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Abstract A slowly-varying or thin-layer multiscale assumption empowers macroscale
understanding of many physical scenarios from dispersion in pipes and rivers, in-
cluding beams, shells, and the modulation of nonlinear waves, to homogenisation of
micro-structures. Here we begin a new exploration of the scenario where the given
physics has non-local microscale interactions. We rigorously analyse the dynamics
of a basic example of shear dispersion. Near each cross-section, the dynamics is
expressed in the local moments of the microscale non-local effects. Centre manifold
theory then supports the local modelling of the system’s dynamics with coupling
to neighbouring cross-sections as a non-autonomous forcing. The union over all
cross-sections then provides powerful new support for the existence and emergence
of a macroscale model advection-diffusion PDE global in the large, finite-sized,
domain. The approach quantifies the accuracy of macroscale advection-diffusion
approximations, and has the potential to open previously intractable multiscale issues
to new insights.

1 Introduction

This paper introduces a new rigorous approach to the multiscale challenge of sys-
tematically modelling by macroscale PDEs the dynamics of microscale, spatially
nonlocal, systems. This approach provides a novel quantified error formula. Previous
research using this type of approach rigorously modelled systems that were expressed
as PDEs on the microscale. This previous research encompassed both cylindrical
multiscale domains (Roberts 2015a) and more general multiscale domains (Roberts
and Bunder 2017; Bunder and Roberts 2018). But recall that PDEs are themselves
mathematical idealisations of physical processes that typically take place on mi-
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croscale length scales. Hence, here we begin to address the challenges arising when
the given mathematical model of a system encodes microscale physical interactions
over finite microscale lengths.

Physical systems with nonlocal, microscale, spatial interactions arise in many ap-
plications. In neuroscience, a spatial convolution expresses the excitatory/inhibitory
effects of a neurone on a nearby neurone, giving rise to nonlocal neural field equa-
tions, and “have been quite successful in explaining various experimental findings”
(Ermentrout 2015, e.g.). Models of free crack propagation in brittle materials invoke
microscale nonlocal stress-strain laws, called peridynamics (Silling 2000, e.g.): one
challenge is to derive the effective mesoscale PDEs from the nonlocal laws (Silling
and Lehoucq 2008; Lipton 2014, e.g.). Nonlocal dispersal and competition models
arise in biology (Omelyan and Kozitsky 2018; Duncan et al. 2017, e.g.). Other ex-
amples are non-local cell adhesion models (Buttenschön and Hillen 2020, e.g.). In
this introduction we begin by exploring the specific example of a so-called ‘Zappa’
dispersion in a channel (Section 2) in which material is transported by finite jumps
along the channel, and also is intermittently thoroughly mixed across the channel.

General scenario

Zappa dispersion is a particular case of the following general scenario—a scenario
that is the subject of ongoing research. In generality we consider a field u(x,y, t),
on a ‘cylindrical’ spatial domain X×Y (where X ⊆ R and where Y denotes the
cross-section). We suppose the field u is governed by a given autonomous system
in the form

∂u
∂ t

=
∫

Y

∫

X
k(x,ξ ,y,η)u(ξ ,η , t)dξ dη , (1)

where the given kernel k(x,ξ ,y,η) expresses both nonlocal and local physical effects
at position (x,y) from the field at position (ξ ,η), both within the cylindrical domain
X×Y. We allow the kernel to be a generalised function so that local derivatives
may be represented by derivatives of the Dirac delta function δ : for example, a
component δ ′(x−ξ )δ (y−η) in the kernel k encodes the differential term −∂u/∂x
in the right-hand side of (1). In general the physical effects encoded in the kernel k
may be heterogeneous in space. But, as is common and apart from boundaries, Zappa
dispersion is homogeneous in space (translationally invariant) in which case some
significant simplifications ensue.

The nonlocal system (1) is linear for simplicity, but we invoke the framework of
centre manifold theory so the approach should, with future development, apply to
nonlinear generalisations as in previous work on such modelling where the system is
expressed as PDEs on the microscale (Roberts 2015a).

Our aim is to rigorously establish that the emergent dynamics of the nonlocal
system (1) are captured over the 1D spatial domain X by a mean/averaged/coarse/
macroscale variable U(x, t) that satisfies a macroscale, second-order, advection-
diffusion PDE of the form
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∂U
∂ t

≈ A1
∂U
∂x

+A2
∂ 2U
∂x2 , x ∈ X , (2)

for some derived coefficients A1 and A2.1 This macroscale PDE (2) is to model the
dynamics of the microscale nonlocal (1) after transients have decayed exponentially
quickly in time, and to the novel quantified error (6d).

2 Zappa shear dispersion

This section introduces a basic example system (non-dimensional) of nonlocal mi-
croscale jumps by a particle (inspired by W. R. Young, private communication).
Section 3 systematically derives an advection-diffusion PDE (2) for the particle that
is valid over macroscale space-time. Consider a particle in a channel −1 < y < 1,
Y= (−1,1), and of notionally infinite extent in x, X= R. Let u(x,y, t) be the proba-
bility density function (PDF) for the particle’s location: equivalently, view u(x,y, t) as
the concentration of some continuum material.

The ‘Zappa’ dynamics of the particle’s PDF is encoded by

∂u
∂ t

=
[

1
v(y)

∫ x

−∞
e−(x−ξ )/v(y)u(ξ ,y, t)dξ

︸ ︷︷ ︸
= e−x/v(y)�u, the convolution (5)

−u
]
+

[
1
2

∫ 1

−1
udy−u

]
(3)

for some jump profile v(y)> 0 —v(y) is an effective velocity along the channel. That
is, the kernel of the Zappa system is the generalised function

k(x,ξ ,y,η) =
[

1
v(y)e−(x−ξ )/v(y)H(x−ξ )−δ (x−ξ )

]
δ (y−η)

+
[ 1

2 −δ (y−η)
]

δ (x−ξ ), (4)

where H(x) is the unit step function. The nonlocal equation (3) governs the PDF of
the particle in Zappa dispersion through the following two physical mechanisms.

• We suppose that, at exponentially distributed time intervals with mean one, the
particle gets ‘zapped’ across the channel (by a burst of intermittent turbulence
for example) and lands at any cross channel position y with uniform distribution.
Consequently the Fokker–Planck PDE (3) for the PDF contains the terms ut =[ 1

2
∫ 1
−1 udy−u

]
+ · · ·.

• Further, suppose that, at exponentially distributed time intervals with mean one,
the particle jumps in x a distance to the right, a distance which is exponentially
distributed with some given mean v(y). Consequently the Fokker–Planck PDE (3)
for the PDF contains the terms ut =

[ 1
v(y)e−x/v(y) � u− u

]
+ · · ·, in terms of the

upstream convolution

1 Ongoing research aims to generalise the approach here to certify the accuracy of PDEs truncated
to Nth-order for every N.
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e−x/v(y) �u =
∫ x

−∞
e−(x−ξ )/v(y)u(ξ ,y, t)dξ . (5)

We derive the macroscale model that the cross-sectional mean field U(x, t) evolves
according to an advection-diffusion PDE: Ut ≈ A1Ux +A2Uxx . The field U(x, t) may
be viewed as the marginal probability density of the particle being at x, averaged
over the cross-section y. Innovatively, we put the macroscale modelling on a rigorous
basis that additionally quantifies the error.

In particular, say we choose v(y) := 1− y2 then computer algebra (Section 6)
readily derives that over large space-time scales, and after transients decay roughly
like e−t , from every initial condition the Zappa system (3) has the quasistationary
distribution (Pollett and Roberts 1990, e.g.)

u(x,y, t)≈U +(y2 − 1
3 )

∂U
∂x

+(2y4 − 8
3 y2 + 22

45 )
∂ 2U
∂x2 , (6a)

such that
∂U
∂ t

=−2
3

∂U
∂x

+
28
45

∂ 2U
∂x2 +ρ , (6b)

in terms of a macroscale variable here chosen to be the cross-sectional mean,

U(x, t) :=
1
2

∫ 1

−1
u(x,y, t)dy . (6c)

The macroscale PDE (6b) is a precise equality because we include the error terms
in our analysis to find a precise, albeit complicated, expression for the final error ρ .
The remainder error ρ in (6b) has the form

ρ := r0 + 〈Z0,W0:BeBt � r′〉+ 〈Z0,W0:r′〉
−A1〈Z0,W1:eBt � r′〉−A2〈Z0,W2:eBt � r′〉 (6d)

where here the convolutions are over time, f (t)�g(t) =
∫ t

0 f (t − s)g(s)ds , and other
symbols are introduced in the next Section 3. We anticipate this error ρ is

• ‘small’ in regions of slow variations in space, small gradients, and
• ‘large’ in regions of relatively large gradients such as spatial boundary layers.

Then, simply, the macroscale PDE model (6b) is valid whenever and wherever
the error ρ is small enough for the application purposes at hand. The next section
includes deriving this error term and clarifies the notation.

3 Many kernels generate local models

Inspired by earlier research (Roberts 2015a, Proposition 1), this section’s aim is to
rigorously derive and justify the model (6) that governs the emergent macroscale
evolution of Zappa dispersion. The algebra starts to ‘explode’—Section 4 discusses
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how to compactly do the algebra in physically meaningful forms, and connect to
other mathematical methodologies.

To derive the advection-diffusion model (6b) we truncate the analysis to second
order quadratic terms. Higher-orders appear to be similar in nature, but much more
involved algebraically, and are left for later development.

3.1 Rewrite the equations for local dynamics

Let’s analyse the dynamics in the spatial locale about a generic longitudinal cross-
section X ∈ X. Then invoke Lagrange’s Remainder Theorem—which empowers us
to track errors—to expand the PDF as

u(x,y, t) = u0(X ,y, t)+u1(X ,y, t)(x−X)+u2(X ,x,y, t)
(x−X)2

2!
, (7)

where u0 := u and u1 := ∂u/∂x both evaluated at the cross-section x = X , and where
u2 := ∂ 2u/∂x2 evaluated at some point x = x̂(X ,x,y, t) which is some definite (but
usually unknown) function of cross-section X , longitudinal position x, cross-section
position y, and time t. By the Lagrange Remainder Theorem, the location x̂ satisfies
X ≶ x̂ ≶ x. The function x̂ is implicit in our analysis because it is hidden in the
dependency upon x of the second derivative u2(X ,x,y, t).

Substitute (7) into the Zappa nonlocal equation (3) to obtain

∂u0

∂ t
+

∂u1

∂ t
(x−X)+

∂u2

∂ t
(x−X)2

2!

=
∫

Y

[∫

X
k(x,ξ ,y,η)dξ

]
u0(X ,η , t)dη

+
∫

Y

[∫

X
k(x,ξ ,y,η)(ξ −X)dξ

]
u1(X ,η , t)dη

+
∫

Y

∫

X
k(x,ξ ,y,η)

(ξ −X)2

2!
u2(X , ξ̂ ,η , t)dξ dη . (8)

The effect at cross-section x of the nth moment of the kernel at cross-section X is
summarised in the integrals

∫
X k(x,ξ ,y,η) (ξ−X)n

n! dξ . So define the local nth moment
of the kernel to be, for every n ≥ 0,

kn(X ,y,η) :=
∫

X
k(X ,ξ ,y,η)

(ξ −X)n

n!
dξ

=
[
(−v)n −δn0

]
δ (y−η)+

[ 1
2 −δ (y−η)

]
δ0n (9)

upon substituting the Zappa kernel (4). This Zappa problem is homogeneous in x,
as are many problems, and so the kernel moments kn are independent of the cross-
section X (except near the boundary inlet and outlet).
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The last integral term in the local expansion (8) requires special consideration:
apply Lagrange’s Remainder Theorem to write u2(X ,ξ ,η , t) = u2(X ,X ,η , t)+(ξ −
X)u2x(X , ξ̂ ,η , t) for some uncertain function ξ̂ (X ,ξ ,η , t) that satisfies X ≶ ξ̂ ≶ ξ
for every η , t, and where u2x := ∂/∂x [u2(X ,x,η , t)]. Then the last term distributes
into two:

∫

Y

∫

X
k(x,ξ ,y,η)

(ξ −X)2

2!
u2(X , ξ̂ ,η , t)dξ dη

=
∫

Y

∫

X
k(x,ξ ,y,η)

(ξ −X)2

2!
dξ

︸ ︷︷ ︸
k2(X ,y,η)

u2(X ,X ,η , t)dη

+

∫

Y

∫

X
k(x,ξ ,y,η)3

(ξ −X)3

3!
u2x(X , ξ̂ ,η , t)dξ dη

︸ ︷︷ ︸
a remainder, with a third x derivative in u2x

.

Define u2(X ,y,η) := u2(X ,X ,y,η) for notational consistency with lower moments—
see the definition (9).

The local equation (8) is exact everywhere, but is most useful in the vicinity of the
cross-section X , that is, for small (x−X). Notionally we want to ‘equate coefficients’
of powers of (x−X) in (8), but to be precise we must carefully evaluate limx→X of
various x-derivatives of (8). For example, let x → X in (8), then

∂u0

∂ t
=

∫

Y
k0(X ,y,η)u0(X ,η , t)dη +

∫

Y
k1(X ,y,η)u1(X ,η , t)dη

+
∫

Y
k2(X ,y,η)u2(X ,η , t)dη

+3
∫

Y

∫

X
k(X ,ξ ,y,η)

(ξ −X)3

3!
u2x(X , ξ̂ ,η , t)dξ dη .

Rewrite this conveniently and compactly as the integro-differential equation (IDE)

∂u0

∂ t
= L0u0 +L1u1 +L2u2 + r0 , (10)

for y-operators defined to be, from the moments (9),

Lnu :=
∫

Y
kn(X ,y,η)u|y=η dη =

{
1
2
∫ 1
−1 udy−u , n = 0 ,

[−v(y)]nu , n = 1,2, . . . .
(11)

The IDE (10) also has the remainder r0 which couples the local dynamics to neigh-
bouring locales via u2x and is the n = 0 case of

rn(X ,y, t) := 3
∫

Y

∫

X

∂ nk
∂xn

∣∣∣
x=X

(ξ −X)3

3!
u2x(X , ξ̂ ,η , t)dξ dη . (12)
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Now we can see how this approach to modelling the spatial dynamics works: given
that the y-operators (11) are evaluated at X , the spatially local power series with
remainder, in IDEs like (10), ‘pushes’ the coupling with neighbouring locales to
a higher-order derivative term in r0, here third-order via the u2x factor. Hence the
local dynamics in u0,u1,u2 are essentially isolated from all other cross-sections
whenever and wherever the coupling r0 is small enough for the purposes at hand—
here when third derivatives are small—that is, when the solutions are, in space,
slowly varying enough.

The previous paragraph obtains the IDE for u0 by simply taking the limit of (8) as
x → X . We straightforwardly and similarly obtain IDEs for u1 and u2 by finding the
limits of spatial derivatives of (8):

lim
x→X

∂ (8)
∂x

=⇒ ∂u1

∂ t
= L0u1 +L1u2 + r1 ; (13a)

lim
x→X

∂ 2(8)
∂x2 =⇒ ∂u2

∂ t
= L0u2 + r2 ; (13b)

for local coupling remainders r1 and r2 defined by (12).

3.2 Local-to-global system modelling theory

This section considers the collection of ‘local’ systems as one ‘global’ (in space X)
system. Then theory establishes that the advection-diffusion PDE (6b) arises as a
globally valid, macroscale, model PDE.

Denote the vector of coefficients u(X ,y, t) := (u0,u1,u2), and similarly for the
local coupling remainder r(X ,y, t) := (r0,r1,r2). Then write the IDEs (10) and (13),
in the form of the ‘forced’ linear system

du
dt

=

⎡
⎣
L0 L1 L2
0 L0 L1
0 0 L0

⎤
⎦

︸ ︷︷ ︸
L

u+ r(X , t). (14)

for upper triangular matrix/operator L . The system (14) might appear closed, but it
is coupled via the derivative u2x, through the ‘forcing’ remainders r, to the dynamics
of cross-sections that neighbour X .

At each locale X ∈X, treat the remainder coupling r (third-order) as a perturbation
(and if this was a nonlinear problem, then the nonlinearity would also be part of
the perturbation). Thus to a useful approximation the global system satisfies the
local linear ODEs du/dt ≈ L u for each X ∈ X. Hence, the linear operator L is
crucial to modelling the dynamics: all solutions are characterised by the eigenvalues
of L . Since L is block triangular, a structure exploited previously (Roberts 2015a,
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§2), its spectrum is thrice that of L0 = 1
2
∫ 1
−1 udy− u (definition (11)). Here it is

straightforward to verify that the y-operator L0 has:

• one 0 eigenvalue corresponding to eigenfunctions constant across the channel;
and

• an ‘infinity’ of eigenvalue −1 corresponding to all functions with zero average
across the channel.

Then globally in space, with du/dt = L u+(perturbation) at every X ∈ X, and
because of the ‘infinity’ of the continuum X, the linearised system has a ‘thrice-
infinity’ of the 0 eigenvalue, and a ‘double-infinity’ of eigenvalue −1. Consequently,
the theory of Aulbach and Wanner (2000) asserts:

1. there exists a ‘(3∞)’-D slow manifold—the quasistationary (6a);
2. which is exponentially quickly attractive to all initial conditions, with transients

roughly e−t—it is emergent; and
3. which we approximate by approximately solving the governing differential equa-

tions (14)—done in encoded form by Section 6.

We obtain a useful approximation to the global slow manifold by neglecting the
‘perturbing’ remainder r. Because the remainder r is the only coupling between
different locales X this approximation may be constructed independently at each and
every cross-section X . Further, because the Zappa system is homogeneous in space,
the construction is identical at each and every X ∈ X. These two properties vastly
simplify the construction of the attractive slow manifold.

Neglecting the coupling remainder r gives the linear problem du/dt = L u.
The approximate slow manifold is thus the zero eigenspace of L . We find the
zero eigenspace via (generalised) eigenvectors. With the (generalised) eigenvec-
tors in the three columns of block-matrix V , in essence we seek u(t) = V U(t)
such that dU/dt = A U for 3×3 matrix A having all the zero eigenvalues. To be
an eigenspace we need to solve LV = VA . Now let’s invoke previously estab-
lished results (Roberts 2015a, §2). The linear operator L , defined in (14), has the
same block Toeplitz structure as previously (Roberts 2015a, (7) on p.1496). Con-
sequently (Roberts 2015a, Lemma 4), a basis for the zero eigenspace of L is the
collective columns of

V =

⎡
⎣

V0 V1 V2
0 V0 V1
0 0 V0

⎤
⎦ , and further, A =

⎡
⎣

0 A1 A2
0 0 A1
0 0 0

⎤
⎦ .

The hierarchy of equations to solve for the components of these has been previously
established (Roberts 2015a, Lemma 3): the hierarchy is essentially equivalent to the
hierarchy one would solve if using the method of multiple scales, but the theoretical
framework here is more powerful. The upshot is that for Zappa dispersion, in which
overlines denote cross-channel averages,

V0 = 1, V1 = v− v, V2 = 2(v2 − v2 − vv+ v2),

A1 =−v, A2 = (v− v)2 + v2 . (15)
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In the specific case of v(y) = 1− y2, these expressions reduce to the coefficients and
polynomials of the slowly varying, slow manifold, model (6).

So now we know that the evolution on the zero eigenspace, the approximate
slow manifold, is dU/dt = A U: let’s see how this translates into the macroscale
PDE (6b). Now, the first line of dU/dt = A U is the ODE dU0/dt = A1U1 +A2U2.
Defining U0 =U(X , t) := u(X ,y, t), Proposition 6 of Roberts (2015a) applies, and so
generally U(x, t) satisfies the macroscale effective advection-diffusion PDE (2)—a
PDE that reduces to the specific (6b) in the case v(y) = 1− y2.

3.3 Account for the coupling remainder

Now we treat the exact ‘local’ system du/dt =L u+r as non-autonomously ‘forced’
by coupling to all cross-sections in X through the remainder (aka Mori–Zwanzig
transformation, e.g., Venturi, Cho, and Karniadakis 2015). There are two justifica-
tions, both a simple and a rigorous, for being able to project such ‘forcing’ onto
the local model. First, simply, the rational projection of initial conditions for low-
dimensional dynamical models leads to a cognate projection of any forcing (Roberts
1989, §7). Second, alternatively and more rigorously, Aulbach and Wanner (2000)
developed a general forward theory, that applies here, of centre manifolds for non-
autonomous systems in suitable ‘infinite-D’ state spaces: the theory establishes the
existence and emergence of an ‘infinity-D’ global centre manifold—a centre man-
ifold whose construction (Potzsche and Rasmussen 2006, Prop. 3.6) happens to
be symbolically identical at each X ∈ X. Keep clear the contrasting points of view
that contribute: on the one hand we consider the relatively low-dimensional system
at each locale X in space, a system that is weakly coupled to its neighbours; on
the other-hand we consider the relatively high-dimensional system of all locales X
coupled together and then theory establishes global properties.

The upshot is that here we need to project the coupling remainder r(t) onto each
local slow manifold. Fortunately, the structure of the linear local dynamics (14) is
identical to that discussed by Roberts (2015a). Hence, many of the results reported
there apply here. Linear algebra involving adjoint eigenvectors Z0 and Wn (L†

0Z0 = 0
and L †W = WA , Roberts 2015a, §2.3), together with the history of the coupling
remainder e−t �r, leads to the error formula (6d) (equation (23) from Roberts 2015a).
Then the general macroscale advection-diffusion model (2) becomes exact with the
error term ρ included (here the error (6d) is third-order in spatial derivatives)

∂U
∂ t

= A1
∂U
∂x

+A2
∂ 2U
∂x2 +ρ .

Then, simply, the macroscale effective advection-diffusion model PDE (2) is valid
simply whenever and wherever the error term ρ is acceptably small. There is:
no ε; no limit; no required scaling; no ‘balancing’; no ad hoc hierarchy of
space-time variables.
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4 Compact analysis, and connect to well-known methodology

It is very tedious to perform all the algebraic machinations of Section 3 on the Taylor
series coefficients. Instead, we may compactify the analysis by defining the quadratic
generating polynomial (Roberts 2015a, §3.1)

ũ(X ,ζ ,y, t) := u0(X ,y, t)+ζ u1(X ,Y, t)+ 1
2 ζ 2u2(X ,X ,y, t) (16)

(or a higher-order polynomial if the analysis is to higher-order). This generating
polynomial then satisfies the exact differential equation (17). Consider ∂ ũ/∂ t, at
(X ,ζ ,y, t), and substitute the equations (14) for the Taylor coefficients at (X ,y, t):

∂ ũ
∂ t

=
∂u0

∂ t
+ζ

∂u1

∂ t
+ 1

2 ζ 2 ∂u2

∂ t
= L0u0 +L1u1 +L2u2 + r0

+L0ζ u1 +L1ζ u2 +ζ r1

+L0
1
2 ζ 2u2 + 1

2 ζ 2r2

= L0ũ+L1
∂ ũ
∂ζ

+L2
∂ 2ũ
∂ζ 2 + r̃

=⇒ ∂ ũ
∂ t

=

[
L0 +L1

∂
∂ζ

+L2
∂ 2

∂ζ 2

]
ũ+ r̃ (17)

for the generating polynomial of the coupling remainder, r̃ := r0 +ζ r1 +
1
2 ζ 2r2 .

Appropriate analysis of the IDE (17) then reproduces the previous Section 3. But
the algebra is done much more compactly as the separate components u0,u1,u2 are
all encompassed in the one generating polynomial ũ. One important property of the
analysis is that although we normally regard the derivative ∂/∂ζ as unbounded, in
the analysis of IDE (17) the space of functions is just that of quadratic polynomials
in ζ , and so here ∂/∂ζ is bounded, as well as possessing other nice properties.

Indeed, since we are only interested in the space of quadratic polynomials
in ζ , the analysis neglects any term O

(
ζ 3

)
. Equivalently, we would work to ‘er-

rors’ O
(
∂ 3/∂ζ 3

)
. This view empowers us to organise the necessary algebra in a

framework where we imagine ∂/∂ζ is ‘small’. Note: in the methodology here ∂/∂ζ
is not assumed small, as we track errors exactly in the remainder r̃, it is just that we
may organise the algebra as if ∂/∂ζ was small. Such organisation then leads to the
same hierarchy of problems as in Section 3.2, just more compactly.

Connect to extant methodology

Since the notionally small ∂/∂ζ is effectively a small spatial derivative, we now con-
nect to extant multiscale methods that a priori assume slow variations in space. That
is, we now show that the non-remainder part of IDE (17) appears in a conventional
multiscale approximation of the governing microscale system (1).

432



Rigorous modelling of nonlocal interactions determines a macroscale PDE

In conventional asymptotics we invoke restrictive scaling assumptions at the start.
Here one would assume that the solution field u(x,y, t) is slowly-varying in space x.
Then the argument goes that the field may be usefully written near any X ∈ X as the
local Taylor quadratic approximation2

u(ξ ,y, t)≈ u|ξ=X +(ξ −X)uξ |ξ=X +
(ξ −X)2

2!
uξ ξ |ξ=X .

Substituting into the nonlocal microscale (1) gives, at (X ,y, t) and letting dashes/
primes denote derivatives with respect to the first argument,

∂u
∂ t

=
∫

Y

∫

X
k(X ,ξ ,y,η)u(ξ ,η , t)dξ dη

≈
∫

Y

∫

X
k(X ,ξ ,y,η)

[
u|ξ=X +(ξ −X)u′|ξ=X +

(ξ −X)2

2!
u′′|ξ=X

]
dξ dη

=
∫

Y

∫

X
k(X ,ξ ,y,η)dξ u(X ,η , t)+

∫

X
k(X ,ξ ,y,η)(ξ −X)dξ u′(X ,η , t)

+
∫

X
k(X ,ξ ,y,η)

(ξ −X)2

2!
dξ u′′(X ,η , t) dη

=
∫

Y
k0(X ,y,η)u(X ,η , t)+ k1(X ,y,η)u′(X ,η , t)

+ k2(X ,y,η)u′′(X ,η , t)dη
= L0u+L1u′+L2u′′. (18)

Now the generating polynomial ũ, defined by (16), is such that u(X + ζ ,y, t) =
ũ(X ,ζ ,y, t)+O

(
ζ 3

)
. Hence, rewriting the approximate PDE (18) for u(X +ζ ,y, t) at

fixed X gives precisely the IDE (17) except that the remainder coupling r̃ is omitted.
Consequently, extant multiscale methodologies continuing on from PDE (18) generate
equivalent results to that of Section 3, but in a different framework—a framework
without the error term (6d).

Most extant multiscale analysis invokes, at the outset, balancing of scaling pa-
rameters, requires a small parameter, is only rigorous in the limit of infinite scale
separation, and often invents heuristic multiple space-time variables. The approach
developed herein connects with such analysis, but is considerably more flexible
and, furthermore, justifies a more formal approach developed 30 years ago (Roberts
1988), and implemented in Section 6. Further this approach derives the rigorous error
expression (6d) at finite scale separation.

2 I continue to conjecture that truncations to orders other than quadratic give corresponding analysis
and results. Ongoing research will elucidate.
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5 Conclusion

This article initiates a new multiscale modelling approach applied to a specific basic
problem. This article considers the scenario where the given physical problem (1)
has non-local microscale interactions, such as inter-particle forces or dynamics on a
lattice. Many extant mathematical methodologies derive, for such physical systems,
an approximate macroscale PDE, such as the advection-diffusion (2). The novelty of
our approach is that it derives a precise expression for the error of the macroscale
approximate PDE, here (6d). Then, simply, and after microscale transients decay,
the macroscale advection-diffusion PDE (2) is valid wherever and whenever the
quantified error (6d) is acceptable.

Of course, in all such applications, we need the third moment of the microscale
interaction kernel k(x,ξ ,y,η) to exist (see definition (12)) for the error analysis of
Section 3.1 to proceed and provide the error term. All moments exist for the Zappa
problem, see (9). If, in some application, the third moment does not exist, but the
second moment does, then the advection-diffusion PDE (2) may be an appropriate
macroscale model, but this work would not provide a quantifiable error.

Another important characteristic of our new approach is that the validity of the
macroscale PDE is not confined by a limit ‘ε → 0’—the approach holds for finite
scale separation in the multiscale problem, in the large but finite domain X. Further,
and in contrast to most extant methodologies, the approach here should generalise
in further research to arbitrary order models just as it does when the microscale is
expressed as PDEs (Roberts 2015a).

The developed scenario here is that of linear nonlocal systems (1). However, key
parts of the argument are justified with centre manifold theory (Aulbach and Wanner
2000; Potzsche and Rasmussen 2006; Haragus and Iooss 2011; Roberts 2015b, e.g.).
Consequently, further research should be able to show that cognate results hold for
nonlinear microscale systems.

With further research, correct boundary conditions for the macroscale PDEs should
be derivable by adapting earlier arguments to derive rigorous boundary conditions
for approximate PDEs (Roberts 1992; Chen, Roberts, and Bunder 2018).

Interesting applications of this novel approach would arise whenever there are
microscale nonlocal interactions in the geometry of problems such as (e.g., Roberts
2015b) dispersion in channels and pipes, the lubrication flow of thin viscous fluids,
shallow water approximations whether viscous or turbulent, quasi-elastic beam
theory, long waves on heterogeneous lattices, and pattern evolution.

Acknowledgements This research was partly supported by the Australian Research Council with
grant DP180100050. I thank Carlo Laing for prompting this direction for research.
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6 Appendix: Computer algebra derives macroscale PDE

The following computer algebra derives the effective advection-diffusion PDE (6b),
or any higher-order generalisation, for the microscale nonlocal Zappa system (3).
This code uses the free computer algebra package Reduce.3 Analogous code will
work for other computer algebra packages, and/or for cognate problems (Roberts
2015b, e.g.).

1 % a d v e c t i o n−d i f f u s i o n PDE o f Zappa t r a n s p o r t i n a c h a n n e l
2 % AJR , 20 Jan 2017 −− 20 Jan 2020
3 on d i v ; o f f a l l f a c ; on r e v p r i ; f a c t o r d , uu ;
4
5 l e t d ˆ5=>0; % t r u n c a t e t o t h i s o r d e r o f e r r o r
6 o p e r a t o r uu ; depend uu , x , t ; % uu ( n ) := d f ( uu , x , n )
7 l e t { df ( uu ( ˜ n ) , x)=>uu ( n + 1 ) , d f ( uu ( ˜ n ) , t )=>df ( g , x , n ) } ;
8 o p e r a t o r mean ; l i n e a r mean ; % average a c r o s s c h a n n e l
9 l e t { mean ( 1 , y )=>1 , mean ( y ˆ ˜ ˜ p , y )=>(1+(−1)ˆ p ) / 2 / ( p +1) } ;

10
11 % P r e p r o c e s s n o n l o c a l x−jumping : i n e s s e n c e f i n d s t h e
12 % k e r n e l i n t e g r a l s are (−v ) ˆ n
13 depend w, x ; % dummy f u n c t i o n f o r u ( x )
14 % T a y l o r expand w( x i )=w( x+z ) where z=x i−x
15 jmp := f o r n : = 0 : deg ( ( 1 + d ) ˆ 9 9 , d ) sum d ˆ n∗ df (w, x , n )∗ z ˆ n / f a c t o r i a l ( n ) $
16 jmp := i n t ( exp ( z / v )∗ jmp , z ) $ % i n t e g r a t e exp ( ( x i−x ) / v )w( x )
17 % e v a l from z=− i n f t o 0 f o r t h e c o n v o l u t i o n
18 jmp := sub ( z =0 , jmp / v)−w$
19
20 % i t e r a t e from quas i−e q u i l i b r i u m s t a r t
21 u := uu ( 0 ) $ g :=0 $
22 f o r i t : = 1 : 9 9 do b e g i n
23 r e s :=− df ( u , t )+ sub ({w=u , v=1−y ˆ 2} , jmp )+(−u+mean ( u , y ) ) ;
24 w r i t e l e n g t h r e s := l e n g t h ( r e s ) ;
25 g := g +( gd := mean ( r e s , y ) ) ;
26 u := u+ r e s−gd ;
27 i f r e s =0 t h e n w r i t e ” S u c c e s s : ” , i t := i t +10000;
28 end ;
29 w r i t e ” The r e s u l t i n g slow m a n i f o l d and e v o l u t i o n i s ” ;
30 u := u ; duud t := g ;
31 end ;
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