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Abstract Oscillations are a common feature throughout life, forming a key mecha-
nism by which living systems can regulate their internal processes and exchange
information. To understand the functions and behaviours of these processes, we
must understand the nature of their oscillations. Studying oscillations can be diffi-
cult within existing physical models that simulate the changes in a system’s masses
through autonomous differential equations. We discuss an alternative approach that
focuses on the phases of oscillating processes and incorporates time as a key con-
sideration. We will also consider the application of these theories to the cell energy
metabolic system, and present a novel model using weighted nonautonomous Ku-
ramoto oscillator networks in this context.

1 Introduction

It is increasingly clear that a wide variety of biological processes are rhythmic in
nature, from glycolysis within a cell to the heart pumping blood throughout the
body [6, 31]. Replicating this fluctuating behaviour poses a challenge to many tra-
ditional modelling methods, which can rely upon approximations of the system as
thermodynamically closed and linear, and which examine the system asymptotically
in time. Such models may only generate oscillations at particular parameter selec-
tions and modulations, oscillate with a high degree of stability, and exist in a steady
state within most of their parameter space. This is in contrast to much of what has
been observed of oscillating living systems, where the oscillations continually fluc-
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tuate in their frequency and amplitude, and continue until the death of the system
itself [2,5,6,9,13,14,18,19,24–26,28–30,35–37]. We will present and discuss a dif-
ferent approach that rethinks how fluctuating biological systems are best modelled,
applied to the cell energy metabolic system.

2 Principles of an alternative approach

In table 2 we outline the key principles that form our method for modelling oscillat-
ing living systems, which we discuss further in this section.

Table 1 Summary of the principles informing our modelling approach contrasted to those of main-
stream approaches

Mainstream principles Our principles

Open systems can be modelled
as perturbed closed systems

Open systems can only
be fully represented by open models

Oscillations result from instability
of a dynamical system

Oscillations are inherent to the
dynamics of open systems. Living

systems continuously exchange energy
and matter with the environment and each
process is characterized by self-sustained

oscillations on a certain time-scale

Nonlinear systems can be
recombined from linear systems

Nonlinear systems are
best understood by nonlinear models

Time variation in living systems
is often due to noise, and can be

averaged out over asymptotic time

Time variation in living systems
is often deterministic, and must
be modelled as nonautonomous

to reflect the full system dynamics

It is easy to see that biological systems are open: without being able to exchange
mass and energy across its boundary a cell would die, the blood would not be
oxygenated by the lungs, and neurons would not receive the energy they need to
fire [8, 23, 31, 40]. While it can be mathematically simpler to treat these systems
as closed off to their environment, doing so is not modelling them in their healthy,
existing state, but instead a dead or dying one. The first principle of our approach
is therefore to allow the modelled system to be open. Attempting to model transfers
of mass in an open system can be distinctly difficult. Tracking each unit of mass
throughout the entire system necessitates the inclusion of processes that may oth-
erwise not need to be considered, and are often challenging, if not impossible, to
measure experimentally in their living states.
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Oscillations can often be considered as a perturbation of a system away from its
‘natural’ steady state. However, an attempt to remove oscillations from an otherwise
oscillatory system would be equivalent to destroying the system itself: oscillations
not only allow a compartmentalisation of otherwise conflicting processes, but play
a significant role in the exchange of information and regulation throughout living
systems [37]. Therefore we instead treat them as an intrinsic result of the openness
of living systems.

While modelling systems’ interactions linearly also simplifies the mathematics, it
does not reflect the biological reality. Biological systems endemically exhibit transi-
tions in behaviour disproportionate to environmental changes [7], and so we propose
to model them as nonlinearly interacting phase oscillators [32].

The fourth key principle of our approach is that living systems should be studied
according to the time scales in which they actually exist and function. Analysing
the properties of a system in an asymptotic time frame can erase dynamics that exist
for only short times. Lucas et al., for example, demonstrated that nonautonomous
phase oscillators may synchronise intermittently, and that this is missed when using
asymptotic methods [21].

This variation of frequency of oscillation is seen throughout biology [2, 19, 25,
37], and hence our model considers nonlinearly interacting phase oscillations with
nonautonomous frequencies, analysed on finite time scales.

3 Modelling a cell’s energy metabolism

Our model brings together these four principles to examine the oscillations of the
energy metabolism of a single cell. The focus of this model is the production of
ATP, a key molecule in maintaining cellular functions, by glycolysis, consuming
glucose, and mitochondrial oxidative phosphorylation (OXPHOS), consuming oxy-
gen [8, 40]. We build on the work of Lancaster et al. [20], who modelled each
metabolic process as a singular nonautonomous phase oscillator. This model is
based on the theory of chronotaxic systems, which characterises nonautonomous
oscillations as a method for stabilising against external perturbations [34]. We ex-
tend this to include multiple oscillators of each process, transforming the glycolytic
and OXPHOS processes into weighted networks of Kuramoto oscillators [17]. We
also incorporate the findings of Lucas et al. [21], deterministically varying the fre-
quencies of the oscillations.

This model is represented diagrammatically in figure 1. It consists of four main
elements – two weighted Kuramoto networks of phase oscillators representing gly-
colysis and OXPHOS, and two sets of phase oscillators driving these networks,
representing glucose and oxygen.
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Fig. 1 Oscillator model diagram, where each circle represents a glycolysis (GO), glucose (G),
mitochondrial OXPHOS (MO) or oxygen (O) oscillator, and each line a coupling.

That these processes are oscillatory has been extensively established by exper-
imentation, and further, that they may do so nonautonomously [2, 5, 6, 9, 13, 14,
18–20, 24–26, 28–30, 35–37]. The networks of the model reflect the fact that gly-
colysis occurs in a cell distributed throughout the cytosol, undergoing multiple
different reactions simultaneously, and that these reactions appear to communi-
cate through the exchange of acetaldehyde molecules [10, 16, 22, 29, 39]. Similarly,
cells contain multiple mitochondria, each undergoing OXPHOS, communicating
through molecular exchange, common regulation and inter-mitochondrial nano tun-
nels [3, 4, 12, 18, 30, 38]. The weighting of these networks, such that neighbouring
oscillators influence one another more strongly than those more separated, reflects
the spatial distances between these individual processes, and the diffusive nature of
their molecular-exchange-driven communications.

We now introduce the mathematical formulation of these elements, beginning
with the concept of phase oscillators. These are derived from ordinary differential
equations that exhibit self-sustaining oscillations in their state dynamics. Phase, in
this circumstance, is defined as the position of the equation along its oscillatory cy-
cle at a given time. The frequency here refers to the velocity of this phase, which
we allow to vary in time. We choose to focus on phase as the building blocks of our
model, initially discarding the amplitude of the oscillations. This is because at a mi-
croscopic level the oscillator is a unit defined with a phase only, while the amplitude
is built at a mesoscopic level, resulting from the mean field of the network.

The oscillators’ phase can be further defined in the immediate region around its
oscillations in state space through the use of isochrons. Isochrons connect all points
in the region adjacent to a stable cycle with the one point on the cycle that, after
a time, will first meet the perturbed points back on the cycle as the perturbation
decays. Thus all these points are defined by the same phase [27, 32].

For nonautonomous oscillators we may also make this extension of definition,
by considering each state in time as an autonomous system of slightly different
frequency to the ones proceeding and following it. So long as the cycle of each au-
tonomous system exists in the region of attraction of the system proceeding it, we
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may define the former’s phase via the isochrons of the latter system. This assump-
tion hence requires that the change in the oscillator’s frequency over time remains
small in comparison to the frequency itself [15].

Having defined phase in the region of nonautonomous cycles, we can consider
methods of coupling oscillators. Because our approach focuses on the frequencies
and phases of the systems involved, phase coupling is used to model the effects
of the biological processes on one another. Through this form of coupling, oscilla-
tory systems perturb one another’s phase in a backwards or forwards direction, de-
pending on the comparative directions of oscillation of the two systems. Too strong
coupling, however, can perturb the phase beyond the region defined by isochrons.
Therefore in order for the perturbed system to remain in the region of its original cy-
cle, where phase is defined, we must further require that that the coupling generating
the perturbation is only weak [11, 27, 32].

We may now consider the equations of the model. First, the glycolysis and OX-
PHOS intra-network connections are defined as

θ̇GONi =
KGO

N

N

∑
j=1

Wi j sin
(
θGO j −θGOi

)

θ̇MONi =
KMO

M

M

∑
j=1

Wi j sin
(
θMO j −θMOi

)
, (1)

where the subscript GO represents the glycolytic network and MO the OXPHOS, N
the number of glycolytic oscillators, M the number of OXPHOS oscillators, KX the
relevant network coupling strength and θX the phase.

The weighting of edges within the glycolytic and mitochondrial networks con-
sists of more heavily weighting shorter edges, where the nodes are positioned
equidistantly around a ring. Mathematically, for i ≤ N

2

Wi j =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

W
|i− j| , for j ∈ [

1, i+ N
2 −1

]

W
| j−N − i| , for j ∈ [

i+ N
2 ,N

]
,

(2)

and for N ≥ i > N
2

Wi j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

W
|i− j| , for j ∈ [

i− N
2 +1,N

]

W
| j+N − i| , for j ∈ [

1, i− N
2

]
,

(3)
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where i denotes the index of the node under consideration, j the index of the node
at the other end of the corresponding edge, N the number of nodes in the network,
W a constant to be chosen, and Wi j the resulting weighting of the edge connecting
nodes i and j.

Next, the glucose and oxygen driving are defined as,

θ̇GOGi = εG sin(θGOi −θGi)

θ̇MOOi = εO sin(θMOi −θOi) , (4)

where the subscript G represents the glucose driving and O the oxygen, and εX
represents the coupling strength of the relevant driving.

Finally, the inter-network interactions arise through coupling each network to the
mean field of the other [33], such that

θ̇GOMOi = FGOrMO sin(ΨMO −θGOi)

θ̇MOGOi = FMOrGO sin(ΨGO −θMOi) . (5)

Here FX is the intra-network coupling strength, rX the Kuramoto order parameter,
where rX eiφ = 1

N ∑N
k=1 eiθXk and φ is the phase of the mean field arising from the

network, such that rX = 1 indicates a totally ordered network, while rX = 0 a totally
disordered one. Further, the average phase of network X is ΨX = 1

N ∑N
i=1 θXi.

The four governing differential phase equations therefore are,

θ̇Gi = ωGi(t)

θ̇Oi = ωOi(t)

θ̇GOi = ωGOi(t)+ θ̇GONi − θ̇GOGi + θ̇GOMOi

θ̇MOi = ωMOi(t)+ θ̇MONi − θ̇MOOi − θ̇MOGOi, (6)

where ωX (t) is the time-varying natural frequency of oscillator X . The signs of
the inter-network coupling terms are opposite to represent the inhibitory effects of
OXPHOS on glycolysis, and the excitatory effects of glycolysis on OXPHOS [20].

A comparison between an output of this model and an experimental observation
of cellular glycolysis in shown figure 2. The experimental data were obtained by
Amemiya et al. [2], who optically measured the NADH fluorescence, a by-product
of glycolysis, of batches of HeLa cells cultured under a variety of glucose starvation
conditions. The model output is the combined Kuramoto order parameter of the
glycolytic and OXPHOS networks, defined as

ΨGOMO =
1

(N +M)

(
N

∑
i=1

θGOi +
M

∑
j=1

θMO j

)
.
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Fig. 2 Sample output of the model (left) and the NADH fluorescence of a single HeLa cell from
the Amemiya et al experiment [2], normalised to within the range [0, 1] (right). The model output
is represented by the combined Kuramoto order parameter of both the glycolytic and OXPHOS
networks.

The parameter values are given in table 2.

Table 2 Parameters used in the simulation to generate the output displayed in figure 2

Parameter Value(s)

εG [0.1, 0.26]
εO 0.01

KGO 1
KMO 1
FGO 0.05
FMO 0.05
ωG [0.015, 0.065] Hz

ωGO [0.02, 0.04] Hz
ωMO [0.025, 0.075] Hz
ωO [0.02, 0.04] Hz
N 100
M 100
W 1

These results can be compared to the model of the same experiment by Amemiya
et al. [1] who constructed a classical autonomous model of just the glycolytic pro-
cess of a HeLa cell, in which mass was assumed to be conserved. Figure 2 in [1]
presents an analogous output to what we have shown here. The model by Amemiya
et al. involved 22 parameters in 7 governing equations, while our model relies on
the 13 parameters of table 2 in the 4 governing equations shown in equation 6.

While the overall trend and oscillating nature of the model output in figure 2 are
represented in the experimental data, we are undoing more analysis of the model to
better replicate the oscillation death and frequency seen in the experiment. Further
details of this simulation and analysis will be presented elsewhere.
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4 Outlook

Modelling oscillating biological systems in their living state is a complex task. In
order to reproduce every oscillation, variation of frequency, and different regime of
stability a system offers, oscillations and nonautonomicity must be built in to the
foundations of a model.

Using this approach, we can replicate oscillatory biological data in all its variety
with only small changes to model parameters, that can themselves be matched to
experimental measurements. Investigating the parameters at which various combi-
nations of the oscillators of the model synchronise, and the transitions between these
relationships, can also reveal a significant amount about a biological system. Each
of these regimes can be understood as a healthy or pathological state of the sys-
tem, revealing the breakdown of which mechanisms can be identified with which
diseases [20].

Further, analysing the synchronisation of nonautonomous oscillator networks in
finite time has already uncovered the new phenomenon of intermittent synchroni-
sation [21]. Investigation of the metabolic model we have presented here, which
introduces multiple networks and more complex forms of coupling, promises yet
more unseen stabilisation behaviours.
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