is a random sample from a distribution having the
parameter (θ, δ), where θ is the parameter of interest and δ is the nuisance
parameter.

Definition 1. Let X = (X1,X2, ...,Xn) be the observed value of X and the
probability density function of (X;x, θ, δ) is R(X;x, θ, δ). The generalized pivotal
quantity R(X;x, θ, δ) satisfies the following two properties:

(a) The probability distribution of the function R(X;x, θ, δ) is independent of
unknown parameters.

(b) The observed value of R(X;x, θ, δ), X = x, does not depend on nuisance
parameters.

Therefore, the 100 (1 − α) % two-sided GCI for the parameter of interest is
defined as [R(α/2), R(1−α/2)], where R(α/2) and R(1−α/2) are the 100(α/2)−
th and 100(1 − α/2) − th percentile of R(X;x, θ, δ).
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Ye et al. [11] developed the generalized confidence interval based on general
pivotal quantities for the mean and scale parameter of the inverse Gaussian
distribution. Suppose that k is independent populations of the inverse Gaussian
distributions with mean parameters μi and scale parameters λi, i = 1, 2, .., k.
Let Xi1,Xi2, ...,Xini

be the random sample from IG(μi, λi), i = 1, ..., k. Form
the ith population, the maximum likelihood estimators (MLEs) of μi and λi can
be found as

μ̂ = X̄i, λ̂−1
i =

1
ni

ni∑
j=1

(X−1
ij − X̄i

−1), (6)

where X̄
i

=
∑ni

j=1 Xij/ni. Let Vi = λ̂−1
i , it is well known that X̄i and Vi are

mutually independent random variables. Note that

X̄i ∼ IG(μ, niλi), niλiVi ∼ χ2
ni−1

, i = 1, .., k, (7)

where χ2
m denotes as the Chi-square distribution with m degrees of freedom. It

is easily proved that (X̄i, Vi) forms a set complete sufficient statistics for (μi, λi).
From Eq. (7), the generalized pivotal quantity Rλi

for λi based on the ith sample
is defined as

Rλi
=

niλiVi

niυi
∼ χ2

ni−1

niυi
, i = 1, ..., k, (8)

where vi denotes as the observed value of Vi. The distribution of Rλi
is free of

any unknown parameters and the observed values only relate to the parameter
λi. Therefore, Rλi

is the generalized pivotal quantity forλi.
According to Ye et al. [11], the generalized pivotal quantity Rμi

for μi based
on the ith sample is defined as

Rμi
=

x̄i

|1 +
√

niλi(x̄i−μ)
μ

√
x̄i

√
x̄i

niRλi
|
∼ x̄i∣∣∣∣1 + Zi

√
x̄i

niRλi

∣∣∣∣
, (9)

where ∼ denotes as “approximately distributed” and Zi ∼ N(0, 1). x̄i and vi are
the observed values of X̄i and Vi. The approximations in Eq. (9) are derived by
using Theorem 2.1 given by Chhikara and Folks [7]. Using the moment matching
method, it can be shown that

√
niλi(X̄i − μ)/μ

√
xi has a limiting distribution

of Zi ∼ N(0, 1). Note that the observed value of Rμi
is μi. Therefore, Rμi

satisfies conditions (a) and (b) in Definition 1. However, Rμi
is an approximate

generalized pivotal quantity for μi based on the ith sample.
Therefore, the generalized pivotal quantities for difference between the coef-

ficients of variation are given by

Rη = RωX
− RωY

=

√
RμX

RλX

−
√

RμY

RλY

. (10)

Then, the 100(1−α)% two-sided confident interval for the difference between
the coefficients of variation based on generalized confidence interval method is
given by
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CI(GCI) = (L(GCI), U(GCI)) = (Rη(α/2), Rη(1 − α/2)), (11)

where Rη(α/2) and Rη(1−α/2) are the 100(α/2)% and 100(1−α/2)% percentiles
of the distribution of R = R(X;x, θ, δ), respectively.

The following algorithm is used to construct the generalized confidence inter-
val:

Algorithm 1.
Step 1. Generate xj and yj , j = 1, 2, ..., ni from the inverse Gaussian distri-

bution.
Step 2. Compute x̄j , ȳj , v̂xj

and v̂yj
.

Step 3. For t = 1 to T.
Step 4. Generate χ2

ni−1 from chi-square distribution and Z ∼ N(0, 1).
Step 5. Compute Rλi

from Eq. (8).
Step 6. Compute Rμi

from Eq. (9).
Step 7. Compute Rη from Eq. (10).
Step 8. End t loop.
Step 9. Compute Rη(α/2) and Rη(1 − α/2).

2.2 The Adjusted Generalized Confidence Interval (AGCI) Method

According to Ye et al. [11], We can use a similar method in GCI method for
calculating the difference between the coefficients of variation η. Rλ̃i

can be
computed by the generalized pivotal quantity for λ̃ based on ith sample shown
in Eq. (8). Then, Krishnomoorthy and Tian [20] presented an approximate gen-
eralized pivotal quantity for Rμ̃i

based on the ith sample, as follows:

Rμ̃i
=

x̄i

max
{

0, tni−1

√
x̄ivi

ni−1

} , (12)

where tni−1 denotes the t distribution with ni − 1 degrees of freedom. Therefore,
the denominator in Eq. (12) may be zero when tni−1 obtains the negative value.
Rμ̃i

is an approximate generalized pivotal quantity.
Therefore, the generalized pivotal quantities for the difference between the

coefficients of variation are given by

Rη̃ = Rω̃X
− Rω̃Y

=

√
Rμ̃X

Rλ̃X

−
√

Rμ̃Y

Rλ̃Y

. (13)

Then, the 100(1−α)% two-sided confident interval for the difference between
the coefficients of variation based on generalized confidence interval method is
given by

CI(AGCI) = (L(AGCI), U(AGCI)) = (Rη̃(α/2), Rη̃(1 − α/2)), (14)

where Rη̃(α/2) and Rη̃(1 − α/2) which are the 100(α/2)% and 100(1 − α/2)%
percentiles of the distribution of R = R(X;x, θ, δ) can be obtained from the
concept of Algorithm 1.
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2.3 The Bootstrap Percentile Confidence Interval (BPCI) Method

Efron and Tibshirani [22] introduced the bootstrap percentile method. The boot-
strap is a re-sampling method for assigning measures of accuracy to statistical
estimate a random selection of resamples from the original sample with replace-
ment. Let x be a random sample of size n from the inverse Gaussian distribution.
Suppose that x = x1, x2, ..., xn is a random sample of size n from the inverse
Gaussian distribution. Sampling is replaced by x∗ = x∗

1, x
∗
2, ..., x

∗
n, which can be

obtained by the bootstrap sample with B times. When the re-sampling boot-
strap sample is operated, the difference between coefficients of variation is then
calculated.

The 100(1−α)% two-sided confidence interval for the difference between the
coefficients of variation based on the bootstrap percentile confidence interval is
defined by

CI(BPCI) = (L(BPCI), U(BPCI)) = (η∗(α/2), η∗(1 − α/2)), (15)

where η∗(α/2) and η∗(1 − α/2) are the 100(α/2)% and 100(1 − α/2)% per-
centiles of the distribution.

Algorithm 2.
Step 1. GenerateX1,X2, ...Xn from the inverse Gaussian distribution
Step 2. Obtain a bootstrap sample X∗ = X∗

1 ,X∗
2 , ...,X∗

n from Step 1.
Step 3. Compute η∗

Step 4. Repeat Steps 2 and 3, B times.
Step 5. Compute η∗(α/2) and η∗(1 − α/2)

2.4 The Method of Variance Estimates Recovery (MOVER)

Gulhar et al. [23] proposed the confidence interval for a coefficient of variation
of X which is

(lx, ux) =

⎛
⎝

√
n − 1(ω̂x)√
χ2
1−α/2,n−1

,

√
n − 1(ω̂x)√
χ2

α/2,n−1

⎞
⎠ (16)

and the confidence interval for a coefficient of variation of Y is defined as

(ly, uy) =

⎛
⎝

√
n − 1(ω̂y)√
χ2
1−α/2,n−1

,

√
n − 1(ω̂y)√
χ2

α/2,n−1

⎞
⎠ , (17)

where χ2
1−α/2,n−1 and χ2

α/2,n−1 are respectively the 100(α)% -th and 100(1−α)%
-th percentile of the chi-square distribution with n − 1 degrees of freedom.

Donner and Zou [24] introduced the confidence interval estimation for the
difference of parameters of interest using by MOVER. The lower limit and upper
limit are given by

Lη = ω̂x − ω̂y −
√

(ω̂x − lx)2 + (uy − ω̂y)2 (18)
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and

Uη = ω̂x − ω̂y −
√

(ux − ω̂x)2 + (ω̂y − ly)2, (19)

where ω̂x and ω̂y are denoted in Eq. (5), lx and ux are denoted in Eq. (16), and
ly and uy are denoted in Eq. (17).

Then, the 100(1−α)% two-sides confidence interval for the difference between
the coefficients of variation of inverse Gaussian distribution based on the
MOVER is given by

CIMOV ER = (LMOV ER, UMOV ER) = (Lη, Uη) , (20)

where Lη and Uη are defined in Eqs. (18) and (19), respectively.

3 Simulation Studies

A Monte Carlo simulation studies out to evaluate the coverage probabilities and
average lengths of the confidence intervals for the difference between the coeffi-
cients of variation of inverse Gaussian distributions based on GCI, AGCI, BPCI,
and MOVER. The simulations were run by using R statistics programming lan-
guage. In the simulation, The sample sizes were (nx, ny) = (5, 5), (5, 10), (10,
10), (10, 30), (30, 30), (30, 50), (50, 50), (50, 100), and (100, 100); μx = 0.5,
μy = 0.5, 1, λx = 10 and λy = 1, 2, 5, 10. The nominal confidence level is at 0.95.
The number of simulation replications for each situation was 10,000 replications,
1,000 bootstrap samples and 5,000 pivotal quantities for GCI and AGCI. The
confidence interval which has the coverage probability was greater than or close
to the nominal confidence level and the shortest expected lengths are chosen.

The estimated coverage probability and estimated average length for this
simulation study are respectively given as:

CP =
c(L(g) ≤ η ≤ U(g))

M
, AL =

∑m
i=1(U(g) − L(g))

M
, (21)

where M is the number of simulation replications, and c(L(g) ≤ η ≤ U(g)) is the
numbers of simulation replications for η which lies within the confidence interval.

The following algorithm is used to construct the coverage probability for the
difference between the coefficients of variation:

Algorithm 3.
Step 1. For a given M,m,n1, n2, μx, μy, λx, and λy.
Step 2. For g = 1 to M.
Step 3. Generate X1,X2, ...,Xn and Y1, Y2, ..., Yn from inverse Gaussian dis-

tribution.
Step 4. Use Algorithm 1, Eq. (14), Algorithm 2, and Eq. (20) to construct

lower and upper limits for GCI, AGCI, BPCI, and MOVER, respectively.
Step 5. If (L(g) ≤ η ≤ U(g)), set P(g) = 1; else set P(g) = 0.
Step 6. Calculate U(g) − L(g).
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Step 7. End g loop.
Step 8: Compute the coverage probability and the average length.
The results in Table 1 showed that the difference between the coefficients

of variation, the coverage probabilities of GCI method and AGCI method were
greater than or equal to the nominal level in all cases. However, the average
lengths of the AGCI method were shorter than the GCI method. For small
sample sizes, the coverage probabilities of the MOVER were close to the nominal
confidence level of 0.95 and the shortest average length.

4 An Empirical Study

Herein, we illustrate the methods used to computation of confidence intervals
proposed.

Example 1: The data were given by Mudholkar and Hutson [25] for the con-
secutive annual flood discharge rates of the Floyd river at James, Iowa. The data
are as follows:

In 1935−1944 : 1460, 4050, 3570, 2060, 1300, 1390, 1720, 6280, 1360, 7440.
In 1945−1954 : 5320, 1400, 3240, 2710, 4520, 4840, 8320, 13900, 71500, 6250.

The summary statistics of data are n1 = 10, n2 = 10, μ̂1 = 3063, μ̂2 = 12200,
λ̂1 = 6529.078, λ̂2 = 6434.176, ω̂1 = 0.6849, ω̂2 = 1.3770, and the differ-
ence between the coefficients of variation η̂ = −0.6921. Based on the 95% two
sided confidence interval for the difference between the coefficients of variation
using GCI method was (−0.0051, 0.0148) with interval length of 0.0199; AGCI
method was (−0.0045, 0.0144) with interval length of 0.0189; BPCI method was
(−1.4848, 0.3342) with interval length of 1.8189, and MOVER was (−1.8489,
0.0182) with interval length of 1.8667. Therefore, the results confirm that the
simulation results for difference between the coefficients of variation are not dif-
ferent from the results of the previous study.

Example 2: The real data were provided by Eilam et al. [26]. The plasma
bradykininogen levels were measured in healthy subjects, in patients with active
Hodgkin’s disease and in patients with inactive Hodgkin’s disease. The outcome
variable is measured in micrograms of bradykininogen per milliliter of plasma.
The data are as follows:

Active Hodgkin’s disease: 3.96, 3.04, 5.28, 3.40, 4.10, 3.61, 6.16, 3.22, 7.48, 3.87,
4.27, 4.05, 2.40, 5.81, 4.29, 2.77, 4.40.

Inactive Hodgkin’s disease: 5.37, 10.60, 5.02, 14.30, 9.90, 4.27, 5.75, 5.03, 5.74,
7.85, 6.82, 7.90, 8.36, 5.72, 6.00, 4.75, 5.83, 7.30, 7.52, 5.32, 6.05, 5.68, 7.57, 5.68,
8.91, 5.39, 4.40, 7.13.

The summary statistics of data are n1 = 17, n2 = 28, μ̂1 = 4.2418,
μ̂2 = 6.7914, λ̂1 = 50.8394, λ̂2 = 86.0289, ω̂1 = 0.2889, ω̂2 = 0.2810, and
the difference between the coefficients of variation η̂ = 0.0079. Based on the
95% two sided confidence interval for the difference between the coefficients of
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Table 1. The coverage probability (CP) and average length (AL) of 95% two-sided
confidence intervals for the difference between the coefficients of variation of inverse
Gaussian distribution: (μX , λx) = (0.5, 10).

nx ny (μy, λy) Coverage Probability (Average Length)

CIGCI CIAGCI CIBP CI CIMOV ER

5 5 (0.5, 1) 0.9710 (2.777) 0.9518 (1.6723) 0.6611 (0.6904) 0.9423 (1.5387)

(0.5, 2) 0.9669 (1.7457) 0.9552 (1.2727) 0.7599 (0.5161) 0.9555 (1.1874)

(0.5, 5) 0.9570 (1.0560) 0.9514 (0.9264) 0.9055 (0.3696) 0.9590 (0.8749)

(0.5, 10) 0.9547 (0.8214) 0.9518 (0.7605) 0.9654 (0.3021) 0.9593 (0.7204)

(1, 1) 0.9837 (4.4063) 0.9551 (2.2717) 0.5931 (0.9684) 0.9310 (2.0541)

(1, 2) 0.9744 (2.7700) 0.9568 (1.6717) 0.6578 (0.6907) 0.9498 (1.5356)

(1, 5) 0.9641 (1.5205) 0.9556 (1.1721) 0.7907 (0.4728) 0.9577 (1.1003)

(1, 10) 0.9583 (1.0541) 0.9537 (0.9252) 0.9059 (0.3692) 0.9594 (0.8749)

5 10 (0.5, 1) 0.9769 (1.3175) 0.9585 (0.9814) 0.8482 (0.5851) 0.9460 (0.9528)

(0.5, 2) 0.9667 (0.9175) 0.9553 (0.7973) 0.9129 (0.4353) 0.9543 (0.7717)

(0.5, 5) 0.9550 (0.6986) 0.9504 (0.6475) 0.9363 (0.3190) 0.9550 (0.6205)

(0.5, 10) 0.9515 (0.6173) 0.9484 (0.5787) 0.8641 (0.2690) 0.9537 (0.5475)

(1, 1) 0.9874 (2.3690) 0.9566 (1.2685) 0.7904 (0.8328) 0.9285 (1.2216)

(1, 2) 0.9777 (1.3214) 0.9564 (0.9850) 0.8527 (0.5881) 0.9444 (0.9568)

(1, 5) 0.9620 (0.8517) 0.9511 (0.7577) 0.9288 (0.4014) 0.9528 (0.7325)

(1, 10) 0.9513 (0.6978) 0.9462 (0.6465) 0.9270 (0.3190) 0.9515 (0.6190)

10 10 (0.5, 1) 0.9758 (1.1737) 0.9532 (0.8416) 0.7937 (0.5659) 0.9376 (0.8096)

(0.5, 2) 0.9682 (0.7317) 0.9533 (0.6285) 0.8427 (0.4098) 0.9506 (0.6115)

(0.5, 5) 0.9601 (0.4817) 0.9548 (0.4536) 0.9059 (0.2862) 0.9554 (0.4450)

(0.5, 10) 0.9568 (0.3863) 0.9523 (0.3723) 0.9307 (0.2340) 0.9559 (0.3662)

(1, 1) 0.9867 (2.2265) 0.9502 (1.1421) 0.7431) (0.8128) 0.9103 (1.0868)

(1, 2) 0.9773 (1.1674) 0.9505 (0.8379) 0.7827 (0.5666) 0.9341 (0.5081)

(1, 5) 0.9670 (0.6529) 0.9559 (0.5792) 0.8695 (0.3726) 0.9534 (0.5649)

(1, 10) 0.9583 (0.4819) 0.9510 (0.4536) 0.9054 (0.2868) 0.9538 (0.4451)

10 30 (0.5, 1) 0.9783 (0.5631) 0.9535 (0.4708) 0.9251 (0.3991) 0.9429 (0.4678)

(0.5, 2) 0.9654 (0.4173) 0.9501 (0.3824) 0.9300 (0.2985) 0.9466 (0.3739)

(0.5, 5) 0.9548 (0.3269) 0.9490 (0.3133) 0.8996 (0.2240) 0.9501 (0.3075)

(0.5, 10) 0.9551 (0.2932) 0.9505 (0.2835) 0.8548 (0.1944) 0.9497 (0.2758)

(1, 1) 0.9908 (0.8725) 0.9550 0.6089) 0.8971 (0.5749) 0.9145 (0.6042)

(1, 2) 0.9765 (0.5634) 0.9518 (0.4709) 0.9178 (0.3996) 0.9352 (0.4686)

(1, 5) 0.9599 (0.3864) 0.9489 (0.3602) 0.9293 (0.2747) 0.9482 (0.3565)

(1, 10) 0.9575 (0.3276) 0.9489 (0.3140) 0.9075 (0.2243) 0.9527 (0.3082)

30 30 (0.5, 1) 0.9813 (0.5018) 0.9532 (0.4053) 0.8842 (0.3759) 0.9295 (0.4002)

(0.5, 2) 0.9691 (0.3357) 0.9502 (0.3011) 0.9063 (0.2673) 0.9415 (0.2986)

(0.5, 5) 0.9606 (0.2237) 0.9531 (0.2140) 0.9247 (0.1848) 0.9505( 0.2132)

(0.5, 10) 0.9569 (0.1802) 0.9520 (0.1754) 0.9344 (0.1499) 0.9500 (0.1749)

(1, 1) 0.9898 (0.8297) 0.9514 (0.5579) 0.8655 (0.1500) 0.9493 (0.1749)

(1, 2) 0.9801 (0.5023) 0.9501 (0.4056) 0.8872 (0.3750) 0.9296 (0.4004)

(1, 5) 0.9670 (0.2997) 0.9525 (0.2749) 0.9124 (0.2416) 0.9450 (0.2729)

(1, 10) 0.9588 (0.2242) 0.9529 (0.2144) 0.9262 (0.1853) 0.9508 (0.2136)

(continued)
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Table 1. (continued)

nx ny (μy, λy) Coverage Probability (Average Length)

CIGCI CIAGCI CIBP CI CIMOV ER

30 50 (0.5, 1) 0.9785 (0.3824) 0.9534 (0.3156) 0.9213 (0.3105) 0.9265 (0.3141)

(0.5, 2) 0.9699 (0.2652) 0.9537 (0.2409) 0.9355 (0.2239) 0.9469 (0.2402)

(0.5, 5) 0.9618 (0.1880) 0.9519 (0.1806) 0.9386 (0.1610) 0.9536 (0.1802)

(0.5, 10) 0.9505 (0.1585) 0.9458 (0.1544) 0.9238 (0.1354) 0.9438 (0.1537)

(1, 1) 0.9911 (0.6119) 0.9506 (0.4278) 0.9050 (0.4548) 0.9003 (0.4242)

(1, 2) 0.9798 (0.3832) 0.9513 (0.3161) 0.9188 (0.3102) 0.9278 (0.3147)

(1, 5) 0.9651 (0.2399) 0.9510 (0.2224) 0.9329 (0.2044) 0.9446 (0.2221)

(1, 10) 0.9553 (0.1871) 0.9476 (0.1798) 0.9328 (0.1607) 0.9451 (0.1794)

50 50 (0.5, 1) 0.9803 (0.3729) 0.9525 (0.3729) 0.9088 (0.3019) 0.9235 (0.3021)

(0.5, 2) 0.9700 (0.2499) 0.9511 (0.2253) 0.9193 (0.2136) 0.9390 (0.2242)

(0.5, 5) 0.9601 (0.1671) 0.9510 (0.1601) 0.9358 (0.1457) 0.9478 (0.1598)

(0.5, 10) 0.9570 (0.1344) 0.9517 (0.1310) 0.9401 (0.1199) 0.9478 (0.1308)

(1, 1) 0.9933 (0.6070) 0.9522 (0.4201) 0.9001 (0.4527) 0.8994 (0.4159)

(1, 2) 0.9816 (0.3720) 0.9508 (0.3040) 0.9110 (0.3027) 0.9235 (0.3017)

(1, 5) 0.9681 (0.2241) 0.9538 (0.2063) 0.9255 (0.1938) 0.9421 (0.2054)

(1, 10) 0.9608 (0.1671) 0.9527 (0.1602) 0.9363 (0.1478) 0.9486 (0.1599)

50 100 (0.5, 1) 0.9801 (0.2650) 0.9516 (0.2209) 0.9344 (0.2281) 0.9278 (0.2204)

(0.5, 2) 0.9670 (0.1855) 0.9478 (0.1695) 0.9372 (0.1659) 0.9377 (0.1694)

(0.5, 5) 0.9616 (0.1342) 0.9548 (0.1293) 0.9433 (0.1219) 0.9501 (0.1291)

(0.5, 10) 0.9548 (0.1150) 0.9488 (0.1121) 0.9297 (0.1041) 0.9474 (0.1118)

(1, 1) 0.9926 (0.4175) 0.9552 (0.2979) 0.9283 (0.3369) 0.9009 (0.2971)

(1, 2) 0.9811 (0.2648) 0.9511 (0.2209) 0.9377 (0.2281) 0.9296 (0.2205)

(1, 5) 0.9655 (0.1689) 0.9533 (0.1573) 0.9424 (0.1522) 0.9448 (0.1572)

(1, 10) 0.9581 (0.1341) 0.9507 (0.1292) 0.9391 (0.1218) 0.9481 (0.1290)

100 100 (0.5, 1) 0.9823 (0.2555) 0.9514 (0.2102) 0.9276 (0.2208) 0.9249 (0.2094)

(0.5, 2) 0.9721 (0.1721) 0.9551 (0.1556) 0.9391 (0.1554) 0.9441 (0.1552)

(0.5, 5) 0.9596 (0.1148) 0.9518 (0.1102) 0.9404 (0.1068) 0.9463 (0.1101)

(0.5, 10) 0.9563 (0.0923) 0.9510 (0.0900) 0.9428 (0.0869) 0.9487 (0.0899)

(1, 1) 0.9931 (0.4113) 0.9504 (0.2899) 0.9182 (0.3302) 0.8932 (0.2883)

(1, 2) 0.9840 (0.2554) 0.9536 (0.2101) 0.9270 (0.2205) 0.9239 (0.2095)

(1, 5) 0.9673 (0.1540) 0.9523 (0.1421) 0.9399 (0.1405) 0.9425 (0.1418)

(1, 10) 0.9599 (0.1190) 0.9515 (0.1103) 0.9410 (0.1068) 0.9474 (0.1101)

variation, the results showed that GCI method CIGCI = (0.0188, 0.1497) with
interval length of 0.1309, AGCI method CIAGCI = (0.0213, 0.1447) with inter-
val length of 0.1234, BPCI method CIBPCI = (−0.1245, 0.1274) with interval
length of 0.2519 and MOVER method CIMOV ER = (0.1697, 0.2873) with inter-
val length of 0.2873. Therefore, the results from above examples support our
simulation results.

5 Conclusions

The new confidence intervals for the difference between the coefficients of varia-
tion of inverse Gaussian distributions based on GCI, AGCI, BPCI, and MOVER
were presented. The performances of these confidence intervals were assessed
in terms of their coverage probabilities and the average lengths. The results
obtained from the GCI and the AGCI methods were satisfactory in all cases.
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However, the AGCI method was better than the GCI method in terms of the
average length. For small sample sizes, MOVER provided the shortest average
length. Meanwhile, based on the findings of this study, BPCI is not recommended
because the coverage probabilities were under the nominal confidence level in all
cases.
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