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Introduction

The problems in this list were collected at MATRIX, during the workshop on the
Topology of Manifolds: Interactions between High and Low Dimensions, January
7th – 18th 2019. Several of the problems below were discussed in the problem ses-
sions during the MATRIX workshop and the organisers wish to thank all partici-
pants for their enthusiasm during the problem sessions and throughout the meeting.
A description of how the problem sessions were run can be found in the preface.

Below, we give a selection of eleven problems that were posed at the workshop.
This selection illustrates the range and scope of the discussions at the meeting. We
would like to thank all participants who contributed problems and further questions
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that helped shape many of them. An evolving record of these and other problems
and questions posed at the workshop can be found at the Manifold Atlas:

http://www.map.mpim-bonn.mpg.de/

We have attributed each problem in this list to the participant(s) who presented
the problem at the workshop. The style in which problems were posed varied widely,
and our selection reflects this. The first nine problems listed here are succinctly for-
mulated and self-contained: references to the literature are minimal and references
for each problem, where they exist, are at the end of the problem. The subject matter
of the final two problems necessitated recalling more background and a somewhat
more detailed referencing of the literature. The order in which we list the problems
is chronological, rather than by subject matter.

Problem 1: A quotient of S2 ×S2

presented by Jonathan Hillman

Let C4 = 〈σ〉 act freely on S2 ×S2 with that action of σ defined by the equation
σ(x,y) = (y,−x) and let M be the quotient manifold.

The real projective plane RP2 = S2/∼ embeds in M via [x] �→ [x,x] and its disk
bundle neighborhood N in M is the tangent disk bundle of RP2. The complement of
the open disk bundle neighborhood is the mapping cylinder of the double cover of
lens spaces L(4,1)→ L(8,1). Thus

M = N ∪MCyl(L(4,1)→ L(8,1)).

This geometric analysis of M was given in [1] where it was shown that there are
at most four closed topological manifolds in this homotopy type, half of which are
stably smoothable.

The smooth manifold M′ =N∪MCyl(L(4,1)→ L(8,3)) is homotopy equivalent
to M.

Question. Are M and M′ homeomorphic? diffeomorphic?

Reference

1. I. Hambleton and J. Hillman, Quotients of S2×S2, Preprint 2017. Available at arXiv1712.04572

Problem 2: Connected sum decompositions of high-dimensional manifolds

presented by Stefan Friedl

Let Cat be one of the categories Top, PL or Diff. A Cat-manifold M is called
irreducible if, whenever we can write M as a connected sum of Cat-manifolds at
least one of the summands is a homotopy sphere. The Kneser-Milnor theorem [2]
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says that every compact Cat 3-manifold admits a connected sum decomposition
into irreducible 3-manifolds, and this connected sum decomposition is unique up to
permutation of the summands.

Stefan Friedl asked to what degree this statement holds in higher dimensions.
During the two weeks of the workshop and during discussions afterwards Imre
Bokor, Diarmuid Crowley, Stefan Friedl, Fabian Hebestreit, Daniel Kasprowski,
Markus Land and Johnny Nicholson obtained a fairly comprehensive answer which
appears in the proceedings [1]. Before we discuss the results, note that exotic spheres
do not have a decomposition into irreducible manifolds. Thus it is reasonable to con-
sider all questions “up to homotopy spheres”.

In the following we summarize a few of the results.

1. It follows from standard algebraic topology and group theory that every Cat-
manifold admits a connected sum decomposition into irreducible manifolds and
a homotopy sphere.

2. The uniqueness statement (up to homotopy spheres) fails to hold in any of the
dimensions ≥ 4 and any of the categories.

3. If one restricts attention to simply connected manifolds, then it is shown that in
any dimension ≥ 17 uniqueness (up to homotopy spheres) fails to hold in any of
the categories.

4. In contrast for many even dimensions 2k, if one restricts attention to the case of
(k−1)-connected smooth manifolds, uniqueness does hold.

References

1. I. Bokor, D. Crowley, S. Friedl, F. Hebestreit, M. Land, D. Kasprowski and J.Nicholson,
Connected sum decompositions of high-dimensional manifolds, to appear in the MATRIX
Annals (2019). Available at arXiv:1909.02628

2. J. Milnor, A unique decomposition theorem for 3-manifolds, Amer. J. Math. 84 (1962), 1–7.

Problem 3: An analogue of Casson-Gordon theory for trisections

presented by Stephan Tillmann

Heegaard splittings have long been used in the study of 3–manifolds. They were
introduced in 1898 by Poul Heegaard, and provide a decomposition of each closed
3–manifold into two 1–handlebodies. A key concept introduced in the theory by
Casson and Gordon [1] was the notion of strong irreducibility, with their main theo-
rem stating that if a closed 3–manifold has a splitting that is not strongly irreducible,
then either the splitting is reducible or the manifold contains an incompressible sur-
face of positive genus. That is, one can either simplify the splitting, or one obtains
topological information on the 3–manifold. Strongly irreducible Heegaard surfaces
turn out to have many useful properties that one usually only associates with in-
compressible surfaces in 3–manifolds. Casson and Gordon also discovered a local
condition, the rectangle condition, which guarantees that a Heegaard splitting is
irreducible.
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The challenge for the analogous theory of trisections of 4–manifold is to deter-
mine properties of trisections that have strong topological consequences and that
can be determined by local information, for instance, from a trisection diagram.

Reference

1. A. Casson and C.McA. Gordon, Reducing Heegaard splittings, Topology Appl. 27 (1987),
275–283.

Problem 4: Aspherical manifolds whose fundamental group has nontrivial cen-

tre

presented by Fabian Hebestreit and Markus Land

Given a closed aspherical manifold M whose fundamental group has nontrivial
centre, we can ask the following:

Question A. Does there exist a finite cover of M with a principal S1-action?

Question B. Is such an M null-cobordant?

Motivation and background for these questions is found in [1, Section 7].

Reference

1. F. Hebestreit, M. Land, W. Lück and Oscar Randal-Williams, A vanishing theorem for
tautological classes of aspherical manifolds, to appear in Geom. Topol.. Available at
arXiv:1705.06232

Problem 5: Is the trisection genus additive under connected sum?

presented by Peter Lambert-Cole

Let M be a closed smooth 4-manifold. The “trisection genus” of M is the minimal
genus of the central surface appearing in a trisection of M.

Question. Is the trisection genus additive under connected sum?

If so, then the following hold:

1. The trisection genus of M is a homeomorphism invariant.
2. The manifolds S4, CP2, S2 ×S2, CP2�CP2 and CP2�CP2 have a unique smooth

structure.

An affirmative answer to the question is known for the class of all standard simply
connected PL 4-manifolds [1].
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Reference

1. J. Spreer and S. Tillmann, The trisection genus of standard simply connected PL 4-manifolds,
34th International Symposium on Computational Geometry, Art. No. 71, 13 pp., LIPIcs.
Leibniz Int. Proc. Inform., 99, Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2018.

Problem 6: Compact aspherical 4-manifolds

presented by Jim Davis

Let M0 and M1 be a compact aspherical 4-manifolds with boundary. The Borel
Conjecture in this setting states that a homotopy equivalence of pairs

f : (M0,∂M0)→ (M1,∂M1),

which is a homeomorphism on the boundary is homotopic, relative to the boundary,
to a homeomorphism.

By topological surgery, the Borel Conjecture is valid when the fundamental
group π = π1(M0) ∼= π1(M1) is good, for example, if π is elementary amenable.
One now proceeds to the following three problems:

1. Decide which good π are the fundamental groups of compact aspherical 4-
manifolds.

2. Determine the possible fundamental groups of the boundary components.
3. Determine the homeomorphism types of the boundary components.

These problems could be considered for compact aspherical 4-manifolds even
when the fundamental group is not good, also in the smooth case.

Question. Let M be a closed smooth aspherical 4-manifold. Is every smooth 4-
manifold homotopy equivalent to M diffeomorphic to M?

The question has not been answered for any M, not even the 4-torus.

Problem 7: Embedding integral homology 3-spheres into the 4-sphere

presented by Jonathan Hillman

Question. Let Σ be an integral homology 3-sphere, not homeomorphic to S3. Is
there a locally flat embedding Σ ↪→ S4 such that one or both complementary regions
are not simply-connected?

This problem is motivated by the problem of classifying such embeddings up
to isotopy. If a complement has non-trivial fundamental group, then a ‘satellite’
construction yields infinitely many isotopy classes of embeddings of Σ into S4.

Problem 8: Stabilising number of knots and links

presented by Anthony Conway
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Let W be a compact 4–manifold with boundary ∂W ∼= S3. We say that a prop-
erly embedded disk (Δ ,∂Δ) ⊂ (W,∂W ) is nullhomologous, if its fundamental
class [Δ ,∂Δ ] ∈ H2(W,∂W ;Z) vanishes.

A link L ⊂ S3 is stably slice if there exists n ≥ 0 such that the components
of L bound a collection of disjoint locally flat nullhomologous discs in the mani-
fold D4#n(S2 ×S2). The stabilising number sn(L) of a stably slice link is the mini-
mal such n.

Schneiderman proved that a link L is stably slice if and only if the following in-
variants vanish: the triple linking numbers μi jk(L), the mod 2 Sato-Levine invariants
of L, and the Arf invariants of the components of L [2].

Question A. Does the inequality sn(L) ≤ gtop
4 (L) hold for stably slice links L of

more than one component?

This question is settled in the knot case: together with Matthias Nagel, we showed
that sn(K) ≤ gtop

4 (K) holds for stably slice knots [1]. We are currently unable to
generalise this proof to links.

Remark. The definition of the stabilising number also makes sense in the smooth
category (one requires that the discs be smoothly embedded). Just as in the topo-
logical category, the inequality snsmooth(K)≤ gsmooth

4 (K) holds, and is unknown for
links.

This discussion of categories leads to the following question:

Question B. Is there a difference between the topological and smooth stabilising
numbers of a knot? More precisely, is there a non-topological slice, Arf invariant
zero knot K such that 0 < sntop(K)< snsmooth(K) ?

References

1. A. Conway and M. Nagel, Stably slice disks of links, J. Topol. 13 (2020), 1261–1301.
2. R. Schneiderman Stable concordance of knots in 3-manifolds, Algebr. Geom. Topol. 10

(2010), 373–432.

Problem 9: Unknotted surfaces in the 4-spheres

presented by Jim Davis

Kawauchi has published several accounts of the theorem below; however, none
of them are satisfactory. The problem is to give a satisfactory proof.

Theorem. Any two locally flat topological embeddings of a closed oriented surface
in S4 whose complement has infinite cyclic fundamental group are homeomorphic.

There is a corresponding statement in the nonorientable case. Complex conjuga-
tion on CP2 has fixed set RP2 and orbit space S4. Likewise for CP2. The involution
on aCP2#bCP2 thus gives a locally flat embedding of #a+bRP2 in S4.
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Conjecture. Any locally flat topological embedding of a closed nonorientable sur-
face in S4 whose complement has order 2 fundamental group is homeomorphic to
one of the above embeddings.

See also Massey [1] which determined the possible normal bundles.

Reference

1. W. S. Massey Proof of a conjecture of Whitney, Pacific J. Math. 31 (1969), 143–156.

Problem 10: Genus bounds for cancellations

presented by Diarmuid Crowley

This problem and the next are about the classification of compact 2q-manifolds
for q ≥ 2. For simplicity, we assume that all manifolds are connected. We state these
problems in the smooth category: there are obvious analogues for PL-manifolds
and topological manifolds but we only discuss the topological case in dimension 4,
which is of course an exceptional dimension and the PL case not at all.

For a natural number g, define Wg := #g(Sq ×Sq) to be the g-fold connected sum
of Sq ×Sq with itself. If M0 and M1 are compact smooth 2q-manifolds of the same
Euler characteristic, then a stable diffeomorphism from M0 to M1 is a diffeomor-
phism

f : M0�Wg → M1�Wg

for some g ≥ 0. In this case we say write M0 ∼=st M1 and we say that M0 and M1 are
stably diffeomorphic. Of course, to define the connected sum operation, M0,M1 and
Wg must be locally oriented. Since Wg admits an orientation reversing diffeomor-
phism for all g, if for i = 0,1 the manifold Mi is orientable, then the diffeomorphism
type of Mi�Wg does not depend on the orientation chosen for Mi.

The stable class of a 2q-manifold M is defined to be the set of diffeomorphism
classes of 2q-manifolds M′ with same Euler characteristic as M and which are stably
diffeomorphism to M:

S st(M) = {M′ | χ(M) = χ(M′) and M ∼=st M′}/diffeomorphism

We say that cancellation holds for M if every manifold which is stably diffeomor-
phic to M is diffeomorphic to M; i.e. |S st(M)| = 1. Our purpose here is to sum-
marise some of what is known about when cancellation holds and to identify two
basic problems about cancellation which remain open. For this we require a further
definition, notation and discussion.

The genus of M, g(M), is defined to be the largest natural number g such that

M ∼= M′�Wg

for some other compact smooth 2q-manifold M′. Since we have assumed that q ≥ 2,
the fundamental group of M, which we denote by π , is unchanged by stabilisation

653



Jonathan Bowden et al.

with Wg. So far, the majority of work on the cancellation problem has been to iden-
tify cases where cancellation holds via the fundamental group π , the genus g and
the parity of q. For example, the following theorem of Hambleton and Kreck shows
the power of cancellation as a classification technique in dimension 4.

Theorem A. (Topological cancellation for q = 2 and finite π; [2, Thm. B]) Let M
be a closed oriented topological 4-manifold with finite fundamental group and of
genus at least 1. Then cancellation holds for M.

Recall next that a finitely presented group π is polycyclic-by-finite if it has a
finite index subgroup which has a subnormal series where each quotient is cyclic.
The minimal number of infinite cyclic quotients is an invariant of π called the Hirsch
length of π and is denoted h(π). The results of the following theorem all use Kreck’s
theory of modified surgery: the first three are [3, Theorem 5] and the fourth is [2,
Theorem 1.1].

Theorem B. (Cancellation results for q ≥ 3; [3, Thm. 5] and [2, Thm. 1.1]) Let M
be a compact 2q-manifold of genus g with polycyclic-by-finite fundamental group π
and let N be stably diffeomorphic to M with the same Euler characteristic as M.

1. If q is odd and π is trivial then M and N are diffeomorphic;
2. If π is trivial and g ≥ 1, then M and N are diffeomorphic;
3. If π is finite and g ≥ 2, then M and N are diffeomorphic;
4. If g ≥ h(π)+3, then M and N are diffeomorphic.

We now state two problems relating the genus of M to the cancellation problem.
The first of these was explained to the author by Ian Hambleton and uses the fol-
lowing further terminology: let π be a finitely presented group and ε ∈ {±1}. We
say that g0 is a ε-genus cancellation bound for π if cancellation holds for every 2q-
manifold M with ε = (−1)q, π1(M) ∼= π and genus g(M) ≥ g0. If such a g0 exists,
the ε-cancellation genus of π is defined to be minimum genus cancellation bound

cgε(π) := min{g0 | g0 is an ε-genus cancellation bound for π}.

If there is no ε-genus cancellation bound for π , we set cgε(π) = ∞.

Problem A. (Genus bounds for general groups) Is there an example of a finitely
presented group π which is not polycyclic-by-finite and for which cgε(π) < ∞ for
some ε?

It perhaps remarkable that Problem A is still open, but in fact our knowledge
of the cancellation bound for almost all groups π is minimal. By Theorem B(1),
we have cg−({e}) = 0 and there examples which combine with Theorem B(2) to
give cg+({e}) = 1 and indeed cg+(π) ≥ 1 for all π . However, there are no known
examples where cgε(π)≥ 2; i.e. the following problem is still open.

Problem B. ((s the cancellation genus ever greater than one?) Is there a finitely
presented group π and ε ∈ {±1} such that cgε(π) ≥ 2? i.e. is there a pair of 2q-
manifolds M and N with π1(M)∼= π1(M)∼= π such that we have M�Wg ∼= N�Wg for
some g but M�W1 and N�W1 are not diffeomorphic?
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Remark. One source of manifolds in the stable class of M comes from the ac-
tion of the L-group, L2q+1(Z[π],w1), by Wall realisation. To be precise about tor-
sions, the torsion requirements correspond to the L-group denoted LE

2q+1(π) in [7,
17 D] and this L-group is defined as the group of units in the little-� surgery monoid
l2q+1(Z[π],w); see [3, p. 773]. Hence the formations and lagrangians are based, but
the formation is not required to be simple and there is an exact sequence

0 → Ls
2q+1(Z[π],w1)→ L2q+1(Z[π],w1)

τ−→ Wh(π),

where Wh(π) is the Whitehead group of π and the image of τ is described precisely
in [2, Lemma 6.2].

The Wall realisation procedure entails that if ρ ∈ L2q+1(Z[π],w1) is represented
by a formation on a hyperbolic form of rank 2g0 and if M′ = ρM, then we have
M�Wg0

∼= M′�Wg0 . Moreover, applying [2, First theorem of §1.3], it follows that if
g(M)≥ g0, then M′ ∼= M. Hence the cancellation problem is related to the algebraic
problem of the determining the minimal rank of a formation representing a given ρ ∈
L2q+1(Z[π],w1). For example, if every element of L2q+1(Z[π],w1) is represented by
a formation of rank 2g0 or less and g(M) ≥ g0, then L2q+1(Z[π],w1) acts trivially
on S st(M).

References

1. D. Crowley and J. Sixt, Stably diffeomorphic manifolds and l2q+1(Z[π]), Forum Math. 23

(2011), 483–538.
2. I. Hambleton and M. Kreck, Cancellation of hyperbolic forms and topological four-manifolds,

J. Reine Angew. Math. 443 (1993), 21–47.
3. M. Kreck, Surgery and Duality, Ann. of Math. 149 (1999), 707–754.
4. C. T. C. Wall, Surgery on compact manifolds, Second edition. Edited and with a foreword by

A. A. Ranicki. Mathematical Surveys and Monographs, 69. American Mathematical Society,
Providence, RI, 1999.

Problem 11: The Q-form Conjecture

presented by Diarmuid Crowley

This problem follows on from the previous problem on genus bounds for cancel-
lation. We use the same notation but now for simplicity we assume that all manifolds
are closed, as well as connected. Recall that π = π1(M) and w1 =w1(M) are the fun-
damental group and orientation character of M and that the L-group L2q+1(Z[π],w1)
acts on the stable class of M via Wall realisation:

S st(M)×L2q+1(Z[π],w1)→ S st(M)

Given that the L-groups L2q+1(Z[π],w1) have been intensively studied, we focus on
the quotient of the action above and suggest the following
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Problem. Determine S st(M)/L2q+1(Z[π],w1), the set of orbits of the action of
L2q+1(Z[π],w1) on the stable class.

Below we present a conjectural solution to this problem, along with some evi-
dence for the conjecture. To do this, we assume the reader is familiar with the setting
of modified surgery; the details are found in [3, §1]. Let ξ : B → BO be a fibration
over a connected space B. An m-dimensional normal smoothing in (B,ξ ) is a pair
(M, ν̄), where M is a compact m-manifold and ν̄ : M → B is a lift of the stable
normal bundle of M, ν̄M , as in the following diagram:

Bq−1
M

ξ q−1
M

��
M

ν̄
��

νM �� BO

If ν̄ is k-connected then (M, ν̄) is called a normal (k−1)-smoothing over (B,ξ ) and
if in addition ξ is k-coconnected, then the fibration ξ represents the normal (k−1)-
type of M, which we denote by ξ k−1

M : Bk−1
M → BO. There is a well-defined notion

of (B,ξ )-diffeomorphism, that is diffeomorphism preserving (B,ξ )-structures up
to equivalence and also (B,ξ )-bordism of closed (B,ξ )-manifolds; the correspond-
ing bordism group is denoted Ωm(B;ξ ). For an m-dimensional normal k-smoothing
(M, ν̄) over (B,ξ ), we let [M, ν̄ ] ∈ Ωm(B;ξ ) denote its bordism class and define

NSξ (M, ν̄)
:={(M′, ν̄ ′) | χ(M′) = χ(M), [M′ν̄ ′] = [M, ν̄ ]}/(B,ξ )-diffeomorphism,

to be the set of (B,ξ )-diffeomorphism classes of m-dimensional normal k-smoothings
which are bordant to (M, ν̄) and have the same Euler characteristic as M.

For m = 2q and k = q−1, a foundational result of Kreck [3, Corollary 3] states
that if (M0, ν̄0) and (M1, ν̄1) ∈ NSξ (M, ν̄) then M0 and M1 are stably diffeomor-
phic. Combined with [2, Lemma 2.3], we obtain for (B,ξ ) = (Bq−1

M ,ξ q−1
M ) that the

forgetful map

F: NSξ q−1
M

(M, ν̄)→ S st(M), (M′, ν̄ ′) �→ M′,

is onto. Moreover aut(ξ q−1
M ), the group of fibre homotopy classes of fibre ho-

motopy automorphisms of ξ q−1
M , acts by post-composition NSξ q−1

M
(M, ν̄) and by

[4, Theorem 7.5], the universal properties of the Moore-Postnikov factorisation
νM = ξ q−1

M ◦ ν̄ ensure that the induced map

Faut(ξ q−1
M )

: NSξ q−1
M

(M, ν̄)/aut(ξ q−1
M )→ S st(M) (1)

is a bijection. Hence it makes sense to study NSξ q−1
M

(M, ν̄) together with the action

of aut(ξ q−1
M ), in order to learn about S st(M).
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We next define the key new invariant we shall use to formulate our conjectures
and this is the extended quadratic form of (M, ν̄). Given ξ : B → BO, we let π =
π1(B) be the fundamental group of B and w1 the orientation character of ξ . We
fix a base-point in B and a local orientation of ξ at the base-point. We all assume
that all normal smoothings (M, ν̄) over (B,ξ ) are base-point preserving and that
ν̄∗ : π1(M)→ π1(B) an isomorphism, which we use to identify π1(M)= π . The local
orientation of ξ gives M a local orientation and hence defines a fundamental class
[M]∈H2q(M;Zw1) and also the equivariant intersection form λ(M,ν̄) : Hq(M;Z[π])×
Hq(M;Z[π])→ Z[π].

For every positive integer n, Ranicki [6, §10], defines a quadratic form parame-
ter over the twisted group ring (Z[π],w1), Qn(ξ ), which is associated to the stable
spherical fibration underlying the stable bundle ξ . In general, if we fix a ring with
involution Λ , then a quadratic form parameter over Λ is a triple Q = (Q,h,p), writ-
ten

Q = (Q h−→ Λ p−→ Q).

Here Q is an abelian group together with a quadratic action of Λ and h and p are
equivariant homomorphisms with respect to the conjugation of Z[π] on itself, which
satisfy certain equations. We refer the reader to [6, §10] for the details and point out
that a similar but more general notion of quadratic form parameter can be found in
the work of Baues [1]. We also mention that there is an exact sequence of abelian
groups (see [6, p. 37])

Q(−1)n(Z[π])→ Qξ (n)→ Hn(B;Z[π])→ 0,

where Q(−1)n(Z[π]) is the classical Q-group appearing in Wall’s quadratic form [7,
Theorem 5.2] and where the homomorphism Qξ (n) → Hn(B;Z[π]) is equal to the
quotient map Qξ (n)→ Qξ (n)/Im(p).

An extended quadratic form over a form parameter Q, briefly a Q-form, is a triple

(H,λ ,μ),

where H is a Λ -module, λ : H ×H → Λ is a sesqui-linear form and μ : H → Q is a
quadratic refinement of λ which means in part that for all x,y ∈ H we have

μ(x+ y) = μ(x)+μ(y)+p(λ (x,y)) and λ (x,x) = h(μ(x)).

The linearisation of (H,λ ,μ) is the Λ -module homomorphism

S(μ) : H → Q/Im(p), x �→ [μ(x)].

If (H,λ ,μ) and (H ′,λ ′,μ ′) are Q-forms then an isometry between them is an λ -
module isomorphism preserving the sesquilinear forms and their quadratic refine-
ments and we write

HomΛ (Q)

for the set of isometry classes of Q-forms on finitely generated Λ -modules.
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The theory of [6, §10] ensures that a normal (q−1)-smoothing ν̄ : M → B over a
stable bundle ξ : B → BO defines a Qξ (q)-form

μ(M, ν̄) :=
(
Hq(M;Z[π]),λ(M,ν̄),μ(ν̄)

)
,

where (Hq(M;Z[π]),λ(M,ν̄)) is the equivariant intersection form of (M, ν̄) and the
map μ(ν̄) : Hq(M;Z[π]) → Qξ (q) is a quadratic refinement of λ(M,ν̄), which has
linearisation

S(μ(ν̄)) = ν̄∗ : Hq(M;Z[π])→ Hq(B;Z[π]).

It follows from the definitions that if f : M0 → M1 is a (B,ξ )-diffeomorphism be-
tween 2q-dimensional (q−1)-smoothings (M0, ν̄0) and (M1, ν̄1) over (B,ξ ), then
the induced homomorphism f∗ : Hq(M0;Z[π]) → Hq(M1;Z[π]) is an isometry of
Qξ (q)-forms. It follows that there is a well-defined map

NSξ (M, ν̄)→ Hom(Z[π],w1)(Qξ (q)), (M, ν̄) �→ μ(M, ν̄).

Now Wall realisation also defines an action of L2q+1(Z[π],w1) on NS(M, ν̄) and
it is elementary to check that the isometry class of the extended quadratic forms is
invariant under this action. Hence the map above descends to define the map

μ : NSξ (M, ν̄)/L2q+1(Z[π],w1)→ Hom(Z[π],w1)(Qξ (q)). (2)

At last, we can state the first version of the Q-form Conjecture.

Conjecture A. (The Q-form Conjecture for normal smoothings) If q ≥ 3, then
the map μ of (2) is injective; i.e. if q ≥ 3 and (M0, ν̄0) and (M1, ν̄1) are 2q-
dimensional (B,ξ )-bordant normal (q−1)-smoothings with equal Euler character-
istic and isometric Qξ (q)-forms, then (M0, ν̄0) and (M1, ν̄1) differ by the action of
L2q+1(Z[π],w1).

Given the bijection of (1), Conjecture A allows us to formulate a conjectural
determination of the stable class of M, at least for q ≥ 3. For this, note that
aut(ξ q−1

M ) acts on Qξ (q) by automorphisms and hence on Hom(Z[π],w1)(Qξ (q)) by
post-composition. Thus we obtain the map

μ/aut(ξ ) : NSξ (M, ν̄)/
(
L2q+1(Z[π],w1)× aut(ξ )

)→ Hom(Z[π],w1)(Qξ (q))/aut(ξ ),

which is a bijection if Conjecture A holds. Since the bijection of (1) is equivariant
with respect to the action of L2q+1(Z[π],w1), when ξ = ξ q−1

M is a representative of
the normal (q−1)-type of M, the map μ/aut(ξ ) induces another map, also denoted
μ/aut(ξ ),

μ/aut(ξ ) : S st(M)/L2q+1(Z[π],w1)→ Hom(Z[π],w1)(Qξ q−1
M

(q))/aut(ξ q−1
M ). (3)

Conjecture B. (The Q-form Conjecture for the stable class) If q ≥ 3, then the
map μ/aut(ξ ) of (3) is injective; i.e. if q ≥ 3 and we have M0,M1 ∈ S st(M) then
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M0 ∼= ρM1 for some ρ ∈ L2q+1(Z[π],w1) if and only if for i = 0,1, there are normal
(q−1)-smoothings ν̄i : Mi → Bq−1

M such that μ(M0, ν̄0) and μ(M1, ν̄1) are isometric
Qξ q−1

M
(q)-forms.

We conclude by briefly discussing Conjectures A and B. Notice that since the
map μ of Conjecture A is aut(ξ q−1

M )-equivariant, Conjecture A implies Conjecture
B. Both conjectures are inspired by the classification of the �-monoids in [2] and
to the best of our knowledge, both conjectures are consistent with the extensive
literature on classifying 2q-manifolds for q ≥ 3. In addition, Conjecture A (hence
Conjecture B) has been proven by Nagy in the case where q is even, π = {e} and
Hq(B;Z) is torsion free [5].

At times, it has been tempting to propose Conjectures A and B as hypotheses;
i.e. as sign posts for organising work on the classification of the stable class, as op-
posed to statements believed to be true. However, the resilience of these statements
to date encourages their proposal as conjectures in the usual sense. This is also con-
sistent with history of the exploration of the stable class, where the “unreasonable
effectiveness” of the (equivariant) intersection form has often been observed.
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