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MATRIX is Australia’s international and residential mathematical research insti-
tute. It was established in 2015 and launched in 2016 as a joint partnership be-
tween Monash University and The University of Melbourne, with seed funding
from the ARC Centre of Excellence for Mathematical and Statistical Frontiers. In
2020, The Australian National University joined MATRIX in a three-way partner-
ship. The purpose of MATRIX is to facilitate new collaborations and mathematical
advances through intensive residential research programs, which are currently held
in Creswick, a small town nestled in the beautiful forests of the Macedon Ranges,
130km west of Melbourne.

This book is a scientific record of the ten programs held at MATRIX in 2019 and
two programs held in January 2020:

• Topology of Manifolds: Interactions Between High and Low Dimensions
Guest editors: Diarmuid Crowley, Stefan Friedl, Stephan Tillmann

• Australian-German Workshop on Differential Geometry in the Large
• Aperiodic Order meets Number Theory

Guest editors: Michael Baake and Uwe Grimm
• Ergodic Theory, Diophantine Approximation and Related Topics

Guest editor: Mumtaz Hussain
• Influencing Public Health Policy with Data-informed Mathematical Models of

Infectious Diseases
Guest editor: Jennifer Flegg

• International Workshop on Spatial Statistics
Guest editor: Pavel Krupskiy

• Mathematics of Physiological Rhythms
Guest editor: Maia Angelova

• Conservation Laws, Interfaces and Mixing
Guest editors: Snezhana I. Abarzhi, Alexander Nepomnyashchy, Anthony J.
Roberts, Joseph Klewicki

• Structural Graph Theory Downunder
Guest editor: Anita Liebenau

• Tropical Geometry and Mirror Symmetry
Guest editor: Mandy Cheung

• Early Career Researchers Workshop on Geometric Analysis and PDEs
Guest editor: Paul Bryan

• Harmonic Analysis and Dispersive PDEs: Problems and Progress
Guest editor: Kenji Nakanishi

The MATRIX Scientific Committee selected these programs based on scientific
excellence and the participation rate of high-profile international participants. This
committee consists of: DavidWood (Monash Uni., Chair), Ben Andrews (Australian
National Uni.), Santiago Badia (Monash Uni.), Peter Bouwknegt (Australian Na-
tional Uni.), Peter Bühlmann (ETH Zurich), Alison Etheridge (Uni. Oxford), Jan de
Gier (Uni. Melbourne), Cecilia González Tokman (Uni. Queensland), Frances Kuo
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(UNSW Sydney), Joshua Ross (Uni. Adelaide), Terence Tao (Uni. California, Los
Angeles), Ole Warnaar (Uni. Queensland), and Geordie Williamson (Uni. Sydney).

These programs involved organisers from a variety of Australian universities,
including Adelaide, Deakin, LaTrobe, Macquarie, Monash, Melbourne, Newcastle,
UNSW, Sydney, Western Australia, along with international organisers and partici-
pants.

Each program lasted 1–4 weeks, and included ample unstructured time to en-
courage collaborative research. Some of the longer programs had an embedded con-
ference or lecture series. All participants were encouraged to submit articles to the
MATRIX Annals.

The articles were grouped into refereed contributions and other contributions.
Refereed articles contain original results or reviews on a topic related to the MA-
TRIX program. The other contributions are typically lecture notes or short articles
based on talks or activities at MATRIX. A guest editor organised appropriate ref-
ereeing and ensured the scientific quality of submitted articles arising from each
program. The Editors (Jan de Gier, Cheryl E. Praeger, Terence Tao and myself) fi-
nally evaluated and approved the papers.

Many thanks to the authors and to the guest editors for their wonderful work.

MATRIX is hosting 12 programs in 2021, with more to come beyond that; see
www.matrix-inst.org.au. Our goal is to facilitate collaboration between re-
searchers in universities and industry, and increase the international impact of Aus-
tralian research in the mathematical sciences.

David R. Wood
MATRIX Annals Editor-in-Chief
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Topology of Manifolds: Interactions Between High and Low

Dimensions

7 – 18 January 2019

Organisers

Jonathan Bowden
Uni. Regensburg

Diarmuid Crowley
Uni. Melbourne

Stefan Friedl
Uni. Regensburg

Stephan Tillmann
Uni. Sydney

Jim Davis
Indiana Uni.

Carmen Rovi
Uni. Heidelberg

Participants

Jonathan Bowden (Monash Uni.), Diarmuid Crowley (Uni. Melbourne), Jim Davis
(Indiana Uni.), Stefan Friedl (Uni. Regensburg), Carmen Rovi (Indiana Uni.),
Stephan Tillmann (Uni. Sydney), Wolfgang Lück (Uni. Bonn, Germany), Andras
Stipsicz (Hungarian Acad. Sci.), Bea Bleile (Uni. New England), Jessica Purcell
(Monash Uni.), Jae Choon Cha (POSTECH), Abby Thompson (Uni. California,
Davis), Ana Lecuona (Uni. Glasgow), Daniel Kasprowski (Uni. Bonn), Imi Bokor,
Jonathan Hillman (Uni. Sydney), Craig Hodgson (Uni. Melbourne), Hyam Ru-
binstein (Uni. Melbourne), Markus Land (Uni. Regensburg), Boris Lishak (Uni.
Sydney), Fabian Hebestreit (Uni. Bonn), Ruth Kellerhals (Uni. Fribourg), Joel
Hass (Uni. California, Davis), Julia Semikina (Uni. Bonn), Christoph Winges (Uni.
Bonn), Fabian Henneke (Uni. Bonn), Fabio Gironella (Alfred Renyi Inst.), Josh
Howie (Monash Uni.), Anthony Conway (Uni. Durham), Sylvain Cappell (Courant
Inst.), Irving Dai (Princeton Uni.), Jen Hom (Georgia Tech.), Qayum Khan (Saint
Louis Uni.), Peter Lambert-Cole (Georgia Tech.), Adam Levine (Duke Uni.), Dun-
can McCoy (Uni. Texas Austin), Maggie Miller (Princeton Uni.), Kent Orr (In-
diana Uni.), Lisa Piccirillo (Uni. Texas Austin), Linh Truong (Columbia Uni.),
Min Hoon Kim (Korea Inst. Advanced Study), Csaba Nagy (Uni. Melbourne),
Johanna Meumertzheim (Uni. Regensburg), Dominic Tate (Uni. Sydney), Hui-
jun Yang (Henan Uni.), Johnny Nicholson (Uni. College London), Sophie Ham
(Monash Uni.), Kevin Yin (Courant Inst.)
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This workshop explored connections between the study of manifolds in high and
low dimensions, via the comparison of phenomena and methods across dimensions
and via analysing higher dimensional spaces in terms of lower-dimensional sub-
spaces.

Low-dimensional spaces (n � 4) appear naturally in physics, for example as the
dimensions of space and space-time, and exhibit unique phenomena. Higher dimen-
sional spaces (n > 4) arise as the parameters spaces of complex systems. The areas
of low-dimensional topology and high-dimensional topology have developed rather
independently since the days of Milnor and Smale, reflecting the differing nature
of problems in dimensions three and four and in higher dimensions. In dimension
three Thurston’s geometrisation program led to the possibility of a complete clas-
sification of 3–manifolds. Dimension four is marked by the failure of the Whitney
trick and is intermediate between high and low dimensions. In dimensions five and
higher, surgery theory and smoothing theory provide powerful tools for analysing
manifolds.

The workshop was organised around three key elements, listed here in the order
in which they made their first entrance during the two-week program:

• Lecture Series designed to provide bridges between the different areas repre-
sented at the workshop,

• Problem Sessions and Working Groups designed to stimulate interaction and
collaboration between researchers from different areas, and

• Research Talks addressed at a wide audience.

Lecture Series

Three lecture series were given in the mornings of the first week of the workshop,
and were supported by discussion and exercise sessions in the afternoons.

Surgery: high-dimensional methods in low dimensions
by Diarmuid Crowley, Jim Davis and Kent Orr
This lecture series gave an introduction to topological 4–manifolds, normal maps

and the surgery obstruction, reviewing the work of Wall and Cappell-Shaneson and
the stable s/h cobordism theorem, as well as Kreck’s surgery machine for classi-
fication. This led to the stable classification of 2q–manifolds and in particular 4–
manifolds. Further topics included the Q–form conjecture, application of the surgery
machine in low dimensions and an overview of the current state of knowledge con-
cerning topological concordance of classical knots.

The (stable) Cannon Conjecture
by Wolfgang Lück
Starting with an introduction of 3–manifold theory and properties of hyperbolic

groups, this lecture series centred around the statement of Cannon’s conjecture that
a torsionfree hyperbolic group has the 2–sphere as its boundary if and only if it
is the fundamental group of a closed hyperbolic 3–manifold. After a discussion of
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topological rigidity and L2–invariants, the lectures culminated in a sketch of the
recent proof by Ferry, Lück and Weinberger of the Stable Cannon Conjecture.

Invariants of knots from Heegaard Floer homology
by András Stipsicz
The third lecture series moved from the theory of Heegaard diagrams of 3–

manifolds to the definitions and properties of Floer homology theory and Knot Floer
homology theory. With these tools in hand, the invariantϒK of a knot K invented by
Ozsváth, Stipsicz, and Szabó was defined, and numerous applications of this con-
cordance invariant were given.

Problem Sessions and Working Groups

Key elements to our workshop were the organised problem sessions and working
groups. We had invited participants working in different areas of topology, and many
of them had never met before, let alone glanced at each other’s work. Before the
workshop, we encouraged participants to submit difficult problems that they feel
cannot be tackled from one viewpoint alone, or which aim to translate methods or
insights from one area to another.

During the lunch break before our first Open Problem Session on the Monday
afternoon of the first week, we asked participants to write their problems on the
boards in the main lecture hall. During the session, they then had five minutes (or
thereabouts) to explain their problem and answer questions. The session concluded
with each participant writing their name next to every problem they were interested
in. An example of this is shown in the image above.

The organisers then looked at which problems made sense to run concurrently
and allocated time and space for groups to meet and work on a subset of the prob-
lems. A deciding factor was to create diverse groups, bringing together researchers
from different areas and career stages. The groups would meet each day of the work-
shop, and we also had regular sessions with all participants in which the working
groups reported on progress, asked for input and received feedback. This gave the
opportunity to shift focus (for instance, after declaring victory or defeat on a prob-
lem), to move to other problems that were initially posed or to formulate new ones.

MATRIX house, which allowed participants to wander from one working group
to another, provided an ideal environment for this flexible and collaborative ap-
proach.

The problems and progress reports were collected on the online platform Man-
ifold Atlas, http://www.map.mpim-bonn.mpg.de/, where we expect to
keep track of these and related problems.

Several new participants joined in the second week of the workshop, which there-
fore included another Open Problem Session to expand and continue the work done
in the first week. The papers and the problem list published in this book, as well as
additional publications, and the progress reported in the Manifold Atlas are testa-
ment to the fruitful interactions at the workshop and indicate that there is scope for
deeper synergy between these areas.
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Research Talks

The second week featured research talks by invited speakers in the mornings,
ranging from graduate students to seasoned and established experts, and covering
all aspects of this program.

Bea Bleile (Uni. New England)
Homotopy Types of Poincare Duality Complexes

Sylvain Cappell (NYU Courant Institute)
Using Atiyah-Bott classes to produce polynomial invariants of 3–manifolds

Jae Choon Cha (Postech)
Freely slicing good boundary links with a homotopically trivial plus property

Jen Hom (Georgia Tech)
An infinite-rank summand of the homology cobordism group

Qayum Khan (Saint Louis Uni.)
Stable existence of incompressible 3–manifolds in 4–manifolds

Daniel Kasprowski (Uni. Bonn)
CP2–stable diffeomorphism of 4–manifolds

Peter Lambert-Cole (Georgia Tech.)
Bridge trisections and the Thom conjecture

Markus Land (Uni. Regensburg)
A vanishing theorem for tautological classes of aspherical manifolds

Ana Lecuona (Uni. Glasgow)
Torus knots and rational homology balls

Adam S. Levine (Duke Uni.)
Simply-connected, spineless 4–manifolds

Maggie Miller (Princeton Uni.)
Extending fibrations from knot complements to ribbon disk complements

Csaba Nagy (Uni. Melbourne)
The Q–form conjecture for some 1–connected manifolds

Lisa Piccirillo (Uni. Texas Austin)
The Conway knot is not slice

Jessica Purcell (Monash Uni.)
Combinatorial criteria to determine whether a state surface is a fiber

Hyam Rubinstein (Uni. Melbourne)
Multisections of PL manifolds

Abigail Thompson (Uni. California Davis)
Trisections and surgery questions on links in 3–manifolds

Christoph Winges (Uni. Bonn)
Mapping class groups of high-dimensional, aspherical manifolds

Conclusion

The papers collected in this volume give evidence that this workshop did in-
deed achieve its aim of stimulating new work through the interaction of topologists
working in different subfields that do not usually meet. The organisers expect further
work to be submitted elsewhere to materialise in the near future.
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We are writing this document in August 2020, a time when most conferences and
workshops planned for the current year have been cancelled or been moved to on-
line formats. The energetic discussions in Creswick often lasted over many hours
spent at blackboards with intermittent walks through the bush. They resulted in
knowledge transfer and progress in research that would have otherwise not seemed
possible. Such intensive interaction is difficult to accomplished via on-line solutions
with the currently available technology. We hope that what now feels like a distant
past will become a (virtual?) reality in the not so distant future.

Diarmuid Crowley, Stefan Friedl, Stephan Tillmann
Guest editors
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Australian-German Workshop on Differential Geometry in the

Large

4 – 15 February 2019

Organisers

Owen Dearricott
Uni. Melbourne

Diarmuid Crowley
Uni. Melbourne

Thomas Leistner
Uni. Adelaide

Yuri Nikolayevsky
LaTrobe Uni.

Wilderich Tuschmann
Karlsruhe Uni.

Katrin Wendland
Freiburg Uni.

Participants

Diarmuid Crowley (Uni. Melbourne), Owen Dearricott (Uni. Melbourne), Thomas
Leistner (Uni. Adelaide), Wilderich Tuschmann (Karlsruhe Institute of Technol-
ogy), Yuri Nikolayevsky (La Trobe Uni.), Ben Andrews (Australian National Uni.),
Burkhard Wilking (Uni. Muenster), Christoph Böhm (Uni. Muenster), Claude Le-
Brun (Stony Brook Uni.), Thomas Farrell (Tsinghua Uni.), Frances Kirwan (Oxford
Uni.), Fuquan Fang (Capital Normal Uni.), Guofang Wei (Uni. California Santa
Barbara), Neil Trudinger (Australian National Uni.), Peter Petersen (Uni. California
Los Angeles), Robert Bryant (Duke Uni.), Rod Gover (Uni. Auckland), Ramiro La-
fuente (Uni. Queensland), Karsten Grove (Uni. Notre Dame), Sebastian Goette (Uni.
Freiburg), Lashi Bandara (Uni. Potsdam), Katharina Neusser (Masaryk Uni.), Artem
Pulemotov (Uni. Queensland), Jesse Gell-Redman (Uni. Melbourne), Lee Kennard
(Syracuse Uni.), Haotian Wu (Uni. Sydney), Paul Bryan (Macquarie Uni.), Julian
Scheuer (Uni. Freiburg), Krishnan Shankar (Uni. Oklahoma), Xianzhe Dai (Uni.
California Santa Barbara), Fernando Galaz-Garcia (Karlsruhe Institute of Tech-
nology), Valentina Wheeler (Uni. Wollongong), Julie Clutterbuck (Monash Uni.),
Martin Kerin (Uni. Muenster), Fred Wilhelm (Uni. California Riverside), Catherine
Searle (Wichita State Uni.), Mathew Langford (Uni. Tennessee, Knoxville), Uwe
Semmelmann (Uni. Stuttgart), Joseph Wolf (Uni. California Berkeley), Tracy Payne
(Idaho State Uni.), Boris Vertman (Uni. Oldenburg), Pedro Solarzano (UNAM-
CONACYT Oaxaca), Jim Davis (Indiana Uni.), Lorenz Schwachhoefer (TU Dort-
mund), Stephan Klaus (MFO Oberwolfach/Uni. Mainz), Klaus Kröncke (Uni. Ham-
burg), Matthias Ludewig (Uni. Adelaide), Vicente Cortes (Uni. Hamburg), Vladimir
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Matveev (Uni. Jena), Charles Boyer (Uni. New Mexico), Vincent Pencastaing (Uni.
Luxembourg), Fernando Cortes Kuehnast (TU Berlin), William Campbell Wylie
(Syracuse Uni.), Franziska Beitz (WWU Münster), James McCoy (Uni. Newcas-
tle), Megan Kerr (Wellesley College), Adam Moreno (Uni. Notre Dame), Anusha
Krishnan (Uni. Pennsylvania), Curtis Porter (North Carolina State Uni.), Romina
Arroyo (Uni. Queensland), Gerd Schmalz (Uni. New England), Nan Li (City Uni.
New York), Zheting Dong (Oregon State Uni.), Changwei Xiong (Australian Na-
tional Uni.), Xianfeng Wang (Australian National Uni.), Yuhan Wu (Uni. Wollon-
gong), Brett Parker (Monash Uni.), Jian He (Monash Uni.)

The first week of this program took the form of an international conference
with several prominent keynote speakers. These included Ben Andrews and Neil
Trudinger from Australia; Rod Gover from New Zealand; Christoph Böhm and
Burkhard Wilking from Germany; Robert Bryant, Karsten Grove, Claude LeBrun,
Peter Petersen and Guofang Wei from the United States; Dame Frances Kirwan
from the United Kingdom; and Tom Farrell and Fuquan Fang from China. Addi-
tional contributed talks were delivered in topics across differential geometry and
geometric analysis.

In the second week, the meeting was less formal with specialised talks in parallel
sessions in the mornings and free time for discussion and research in the remainder
of the day. The parallel sessions were organised around themes which included:

• geometric evolutions equations and curvature flow,
• structures on manifolds and mathematical physics,
• higher invariants and positive scalar curvature, and
• recent developments in non-negative sectional curvature.

The organisers wish to thank MATRIX for hosting the event; and the Australian
Mathematical Sciences Institute, the Australian Mathematical Society, DFG na-
tional priority research scheme “Geometry at Infinity, SPP2026”, the National Sci-
ence Foundation, the University of Melbourne International Research and Research
Training Fund, La Trobe University, and the Ian Potter Foundation for their financial
support.

A separate proceedings volume for this meeting will be published as “Differential
Geometry in the Large”, London Mathematical Society Lecture Note Series (463),
Cambridge University Press.

Owen Dearricott, Diarmuid Crowley
for the organisers
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Aperiodic Order meets Number Theory

25 February – 1 March 2019

Organisers

Michael Baake
Bielefeld Uni.

Michael Coons
Uni. Newcastle

Uwe Grimm
Open U.

John A. G. Roberts
UNSW Sydney

Reem Yassawi
Uni. Claude Bernard Lyon 1

Participants

Shigeki Akiyama (Uni. Tsukuba, Japan), Michael Baake (Bielefeld Uni.), Valérie
Berthé (Uni. Paris Diderot), Yann Bugeaud (Uni. Strasbourg), Álvaro Bustos (Uni.
Chile), Michael Coons (Uni. Newcastle), Marı́a-Isabel Cortez (Uni. Santiago Chile),
Karma Dajani (Utrecht Uni.), David Damanik (Rice Uni.), Robbert Fokkink (TU
Delft), Franz Gähler (Bielefeld Uni.), Amy Glen (Murdoch Uni.), Uwe Grimm
(Open Uni.), Mumtaz Hussain (LaTrobe Uni.), Jeffrey C. Lagarias (Uni. Michi-
gan), Dong-il Lee (Seoul Women’s Uni.), Jeong-Yup Lee (Kwandong Uni.), Mar-
iusz Lemańczyk (Nicolaus Copernicus Uni.), Manuel J. C. Loquias (Uni. Philip-
pines), Michael Mampusti (Uni. Wollongong), Neil Mañibo (Bielefeld Uni.), Robert
V. Moody (Uni. Victoria, Canada), John A. G. Roberts (UNSW Sydney), Tanja
Schindler (Australian National Uni.), Bernd Sing (Uni. West Indies), Nicolae Strun-
garu (MacEwan Uni.), Venta Terauds (Uni. Tasmania), Franco Vivaldi (Queen Mary
Uni. London), Peter Zeiner (Xiamen Uni. Malaysia)

This workshop benefited from the participation of a diverse group of 29 math-
ematicians ranging from world-experts and rising stars to eager new doctoral stu-
dents. Our common thread was a desire to understand the connections between ape-
riodic order and number theory and to consider the further development of those
connections.

During the week of our workshop, we had about four talks a day, two of which
formed a pair of shorter talks on a coordinated theme. They covered topics from
harmonic analysis, dynamical systems, ergodic theory, discrete geometry, number
theory, topological dynamics, spectral theory, algebra and invariants. Most topics
had connections to number theory, which occurred on various levels. At present, the
majority of connections are of the form that known results from elementary, alge-
braic and analytic number theory are helping to answer questions in aperiodic order.
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However, there is an increasing activity on open problems in number theory such as
the Möbius disjointness conjecture or connections to the Riemann hypothesis.

Even though aperiodic order at present is profiting more from number theory
than the other way round, it became clear that there is an increasing potential for the
reverse direction. This view was strengthened by conversations with number theo-
rists in attendance including Yann Bugeaud, Jeffrey Lagarias and Michael Coons.
Each of these number theorists has interests in integer sequences and, in particular,
the statistical properties of base expansions of integers. Questions in this area are
in a unique position to be considered in the context of aperiodic order, and it is our
hope that results in aperiodic order can lead to new number theoretic results. What
is interesting is that this connection is not new — indeed it goes back to a near
collaboration between the famous American mathematician Norbert Wiener and the
famous German-Australian number theorist Kurt Mahler.

In 1926, Norbert Wiener received a Guggenheim fellowship to work with Max
Born in Göttingen and then to travel on to work with Niels Bohr in Copenhagen.
In that year, Born’s assistant was Werner Heisenberg, who would follow Wiener to
Copenhagen and develop what would later become his famous uncertainty principle.
It is in this setting that, while in Göttingen, Wiener was given an (unpaid) assistant
— the young Kurt Mahler! Collectively, Wiener and Mahler produced a two-part
series of papers entitled, “The spectrum of an array and its application to the study
of the translational properties of a simple class of arithmetical functions.” AsWiener
introduces his part, he writes

“The purpose of the present paper is to extend the spectrum theory already developed by
the author in a series of papers to the harmonic analysis of functions only defined for a
denumerable set of arguments — arrays, as we shall call them — and the application of

this theory to the study of certain power series admitting the unit circle as an essential

boundary.” (Boldness added by author.)

Concerning the actual contribution, given a sequence A, Wiener describes a method
to construct a monotone non-decreasing function A(x), which he calls the spec-
tral function of A. By a result of Fréchet, A(x) may contain three possible additive
parts: a monotone step function, a function which is the integral of its derivative,
and a continuous function which has almost everywhere a zero derivative. In mod-
ern terminology, what Wiener is describing is how one can associate a measure
to the sequence A. The three possible parts of the measure are then described by
the Lebesgue decomposition theorem: Any regular Borel measure μ on Rd has a
unique decomposition μ = μpp+ μac+ μsc where μpp ⊥ μac ⊥ μsc ⊥ μpp and also
|μ| = |μpp|+ |μac|+ |μsc|. Here, μpp is a pure point measure corresponding to the
monotone step function, μac is an absolutely continuous measure corresponding to
the function that is the integral of its derivative, and μsc is a singular continuous
measure corresponding to the continuous function which has almost everywhere a
zero derivative. Wiener provided two examples giving pure point measures and ab-
solutely continuous measures, respectively, and an ‘almost all’ result for examples
having a singular continuous measure. As it turns out, periodic sequences give pure
point measures. Wiener’s example giving an absolutely continuous measure is remi-
niscent of the sequence of digits of Champernowne’s number. Mahler’s contribution
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is to find a piece of hay in the haystack — an example of a sequence whose as-
sociated measure is singular continuous. His example, the Thue–Morse sequence,
is paradigmatic and started an area of transcendence theory now called Mahler’s
method. The Thue–Morse sequence {t(n)}n�0 is defined by t(0) = 1, t(1) = −1,
t(2n) = t(n) and t(2n+1) =−t(n). This sequence is now ubiquitous in the areas of
theoretical computer science and symbolic dynamics.

Two areas emerged, then diverged, from these two related papers. Therein lies
what the participants of this conference intend to do: to bring back together these
areas and to use the results of aperiodic order to address fundamental questions
in number theory, such as those concerning power series that have the unit circle
as a natural boundary; that is, to address Wiener’s original purpose in studying the
harmonic analysis of functions on countable sets!

The first paper arising from this program discusses the origin and structure of the
field of aperiodic order. The other 18 papers are extended abstracts of the presented
talks.

The Guest Editors would like to thank Michael Coons who co-authored this sum-
mary.

Michael Baake and Uwe Grimm
Guest editors
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Ergodic Theory, Diophantine Approximation and Related Topics

17 – 28 June 2019

Organisers

Dzmitry Badziahin
Uni. Sydney

Alexander Fish
Uni. Sydney

Mumtaz Hussain
La Trobe Uni.

Bao-Wei Wang
Huazhong Uni.

Participants

Jinpeng An (Peking Uni.), Dzmitry Badziahin (Uni. Sydney), Michael Bjorklund
(Chalmers Uni), Michael Coons (Uni. Newcastle), Alexander Fish (Uni. Sydney),
Alexander Gorodnik (Uni. Zürich), Mumtaz Hussain (LaTrobe Uni.), Dmitry Klein-
bock (Brandeis Uni.), Bing Li (South China Uni. Tech.), Nikolay Moshchevitin
(Moscow State Uni.), Johannes Schleischitz (Middle East Cyprus Uni.), Lovy Sing-
hal (Peking Uni.), Sanju Velani (Uni. York), Oleg German (Moscow State Uni.),
Sam Chow (Uni. Oxford), Changhao Chen (UNSW Sydney), Ayreena Bakhtawar
(LaTrobe Uni.)

This two-week research workshop was a continuation of the conference “Dynam-
ics and number theory” held at the University of Sydney (11–14 June 2019). The
workshop was on interconnected topics in Ergodic Theory and Analytical Number
Theory with the focus on Diophantine Approximation. Progress on cutting edge
problems in these fields were presented and discussed in a free flowing manner.
The focus was on methods and techniques that could lead to the resolution of some
long standing open problems such as the Littlewood Conjecture (1930), Wirsing’s
problem (1961), and Generalised Baker-Schmidt Problem (1970), etc. During the
workshop we learned that Koukoulopoulos and Maynard had resolved the Duffin-
Schaeffer Conjecture; the official announcement followed a few days later.

During the workshop several new collaborations emerged (as detailed below)
and progress was made on several long standing open problems such as the Wirsing
Problem. There were two expository talks every day followed by several hours of
research collaboration time. The covered topics included,

• Diophantine exponents: This topic was specifically discussed by Badziahin,
Moshchevitin, German, Schleischitz, and Chow. In particular, Badziahin and
Schleischitz improved bounds on Wirsing’s problem during this workshop
(https://arxiv.org/abs/1912.09013). This paper is now published in Transactions
of the American Mathematical Society (https://doi.org/10.1090/tran/8245).
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• Diophantine approximations on fractal sets: Schleischitz and Singhal dis-
cussed various problems concerning Diophantine approximation on fractal sets.

• Metric recurrence and shrinking target problems: Hussain and Li worked
on this problem and made some progress in establishing the metrical theory for
shrinking target and recurrence problems for dynamical systems satisfying some
natural conditions. The systems include the continued fractions, beta dynamical
systems, and homogeneous self-similar sets.

• Singular vectors on manifolds and fractals: Kleinbock and Moshchevitin
worked on proving the existence of totally irrational vectors and linear forms
with large uniform Diophantine exponents; see https://arxiv.org/abs/1912.13070.

• Generalised Baker-Schmidt problem on manifolds: Badziahin, Hussain, and
Schleschitz discussed Diophantine approximation problems on manifolds es-
pecially the generalised Baker-Schmidt problem. In particular, Hussain and
Schleischitz made progress in settling this problem for all non-degenerate co-
dimensional two manifolds not only for the Euclidean setting but also for p-adics.

• Uniform Diophantine approximation: Hussain and Kleinbock discussed im-
provements to Dirichlet’s theorem. An article is in preparation on this topic.

• Multiplicative Diophantine approximation: Gorodnik, Badziahin, Fish, Chow,
Moshchevitin, and German discussed problems within the theory of multiplica-
tive Diophantine approximation such as the well-known Littlewood conjecture
(1930). In particular, Chow presented his results using Bohr sets and German by
using the parametric geometry of numbers.

• Central limit theorems and Diophantine approximation: Bjorklund and
Gorodnik discussed this topic.

• Hitting probabilities and shrinking targets: Li and Velani initiated a collab-
oration on hitting probabilities within the shrinking target settings of dynamical
systems.

Mumtaz Hussain
Guest editor
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Jennifer Flegg (Melbourne), James McCaw (Melbourne), Joshua Ross (Adelaide),
Thomas House (Manchester), Jonathan Keith (Monash), Lisa White (Oxford), Nick
Golding (Melbourne), Deborah Cromer (UNSW), Andrew Black (Adelaide), Ada
Yan (Imperial College), Jason Whyte (Melbourne), Sai Thein Than Tun (Oxford),
Carla Ewels (JCU), Alex Zarebski (Oxford), JamesWalker (Adelaide), Amani Alah-
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Dzalilov (Federation), Rob Moss (Melbourne)

With the ever-growing emphasis on the importance of sound evidence in health-
care decision-making and policy, the power of data-informed mathematical models
to provide much needed insight is substantial. In order for conclusions drawn from
a mathematical model to be reliable, it is essential for unknown model parameters
to be estimated from data in a statistically sound manner and to account for uncer-
tainty in the parameter values. Our MATRIX workshop brought together local and
international experts in this area to discuss the use of existing statistical methods and
showcase new methods for parameter estimation in models of infectious diseases.

During the program there were three groups, each working on a focus problem:

• using prior knowledge to improve inference and forecasting of infectious disease
transmission;

• integrating multiple data sources in infectious disease modelling;
• fitting complex models: identifying the problems and the solutions.

The first week of the program saw the introduction of the three focus problems,
collaborative time on the focus problems, a software demonstration (GRETA) and
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scientific talks. The second week of the program was focussed around more col-
laborative time but also saw a software demonstration (SHINY) and more scientific
talks.

The third focus group, which focused on issues of parameter identifiability, soon
found that there was significant theory underlying the topic. One of the focus group
leaders, Dr Jason Whyte, has put together a review for this book which is entitled
“Model structures and structural identifiability: What? Why? How?”. This paper
provides an overview of the importance of structural global identifiability in dy-
namical systems models, details some essential theory and distinctions, and demon-
strates these by some key examples.

Jennifer Flegg
Guest editor
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Paul Keeler (Uni. Melbourne), Alan Pearse (Queensland Uni. Technology)

The program brought together internationally recognised experts in spatial statis-
tics as well as early career researchers to discuss statistical modelling and appli-
cations. Scholars from fields outside of statistics also attended the workshop, and
interdisciplinary research topics were discussed. The focus of this workshop was
to explore new methodology and develop computational tools to make challenging
problems in spatial statistics more tractable.

During the program, the following topics were discussed in small groups:

• New methodology for spatial data with complex dependence structures includ-
ing models for non-Gaussian spatial processes, spherical data and categori-
cal/proportional spatial multivariate data.

• Models and inference for high-dimensional data with temporal dependence dy-
namics and spatial covariates with applications in climatology, geology and en-
vironmental science. Outlier detection for multivariate functional data.
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• Spatial data reconstruction tools and construction of spatial maps for sparse data.
Uncertainty quantification for data coming from different sources.

Young researchers had opportunity to interact with senior academics, and sev-
eral discussion groups were organized to discuss challenging problems in spatial
statistics and to create new collaboration opportunities. This lead to the paper in
this volume by B. Hines, Y. Kuleshov and G. Qian “Spatial modelling of linear
regression coefficients for gauge measurements against satellite estimates,” which
studies the problem of predicting rainfall in remote areas of Australia using satellite
estimates.

Pavel Krupskiy
Guest editor
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ico), Chandan Karmakar (Deakin Uni.), Ye Zhu (Deakin Uni.), Sutharshan Ra-
jasegarar (Deakin Uni.), Christopher Stephens (National Autonomous Uni. Mex-
ico), Sergiy Shelyag (Deakin Uni.), Shitanshu Kusmakar (Deakin Uni.), Jyotheesh
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This research retreat was devoted to novel dynamical system methodologies un-
derpinning the modelling of complex physiological systems, and focused on four
main topics: Network Physiology, Brain, Diabetes, and Sleep.

The aim was to unite and combine current trends in dynamical systems and time
series analysis for solving problems in physiology which are governed by repeating
processes. Examples are cardio-dynamics, sleep processes, glucose-insulin regula-
tion and diabetes, and many others. The invited participants were experts in math-
ematics, physics and computer sciences working in applications of dynamical sys-
tems and time series in physiology, biology and medicine. The program explored
the state-of the-art research underlying the mathematics of periodic and periodic-
like processes in human physiology.

The program was attended by 20 participants funded by the MATRIX Institute,
and three participants funded by other institutions. The participants were involved in
four discussion and collaborative sessions each afternoon led by one of the plenary
speakers. Each session was devoted to one of the main topics of the program. The
participants were from five countries: Australia, USA, UK, Mexico and Bulgaria.
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Women were well represented, four were plenary speakers, one invited speaker and
one a PhD student. Furthermore, two out of the four organisers were women. The
participants included world leading researchers in the field, early career researchers,
postdocs and PhD students. They were experts in mathematical physiology, math-
ematical biology, differential equations, functional analysis, time series, fractals,
statistical mechanics and phase transitions. A number of participants were also ex-
perts in data mining and machine learning, which would facilitate the use of such
methods for parameter estimation.

The retreat focused on models based on deterministic and stochastic differential
equations and delay differential equations, dynamical system approach to time se-
ries, statistical mechanics, phase transitions and mean field approaches. The math-
ematical models of regulation processes are often informed by data driven mod-
els, derived from spectral analysis and signal processing. Furthermore, as the large
number of physiological parameters are difficult to measure, machine learning and
statistical approaches were exploited to evaluate parameters. The models are based
on real data measured from humans (ECG, EEG, actigraphy, eye movements), and
complexity for building models from such data was discussed. The program ad-
dressed the aims of MATRIX by focusing on new mathematical models governing
regulation and control processes in human physiology.

The program had one keynote talk and one invited talk each morning. The af-
ternoons were spent on directed discussions around current trends and coordinated
collaborative work. The first and the second day were devoted to Network Physiol-
ogy and Diabetes. Plamen Ivanov (Boston) gave a fascinating lecture on Network
Physiology. During the afternoons there was a session on Open Problems in Net-
work Physiology led by Plamen Ivanov. On Tuesday morning Aneta Stefanovska
(Lancaster) continued the theme on Network Physiology, and facilitated a 3 hour
workshop on the new time series software tool, MODA, developed in Lancaster.
This workshop was very useful for the PhD students attending the program. An-
other plenary session was focused on diabetes, where Adelle Coster gave a plenary
talk and led a discussion session in the afternoon on Open Problems in Diabetes
research. The topic on Wednesday was Brain. Krasimira Tsaneva-Atanassova (Ex-
eter) gave the first plenary talk, followed by the talk given by David Liley. David
led the discussion session before lunch on fitting complex mathematical models
with a large number of parameters. The plenary talks on Thursday were on Sleep,
given by Maia Angelova (Deakin) and Andrew Phillips (Monash). The afternoon
was focused on collaborative work on Sleep. The closing session on Friday by ple-
nary speaker Christopher Stephens (UNAM), a renowned expert in Data Mining in
Healthcare, was a part of Network Physiology topic. The two invited talks given by
Tania Pencheva (BAS) and Ruben Fossion (UNAM), and another two short “ignit”
talks, were presented by Sutharshan Rajasegarar (Deakin) and Anuroop Gaddam
(Deakin). A working group on Sleep was formed to work on models of insomnia;
this group met daily during all days of the program. The group is currently active,
submitting jointly co-authored papers and preparing an ARC grant proposal. On
Wednesday afternoon a walk around Creswick wss organised to facilitate network-
ing and the forming of new research links. This was particularly useful for PhD
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students, early- and mid-career researchers, as it allowed them to talk to the leaders
in the field in a relaxed atmosphere.

The aim and objectives of the program were completed. The participants ex-
pressed their gratitude to The MATRIX Institute for providing excellent conditions
that enabled new research collaborations. The program was very useful and con-
tributed to our long term goals to develop Deakin University as a Hub for Mathemat-
ical and AI modelling translated to health, physiology, wellbeing and health care. In
addition to the papers appearing in this book, a number of papers arising from the
program will appear in a special issue of Frontiers of Physiology. The organisers
and participants gratefully acknowledge funding from the MATRIX Institute and
Deakin University, School of IT.

Maia Angelova
Guest editor
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Western Australia), Paulo de Almeida (Altron Bytes Systems Integration), Cameron
Wright (Uni. Western Australia), Tanmay Agrawal (Uni. Melbourne), Saleh Tanveer
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Interfacial transport and mixing are non-equilibrium processes coupling kinetic
and macroscopic scales. They occur in molecules, fluids, plasmas and materials
over celestial events. Examples include supernovae and fusion, planetary convection
and reactive fluids, wetting and adhesion, turbulence and mixing, nano-fabrication
and bio-technology. Addressing the societal challenges posed by alternative energy
sources, efficient use of non-renewable resources, and purification of water requires
a better understanding of non-equilibrium interfacial transport and mixing.

The dynamics of interfacial transport and mixing often involve sharp changes of
vector and scalar fields, and may also include strong accelerations and shocks, ra-
diation transport and chemical reactions, diffusion of species and electric charges,
among other effects. Interfacial transport and mixing are inhomogeneous, anisotropic,
non-local, and statistically unsteady. At macroscopic scales, their spectral and in-
variant properties differ substantially from those of canonical turbulence. At atom-
istic and meso-scales, the non-equilibrium dynamics depart dramatically from the
standard scenario given by Gibbs ensemble averages and the quasi-static Boltzmann
equation. At the same time, non-equilibrium transport may lead to self-organization
and order, thus offering new opportunities for diagnostics and control. Capturing
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the properties of interfaces and mixing enables: the accurate description of conser-
vation properties, the solution of boundary value problems, better understanding of
Eulerian and Lagrangian dynamics, and the development of methods for control of
non-equilibrium transport in nature and technology.

Significant success was recently achieved in the understanding of interfacial
transport and mixing in terms of of theoretical analysis, large-scale numerical sim-
ulations, and data analysis. This success opened new opportunities for the study of
the fundamentals of non-equilibrium dynamics across the scales, for developing a
unified description of particles and fields on the basis of the synergy of theory and
numerical data, and for applying the fundamentals of non-equilibrium transport to
address the contemporary challenges of modern science, technology and society.

This program built upon recent achievements in understanding interfacial trans-
port and mixing using theoretical analysis, large-scale numerical simulations, and
data analysis. The focus was on conservation laws and boundary value problems.
The program brought together researchers from applied mathematics, applied analy-
sis, dynamical and complex systems, stochastic processes and data analysis, dynam-
ics of fluid and plasmas, industrial mathematics and materials science. The program
motivated discussions of rigorous mathematical problems, theoretical approaches
and state-of-the-art numerical simulations along with advanced data analysis tech-
niques. The program explored the state-of-the-art in the areas of interfaces and non-
equilibrium transport, and charted new research directions in this field.

The participants included leading experts and researchers at all career stages from
Australia and from abroad.

Snezhana Abarzhi, Alexander Nepomnyashchy, Anthony Roberts, Joseph Klewicki
Guest editors
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This program consisted of a 1-week intensive research workshop, where mathe-
maticians from across the globe came together to work on open problems in struc-
tural graph theory. The program featured a mix of early-career, mid-career and se-
nior researchers; a mix of women and men; and a mix of people from Australia,
Europe, North America, South America, Israel, China, and Korea. The goal was
to create an environment where mathematicians at all career stages worked side-
by-side. This goal was certainly achieved. Many participants commented on how
conducive the MATRIX House was for doing collaborative research.

The majority of the time was allocated to collaborative research. In addition,
there were six research talks about recent significant results:

• Xuding Zhu (Zhejiang Uni.) surveyed recent developments on Hedetniemi’s
Conjecture and the Poljak-Rödl function, including Shitov’s recent breakthrough;

• Liana Yepremyan (London School Econs.) presented a proof of the size-Ramsey
number of graphs of bounded degree and bounded treewidth;

• Tereza Klimošová (Charles Uni.) talked about edge-partitioning 3-edge-connected
graphs;

• Chun-Hung Liu (Texas A&M Uni.) talked about clustered graph colouring, in
particular, clustered variants of Hajós’ Conjecture;
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• Paul Seymour (Princeton Uni.) discussed recent results on the structure of graphs
excluding certain graphs as induced subgraphs;

• Maria Chudnovsky (Princeton Uni.) described a polynomial-time algorithm for
finding a maximum independent set in a graph with no hole of length at least
five; and

• Zdeněk Dvořák (Charles Uni.) talked about the interplay between bounded ex-
pansion classes and sub-linear separators.

Prior to the more formal talks, every participant gave a 5-minute talk introducing
their research interests and an open problem that they would like to work on during
the workshop. People then naturally formed groups working on problems of com-
mon interest. These topics included: Hadwiger’s Conjecture, Hedetniemi’s Conjec-
ture, induced subgraphs, graph product structure theory, and centred colouring. On
each of these topics, significant progress was made during the program.

This led to four papers in the MATRIX Annals. Xuding Zhu’s lecture notes de-
scribe Shitov’s proof in detail. Maria Chudnovsky and Paul Seymour present work
completed at the workshop on the clique-stable set separation property. Zdeněk
Dvořák, Tony Huynh, Gwenaël Joret, Chun-Hung Liu and David Wood survey re-
cent results on graph product structure theory, including some new work done at
the workshop, as well discussing many open problems. Tony Huynh, Bruce Reed,
David Wood and Liana Yepremyan describe results on the tree- and path-chromatic
number. They also present a tree-chromatic version of Hadwiger’s Conjecture and
give evidence that this conjecture may be more tractable than the original conjecture.

All in all, the program was a great success. The participants were keen that an-
other program in structural graph theory be held at MATRIX soon.

Anita Liebenau
Guest editor

xxxiv Structural Graph Theory Downunder



Tropical Geometry and Mirror Symmetry

9 – 20 December 2019

Organisers

Nick Sheridan
Uni. Edinburgh

Brett Parker
Monash Uni.

Paul Norbury
Uni. Melbourne

Jian He
Monash Uni.

Kristin Shaw
Uni. Oslo

Participants

Brett Parker (Monash Uni.), Paul Norbury (Uni. Melbourne), Nick Sheridan (Uni.
Edinburgh), Jian He (Monash Uni.), Kristin Shaw (Uni. Oslo), Renato Vianna
(Federal Uni. Rio de Janeiro), Siu-Cheong Lau (Boston Uni.), Cheol Hyun Cho
(Seoul National Uni.), Helge Ruddat (Johannes Gutenberg Uni. Mainz), Mandy
Cheung (Harvard Uni.), Pierrick Bousseau (ETH Zürich), Jeff Hicks (Uni. Cam-
bridge), Ilia Zharkov (Kansas State Uni.), Xiao Zheng (Boston Uni.), Mehdi Tavakol
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Mirror symmetry studies the relationship between algebraic and symplectic ge-
ometry. The duality passes through the adiabatic limit of the geometries—the tropi-
cal geometry. In recent years, significant advances were established in each of these
areas. Thus there is a need for the communities to understand the intrinsic connec-
tions between mirror symmetry and tropical geometry by using these newly devel-
oped technical tools.

This two-week program brought together researchers in algebraic, symplectic,
and tropical geometry. The workshop started with a series of introductory lectures
to invite junior participants, in particular graduate students, to become familiar with
the subjects. In tandem, there were around two research talks each day on various
topics. One of the goals of the program was to encourage communications between
different groups in mirror symmetry. Hence there was plenty of time allocated each
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day for informal discussion. The program created fertile advances in mirror symme-
try, and new interdisciplinary collaborations resulted.

Three articles arose from the program. In ‘Observations on disks with tropical
Lagrangian boundary’, Jeffs Hicks studies Lagrangian submanifolds which are built
as the lifts of tropical curves. In ‘Compactifying torus fibrations over integral affine
manifolds with singularities’, Helge Ruddat and Ilia Zharkov announce a construc-
tion in which they build a space X which is a torus fibration over a given integral
affine manifold. Discussions during the program led Man-Wai Cheung and Renato
Vianna to explore the correspondence of the compactifications of cluster varieties
from the algebro geometric and symplectic perspectives. Their discoveries are pre-
sented in the paper, ‘Algebraic and symplectic viewpoint on compactifications of
two-dimensional cluster varieties of finite type’.

Mandy Cheung
Guest editor
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ton/IAS), Artem Pulemetov (Uni. Queensland), XianfengWang (ANU/Nankai Uni.),
Katarzyna (Kasia), Mazowiecka (UCLouvain), YongWei (Australian National Uni.),
Ben Sharp (Uni. Leeds), Shibing Chen (Uni. Science & Tech. China), Azahara
de la Torre (Albert-Ludwigs-Uni. Freiburg), Mircea Petrache (P. Uni. Catolica
de Chile.), Alessandra Pluda (Uni. Pisa), Brett Kotschwar (Arizona State Uni.),
Mathew (Mat), Langford (Uni. Tennessee), Theodora Bourni (Uni. Tennessee), Ben
Lambert (Uni. College London), Changwei Xiong (Australian National Uni.), Kui
Wang (Soochow Uni.), Kwok-Kun Kwong (Uni. Wollongong), Medet Nursultanov
(Chalmers/Uni. Sydney), Yuhan Wu (Uni. Wollongong), Qiang Guang (Australian
National Uni.), Julie Clutterbuck (Monash Uni.), Peter Olanipekun (Monash Uni.),
Lachlann O’Donnell (Uni. Wollongong)

The principal aim of this program was to draw together early career researchers
working in the fields of calculus of variations, optimal transport, fully nonlinear
PDEs and geometric flows.

The first week consisted of a series of mini-courses on contemporary areas of
study in geometric PDE. It was a very interactive week with considerable discus-
sion. The lecturers themselves gained immeasurably from the expert comments and
feedback. Researchers in geometric flows benefited enormously from Guoyi Xu’s
lectures on isometric embedding, whilst much of the audience—especially those not
well versed in flows—learnt the breadth of applications of inverse curvature flows
with a very complete and concise set of lectures by Julian Scheuer, whose notes
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may be found in this volume. Valentina Wheeler made the brave choice to begin a
course on free boundary mean curvature flow by lecturing to an expert audience on
Huisken’s original paper on the mean curvature flow. A lively and robust discussion
on the optimal way to prove this seminal result followed with many experts learning
something new! All in all the first week generated a large amount of discussion and
initiated several collaborations. The lectures were:

• Isometric Embeddings, Guoyi Xu
• Extrinsic curvature flows and applications, Julian Scheuer
• Mean Curvature Flow with free boundary, Valentina Wheeler

The second week comprised ample time for research collaboration, during which
the coffee machine at MATRIX house was pushed to its limits. Embedded within
this week was a research seminar where we heard about a diverse range of topics
including intrinsic curvature flows such as Ricci flow, hypersurface flows, minimal
surfaces, isoperimetric estimates, harmonic maps, prescribed curvature problems
and eigenvalue problems.

The submissions to this volume are:

• Extrinsic curvature flows and applications, Julian Scheuer
• Short time existence for higher order curvature flows with and without boundary

conditions, Yuhan Wu

Paul Bryan
Guest Editor
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This one-week program focused on very recent and on-going progress in har-
monic analysis and its applications to dispersive PDEs. With 25 participants from
various countries over the world, the workshop had three talks in the morning, and
the whole afternoon for discussions, both in a relaxing and stimulating mood.

The topics include: multilinear restriction estimates; the Strichartz estimate with
dispersive potential and orthonormal initial data, micro-local and semi-classical
analysis for dispersive equations and resolvents, with variable coefficients or with
randomness; Lp-theory and the Hardy spaces for dispersive equations, quasimodes,
and general integral transforms; large-data global existence and scattering with vari-
ational characters for nonlinear dispersive equations; local well-posedness, (modi-
fied) scattering, blow-up, stability and instability of solutions.

“A note on bilinear wave-Schrödinger interactions”, by Timothy Candy, focuses
on the interaction between the wave and the Schrödinger equations, in terms of bi-
linear restriction estimate, which was recently extended by the same author to the
full mixed exponents for more general dispersion relations. A counter-example is
given to show necessity of some geometric conditions beyond the transversality of
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the characteristic surfaces. Moreover, a transference principle of the bilinear esti-
mate is established for the space of �2-bounded oscillation in time.

“A note on the scattering for 3D quantum Zakharov system with non-radial data
in L2”, by Chunyan Huang, treats the scattering problem for the quantum Zakharov
system, which has additional bi-Laplacian both in the wave and Schrödinger equa-
tions, compared with the standard Zakharov system. Using the normal form trans-
form and the improved Strichartz estimate in the L2 spherical average, the author
establishes small-data scattering result for L2 initial data with angular regularity in
three space dimensions. This improves the preceding results in several respects.

“Hankel transforms and weak dispersion”, by Federico Cacciafesta and Luca
Fanelli, is a concise survey of recent developments on the linear dispersive esti-
mates for scaling-critical perturbations: the Dirac and the fractional Schrödinger
equations with the Coulomb potential and with the Aharonov-Bohm field. Specif-
ically, it focuses on the analysis based on some explicit representations using the
Hankel transforms and special functions, taking advantage of scaling invariance.

“A priori bounds for the kinetic DNLS”, by Nobu Kishimoto and Yoshio Tsut-
sumi, deals with a nonlinear Schrödinger-type equation, with both local and non-
local derivative nonlinear terms in one dimensional torus. The non-local part mod-
els Landau damping with a nonlinear dissipation. The authors derive a priori upper
bound on the energy norm and a lower bound on the L2 norm. Combined with lo-
cal analysis using multilinear and nonlinear estimates, it yields global existence of
solutions for small data in the energy space.

Kenji Nakanishi
Guest editor
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1 Introduction

Consider the set M Cat
n of n-dimensional, oriented Cat-isomorphism classes of Cat-

manifolds, where Cat = Top,PL or Diff; unless explicitly stated, all manifolds are
assumed non-empty, closed, connected and oriented. M Cat

n forms a monoid under
connected sum (see Section 2) as do its subsets

M Cat,sc
n = {M ∈ M Cat

n |M is simply connected}

and
M Cat,hc

n = {M ∈ M Cat
n |M is highly connected};

here an n-manifold M is called highly connected if πi(M) = 0 for i = 0, . . . ,� n
2�−1.

Recall that the theorems of Radó [56] and Moise [48, 49] show M Top
n = M PL

n =
MDiff

n for n ≤ 3, and by Cerf’s work [10, p. IX] that M PL
n =MDiff

n for n ≤ 6. These
monoids are countable. For PL and Diff this follows from the fact that triangulations
exist. For Top this follows from work of Cheeger and Kister [11].

In this paper we want to study the question whether or not these monoids are
unique factorisation monoids. First we need to make clear what wemean by a unique
factorisation monoid.

Definition 1.

1. Let M be an abelian monoid (written multiplicatively). We say m ∈ M is prime
if m is not a unit and if it divides a product only if it divides one of the factors.

2. Given a monoid M we denote by M ∗ the units of M . We write M :=M /M ∗.
3. Let M be an abelian monoid. We denote by P(M ) the set of prime elements

in M . We say M is a unique factorisation monoid if the canonical monoid mor-
phism NP(M ) → M is an isomorphism.

In dimensions 1 and 2 we of course have M Cat
1 = M

Cat
1 = {[S1]} and M Cat

2 =

M
Cat
2

∼= N via the genus. In particular these monoids are unique factorisation
monoids. In dimension 3 there is the celebrated prime decomposition theorem which
was stated and proved, in rather different language, by Kneser [35] and Milnor [46].
See also [26, Chapter 3] for a proof.

Theorem 1 (Kneser-Milnor).

1. The monoid M Cat
3 has no non-trivial units.

2. The monoid M Cat
3 = M

Cat
3 is a unique factorisation monoid.

The purpose of the present note is to study to what degree these statements hold
in higher dimensions.

First, note that all units of M Cat
n are homotopy spheres, as we deduce from an el-

ementary complexity argument in Proposition 3 below. It now follows from various
incarnations of the Poincaré conjecture that M Top

n never has non-trivial units, and
neither does M PL

n , except potentially if n = 4. In the smooth category the current
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status is the following: The only odd dimensions in which MDiff
n has no non-trivial

units are 1,3,5 and 61, see [27, 74]. In even dimensions greater than 5 Milnor and
Kervaire construct an isomorphismΘn ∼= Sn/Jn from the group of smooth homotopy
n-spheres Θn to the cokernel of the stable J-homomorphism πn(SO) → Sn, where
S is the sphere spectrum. In dimensions below 140, the only even dimension where
Jn is surjective are 2,4,6,12 and 56, see [3]. Wang and Xu recently conjectured that
1,2,3, possibly 4, and 5,6,12,56,61 are the only dimensions without exotic spheres
[74].

Let us also mention that in dimension 4 neither is it known whether every homo-
topy sphere is a unit nor whether S4 is the only unit in MDiff

4 (and of course these
questions combine into the smooth 4-dimensional Poincaré conjecture).

Before we continue we introduce the following definitions.

Definition 2. Let M be an abelian monoid with neutral element e.

1. Two elements m,n ∈M are called associated if there is a unit u ∈M ∗, such that
m = u ·n.

2. An element m is called irreducible, if it is not a unit and if all its divisors are
associated to either e or m.

3. An element a is cancellable, if ab = ac implies b = c for all elements b,c ∈ M .

We make four remarks regarding these definitions.

1. We warn the reader that for the monoids M Cat
3 our usage of “irreducible” does

not conform with standard use in 3-dimensional topology. More precisely, in our
language S1× S2 ∈ M Cat

3 is irreducible, whereas in the usual language used in
3-dimensional topology, see [26, p. 28], the manifold S1× S2 is not irreducible.
Fortunately [26, Lemma 3.13] says that this is the only 3-dimensional manifold
for which the two definitions of irreducibility diverge (in fact by the prime de-
composition theorem our notion of irreducible 3-dimensional manifold coincides
with the usual use of the term prime 3-manifold).

2. Let M be an abelian monoid. If M is a unique factorisation monoid, then every
element in M is cancellable.

3. Another warning worthy of utterance is that in general, given a monoid M , nei-
ther all irreducible elements are prime, nor does a prime element need to be
irreducible, unless it is also cancellable.

4. Finally, note, that ifM is a unique factorisation monoid, this does not necessarily
imply that every element in M is cancellable: A good example is given by non-
zero integers under multiplication modulo the relation that x ∼ −x if |x| ≥ 2. In
this case M ∼=N≥1 under multiplication, so M is a unique factorisation monoid
by prime decomposition. On the other hand we have 2 · (−1) = 2 ·1 and −1 
= 1.
Thus we see that 2 is not cancellable.

Using a fairly simple complexity argument we obtain the following result (Corol-
lary 1 below).

Proposition 1. Every element in M Cat
n admits a connected sum decomposition into

a homotopy sphere and irreducible manifolds.
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Unless n = 4 and Cat= Diff or PL, the homotopy sphere can of course, by the res-
olution of the Poincaré Conjecture, be absorbed into one of the irreducible factors.

As an example of the failure of cancellation and unique factorisation consider
the manifolds CP2#CP2 and S2× S2. The intersection forms show that these man-
ifolds are not homotopy equivalent, but it is well-known that (S2 × S2)#CP2 and
CP2#CP2#CP2 are diffeomorphic [18]. This implies easily that CP2 is not can-
cellable in M

Cat
4 and thus that M Cat

4 is not a unique factorisation monoid.
The following is the main result of Section 5:

Theorem 2. For n ≥ 4 the manifold S2 × Sn−2 is not cancellable in any of the
monoids M

Cat
n and thus none of the monoids M Cat

n is a unique factorisation monoid
in that range.

The proof we provide crucially involves manifolds with non-trivial fundamental
groups. This leaves open the possibility that the submonoid M

Cat,sc
n consisting of

simply connected Cat-manifolds is better behaved. However, we show, for most
dimensions, in Section 6 that this is still not the case:

Theorem 3. For n ≥ 17, the manifold S5 × Sn−5 is not cancellable in any of the
monoids M

Cat,sc
n and thus M Cat,sc

n is not a unique factorisation monoid in that
range.

The bound n ≥ 17 is by no means intrinsic for finding non-cancellative elements
in M

Cat,sc
n ; we already gave the example of CP2 ∈ M

Cat
4 , and indeed by Wall’s

classification [67] the element S2n ×S2n is non-cancellable in M
Cat,hc
4n , the monoid

of highly connected 4n-manifolds, once n > 1.
Interestingly, in some cases the monoids MDiff,hc

n are actually unique factorisa-
tion monoids. More precisely, by [67] and [62, Corollary 1.3] we have the following
theorem.

Theorem 4 (Smale, Wall). For k ≡ 3,5,7 mod 8, and k 
= 15,31,63, half the rank
of Hk gives an isomorphism M

Diff,hc
2k

∼= N. In particular, MDiff,hc
2k is a unique fac-

torisation monoid in these cases.

As a final remark consider for n 
= 4 the exact sequence

0→Θn → MDiff
n → M

Diff
n → 0

of abelian monoids. In general this sequence does not admit a retraction MDiff
n →

Θn: It is well-known that there are smooth manifolds M for which there exists a
non-trivial homotopy sphere Σ such that M#Σ ∼= M, i.e. where the inertia group of
M is non-trivial, [77, Theorem 1], [57, Theorem 1.1]. For instance one can consider
M = HP2. The group of homotopy 8-spheres is isomorphic to Z/2 and equals the
inertia group of HP2. Applying a potential retraction of the above sequence to the
equation [M#Σ ] = [M] gives a contradiction as Θn is a group. Potentially, the above
sequence might admit a splitting, but we will not investigate this further.
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Remark 1. The topic of this paper is related to the notion of knot factorization. More
precisely, Schubert [59] showed in 1949 that the monoid of oriented knots in S3,
where the operation is given by connected sum, is a unique factorisation monoid. It
was shown by Kearton [31, 32] and Bayer [2] that the higher-dimensional analogue
does not hold.

Remark 2. The question of whether a given n-manifold M is reducible is in general
a hard problem and the answer can depend on the category. When n ≥ 3 and M
is a j-fold connected sum M = M1# . . .#Mj, then π1(M) ∼= π1(M1) ∗ · · · ∗ π1(Mj)
is the free product of the fundamental groups of the summands. The converse of
this statement goes by the name of the Kneser Conjecture. When n = 3, the Kneser
Conjecture was proved by Stallings in his PhD thesis, see also [26, Theorem 7.1]. In
higher dimensions, results of Cappell showed that the Kneser Conjecture fails [7, 8]
and when n = 4, Kreck, Lück and Teichner [37] showed that the Kneser Conjecture
fails in both M Diff

4 and M Top
4 and even gave an example of an irreducible smooth

4-manifold which is topologically reducible.

Organisation

The paper is organized as follows. In Section 2 we study the behaviour of complex-
ity functions under the connected sum operation and use the results to provide the
proof of Proposition 1 and the characterisation of the units. In Section 3 we extract
some results from Wall’s classification of highly-connected manifolds. In Section 4
we recall Wall’s thickening operation which makes it possible to associate mani-
folds to CW-complexes. In Section 5 we show the existence of interesting pairs of
2-dimensional CW-complexes which allow us to prove Theorem 9 and 10. Further-
more in Section 6 we recall the construction of interesting pairs of 8-dimensional
simply connected CW-complexes which leads to the proof of Theorem 3. In Sec-
tion 7 we discuss the existence of prime manifolds in various monoids, in particular
in we show that the Wu manifold W = SU(3)/SO(3) is prime in M Cat,sc

5 . Finally
in Section 8 we list some open problems.

2 The connected sum operation

We recall the definition of the connected sum. Let n ∈ N and let M,N ∈ M Cat
n be

two Cat-manifolds. Given an orientation-preserving Cat-embedding ϕ : Bn →M and
given an orientation-reversing Cat-embedding ψ : Bn → N we define the connected
sum of M and N as

M#N :=
(
M \ϕ

(
Bn)) � (

N \ψ
(
Bn))/ϕ(P) = ψ(P) for all P ∈ Sn−1,
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given a smooth structure (for Cat = Diff) by rounding the corners, and a piecewise
linear one (for Cat = PL) by choosing appropriate triangulations that make the im-
ages of ϕ and ψ sub-complexes.

For Cat = Diff or PL the fact that the isomorphism type of the connected sum
of two manifolds does not depend on the choice of embedding is a standard fact in
(differential) topology, see e.g. [73, Theorem 2.7.4] and [58, Disc Theorem 3.34].
The analogous statement also holds for Cat=Top, but the proof (for n> 3) is signif-
icantly harder. It follows in a relatively straightforward way from the “annulus theo-
rem” that was proved in 1969 by Kirby [34] for n 
= 4 and in 1982 by Quinn [54, 14]
for n = 4. We refer to [15] for more details.

It is well-known that many invariants are well-behaved under the connected sum
operation. Before we state the corresponding lemma that summarizes the relevant
results we introduce our notation for intersection forms and linking forms. Given
a 2k-dimensional manifold W we denote by QW : Hk(W ;Z)×Hk(W ;Z) → Z the
intersection form of W . Furthermore, given a (2k+1)-dimensional manifold W we
denote by lkW : TorsHk(W ;Z)×TorsHk(W ;Z)→Q/Z the linking form of W .

Lemma 1. If M1, . . . ,Mk are n-dimensional manifolds, then the following statements
hold:

1. If n ≥ 3, then π1(M1# . . .#Mk)∼= π1(M1)∗ · · · ∗π1(Mk),
2. Let R be a ring. Then the cohomology ring H∗(M1# . . .#Mk;R) is a quotient of a

subring of the product H∗(M1;R)×·· ·×H∗(Mk;R): First, consider the subring
of this product where the elements in degree zero are in the image of the diagonal
map R → Rk (recall that all Mi are connected). Then divide out the ideal gen-
erated by (μi − μ j) for 1 ≤ i, j ≤ k, where μi is the cohomological fundamental
class of Mi,

3. if n is even, then QM1#...#Mk
∼= QM1 ⊕·· ·⊕QMk ,

4. if n is odd, then lkM1#...#Mk
∼= lkM1 ⊕·· ·⊕ lkMk .

Proof. By induction, it suffices to treat the case k = 2. (1) is an elementary applica-
tion of the Seifert–van Kampen theorem. (2) follows from the cofibre sequence

Sn−1 → M1#M2 → M1∨M2 → Sn :

Recall that the subring described in the statement is precisely the cohomology of
M1 ∨M2. It is then easy to see that the map M1 ∨M2 → Sn induces an injection on
Hn(−;R) with image precisely μ1−μ2. Statements (3) and (4) follow from (2) and
the fact that the described isomorphism of rings is compatible with the Bockstein
operator. ��

One can extract a crude complexity invariant from the above data, as follows.
Given a finitely generated abelian group A we denote by rank(A) = dimQ(A⊗Q)
its rank and we define

t(A) := ln(#torsion subgroup of A).

10 Bokor, Friedl, Crowley, Hebestreit, Kasprowski, Land, Nicholson
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Furthermore, given a finitely generated group we denote by d(G) ∈ N the minimal
number of elements in a generating set for G.

Let M be an n-dimensional topological manifold. Then M is a retract of a finite
CW-complex [5, p. 538], and thus has the homotopy of a CW complex (e.g. [19,
Proposition A.11]) and its fundamental group and the (co-) homology groups of M
are finitely presented. Thus we can define the complexity of M as

c(M) := d(π1(M)) + rank
( n−1⊕

i=1
Hi(M;Z)

)
+ t

( n−1⊕
i=1

Hi(M;Z)
)
∈ R≥0.

The following proposition summarizes two key properties of c(M).

Proposition 2.

1. For n ≥ 3 the complexity gives a homomorphism M Cat
n → R≥0.

2. The kernel of c consists entirely of homotopy spheres.

For the proof, recall the Grushko-Neumann Theorem which is proved in most
text books on combinatorial group theory, e.g. [42, Corollary IV.1.9].

Theorem 5. (Grushko-Neumann Theorem) Given any two finitely generated groups
A and B we have

d(A∗B) = d(A)+d(B).

Proof (Proof of Proposition 2). The first statement follows from Lemma 1 and the
Grushko-Neumann Theorem 5. The second statement follows since by the Hurewicz
Theorem we have πn(M)∼= Z if c(M) = 0, and a generator of πn(M) is represented
by a map Sn → M which is a homotopy equivalence by Whitehead’s theorem (and
the observation above, that M has the homotopy type of a CW-complex). ��
Proposition 3.

1. All units of M Cat
n are homotopy spheres.

2. The converse to (1) holds if n 
= 4 or if n = 4 and Cat= Top.
3. The neutral element is the only unit in M Top

n and M PL
n .

By the work of Smale, Newman, Milnor and Kervaire the groups of homotopy
spheres are of course relatively well understood for n ≥ 5.

Proof.

1. Since units are mapped to units under homomorphisms it follows from Proposi-
tion 2 (2) that units are homotopy spheres.

2. For n ≤ 2 the classification of n-manifolds clearly implies the converse to (1). In
dimensions 3 and 4 the desired result follows straight from the Poincaré conjec-
ture proved by Perelman and Freedman. Now let n ≥ 5. Given an n-dimensional
homotopy sphere Σ and an n-disc D ⊆ Σ n, (Σ \ int(D))× I with an open n+ 1-
disc removed away from the boundary is an h-cobordism between Σ#Σ and Sn.
For n 
= 5 the h-cobordism theorem then implies that Σ is indeed a unit. For
n = 5, every homotopy sphere is h-cobordant to the standard sphere, see e.g. [36,
Chapter X (6.3)], and hence diffeomorphic to S5 by the h-cobordism theorem.

11



3. This result follows from the resolution of the Poincaré Conjecture. ��
The following corollary implies in particular Proposition 1.

Corollary 1. Unless n = 4 and Cat= Diff or PL, the monoid M Cat
n does not admit

infinite divisor chains, and therefore every manifold admits a decomposition into
irreducible manifolds.

Proof. An infinite divisor chain Mi gives rise to a descending sequence of natural
numbers under c, which becomes stationary after index i say. But then for j ≥ i the
elements witnessing that Mj is a summand of Mi have vanishing complexity and
thus units by Proposition 3, so Mj is associated to Mi for all j ≥ i. ��

Similar arguments also allow us to identify some irreducible elements of M Cat
n .

Corollary 2. The manifolds RP2n−1,CPn,HPn,OP2 and Sn × Sk−n are irreducible
in the monoid M Cat

m for any choice of Cat and appropriate dimension m, except
possibly for MDiff

4 .

Proof. This follows immediately from Lemma 1 (1) and (2). ��

3 Wall’s work on highly connected manifolds

The possibility of prime factorisations in M
PL,hc
2k and M

Diff,hc
2k was studied by Wall

in [67, Problem 2A]. He classified such smooth manifolds in terms of their inter-
section form and an additional invariant α : Hk(M) → πkBSO(k), which is given
by representing an element in Hk(M) by an embedded sphere and taking its nor-
mal bundle. In the case of piecewise linear manifolds Wall restricts attention to
manifolds that can be smoothed away from a point; for even k, the map α is then
well-defined (i.e. independent of the chosen smoothing) by [67, Lemma 2 & For-
mula (13)] and the injectivity of the stable J-homomorphism (which was not known
at the time). For k odd, one furthermore has to invest the injectivity of the unstable
J-homomorphism πk(BSO(k))→ π2k−1(Sk).

Theorem 6 (Wall). Unique factorisation in M
PL,hc
2k holds only for k = 1,3 and pos-

sibly k = 7. In addition to these cases unique factorisation in M
Diff,hc
2k holds exactly

for k ≡ 3,5,7 mod 8 with k 
= 15,31 and possibly k 
= 63 (if there exists a Kervaire
sphere in dimension 126).

In all cases that unique factorisation holds, the monoid in question is actually
isomorphic to N via half the rank of the middle homology group, except possi-
bly M

PL,hc
14 . In fact there does not seem to be a full description of M

PL,hc
n (or

M
Top,hc
n ) in the literature. Let us remark, that the work of Kirby-Siebenmann im-

pliesM PL,hc
n ∼=M Top,hc

n , once n≥ 10, as the obstruction to finding a PL-structure on
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a topological manifold M is located in H4(M;Z/2), with H3(M;Z/2) acting transi-
tively on isotopy classes of PL-structures. Wall’s argument also shows that unique
factorisation fails in M

Top,hc
8 .

Proof. It follows from Wall’s work that for k ≥ 4 even, the monoids M
PL,hc
2k and

M
Diff,hc
2k never admit unique factorisations; this can be seen by picking an even

positive definite unimodular form, and realizing it by a (k − 1)-connected 2k-
dimensional manifold M with α-invariant whose values lie in ker(πkBSO(2k) →
πkBSO); such α is uniquely determined by the intersection form by [67, Lemma
2] and the computation of πkBSO(2k) on [67, p. 171]. By [67, Proposition 5], in
this case a smooth realizing manifold exists whenever the signature is divisible by a
certain index. Then M#−M ∼= m(Sk × Sk)#Σ for some homotopy sphere Σ , where
m is the rank of Hk(M). But Sk × Sk cannot divide M or −M. Indeed, this follows
from Lemma 1 (3), the fact that the intersection form of Sk ×Sk is indefinite and the
fact that the intersection forms of ±M are definite. See Proposition 9 below for a
stronger statement in the case k = 2.

For odd values of k there are several cases to be distinguished. To start, for k =

1,3 and Cat= PL or k = 1,3,7 and Cat=Diff the monoid M
Cat,hc
2k is isomorphic to

N via half the rank of the middle homology by [67, Lemma 5].
For other odd values of k 
= 1,3,7 unique decomposition in M PL,hc

2k never holds.
This can be seen via the Arf-Kervaire invariant; this is the Arf invariant of a certain
quadratic refinement of the intersection form. By the work of Jones and Rees and
Stong [30, 63] any highly connected manifold of even dimension not 2,4,8 or 16
possesses a canonical such refinement. We proceed by taking a manifold M which
is smoothable away from a point with non-trivial Arf-Kervaire invariant and then
decompose M#M into manifolds with vanishing Kervaire invariant and intersection
form hyperbolic of rank 2; this is possible by [67, Lemmata 5 and 9] and the fact
that the Arf-Kervaire invariant is additive.

For MDiff,hc
2k the argument above works equally well if there exists a smooth 2k-

manifold with Kervaire invariant one (which also implies the existence of an irre-
ducible one by Corollary 1). This famously is the case if and only if k = 1,3,7,15,31
and possibly k = 63 [27], which rules out unique factorisation in these dimensions.

For k = 3,5,7 mod 8 with k 
= 3,7,15,31,63 the monoid M
Diff,hc
2k is in fact iso-

morphic to N via half the rank of the middle homology by [67, Lemma 5] (with
the case M

Diff,hc
126 being open). In contrast, for k ≡ 1 mod 8 the failure of unique

decomposability can be seen by considering the composite homomorphism

Sα : Hk(M)
α−→ πkBSO(k)−→ πkBSO= Z/2 :

Wall says that a manifold is of type 0 if Sα is non-trivial and of type 1 if Sα is trivial,
see [67, p. 173, Case 5]. Note that the type is not additive but the connected sum of
two manifolds has type 1 if and only if both manifolds have type 1. Hence by [67,
Theorem 3] we can pick any two irreducible manifolds W0,W1 such the invariants
from [67, Lemma 5] agree except that the type ofWi is i. ThenW0#W1 ∼=W0#W0 and
unique decomposition fails. ��
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Remark 3. Given the first part of the proof above one might wonder whether for any
highly connected manifold M, whose intersection form is even, M#M is homeomor-
phic to #k(Sn ×Sn). This is in fact not correct as the following example shows. Let
M be the total space of an S4-bundle over S4 with non-trivial first Pontryagin class
and trivial Euler class. It is then easy to see that the intersection form of M is even.
However, since the rational Pontryagin classes are homeomorphism invariants we
find that M#M is not homeomorphic to S4×S4#S4×S4.

Cancellation in M PL,hc
2k and MDiff,hc

2k was also studied by Wall in [67, Prob-
lem 2C].

Theorem 7 (Wall). Cancellation in M
Diff,hc
2k holds if and only if either k = 1 or

k ≡ 3,5,7 mod 8. In M PL,hc
2k the “only if” part still holds.

Proof. Wall’s classification directly shows that Sk × Sk is not cancellable in either
M PL,hc

2k and MDiff,hc
2k if k is even by an argument similar to the one above. For

k = 2, the failure of cancellation follows from the fact that (S2 × S2)#CP2 and
CP2#CP2#CP2 are diffeomorphic.

By [67, Lemma 5] and the classification of almost closed n− 1-connected 2n-
manifolds by their n-types (see [67, page 170]), for k ≡ 3,5,7 mod 8 the monoid
M Diff,hc

2k embeds into Z×Z/2 via the rank and the Arf-Kervaire invariant. If k ≡
1 mod 8, k 
= 1, then the examples from the previous proof exhibit the failure of
cancellation. ��

A similar analysis of M
Cat,hc
2k+1 can be carried out using [72], but we refrain from

spelling this out here.

4 Thickenings of finite CW-complexes

In this section we will see that one can associate to a finite CW-complex a smooth
manifold which is unique in an appropriate sense. This procedure allows us to trans-
late information about CW-complexes to manifolds. We will use this procedure in
the proofs of Theorems 9, 10 and 3 in the following sections.

Convention 1 By a finite complex we mean a finite connected CW-complex and by
a finite n-complex we mean a finite connected n-dimensional CW-complex.

4.1 Thickenings of finite CW-complexes

In this section we will summarize the theory of smooth thickenings of CW-complexes
as developed in [70]. As is explained in [70] there is also an analogous theory of PL-
thickenings.
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We start out with the following definition, which is an adaptation of the definition
on [70, p. 74] for our purposes.

Definition 3. Let X be a finite complex.

1. A k-thickening of X is a pair (M,φ) where M is an oriented, smooth, compact k-
dimensional manifold with trivial tangent bundle, which has the property that the
inclusion induced map π1(∂M)→ π1(M) is an isomorphism and where φ : X →
M is a simple homotopy equivalence.

2. Two k-thickenings (M,φ) and (N,ψ) of X are called equivalent if there exists an
orientation-preserving diffeomorphism f : M → N such that f ◦φ is homotopic
to ψ .

Note that φ does not have to be an embedding in the definition above.

Theorem 8. Let X be a finite n-complex.

1. If k ≥ 2n, then there exists a k-thickening of X.
2. If k ≥ 2n+1 and k ≥ 6, then all k-thickenings of X are equivalent.

Proof. The theorem follows from [70, p. 76] using that every map from a path-
connected space to Rk is 1-connected. ��
Definition 4. Let k ≥ 2n+1 and k ≥ 6. Let X be a finite n-complex. We denote by
Nk(X) the oriented diffeomorphism type of the k-dimensional thickening of X . In
our notation we will not distinguish between Nk(X) and any representative thereof.

For convenience we state the following example.

Lemma 2. If k ≥ 2n+1 and k ≥ 6, then Nk(Sn) = Sn ×Bk−n.

Proposition 4. Let X and Y be finite complexes. We suppose that k ≥ 2dim(X)+1,
k ≥ 2dim(Y )+1 and k ≥ 6. If X and Y are simple homotopy equivalent, then there
exists an orientation-preserving diffeomorphism from Nk(X) to Nk(Y ).

Proof. Let f : X → Y be a simple homotopy equivalence. Let (M,φ) be a k-
thickening for X and let (N,ψ) be a k-thickening for Y . Note that (N,ψ ◦ f ) is a
k-thickening for X . It follows from Theorem 8, and our dimension restrictions on k,
that N = Nk(X) is diffeomorphic to M = Nk(Y ). ��
Lemma 3. Let X and Y be finite complexes. If k ≥ 2dim(X)+ 1, k ≥ 2dim(Y )+ 1
and k ≥ 6, then

Nk(X ∨Y ) = Nk(X)#bNk(Y ),

where “#b” denotes the boundary connected sum.

Proof. Let (M,φ) and (N,ψ) be k-thickenings of X and Y , respectively. After a
simple homotopy we can and will assume that the the image of the wedge points
under φ and ψ lies on the boundary of M and N. Note that φ ∨ψ : X ∨Y → M∨N
is a simple homotopy equivalence and note that the inclusion M ∨N → M#bN is a
simple homotopy equivalence. Thus we see that the map φ ∨ψ : X ∨Y → M#bN is a
simple homotopy equivalence. It follows almost immediately from Theorem 8 that
Nk(X ∨Y ) = Nk(X)#bNk(Y ). ��
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4.2 Boundaries of thickenings of finite complexes

Definition 5. Let X be a finite complex and let k ≥ 2dim(X) and k ≥ 5. We write
Mk(X) := ∂Nk+1(X). Recall that Nk+1(X) is an oriented manifold and we equip
Mk(X) with the corresponding orientation.

The following lemma is an immediate consequence of Lemma 2.

Lemma 4. If k ≥ 2n and k ≥ 5, then Mk(Sn) = Sn ×Sk−n.

In the following proposition we summarize a few properties of Mk(X).

Proposition 5. For n ∈ N let X and Y be finite n-complexes. Furthermore let k ∈ N
with k ≥ 2n and k ≥ 5.

1. Mk(X) is a closed oriented k-dimensional manifold,
2. if X and Y are simple homotopy equivalent, then there exists an orientation-

preserving diffeomorphism from Mk(X) to Mk(Y ),
3. Mk(X ∨Y ) = Mk(X)#Mk(Y ).

If we have in fact k ≥ 2n+1, then the following also holds:

4. if Mk(X) and Mk(Y ) are homotopy equivalent, then X and Y are homotopy equiv-
alent.

Proof. The first statement follows immediately from the definitions, the second
from Proposition 4 and the third is a straightforward consequence of Lemma 3.
The fourth statement is proved in [38, Proposition II.1]. ��

Let n ∈ N. Furthermore let k ∈ N with k ≥ 2n and k ≥ 5. By Proposition 5 we
obtain a well-defined map

Mk : {finite n-complexes}/�s → MDiff
k

where �s denotes simple homotopy equivalence.
We conclude this section with the following corollary, which we will make use

of in the proofs of Theorems 9, 10 and 3 respectively.

Corollary 3. Let n ∈N. Furthermore let k ∈N with k ≥ 2n and k ≥ 5. Suppose that
X and Y are finite complexes of dimension ≤ n. We suppose that X 
�Y and X∨Sn �s
Y ∨Sn. Then Mk(X) 
�Mk(Y ), but there is an orientation preserving diffeomorphism
between Mk(X)#(Sn ×Sk−n) and Mk(Y )#(Sn ×Sk−n).

Proof. This corollary follows immediately from the four statements of Proposi-
tion 5. ��
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4.3 5-dimensional thickenings

Now let X be a finite 2-complex. By Theorem 8 there exists a 5-thickening of X .
We can no longer conclude from Theorem 8 that the thickening is well-defined up
to diffeomorphism. But in fact the following weaker statement holds:

Proposition 6. Let X be a finite 2-complex. If (M,φ) and (N,ψ) are 5-dimensional
thickenings for X, then ∂M and ∂N are s-cobordant.

This statement is implicit in [70], see also [38, p. 15]. The same way that we de-
duced Proposition 4 from Theorem 8 we can also deduce the following proposition
from Proposition 6.

Proposition 7. Let X and Y be finite 2-complexes. If X and Y are simple homotopy
equivalent, then given any 5-dimensional thickenings A of X and B of Y the bound-
aries ∂A and ∂B are s-cobordant.

5 Finite 2-complexes, group presentations and the D2-problem

The goal of this section is to prove Theorem 2 from the introduction and to give a
survey of the various constructions that can be used to construct examples of non-
cancellation in M Cat

n . We will use:

Lemma 5. Let n ∈ N. Suppose there exist n-dimensional smooth manifolds M and
N which are not homotopy equivalent but such that there is r ≥ 1, an n-dimensional
smooth manifold W and an orientation preserving diffeomorphism between M#r ·W
and N#r ·W. Then for every Cat = Top, PL and Diff the following two statements
hold:

1. The element W is not cancellable in M
Cat
n .

2. The monoid M Cat
n is not a unique factorisation monoid.

Proof. By hypothesis we know that [M1] 
= [M2]∈M Top
n . By Proposition 3 we know

thatM Top
n =M

Top
n . In particular [M1] 
= [M2]∈M

Top
n and thus [M1] 
= [M2]∈M

Cat
n .

Furthermore we know that [M1]+ r · [W ] = [M2]+ r · [W ] ∈ M
Cat
n . By induction we

see that [W ] is not cancellable in M
Cat
n . This implies that M

Cat
n is not isomorphic

to some NP, i.e. M
Cat
n is not a unique factorisation monoid, hence M Cat

n is not a
unique factorisation monoid. ��

We will exploit this lemma with the following result:

Theorem 9. Let n ∈ N≥5. Then there exist n-dimensional smooth manifolds M and
N which are not homotopy equivalent but such that there is an orientation preserving
diffeomorphism between M#(S2×Sn−2) and N#(S2×Sn−2).
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A slightly weaker result is also available in dimension 4:

Theorem 10. There exist 4-dimensional smooth manifolds M and N which are not
homotopy equivalent but such that there is an orientation preserving diffeomorphism
between M#r · (S2×S2) and N#r · (S2×S2) for some r ≥ 1.

Taken together these results immediately imply Theorem 2 from the introduction.

5.1 Proof of Theorem 9

In this section we will provide the proof for Theorem 9. The key idea for finding
suitable manifolds is to use Corollary 3. Thus our goal is to find finite 2-complexes
X and Y which are not homotopy equivalent but such that X ∨ S2 and Y ∨ S2 are
simple homotopy equivalent.

We begin our discussion with the following well-known construction of a finite
2-complex XP with π1(XP) = G from a group presentation

P = 〈x1, · · · ,xs | r1, · · · ,rt〉

of a finitely presented group G. This is known as the Cayley complex XP of the
presentationP and has 1-skeleton a wedge of s circles, one circle for each generator
xi, with its 2-cells attached along the paths given by each relation ri expressed as a
word in the generators.

The following can be found in [6], [24, Theorem B]:

Theorem 11. If X and Y are finite 2-complexes with π1(X) ∼= π1(Y ) finite and
χ(X) = χ(Y ), then X ∨S2 �s Y ∨S2.

Recall that, if P is a presentation of G with s generators and t relations, then the
deficiency def(P) of P is s− t. The Euler characteristic of a presentation complex
can be completely understood in terms of the deficiency:

Lemma 6. If P is a group presentation, then χ(XP) = 1−def(P).

The task is therefore to find a finite group G with presentations P1 and P2 such
that XP1 
� XP2 and def(P1) = def(P2). That XP1 ∨ S2 �s XP2 ∨ S2 would then
follow automatically from Theorem 11.

The first examples of such presentations were found by Metzler in [45] in the
case π1(X) = (Z/p)s for s ≥ 3 odd and p ≡ 1 mod 4 prime. See [28, p. 297] for a
convenient reference.

Theorem 12. For s ≥ 3 odd, p ≡ 1 mod 4 prime and p � q, consider presentations

Pq = 〈x1, . . . ,xs | xp
i = 1, [xq

1,x2] = 1, [xi,x j] = 1,1≤ i < j ≤ s,(i, j) 
= (1,2)〉

for the group (Z/p)s. Then XPq 
� XPq′ if q(q′)−1 is not a square mod p.

18 Bokor, Friedl, Crowley, Hebestreit, Kasprowski, Land, Nicholson



Connected sum decompositions of high-dimensional manifolds

Remark 4. The smallest case for which this is satisfied is the case p = 5, s = 3, q = 1
and q′ = 2, corresponding to the group (Z/5)3.

To prove these complexes are not homotopy equivalent, Metzler defined the bias
invariant. This is a homotopy invariant defined for all finite 2-complexes and which
was later shown in [61], [6] to be a complete invariant for finite 2-complexes with
finite abelian fundamental group which led to a full (simple) homotopy classification
in these cases.

We are now ready to prove Theorem 9.

Proof (Proof of Theorem 9). Let s ≥ 3 be odd, p ≡ 1 mod 4 be prime, and choose
q,q′ ≥ 1 such that p � q, p � q′ and such that q(q′)−1 is not a square mod p. Let Pq
and P ′

q be the presentations for (Z/p)s constructed above. Then XPq 
� XP ′
q
by

Theorem 12.
Since def(Pq) = def(P ′

q), we have χ(XPq) = χ(XP ′
q
) by Lemma 6 and so

XPq ∨S2 �s XP ′
q
∨S2

are simply homotopy equivalent, by Theorem 11. Since n ≥ 5 this fulfills the con-
ditions of Corollary 3. Thus we see that M = Mn(XPq) and N = Mn(XP ′

q
) have the

desired properties. ��

5.2 Proof of Theorem 10

Theorem 10. There exist 4-dimensional smooth manifolds M and N which are not
homotopy equivalent but such that there is an orientation preserving diffeomorphism
between M#r · (S2×S2) and N#r · (S2×S2) for some r ≥ 1.

Proof. We use the same notation as in the proof of Theorem 9. By Theorem 8 there
exist 5-dimensional thickenings A for XPq and B for XP ′

q
. We write M = ∂A and

N = ∂B.
As in Lemma 3 we see that A#b(S2 ×B3

) is a thickening of XPq ∨ S2 and we

see that B#b(S2 ×B3
) is a thickening of XP ′

q
∨ S2. As in the proof of Theorem 9

we note that XPq ∨ S2 is simple homotopy equivalent to XP ′
q
∨ S2. Thus we obtain

from Proposition 7 that M#(S2 × S2) and N#(S2 × S2) are s-cobordant. It follows
from Wall [68, Theorem 3] (see also [60, p. 149] and [55, Theorem 1.1]) that these
manifolds are diffeomorphic (via an orientation presentation diffeomorphism) after
stabilisation by sufficiently many copies of S2×S2, i.e.

M#(S2×S2)#r(S2×S2)︸ ︷︷ ︸
=(r+1)·(S2×S2)

∼=Diff N#(S2×S2)#r(S2×S2)︸ ︷︷ ︸
=(r+1)·(S2×S2)

for some r ≥ 0.
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We still need to show that M and N are not homotopy equivalent. Since we are
now dealing with the case k = 4 we cannot appeal to Proposition 5. But it is shown
in [38, Theorem III.3] (see also [25, Proposition 4.3]) that M and N are indeed not
homotopy equivalent. ��

5.3 The D2 problem

We will now discuss a link to the work of C. T. C. Wall on the structure of finite
complexes as it places the examples above into the framework of a more general
conjecture.

Wall asked [69] whether or not a Dn complex, i.e. a finite complex X such
that Hi(X ;M) = 0 and Hi(X ;M) = 0 for all i ≥ n + 1 and all finitely generated
left Z[π1(X)]-modules M, is necessarily homotopy equivalent to a finite n-complex.
This was shown to be true in the case n > 2 [71, Corollary 5.1] and in the case n = 1
[64], [65]. The case n = 2 remains a major open problem and is known as Wall’s
D2-problem.

Question 1. (D2 Problem) Let X be a D2 complex. Is X homotopy equivalent to a
finite 2-complex?

We say that a group G has the D2-property if the D2-problem is true for all D2
complexes X with π1(X) = G. This is relevant to the present discussion due to the
following equivalent formulation.

Define an algebraic 2-complex E = (F∗,∂∗) over Z[G] to be a chain complex
consisting of an exact sequence

F2 F1 F0 Z 0
∂2 ∂1 ∂0

where Z is the Z[G]-module with trivial G action and where the Fi are stably free
Z[G]-modules, i.e. Fi ⊕Z[G]r ∼= Z[G]s for some r,s ≥ 0.

For example, if X is a finite 2-complex with a choice of polarisation π1(X)∼= G,
the chain complex C∗(X̃) of the universal cover is a chain complex over Z[G] under
the deck transformation action of G on X̃ . Since the action is free, Ci(X̃) is free for
all i ≥ 0 and so C∗(X̃) is an algebraic 2-complex over Z[G]. We say an algebraic
2-complex over Z[G] is geometrically realisable if it is chain homotopy equivalent
to C∗(X̃) for some finite 2-complex X .

The following correspondence is established in [53, Theorem 1.1]:

Theorem 13. If G is a finitely presented group, then there is a one-to-one correspon-
dence between polarised D2 complexes X with π1(X)∼=G up to polarised homotopy
and algebraic 2-complexes over Z[G] up to chain homotopy given by X �→C∗(X̃).

In particular, G has the D2-property if and only if every algebraic 2-complex over
Z[G] is geometrically realisable, as was already shown in [29] and [44].
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One can thus search for further examples of finite 2-complexes X andY for which
X 
� Y and X ∨ S2 �s Y ∨ S2 by studying the chain homotopy types of algebraic 2-
complexes over Z[G] for G having the D2-property.

A class of groups G for which it is feasible to classify algebraic 2-complexes over
Z[G] up to chain homotopy are those with n-periodic cohomology, i.e. for which the
Tate cohomology groups satisfy Ĥi(G;Z) = Ĥi+n(G;Z) for all i ∈ Z. Let mH(G)
denote the number of copies of H in the Wedderburn decomposition of R[G] for
a finite group G, i.e. the number of one-dimensional quaternionic representations.
The following is a consequence of combining Theorem 11 with a special case of
[52, Theorem A], which is proven as an application of a recent cancellation result
for projective Z[G] modules [51].

Theorem 14. If G has 4-periodic cohomology and mH(G) ≥ 3. If G has the D2
property, then there exists finite 2-complexes X and Y with π1(X) ∼= π1(Y ) ∼= G for
which X 
� Y and X ∨S2 �s Y ∨S2.

Remark 5. More generally, [52, Theorem A] gives non-cancellation examples for
finite n-complexes for all even n > 2 without any assumption on the D2 property.

Examples of groups with 4-periodic cohomology and mH(G) ≥ 3 include the
generalised quaternion groups

Q4n = 〈x,y | xn = y2,yxy−1 = x−1〉

for n ≥ 6 and the groups Q(2na;b,c) which appear in Milnor’s list [47] for n = 3 or
n ≥ 5, and a,b,c odd coprime with c 
= 1 [53, Theorem 5.10].

It was shown in [53, Theorem 7.7] that Q28 has the D2-property (contrary to
a previous conjecture [4]), and so Q28 gives an example where the hypotheses of
Theorem 14 hold. In fact, the examples predicted by Theorem 14 were determined
explicitly in [43]:

Proposition 8. Consider the following presentations for Q28:

P1 = 〈x,y | x7 = y2,yxy−1 = x−1〉, P2 = 〈x,y | x7 = y2,y−1xyx2 = x3y−1x2y〉.

Then XP1 
� XP2 and XP1 ∨S2 �s XP2 ∨S2.

By Corollary 3 this shows that, for k ≥ 5, we have that Mk(XP1) 
� Mk(XP2) and

Mk(XP1)#(S
2×Sk−2)∼= Mk(XP2)#(S

2×Sk−2).

This gives an alternate way to prove Theorem 9, as well as giving an example whose
fundamental group is non-abelian.

We conclude this section by remarking that, whilst Theorem 14 gives a reason-
able place to look to find further non-cancellation examples, there is currently no
known method to show that such examples exist without an explicit construction.
Indeed, the presentations found in Proposition 8 are used in the proof of [53, Theo-
rem 7.7].
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6 Simply-connected complexes

Theorem 3 follows from the next theorem together with Lemma 5.

Theorem 15. Let k ≥ 17. There exist simply connected k-dimensional smooth man-
ifolds M and N which are not homotopy equivalent but such that there is an orien-
tation preserving diffeomorphism between M#(S5×Sk−5) and N#(S5×Sk−5).

Remark 6. The bound k ≥ 17 is an artifact of our method, and we expect similar ex-
amples to exist in a much lower range of dimensions. The strict analogue of Theo-
rem 15 cannot, however, hold in dimension 4: It follows from Donaldson’s Theorem
[13, Theorem A], the classification of indefinite intersection forms and Freedman’s’
Theorem [16, Theorem 1.5] that any two 4-dimensional simply connected smooth
manifolds that become diffeomorphic after the connected sum with r · (S2 × S2)
where r ≥ 1, are already homeomorphic.

The key idea is once again to use Theorem 3. But this time we will use mapping
cones to produce useful CW-complexes. We introduce the following notation.

Notation 1 Let α : Sm−1 → Sn be a map. We denote its mapping cone by Cα . Note
that Cα has a CW-structure with three cells, one in dimension 0, one in dimension n
and one in dimension m.

The following theorem is a practical machine for constructing interesting CW-
complexes, see [22, Theorem 3.1 & Corollary 3.3]. Note that [22, 50] contain many
other examples of CW-complexes exhibiting similar phenomena.

Theorem 16. Let m,n ∈N≥3 and let [α], [β ] ∈ πm−1(Sn) be elements of finite order.
If [α] is in the image of the suspension homomorphism πm−2(Sn−1) → πm−1(Sn),
then the following two statements hold:

1. Cα �Cβ if and only if [β ] =±[α] ∈ πm−1(Sn).
2. If [α] and [β ] generate the same subgroup of πm−1(Sn), then Cα ∨Sm �Cβ ∨Sm.

Proof. We prove (1) first and may assume that m≥ n+2, else the statements become
easy (if m−1= n) or trivial (if m−1< n). The “if” part is obvious. To see the “only
if” we consider a homotopy equivalence f : Cα �Cβ . Such a homotopy equivalence
induces an isomorphism on πn, so that we find that there is a homotopy commutative
diagram

Sn Cα

Sn Cβ

±1 f

in which the horizontal maps are the canonical maps. We denote by Fα and Fβ the
homotopy fibres of these horizontal maps. Since the composites Sm−1 → Sn → C
(C = Cα ,Cβ ) are null homotopic, we obtain a canonical homotopy commutative
diagram
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Sm−1 Fα Sn Cα

Sm−1 Fβ Sn Cβ

±1 f̄ ±1 f

where f̄ is the induced homotopy equivalence of homotopy fibres. The relative
Hurewicz theorem for the maps Sn → Cα and Sn → Cβ , together with m ≥ n+ 2,
implies that the two maps Sm−1 →Fα and Sm−1 →Fβ induce isomorphisms on πm−1
so one obtains a dashed arrow making the diagrams commute up to homotopy. We
deduce that there is a homotopy commutative diagram

Sm−1 Sn

Sm−1 Sn

α

±1 ±1

β

Now we use that α is a suspension, so that post composition of α with a degree −1
map is just −α in πm−1(Sn).

To see (2) we consider the spaceCα,β =Cα ∪β Dm. Here, we view β as the com-
posite Sm−1 → Sn →Cα . We note thatCα,β ∼=Cβ ,α . By assumption β is contained in
the subgroup generated by α . This implies the composite Sm−1 → Sn → Cα is null
homotopic so that Cα,β �Cα ∨Sm. We thus obtain

Cα ∨Sm �Cα,β �Cβ ,α �Cβ ∨Sm

where the very last equivalence follows from the assumption that α is also contained
in the subgroup generated by β . ��
Proof (Proof of Theorem 15). It is well known that the π6(S3) ∼= Z/12 and that
suspension homomorphism π6(S3)→ π7(S4) is injective with image t(π7(S4)); see
[66, Proposition 5.6, Lemma 13.5]. Let μ be a generator of t(π7(S4)). We then
consider the elements α = μ and β = 5 ·μ in t(π7(S4)).

It follows from Theorem 16 that Cα 
� Cβ and that Cα ∨ S8 � Cβ ∨ S8. Since
these CW-complexes are simply connected, we have in fact Cα ∨ S8 �s Cβ ∨ S8.
The theorem is now an immediate consequence of Corollary 3 applied to the 8-
dimensional CW-complexes X =Cα , Y =Cβ , n = 4 and the given k ≥ 17. ��

7 Prime manifolds

Let M Cat,sc
n denote the submonoid of M Cat

n of simply connected manifolds. The
question we want to ask in the present section is whether there exist prime manifolds
in higher dimensions at all. While we do not know the answer, we will show that
the Wu-manifold is prime among simply connected 5-folds.
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As a warm-up recall that on the one hand the manifolds CPn,CPn and Sn×Sn are
all irreducible by Corollary 2, except possibly for n = 2 and Cat = Diff or PL. On
the other, as mentioned before, (S2×S2)#CP2 and CP2#CP2#CP2 are well-known
to be diffeomorphic, see e.g. [18, p. 151] for details. These two observations imply
immediately that none of S2 × S2,CP2 or CP2 are prime in M Cat,sc

4 or M Cat
4 . In

higher dimension we recorded similar behaviour for S2k ×S2k in the first lines of the
proof of Theorem 6.

Corollary 4. Let n ∈ N≥2 be even. Then Sn ×Sn is not prime in M Cat,sc
2n or M Cat

2n .

By contrast, for some odd n Theorem 6 also implies that Sn × Sn is prime in
MDiff,hc

2n . We do not know whether this extends to simply-connected manifolds, i.e.
we do no know whether for those odd Sn ×Sn is prime in MDiff,sc

2n .

Proposition 9. The monoid M Cat,sc
4 has no prime elements. In particular, no simply-

connected manifold is prime in M Cat
4 .

Proof. By Freedman’s classification, two simply connected, topological 4-manifolds
are homeomorphic if and only if they have isomorphic intersection forms and the
same Kirby-Siebenmann invariant. Hence for any such manifolds M there exist
m,m′,n,n′ ∈N,ε ∈ {0,1} such that M#mCP2#m′CP2#ε ∗CP2 and nCP2#n′CP2 are
homeomorphic. Similarly, if M is assumed smooth (or piecewise linear), it follows
from the above and work ofWall [68, Theorem 3] (see also [60, p. 149] and [55, The-
orem 1.1]) that there exist m,m′,n,n′ and k ∈ N such that M#mCP2#m′CP2#k(S2×
S2) and nCP2#n′CP2#k(S2 × S2) are diffeomorphic. Using the fact that (S2 ×
S2)#CP2 and CP2#CP2#CP2 are diffeomorphic we can arrange, at the cost of in-
creasing m,m′,n,n′ that k = 0. In either case, if M is prime it follows that M is either
CP2 or CP2, since the latter manifolds are irreducible. But we observed above that
they are not prime. ��

Turning to dimension 5, recall that the Wu manifold SU(3)/SO(3) is a simply
connected, non-spin 5-manifold with H2(W ;Z) = Z/2.

Proposition 10. The Wu-manifold W = SU(3)/SO(3) is prime in M Cat,sc
5 .

Wewill use Barden’s classification of smooth simply connected 5-manifolds [1, 12].
There are two invariants which are important to us:

1. H2(M;Z) with its torsion subgroup T H2(M;Z). The group T H2(M;Z) is always
isomorphic to A⊕A⊕C where C is either trivial or cyclic of order 2 and A is
some finite abelian group.

2. The height h(M) ∈ N0 ∪ {∞}: If M is spin, one sets h(M) = 0. If M is non-
spin, w2 : H2(M;Z) → Z/2 is a surjection. It is an algebraic fact that for any
surjection w : H →Z/2 where H is a finitely generated abelian group, there exists
an isomorphism H ∼= H ′ ⊕Z/2� such that w corresponds to the composite H ′ ⊕
Z/2� → Z/2� → Z/2. Here, � is allowed to be ∞, where we (ab)use the notation
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that Z/2∞ = Z. The number � is then defined to be the height h(M) of M. Note
that here we follow the wording of [1], an equivalent definition of the height is
given in [12].

Barden’s classification says that the map MDiff,sc
5 → Ab× (N0 ∪{∞}) sending

a manifold M to the pair (H2(M;Z),h(M)) is injective, and that the following two
statements are equivalent:

1. a pair (B,k) lies in the image,
2. the torsion subgroup T B is of the form A⊕A⊕Z/2 if k = 1 and it is of the form

A⊕A otherwise.

Moreover, the above map restricts to a bijection between spin manifolds and the
pairs (B,0) where T B ∼= A⊕A.

Lemma 7. 1. h(M#N) =

⎧
⎪⎨
⎪⎩

h(M) if h(N) = 0,
h(N) if h(M) = 0,
min(h(M),h(N)) if h(M) 
= 0 
= h(N)

2. h(M#N) = 1 if and only if h(M) = 1 or h(N) = 1,
3. The Wu manifold W divides M if and only if h(M) = 1,

Proof. To see (1), we observe that M#N is spin if and only if both M and N are spin.
Furthermore, it is clear from the above definition of the height that if M is spin, then
h(M#N) = h(N). To see the case where both M and N are not spin, it suffices to
argue that if �≤ k, and we consider the map Z/2k ⊕Z/2� → Z/2 which is the sum
of the canonical projections, then there is an automorphism ofZ/2k⊕Z/2� such that
this map corresponds to the map Z/2k ⊕Z/� → Z/2� → Z/2: The automorphism
is given by sending (1,0) to (1,1) and (0,1) to (0,1). Statement (2) is then an
immediate consequence of (1). To see (3) we first assume thatW divides M, i.e. that
M is diffeomorphic to W#L. We find that h(W#L) = 1 by (1). Conversely, suppose
that h(M) = 1. By Barden’s classification, we know that the torsion subgroup of
H2(M;Z) is of the form A⊕A⊕Z/2, in particular H2(M;Z) ∼= Zn ⊕A⊕A⊕Z/2
for some n ≥ 0. Again, by the classification, there exists a spin manifold L with
H2(L;Z) ∼= Zn ⊕A⊕A. We find that W#L and M have isomorphic H2(−;Z) and
both height 1, so they are diffeomorphic, and thus W divides M. ��

Proof (Proof of Proposition 10). First we consider M PL,sc
5 = MDiff,sc

5 . If W divides
M#N, then h(M#N)= 1, we may then without loss of generality assume that h(M)=
1, so that W divides M.

Every simply connected topological 5-manifold admits a smooth structure, since
the Kirby-Siebenmann invariant lies in H4(M;Z/2) ∼= H1(M;Z/2) = 0. As the in-
variants in Barden’s classification are homotopy invariants, it follows thatM Top,sc

5 =

MDiff,sc
5 . In particular, the Wu manifold is also prime in M Top,sc

5 . ��
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8 Questions and problems

We conclude this paper with a few questions and challenges.

Question 2.

1. Let n ≥ 4. Does there exist a non-trivial cancellable element in any of the
monoids M Top

n , M PL
n , MDiff

n ?
2. Let n ≥ 6. Does there exist a non-trivial cancellable element in any of the

monoids M Top,sc
n , M PL,sc

n , MDiff,sc
n ?

Question 3.

1. Let n ≥ 4. Does there exist a prime element in any of the monoids M Top
n , M PL

n ,
MDiff

n ?
2. Let n ≥ 6. Does there exist a prime element in any of the monoids M Top,sc

n ,
M PL,sc

n ?

In light of Theorem 3 and the remark on page 8 we also raise the following
related question.

Question 4. For which n ∈ 5, . . . ,16 is M Cat,sc
n a unique factorisation monoid?

The following question arises naturally from Proposition 10.

Question 5. Is the Wu manifold prime in M Top
5 or MDiff

5 ?

Throughout the paper we worked mostly with simply connected and highly con-
nected manifolds. It is reasonable to ask what is happening at the end of the spec-
trum, namely when we restrict ourselves to aspherical manifolds.

Question 6. In any of the three categories Top, PL and Diff, is the monoid generated
by aspherical manifolds a unique decomposition factorization monoid for n ≥ 4?

As a partial answer to Question 6, we would like to thank the referee for pointing
out that in the topological category unique decomposition factorization is implied
by the Borel conjecture. To see this, we first note that the fundamental group of an
aspherical manifold can not be a non-trivial free product of groups.

Lemma 8. Let M be aspherical closed n-manifold and let π1(M) ∼= G ∗H. Then
either G or H is trivial.

Proof. As M is aspherical the assumption that π1(M) ∼= G ∗H implies that M is
homotopy equivalent to B(G∗H)� BG∨BH. Note that for all k ∈ N we have

H̃k(BG∨BH;Z/2)∼= H̃k(BG;Z/2)⊕ H̃k(BH;Z/2).

Hence Z/2 ∼= Hn(M;Z/2) ∼= Hn(BG ∨ BH;Z/2) ∼= Hn(BG;Z/2)⊕ Hn(BH;Z/2).
Now we suppose without loss of generality that Hn(BH;Z/2) is trivial. Consider
the cover M̂ of M corresponding to the canonical map π1(M) ∼= G ∗H → H. Then
M̂ is homotopy equivalent to

∨|H|
i=1 BG and hence Hn(M̂;Z/2)∼=⊕|H|

i=1Z/2. As M̂ is
a manifold, this implies |H|= 1 and thus H is trivial. ��
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Recall that by the Grushko–Neumann theorem [42, Corollay IV.1.9] together
with the Kurosh isomorphism theorem [40, Isomorphiesatz][41, p. 27] we obtain
the following lemma.

Lemma 9. Every non-trivial, finitely generated group G can be decomposed as a
free product

G ∼= A1 ∗ . . .∗Ar ∗Fk,

where Fk is a free group of rank k, each of the groups Ai is non-trivial, freely inde-
composable and not infinite cyclic; moreover, for a given G, the numbers r and k
are uniquely determined and the groups A1, . . . ,Ar are unique up to reordering and
conjugation in G. That is, if G ∼= B1 ∗ . . .Bs ∗Fl is another such decomposition then
r = s, k = l, and there exists a permutation σ ∈ Sr such that for each i = 1, . . . ,r the
subgroups Ai and Bσ(i) are conjugate in G.

Proposition 11. Assume that the Borel conjecture is true. Then in Top the monoid
generated by aspherical manifolds is a unique decomposition factorization monoid
for n ≥ 4.

Proof. Let N := N1# . . .#Nk and M := M1# . . .#Ml with Ni and Mj aspherical for
all i and j. Crushing all connecting spheres to points, we obtain projection maps
pN : N → N1∨ . . .∨Nk and pM : M → M1∨ . . .∨Ml . Suppose there is an orientation
preserving homeomorphism f : N

∼=−→M. The maps pN and pM induce isomorphisms
on the fundamental groups by Lemma 1.(1). We consider the isomorphism ϕ :=
pM∗ ◦ f∗ ◦ p−1

N∗ : π1(N1) ∗ · · · ∗ π1(Nk) → π1(M1) ∗ · · · ∗ π1(Ml). Note that π1(Nj) is
never infinite cyclic since the dimension of Nj is larger than one. By Lemma 8
and Lemma 9, k = l and for each j there is an i with π1(Nj) ∼= π1(Mi). Moreover,
since ϕ(π1(Nj)) is conjugate to π1(Mi) in π1(M), we see that the map π1(Nj) →
π1(N1) ∗ · · · ∗Nk

ϕ−→ π1(M1) ∗ · · · ∗ π1(Mk) → π1(Mi) is an isomorphism. Hence it
induces a homotopy equivalence Nj → Mi. The fundamental class of N is mapped
to the fundamental classes ([Nj]) j ∈⊕k

r=1 Hn(Nr;Z)∼= Hn(N1∨ . . .∨Nk;Z). Hence
the homotopy equivalence Nj → Mi is orientation preserving. Assuming the Borel
conjecture, it follows that Nj is orientation preserving homeomorphic to Mi. Thus
the decomposition is unique. ��
Remark 7. Finally, in the smooth and PL categories in dimensions n ≥ 5, we also
thank the referee for suggesting that the existence of exotic tori might lead to the
failure of unique factorisation in the monoid generated by aspherical manifolds: We
think that this is an attractive approach to attacking Question 6.

Acknowledgements Most of the work on this paper happened while the authors attended the
workshop “Topology of Manifolds: Interactions Between High and Low Dimensions” that took
place January 7th-18th at the Mathematical Research Institute MATRIX in Creswick, Australia.
We are very grateful to MATRIX for providing an excellent research environment.

SF and ML were supported by the SFB 1085 “Higher Invariants” at the University of Re-
gensburg funded by the DFG, FH and DK were funded by the Deutsche Forschungsgemeinschaft

27



(DFG, German Research Foundation) under Germany’s Excellence Strategy - GZ 2047/1, Projekt-
ID 390685813. JN was supported by the UK Engineering and Physical Sciences Research Council
(EPSRC) grant EP/N509577/1.

We wish to thank Mark Powell, Manuel Krannich, and Patrick Orson for helpful conversa-
tions. We also wish to thank the referee for several useful comments. In particular the proof of
Proposition 11 was suggested to us by the referee.

References

1. D. Barden: Simply connected five-manifolds. Ann. of Math. 82, 365–385 (1965)
2. E. Bayer: Factorisation is not unique for higher dimensional knots. Comment. Math. Helv.

55, 583-592 (1980)
3. M. Behrens, M. Hill, M. Hopkins and M. Mahowald: Detecting exotic spheres in low dimen-

sions using coker J, J. Lond. Math. Soc. (2) 101, 1173–1218 (2020)/
4. F. R. Beyl and N. Waller: A stably free nonfree module and its relevance for homotopy

classification, case Q28. Algebr. Geom. Topol. 5, 899–910 (2005)
5. G. Bredon: Topology and geometry, Graduate Texts in Mathematics 139. Springer-Verlag

(1993)
6. W. H. Browning. Homotopy types of certain finite CW-complexes with finite fundamental

group, PhD Thesis, Cornell University (1979)
7. S. E. Cappell: On connected sums of manifolds, Topology 13, 395–400 (1974)
8. S. E. Cappell: A spitting theorem for manifolds, Inventiones Math. 33, 69–170 (1976)
9. S. E. Cappell and J. L. Shaneson: On four-dimensional surgery and applications, Comment.

Math. Helv. 46, 500–528 (1971)
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The Levine-Tristram signature: a survey

Anthony Conway

Abstract The Levine-Tristram signature associates to each oriented link L in S3 a
function σL : S1 →Z. This invariant can be defined in a variety of ways, and its nu-
merous applications include the study of unlinking numbers and link concordance.
In this survey, we recall the three and four dimensional definitions of σL, list its
main properties and applications, and give comprehensive references for the proofs
of these statements.

1 Introduction

Given an oriented link L ⊂ S3, the Levine-Tristram signature is a function σL : S1 →
Z whose study goes back to the sixties [94, 57]. The main goal of this survey ar-
ticle is to collect the various definitions of σL, while a secondary aim is to list its
properties. Although some elementary arguments are outlined in the text, we pro-
vide detailed external references for most of the proofs. Briefly, we will discuss the
definition in terms of Seifert matrices, various 4-dimensional interpretations as well
as connections to pairings on the Alexander module. The next paragraphs give the
flavor of some of these constructions.

Most knot theory textbooks that cover the Levine-Tristram signature introduce
it using Seifert matrices [61, 49, 46, 67]. Indeed, as we review in Section 2, the
Levine-Tristram signature at ω ∈ S1 can be defined using any Seifert matrix A for L
by setting

σL(ω) = sign(1−ω)A+(1−ω)AT .

In the same section, we collect the numerous properties of σL: after listing its behav-
ior under mirror images, orientation reversals and satellite operations, we review ap-
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plications to unlinking numbers, link concordance and discuss various incarnations
of the Murasugi-Tristram inequality [78, 94].

The signature admits several 4-dimensional interpretations: either using covers
of D4 branched along surfaces cobounding L [96], or applying twisted signatures,
or as invariants of the zero framed surgery along L. Before discussing these con-
structions in detail in Section 3, let us briefly sketch one of them. Given a locally flat
compact connected oriented surface F ⊂ D4 with boundary L, we setWF := D4 \νF
and consider the coefficient system π1(WF) → H1(WF) ∼= Z→ C which maps the
meridian of F to ω . This gives rise to a twisted intersection form λCω (WF) on the
twisted homology C-vector space H2(WF ;Cω) whose signature coincides with the
Levine-Tristram signature:

σL(ω) = signλCω (WF).

Section 4 is concerned with methods of extracting σK(ω) from pairings on the
Alexander module H1(XK ;Z[t±1]) of a knot K (here we write XK := S3 \ νK for
the exterior of K) [76, 52]. Briefly, the signature σK can be extracted by considering
the primary decomposition of H1(XK ;R[t±1]) and by studying the Milnor pairing or
the Blanchfield pairing

H1(XK ;Z[t±1])×H1(XK ;Z[t±1])→Q(t)/Z[t±1].

In fact, as we discuss in Section 5, the signature can also be understood as a
signed count of SU(2) representations of π1(XK) with fixed meridional traces [64,
45], or in terms of the Meyer cocycle and the Burau representation [34]. Summariz-
ing, σL admits a wealth of definitions, which never seemed to have been collected
in a single article.

We conclude this introduction with two remarks. Firstly, note that we mention
neither the Gordon-Litherland pairing [40] nor the multivariable signature [15]. Sec-
ondly, we stress that even though σL was defined 50 years ago, it continues to be
actively studied nowadays. We mention some recent examples: results involving
concordance properties of positive knots can be found in [3]; the behavior of σL
under splicing is now understood [23]; the relation between the jumps of σL and
the zeroes of ΔL has been clarified [38, 63]; a diagrammatic interpretation of σL (in-
spired by quantum topology) is conjectured in [87]; there is a characterization of the
functions that arise as knot signatures [70]; new lower bounds on unknotting num-
bers have been obtained via σK [71]; there is a complete description of the ω ∈ S1

at which σL is a concordance invariant [80]; and σL is invariant under topological
concordance [84].

This survey is organized is as follows. In Section 2, we review the Seifert matrix
definition of σL and list its properties. In Section 3, we outline and compare the
various four dimensional interpretations of σL. In Section 4, we give an overview of
the definitions using the Milnor and Blanchfield pairings. In Section 5, we outline
additional constructions in terms of SU(2) representations and braids.
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2 Definition and properties

In this section, we review the definition of the Levine-Tristram and nullity using
Seifert matrices (Subsection 2.1) before listing several properties of these invariants
(Subsections 2.2, 2.3 and 2.4). Knot theory textbooks which mention the Levine-
Tristram signature include [61, 49, 46, 67].

2.1 The definition via Seifert surfaces

A Seifert surface for an oriented link L is a compact oriented surface F whose ori-
ented boundary is L. While a Seifert surface may be disconnected, we require that
it has no closed components. Since F is oriented, it admits a regular neighborhood
homeomorphic to F × [−1,1] in which F is identified with F ×{0}. For ε =±1, the
push off maps iε : H1(F ;Z) → H1(S3 \F ;Z) are defined by sending a (homology
class of a) curve x to iε(x) := x×{ε}. The Seifert pairing of F is the bilinear form

H1(F ;Z)×H1(F ;Z)→Z

(a,b) �→ �k(i−(a),b).

A Seifert matrix for an oriented link L is any matrix representing the Seifert pair-
ing. Although Seifert matrices do not provide link invariants, their so-called S-
equivalence class does [61, Chapter 8]. Given a Seifert matrix A, observe that the
matrix (1−ω)A+(1−ω)AT is Hermitian for all ω lying in S1.

Definition 1. Let L be an oriented link, let F be a Seifert surface for L with β0(F)
components and let A be a matrix representing the Seifert pairing of F . Given ω ∈
S1, the Levine-Tristram signature and nullity of L at ω are defined as

σL(ω) := sign((1−ω)A+(1−ω)AT ),

ηL(ω) := null((1−ω)A+(1−ω)AT )+β0(F)−1.

These signatures and nullities are well defined (i.e. they are independent of the
choice of the Seifert surface) [61, Theorem 8.9] and, varying ω along S1, pro-
duce functions σL,ηL : S1 →Z. The Levine-Tristram signature is sometimes called
the ω-signature (or the equivariant signature or the Tristram-Levine signature),
while σL(−1) is referred to as the signature of L or as the Murasugi signature
of L [78]. The definition of σL(ω) goes back to Tristram [94] and Levine [57].

Remark 1. We note that σL and ηL are piecewise constant: both observations follow
from the fact that the Alexander polynomial ΔL(t) can be computed (up to its in-
determinacy) by the formula ΔL(t) = det(tA−AT ). This latter fact also shows that,
given ω ∈ S1 \{1}, the nullity ηL(ω) vanishes if and only if ΔL(ω) �= 0. Moreover,
the discontinuities of σL only occur at zeros of (t −1)Δ tor

L (t) [38, Theorem 2.1].
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Several authors assume Seifert surfaces to be connected, and the nullity is then
simply defined as the nullity of the matrix H(ω) = (1− ω)A + (1− ω)AT . The
extra flexibility afforded by disconnected Seifert surfaces can for instance be taken
advantage of when studying the behavior of the signature and nullity of boundary
links.

Remark 2. Since the matrix (1−ω)A+(1−ω)AT vanishes at ω = 1, we shall fre-
quently think of σL and ηL as functions on S1∗ := S1 \ {1}. Note nevertheless that
for a knot K, the function σK vanishes in a neighborhood of 1 ∈ S1 [59, page 255],
while for a μ-component link, one can only conclude that the limits of |σL(ω)| are
at most μ −1 as ω approaches 1.

2.2 Properties of the signature and nullity

This subsection discusses the behaviour of the signature and nullity under operations
such as orientation reversal, mirror image, connected sums and satellite operations.

The following proposition collects several properties of the Levine-Tristram sig-
nature.

Proposition 1. Let L be a μ-component oriented link and let ω ∈ S1.

1. The Levine-Tristram signature is symmetric: σL(ω) = σL(ω).
2. The integer σL(ω)+ηL(ω)−μ +1 is even.
3. If ΔL(ω) �= 0, then σL(ω) = μ − sgn(iμ ∇L(

√
ω)) mod 4. 1

4. If mL denotes the mirror image of L, then σmL(ω) =−σL(ω).
5. If rL is obtained by reversing the orientation of each component of L, then

σrL(ω) = σL(ω).
6. Let L′ and L′′ be two oriented links. If L is obtained by performing a single con-

nected sum between a component of L′ and a component of L′′, then σL(ω) =
σL′(ω)+σL′′(ω).

7. The signature is additive under the disjoint sum operation: if L is the link ob-
tained by taking the disjoint union of two oriented links L′ and L′′, then σL(ω) =
σL′(ω)+σL′′(ω).

8. If S is a satellite knot with companion knot C, pattern P and winding number n,
then

σS(ω) = σP(ω)+σC(ωn).

Proof. The first assertion is immediate from Definition 1. The proof of the second
and third assertions can be found respectively in [89]; see also [15, Lemmas 5.6
and 5.7]. The proof of the third assertion can be found in [61, Theorem 8.10]; see

1 Here ∇L(t) denotes the one variable potential function of L. Given a Seifert matrix A for L,
the normalized Alexander polynomial is DL(t) = det(−tA + t−1AT ) and ∇L(t) can be defined
as ∇L(t) = DL(t)/(t − t−1). In what follows, for a complex number ω = eiθ with 0 < θ < 2π ,
we write

√
ω for the complex number eiθ/2.
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also [15, Proposition 2.10]. The proof of the fifth, sixth and seventh assertions can be
respectively be found in [15, Corollary 2.9, Proposition 2.12, Proposition 2.13]. For
the proof of the last assertion, we refer to [66, Theorem 2]; see also [89, Theorem
9] (and [72, Theorem 3]) for the case ω =−1.

Note that the second and third assertions of Proposition 1 generalize the well
known fact that the Murasugi signature of a knot K is even. The behavior of σL
under splicing (a generalization of the satellite operation) is discussed in [23, 24].
For discussions on the (Murasugi) signature of covering links, we refer to [78, 41]
and [42] (which also provides a signature obstruction to a knot being periodic).

The following proposition collects the corresponding properties of the nullity.

Proposition 2. Let L be an oriented link and let ω ∈ S1∗ := S1 \{1}.

1. The nullity is symmetric: ηL(ω) = ηL(ω).
2. The nullity ηL(ω) is nonzero if and only if ΔL(ω) = 0.
3. If mL denotes the mirror image of L, then ηmL(ω) = ηL(ω).
4. If rL is obtained by reversing the orientation of each component of L, then

ηrL(ω)= ηL(ω).

5. Let L′ and L′′ be two oriented links. If L is obtained by performing a single con-
nected sum between a component of L′ and a component of L′′, then ηL(ω) =
ηL′(ω)+ηL′′(ω).

6. If L is the link obtained by taking the disjoint union of two oriented links L′
and L′′, then we have ηL(ω) = ηL′(ω)+ηL′′(ω)+1.

7. The nullity ηL(ω) is equal to the dimension of the twisted homology C-vector
space H1(XL;Cω), where Cω is the right Z[π1(XL)]-module arising from the
map Z[π1(XL)]→ C,γ → ω�k(γ,L).

8. If S is a satellite knot with companion knot C, pattern P and winding number n,
then

ηS(ω) = ηP(ω)+ηC(ωn).

Proof. The first assertion is immediate from Definition 1, while the second assertion
was already discussed in Remark 1. The proof of assertions (3)− (6) can respec-
tively be found in [15, Proposition 2.10, Corollary 2.9, Proposition 2.12, Proposi-
tion 2.13]. To prove the penultimate assertion, pick a connected Seifert surface F
for L, let A be an associated Seifert matrix and set H(ω) = (1−ω)A+(1−ω)AT .
Since tA − AT presents the Alexander module H1(XL;Z[t±1]), some homologi-
cal algebra (as for instance in [21, proof of Proposition 3.4]) shows that H(ω)
presents H1(XL;Cω); the assertion follows. The satellite formula can be deduced
from [24, Theorem 5.2], or by using the equality ηS(ω) = dimCH1(XS;Cω) and
running a Mayer-Vietoris argument for H1(XS;Cω).

We conclude this subsection by mentioning some additional facts about the
signature function. Livingston provided a complete characterization of the func-
tions σ : S1 →Z that arise as the Levine-Tristram signature function of a knot [70].
The corresponding question for links appears to be open. If ΔL(t) is not identically
zero, then it has at least σ(L) roots on the unit circle [63, Appendix]. Finally, we
describe the Murasugi signature for some particular classes of links.
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Remark 3. Rudolph showed that theMurasugi signature of the closure of a nontrivial
positive braid is negative (or positive, according to conventions) [88]. This result
was later independently extended to positive links [93, 85] (see also [17]) and to
almost positive links [86]. Later, Stoimenow improved Rudolph’s result by showing
that the Murasugi signature is bounded by an increasing function of the first Betti
number [91]. Subsequent improvements of this result include [27, 3]. Formulas for
the Levine-Tristram signature of torus knots can be found in [66].

2.3 Lower bounds on the unlinking number

In this subsection, we review some applications of signatures to unlinking and split-
ting links.

The unlinking number u(L) of a link L is the minimal number of crossing changes
needed to turn L into an unlink. The splitting number sp(L) of L is the minimal
number of crossing changes between different components needed to turn L into the
split union of its components. The Levine-Tristram signature and nullity are known
to provide lower bounds on both these quantities:

Theorem 1. Set S1∗ = S1 \{1}. Let L = L1∪ . . .∪Lμ be an oriented link and let ω ∈
S1∗.

1. The signature provides lower bounds on the unlinking number:

|σL(ω)|+ |ηL(ω)+μ −1| ≤ 2u(L).

2. The signature and nullity provide lower bounds on the splitting number:

∣∣∣σL(ω)+∑
i< j

�k(Li,L j)−
μ

∑
i=1

σLi(ω)
∣∣∣+

∣∣∣μ −1−ηL(ω)+
μ

∑
i=1

ηLi(ω)
∣∣∣≤ sp(L).

At the time of writing, the second inequality can only be proved using the multi-
variable signature [14]. A key step in proving the first inequality is to understand the
behavior of the signature and nullity under crossing changes. The next proposition
collects several such results:

Proposition 3. Given, ω ∈ S1∗, the following assertions hold.

1. If L+ is obtained from L− by changing a single negative crossing change, then

(σL+(ω)±ηL+(ω))− (σL−(ω)±ηL−(ω)) ∈ {0,−2}.

2. If, additionally, we let μ denote the number of components of L+ (and L−) and
assume that ω is neither a root of ΔL−(t) nor of ΔL+(t), then

σL+(ω)−σL−(ω) =

{
0 if (−1)μ ∇L+(

√
ω)∇L−(

√
ω)> 0,

−2 if (−1)μ ∇L+(
√

ω)∇L−(
√

ω)< 0.
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3. If L and L′ differ by a single crossing change, then

|ηL(ω)−ηL′(ω)| ≤ 1.

Proof. The proof of the first and third assertions can be found in [79, Lemma 2.1]
(the proof is written for ω = −1, but also holds for general ω). The proof of the
second assertion now follows from the second item of Proposition 1 which states
that modulo 4, the signature σL(ω) is congruent to μ +1 or μ −1 according to the
sign of iμ ∇L(

√
ω).

Note that similar conclusions hold if L− is obtained from L+ by changing a single
negative crossing change; we refer to [79, Lemma 2.1] for the precise statement.
Although Proposition 3 is well known, it seems that the full statement is hard to find
in the literature: subsets of the statement for knots appear for instance in [26, 35, 45]
(away from the roots of ΔK(t)) and for links in [79, Lemma 2.1] (for ω = −1,
without the statement involving ∇L), and [15, Section 5] (in which various local
relations are described; see also [22, Section 7.10] and [81, Lemma 3.1]).

We conclude this subsection with two additional remarks in the knot case.

Remark 4. In the knot case, the second assertion of Proposition 3 is fairly well
known (e.g. [35, Lemma 2.2] and [45, Equation (10)]). Indeed, under the same
assumptions as in Proposition 3, and using the normalized Alexander polyno-
mial DL(t) (which satisfies DL(t) = (t − t−1)∇L(t)), it can be rewritten as

σK+(ω)−σK−(ω) =

{
0 if DK+(

√
ω)DK−(

√
ω)> 0,

−2 if DK+(
√

ω)DK−(
√

ω)< 0.

Finally, note that for knots, the lower bound on the unknotting number can be sig-
nificantly improved upon by using the jumps of the signature function [71]. Other
applications of the Levine-Tristram signature to unknotting numbers can be found
in [90] (as well as a relation to finite type invariants).

2.4 Concordance invariance and the Murasugi-Tristram
inequalities

In this subsection, we review properties of the Levine-Tristram signature related
to 4-dimensional topology. Namely we discuss the conditions under which the sig-
nature is a concordance invariant, and gives lower bounds on the 4-genus.

Two oriented μ-component links L and J are smoothly (resp. topologically) con-
cordant if there is a smooth (resp. locally flat) embedding into S3× I of a disjoint
union of μ annuli A ↪→ S3× I, such that the oriented boundary of A satisfies

∂A =−L J ⊂−S3S3 = ∂ (S3× I).
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The integers σL(ω) and ηL(ω) are known to be concordance invariants for any root
of unity ω of prime power order [78, 94]. However, it is only recently that Nagel
and Powell gave a precise characterization of the ω ∈ S1 at which σL and ηL are
concordance invariants [80] (see also [97]). To describe this characterization, we
say that a complex number ω ∈ S1∗ is a Knotennullstelle if it is the root of a Laurent
polynomial p(t) ∈ Z[t±1] satisfying p(1) = ±1. We write S1! for the set of ω ∈ S1

which do not arise as a Knotennullstelle.
The main result of [80] can be stated as follows.

Theorem 2. The Levine-Tristram signature σL and nullity ηL are concordance in-
variants at ω ∈ S1∗ if and only if ω ∈ S1! .

In the knot case, Cha and Livingston had previously shown that for any Knoten-
nullstelle ω , there is a slice knot K with σK(ω) �= 0 and ηK(ω) �= 0 [13]. Here, re-
call that a knot K ⊂ S3 is smoothly (resp. topologically) slice if it is smoothly (resp.
topologically) concordant to the unknot or, equivalently, if it bounds a smoothly
(resp. locally flat) properly embedded disk in the 4-ball. Still restricting to knots,
the converse can be established as follows.

Remark 5. The Levine-Tristram signature of an oriented knot K vanishes at ω ∈ S1!
whenever K is algebraically slice i.e. whenever it admits a metabolic Seifert ma-
trix A. To see this, first note that since A is metabolic, the matrix H(ω) = (1−ω)A+
(1−ω)AT is congruent to one which admits a half size block of zeros in its upper left
corner. Furthermore the definition of S1! and the equality H(t) = (t−1−1)(tA−AT )
imply that H(ω) is nonsingular for ω ∈ S1! : indeed, since K is a knot, ΔK(1) =±1.
Combining these facts, σK(ω) = sign(H(ω)) vanishes for ω ∈ S1! . As slice knots
are algebraically slice (see e.g. [61, Proposition 8.17]), we have established that if K
is slice, then σK vanishes on S1! .

Using Remark 5 and Theorem 1, one sees that the Levine-Tristram signature
actually provides lower bounds on the slicing number of a knot K i.e. the minimum
number of crossing changes required to convert K to a slice knot [68, 83]. In a
somewhat different direction, the Levine-Tristram signature is also a lower bound
on the algebraic unknotting number [30, 77, 6, 8, 7].

Several steps in Remark 5 fail to generalize from knots to links: there is no ob-
vious notion of algebraic sliceness for links and, if L has two components or more,
then ΔL(1) = 0. In fact, even the notion of a slice link deserves some comments.

Remark 6. An oriented link L = L1∪ . . .∪Lμ is smoothly (resp. topologically) slice
in the strong sense if there are disjointly smoothly (resp. locally flat) properly em-
bedded disks D1, . . . ,Dμ with ∂Di = Li. As a corollary of Theorem 2, one sees that
if L is topologically slice in the strong sense, then σL(ω) = 0 and ηL(ω) = μ − 1
for all ω ∈ S1! .

On the other hand, an oriented link is smoothly (resp. topologically) slice in the
ordinary sense if it is the cross-section of a single smooth (resp. locally flat) 2-sphere
in S4. It is known that if L is slice in the ordinary sense, then σL(ω) = 0 for all ω of
prime power order [15, Corollary 7.5] (see also [47, Theorem 3.13]). There is little
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doubt that this result should hold for a larger subset of S1 and in the topological
category.

In a similar spirit, the Levine-Tristram signatures can be used to provide restric-
tions on the surfaces a link can bound in the 4-ball. Such inequalities go back to
Murasugi [78] and Tristram [94]. Since then, these inequalities have been gener-
alized in several directions [37, Corollary 4.3], [28, Theorem 5.19], [15, Theorem
7.2], [69], [97, Section 4] and [21, Theorem 1.2 and Corollary 1.4]. Applications to
the study of algebraic curves can be found in [28, 81, 82].

The following theorem describes such a Murasugi-Tristram inequality in the
topological category which holds for a large subset of S1.

Theorem 3. If an oriented link L bounds an m-component properly embedded lo-
cally flat surface F ⊂ D4 with first Betti number b1(F), then for any ω ∈ S1! , the
following inequality holds:

|σL(ω)|+ |ηL(ω)−m+1| ≤ b1(F).

Observe that if L is a strongly slice link, then m is equal to the number of com-
ponents of L and b1(F) = 0 and thus σL(ω) = 0 and ηL(ω) = m−1 for all ω ∈ S1! ,
recovering the result mentioned in Remark 6. On the other hand, if K is a knot, then
Theorem 3 can be expressed in terms of the topological 4-genus g4(K) of K: the
minimal genus of a locally flat surface in D4 cobounding K. An article studying the
sharpness of this bound includes [62].

In order to obtain results which are valid on the whole of the unit circle S1, it is
possible to consider the average of the one-sided limits of the signature and nullity.
Namely for ω = eiθ ∈ S1 and any Seifert matrix A, one sets H(ω) = (1−ω)A+
(1−ω)AT and considers

σ av
L (ω) =

1
2
(
lim

η→θ+
sign(H(eiη))+ lim

η→θ−
sign(H(eiη))

)
,

ηav(ω) =
1
2
(
lim

η→θ+
null(H(eiη))+ lim

η→θ−
null(H(eiη))

)
.

The earliest explicit observation that these averaged Levine-Tristram signatures are
smooth concordance invariants seems to go back to Gordon’s survey [39]. Working
with the averaged Levine-Tristram signature and in the topological locally flat cate-
gory, Powell [84] recently proved a Murasugi-Tristram type inequality which holds
for each ω ∈ S1∗.

We conclude this subsection with three remarks on knots.

Remark 7. A knot K is smoothly (resp. topologically) doubly slice if it is the cross
section of an unknotted smoothly (resp. locally flat) embedded 2-sphere S2 in S4. It
is known that if K is topologically doubly slice, then σK(ω) vanishes for all ω ∈ S1;
no averaging is needed [92, 53, 59]. Is there a meaningful statement for links?

The Levine-Tristram signature also appears in knot concordance in relation to
a particular von Neumann ρ-invariant (or L2-signature). This invariant associates a
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real number to any closed 3-manifold together with a map φ : π1(M)→Γ , with Γ a
PTFA group. When M is the 0-framed surgery along a knot K and φ is the abelian-
ization map, then this invariant coincides with the (normalized) integral of σK(ω)
along the circle [18, Proposition 5.1]. Computations of this invariant on (iterated)
torus knots can be found in [55, 5, 20].

The Levine-Tristram signature is an invariant of rational knot concordance at
prime order roots of unity; see [12, Theorem 1.1] and [16, Proposition 4.2] for fur-
ther details.

3 4-dimensional definitions of the signature

In this section, we describe 4-dimensional definitions of the Levine-Tristram sig-
nature using embedded surfaces in the 4-ball (Subsection 3.1) and as a bordism
invariant of the 0-framed surgery (Subsection 3.2).

3.1 Signatures via exteriors of surfaces in the 4-ball

We relate the Levine-Tristram signature to signature invariants of the exterior of
embedded surfaces in the 4-ball. Historically, the first approach of this kind in-
volved branched covers [96] (see also [11, 47]) while more recent results make
use of twisted homology [18, 97, 84].

Given a smoothly properly embedded connected surface F ⊂ D4, denote by WF
the complement of a tubular neighborhood of F . A short Mayer-Vietoris argu-
ment shows that H1(WF ;Z) is infinite cyclic and one may consider the covering
space Wk →WF obtained by composing the abelianization homomorphism with the
quotient map H1(WF ;Z)∼=Z→Zk. The restriction of this cover to F ×S1 is id×p,
where p : S1 → S1 is the k-fold cover of the circle. Extending p to a cover D2 → D2

branched along 0, and setting

W F :=Wk ∪F×S1 (F ×D2)

produces a cover W F → D4 branched along F = F ×{0}. Denote by t a generator
of the finite cyclic group Zk. The C[Zk]-module structure of H2(W F ,C) gives rise
to a complex vector space

H2(W F ,C)ω = {x ∈ H2(W F ,C) | tx = ωx}

for each root of unity ω of order k. Restricting the intersection form on H2(W F ,C)
to H2(W F ,C)ω produces a Hermitian pairing whose signature we denote by σω(W F).

The next result, originally due to Viro [96], was historically the first 4-dimensional
interpretation of the Levine-Tristram signature; see also [47].
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Theorem 4. Assume that an oriented link L bounds a smoothly properly embedded
compact oriented surface F ⊂ D4 and let W F be the k-fold cover of D4 branched
along F. Then, for any root of unity ω ∈ S1∗ of order k, the following equality holds:

σL(ω) = σω(W F).

As for the results described in Subsection 2.4, Theorem 4 can be sharpened
by working in the topological category and using arbitrary ω ∈ S1∗. As the next
paragraphs detail, the idea is to rely on twisted homology instead of branched cov-
ers [84, 97, 21].

Let ω ∈ S1∗. From now on, we assume that F ⊂ D4 is a locally flat properly
embedded (possibly disconnected) compact oriented surface. Since H1(WF ;Z) is
free abelian, there is a map H1(WF ;Z) → C obtained by sending each meridian
of F to ω . Precomposing with the abelianization homomorphism, gives rise to a
right Z[π1(WF)]-module structure on C which we denote by Cω for emphasis. We
can therefore consider the twisted homology groups H∗(WF ;Cω) and the corre-
sponding C-valued intersection form λWF ,Cω on H2(WF ;Cω).

The following result can be seen as a generalization of Theorem 4.

Theorem 5. Assume that an oriented link L bounds a properly embedded locally flat
compact oriented surface F ⊂D4. Then the following equality holds for any ω ∈ S1∗:

σL(ω) = sign(λWF ,Cω ).

A key feature of Theorems 4 and 5 lies in the fact that the signature invariants
associated to WF do not depend on the choice of F . This plays a crucial role in
the 4-dimensional proofs ofMurasugi-Tristram type inequalities. This independance
statement relies on the Novikov-Wall addivity as well as on the G-signature theorem
(for Theorem 4) and on bordisms considerations over the classifying space BZ (for
Theorem 5).

3.2 Signatures as invariants of the 0-framed surgery

In this subsection, we outline how the Levine-Tristram signature of a link L can
be viewed as a bordism invariant of the 0-framed surgery along L. To achieve this,
we describe bordism invariants of pairs consisting of a closed connected oriented
3-manifold together with a map from π1(M) to Zm or Z.

Let M be an oriented closed 3-manifold and let χ : π1(M) → Zm be a homo-
morphism. Since the bordism group Ω3(Zm) is finite, there exists a non-negative
integer r, a 4-manifold W and a map ψ : π1(W ) → Zm such that the bound-
ary of W consists of the disjoint union of r copies of M and the restriction
of ψ to ∂W coincides with χ on each copy of M. If these conditions are sat-
isfied, we write ∂ (W,ψ) = r(M,χ) for brevity. Mapping the generator of Zm

to ω := e
2πi
m gives rise to a map Z[Zm] → Q(ω). Precomposing with ψ , we
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obtain a (Q(ω),Z[π1(W )])-bimodule structure on Q(ω) and twisted homology
groups H∗(W ;Q(ω)). TheQ(ω)-vector space H2(W ;Q(ω)) is endowed with aQ(ω)-
valued Hermitian form λW,Q(ω) whose signature is denoted sign

ψ(W ) := sign(λW,Q(ω)).
In this setting, the Casson-Gordon σ -invariant of (M,χ) is

σ(M,χ) :=
1
r
(signψ(W )− sign(W )) ∈Q.

We now focus on the case where M = ML is the closed 3-manifold obtained by per-
forming 0-framed surgery on a link L. In this case, a short Mayer-Vietoris argument
shows that H1(ML;Z) is freely generated by the meridians of L.

Casson and Gordon proved the following theorem [11, Lemma 3.1].

Theorem 6. Let χ : H1(ML;Z)→ Zm ⊂ C∗ be the character mapping each merid-
ian of L to ωr, where ω = e

2πi
m and 0< r < m. Then the Casson-Gordon σ -invariant

satisfies
σ(ML,χ) = σL(ωr).

Note that Casson and Gordon proved a version of Theorem 6 for arbitrary surg-
eries on links; we also refer to [37, Theorem 3.6] and [15, Theorem 6.7] for gener-
alizations to more general characters. The idea of defining link invariants using the
Casson-Gordon invariants is pursued further in [28, 29].

Remark 8. The Casson-Gordon σ -invariant (and thus the Levine-Tristram signature)
can be understood as a particular case of the Atiyah-Patodi-Singer ρ-invariant [2]
which associates a real number to pairs (M,α), with M a closed connected oriented
3-manifold and α : π1(M)→ U(k) a unitary representation. For further reading on
this point of view, we refer to [60, 56, 31, 32, 33].

Next, we describe how to circumvent the restriction that ω be of finite order.
Briefly, the idea is to work in the infinite cyclic cover as long as possible, delaying
the appearance of ω [65, Section 2]; see also [18, Section 5]. Following [84], the
next paragraphs describe the resulting construction.

Let M be a closed connected oriented 3-manifold, and let φ : π1(M) → Z

be a homomorphism. Since Ω STOP
3 (Z) is zero, M bounds a connected topolog-

ical 4-manifold W and there is a map ψ : π1(W ) → Z which extends φ . This
map endows Q(t) with a (Q(t),Z[π1(W )])-bimodule structure and therefore gives
rise to a Q(t)-valued intersection form λW,Q(t) on H2(W ;Q(t)). It can be checked
that λW,Q(t) induces a nonsingular Hermitian form λ nonsing

W,Q(t) on the quotient of H2(W ;Q(t))

by im(H2(M;Q(t)) → H2(W ;Q(t))) [84, Lemma 3.1]. As a consequence, λ nonsing
W,Q(t)

gives rise to an element [λ nonsing
W,Q(t) ] of the Witt group W (Q(t)). Taking the averaged

signature at ω ∈ S1 of a representative of an element inW (Q(t)) produces a well de-
fined homomorphism signω : W (Q(t))→C. Thus, for ω ∈ S1∗ and (M,φ)= ∂ (W,ψ)
as above, one can set

σ av
M,φ (ω) = signω([λ

nonsing
W,Q(t) ])− sign(W ).
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It can be checked that σ av
M,φ does not depend onW and ψ [84, Section 3]. We now re-

turn to links: we let L be an oriented link, assume that M is the 0-framed surgery ML
and that φ is the map φL which sends each meridian of L to 1.

The following result is due to Powell [84, Lemma 4.1].

Theorem 7. For any oriented link L and any ω ∈ S1∗, the following equality holds:

σ av
ML,φL

(ω) = σ av
L (ω).

Describing σL as a 3-manifold invariant as in Theorem 7 provides a useful tool
to work in the topological category; see for instance Powell’s proof a Murasugi-
Tristram type inequality [84, Theorem 1.4].

4 Signatures via pairings on infinite cyclic covers

In this section, we review two additional intrinsic descriptions of the Levine-
Tristram signature of a knot K. Both constructions make heavy use of the algebraic
topology of the infinite cyclic cover of the exterior of K: the first uses the Milnor
pairing (Subsection 4.1), while the second relies on the Blanchfield pairing (Sub-
section 4.2).

4.1 Milnor signatures

In this subsection, we recall the definition of a pairing which was first described by
Milnor [76]. We then outline how the resulting “Milnor signatures" are related to
(the jumps of) the Levine-Tristram signature.

Given an oriented knot K in S3, use XK = S3 \ νK to denote its exterior. The
kernel of the abelianization homomorphism π1(XK)→ H1(XK ;Z)∼=Z gives rise to
an infinite cyclic cover X∞

K → XK . Milnor showed that the cup product

H1(X∞
K ;R)×H1(X∞

K ,∂X∞
K ;R)→ H2(X∞

K ,∂X∞
K ;R)∼= R

defines a nonsingular skew-symmetric R-bilinear form [76, Assertion 9]. Since the
canonical inclusion (XK , /0) → (XK ,∂XK) induces an isomorphism H1(X∞

K ;R) →
H1(X∞

K ,∂X∞
K ;R), the aforementioned cup product pairing gives to rise to a nonsin-

gular skew-symmetric form

∪ : H1(X∞
K ;R)×H1(X∞

K ;R)→R.

Use t∗ to denote the automorphism induced on H1(X∞
K ;R) by the generator of the

deck transformation group of X∞
K . Milnor defines the quadratic form of K as the

pairing
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bK : H1(X∞
K ;R)×H1(X∞

K ;R)→R

(x,y) �→ (t∗x)∪ y+(t∗y)∪ x.

This pairing is symmetric and nonsingular [76, Assertion 10] and Milnor defines
the signature of K as the signature of bK . Erle later related sign(bK) to the Murasugi
signature of K [25]:

Theorem 8. Let K be an oriented knot. The signature of the symmetric form bK is
equal to the Murasugi signature of K:

sign(bK) = σ(K).

Next, we describe the so-called Milnor signatures. AsR is a field, the ringR[t±1]
is a PID and therefore the torsion R[t±1]-module H := H1(X∞

K ;R) decomposes as a
direct sum over its p(t)-primary components, where p(t) ranges over the irreducible
polynomials of R[t±1]. 2 As explained in [76, proof of Assertion 11], the symmet-
ric form bK decomposes orthogonally once we distinguish symmetric polynomials
(i.e. p(t) = rt±i p(t−1); written p(t) .

= p(t−1)) from non-symmetric ones:3

(H1(X∞
K ;R),bK) =

⊕

p(t) .
=p(t−1)

(Hp(t),bK |Hp(t) )

⊕
⊕

p(t)
.
�=p(t−1)

(Hp(t)⊕Hp(t−1),bK |Hp(t)⊕Hp(t−1)
).

In a nutshell, for p(t) irreducible and symmetric, the restrictions of bK |Hpθ (t)
pro-

duce additional signature invariants. If p(t) and q(t) differ by multiplication by
a unit, then their corresponding primary summands are equal. From now on, a
polynomial is thus understood to be symmetric if p(t) = p(t−1). As we are work-
ing over R[t±1], the irreducible symmetric polynomials are of the form pθ (t) =
t −2cos(θ)+ t−1 with 0< θ < π [76, page 129].

Definition 2. For 0 < θ < π , the Milnor signature σθ (K) is the signature of the
restriction of bK to the pθ (t)-primary summand of H := H1(X∞

K ;R):

σθ (K) := sign(bK |Hpθ (t) ).

Note that σθ (K) is zero if pθ (t) does not divide the Alexander polynomial ΔK(t)
of K. In particular, by Erle’s result, the Murasugi signature σ(K) is equal to the sum
of the σθ (K) over all θ such that pθ (t) divides ΔK(t). Thus, recalling that ±1 can
not be a root of the Alexander polynomial of a knot, one can write

2 By a p(t)-primary component, we mean Hp(t) = {x ∈ H | p(t)nx = 0 for some n > 0}. Observe
that Hp(t) �= 0 only if p(t) is a factor of ΔK(t).
3 Here, since we use the same notation for direct sums and orthogonal sums, the underlying alge-
braic fact to keep in mind is “if p(t)

.
�= q(t−1), then Hp(t) and Hq(t) are orthogonal".
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σ(K) = ∑
0<θ<π

σθ (K) = ∑
{θ : pθ |ΔK}

σθ (K). (1)

Next, following Matumoto, we relate the Milnor signatures to the Levine-Tristram
signatures [73]. First, note that Erle proves a stronger result than the equality σ(K)=
sign(bK): indeed he shows that bK is represented by W +W T , where W is a nonsin-
gular matrix over Z which is S-equivalent to a Seifert matrix of K; he calls such a
matrix a reduced Seifert matrix [25, Section 3.4]. As a consequence, Matumoto con-
siders an arbitrary nonsingular bilinear form on aR-vector spaceV , represented by a
matrix A and compares the signature of (1−ω)A+(1−ω)AT (for ω ∈ S1) with the
signatures of A+AT restricted to the p(t)-primary summands ofV (here t is thought
alternatively as an indeterminate and as the R-automorphism (AT )−1A) [73]).

A particular case of one of Matumoto’s results can be now be stated as fol-
lows [73, Theorem 2].

Theorem 9. Let K be an oriented knot and let ω = eiϕ with 0 < ϕ ≤ π . If ω is not
a root of ΔK(t), then the following equality holds:

σK(ω) = ∑
0<θ<ϕ

σθ (K)+
1
2

σϕ(K).

Observe that if ω = eiϕ is not a root of ΔK(t), then the Milnor signature σϕ(K)
vanishes. In particular, since −1 is never a root of the Alexander polynomial of a
knot, Theorem 9 recovers (1). The Milnor pairing can also be considered over C in
which case the statement is somewhat different [73, Theorem 1]. Informally, The-
orem 9 states that the Milnor signatures measure the jumps of σK : S1 → Z at the
roots of ΔK(t) which lie on S1. The situation for links is more complicated [50]; see
also [48].

We conclude by mentioning some further properties of the Milnor signatures.

Remark 9. The Milnor signatures are concordance invariants [76, p.129]. Milnor es-
tablishes this result by showing that his signatures vanish on slice knots and are ad-
ditive under connected sums. A satellite formula for the Milnor signatures is stated
without proof in [51].

4.2 Signatures via the Blanchfield pairing

In this subsection, we review how the Levine-Tristram signature of a knot can be
recovered from the Blanchfield pairing. Note that while the Blanchfield pairing is
known to determine the S-equivalence type of K [95], the approaches we discuss
here are arguably more concrete.

Given an oriented knot K, recall that X∞
K denotes the infinite cyclic cover of the

exterior XK . Since Z= 〈t〉 acts on X∞
K , the homology group H1(X∞

K ;Z) is naturally
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endowed with a Z[t±1]-module structure. This Z[t±1]-module is called the Alexan-
der module and is known to be finitely generated and torsion [58]. Using Q(t) to
denote the field of fractions of Z[t±1], the Blanchfield form of a knot is a Hermitian
and nonsingular sesquilinear pairing

BlK : H1(X∞
K ;Z)×H1(X∞

K ;Z)→Q(t)/Z[t±1].

In order to define BlK , we describe its adjoint

Bl•K : H1(X∞
K ;Z)→ HomZ[t±1](H1(X∞

K ;Z),Q(t)/Z[t±1])

so that BlK(x,y) = Bl•K(y)(x). 4 Using local coefficients, the Alexander module can
be written as H1(XK ;Z[t±1]). The short exact sequence of coefficients

0→Z[t±1]→Q(t)→Q(t)/Z[t±1]→ 0

gives rise to a Bockstein homomorphism

BS: H1(XK ;Q(t)/Z[t±1])→ H2(XK ;Z[t±1]).

Since the Alexander module is torsion, BS is in fact an isomorphism. Compos-
ing the map induced by the inclusion ι : (XK , /0) → (XK ,∂XK) with Poincaré dual-
ity, BS−1 and the Kronecker evaluation map yields the desired Z[t±1]-linear map:

Bl•K : H1(XK ;Z[t±1])
ι∗→ H1(XK ,∂XK ;Z[t±1])

PD→ H2(XK ;Z[t±1]) (2)

BS−1−→ H1(XK ;Q(t)/Z[t±1])
ev→ HomZ[t±1](H1(XK ;Z[t±1]),Q(t)/Z[t±1]).

Following Kearton [52, 54], we outline how signatures can be extracted from the
(real) Blanchfield pairing

BlK : H1(XK ;R[t±1])×H1(XK ;R[t±1])→R(t)/R[t±1].

Let p(t) be a real irreducible symmetric factor of ΔK(t), and let Hp(t) be the p(t)-
primary summand of H := H1(XK ;R[t±1]). There is a decomposition Hp(t) =⊕m

i=1 Hr
p(t), where each Hr

p(t) is a free module over R[t±1]/p(t)rR[t±1]. For i =
1, . . . ,m, consider the quotient

V r
p(t) := Hr

p(t)/p(t)Hr
p(t)

as a vector space overC∼=R(ξ )∼=R[t±1]/p(t)R[t±1], where ξ is a root of p(t). The
Blanchfield pairing BlK now induces the following well defined Hermitian pairing:

4 Given a ring R with involution, and given an R-module M, we denote by M the R-module that
has the same underlying additive group as M, but for which the action by R on M is precomposed
with the involution on R.
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blr,p(t)(K) : V r
p(t)×V r

p(t) → C

([x], [y]) �→ BlK(p(t)r−1x,y).

As above, we write pθ (t) = t − 2cos(θ) + t−1: this way for each θ ∈ (0,π) and
every integer r, we obtain additional signature invariants.

Definition 3. For 0 < θ < π and r > 0, the Blanchfield signature σr,θ (K) is the
signature of the Hermitian pairing blr,pθ (t)(K):

σr,θ (K) := sign(blr,pθ (t)(K)).

Kearton [52, Section 9] relates the signatures σr,θ (K) to the Milnor signatures,
while Levine relates the σr,θ (K) to the Levine-Tristram signature [59, Theorem 2.3]:

Theorem 10. Given an oriented knot K and 0< θ < π , one has

σθ (K) = ∑
r odd

σr,θ (K).

If ω := eiθ is a root of ΔK(t), and if ω+,ω− ∈ S1∗ \ {ω ∈ S1∗ | ΔK(ω) = 0} are such
that ω is the only root of ΔK(t) lying on an arc of S1 connecting them, then

σK(ω+)−σK(ω−) = 2 ∑
r odd

σr,θ (K),

σK(ω) =
1
2
(σK(ω+)−σK(ω−))− ∑

r even
σr,θ (K).

As we already mentioned in the previous subsection, Theorem 10 (and The-
orem 9) shows that the Blanchfield and Milnor signatures measure the jumps
of σK : S1 →Z at the roots of ΔK(t).

Next, we mention some further properties of the Blanchfield signatures.

Remark 10. For each 0 < θ < π , the sum ∑r odd σr,θ (K) of Blanchfield signatures
is a concordance invariant: this can either be seen directly [59] or by relating this
sum to the Milnor signature σθ (K) (recall Theorem 10) and using its concordance
invariance (recall Remark 9). Combining this fact with Theorem 10 yields a proof
that the Levine-Tristram signature function σK vanishes away from the roots of ΔK
if K is (algebraically) slice (recall Subsection 2.4).

While the Blanchfield signatures σr,θ (K) are not concordance invariants, they do
vanish if K is doubly slice [53, 59]. Combining this fact with Theorem 10 yields
a proof that the Levine-Tristram signature function σK vanishes identically if K is
doubly slice (recall Remark 7).

Next, following Borodzik-Friedl, we describe a second way of extracting signa-
tures from the Blanchfield pairing [8]. The Blanchfield pairing is known to be rep-
resentable: as shown in [8, Proposition 2.1] there exists a non-degenerate Hermitian
matrix A(t) over Z[t±1] such that BlK is isometric to the pairing
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λA(t) : coker(A(t)
T )× coker(A(t)T )→Q(t)/Z[t±1]

([x], [y]) �→ xT A(t)−1y.

In this case, we say that the Hermitian matrix A(t) represents BlK . These represent-
ing matrices provide an alternative way of defining the Levine-Tristram signature [8,
Lemma 3.2]:

Proposition 4. Let K be an oriented knot and let ω ∈ S1. For any Hermitian ma-
trix A(t) which represents the Blanchfield pairing BlK, the following equalities hold:

σK(ω) = sign(A(ω))− sign(A(1)),
ηK(ω) = null(A(ω)).

In the case of links, even though the Blanchfield form can be defined in a way
similar to (2), no generalization of Proposition 4 appears to be known at the time of
writing. Similarly, the Blanchfield signatures described in Definition 3 do not appear
to have been generalized to links.

5 Two additional constructions

We briefly discuss two additional constructions of the Levine-Tristram signature.
In Subsection 5.1, we review a construction (due to Lin [64]) which expresses the
Murasugi signature of a knot as a signed count of traceless SU(2)-representations.
In Subsection 5.2, we discuss Gambaudo and Ghys’ work, a corollary of which
expresses the Levine-Tristram signature in terms of the Burau representation of the
braid group and the Meyer cocycle.

5.1 The Casson-Lin invariant

Let K be an oriented knot. Inspired by the construction of the Casson invariant, Lin
defined a knot invariant h(K) via a signed count of conjugacy classes of traceless
irreducible representations of π1(XK) into SU(2) [64]. Using the behavior of h(K)
under crossing changes, Lin additionally showed that h(K) is equal to half the Mura-
sugi signature σ(K). The goal of this subsection is to briefly review Lin’s construc-
tion and to mention some later generalizations.

Let X be a topological space. The representation space of X is the set R(X) :=
Hom(π1(X),SU(2)) endowed with the compact open topology. A representation
is abelian if its image is an abelian subgroup of SU(2) and we let S(X) denote
the set of abelian representations. Note that an SU(2)-representation is abelian if
and only if it is reducible. The group SU(2) acts on R(X) by conjugation and its
turns out that SO(3) = SU(2)/± id acts freely and properly on the set R(X)\S(X)
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of irreducible (i.e. non abelian) representations. The space of conjugacy classes of
irreducible SU(2)-representations of X is denoted by

R̂(X) = (R(X)\S(X))/SO(3).

Given an oriented knot K whose exterior is denoted XK , the goal is now to make
sense of a signed count of the elements R̂(XK). The next paragraphs outline the idea
underlying Lin’s construction.

The braid group Bn can be identified with the group of isotopy classes of
orientation preserving homeomorphisms of the punctured disk Dn that fix the
boundary pointwise. In particular, each braid β can be represented by a home-
omorphism hβ : Dn → Dn which in turn induces an automorphism of the free
group Fn ∼= π1(Dn). In turn, since R(Dn)∼= SU(2)n, the braid β gives rise to a self-
homeomorphism β : SU(2)n → SU(2)n. We can therefore consider the spaces

Λn = {(A1, . . . ,An,A1, . . . ,An) | Ai ∈ SUn
2, tr(Ai) = 0},

Γn = {(A1, . . . ,An,β (A1), . . . ,β (An)) | Ai ∈ SUn
2, tr(Ai) = 0}.

Use β̂ to denote the link obtained as the closure of a braid β . The representa-
tion space R0(Xβ̂ ) of traceless SU(2) representations of π1(Xβ̂ ) can be identi-
fied with Λn ∩Γn i.e. the fixed point set of the homeomorphism β : SU(2)n →
SU(2)n [64, Lemma 1.2]. Therefore, Lin’s idea is to make sense of an algebaic
intersection of Λn with Γn inside the ambient space

Hn = {(A1, . . . ,An,B1, . . . ,Bn) ∈ SU(2)n ×SU(2)n, tr(Ai) = tr(Bi) = 0}.

Next, we briefly explain how Lin manages to make sense of this algebraic intersec-
tion number. The space SU(2) ∼= S3 is 3-dimensional and the subspace of traceless
matrices is homeomorphic to a 2-dimensional sphere. As a consequence, Λn and Γn
are both 2n-dimensional smooth compact manifolds, and Lin shows that Ĥn is 4n−3
dimensional [64, Lemma 1.5]. The SO(3) action restricts to the spacesΛn,Γn,Hn and
one sets

Ĥn = Hn/SO(3), Λ̂n = Λn/SO(3), Γ̂n = Γn/SO(3).

After carefully assigning orientations to these spaces, it follows that Λ̂n,Γ̂n are half
dimensional smooth oriented submanifolds of the smooth oriented manifold Ĥn. The
intersection Λ̂n∩Γ̂n is compact whenever β̂ is a knot [64, Lemma 1.6] and therefore,
after arranging transversality, one can define the Casson-Lin invariant of the braid β
as the algebraic intersection

h(β ) := 〈Λ̂n,Γ̂n〉Ĥn
.

Lin proves the invariance of h(β ) under the Markov moves and shows that the re-
sulting knot invariant is equal to half the Murasugi signature [64, Theorem 1.8 and
Corollary 2.10]:
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Theorem 11. The Casson-Lin invariant h(β ) is unchanged under the Markov moves
and thus, setting h(K) = h(β̂ ) for any braid β such that K = β̂ defines a knot in-
variant. Furthermore, h(K) is equal to half the Murasugi signature of K:

h(K) =
1
2

σ(K).

Lin’s work was later generalized by Herald [43] and Heusener-Kroll [45] to show
that the Levine-Tristram signature σK(e2iθ ) can be obtained as a signed count of
conjugacy classes of irreducible SU(2)-representations with trace 2cos(θ). Herald
obtained this result via a gauge theoretic interpretation of the Casson-Lin invariant
(to do so, he used a 4-dimensional interpretation of the signature), while Heusener-
Kroll generalized Lin’s original proof (which studies the behavior of h(K) under
crossing changes and uses Remark 4).

We also refer to [44] for an interpretation of Lin’s construction using the plat
closure of a braid (the result is closer to Casson’s original construction in terms of
Heegaard splittings [1]), and to [19] for a construction of an instanton Floer ho-
mology theory whose Euler characteristic is the Levine-Tristram signature. Is there
a formula for links? 5 Can Theorem 11 be understood using the constructions of
Section 4?

5.2 The Gambaudo-Ghys formula

Since the Alexander polynomial can be expressed using the Burau representation of
the braid group [10], one might wonder whether a similar result holds for the Levine-
Tristram signature. This subsection describes work of Gambaudo and Ghys [34], a
consequence of which answers this question in the positive.

Let Bn denote the n-stranded braid group. Given ω ∈ S1, Gambaudo and Ghys
study the map Bn → Z,β �→ σβ̂ (ω) obtained by sending a braid to the Levine-
Tristram signature of its closure. While this map is not a homomorphism, these
authors express the homomorphism defect σα̂β (ω)−σα̂(ω)−σβ̂ (ω) in terms of
the reduced Burau representation

Bt : Bn → GLn−1(Z[t±1]) .

We briefly recall the definition of Bt . Any braid β ∈ Bn can be represented by (an
isotopy class of) a homeomorphism hβ : Dn → Dn of the punctured disk Dn. This
punctured disk has a canonical infinite cyclic cover D∞

n (corresponding to the kernel
of the map π1(Dn)→ Z sending the obvious generators of π1(Dn) to 1) and, after
fixing basepoints, the homeomorphism hβ lifts to a homeomorphism h̃β : D∞

n →D∞
n .

It turns out that H1(D∞
n ;Z) is a freeZ[t

±1]-module of rank n−1 and the reduced Bu-

5 see [4] for a formula in the case of 2-component links with linking number 1.
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rau representation is the Z[t±1]-linear automorphism of H1(D∞
n ;Z) induced by h̃β .

This representation is unitary with respect to the equivariant skew-Hermitian form
on H1(D∞

n ;Z) which is defined by mapping x,y ∈ H1(D∞
n ;Z) to

ξ (x,y) = ∑
n∈Z

〈x, tny〉t−n.

In particular, evaluating any matrix for Bt(β ) at t = ω , the matrix Bω(α) preserves
the skew-Hermitian form obtained by evaluating a matrix for ξ at t = ω . There-
fore, given two braids α,β ∈ Bn and ω ∈ S1, one can consider the Meyer cocy-
cle of the two unitary matrices Bω(α) and Bω(β ). Here, given a skew-Hermitian
form ξ on a complex vector spaceC and two unitary automorphisms γ1,γ2 of (V,ξ ),
the Meyer cocycle Meyer(γ1,γ2) is computed by considering the space Eγ1,γ2 =

im(γ−1
1 − id)∩ im(id−γ2) and taking the signature of the Hermitian form obtained

by setting b(e,e′)= ξ (x1+x2,e′) for e= γ−1
1 (x1)−x1 = x2−γ2(x2)∈Eγ1,γ2 [75, 74].

The following result is due to Gambaudo and Ghys [34, Theorem A].

Theorem 12. For all α,β ∈ Bn and ω ∈ S1 of order coprime to n, the following
equation holds:

σα̂β (ω)−σα̂(ω)−σβ̂ (ω) =−Meyer(Bω(α),Bω(β )). (3)

In fact, since both sides of (3) define locally constant functions on S1, Theorem 12
holds on a dense subset of S1. The proof of Theorem 12 is 4-dimensional; can it also
be understood using the constructions of Section 4? The answer ought to follow
from [9], where a result analogous to Theorem 12 is established for Blanchfield
pairings; see also [36].

We conclude this survey by applying Theorem 12 recursively in order to provide
a formula for the Levine-Tristram signature purely in terms of braids. Indeed, us-
ing σ1, . . . ,σn−1 to denote the generators of the braid group Bn (and recalling that
the signature vanishes on trivial links), the next result follows from Theorem 12:

Corollary 1. If an oriented link L is the closure of a braid σi1 · · ·σil , then the fol-
lowing equality holds on a dense subset of S1:

σL(ω) =−
l−1

∑
j=1

Meyer(Bω(σi1 · · ·σi j),Bω(σi j+1)).
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PD4-complexes and 2-dimensional duality

groups

Jonathan A. Hillman

Abstract This paper is a synthesis and extension of three earlier papers on PD4-
complexes X such that π = π1(X) has one end and c.d.π = 2. The basic notion is
that of strongly minimal PD4-complex, one for which the equivariant intersection
pairing λX on π2(X) is null. The first main result is that two PD4-complexes with the
same strongly minimal model are homotopy equivalent if and only if their intersec-
tion pairings are isometric. If c.d.π ≤ 2 every such complex has a strongly minimal
model, and the second half of the paper focuses largely on determining the minimal
models. In particular, if π is a surface group or is a semidirect product F(r)�Z
then the homotopy type of X is determined by π , the Stiefel-Whitney classes and
λX . Although we expect that the strategy in the surface group case should extend to
all π such that c.d.π = 2 and π has one end, we do not yet have a unified proof that
covers the known cases. We conclude with an application to 2-knots and a short list
of questions for further research.

1 Introduction

It remains an open problem to give a homotopy classification of closed 4-manifolds
or PD4-complexes, in terms of standard invariants such as the fundamental group,
characteristic classes and intersection pairings. Hambleton and Kreck showed that if
X is orientable and H2(X ;Q) �= 0 the homotopy type of X is determined by its Post-
nikov 2-stage P2(X) and the image of the fundamental class [X ] in H4(P2(X);Z),
and if π1(X) is finite and of cohomological period dividing 4 this image is in turn
determined by the equivariant intersection pairing on π2(X) [27]. Baues and Bleile
have extended the first part of this result to all PD4-complexes: two PD4-complexes
X and Y are homotopy equivalent if and only if there is a homotopy equivalence
h : P2(X)→ P2(Y ) such that h∗w1(Y ) = w1(X), and which carries the image of [X ]
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in H4(P2(X);Zw1(X)) to the image of ±[Y ] in H4(P2(Y );Zw1(Y )). (Here w1(X) and
w1(Y ) are the orientation characters and Zw1(X) and Zw1(X) the associated twisted
coefficient modules.) They also give a homotopy classification of PD4-complexes
(up to 2-torsion) in terms of homotopy classes of chain complexes with a homotopy
commutative diagonal and an additional quadratic structure [5]. However, there is
still the question of how to characterize the classes in H4(P2(X);Zw1(X)) which cor-
respond to PD4-complexes.

We shall extend the work of [27] to relate such classes to intersection pairings, for
certain cases with π = π1(X) infinite. The central idea is that of “strongly minimal
PD4-complex”, one for which the equivariant intersection pairing is identically 0.
(We shall in fact use the equivalent cohomological pairing.) If there is a 2-connected
degree-1 map f : X → Z, with Z strongly minimal, and if the orientation character
w = w1(X) : π → Z× does not split then the homotopy type of X is determined
by the homotopy type of Z and the equivariant intersection pairing. Every PD4-
complex X with fundamental group π has such a “strongly minimal model” Z if and
only if c.d.π ≤ 2. (See Theorem 21 below.) This class of groups is both tractable and
of direct interest to low-dimensional geometric topology, as it includes all surface
groups, knot groups and the groups of many other bounded 3-manifolds. We expect
that if c.d.π ≤ 2 the homotopy type of Z is determined by π , w and the Wu class
v2(Z), and that if v2(X) is induced from π then the minimal model is unique. (In the
latter case, the homotopy type of X is determined by π , w, v2(X) and the equivariant
intersection pairing.) However, this is only known for π a free group, a surface
group, a semidirect product F(r)�Z or a solvable Baumslag-Solitar group Z∗m.

We shall now outline the paper in more detail. The first two sections are alge-
braic. In particular, Theorem 1 (in §2) establishes a connection between hermitian
pairings and the Whitehead quadratic functor ΓW . Sections 3–8 consider the homo-
topy classification of PD4-complexes, and introduce several notions of minimality.
The first main result is Theorem 7 in §7, where it is shown that two PD4-complexes
with the same strongly minimal model and ±isometric intersection pairings are ho-
motopy equivalent, provided w : π→Z× does not split. Sections 9 and 10 determine
the strongly minimal PD4-complexes with π2 = 0 and for which π has finitely many
ends. Strongly minimal PD4-complexes with π a semidirect product ν�Z (with ν
finitely presentable) are shown to be mapping tori in §11. When ν is a free group the
homotopy type of such a mapping torus is determined by π and the Stiefel-Whitney
classes, by Theorem 22. The next five sections lead to the second main result, The-
orem 27 (in §16), which extends the result of Theorem 22 to the case when π has
one end and c.d.π = 2 provided that the image of the symmetric square Π �Π in
Zw ⊗Z[π] ΓW (Π) is 2-torsion free, where Π = π2(X) ∼= H2(π;Z[π]). This theorem
is modelled on the much simpler case analyzed in §14, in which π is a PD2-group.
Apart from the notion of minimality, the main technical points are the connection
between hermitian pairings and ΓW , the fact that a certain “cup product” defines an
isomorphism, and the 2-torsion condition. In [40], we showed that the cup-product
condition held for surface groups, torus knot groups and solvable Baumslag-Solitar
groups. Here we show that it holds for all finitely presentable groups π with one end
and c.d.π = 2 (Theorem 26). The 2-torsion condition is only known for π a PD2-
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group or π a solvable Baumslag-Solitar group (Theorem 30), and does not hold for
all the cases covered by Theorem 22. The penultimate section considers the clas-
sification up to TOP s-cobordism or homeomorphism of closed 4-manifolds with
groups as in Theorem 27. In particular, it is shown that a remarkable 2-knot discov-
ered by Fox is determined up to TOP isotopy and reflection by its knot group. In the
body of the text we raise a number of questions, some on points of detail, that we
have not been able to settle. The most significant of these have been collected in the
final section.

The interactions of cohomology of groups, Poincaré duality and the lower
stages of Postnikov towers are central to the arguments. We refer particularly to
[9, 51, 54, 62] for more on these topics. Some of the other techniques invoked, such
as L2-homology (used in §5 to compare various notions of minimality) or Farrell co-
homology (used in §10 in connection with PD4-complexes whiose universal covers
have two ends) may seem more recondite, but these are mostly used in excursions
aside the main theme, and familiarity with such notions is not essential.

The theme of Hambleton, Kreck and Teichner [29] is close to ours, although their
methods are very different. They use Kreck’s modified surgery theory to classify up
to s-cobordism closed orientable 4-manifolds with fundamental groups of geometric
dimension 2 (subject to some K- and L-theoretic hypotheses), and they show also
that every automorphism of the algebraic 2-type is realized by an s-cobordism, in
many cases. (They do not require that π have one end, which is a restriction im-
posed by our arguments. However, when π is a free group there is a simpler, more
homological approach, which also uses the ideas of §2 below [37].)

This paper is a synthesis and extension of three papers [38, 39, 40] which ex-
plored the role of minimality in the classification of PD4-complexes, in particular,
those with fundamental group π such that c.d.π = 2 and π has one end. (Some as-
pects were considered much earlier [35, 36].) Apart from the benefits of revision,
the main novelties are in showing that strongly minimal finite PD4-complexes have
minimal Euler characteristic (Corollary 3), strong minimality is equivalent to or-
der minimality if and only if c.d.π ≤ 2 (Theorem 21), verification that cup product
defines an isomorphism for all 2-dimensional duality groups (Theorem 26), clarifi-
cation of the role of the refined v2-type, and relaxation of some of the hypotheses.

I would like to thank the referee for his close reading of the original submission,
and for his suggestions for the improvement of the exposition.

2 Modules and group rings

Let π be a finitely presentable group and w : π → Z× = {±1} be a homomorphism.
(This shall represent the orientation character for a PDn-complex with fundamental
group π .) We shall at times view w as a class in H1(π;F2), since this cohomol-
ogy group may be identified with Hom(π,Z×). Define an involution on Z[π] by
ḡ = w(g)g−1, for all g ∈ π . Let Z and Zw be the augmentation and w-twisted aug-
mentation rings, and ε : Z[π] → Z and εw : Z[π] → Zw be the augmentation and
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the w-twisted augmentation, defined by ε(g) = 1 and εw(g) = w(g), for all g ∈ π ,
respectively. Let Iw = Ker(εw).

All modules considered here shall be left modules, unless otherwise noted.
However, if L is a left Z[π]-module the dual HomZ[π](L,Z[π]) and the higher ex-
tension groups Exti

Z[π](L,Z[π]) are naturally right modules. If R is a right Z[π]-
module let R be the corresponding left Z[π]-module with the conjugate structure
given by g.r = r.ḡ, for all g ∈ Z[π] and r ∈ R. Let L† = HomZ[π](L,Z[π]) and

EiL = Exti
Z[π](L,Z[π]), for i ≥ 0 be the conjugate dual left modules. If L is free,

stably free or projective then so is E0L = L†. We shall consider Z and Zw to be
bimodules, with the same left and right π-structures. (Note that Z= Zw.)

The modules EqZ= Hq(π;Z[π]) with q ≤ 3 shall recur throughout this paper. In
particular, E0Z∼= Zw if π is finite and is 0 otherwise, while E1Z reflects the number
of ends of π . It is 0 if π is finite or has one end, infinite cyclic if π has two ends (i.e.,
is virtually infinite cyclic) and is free abelian of infinite rank otherwise.

Lemma 1. Let M be a Z[π]-module with a finite resolution of length n and such that
EiM = 0 for i < n. Then Aut(M)∼= Aut(EnM).

Proof. Since EiM = 0 for i < n the dual of a resolution of length n for M is a
finite resolution for EnM. Taking duals again recovers the original resolution, and
so EnEnM ∼= M. If f ∈ Aut(M) it extends to an endomorphism of the resolution
inducing an automorphism En f of EnM. Taking duals again gives EnEn f = f . Thus
f �→ En f determines an isomorphism Aut(M)∼= Aut(EnM).

A group π is an n-dimensional duality group over Z if the augmentation Z[π]-
module Z has a finite projection resolution of length n, Hi(π;Z[π]) = 0 for i < n
and the dualizing module D = Hn(π;Z[π]) is torsion free as an abelian group. (See
[9, Theorem VIII.10.1].) We then have Aut(EnZ) = Z×, by Lemma 1. Finitely gen-
erated free groups are duality groups of dimension 1. If π is finitely presentable and
c.d.π = 2 then H2(π;Z[π]) �= 0, and it is torsion free, by [25, Proposition 13.7.1].
Hence π is a 2-dimensional duality group if and only if it has one end.

In general, H2(π;Z[π]) is 0, Z or not finitely generated ([21] – see [25, Propo-
sition 13.7.12]). In the latter case, H2(π;Z[π]) must have infinite rank, by the main
result of [8]. It remains open whether H2(π;Z[π]) must be free as an abelian group.

We shall use the “free differential calculus” of Fox and Lyndon to provide partial
resolutions of augmentation modules. (See [23] and [46].) Let F(n) be the free group
with basis {x1, . . . ,xn}. The augmentation ideal of Z[F(n)] is freely generated by
{x1 −1, . . . ,xn −1} as a left Z[F(n)]-module and so we may write

r−1 = Σ1≤i≤n
∂ r
∂xi

(xi −1),

for r ∈F(n). Since rs−1= r−1+r(s−1), for all r,s∈F(μ), the Leibniz conditions

∂ rs
∂xi

=
∂ r
∂xi

+ r
∂ s
∂xi
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hold for all r,s ∈ F(μ) and 1 ≤ i ≤ n. In particular, ∂1
∂xi

= 0 and ∂ r−1

∂xi
=−r−1 ∂ r

∂xi
, for

1 ≤ i ≤ n. We may extend these functions linearly to “derivations” of Z[F(n)].
Now let π be a group with a finite presentation

P = 〈x1, . . . ,xg|r1, . . . ,rh〉ϕ ,

where ϕ : F(g)→ π is an epimorphism with kernel the normal closure of {r1, . . . ,rh}.
Let de f (P) = g− h be the deficiency and C(P) be the 2-complex corresponding
to this presentation. Then χ(C(P)) = 1−de f (P). A choice of lifts of the q-cells

of C(P) to the universal cover C̃(P) determines a basis for Cq(C̃(P)) as a free
left Z[π]-module. We view these as modules of column vectors. The differentials
are given by ∂1(c

(i)
1 ) = (ϕ(xi)− 1)c0 and ∂2(c

( j)
2 ) = Σ1≤i≤gϕ(

∂ r j
∂xi

)c(i)1 . (We extend

ϕ linearly to the group rings.) The module of 0-cycles Z0(C̃(P)) is isomorphic to
I(π), and so I(π) has a g× h presentation matrix with (i, j)th entry ϕ( ∂R j

∂xi
). (We

shall refer to C∗(C̃(P)) as the Fox-Lyndon resolution of Z associated to P .)

Lemma 2. Let π = G∗F(n), where G = ∗m
i=1Gi is the free product of m ≥ 1 finitely

generated, one-ended groups Gi and n ≥ 0. Then E1Z∼= Z[π]m+n−1.

Proof. If n = 0 the result follows from the Mayer-Vietoris sequence for the free
product, with coefficients Z[π].

In general, let C∗(G) be a resolution of the augmentation module by free Z[G]-
modules with C0(G) = Z[G]. Then there is a corresponding resolution C∗(π) with
Cq(π) ∼= Z[π]⊗Z[G] Cq(G) if q �= 1 and C1(π) ∼= Z[π]⊗Z[G] Cq(G)⊕Z[π]n. Hence
there is a short exact sequence of chain complexes

0 → Z[π]⊗Z[G]C∗(G)→C∗(π)→ Z[π]n → 0,

where the third term is concentrated in degree 1. The exact sequence of cohomology
with coefficients Z[π] and conjugation give a short exact sequence

0 → Z[π]s → H1(π;Z[π])→ H1(HomZ[π](Z[π]⊗Z[G]C∗(G),Z[π])→ 0.

We may identify the right-hand term with Z[π]⊗Z[G] H1(G;Z[G])∼= Z[π]m−1, since
G is finitely generated. The middle term is E1Z, and so the lemma follows easily.

The hypothesis of this lemma holds if π is torsion free but not free. On the other
hand, if π is a nontrivial free group then E1Z has projective dimension 1 as a Z[π]-
module, and so the conclusion fails.

If M is a Z[π]-module and ν is a subgroup of π then M|ν shall denote the Z[ν ]-
module obtained by restriction of scalars.
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3 The Whitehead functor and hermitian pairings

Let A and B be abelian groups. A function f : A → B is quadratic if f (−a) = f (a)
for all a ∈ A and if f (a+ b)− f (a)− f (b) defines a bilinear function from A×
A to B. The Whitehead quadratic functor ΓW assigns to each abelian group A an
abelian group ΓW (A) and a quadratic function γA : A →ΓW (A) which is universal for
quadratic functions with domain A. The natural epimorphism from A onto A/2A =
F2 ⊗ A is quadratic, and so induces a canonical epimorphism qA from ΓW (A) to
A/2A. Let A�A = A⊗A/〈a⊗b−b⊗a|∀a,b ∈ A〉 be the symmetric square of A.
Then the kernel of qA is the image of A�A under the homomorphism s from A�A
to ΓW (A) given by s(a � b) = γA(a + b)− γA(a)− γA(b). Thus there is an exact
sequence

A�A s−→ ΓW (A)
qA−→ /2A → 0.

Moreover, 2γA(a) = s(a� a), for all a ∈ A. (Topologically, if η : S3 → S2 is the
Hopf map and x ∈ π2(X) then 2x◦η = [x,x], the Whitehead product in π3(X).) This
sequence is short exact if A is torsion free [4, §1.2].

If A and B are abelian groups the inclusions into A⊕B induce a canonical split-
ting ΓW (A⊕B) ∼= ΓW (A)⊕ΓW (B)⊕ (A⊗B). Since Γ (Z) ∼= Z it follows by a finite
induction that if A ∼= Zr then ΓW (Zr) is finitely generated and free, and that s is in-
jective. If A is any free abelian group, every finitely generated subgroup of such a
group lies in a finitely generated direct summand, and so ΓW (A) is again free, and s
is injective.

A w-hermitian pairing on a finitely generated Z[π]-module M is a function b :
M×M → Z[π] which is linear in the first variable and such that b(n,m) = b(m,n),
for all m,n ∈ M. The adjoint homomorphism b̃ : M → M† is given by b̃(n)(m) =

b(m,n), for all m,n ∈ M. The pairing b is nonsingular if b̃ is an isomorphism.
Let Herw(M) be the group of w-hermitian pairings on M. Let evM(m)(n,n′) =

n(m)n′(m) for all m ∈ M and n,n′ ∈ M†. Then evM(m)(n,n′) is quadratic in m and
w-hermitian in n and n′ and evM(gm) = w(g)evM(m) for all g ∈ π and m ∈ M. Hence
evM determines a homomorphism

BM : Zw ⊗Z[π]ΓW (M)→ Herw(M†).

Let M�M have the diagonal π-action, given by g(m�n) = gm�gn, for all g ∈ π
and m,n ∈ M, and let M�π M = Zw ⊗Z[π] (M�M).

Theorem 1. Let π be a group, w : π → Z× a homomorphism and M a finitely gen-
erated projective Z[π]-module. If Ker(w) has no element of order 2 then BM is sur-
jective, while if there is no element g ∈ π of order 2 such that w(g) =−1 then BM is
injective.

Proof. Since M is a free abelian group there is a short exact sequence

0 → M�M → ΓW (M)→ M/2M → 0,
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and ΓW (M) is free as an abelian group. This is a sequence of Z[π]-modules and
homomorphisms. Since M is projective, Zw⊗Z[π] M is also free as an abelian group.
Hence the sequence

0 → M�π M → Zw ⊗Z[π]ΓW (M)→ Zw ⊗Z[π] M/2M = F2 ⊗Z[π] M → 0

is also exact, since TorZ[π]1 (Zw,M/2M) = Ker(2.idZw⊗Z[π]M) = 0.
Let ηM : M → Zw ⊗Z[π]ΓW (M) be the composite of γM with the reduction from

ΓW (M) to Zw⊗Z[π]ΓW (M). Then the composite of ηM with the projection to F2⊗Z[π]
M is the canonical epimorphism. Let [m�n] be the image of m�n in M�π M.

Suppose first that M is a free Z[π]-module, with basis e1, . . . ,er, and let e∗1, . . . ,e
∗
r

be the dual basis for M†, defined by e∗i (ei) = 1 and e∗i (e j) = 0 if i �= j. Since

[m�gn] = [g(g−1m�n)] = [ḡm◦n] in M�π M,

the typical element of M �π M may be expressed in the form μ = Σi≤ j(ri jei)� e j.
For such an element

BM(μ)(e∗k ,e
∗
l ) = rkl , for k < l,

and
BM(μ)(e∗k ,e

∗
l ) = rkk + r̄kk, for k = l.

In particular, BM(μ) is even: if ε2 : Z[π]→ F2 is the composite of the augmentation
with reduction mod (2) then ε2(BM(μ)(n,n)) = 0 for all n ∈ M†. If m ∈ M has non-
trivial image in F2 ⊗Z[π] M then ε2(e∗i (m)) �= 0 for some i ≤ r. Hence BM(ηM(m))
is not even, and it follows easily that Ker(BM) ≤ M�π M. If BM(μ) = 0, for some
μ = Σi≤ j(ri jei)� e j, then rkl = 0, if k < l, and rii + r̄ii = 0, for all i.

If π has no orientation reversing element of order 2 and BM(μ) = 0, where μ =
Σi≤ j(ri jei)� e j, then rii = Σg∈F(i)aig(g− ḡ), where F(i) is a finite subset of π , for
1 ≤ i ≤ r. Since ((g− ḡ)ei)� ei = 0 it follows easily that μ = Σ(riiei)� ei = 0.
Hence BM is injective.

To show that BM is surjective when Ker(w) has no element of order 2 it shall
suffice to assume that M has rank 1 or 2, since h is determined by the values hi j =
h(e∗i ,e∗j). Let εw[m,m′] be the image of m�m′ in Zw ⊗Z[π]ΓW (M). Then

BM(εw[m,m′])(n,n′) = n(m)n′(m′)+n(m′)n′(m),

for all m,m′ ∈ M and n,n′ ∈ M†. Suppose first that M has rank 1. Since h11 = h̄11
and Ker(w) has no element of order 2 we may write h11 = 2b+ δ +Σg∈F(g+ ḡ),
where b = b̄, δ = 1 or 0 and F is a finite subset of π . Let

μ = εw[(b+δ +Σg∈F g)e1,e1]+δηM(e1).

Then BM(μ)(e∗1,e
∗
1) = h11. If M has rank 2 and h11 = h22 = 0 let μ = εw[h12e1,e2].

Then BM(μ)(e∗i ,e∗j) = hi j. In each case BM(μ) = h, since each side of the equation
is a w-hermitian pairing on M†.

63



Jonathan A. Hillman

Now suppose that M is projective, and that P is a finitely generated projective
complement to M, so that M ⊕P ∼= Z[π]r for some r ≥ 0. The inclusion of M into
the direct sum induces a split monomorphism from ΓW (M) to ΓW (Z[π]r) which is
clearly compatible with BM and BZ[π]r . We may extend an hermitian pairing h on
M† to a pairing h1 on M† ⊕P† by setting h1(n, p) = h1(p′, p) = 0 for all n ∈ M† and
p, p′ ∈ P†. Clearly h1|M×M = h and so this extension determines a split monomor-
phism from Herw(M†) to Herw((Z[π]r)†). If h1 = BZ[π]r(θ) then h = BM(θM),
where θM is the image of θ under the homomorphism induced by the projection
from M⊕P onto M. Thus if BZ[π]r is a monomorphism or an epimorphism so is BM .

In particular, if π has no 2-torsion then BM is an isomorphism, for any projective
Z[π]-module M. The restriction on 2-torsion is necessary, as can be seen by consid-
ering the group G = Z/2Z = 〈g | g2〉 with w trivial and h the pairing on M = Z[G]
determined by h(m,n) = mgn̄.

Let E be another left Z[π]-module. Then the summand M⊗E of ΓW (M⊕E) has
the diagonal left Z[π]-module structure. Let d : M → M†† and t : Z⊗Z[π] (M⊗E)→
HomZ[π](M,E) be given by d(m)(μ) = μ(m) and t(μ⊗e)(m) = μ(m)e, for all m ∈
M, μ ∈ M† and e ∈ E. If M is finitely generated and projective these functions are
isomorphisms (of left Z[π]-modules and abelian groups, respectively). Let B̃M(γ)
be the adjoint of BM(1⊗ γ), for all γ ∈ ΓW (M).

Lemma 3. Let M be a finitely generated projective Z[π]-module and θ : M → E
be a Z[π]-module homomorphism. Let d : M → M†† and t : Z⊗Z[π] (M ⊗ E) →
HomZ[π](M,E) be the isomorphisms defined above, and let

αθ (m,e) = (m,e+θ(m)),

for all (m,e) ∈ M⊕E. Then αθ is an automorphism of M⊕E and

ΓW (αθ )(γ)− γ ≡ (d ⊗1)−1[(B̃M(γ)⊗1)(t−1(θ))] mod ΓW (E),

for all γ ∈ ΓW (M).

Proof. The homomorphism αθ is clearly an automorphism of M⊕E which restricts
to the identity on the summands E and M, and

ΓW (αθ )(γM⊕E(m)) = γM⊕E(m)+ γM⊕E(θ(m))+m⊗θ(m),

for all m ∈ M [4, 1.2.7].
Let βm = BM(1⊗ γM(m)), for m ∈ M. Now the adjoint homomorphism β̃m is

given by β̃m(μ) = μ(m)d(m). Since t is surjective we have θ = t(Σμi ⊗ ei), for
some μi ∈ M† and ei ∈ E. Then (β̃m ⊗1)(t−1(θ)) =

Σβ̃m(μi)⊗ ei = Σd(m)⊗μi(m)ei = d(m)⊗θ(m) = (d ⊗1)(m⊗θ(m)).

Since
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ΓW (αθ )(γM⊕E(m))− γM⊕E(m)≡ (d ⊗1)−1[(β̃m ⊗1)(t−1(θ))] mod ΓW (E),

for all m ∈ M, and since each side is quadratic in m, we have

ΓW (αθ )(γ)− γ ≡ (d ⊗1)−1[(B̃M(γ)⊗1)(t−1(θ))] mod ΓW (E),

for all γ ∈ ΓW (M).

4 Postnikov stages

Let X be a based, connected cell complex with fundamental group π , and let
pX : X̃ → X be its universal covering projection. Let E0(X) be the group of based
homotopy classes of based self-homotopy equivalences of X , and Eπ(X) be the sub-
group which induces the identity on π . If we fix a basepoint for X̃ over the basepoint
of X then there are well-defined Hurewicz homomorphisms

hwzq : πq(X) = πq(X̃)→ Hq(X̃ ;Z), for all q ≥ 2.

Let fX ,k : X → Pk(X) be the kth stage of the Postnikov tower for X . We may
construct Pk(X) by adjoining cells of dimension at least k + 2 to kill the higher
homotopy groups of X . The map fX ,k is then given by the inclusion of X into Pk(X),
and is a (k+1)-connected map. In particular, P1(X)� K = K(π,1) and cX = fX ,1 is
the classifying map for the fundamental group π = π1(X).

If M is a left Z[π]-module let Lπ(M,n) be the generalized Eilenberg-Mac Lane
space over K = K(π,1) realizing the given action of π on M. Thus the classifying
map for L = Lπ(M,n) is a principal K(M,n)-fibration with a section σ : K → L. The
pair (cL,σ) is an object in the category ex-K of spaces over K with sections, and
we may view Lπ(M,n) as the ex-K loop space ΩLπ(M,n+1) [53], with section σ
and projection cL. Let μ : L×K L → L be the (fibrewise) loop multiplication. Then
μ(idL,σcL) = μ(σcL, idL) = idL in [L;L]K . Let ιM,n ∈Hn(L;M) be the characteristic
element.

Let [X ;Y ]K be the set of homotopy classes over K = K(π,1) of maps f : X →
Y such that cX = cY f . (These may also be considered as π-equivariant homotopy
classes of π-equivariant maps from K̃ to L̃.) The function θ : [X ,L]K → Hn(X ;M)
given by θ( f ) = f ∗ιM,n is a isomorphism with respect to the addition on [X ,L]K
determined by μ . Thus θ(idL) = ιM,n, θ(σcX ) = 0 and θ(μ( f , f ′)) = θ( f )+θ( f ′)
[2, §V.2].

Let k1(X) ∈ H3(π;π2(X)) be the first k-invariant which may be defined as the
primary obstruction to constructing a left inverse to the classifying map cX . (It may
also be identified with the class in Ext3

Z[π](Z,Π) of the iterated extension

0 → π2(X)→C2/∂C3 →C1 →C0 → Z→ 0.
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This was surely known to Eilenberg, Mac Lane and Whitehead, and appears closely
related to the Homotopy Addition Theorem [62, Theorem IV.6.1] or [54, Proposition
7.5.3], but it is difficult to find an accessible published proof. See [10, Theorem
12.2.10] or [49].)

Let fX = fX ,2 be the second stage of the Postnikov tower for X . The alge-
braic 2-type [π,π2(X),k1(X)] and the Postnikov 2-stage determine each other. More
precisely, P2(X) � P2(Y ) if and only if there are isomorphisms α : π ∼= π1(Y )
and β : π2(X) ∼= π2(Y ) such that β is α-semilinear and α∗k1(Y ) = β#k1(X) in
H3(π;π2(Y )). Moreover,

k1(X) = 0 ⇔ cP2(X) has a section ⇔ P2(X)� Lπ(π2(X),2).

Let L = Lπ(M,2). Then Eπ(L) is the group of units of [L,L]K with respect to
composition. We shall use the following special case of a result of Tsukiyama [56];
we give only the part that we need below.

Lemma 4. There is an exact sequence

1 → H2(π;M)→ Eπ(L)→ Aut(M)→ 1.

Proof. Let θ : [K,L]K → H2(π;M) be the isomorphism given by θ(s) = s∗ιM,2, and
let θ−1(φ) = sφ for φ ∈ H2(π;M). Then sφ is a homotopy class of sections of cL,
s0 = σ and sφ+ψ = μ(sφ ,sψ), while φ = s∗φ ιM,2. (Recall that μ : L×K L → L is the
fibrewise loop multiplication.)

Let hφ = μ(sφcL, idL). Then cLhφ = cL and so hφ ∈ [L;L]K . Clearly h0 =
μ(σcL, idL) = idL and h∗φ ιM,2 = ιM,2 + c∗Lφ ∈ H2(L;M). We also see that

hφ+ψ = μ(μ(sφ ,sψ)cL, idL)

= μ(μ(sφcL,sψcL), idL)

= μ(sφcL,μ(sψcL, idL))

(by homotopy associativity of μ) and so

hφ+ψ = μ(sφcL,hψ) = μ(sφcLhψ ,hψ) = hφhψ .

Therefore hφ is a homotopy equivalence for all φ ∈ H2(π;M), and φ �→ hφ defines
a homomorphism from H2(π;M) to Eπ(L).

The lift of hφ to the universal cover L̃ is (non-equivariantly) homotopic to the
identity, since the lift of cL is (non-equivariantly) homotopic to a constant map.
Therefore hφ acts as the identity on M = π2(L).

The homomorphism h : φ �→ hφ is in fact an isomorphism onto the kernel of
the action of Eπ(L) on M [56], and the extension splits: Eπ(L) is isomorphic to
a semidirect product H2(π;M)� Aut(M) [3, Corollary 8.2.7]. More generally, if
P = P2(X), Π = π2(X) and H is the subgroup of Autπ(Π)�Aut(π) which fixes
k1(X) ∈ H3(π;Π) then

E0(P)∼= H2(π;Π)�H
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(see [53, Part II]). Thus if P = Lπ(Π) every automorphism of π lifts to a self-
homotopy equivalence of L, and E0(L)∼= Eπ(L)�Aut(π).

Let X [k] be the k-skeleton of X , for all k ≥ 0, and let Π = π2(X). The image
of π3(X [2]) in π3(X [3]) is isomorphic to ΓW (Π), and the inclusion of the 3-skeleton
induces a homomorphism ιX :ΓW (Π)→ π3(X). The composite of ιX with the natural
map from Π �Π to ΓW (Π) is the Whitehead product [−,−], and there is a natural
Whitehead exact sequence of abelian groups

π4(X)
hwz4−−→ H4(X̃ ;Z) bX−→ ΓW (Π)

ιX−→ π3(X)
hwz3−−→ H3(X̃ ;Z)→ 0,

where bX is the secondary boundary homomorphism [61]. (See [4, 2.1.17].) This is
an exact sequence of left Z[π]-modules, by naturality. (Note also that the Whitehead
sequence for K(Π ,2) gives H4(Π ,2;Z)∼= ΓW (Π).)

The homology spectral sequence for P3(X̃) as a fibration over K(Π ,2) with fibre
K(π3(X),3) gives an exact sequence

0 → H4(P3(X̃);Z)→ H4(Π ,2;Z)
d2

4,0−−→ H3(π3(X),3;Z)→ H3(P3(X̃);Z)→ 0,

in which d2
4,0 is the homology transgression. Composing d2

4,0 with the inverse of
the Hurewicz isomorphism hwz3 for K(π3(X),3) gives the image of the second k-
invariant k2(X̃) ∈ H4(Π ,2;π3(X)) in Hom(H4(Π ,2;Z),π3(X)) under the evalua-
tion homomorphism, by the interpretation of k-invariants in terms of transgression
[47]. In fact d2

4,0 = hwz3ιX [4, Theorem 2.5.10].

5 PD4-complexes and intersection pairings

Let X be a based finitely dominated cell complex, with the natural left Z[π]-module
structure. The equivariant cellular chain complex C∗ = C∗(X ;Z[π]) of X̃ is a com-
plex of left Z[π]-modules, and is Z[π]-chain homotopy equivalent to a finitely gen-
erated complex of projective modules. Let Bq ≤ Zq ≤ Cq be the submodules of q-
boundaries and q-cycles, respectively. Let Cq = HomZ[π](Cq,Z[π]), for all q ≥ 0,
and let Π = H2(X̃ ;Z) = H2(C∗). Recall that the choice of a basepoint for X̃ deter-
mines an isomorphism π2(X)∼=Π .

Let ev : H2(X ;Z[π])→Π † be the evaluation homomorphism, given by

ev([c])([z]) = [c]∩ [z] = c(z) ∀ c ∈C2 and z ∈C2.

This homomorphism sits in the evaluation exact sequence

0 → E2Z→ H2(X ;Z[π]) ev−→Π † → E3Z→ H3(X ;Z[π]).

(See [34, Lemma 3.3].) If X is a PD4-complex then H3(X ;Z[π]) = H1(X̃ ;Z) = 0,
and the evaluation sequence is a 4-term exact sequence.
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We assume henceforth that X is a PD4-complex, with orientation character w =
w1(X). Let X+ be the orientable covering space associated to π+ = Ker(w). The
complex X is finitely dominated and is homotopy equivalent to Xo ∪φ e4, where
Xo is a complex of dimension at most 3 and φ ∈ π3(Xo) [60]. In particular, π is
finitely presentable. In [37] and [38] cellular decompositions were used to study
the homotopy types of PD4-complexes. Here we shall rely more consistently on the
dual Postnikov approach.

Lemma 5. If π is infinite the homotopy type of X is determined by P3(X).

Proof. If X and Y are two such PD4-complexes and h : P3(X)→ P3(Y ) is a homo-
topy equivalence then h fX ,3 is homotopic to a map g : X → Y . Since π is infinite
H4(X̃ ;Z) = H4(Ỹ ;Z) = 0, by Poincaré duality. Since πi(g) is is an isomorphism for
i ≤ 3 any lift g̃ : X̃ → Ỹ is a homotopy equivalence, by the Hurewicz and Whitehead
theorems, and so g is a homotopy equivalence.

In particular, if π is torsion free but not free then H3(X ;Z[π]) ∼= E1Z is a free
Z[π]-module, by Lemma 2, and so π3(X) ∼= ΓW (Π)⊕E1Z. Hence the homotopy
type of X is determined by π,w,Π and the first two k-invariants.

Let H = H2(X ;Z[π]). A choice of generator [X ] for H4(X ;Zw)∼= Z determines a
Poincaré duality isomorphism D : H →Π by D(u)= u∩ [X ], for all u∈H. Moreover
H3(X ;Z[π]) = 0. The cohomology intersection pairing λ : H×H →Z[π] is defined
by

λ (u,v) = ev(v)(D(u)) for all u,v ∈ H.

This pairing is w-hermitian: λ (gu,hv) = gλ (u,v)h̄ and λ (v,u) = λ (u,v) for all u,v∈
H and g,h ∈ π . If X is a closed 4-manifold this pairing is equivalent under Poincaré
duality to the equivariant intersection pairing on Π . (See [51, page 82].) Replacing
[X ] by −[X ] changes the sign of the pairing. Since λ (u,e) = 0 for all u ∈ H and
e ∈ E = E2Z the pairing λ induces a pairing

λX : H/E ×H/E → Z[π].

The adjoint λ̃X is a monomorphism, since Ker(ev) = E. The PD4-complex X is
strongly minimal if λX = 0.

The next lemma relates nonsingularity of λX , projectivity of Π and H/E and
conditions on E2Z and E3Z.

Lemma 6. Let X be a PD4-complex with fundamental group π , and let E = E2Z,
H = H2(X ;Z[π]) and Π = π2(X). Then

1. λX = 0 if and only if H = E, and then E3Z∼= E†;
2. if λX is nonsingular and H/E is a projective Z[π]-module then E3Z∼= E†;
3. if λX is nonsingular and E† = 0 then E3Z= 0;
4. if E3Z= 0 then λX is nonsingular;
5. if E3Z= 0 and Π is a projective Z[π]-module then E = 0;
6. if π = G∗F(n), where G = ∗m

i=1Gi is the free product of m ≥ 1 one-ended groups
andΠ is a projective Z[π]-module then c.d.π ≤ 4, with equality if π has one end.
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Proof. Let p : Π → Π/D(E) and q : H → H/E be the canonical epimorphisms.
Poincaré duality induces an isomorphism γ : H/E ∼=Π/D(E). It is straightforward
to verify that p†(γ†)−1λ̃X q = ev, and (1) is clear.

If λX is nonsingular then λ̃X is an isomorphism, and so Coker(p†) = Coker(ev).
If moreoverΠ/D(E)∼=H/E is projective thenΠ is a direct sum:Π ∼= (Π/D(E))⊕
D(E). Hence Π † ∼= (Π/D(E))† ⊕E†, and so E† ∼= Coker(p†) = E3Z.

If λX is nonsingular and E† = 0 then λ̃X and p† are isomorphisms, and so ev =
p†(γ†)−1λ̃X q is an epimorphism. Hence E3Z= 0.

If E3Z= 0 then H/E =Π† and ev = q. Since q is an epimorphism it follows that
p†(γ†)−1λ̃X = idΠ† , and so p† is an epimorphism. Since p† is also a monomorphism
it is an isomorphism. Therefore λ̃X = γ†(p†)−1 is also an isomorphism.

If Π is projective then so is Π †. If, moreover, E3Z= 0 then H ∼= E ⊕Π †. Hence
E is projective, since it is a direct summand of H ∼=Π , and so E ∼= E†† = 0.

If π is a free product of m ≥ 1 one-ended groups and n copies of Z then E1Z ∼=
Z[π]m+n−1, by Lemma 2. If, moreover, Π is projective then so are C′

3 =C3 ⊕Π and
C′

4 = C4 ⊕E1Z. We may easily extend the differentials of C∗ to obtain a projective
resolution C′∗ of length 4 for Z. Hence c.d.π ≤ 4. If π has one end andΠ is projective
then H4(π;Z[π]) = E4Z ∼= H4(X ;Z[π]) ∼= Z, by the Universal Coefficient spectral
sequence and Poincaré duality, and so c.d.π = 4.

Parts (3) and (4) together imply that if E2Z = 0 then λX is nonsingular if and
only if E3Z = 0 also. Does this remain the case without any conditions on E2Z?
If Π is projective and λX is nonsingular then π ∼= π1(Z) for some PD4-complex Z
with π2(Z) = 0, by Theorem 5 below, and so E2Z= E3Z= 0.

We shall say that a based map f : X → Y between PD4-complexes is a degree-1
map and write f∗[X ] = ±[Y ] if f ∗w1(Y ) = w1(X) = w and the lift of f to a based
map of universal covers induces an isomorphism H4(X ;Zw)∼=H4(Y ;Zw). (Note that
if we do not work with based maps the homomorphisms induced by different lifts
may differ by sign – see [55] for an investigation of the subtleties involved.) The
homomorphism π1( f ) is then surjective, and Poincaré duality in X and Y determine
umkehr homomorphisms f! : H∗(Y ;Z[π1(Y )])→ H∗(X ; f ∗Z[π1(Y )]), which split the
homomorphisms induced by f . The umkehr homomorphisms are well-defined up to
sign [51, §10.3]. If f : X → Z is a 2-connected degree-1 map then cap product with
[X ] induces an isomorphism from the surgery cokernel K2( f ) = Cok(H2( f ;Z[π]))
to K2( f ), and the induced pairing λ f on K2( f )×K2( f ) is nonsingular [60, Theorem
5.2].

We shall not usually specify a fundamental class [X ], and so we shall allow
orientation-reversing homotopy equivalences of oriented PD4-complexes, and iso-
morphisms of modules with pairings which are isometries after a change of sign.
In particular, if Y is a second PD4-complex we write λX ∼= λY if there is an iso-
morphism θ : π1(X)∼= π1(Y ) such that w1(X) = w1(Y )◦θ and a Z[π]-module iso-
morphism Θ : π2(X) ∼= θ ∗π2(Y ) inducing an isometry of cohomology intersection
pairings (after changing the sign of [Y ], if necessary).
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In [5] it is shown that a PD4-complex X is determined by its algebraic 2-type
(i.e., by P2(X)) together with w1(X) and fX∗[X ]. (The main step involves showing
that if h : P2(X) → P2(Y ) is a homotopy equivalence such that h∗w1(Y ) = w1(X)
and h∗ fX∗[X ] = fY∗[Y ] (up to sign) then h = P2(g) for some map g : X → Y such
that H4(g;Zw) is an isomorphism.) Our goal is to show that under suitable condi-
tions X is determined by the more accessible invariants encapsulated in the sextuple
[π,w,v2(X),Π ,k1(X),λX ]. (This is the quadratic 2-type of X , as in [27], enhanced
by the Wu classes; equivalently, by the Stiefel-Whitney classes.) If λX �= 0 then λX
determines w, since λX (gu,gv) = w(g)gλX (u,v)g−1 for all u,v and g.

The Wu classes of a PDn-complex P are the classes vi(P)∈Hi(P;F2) determined
by Poincaré duality from the condition

u � vi(P) = Sqiu, f or all u ∈ Hn−i(P;F2).

If P is a manifold these are equivalent to the tangential Stiefel-Whitney classes, by
the “Wu Formula” [54, Theorem 6.10.7]. (Spanier writes Vi for our vi, and does not
use the term Wu class.) In dimension 4 we can be quite explicit; if X is a PD4-
complex then v1 = w1 is the orientation character, and v2 = w2 +w2

1. We choose to
use v2 rather than w2 since it is the characteristic element for the intersection pairing
on H2(X ;F2).

It shall be useful to distinguish three “v2-types” of PD4-complexes:

I. v2(X̃) �= 0 (i.e., v2(X) is not in the image of H2(π;F2) under c∗X );
II. v2(X) = 0;

III. v2(X) �= 0 but v2(X̃) = 0 (i.e., v2(X) is in c∗X (H2(π;F2))\{0}).

This trichotomy is due to Kreck, who formulated it in terms of Stiefel-Whitney
classes of the stable normal bundle of a closed 4-manifold. The refined v2-type (II
and III) is given by the orbit of v2 in H2(π;F2) under the action of automorphisms
of π which fix the orientation character.

6 Minimal models

A model for a PD4-complex X is a 2-connected degree-1 map f : X → Z to a
PD4-complex Z. (We shall also say that Z is a model for X .) The surgery ker-
nel K2( f ) = Ker(π2( f )) is a finitely generated projective Z[π]-module, and is an
orthogonal direct summand of π2(X) with respect to the intersection pairing [60,
Theorem 5.2]. If both complexes are finite then K2( f ) is stably free. The PD4-
complex X is order-minimal if every such map is a homotopy equivalence, i.e.,
if X is minimal with respect to the order determined by such maps. It is strongly
minimal if λX = 0, and is χ-minimal if χ(X)≤ χ(Y ), for Y any PD4-complex with
(π1(Y ),w1(Y )) ∼= (π,w). We then let q(π,w) = χ(X) be this minimal value. (The
definition of “strongly minimal” used here may be broader than the one used in [38],
where we said that Z was strongly minimal if π2(Z)† = 0. The two definitions are
equivalent if (E2Z)† = 0.)
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Order minimality is the most natural property, and χ-minimality perhaps the one
most easily established. It is clear that strongly minimal PD4-complexes are order-
minimal. We shall show that χ-minimality interpolates between these notions, when
the L2-Euler characteristic formula χ(X) = Σ(−1)iβ (2)

i (X) applies. (Here β (2)
i (X)

and β (2)
i (π) are the ith L2-Betti numbers of the space X and group π . The book [45]

is the definitive reference for L2 homology; a brief outline is given in Sections 1.9
and 2.2 of [34].)

Theorem 2. A PD4-complex X with fundamental group π is strongly minimal if and
only if β (2)

2 (X) = β (2)
2 (π).

Proof. The module C2(X ;C[π]) may be identified with the group of cellular 2-
cochains with compact support on X̃ , while the corresponding module C2

(2)(X̃) of

L2-cochains is the group of square-summable cellular 2-cochains on X̃ . The com-
pactly supported cochains are dense in the square-summable cochains. For each
z ∈ π2(X) the evaluation evz : f → f (z) is continuous as a linear map from C2

(2)(X̃)

to C. (See the proof of [34, Theorem 3.4]. If X is strongly minimal then evz( f ) = 0
for all f ∈ C2(X ;C[π]). Hence evz = 0 for all z ∈ π2(M). The L2 analogue of the
evaluation sequence (as in [19, §1.4]) then shows that cX induces an isomorphism
on the unreduced L2-cohomology modules, and so β (2)

2 (X) = β (2)
2 (π). The converse

is part (3) of [34, Theorem 3.4].

The next two corollaries need a further hypothesis at present.

Corollary 3 Suppose that either X is finite or π satisfies the Strong Bass Conjec-
ture. Then if X is strongly minimal it is χ-minimal, and if it is χ-minimal it is order
minimal.

Proof. If X is finite or π satisfies the Strong Bass Conjecture we may use the L2-
Euler characteristic formula then χ(X) = β (2)

2 (X)− 2β (2)
1 (X) [20]. Since we may

construct a K(π,1) complex by adjoining cells of dimension > 2 to X , we have
β (2)

2 (X) ≥ β (2)
2 (π), in general. Hence X strongly minimal implies that X is χ-

minimal, by the Theorem.
Suppose that f : X → Y is a 2-connected degree-1 map and χ(X) = χ(Y ). Then

K2( f ) is a finitely generated projective Z[π]-module and Z⊗Z[π] K2( f ) = 0. If X is
finite then X is a stably free Z[π]-module, so K2( f ) = 0, by a result of Kaplansky
[52]. This also holds if π satisfies the Weak Bass Conjecture [18]. In either case, f
is a homotopy equivalence, and so χ-minimality implies order minimality.

In particular, every sequence of 2-connected degree-1 maps

X1 → X2 → X3 → . . .

eventually becomes a sequence of homotopy equivalences. If f : X → Z is a 2-
connected degree-1 map and Z is strongly minimal then λ f = λX .
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Corollary 4 Suppose that either X is finite or π satisfies the Strong Bass Conjec-
ture. If β (2)

1 (X) = χ(X) = 0 then X is strongly minimal.

Proof. In this case the L2 Euler characteristic formula gives β (2)
2 (X) = 0. Hence

β (2)
2 (X) = β (2)

2 (π).

Strong minimality has the disadvantage of limited applicability. However, the
case of greatest interest to us is when c.d.π ≤ 2. The three notions of minimality are
then equivalent, and order minimality is equivalent to strong minimality if and only
if c.d.π ≤ 2. (See Theorems 18 and 21 below, and [37] for π a free group.)

If π ∼= Zr and X is χ-minimal then X is order minimal. However, X can only be
strongly minimal if r = 1, 2 or 4. The 4-torus R4/Z4 is the unique strongly minimal
PD4-complex with fundamental group Z4, since EsZ = 0 if s ≤ 3 for this group.
Hence q(Z4) = 0. Let K be the 2-complex corresponding to the standard presenta-
tion of Z4 with four generators and six relators, and let N be a regular neighbour-
hood of an embedding of K in R5. Then M = ∂N is an orientable 4-manifold with
π1(M) ∼= Z4 and χ(M) = 6. If a 2-connected degree-1 map f : M → Y is not a ho-
motopy equivalence then χ(Y )< χ(M) and so β2(Y )< 12. Since c∗Y H2(Z4;Z) has
rank 6 it follows easily from Poincaré duality in Y that c∗Y H2(Z4;Z) cannot be self-
annihilating with respect to cup product, and so cY has nonzero degree. However
cM∗[M] = 0, since cM factors through N, and so there can be no such map f . Thus
M is order-minimal, but not χ-minimal, and not strongly minimal.

If Z is strongly minimal and π ∼= G1 ∗G2 does Z decompose accordingly as a
connected sum? If so, the hypothesis that π have one end would not be needed in
our consideration later of groups of cohomologicial dimension 2. If M is a closed 4-
manifold and π1(M)∼= G1 ∗G2 then there is a simply-connected 4-manifold N such
that M#N ∼=P1#P2, where π1(Pi)∼=Gi for i= 1,2 [34, Theorem 14.10]. If pi : Pi → Zi
are strongly minimal models then p = p1#p2 : M#N → Z1#Z2 is a strongly minimal
model for M#N. The image of π2(N) generates a projective direct summand of
π2(M#N) on which the intersection pairing is nonsingular, and so p factors through
M, by the construction of Theorem 5 below. Thus M has a strongly minimal model
which is a connected sum.

A strongly minimal 4-manifold M must be of type II or III, since α∗v2(M̃) is the
normal Stiefel-Whitney class w2(να), for α an immersion of S2 in M̃ with normal
bundle να , and so v2(M̃)([α]) is the mod-2 self-intersection number of [α]∈ π2(M).
Is there a purely homotopy-theoretic argument showing that all strongly minimal
PD4-complexes are of type II or III? (This is so if c.d.π = 2, by Theorem 20 below.)

Lemma 7. Let f : X → Z be a 2-connected degree-1 map of PD4-complexes with
fundamental group π . If X is of type II or III then so is Z.

Proof. Since f is 2-connected, cX = gcZ f , for some self homotopy equivalence g
of K(π,1). If v2(X) = c∗XV for some V ∈ H2(π;F2) then

f ∗(v2(Z)� α) = f ∗(α2) = v2(X)� f ∗α = f ∗(c∗Zg∗V � α),

for all α ∈ H2(Z;F2). Hence v2(Z) = c∗Zg∗V , since H4( f ;F2) is an isomorphism.
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The converse is false. For instance, the blowup of a ruled surface is of type I, but
its minimal models are of type II or III. (See §14 below.)

If X has v2-type I and c.d.π = 2 is there a model f : X → Z with v2(Z) = 0?

Lemma 8. Let Z be a PD4-complex with fundamental group π , and let Zρ be the
covering space associated to a subgroup ρ of finite index in π . Then Z is strongly
minimal if and only if Zρ is strongly minimal.

Proof. LetΠ = π2(Z). Then π2(Zρ)∼=Π |ρ . Moreover, H2(π;Z[π])|ρ ∼=H2(ρ;Z[ρ])
and HomZ[π](Π ,Z[π])|ρ ∼=HomZ[ρ](Π |ρ ,Z[ρ]), as right Z[ρ]-modules, since [π : ρ]
is finite. The lemma follows from these observations.

7 Existence of strongly minimal models

In this section we shall obtain a criterion for the existence of a strongly minimal
model, as a consequence of the following theorem, which may be thought of as a
converse to the 4-dimensional case of Wall’s Lemma 2.2 and Theorem 5.2.

Theorem 5. Let X be a PD4-complex with fundamental group π . If K is a finitely
generated projective direct summand of H2(X ;Z[π]) such that λX induces a nonsin-
gular pairing on K ×K then there is a PD4-complex Z and a 2-connected degree-1
map f : X → Z with K2( f ) = D(K).

Proof. Suppose first that K is stably free and choose maps mi : S2 → X for 1 ≤ i ≤
s representing generators of D(K), and such that the kernel of the corresponding
epimorphism m : Z[π]s → D(K) is free of rank t. Attach s 3-cells to X along the mi
to obtain a cell complex Y with π1(Y ) ∼= π , π2(Y ) ∼= Π/D(K) and H3(Y ;Z[π]) ∼=
H3(X ;Z[π])⊕Z[π]t . Since the Hurewicz map is onto in degree 3 for 1-connected
spaces (such as Ỹ ) we may then attach t 4-cells to Y along maps whose Hurewicz
images form a basis for H3(Y,X ;Z[π]) to obtain a cell complex Z with π1(Z) ∼= π
and π2(Z)∼=Π/D(K).

If K is not stably free then K⊕F ∼= F , where F is free of countable rank, and we
first construct Y by attaching countably many 2- and 3-cells to X , and then attach
countably many 4-cells to Y to obtain Z as before.

The inclusion f : X → Z is 2-connected and Ker(H2( f ;Z[π])) = D(K). Com-
parison of the equivariant chain complexes for X and Z shows that Hi( f ;Z[π]) is
an isomorphism for all i �= 2, while H j( f ;Z[π]) is an isomorphism for all j �= 2
or 3, and H2( f ;Z[π]) is a monomorphism. The connecting homomorphism in
the long exact sequence for the cohomology of (Z,X) with coefficients Z[π] in-
duces an isomorphism from the summand K ≤ H2(X ;Z[π]) to H3(Z,X ;Z[π]) =
HomZ[π](D(K),Z[π]). Therefore H3(Z;Z[π]) = 0. Let [Z] = f∗[X ]∈H4(Z;Zw). Cap
product with [Z] gives isomorphisms H j(Z;Z[π])∼= H4− j(Z;Z[π]) for j �= 2, by the
projection formula f∗( f ∗α � [X ]) = α � [Z]. This is also true when j = 2, for
then H2( f ;Z[π]) identifies H2(Z;Z[π]) with the orthogonal complement of K in
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H2(X ;Z[π]), and f∗(−� [X ]) carries this isomorphically to H2(Z;Z[π]). Therefore
Z is a PD4-complex with fundamental class [Z], f has degree 1 and K2( f ) = D(K).

This construction derives from [38], via [39]. The main theorem of [32] includes
a similar result, for X a closed orientable 4-manifold and K a free module.

Corollary 6 The PD4-complex X has a strongly minimal model if and only if H/E
is a finitely generated projective Z[π]-module and λX is nonsingular.

Proof. If f : X → Z is a 2-connected degree-1 map then K2( f ) = Cok(H2( f ;Z[π]))
is a finitely generated projective direct summand of H2(X ;Z[π]) [60, Lemma 2.2].
If Z is strongly minimal the inclusion E → H2(Z;Z[π]) is an isomorphism, and so
H/E ∼= K2( f ). Hence the conditions are necessary. If they hold the construction of
Theorem 5 gives a strongly minimal model for X .

The above conditions hold if Π † is a finitely generated projective Z[π]-module
and E3Z = 0. In particular, they hold if c.d.π ≤ 2, by an elementary argument us-
ing Schanuel’s Lemma and duality. (See Theorem 18 below). On the other hand, if
c.d.π = 3 and Z has a finite projective resolution then no PD4-complex with funda-
mental group π is strongly minimal. For if λX = 0 then E3Z∼= (E2Z)†, by Lemma
6, and this condition cannot hold, by the next lemma.

Lemma 9. Let π be a group such that the augmentation module Z has a finite pro-
jective resolution of length ≤ 3, and let E = E2Z. If E3Z∼= E† then c.d.π ≤ 2.

Proof. Let P∗ be a projective resolution of Z, of length 3. Then ∂ †
3 : P†

2 → P†
3 is a

presentation for E3Z. Hence (E3Z)† = Ker(∂ ††
3 ) = Ker(∂3) = 0. But then E3Z ∼=

E† ∼= E††† = 0. Hence ∂3 is a split injection, and so c.d.π ≤ 2.

Surgery on a factor of the 4-torus R4/Z4 gives a closed 4-manifold M with π ∼=
Z3 and χ(M) = 2. This 4-manifold is χ-minimal [34, Lemma 3.11], and is order
minimal, by Corollary 4, but cannot be strongly minimal, since c.d.π = 3.

The condition E3Z ∼= (E2Z)† is far from characterizing the fundamental groups
of strongly minimal PD4-complexes. In §9–§14 we shall determine such groups
within certain subclasses. In all cases considered, π has finitely many ends (i.e., π
is virtually cyclic or E1Z= 0) and E3Z= 0.

Lemma 10. Let f : X → Z be a 2-connected degree-1 map of PD4-complexes with
fundamental group π . Then k1(Z) = f#(k1(X)) and k1(X) = f!#k1(Z), where f# and
f!# are the change-of-coefficients homomorphisms induced by π2( f ) and the umkehr
homomorphism. If E3Z= 0 then these are mutually inverse isomorphisms.

Proof. Since K2( f ) is projective, π2(X)∼= π2(Z)⊕K2( f ), where the projection onto
the first factor is given by π2( f ) and is split by the umkehr map f!.

Let q : Q → Z be the pullback of P3( f ) : P3(X) → P3(Z) over the inclusion of
Z into P3(Z). Then q is a fibration with homotopy fibre K(K2( f ),2) and f = qg,
where g : X → Q and P3(g) is a homotopy equivalence. Hence π2(g) is an iso-
morphism and k1(Q) = g#k1(X). The fibration q is determined by Z and a k-
invariant in H3(Z;K2( f )) ∼= H1(Z;K2( f )), which is 0 since K2( f ) is projective.
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Hence k1(Q) = g# f!#k1(Z). Therefore k1(X) = f!#k1(Z), since g# is an isomorphism,
and so f#k1(X) = f# f!#k1(Z) = k1(Z).

The second assertion follows easily from the fact that π2( f ) is an epimorphism
with kernel K2( f ) a finitely generated projective direct summand of Π = π2(X) and
the hypothesis E3Z= 0, which implies that H3(π;K2( f )) = 0.

In particular, if Z is strongly minimal then k1(X) derives from H3(π;E2Z). Are
there such examples with k1(X) �= 0? The simplest examples for testing that we have
found are the groups π = A2

3 ∗C A3
2, where An = Zn ∗Zn and C is either trivial or Z4.

These groups have c.d.π = 6. Mayer-Vietoris arguments show that if C = 1 then
E1Z∼= E2Z∼= E3Z∼= Z[π], while if C = Z4 then E1Z= 0 (i.e., π has one end) and
E2Z ∼= E3Z ∼= Z[π]. In each case it follows that H3(π;E2Z) ∼= Z[π]. These groups
are right angled Artin groups. Perhaps the “smallest” such group with similar coho-
mological properties is the one given by the 1-skeleton of a minimal triangulation
of S2 × S1, which has 10 generators and 40 relators but is less easily described ex-
plicitly. (This group has one end and c.d.= 4.)

8 Reduction

The main result of this section implies that when a PD4-complex X has a strongly
minimal model Z its homotopy type is determined by Z and λX . Recall the notation
BM(−) from §2.

Lemma 11. Let βξ = BZn(b(CP∞)n(ξ )), for ξ ∈ H4((CP∞)n;Z), and let G be a
group. Let u = Σugg and v = Σvhh ∈ H2((CP∞)n;Z[G])∼= H2((CP∞)n;Z)⊗ZZ[G].
Then

v(u � ξ ) = Σg,h∈Gβξ (ug,vh)gh̄.

Proof. As each side of the equation is linear in ξ and H4((CP∞)n;Z) is generated
by the images of homomorphisms induced by maps from CP∞ or (CP∞)2, it suffices
to assume n = 1 or 2. Since moreover each side of the equation is bilinear in u and
v we may reduce to the case G = 1. As these functions have integral values and
2(x⊗ y) = (x+ y)⊗ (x+ y)− x⊗ x− y⊗ y in H4((CP∞)2;Z), for all x,y ∈Π ∼= Z2,
we may reduce further to the case n = 1, which is easy.

Lemma 12. Let M be a finitely generated projective Z[π]-module and L =Lπ(M,2).
The secondary boundary homomorphism bL determines an epimorphism b′ from
H4(L;Zw) to Zw ⊗Z[π]ΓW (M) such that

BM(b′(x))(u,v) = v(u � x) f or all u,v ∈ M† and x ∈ H4(L;Zw).

Proof. The homomorphism from H4(L;Zw) to H4(π;Zw) induced by cL is an a epi-
morphism, since cL has a section σ . Since L̃ � K(M,2) the homomorphism bL̃ is
an isomorphism and H3(L̃;Z) = 0, while since M is projective Hp(π;M) = 0 for all
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p > 0. Therefore it follows from the spectral sequence for the universal covering
L̃ → L that the kernel of the epimorphism induced by cL is Zw ⊗Z[π] H4(L̃;Z). Let
b′(x) = (1⊗ bL̃)(x−σ∗cL∗(x)) for all x ∈ H4(L;Zw). Then b′ is an epimorphism
onto Zw ⊗Z[π]ΓW (M).

Let x∈H4(L;Zw) and u,v∈M† ∼=H2(L;Z[π]). Since M is the union of its finitely
generated free abelian subgroups and homology commutes with direct limits there
is an n > 0 and a map k : (CP∞)n → L̃ such that b′(x) is the image of k∗(ξ ) for some
ξ ∈ H4((CP∞)n;Z). Then BM(b′(x))(u,v) = evM(k∗ξ )(u,v).

Suppose that k∗u = Σugg and k∗v = Σvhh in H2((CP∞)n;Z[π]). Then we have
evM(k∗ξ )(u,v)=Σg,h∈Gβξ (ug,vh)gh̄, which is equal to v(u� k∗ξ )= k∗v(k∗u� ξ ),
by Lemma 11. Now x = k∗ξ +σ∗u � cL∗x and u � σ∗cL∗x = σ∗(σ∗u � cL∗x) = 0,
since H2(π;Z[π]) = 0. Hence BM(b′(x))(u,v) = v(u � x), for all u,v ∈ M† and
x ∈ H4(L;Zw).

Theorem 7. Let gX : X → Z and gY : Y → Z be 2-connected degree-1 maps of PD4-
complexes with fundamental group π . If w = w1(Z) is trivial on elements of order 2
in π then there is a homotopy equivalence h : X →Y such that gY h = gX if and only
if λgX

∼= λgY (after changing the sign of [Y ], if necessary).

Proof. The condition λgX
∼= λgY is clearly necessary. Suppose that it holds.

Since gX and gY induce isomorphisms on π1, we may assume that cX = cZgX
and cY = cZgY . Since gX and gY are 2-connected degree-1 maps, there are canoni-
cal splittings π2(X) = K2(gX )⊕N and π2(Y ) = K2(gY )⊕N, where N = π2(Z), and
K2(gX ) and K2(gY ) are projective. The projections π2(gX ) and π2(gY ) onto the sec-
ond factors are split by the umkehr homomorphisms. We may identify K2(gX )

† and
K2(gY )

† with direct summands of H2(X ;Z[π]) and H2(X ;Z[π]), respectively [60,
Lemma 2.2]. The homomorphism θ induces an isomorphism K2(Y ) ∼= M = K2(X)
such that λgY = λgX as pairings on M† ×M†. Hence π2(X)∼= π2(Y )∼=Π = M⊕N.
We may also assume that M �= 0, for otherwise gX and gY are homotopy equiva-
lences.

Let g : P = P2(X) → P2(Z) be the 2-connected map induced by gX . Then g is
a fibration with fibre K(M,2), and the inclusion of N as a direct summand of Π
determines a section s for g. Since π2(X) ∼= π2(Y ), and k1(X) = (gX!)#(k1(Z)) and
k1(Y ) = (gY !)#(k1(Z)), by Lemma 10, we see that P2(Y ) � P. We may choose the
homotopy equivalence so that composition with g is homotopic to the map induced
by gY . (This uses our knowledge of Eπ(P), as recorded in §3 above.)

The splitting Π = M⊕N also determines a projection q : P → L = Lπ(M,2). We
may construct L by adjoining 3-cells to X to kill the kernel of projection from Π
onto M and then adjoining higher dimensional cells to kill the higher homotopy. Let
j : X → L be the inclusion. Then BM(b′( j∗[X ]))(u,v) = v(u � j∗[X ]) for all u,v ∈
M†, by Lemma 12. Using the projection formula and identifying M† = H2(L;Z[π])
with K2(X) we may equate this with λgX (u,v). Hence fX∗[X ] and fY∗[Y ] have the
same image λgX = λgY in Herw(M†).

Since P2(Z) is a retract of P comparison of the Cartan-Leray spectral sequences
for the classifying maps cP and cP2(Z) shows that
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Cok(H4(s;Zw))∼= Zw ⊗Z[π] (ΓW (Π)/ΓW (N)).

Since π has no orientation reversing element of order 2 the homomorphism BM
is injective, by Theorem 1, and therefore since λgX = λgY the images of fX∗[X ]
and fY∗[Y ] in Zw ⊗Z[π] (ΓW (Π)/ΓW (N)) differ by an element of the subgroup
Zw ⊗Z[π] (M⊗N). Let c ∈ M⊗N represent this difference, and let γ ∈ ΓW (M) rep-
resent b′( fX∗[X ]). Since BM(1⊗ γ) = λgX is nonsingular B̃M(γ) is surjective, and
so we may choose a homomorphism θ : M → N such that (B̃M(γ)⊗ 1)(t−1(θ)) =
(d ⊗ 1)(c). Hence ΓW (αθ )(γ)− γ ≡ c mod ΓW (N), by Lemma 3. Let P(θ) be the
corresponding self homotopy equivalence of P. Then gP(θ) = g and P(θ)∗ fY∗[Y ] =
fX∗[X ] mod Zw ⊗Z[π] ΓW (N). It follows that P(θ)∗ fY∗[Y ] = fX∗[X ] in H4(P;Zw),
since gX∗[X ] = gY∗[Y ] in H4(Z;Zw) and so (g fX )∗[X ] = (g fY )∗[Y ] in H4(P2(Z);Zw).

There is then a map h : X → Y with fY h = fX , by the argument of [27, Lemma
1.3]. Since the orientation characters of X and Y are compatible, h lifts to a map
h+ : X+ → Y+. Since fX and fY are 3-connected π1(h+), π2(h+) and H2(h+;Z)
are isomorphisms. Since M is projective and nonzero, Z⊗Ker(w) M is a nontrivial
torsion free direct summand of H2(X+;Z), and so h+ has degree 1, by Poincaré
duality. Hence h+ is a homotopy equivalence, and therefore so is h.

The original version of this result [39, Theorem 11] assumed that k1(X) =
k1(Y ) = 0. This was relaxed to the condition that “k1(X) = (gX!)#k1(Z) and k1(Y ) =
(gY !)#k1(Z)” in an earlier version of the present paper [arXiv: 1303.5486v2]. The
final step is due to Hegenbarth, Pamuk and Repovš, who noted that Poincaré duality
in Z may be used to establish an equivalent condition [31]. (This observation has
been used in the current version of Lemma 10 above.)

The argument for Theorem 7 breaks down when π = Z/2Z and w is nontrivial,
for then BM : Zw ⊗Z[π]ΓW (M)→ Herw(M†) is no longer injective, and the intersec-
tion pairing is no longer a complete invariant [28]. Thus the condition on 2-torsion
is in general necessary.

Corollary 8 If X has a strongly minimal model Z and π has no 2-torsion then the
homotopy type of X is determined by Z and λX . ��
Corollary 9 [32] If g : X → Z is a 2-connected degree-1 map of PD4-complexes
such that w1(Z) is trivial on elements of order 2 in π1(Z) then X is homotopy equiv-
alent to M#Z with M 1-connected if and only if λg is extended from a nonsingular
pairing over Z. ��

The result of [32] assumes that X is orientable, π is infinite and either E2Z = 0
or π acts trivially on π2(Z). (In the latter case HomZ[π](π2(Z),Z[π]) = 0, and so Z
is strongly minimal.)
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9 Realization of pairings

In this short section we shall show that if Z is a strongly minimal PD4-complex
and Ker(w) has no element of order 2 every nonsingular w-hermitian pairing on a
finitely generated projective Z[π]-module is realized as λX for some PD4-complex X
with minimal model Z. This is an immediate consequence of the following stronger
result.

Theorem 10. Let Z be a PD4-complex with fundamental group π and let w=w1(Z).
Assume that Ker(w) has no element of order 2. Let N be a finitely generated projec-
tive Z[π]-module and Λ be a nonsingular w-hermitian pairing on N†. Then there is
a PD4-complex X and a 2-connected degree-1 map f : X → Z such that λ f ∼=Λ .

Proof. Suppose N⊕F1 ∼= F2, where F1 and F2 are free Z[π]-modules with countable
bases I and J, respectively. (These may be assumed finite if N is stably free.) We
may assume Z = Zo ∪θ e4 is obtained by attaching a single 4-cell to a 3-complex Zo
[60, Lemma 2.9]. Construct a 3-complex Xo with π2(Xo)∼= π2(Zo)⊕N by attaching
J 3-cells to Zo∨(∨IS2), along sums of translates under π of the 2-spheres in ∨IS2, as
in Theorem 5. Let i : Zo → Xo be the natural inclusion. Collapsing ∨IS2 gives Xo/∨I

S2 � Zo ∨ (∨JS3), and so there is a retraction q : Xo → Zo. Let p : Π = π2(Xo) →
N be the projection with kernel Im(π2(i)), and let j : Xo → L = Lπ(N,2) be the
corresponding map. Then π2( ji) = 0 and so ji factors through K(π,1). The map
BN : Zw ⊗Z[π]ΓW (N)→ Herw(N†) is an epimorphism, by Theorem 1. Therefore we
may choose ψ ∈ π3(Xo) so that BN([ j(ψ)]) =Λ .

Let φ = ψ − iqψ + iθ . Then qφ = θ and j(φ) = j(ψ), so BN([ j(φ)]) = Λ .
Let X = Xo ∪φ D4. The retraction q extends to a map f : X → Z. Comparison of
the exact sequences for these pairs shows that f induces isomorphisms on homol-
ogy and cohomology in degrees �= 2. In particular, H4(X ;Zw) ∼= H4(Z;Zw). Let
[X ] = f−1∗ [Z]. Then f∗( f ∗(α) � [X ]) = α � [Z] for all cohomology classes α on
Z, by the projection formula. Therefore cap product with [X ] induces the Poincaré
duality isomorphisms for Z in degrees other than 2. As it induces an isomorphism
H2(X ;Z[π]) ∼= H2(X ;Z[π]), by the assumption on Λ , Xφ is a PD4-complex with
λX ∼=Λ .

10 Strongly minimal models with π2 = 0

A PD4-complex Z with π2(Z) = 0 is clearly strongly minimal.

Lemma 13. Let X be a PD4-complex with fundamental group π . Then

1. Π = 0 if and only if X is strongly minimal and E2Z= 0, and then E3Z= 0;
2. if Π = 0 and π is infinite then the homotopy type of X is determined by π , w and

k2(X) ∈ H4(π;E1Z).
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Proof. Part (1) follows from part (1) of Lemma 6. If Π = 0 then P2(X) � K(π,1)
and π3(Z)∼= E1Z, by Poincaré duality. Hence (2) follows from Lemma 5.

Theorem 11. Let π be a finitely presentable group with no 2-torsion and such that
E2Z= E3Z= 0, and let w : π→Z× be a homomorphism. Then two PD4-complexes
X and Y with fundamental group π , w1(X) = c∗X w, w1(Y ) = c∗Y w and π2(X) and
π2(Y ) projective Z[π]-modules are homotopy equivalent if and only if

1. cX∗[X ] =±g∗cY∗[Y ] in H4(π;Zw), for some g ∈ Aut(π) with wg = w; and
2. λX ∼= λY .

Proof. The hypotheses imply that X and Y have strongly minimal models ZX and
ZY with π2(ZX ) = π2(ZY ) = 0, and hence P2(ZX ) � P2(ZY ) � K(π,1). Moreover
H3(π;π2(X)) = H3(π;π2(Y )) = 0, since E3Z= 0, and so the result follows by the
argument of Theorem 7.

In particular, ZX � ZY . If π also has one end then the minimal model is aspherical.
See Theorem 15 below.

Connected sums of complexes with π2 = 0 again have π2 = 0, and the funda-
mental groups of such connected sums usually have infinitely many ends. (The sole
nontrivial exception is RP4#RP4.) The arguments of [57] can be extended to this
situation, to show that if π splits as a free product then Z has a corresponding con-
nected sum decomposition [7]. (In particular, if π is torsion free then its free factors
are one-ended or infinite cyclic, and so the summands are either aspherical or copies
of S3 ×S1 or S3×̃S1, the non-orientable S3-bundle space over S1.)

In the next two sections we shall determine the groups π with finitely many
ends which are fundamental groups of strongly minimal PD4-complexes Z with
π2(Z) = 0. (Little is known about such complexes with π indecomposable and hav-
ing infinitely many ends. It follows from the results of [15] that the centralizer of
any element of finite order is finite or has two ends.)

11 Strongly minimal models with π virtually free

If π is virtually free (in particular, if it is finite or two-ended) then EsZ = 0 for all
s > 1, and so a strongly minimal PD4-complex Z with fundamental group π must
have π2(Z) = 0, by Lemma 13. Thus if π is finite Z̃ � S4, and so Z � S4 or RP4

[34, Lemma 12.1]. Every orientable PDn-complex admits a degree-1 map to Sn. It
is well known that the (oriented) homotopy type of a 1-connected PD4-complex is
determined by its intersection pairing and that every such pairing is realized by some
1-connected topological 4-manifold [24, page 161]. Thus the only finite group we
need to consider is π = Z/2Z.

Theorem 12. Let X be a PD4-complex with π1(X) =Z/2Z and let w=w1(X). Then
RP4 is a model for X if and only if w4 �= 0.
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Proof. The condition is clearly necessary. Conversely, we may assume that X =
Xo ∪ e4 is obtained by attaching a single 4-cell to a 3-complex Xo [60, Lemma 2.9].
The map cX : X → RP∞ = K(Z/2Z,1) factors through a map f : X → RP4, and
w = f ∗w1(RP4), since w �= 0. The degree of f is well-defined up to sign, and is odd
since w4 �= 0. We may arrange that f is a degree-1 map, after modifying f on a disc,
if necessary. (See [48].)

In particular, π2(X) is projective if and only if w4 �= 0. Can this be seen directly?
The two RP2-bundles over S2 provide contrasting examples. If X = S2 ×RP2 then
w3 = 0 and Π ∼= Z⊕Zw, which has no nontrivial projective Z[Z/2Z]-module sum-
mand. Thus S2 ×RP2 is order minimal but not strongly minimal. On the other hand,
if X is the nontrivial bundle space then w4 �= 0 and Π ∼= Z[Z/2Z].

Non-orientable topological 4-manifolds with fundamental group Z/2Z are clas-
sified up to homeomorphism in [28], and it is shown there that the homotopy types
are determined by the Euler characteristic, w4, the v2-type and an Arf invariant (for
v2-type III). The authors remark that their methods show that λX together with a
quadratic enhancement q : Π → Z/4Z due to [42] is also a complete invariant for
the homotopy type of such a manifold.

If π = π1(Z) has two ends and π2(Z) = 0 then Z̃ � S3. Since π has two ends it is
an extension of Z or the infinite dihedral group D∞ = Z/2Z∗Z/2Z by a finite nor-
mal subgroup F . Since F acts freely on Z̃ it has cohomological period dividing 4 and
acts trivially on π3(Z)∼= H3(Z;Z[π]), while the action u : π →{±1}= Aut(π3(Z))
induces the usual action of π/F on H4(F ;Z). The action u and the orientation char-
acter w1(Z) determine each other, and every such group π and action u is realized
by some PD4-complex Z with π2(Z) = 0. The homotopy type of Z is determined by
π , u and the first nontrivial k-invariant in H4(π;Zu). (See [34, Chapter 11].)

We shall use Farrell cohomology to show that any PD4-complex X with π1(X)∼=
π satisfying corresponding conditions has a strongly minimal model. We refer to
the final chaper of [9] for more information on Farrell cohomology.

It is convenient to use the following notation. If R is a noetherian ring and M
is a finitely generated R-module let Ω 1M = Ker(φ), where φ : Rn → M is any epi-
morphism, and define Ω kM for k > 1 by iteration, so that Ω n+1M = Ω 1Ω nM. We
shall say that two finitely generated R-modules M1 and M2 are projectively equiv-
alent (M1 � M2) if they are isomorphic up to direct sums with a finitely generated
projective module. Then these “syzygy modules” Ω kM are finitely generated, and
are well-defined up to projective equivalence, by Schanuel’s Lemma.

Theorem 13. Let X be a PD4-complex such that π = π1(X) has two ends. Then X
has a strongly minimal model if and only if π and the action u of π on H3(X ;Z[π])∼=
Z are realized by some PD4-complex Z with π2(Z) = 0.

Proof. If π2(Z) = 0 then Z̃ � S3, by Poincaré duality and the Hurewicz and White-
head Theorems, and the conditions on π are necessary, by Theorem 11.1 and Lemma
11.3 of [34].

Conversely, since π is virtually infinite cyclic the conditions imply that the Farrell
cohomology of π has period dividing 4 [22]. We may assume that the chain complex

80



PD4-complexes and 2-dimensional duality groups

C∗ for X̃ is a complex of finitely generated Z[π]-modules. Then the modules B2, Z2
Z3 and Π are finitely generated, since Z[π] is noetherian. The chain complex C∗
gives rise to four exact sequences:

0 → Z2 →C2 →C1 →C0 → Z→ 0,

0 → Z3 →C3 → B2 → 0,

0 → B2 → Z2 →Π → 0

and
0 →C4 → Z3 → Zu → 0.

It is clear that Z2 � Ω 3Z and Z3 � Ω 1B2, while Ω 1Z3 � Ω 1(Zu). The standard
construction of a resolution of the middle term of a short exact sequence from reso-
lutions of its extremes, applied to the third sequence, gives a projective equivalence
Ω 1Z2 � Ω 1B2 ⊕Ω 1Π . The corresponding sequences for a strongly minimal com-
plex with the same group π and action u give an equivalence Ω 1(Zu)�Ω 1(Ω 4Z).
(This is in turn equivalent to Ω 1Z, by periodicity.) Together these equivalences give

Ω 5Z�Ω 2Z2 �Ω 2B2 ⊕Ω 2Π �Ω 1Z3 ⊕Ω 2Π �Ω 5Z⊕Ω 2Π .

Hence Extq
Z[π](Ω

5Z,N)∼=Extq
Z[π](Ω

5Z,N)⊕Extq
Z[π](Ω

2Π ,N), for all q> v.c.d.π =

1, and any Z[π]-module N. If N is finitely generated so is Extq
Z[π](Ω

1Z,N), and so

Extq+2
Z[π](Π ,N) = Extq

Z[π](Ω
2Π ,N) = 0, for all q > 1. Since Π is finitely generated

Extr
Z[π](Π ,−) commutes with direct limits and so is 0, for all r > 3. Therefore Π

has finite projective dimension [9, Theorem X.5.3]. There is a Universal Coefficient
spectral sequence

E pq
2 = Extq

Z[π](Hp(X ;Z[π]),Z[π])⇒ H p+q(X ;Z[π]).

Here E pq
2 = 0 unless p = 0, 2 or 3, and E0q

2 = E3q
2 = 0 if q > 1, since π is virtually

infinite cyclic and Ω 1(Zu)�Ω 1Z. It follows easily from this spectral sequence and
Poincaré duality that Exts

Z[π](Π ,Z[π]) = 0 for all s ≥ 1. Since Π also has finite
projective dimension it is projective. Hence X has a strongly minimal model, by
Theorem 5.

Thus, for instance, an orientable PD4-complex with fundamental group D∞ does
not have a strongly minimal model.

We shall summarize here the results of [37] on the case when π ∼= F(n), for
some n ≥ 1. All epimorphisms w : F(n) → Z× are equivalent up to composition
with an automorphism of F(n). The ring Z[F(n)] is a coherent domain of global
dimension 2, for which all projectives are free. There are just two homotopy types of
χ-minimal PD4-complexes Z with π1(Z)∼= F(n), namely #n(S3×S1) (if w = 0) and
(S3×̃S1)#(#n−1(S3×S1)) (if w �= 0). (These are strongly minimal, and so the notions
of minimality coincide in this case.) If X is any PD4-complex with π1(X) ∼= F(n)
then π2(X) is a finitely generated free Z[F(n)]-module, and there is a degree-1 map
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from X to the minimal model with compatible w. Every w-hermitian pairing on a
finitely generated free Z[F(n)]-module is realizable by some such PD4-complex,
and two such complexes X and Y realizing (F(n),w) are homotopy equivalent if
and only if λX and λY are isometric.

The key observation is that if X is a PD4-complex with π1(X) ∼= F(n) then its
3-skeleton is standard: if β2(X) = β then X � Xψ = Xo ∪ψ e4, where Xo = ∨n(S1 ∨
S3)∨ (∨βS2) and ψ ∈ π3(Xo). (This is an easy homological argument, relying on
Schanuel’s Lemma and the theorems of Hurewicz and Whitehead.) The main results
then follow on exploring how the group E(Xo) acts on the attaching map ψ . This
group is “large” and its action is easily analyzed. Most of these results (excepting
for the determination of the minimal models) can also be proven by adapting the
arguments of this paper.

Finitely generated virtually free groups provide a potentially broader class of
examples. These groups are fundamental groups of finite graphs of finite groups.
The arguments of [15] may be adapted to show that if Z is a strongly minimal PD4-
complex such that π = π1(Z) is virtually free (so π2(Z) = 0) and if π has no dihedral
subgroup of order > 2 then it is a free product of groups with two ends [7]. How-
ever, not much is known about criteria for 2-connected degree-1 maps to a specific
minimal model.

12 Strongly minimal models with π one-ended

We begin this section with a general result on the case when π has one end.

Lemma 14. Let G be a group. If T is a locally-finite normal subgroup of G then T
acts trivially on H j(G;Z[G]), for all j ≥ 0.

Proof. If T is finite then H j(G;Z[G])∼= H j(G/T ;Z[G/T ])), for all j, and the result
is clear. Thus we may assume that T and G are infinite. Hence H0(G;Z[G]) = 0,
and T acts trivially. We may write T =∪n≥1Tn as a strictly increasing union of finite
subgroups. Then there are short exact sequences [41]

0 → lim←−
1Hs−1(Tn;Z[π])→ Hs(T ;Z[π])→ lim←−Hs(Tn;Z[π])→ 0.

Hence Hs(T ;Z[π]) = 0 if s �= 1 and H1(T ;Z[π]) = lim←−
1H0(Tn;Z[π]), and so the

Lyndon-Hochschild-Serre spectral sequence collapses to give

H j(G;Z[G])∼= H j−1(G/T ;H1(T ;Z[G])), for all j ≥ 1.

Let g ∈ T . We may assume that g ∈ Tn for all n, and so g acts trivially on
H0(Tn;ZG), for all j and n. But then g acts trivially on lim←−

1H0(Tn;Z[π]), by
the functoriality of the construction. Hence every element of T acts trivially on
H j−1(G/T ;H1(T ;Z[G])), for all j ≥ 1.
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Theorem 14. Let X be an orientable, strongly minimal PD4-complex. If π = π1(X)
has one end then π has no non-trivial locally-finite normal subgroup.

Proof. Suppose that π has a nontrivial locally-finite normal subgroup T . Since π
has one end, Hs(X ;Z[π]) = 0 for s �= 0 or 2. Since X is strongly minimal, Π =

H2(X ;Z[π]) ∼= H2(π;Z[π]). Hence T acts trivially on Π , since it acts trivially on
H2(π;Z[π]), by Lemma 14, and X is orientable.

Let g ∈ T have prime order p, and let C = 〈g〉 ∼= Z/pZ. Then C acts freely on X̃ ,
which has homology only in degrees 0 and 2. On considering the homology spectral
sequence for the classifying map cX̃/C : X̃/C → K(C,1), we see that Hi+3(C;Z) ∼=
Hi(C;Π), for all i ≥ 2. (See [34, Lemma 2.10].) Since C has cohomological period
2 and acts trivially on Π , there is an exact sequence

0 → Z/pZ→Π →Π → 0.

On the other hand, since π is finitely presentable, Π ∼= H2(π;Z[π]) is torsion-free
[25, Proposition 13.7.1]. Hence T has no such element g and so π has no such finite
normal subgroup.

As an immediate consequence, if X is strongly minimal, but not orientable, and
π has one end, then either π has no nontrivial locally-finite normal subgroup or
π ∼= π+×Z/2Z−, and π+ has no nontrivial locally-finite normal subgroup.

A finitely presentable group G is a PD4-group if K(G,1) is a PD4-complex.
Such a group has one end and E2Z = 0, and K(G,1) is clearly strongly minimal.
Conversely, if X is a strongly minimal complex, π = π1(X) has one end and E2Z= 0
then X is aspherical. Hence π is a PD4-group and K(π,1) is the unique strongly
minimal model. The next theorem gives several equivalent conditions for a PD4-
complex with such a group to have a strongly minimal model.

Theorem 15. Let X be a PD4-complex with fundamental group π such that π has
one end and E2Z= 0. Then the following are equivalent:

1. X has a strongly minimal model;
2. π is a PD4-group and Π = π2(X) is projective:
3. π is a PD4-group, w1(X) = c∗X w1(π) and cX is a degree-1 map;
4. π is a PD4-group, w1(X) = c∗X w1(π) and k1(X) = 0.

Proof. The equivalence (1)⇔ (2) follows from Corollary 6.
If Z is strongly minimal and E1Z= E2Z= 0 then π2(Z) = 0 and π3(Z) = E1Z=

0. Hence Z is aspherical, so π is a PD4-group and Z �K =K(π,1). Any 2-connected
map f : X → K is homotopic to cX (up to composition with a self homotopy equiv-
alence of K). Thus w1(X) = c∗X w1(π) and cX is a degree-1 map. Conversely, if (3)
holds then K = K(π,1) is the unique strongly minimal PD4-complex with funda-
mental group π , and cX is a 2-connected degree-1 map. Thus (3)⇔ (1).

If (2) or (3) holds then Π = Ker(π2(cX )) is projective, Since π is a PD4-group,
H3(π;M) = 0 for any projective module M, and so k1(X) = 0. Conversely, if (4)
holds the map cP : P = P2(X)→ K has a section s, since k1(X) = 0. We may assume
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that K = Ko ∪e4 and X = Xo ∪e4, where Ko and Xo are 3-complexes. The restriction
s|Ko factors through Xo, by cellular approximation, since P = Xo ∪{cells o f dim ≥
4}. Thus Ko is a retract of Xo. The map cX induces a commuting diagram of homo-
morphisms between the long exact sequences of the pairs (X ,Xo) and (K,Ko), with
coefficients Z[π]. Hence the induced map from H4(X ,X0;Z[π]) to H4(K,K0;Z[π])
is an isomorphism. The change of coefficients homomorphisms εw# induced by the
w-twisted augmentation are epimorphisms. Since the natural maps from H4(X ;Zw)
to H4(X ,Xo;Zw) and from H4(K;Zw) to H4K,Ko;Zw) are isomorphisms, it follows
that cX has degree 1. Thus (3)⇔ (4).

If π has one end and Π is projective then c.d.π = 4 and H4(π;Z[π])∼=Z, by part
(6) of Lemma 6. Must π be a PD4-group? This is so if also E3Z= 0, for then X has a
strongly minimal model, by Lemma 6 and Theorem 5, which must be aspherical. If
X is strongly minimal and π is virtually an r-dimensional duality group then r = 1,2
or 4, and in the latter case π is a PD4-group.

The next result now follows from Corollary 20 and Theorem 15.

Corollary 16 Let X and Y be PD4-complexes with fundamental group π a PD4-
group, and such that π2(X) and π2(Y ) are projective Z[π]-modules, w1(X) = c∗X w
and w1(Y ) = c∗Y w, where w = w1(π). Then X and Y are homotopy equivalent if and
only if λX ∼= λY . ��

This corollary and the equivalence of (3) and (4) in the Theorem are from [12]. (It
is assumed there that X and π are orientable.) Theorems 15 and 7 give an alternative
proof of the main result of [12], namely that a PD4-complex X with fundamental
group π a PD4-group and w1(X) = w1(π) is homotopy equivalent to M#K(π,1),
for some 1-connected PD4-complex M if and only if k1(X) = 0 and λX is extended
from a nonsingular pairing over Z.

13 Semidirect products and mapping tori

In this section we shall determine which semidirect products ν�α Z with ν finitely
presentable are fundamental groups of strongly minimal PD4-complexes.

Theorem 17. Let ν be a finitely presentable group and let X be a PD4-complex with
fundamental group π ∼= ν�α Z, for some automorphism α of ν . Then the following
are equivalent:

1. X is the mapping torus of a self homotopy equivalence of a PD3-complex N with
fundamental group ν;

2. X is strongly minimal;
3. χ(X) = 0.

In general, X has a strongly minimal model if and only if Π † is projective.
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Proof. Let Xν be the covering space of X corresponding to ν . Then Xν is the ho-
motopy fibre of a map from X to S1 which corresponds to the projection of π onto
Z, and Hq(Xν ;k) = 0 for q > 3 and all coefficients k. The Lyndon-Hochschild-Serre
spectral sequence gives an isomorphism H2(π;Z[π])|ν ∼= H1(ν ;Z[ν ]) of right Z[ν ]-
modules. Since ν is finitely presentable it is accessible, and hence H1(ν ;Z[ν ]) is
finitely generated as a right Z[ν ]-module. (See Theorems VI.6.3 and IV.7.5 of [16].)

Suppose first that X is the mapping torus of a self homotopy equivalence of a
PD3-complex N. Since π2(X)|ν = π2(N) ∼= H1(ν ;Z[ν ]) is finitely generated as a
left Z[ν ]-module, HomZ[π](π2(X),Z[π]) = 0, and so X is strongly minimal.

If X is strongly minimal then π2(X) ∼= H2(X ;Z[π]) = H2(π;Z[π]), and so
π2(Xν) = π2(X)|ν is finitely generated as a left Z[ν ]-module. Since ν is finitely
presentable, it follows that βq(Xν ;F2) is finite for q ≤ 2. Poincaré duality in X
gives an isomorphism H3(Xν ;F2) ∼= H1(X ;F2[π/ν ]) = F2. Hence βq(Xν ;F2) is fi-
nite for all q, and so χ(X) = 0, by a Wang sequence argument applied to the fibration
Xν → X → S1.

If χ(X) = 0 then X is a mapping torus of a self homotopy equivalence of a PD3-
complex N with π1(N) = ν . (See [34, Chapter 4].)

The indecomposable factors Gi of ν = ∗Gi are either PD3-groups or virtually
free [15], and in either case H2(Gi;Z[Gi]) = 0. Therefore H2(ν ;Z[ν ]) = 0 and so
E3Z = 0. The final assertion now follows from the evaluation sequence, Lemma 6
and Theorem 5.

The condition that ν be the fundamental group of a PD3-complex is quite re-
strictive. Mapping tori of self homotopy equivalences of PD3-complexes are always
strongly minimal, but other PD4-complexes with such groups may be order-minimal
but not χ-minimal, and so have no strongly minimal model. (See §5 above for an
example with π = Z4 and χ(M) = 6.)

If ν is finite then π has two ends, and if ν has one end then π is a PD4-group. If
ν is torsion free and has two ends it is Z, and so π ∼=Z2 or Z�−1Z. More generally,
when ν is a finitely generated free group F(n) (with n > 0) then π has one end and
c.d.π = 2. This broader class of groups is the focus of the rest of this paper.

14 Groups of cohomological dimension 2

When c.d.π = 2, we may drop the qualification “strongly”, by the following theo-
rem. (This is also so if π is a free group. The arguments below may be adapted to
the latter case, which is well understood [37].)

Theorem 18. Let X be a PD4-complex with π1(X)∼= π such that c.d.π = 2, and let
w = w1(X). Then

1. C∗(X ;Z[π]) is Z[π]-chain homotopy equivalent to D∗⊕P[2]⊕D†
4−∗, where D∗ is

a projective resolution of Z, P[2] is a finitely generated projective module P con-
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centrated in degree 2 and D†
4−∗ is the conjugate dual of D∗, shifted to terminate

in degree 2;
2. Π = π2(X)∼= P⊕E2Z;
3. χ(X)≥ 2χ(π), with equality if and only if P = 0;
4. (E2Z)† = 0;
5. π3(X)∼= ΓW (Π)⊕E1Z.

Moreover, P2(X) � L = Lπ(Π ,2), and so the homotopy type of X is determined by
π , w, Π , and the orbit of k2(X) ∈ H4(L;π3(X)) under the actions of Autπ(π3(X))
and E0(L).

Every nonsingular w-hermitian pairing on a finitely generated projective Z[π]-
module is realized by some such PD4-complex.

Proof. Let C∗ =C∗(X ;Z[π]), and let D∗ be the chain complex with D0 =C0, D1 =
C1, D2 = Im(∂C

2 ) and Dq = 0 for q > 2. Then

0 → D2 → D1 → D0 → Z→ 0

is a resolution of the augmentation module. Since c.d.π ≤ 2 and D0 and D1 are free
modules D2 is projective, by Schanuel’s Lemma. Therefore the epimorphism from
C2 to D2 splits, and so C∗ is a direct sum C∗ ∼= D∗ ⊕ (C/D)∗. Since X is a PD4-
complex C∗ is chain homotopy equivalent to the conjugate dual C†

4−∗. Assertions (1)
and (2) follow easily.

On taking homology with simple coefficients Q, we see that χ(X) = 2χ(π)+
dimQQ⊗π P. Hence χ(X) ≥ 2χ(π). Since π satisfies the Weak Bass conjecture
[18] and P is projective P = 0 if and only if dimQQ⊗π P = 0.

Let δ : D2 → D1 be the inclusion. Then E2Z = Cok(δ †) and so (E2Z)† =
Ker(δ ††). But δ †† = δ is injective, and so (E2Z)† = 0.

The indecomposable free factors of π are either one-ended or infinite cyclic, and
at least one factor has one end, since c.d.π > 1. Thus H3(X̃ ;Z) ∼= E1Z is a free
Z[π]-module, by Lemma 2. Hence π3(X)∼= ΓW (Π)⊕E1Z.

Since c.d.π = 2 the first k-invariant of X is trivial, and so P2(X)� L = Lπ(Π ,2).
Hence the next assertion follows from Lemma 5.

The realization result follows from Theorem 10.

It follows immediately from (2), (3) and Theorem 5 that “χ-minimal”, “order-
minimal” and “strongly minimal” are equivalent, when c.d.π = 2. We shall hence-
forth use just “minimal” for such complexes.

It remains unknown whether every finitely presentable group π with c.d.π = 2
has a finite 2-dimensional K(π,1)-complex. We shall write g.d.π = 2 if this is so.

Corollary 19 Let X and Y be PD4-complexes with fundamental group π such that
c.d.π = 2, and w1(X) = c∗X w and w1(Y ) = c∗Y w for some homomorphism w : π →
Z×. Then X and Y are homotopy equivalent if and only if they have the same minimal
model Z and λX ∼= λY . ��

The minimal model may not be uniquely determined! See §14 below.
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Theorem 20. Let Z be a minimal PD4-complex with fundamental group π such that
c.d.π = 2, and let w = w1(Z), L = Lπ(E2Z,2) and π3 = ΓW (E2Z)⊕E1Z. Then

1. the homotopy type of Z is determined by π , w and the orbit of k2(Z) ∈ H4(L;π3)
under the actions of Autπ(ΓW (E2Z)⊕E1Z) and E0(L);

2. if Ẑ is another such complex then P2(Ẑ)� P2(Z) if and only if there is an isomor-
phism f : π1(Ẑ)∼= π such that w1(Ẑ) = f ∗w;

3. the v2-type of Z is II or III, i.e., v2(Z) = c∗ZV for some V ∈ H2(π;F2);
4. if Z is orientable then it has signature σ(Z) = 0;
5. for every v ∈ H2(π;F2) there is a minimal PD4-complex Z with π1(Z) ∼= π ,

w1(Z) = c∗Zw and v2(Z) = c∗Zv.

Proof. The first assertion follows from Theorem 18, since P2(Z)� L.
If f : π1(Ẑ)∼= π is an isomorphism such that w1(Ẑ) = f ∗w then π2(Ẑ)∼= Π and

so P2(Ẑ)� P2(Z). Conversely, Ext2
Z[π](Π ,Z[π]) = Zw, so π and Π determine w.

Let H = c∗ZH2(π;F2). Then dimH2(Z;F2) = 2dimH, since χ(Z) = 2χ(π), and
H ∪ H = 0, since c.d.π = 2. In particular, v2(Z)∪ h = h ∪ h = 0 for all h ∈ H.
Therefore v2(Z) ∈ H, by the nonsingularity of Poincaré duality. If Z is orientable
a similar argument with coefficients Q shows that H2(Z;Q) has a self-orthogonal
summand of rank β2(π) = 1

2β2(Z), and so σ(Z) = 0.
We may use a finite presentation P = 〈X | R〉 for π as a pattern for constructing a

5-dimensional handlebody D5 ∪x∈X h1
x ∪r∈R h2

r �C(P), where the 1- and 2-handles
are indexed by X and R, respectively, but we refine the construction by taking non-
orientable 1-handles for generators x with w(x) �= 0 and using w2 = v+w2 to twist
the framings of the 2-handles corresponding to the relators. Let M be the boundary
of the resulting 5-manifold. Then π1(M) ∼= π , w1(M) = c∗Mw and v2(M) = c∗Mv.
Since E3Z = 0 the pairing λM is nonsingular, by part (4) of Lemma 6. Hence M
has a strongly minimal model Z, by Corollary 6. Since cM factors through cZ via a
2-connected degree-1 map, Z has the required properties.

The argument for realizing v is taken from [29], where it is shown that if C(P)
is aspherical then the manifold M is itself minimal.

How does k2(X) determine v2(X) (and conversely)? This seems to be a crucial
question. We expect that the orbit of the k-invariant is detected by the refined v2-
type, but have only proven this in some cases. (See Theorems 25 and 27 below.)

Since the Postnikov third stage fX ,3 (defined in §3) is 4-connected, H4( fX ,3;F2) is
injective, and so it is an isomorphism if also β2(X ;F2)> 0, by the nondegeneracy
of Poincaré duality. Thus the ring H∗(X ;F2) and hence v2(X) should be directly
computable from H∗(P3(X);F2).

If X is of v2-type II or III then any minimal model for X must have compatible
v2-type, by Lemma 7. What happens if v2(X̃) �= 0? Does X have a minimal model Z
with v2(Z) = 0? (If π is a PD2-group then X has minimal models of each type, by
Theorem 24 below.)

We show next that the class of groups considered here is the largest for which
every PD4-complex with such a fundamental group has a strongly minimal model.
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Theorem 21. Let π be a finitely presentable group and w : π → Z× be a homomor-
phism. Then the following are equivalent:

1. every PD4-complex with fundamental group π and orientation character w has
a strongly minimal model;

2. every order minimal PD4-complex with fundamental group π and orientation
character w is strongly minimal;

3. c.d.π ≤ 2.

Proof. The equivalence (1)⇔ (2) is clear.
Suppose that (1) holds, and let K be a finite 2-complex with π1(K) = π . Then

K has a 4-dimensional thickening N which is a handlebody with only 0-, 1- and
2-handles, and with w1(N) = c∗Nw. (Cf. the final paragraph of Theorem 30.) Let
M = D(N) be the closed 4-manifold obtained by doubling N, and let j : N → M be
one of the canonical inclusions. Then (π1(M),w1(M))∼= (π,w), and collapsing the
double gives a retraction r : M → N. We may assume that cM = cNr.

Since N is a retract of M = D(N), we have

H2(M;Z[π])∼= H2(N;Z[π])⊕H2(M,N;Z[π]).

Let E = E2Z, and H = H2(M;Z[π]). Since cM ∼ cNr, we have

H/E ∼= (H2(N;Z[π])/E)⊕H2(M,N;Z[π]).

Since M has a strongly minimal model H/E is projective, by Corollary 6. Hence
so is the direct summand H2(M,N;Z[π]). This summand is H2(M,N;Z[π]) ∼=
H2(N;Z[π]), by Poincaré-Lefshetz duality.

Now H2(N;Z[π]) ∼= P = H2(K;Z[π]), since K � N. Hence the augmentation
Z[π]-module Z has a projective resolution of length 3, given by C∗(K;Z[π]) in
degrees ≤ 2 and by the module P in degree 3, with differential ∂3 given by the
natural inclusion of P as the submodule of 2-cycles. Thus c.d.π ≤ 3. We also have
E3Z∼= E†, since there is a strongly minimal PD4-complex realizing the pair (π,w).
Therefore c.d.π ≤ 2, by Lemma 9.

The converse implication (3)⇒ (1) follows from Theorem 20.

The group π is a PD2-group if and only if E2Z is infinite cyclic [8]. The mini-
mal PD4-complexes are then the total spaces of S2-bundles over aspherical closed
surfaces [34, Theorem 5.10]. We shall review this case in §14 below.

Otherwise E2Z is not finitely generated. If π ∼= ν�Z, with ν finitely presentable,
then ν ∼= F(n) for some n > 0 and π has one end. Let S2×̃S1 be the mapping torus
of the antipodal map of S2.

Theorem 22. Let π = F(n)�α Z, where n > 0, and let w : π → Z× be a homo-
morphism. Then the minimal PD4-complexes X with fundamental group π and
w1(X) = c∗X w are homotopy equivalent to mapping tori, and their homotopy types
may be distinguished by their refined v2-types.
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Proof. A PD3-complex N with fundamental group F(n) is homotopy equivalent
to #n(S2 × S1) (if it is orientable) or #n(S2×̃S1) (otherwise). There is a natural
representation of Aut(F(n)) by isotopy classes of based homeomorphisms of N,
and the group of based self homotopy equivalences E0(N) is a semidirect prod-
uct D�Aut(F(n)), where D is generated by Dehn twists about nonseparating 2-
spheres. If we identify D with (Z/2Z)n = H1(F(n);F2), we then see that E0(N) =
(Z/2Z)n �Aut(F(n)), with the natural action of Aut(F(n)) [33].

Thus a minimal PD4-complex X with π1(X) ∼= π is homotopy equivalent to the
mapping torus M( f ) of a based self-homeomorphism f of such an N, with w1(N) =
w|F(n), and f has image (d,α) in E0(N). Let δ ( f ) be the image of d in H2(π;F2) =

H1(F(n);F2)/(α − 1)H1(F(n);F2). If g is another based self-homeomorphism of
N with image (d′,α) and δ (g) = δ ( f ) then d − d′ = (α − 1)(e) for some e ∈ D.
Hence (d,α) and (d′,α) are conjugate, and so M(g)� M( f ).

All minimal PD4-complexes X with π1(X) = π and w1(X) = w have the same
Postnikov 2-stage L = P2(X), all have v2-type II or III, and there is such a PD4-
complex X with v2(X) =V , for every V ∈ H2(π;F2), by Theorem 18 and its corol-
lary. Hence the refined v2-type is a complete invariant.

If β1(π)> 1 then N may not be determined by M( f ). For instance if N = S2×̃S1

then M(idN) = N × S1 is also the mapping torus of an orientation reversing self
homeomorphism of S2 ×S1. It is a remarkable fact that if π = F(n)�α Z, n > 1 and
β1(π)≥ 2 then π is such a semidirect product for infinitely many distinct values of
n [11]. However this does not affect our present considerations.

The refined v2-type is also a complete invariant of the homotopy type of a min-
imal PD4-complex when π is a PD2-group. This case is treated in §15 below. The
argument given there is generalized in Theorem 27 to other 2-dimensional duality
groups, subject to a technical algebraic condition. This condition holds if w = 1 and
π is an ascending HNN extension Z∗m, by Theorem 30, while if m is even there is
an unique minimal model, by Corollary 28.

15 Realizing k-invariants

For the rest of this paper we shall assume that π is a finitely presentable, 2-
dimensional duality group (i.e., π has one end and c.d.π = 2). The homotopy type
of a minimal PD4-complex X with π1(X) = π is determined by π , w and the orbit
of k2(X) under the actions of E0(L) and Aut(ΓW (Π)), by Corollary 26. We would
like to find more explicit and accessible invariants that characterize such orbits. We
would also like to know which k-invariants give rise to PD4-complexes. Note first
that H3(X̃ ;Z) = H4(X̃ ;Z) = 0, since π has one end.

Theorem 23. Let π be a finitely presentable, 2-dimensional duality group, and let
w : π → Z× be a homomorphism. Let Π = E2Z and let k ∈ H4(L;ΓW (Π)). Then
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1. there is a 4-complex Y with π1(Y ) ∼= π , π2(Y ) ∼= Π , π3(Y ) ∼= ΓW (Π), k2(Y ) = k
and H3(Ỹ ;Z) = H4(Ỹ ;Z) = 0 if and only if the homomorphism determined by
p∗Lk from H4(K(Π ,2);Z) to ΓW (Π) is an isomorphism ;

2. any such complex Y is finitely dominated, and we may assume that Y is a finite
complex if π is of type FF;

3. H2(Y ;Z[π])∼=Π ;
4. H4(Y ;Zw)∼= Z and cap product with a generator induces isomorphisms

H p(Y ;Z[π])∼= H4−p(Y ;Z[π]), for p �= 2.

Proof. If Y is such a 4-complex then p∗Lk is an isomorphism, by the exactness of the
Whitehead sequence.

Suppose, conversely, that p∗Lk is an isomorphism. Let P(k) denote the Postnikov
3-stage determined by k ∈ H4(L;ΓW (Π)), and let P = P(k)[4]. Let C∗ =C∗(P̃) be the
equivariant cellular chain complex for P̃, and let Bq ≤ Zq ≤Cq be the submodules of
q-boundaries and q-cycles, respectively. Clearly H1(C∗) = 0 and H2(C∗)∼=Π , while
H3(C∗) = 0, since p∗Lk is an isomorphism. Hence there are exact sequences

0 → B1 →C1 →C0 → Z→ 0,

0 → B3 →C3 → Z2 →Π → 0

and
0 → H4(C∗) = Z4 →C4 → B3 → 0.

Schanuel’s Lemma implies that B1 is projective, since c.d.π = 2. Hence C2 ∼= B1 ⊕
Z2 and so Z2 is also projective. It then follows that B3 is also projective, and so
C4 ∼= B3 ⊕Z4. Thus H4(C∗) = Z4 is a projective direct summand of C4.

After replacing P by P∨W , where W is a wedge of copies of S4, if necessary, we
may assume that Z4 = H4(P;Z[π]) is free. Since ΓW (Π)∼= π3(P) the Hurewicz ho-
momorphism from π4(P) to H4(P;Z[π]) is onto, by the exactness of the Whitehead
sequence. We may then attach 5-cells along maps representing a basis for Z4 to ob-
tain a countable 5-complex Q with 3-skeleton Q[3] = P(k)[3] and with Hq(Q̃;Z) = 0
for q ≥ 3. The inclusion of P into P(k) extends to a 4-connected map from Q to
P(k).

Let D∗ be the finite projective resolution of Z determined by a finite presenta-
tion for π . Dualizing gives a finite projective resolution E∗ = D†

2−∗ for Π = E2Z.
Then C∗(Q̃) is chain homotopy equivalent to D∗ ⊕E∗[2], which is a finite projective
chain complex. It follows from the finiteness conditions of Wall that Q is homotopy
equivalent to a finitely dominated complex Y of dimension ≤ 4 [59]. (The splitting
reflects the fact that cY is a retraction, since k1(Y ) = 0.) The homotopy type of Y is
uniquely determined by the data, as in Lemma 5.

If π is of type FF then B1 is stably free, by Schanuel’s Lemma. Hence Z2 is also
stably free. Since dualizing a finite free resolution of Z gives a finite free resolution
of Π = E2Z we see in turn that B3 must be stably free, and so C∗(Ỹ ) is chain
homotopy equivalent to a finite free complex. Hence Y is homotopy equivalent to a
finite 4-complex [59].
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Condition (3) follows immediately from the 4-term evaluation sequence, since
Π † = E2Z† = 0, by part (4) of Theorem 18.

We see easily that H4(Y ;Z[π]) = E2Π ∼= Z and H4(Y ;Zw) ∼= Ext2(Π ;Zw) ∼=
Z. The homomorphism εw# : H4(Y ;Z[π]) → H4(Y ;Zw) induced by εw is surjec-
tive, since Y is 4-dimensional, and therefore is an isomorphism. We also have
H4(Y ;Zw)∼= Tor2(Zw;Π)∼= Zw ⊗π Z[π]∼= Z. Let [Y ] be a generator of H4(Y ;Zw).
Then evaluation on [Y ] induces an isomorphism from H4(Y ;Z[π]) to H0(Y ;Z[π]).
Hence − � [Y ] induces isomorphisms from H p(Y ;Z[π]) to H4−p(Y ;Z[π]) for all
p �= 2, since H p(Y ;Z[π]) = H4−p(Y ;Z[π]) = 0 if p �= 2 or 4.

Since HomZ[π](H2(Y ;Z[π]),H2(Y ;Z[π]))∼=HomZ[π](E2Z,E2Z) and End(E2Z)
= Z, by Lemma 1, cap product with [Y ] in degree 2 is determined by an integer.
The 4-complex Y is a PD4-complex if and only if this integer is ±1. The obvious
question is: what is this integer? Is it always ±1? The complex C∗ is chain homotopy
equivalent to its dual, but is the chain homotopy equivalence given by slant product
with [Y ]?

If π is either a semidirect product F(n)�Z or the fundamental group of a Haken
3-manifold M then K̃0(Z[π]) = 0, i.e., projective Z[π]-modules are stably free [58].
(This is not yet known for all torsion free one relator groups.) In such cases finitely
dominated complexes are homotopy finite.

16 PD2-groups

The case of most natural interest is when π is a PD2-group, i.e., is the fundamen-
tal group of an aspherical closed surface F . If Z is the minimal model for such a
PD4-complex X then Π = π2(Z) and ΓW (Π) are infinite cyclic, and Z is homotopy
equivalent to the total space of a S2-bundle over a closed aspherical surface. (The
action u : π → Aut(Π) is given by u(g) = w1(π)(g)w(g) for all g ∈ π [34, Lemma
10.3], while the induced action on ΓW (Π) is trivial.) There are two minimal models
for each pair (π,w), distinguished by their v2-type. This follows easily from the fact
that the inclusion of O(3) into the monoid of self-homotopy equivalences E(S2)
induces a bijection on components and an isomorphism on fundamental groups
[34, Lemma 5.9]. It is instructive to consider this case from the point of view of
k-invariants also, as we shall extend the argument of this section to other groups in
Theorem 27 below. In this case we may take F as an exemplar of K = K(π,1).

Suppose first that π acts trivially on Π . Then L � K ×CP∞. Fix generators t, x,
η and z for H2(π;Z), Π , ΓW (Π) and H2(CP∞;Z) = Hom(Π ,Z), respectively, such
that z(x) = 1 and 2η = [x,x]. (These groups are all infinite cyclic, but we should be
careful to distinguish the generators, as the Whitehead product pairing of Π with
itself into ΓW (Π) is not the pairing given by multiplication.) Let t,z denote also
the generators of H2(L;Z) induced by the projections to K and CP∞, respectively.
Then H2(π;Π) is generated by t ⊗ x, while H4(L;ΓW (Π)) is generated by tz⊗η
and z2 ⊗η . (Note that t has order 2 if w1(π) �= 0.)
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Lemma 15. The k-invariant k2(S2) generates H4(CP∞;Z).

Proof. Let h : CP∞ → K(Z,4) be the fibration with homotopy fibre P3(S2) corre-
sponding to k2(S2). Since P3(S2) may be obtained by adjoining cells of dimension
≥ 5 to S2 we see that H4(P3(S2);Z) = 0. It follows from the spectral sequence of
the fibration that h∗ maps H4(K(Z,4);Z) onto H4(CP∞;Z), and so k2(S2) = h∗ιZ,4
generates H4(CP∞;Z).

Since Z̃ � S2, the image of k2(Z) in H4(L̃;Z) ∼= Z generates this group. Hence
k2(Z) = ±(z2 ⊗η+mtz⊗η) for some m ∈ Z. The action of [K,L]K = [K,CP∞] ∼=
H2(π;Z) on H2(L;Z) is determined by t �→ t and z �→ z+ t, and so its action on
H4(L;ΓW (Π)) is given by tz⊗η �→ tz⊗η and z2 ⊗η �→ z2 ⊗η+2tz⊗η . There
are thus two possible E0(L)-orbits of k-invariants, and each is in fact realized by the
total space of an S2-bundle over the surface K.

If the action u : π→Aut(Π) is nontrivial these calculations go through essentially
unchanged with coefficients F2 instead of Z. There are again two possible Eπ(L)-
orbits of k-invariants, and each is realized by an S2-bundle space.

In all cases the orbits of k-invariants correspond to the elements of H2(π;F2) =
Z/2Z. In fact the k-invariant may be detected by the Wu class. Let [c]2 denote the
image of a cohomology class under reduction mod (2). Since k2(Z) has image 0 in
H4(Z;Π) it follows that [z]22 ≡ m[tz]2 in H4(Z;F2). This holds also if the PD2-group
π is non-orientable (i.e., the surface F is non-orientable) or the action u is nontrivial,
and so v2(Z) = m[z]2 and the orbit of k2(Z) determine each other.

If X is not minimal and v2(X̃) �= 0 then the minimal model Z is not uniquely
determined by X . Nevertheless we have the following results.

Theorem 24. Let E be the total space of an S2-bundle over an aspherical closed
surface F, and let X be a PD4-complex with fundamental group π ∼= π1(F). Let τ
be the image of the generator of H2(π;F2) in H2(X ;F2). Then there is a 2-connected
degree-1 map h : X → E such that cE = cX h if and only if

1. (c∗X )−1w1(X) = (c∗E)−1w1(E); and
2. ξ � τ �= 0 for some ξ ∈ H2(X ;F2) such that ξ 2 = 0 if v2(E) = 0 and ξ 2 �= 0 if

v2(E) �= 0.

Proof. See Theorem 10.17 of the current version of [34].

This is consistent with Lemma 7, for if v2(X) = 0 then ξ 2 = 0 and v2(E) = 0,
while if v2(X) = τ then ξ 2 �= 0, and thus v2(E) �= 0 also.

If w1(X) = c∗X w, where w = w1(π), and v2(X) = 0 then E must be F × S2, and
we may construct a degree-1 map as follows. Let Ω generate H2(π;Zw). We may
choose y ∈ H2(X ;Z) so that (y � c∗XΩ)∩ [X ] = 1, by Poincaré duality for X . Then
[y]22 = 0, since v2(X) = 0. Therefore if F is non-orientable y2 = 0 in H4(X ;Z) =
Z/2Z; if F is orientable then y2 = 2k(y � c∗XΩ) for some k, and we may replace y
by y′ = y− kc∗XΩ to obtain a class with square 0. Such a class may be realized by a
map d : X → S2 [54, Theorem 8.4.11], and we may set h = (cX ,d) : X → F ×S2.
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If v2(X) �= 0 or τ then there is a ξ ∈ H2(X ;F2) such that ξ � τ �= 0 but ξ 2 = 0.
There is also a class ζ such that ζ � (τ− v2(X)) = 0 but ζ � τ �= 0. Hence ζ 2 =
ζ � τ �= 0. Thus X has minimal models of each v2-type.

In particular, if C is a smooth projective complex curve of genus ≥ 1 and
X = (C×CP1)#CP2 is a blowup of the ruled surface C×CP1 =C×S2 then each of
the two orientable S2-bundles over C is a minimal model for X . In this case they are
also minimal models in the sense of complex surface theory. (See [1, Chapter VI].)
Many of the other minimal complex surfaces in the Enriques-Kodaira classifica-
tion are aspherical, and hence strongly minimal in our sense. However 1-connected
complex surfaces are never minimal in our sense, since S4 is the unique minimal
1-connected PD4-complex and S4 has no complex structure, by a classical result of
Wu [1, Proposition IV.7.3].

Theorem 25. The homotopy type of a PD4-complex X with fundamental group π a
PD2-group is determined by π , w1(X), λX and the v2-type.

Proof. Let v = w1(π), u = w1(X)+ c∗X v, and let Ω generate H2(π;Zv). Then [Ω ]2
generates H2(π;F2), and τ = c∗X [Ω ]2 �= 0. If v2(X) = mτ and p : X → Z is a 2-
connected degree-1 map then v2(Z) = mc∗Z [Ω ]2, and so there is an unique minimal
model for X . Otherwise τ �= v2(X), and so there are elements y,z ∈ H2(X ;F2) such
that y � τ �= y2 and z � τ �= 0. If y � τ = 0 and z2 �= 0 then (y+ z)� τ �= 0 and
(y+ z)2 = 0. Taking ξ = y,z or y+ z appropriately, we have ξ � τ �= 0 and ξ 2 = 0.
Hence X has a minimal model Z with v2(Z) = 0, by Theorem 24. In all cases the
theorem now follows from Theorem 7.

If Z is strongly minimal and E2Z is finitely generated but not 0 then E2Z is
infinite cyclic [8] and the kernel κ of the natural action of π on π2(Z)∼= Z is a PD2-
group [34, Theorem 10.1]. Thus π is either a PD2-group or a semidirect product
κ� (Z/2Z). (In particular, π has one end).

17 Cup products

In Theorem 27 below we shall use a “cup-product” argument to relate cohomology
in degrees 2 and 4. Let G be a group and let Γ = Z[G]. Let C∗ and D∗ be chain
complexes of left Γ -modules and A and B left Γ -modules. Using the diagonal
homomorphism from G to G×G we may define internal products

H p(HomΓ (C∗,A ))⊗Hq(HomΓ (D∗,B))→ H p+q(HomΓ (C∗ ⊗D∗,A ⊗B))

where the tensor products of Γ -modules taken over Z have the diagonal G-action.
(See [14, Chapter XI.§4].) If C∗ and D∗ are resolutions of C and D , respectively, we
get pairings

Ext p
Γ (C ,A )⊗Extq

Γ (D ,B)→ Ext p+q
Γ (C ⊗D ,A ⊗B).
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When A = B = D , C = Z and q = 0 we get pairings

H p(G;A )⊗EndG(A )→ Ext p
Z[G]

(A ,A ⊗A ).

If instead C∗ = D∗ = C∗(S̃) for some space S with π1(S) ∼= G composing with an
equivariant diagonal approximation gives pairings

H p(S;A )⊗Hq(S;B)→ H p+q(S;A ⊗B).

These pairings are compatible with the Universal Coefficient spectral sequences
Extq

Γ (Hp(C∗),A )⇒H p+q(C∗;A ) =H p+q(HomΓ (C∗,A )), etc. We shall call these
pairings “cup products”, and use the symbol � to express their values.

We wish to show that if π is a finitely presentable, 2-dimensional duality group
then cup product with idΠ gives an isomorphism

c2
π,w : H2(π;Π)→ Ext2

Z[π](Π ,Π ⊗Π).

The next lemma shows that these groups are isomorphic; we state it in greater gen-
erality than we need, in order to clarify the hypotheses on the group.

Lemma 16. Let G be a group for which the augmentation (left) module Z has a
finite projective resolution P∗ of length n, and such that H j(G;Γ ) = 0 for j < n. Let
D = Hn(G;Γ ), w : G → Z× be a homomorphism and A be a left Γ -module. Then
there are natural isomorphisms

1. αA : D ⊗Γ A → Hn(G;A ); and
2. eA : Extn

Γ (D ,A )→ Zw ⊗Γ A = A /IwA .

Hence θA = αA eD⊗A : Extn
Γ (D ,D ⊗A )→ Hn(G;A ) is an isomorphism.

Proof. If P is a finitely generated projective left Γ -module then Q = HomΓ (P,Γ ) is
a finitely generated right module. There is a natural isomorphism P ∼= HomΓ (Q,Γ ),
given by p �→ (: f �→ f (p)), for all p ∈ P and f ∈ Q. There are also bifunctorial
natural isomorphisms of abelian groups APA : HomΓ (P,Γ )⊗Γ A → HomΓ (P,A )
given by APA (q⊗Γ a)(p) = q(p)a for all a ∈ A , p ∈ P and q ∈ HomΓ (P,Γ ).

We may assume that P0 =Γ . Let Q j =HomΓ (Pn− j,Γ ) and ∂Q
i =HomΓ (∂P

n− j,Γ ).
This gives a resolution Q∗ for D with Qn = Γ . The isomorphisms AP∗A and
AQ∗A induce isomorphisms of chain complexes Q∗ ⊗Γ A → HomΓ (Pn−∗,A ), and
P∗ ⊗Γ A → HomΓ (Qn−∗,A ), respectively, from which the first two isomorphisms
follow. The final assertion follows since Zw ⊗Γ (D ⊗A )∼= D ⊗Γ A .

If G is finitely presentable, has one end and n = 2 then G is a 2-dimensional
duality group. It is not known whether all the groups considered in the lemma are
duality groups.

Lemma 17. If G satisfies the hypotheses of Lemma 16 and H is a subgroup of finite
index in G then cup product with idD is an isomorphism for (G,w) if and only if it
is so for (H,w|H).
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Proof. If A is a left Z[G]-module then Hn(G;A ) ∼= Hn(H;A |H), by Shapiro’s
Lemma. Thus if G satisfies the hypotheses of Lemma 16 the corresponding module
for H is D |H . Further applications of Shapiro’s Lemma then give the result.

In particular, it shall suffice to consider the orientable cases.
Let η : Q0 → D be the canonical epimorphism, and let [ξ ] ∈ Hn(G;D) be the

image of ξ ∈ HomΓ (Pn,D). Then ξ ⊗η : Pn⊗Q0 →D⊗D represents [ξ ]� idD in
Extn

Γ (D ,D ⊗D). If ξ = APnD (q⊗Γ δ ) then αD (η(q)⊗Γ δ ) = [ξ ]. There is a chain
homotopy equivalence j∗ : Q∗ → P∗ ⊗Q∗, since P∗ is a resolution of Z. Given such
a chain homotopy equivalence, eD⊗D ([ξ ]� idD ) is the image of (ξ ⊗η)( jn(1∗)),
where 1∗ is the canonical generator of Qn, defined by 1∗(1) = 1.

Theorem 26. Let G be a finitely presentable, 2-dimensional duality group, and let
w : G → Z× be a homomorphism. Then c2

G,w is an isomorphism.

Proof. Note first that G satisfies the hypothesis of Lemma 16, with n = 2. Let P =
〈X | R〉ϕ be a finite presentation for G. (We shall suppress the defining epimorphism
ϕ : F(X)→ G where possible.) After introducing new generators x′ and relators x′x,
if necessary, we may assume that each relator is a product of distinct generators,
with all the exponents positive. The new presentation P ′ has the same deficiency as
P . We may also assume that w = 1, after replacing G by H = Ker(w) if necessary,
by Lemma 17.

The Fox-Lyndon resolution associated to P gives an exact sequence

0 → P3 = π2(C(P))→ P2 → P1 → P0 = Γ → Z→ 0

in which P1 and P2 are free left Γ -modules with bases 〈p1
x ;x ∈ X〉 and 〈p2

r ;r ∈ R〉,
respectively. The differentials are given by ∂ p1

x = x−1 and ∂ p2
r = Σx∈X rx p1

x , where
rx =

∂ r
∂x , for r ∈ R and x ∈ X . Moreover, P3 is projective and ∂3 is a split monomor-

phism, since c.d.G = 2.
Suppose first that the 2-complex C(P) associated to the presentation is as-

pherical. (This assumption is not affected by our normalization of the presenta-
tions, for if C(P) is aspherical then G is efficient, and χ(C(P ′)) = de f (P ′) =
χ(C(P)). Hence C(P ′) is also aspherical [34, Theorem 2.8]. Then P3 = 0 and
the above sequence is a free resolution of Z. Let Q j = HomΓ (P2− j,Γ ) and ∂Q

i =

HomΓ (∂P
2− j,Γ ). Then Q0 = P†

2 and Q1 = P†
1 have dual bases {q0

x} and {q1
r}, re-

spectively. (Thus q1
x(p1

y) = 1 if x = y and 0 otherwise, and q0
r (p2

s ) = 1 if r = s and 0
otherwise.) Then ∂1∗ = Σx∈X (x−1−1)q1

x and ∂q1
x = Σr∈Rrxq0

r . After our normaliza-
tion of the presentation, each rx is either 0 or in F(X), for all r ∈ R and x ∈ X , and
so rx −1 = ∂ (Σy∈X

∂ rx
∂y p1

y).
Define homomorphisms ji : Qi → (P∗ ⊗Q∗)i, for i = 0,1,2, by setting

j0(q0
r ) = 1⊗q0

r for r ∈ R,

j1(q1
x) = 1⊗q1

x −Σr,yrx(
∂ rx

∂y
p1

y ⊗q0
r ) for x ∈ X , and
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j2(1∗) = 1⊗1∗ −Σx∈X x−1(p1
x ⊗q1

x)−Σr∈R(p2
r ⊗q0

r ).

Then

∂ j1(q1
x)− j0(∂q1

x) = Σr∈R(1⊗ rxq0
r )−Σr,yrx(

∂ rx

∂y
(y−1)⊗q0

r )−Σr∈Rrx(1⊗q0
r )

= Σr∈R[(1⊗ rxq0
r )− rx((rx −1)⊗q0

r )− rx(1⊗q0
r )] = 0,

and so ∂ j1 = j0∂ . Similarly,

∂ j2(1∗)− j1(∂1∗) = Σx[1⊗ (x−1 −1)q1
x − x−1((x−1)⊗q1

x)]+

ΣxΣr[(x−1(p1
x ⊗ rxq0

r )− rx p1
x ⊗q0

r )]−Σx(x−1 −1)[1⊗q1
x −Σr,yrx(

∂ rx

∂y
p1

y ⊗q0
r )]

= Σr,x[x−1(p1
x ⊗ rxq0

r )− rx p1
x ⊗q0

r +Σy(x−1 −1)rx(
∂ rx

∂y
p1

y ⊗q0
r )].

It shall clearly suffice to show that the summand corresponding to each relator r
is 0. After our normalization of the presentation, we may assume that r = x1 . . .xm
for some distinct x1, . . . ,xm ∈ X . Let ri = rxi , for 1 ≤ i ≤ m. Then ri = x1 . . .xi−1, for
1≤ i≤ m, so rixi = ri+1 if i< m and rmxm = r = 1 in G. Moreover, ∂ ri

∂y = r j if y= x j,

for some 1 ≤ j < i, and is 0 otherwise. Let Si, j = r−1
i (r j p1

x j
⊗q0

r ), for 1 ≤ j ≤ i ≤ m.
Then x−1

m Sm, j = S1, j, for all j ≤ m, and so the summand corresponding to the relator
r in ∂ j2(1∗)− j1(∂1∗) is

Σi≤m(x−1
i Si,i −S1,i +Σ j<i(x−1

i Si, j −Si, j))

= Σi<m(Si+1,i −S1,i)+Σi≤mΣ j<i(Si+1, j −Si, j).

This sum collapses to 0, and so ∂ j2 = j1∂ . Thus j∗ is a chain homomorphism. Since
Q∗ and P∗ ⊗Q∗ are resolutions of Z and j∗ induces the identity on Z, it is a chain
homotopy equivalence.

We then have

(AP2D (q0
s ⊗Γ δ )⊗η)( j∗(1∗)) =−Σr∈R(q0

s (p2
r )δ ⊗Γ η(q0

r )),

which has image −δ ⊗Γ η(q0
s ) in D ⊗Γ D . Let τ be the (Z-linear) involution of

H2(G;D) given by τ(αD (ρ⊗Γ α)) = αD (α⊗Γ ρ). Then

[ξ ]� idD =−θD (τ([ξ ])) f or ξ ∈ H2(G;D),

and so c2
G,w is an isomorphism.

If C(P) is not aspherical we modify the definition of the dual complex Q∗ by set-
ting Q1 = HomΓ (P1,Γ )⊕HomΓ (P3,Γ ) and extending the differential by s†, where
s∂3 = idP3 . Let f : P†

3 →Γ s be a split monomorphism, with left inverse g :Γ s → P†
3 .
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Fix a basis {e1, . . . ,es} for Γ s, and define a homomorphism h : Γ → Γ ⊗Γ s by
h(ei) = 1⊗ ei. Then we may extend j1 by setting j1 = (1⊗g)h f on P†

3 .

In [40] we gave closed formulae for j2(1∗) for some simple (un-normalized)
presentations of groups of particular interest. We should have also given the appro-
priate form of j1 explicitly, for there we used the relators to simplify the derivatives
rx, which in general are sums of monomials Σk ± rxk, and such simplifications affect
the second derivatives ∂ rxk

∂y . It is safer to calculate such derivatives in Z[F(X)] before
using the relators to simplify their images in Γ .

Similar formulae show that c1
F,w is an isomorphism for F free of finite rank r ≥ 1.

18 Orbits of the k-invariant

In this section we shall attempt to extend the argument sketched in §15 above for the
case of PD2-groups to other finitely presentable, 2-dimensional duality groups. The
hypothesis on 2-torsion in Theorem 27 below seems necessary for our argument,
but does not hold in some cases where the result is known by other means.

Lemma 18. Let π be a finitely presentable group such that c.d.π = 2, and let w :
π → Z× be a homomorphism. Let Π = E2Z. Then there is an exact sequence

Π �π Π → Zw ⊗Z[π]ΓW (Π)→ H2(π;F2)→ 0.

IfΠ�π Π is 2-torsion free this sequence is short exact. If, moreover, for every x ∈Π
either x ∈ (2, Iw)Π or x�x �∈ (2, Iw)(Π �Π) then Zw ⊗Z[Π ]ΓW (π) is 2-torsion free.

Proof. Since Π is torsion free as an abelian group. it is a direct limit of free
abelian groups, and so the natural map from Π�Π to ΓW (Π) is injective. Applying
Zw ⊗Z[π]− to the exact sequence

0 →Π �Π s−→ ΓW (Π)
qΠ−→Π/2Π → 0.

gives the above sequence, since Zw ⊗Z[π]Π/2Π ∼= Π/(2, Iw)Π ∼= H2(π;F2). The

kernel on the left in this sequence is the image of TorZ[π]1 (Zw,Π/2Π), which is a
2-torsion group.

If Π �π Π is 2-torsion free this sequence is short exact, and nontrivial 2-torsion
in Zw⊗Z[π]ΓW (Π) has nontrivial image in Π/(2, Iw)Π . If there is such torsion there
are x,yi,zi ∈ Π such that x �∈ (2, Iw)Π but 2[γΠ (x)+ s(Σyi � zi)] = 0 in Π �π Π .
Since 2γΠ (x) = s(x� x) in ΓW (Π), we then have s(x� x) ≡ 2(−s(Σyi � zi)) mod
Iw(Π �Π), and so x� x ∈ (2, Iw)(Π �Π).

The final condition in the lemma depends only on the image of x in Π/(2, Iw)Π .
Let X be a PD4-complex with π1(X) = π and π2(X) =Π , and let L = Lπ(Π ,2).

Then L̃ �K(Π ,2), and so it follows from the Whitehead sequence that H3(L̃;Z) = 0
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and H4(L̃;Z) ∼= ΓW (Π). Let A be a left Z[π]-module. Since π is a 2-dimensional
duality group with dualizing module Π , Lemma 16 gives canonical isomorphisms

H2(π;A ) = Ext2
Z[π](Z,A )∼=Π ⊗Z[π] A

and
Ext2

Z[π](Π ,A ) = Zw ⊗Z[π] A .

Moreover, H2(L̃;A ) = HomZ(Π ,A ) and H4(L̃;A ) = HomZ(ΓW (Π),A ). Hence
the spectral sequence for the universal covering pL : L̃ → L gives exact sequences

0 → H2(π;A )→ H2(L;A )→ HomZ[π](Π ,A )→ 0

(split by the homomorphism H2(σ ;A ) induced by a section σ for cL), and

0 → Zw ⊗Z[π] A → H4(L;A )
p∗L−→HomZ[π](ΓW (Π),A )→ 0.

The right hand homomorphisms are induced by pL, in each case. Since Hq(X̃ ;Z) = 0
for q > 2, the spectral sequence for pX : X̃ → X gives an isomorphism Zw⊗Z[π]A =

Ext2
Z[π](Π ,A ))∼= H4(X ;A ), and so fX ,2 induces a (non-canonical?) splitting of the

second of these sequences.
In the next theorem and subsequent comments p∗L is used variously for the ho-

momorphisms determined by H4(pL;ΓW (Π)), H2(pL;Π) and H4(pL;Π/2Π).

Theorem 27. Let π be a finitely presentable, 2-dimensional duality group, and let
w : π → Z× be a homomorphism. Let Π = E2Z. Assume that the image of Π �π Π
in Zw ⊗Z[π]ΓW (Π) is 2-torsion free. Then the homotopy type of a minimal PD4-
complex Z with (π1(Z),w1(Z))∼= (π,w) is determined by its refined v2-type.

Proof. Let Z be a minimal PD4-complex with π1(Z) ∼= π and w1(Z) = c∗Zw. Then
π2(Z) ∼= Π and π3(Z) ∼= ΓW (Π), since π has one end, and the homotopy type of Z
is determined by k = k2(Z) ∈ H4(L;ΓW (Π)), where Π = E2Z and L = P2(Z) =
Lπ(Π). This class is only well defined up to the actions of Aut(ΓW (Π)) and
E0(L). Since p∗Lk = k2(Z̃) is an automorphism (considered as an endomorphism
of ΓW (Π)), by part (1) of Theorem 23, we may assume that p∗Lk = idΓW (Π), after
applying an automorphism of ΓW (Π). Now E0(L) ∼= Eπ(L)�Aut(π) and Eπ(L) ∼=
H2(π;Π)�Aut(Π). (See §3 above). We shall consider the action of Aut(π) in the
final paragraph of the proof. Since Aut(Π) = {±1} acts trivially on ΓW (Π), the
main task is to consider the action of H2(π;Π) on k. We shall show that this action
is closely related to the cup product homomorphism c2

π,w. Note also that since Z
is minimal, v2(Z) = c∗Zv for some v ∈ H2(π;F2), by Theorem 20, and Eπ(L) fixes
classes induced from K = K(π,1), such as c∗Lv.

Let φ ∈ H2(π;Π) and let sφ ∈ [K,L]K and hφ ∈ [L,L]K be as defined in Lemma
4. Let M = Lπ(Π ,3). Then [M,M]K = H3(M;Π) ∼= End(Π), since c.d.π = 2.
Let Ω : [M,M]K → [L,L]K be the loop map. Let g ∈ [M,M]K have image [g] =
π3(g) ∈ End(Π) and let f = Ωg. Then ω([g]) = f ∗ιΠ ,2 defines a homomorphism
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ω : End(Π)→ H2(L;Π) such that p∗Lω([g]) = [g] for all [g] ∈ End(Π). Moreover
fμ = μ( f , f ), since f =Ωg, and so f hφ = μ( f sφcL, f ). Hence

h∗φ ξ = ξ + c∗Ls∗φ ξ

for ξ =ω([g])= f ∗ιΠ ,2. Naturality of the isomorphisms H2(X ;A )∼= [X ,Lπ(A ,2)]K
for X a space over K and A a left Z[π]-module implies that

s∗φω([g]) = [g]#s∗φ ιΠ ,2 = [g]#φ

for all φ ∈ H2(π;Π) and g ∈ [M,M]K . (See [2, Chapter 5.§4].)
Using our present hypotheses, the exact sequences above give sequences

0 → H2(π;Π)
c∗L−→ H2(L;Π)

p∗L−→ End(Π)→ 0

(split by ω and the homomorphism H2(σ ;Π) induced by a section σ for cL), and

0 → Zw ⊗Z[π]ΓW (Π)→ H4(L;ΓW (Π))
p∗L−→ End(ΓW (Π))→ 0.

We shall identify the modules on the left with their images, to simplify the notation.
If u ∈ H2(π;Π) then h∗φ (u) = u, since cLhφ = cL. The induced automorphism of

the quotient End(Π) =H0(π;(H2(L̃;Π)) is also the identity, since the lifts of hφ are
(non-equivariantly) homotopic to the identity in L̃. Hence there is a homomorphism

δφ : End(Π)→ H2(π;Π)

such that h∗φ (ξ ) = ξ +c∗Lδφ (p∗Lξ ) for all ξ ∈ H2(L;Π). Since p∗Lc∗L = 0 and hφ+ψ =

hφhψ it follows that δφ is additive as a function of φ . Since π is a 2-dimensional
duality group, H2(π;Π) ∼= Π ⊗Z[π] Π , and so φ = ρ ⊗π α for some ρ ∈ Π and
α ∈Π . If g ∈ [M,M]K then

δφ ([g]) = δφ (p∗Lω([g])) = s∗φω([g]) = ρ⊗π [g](α). (1)

In particular, δφ (idΠ ) = φ .
Similarly, the automorphism of H4(L;ΓW (Π)) induced by hφ fixes the subgroup

G = Zw ⊗Z[π] ΓW (Π), and induces the identity on the quotient End(ΓW (Π)) =

H0(π;H4(L̃;ΓW (Π))). Then there is a homomorphism

fφ : H4(L;ΓW (Π))→ G

such that h∗φ (u) = u+ fφ (u) for all u∈H4(L;ΓW (Π)), and such that fφ |G = 0. More-

over, fφ is additive as a function of φ , so we may define f̂ : H2(π;Π)→ G by

f̂ (φ) = fφ (k), for all φ ∈ H2(π;Π).
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When S = L, A = B = Π , and p = q = 2 the construction of §15 gives a cup
product pairing of H2(L;Π) with itself with values in H4(L;Π ⊗Π). Since c.d.π =
2 this pairing is trivial on the image of H2(π;Π)⊗H2(π;Π). The maps cL and σ
induce a splitting H2(L;Π)∼= H2(π;Π)⊕End(Π), and this pairing restricts to the
cup product pairing of H2(π;Π) with End(Π) with values in Ext2

Z[π](Π ,Π ⊗Π).
We may also compose with the natural homomorphisms from Π ⊗Π to Π �Π and
ΓW (Π) to get pairings with values in H4(L;Π �Π) and H4(L;ΓW (Π)).

Since h∗φ (ξ � ξ ′) = h∗φ ξ � h∗φ ξ
′ we have also

fφ (ξ � ξ ′) = δφ (p∗Lξ
′)� ξ +δφ (p∗Lξ )� ξ ′, (2)

for all ξ ,ξ ′ ∈ H2(L;Π). On passing to L̃ � K(Π ,2) we find that

p∗L(ξ � ξ ′)(γΠ (x)) = p∗Lξ (x)� p∗Lξ
′(x), (3)

for all ξ ,ξ ′ ∈ H2(L;Π) and x ∈ Π . (To see this, note that the inclusion of x deter-
mines a map from CP∞ to K(Π ,2), since [CP∞,K(Π ,2)] = Hom(Z,Π). Hence we
may use naturality of cup products to reduce to the case when K(Π ,2) = CP∞ and
x is a generator of Π = Z.)

Let P be the image of Π �π Π in G. Since c2
π,w is an isomorphism, by Theorem

26, the induced map ĉ : H2(π;Π)→ P is an epimorphism. Let e = f̂ − ĉ.
If Ξ = λ � λ with p∗Lλ = idΠ then p∗L(Ξ)(γΠ (x)) = x � x = 2γΠ (x), for all

x ∈Π , by Equation (5), while fφ (Ξ) = 2(φ � λ ) = 2φ � idΠ , by Equation (4) and
by the triviality of the cup product on the image of H2(π;Π)⊗H2(π;Π). Hence

p∗L(Ξ) = 2idΓW (Π) and fφ (Ξ) = 2 ĉ(φ).

Since p∗Lk = idΓW (Π), we have p∗L(2k−Ξ) = 0, and so 2k−Ξ ∈ G, by the exactness
of sequence (2) above. Then

2e(φ) = fφ (2k−Ξ) = 0,

since fφ |G = 0. Hence e has image in the 2-torsion subgroup 2G.
We invoke the hypothesis on 2-torsion at this point. Since 2G∩P = 0, it follows

easily that |Cok( f̂ )| ≤ |G/P|= |H2(π;F2)|. As φ varies in H2(π;Π) the values of
hφ (k) sweep out a coset of Im( f̂ ) in k+G = (p∗L)−1(idΓW (Π)), and there are at most
2β cosets, where β = β2(π;F2).

For each v ∈ H2(π;F2) there is a minimal PD4-complex Z such that v2(Z) =
c∗Zv, by Theorem 18. The group Aut(π) acts on K and L through based self-
homotopy equivalences, and hence acts on the classifying maps cZ and fZ,2 by
composition. These actions induce actions on H2(π;F2) and Π , and hence on
H4(L;ΓW (Π)). The association k �→ v2(Z) defines a Aut(π)-equivariant surjection
from (p∗L)−1(idΓW (Π)) = k+G to H2(π;F2), which is constant on cosets of Im( f̂ ),
since Eπ(L) acts trivially on H2(π;F2). It follows that the refined v2-type is a com-
plete invariant for the homotopy types of such complexes.
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If Zw ⊗Z[π] ΓW (Π) is 2-torsion free then f̂ = ĉ (since e = 0), and the argument
can be simplified slightly.

The hypothesis on 2-torsion holds if π is a PD2-group, for then Zw ⊗Z[π]
ΓW (Π) ∼= Z if w = 1 and has order 2 otherwise. (Note that in this case Π ∼= Zu,
where u = w+w1(π). We do not assume here that w = w1(π)!) It holds also if
π = Z∗m with |m| > 1, by Theorem 30 below. On the other hand, if π = F(r)×Z
and w(t) = −1, where t ∈ π generates the central Z factor, then Π �π Π and
Zw ⊗Z[π] ΓW (Π) have exponent 2, since t acts through ±1 on Π . If r > 1 these
groups are not finitely generated, and so the hypothesis of Theorem 27 does not
hold.

Corollary 28 If H2(π;F2) = 0 and Π �π Π is 2-torsion free there is an unique
minimal PD4-complex realizing (π,w). ��

Hence two PD4-complexes X and Y with fundamental group π are homotopy
equivalent if and only if λX ∼= λY (i.e., there is an isomorphism θ : π1(X) ∼= π1(Y )
such that w1(X) = w1(Y )◦θ and an isometry of the pairings, up to sign.)

The hypothesis H2(π;F2) = 0 holds if π is the group of a link of 2-spheres in an
homology 4-sphere, in particular, if it is a 2-knot group or is the fundamental group
of an homology 4-sphere.

Corollary 29 If H2(π;F2) = F2 and the image of Π �π Π in Zw ⊗Z[π] ΓW (Π) is
2-torsion free there are two minimal PD4-complexes realizing (π,w), distinguished
by whether v2(X) = 0 or not. ��

The work of [29] suggests that the refined v2-type should be a complete homo-
topy invariant, without the technical hypothesis on 2-torsion or the restriction that
π have one end. If, moreover, g.d.π = 2 then every such minimal PD4-complex
should be homotopy equivalent to a closed 4-manifold, by Theorem 18. This is so
if π is a semidirect product F(r)�Z or a PD2-group, by Theorems 17 and 25. Can
the connection between k2 and v2 be made more explicit? The canonical epimor-
phism qΠ : ΓW (Π) → Π/2Π determines a change of coefficients homomorphism
qΠ# from sequence (2) above to the parallel sequence

0 → H2(π;F2)→ H4(L;Π/2Π)
p∗L−→ HomZ[π](ΓW (Π),Π/2Π)→ 0.

Thus qΠ#(k2(Z)) lies in the H2(π;F2)-coset (p∗L)−1(qΠ ).
Does Theorem 24 have an analogue for other 2-dimensional duality groups? Let

X and Z be PD4-complexes with such a fundamental group π , with Z minimal,
and such that (c∗X )−1w1(X) = (c∗Z)−1w1(Z). Then [X ,Z]K maps onto [X ,P3(Z)]K ,
by cellular approximation, and hence onto { f ∈ [X ,L]K | f ∗k2(Z) = 0}. Can the
condition f ∗k2(Z) = 0 be made more explicit? The map f corresponds to a class
in H2(X ;Π) and H4(X ;ΓW (Π)) ∼= Zw ⊗Z[π] ΓW (Π)), by Poincaré duality for X .
Theorem 24 suggests that we should consider the image of f ∗k2(Z) in H2(π;F2),
under the epimorphism of Lemma 18. Apart from this, we must determine when
such a map f has a degree-1 representative g : X → Z.
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19 Verifying the torsion condition for Z∗m

If π is a 2-dimensional duality group but not a PD2-group then Π = E2Z is finitely
generated as a left Z[π]-module, but is not finitely generated as an abelian group.
The associated groupsΠ�π Π and Zw⊗Z[π]ΓW (Π)) are infinitely generated abelian
groups with no natural module structure. In this section we shall investigate the 2-
torsion condition.

We consider first groups which have a one-relator presentation P = 〈X | r〉. It is
well-known that if the relator r is not conjugate to a proper power then the associated
2-complex C(P) is aspherical, and so g.d.π ≤ 2. (See §§9-11 of Chapter III of [46],
or [17].)

Lemma 19. Let π be a group with a finite one-relator presentation 〈X | r〉 and
c.d.π = 2, and let w = 1. Let Π = E2Z. Then

Π �π Π ∼= Z[π]/(U +Δ),

where Δ is the right ideal generated by the free derivatives ∂ r
∂x , for all x ∈ X, and U

is the subgroup of Z[π] generated by g−g−1, for all g ∈ π .

Proof. On dualizing the Fox-Lyndon resolution of Z associated to the presentation
〈X | r〉, we see that H2(π;Z[π])∼= Z[π]/Δ , and so Π ∼= Z[π]/Δ .

Define a function T : Z[π]⊗Z[π]→ Z[π]⊗Z[π] by T (s⊗ t) = s̄⊗ t, for all s, t ∈
Z[π]. Then T is an additive bijection and T (gs⊗gt) = s̄ḡ⊗gt, for all g ∈ π . Hence
T induces an additive isomorphism from the quotient of Z[π]⊗Z[π] by the diagonal
action of π to Z[π]⊗Z[π]Z[π]∼=Z[π], which maps s⊗t to s̄t. The images of Z[π]⊗Δ
and Δ ⊗Z[π] under T are Δ and Δ , respectively. We obtain the symmetric product
Z[π]�Z[π] by factoring out the tensor square Z[π]⊗Z[π] by all sums of terms of
the form s⊗ t − t ⊗ s. The image of all such sums in Z[π] is the subgroup U . (Note
that U is not usually an ideal!) Since Z[π]�Z[π]Z[π]∼=Z[π]/U and U +Δ =U +Δ ,
we see that Π �π Π ∼= Z[π]/(U +Δ).

This may be extended to other 2-dimensional duality groups as follows. Suppose
that P is an a×b presentation matrix for Π . View Z[π]b as a module of row vectors,
with standard basis {e1, . . . ,eb}. Define a function T : Z[π]b ⊗Z[π]b → Mb(Z[π])
by T (sei ⊗ te j) = s̄tei j, the matrix with (i, j) entry s̄t and all other entries 0. Then
T (Z[π]b ⊗ Im(P)) is Row(P), the left ideal in Mb(Z[π]) consisting of matrices with
all rows in Im(P), while T (Im(P)⊗Z[π]b) is the right ideal Row(P)†, the conjugate
transpose of Row(P). Let V be the subgroup generated by M −M†, for all M in
Mb(Z[π]). Then Π ⊗π Π ∼= Mb(Z[π])/(V +Row(P)+Row(P)†).

Suppose now that π is solvable. Then it is a Baumslag-Solitar group Z∗m, with a
one-relator presentation 〈a, t | tat−1a−m〉, for some m �= 0 [26]. In this case we have
a more explicit model for Π �π Π .

Theorem 30. Let π = Z∗m and let w : π → Z× be a homomorphism. Let Π = E2Z.
If |m|> 1 then Π �π Π is torsion free.
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Proof. We may assume that π has the presentation 〈a, t | tat−1a−m〉. Let A = 〈〈a〉〉.
Then π ∼= A�Z. Let an = tnat−n in A, for all n ∈ Z, and let ax = ak−n, for all x =

k
mn ∈ Z[ 1

m ]. Then a0 = 1, a1 = a and axay = ax+y for all x,y ∈ Z[ 1
m ], and x �→ ax

determines an isomorphism from Z[ 1
m ] to A. Every element of π is uniquely of the

form t pax, for some p ∈ Z and x ∈ Z[ 1
m ], and (t pax)−1 = t−pa−mpx. If m is even then

w(ax) = 1 for all x; if m is odd then w(ax) = w(amx) for all x.
The function which sends an to an+1 determines an automorphism α of the com-

mutative domain D = Z[A] ∼= Z[an|n ∈ Z]/(an+1 − am
n ), and Z[π] is isomorphic to

the twisted Laurent extension Dα [t, t−1]. (An explicit isomorphism is given by the
function which sends t pan ∈ ⊕p∈Zt pD to tn+pat−n ∈ Z[π] for all n, p ∈ Z.)

We shall assume henceforth that m is positive, for simplicity of notation. Let
J0 = {1, . . . ,m−1}, let Js = { d

ms | 0 < d < ms+1, (d,m) = 1}, for all s ≥ 1, and let
J = ∪s≥0Js. Then E = D/D(am −w(a)m) is freely generated as an abelian group by
the image of {ax | x ∈ J}.

The images of the free derivatives of the relator r = tat−1a−m in Z[π] are ∂ r
∂a =

t −μm, where μm = Σ i=m−1
i=0 ai, and ∂ r

∂ t = 1−am. Hence

Π ∼= Z[π]/Z[π](am −w(a)m, tμm −w(t))∼= (⊕k∈ZtkE)/∼,

where

tkax ∼ w(t)tkaxtμm = w(t)tk+1a
x
m μm, for all k ∈ Z and x ∈ J.

As an abelian group, Π ∼= lim−→ t pE, the direct limit as p → +∞ of the family of D-
linear monomorphisms σ : t pE → t p+1E given by σ(t pax) = w(t)t p+1a

x
m μm, for all

p ∈ Z and x ∈ J. It follows easily that

Π �Π ∼= lim−→(tkE � tkE) = (⊕p∈Zt pE � t pE)/∼,

where tkax � tkay ∼ tk+1a
x
m μm � tk+1a

y
m μm, for all k ∈ Z and x,y ∈ J.

Setting z = y− x gives

tkax(1�az)∼ tk+1a
x
m (μm �μma

z
m ).

(Here π acts diagonally on Π �Π .) We may expand the term in parentheses as

μm �μma
z
m = Σ i, j=m−1

i, j=0 w(a)ia−i(1�w(a)i− jai− ja
z
m ).

Define a function f : E → Π �Π by f (e) = 1� e = e� 1 for e ∈ E. Then f is
additive and f (ax) = w(a)max f (am−x) for all x, since ax �1 = ax(1�w(a)mam−x).
The induced map from E to Π �π Π is onto, and

Π �π Π ∼= E/N,

where N is the subgroup generated by
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{az −w(am−z)am−z, az −w(t)mΣm−1
k=0 w(a)kak+ z

m , ∀z ∈ J}.

Since az −w(am−z)am−z ∈ N, the images [az] of the elements az with 0 ≤ z ≤ m
2

generate the quotient E/N. Given that [az] = w(a)m−z[am−z], the conditions

[az] = w(t)mΣm−1
k=0 w(a)k[ak+ z

m ]

and
[am−z] = w(t)mΣm−1

k=0 w(a)k[ak+m−z
m ]

are equivalent.
Let Fs be the subgroup of Π �π Π generated by {[az] | ms−1z ∈ Z}, for s ≥ 1. If

|m|> 1 then the conditions [az] = [w(t)mΣm−1
k=0 w(a)k[ak+ z

m ] in E/N, for z ∈ J, imply
that Fs is generated by {[a0]}∪{[az] | 0 < 2z ≤ m, ms−1z ∈ Z, ms−2z �∈ Z}, for all
s ≥ 1, with a single relation of the form (1−w(t)m)[a0] = msσ , where σ is a sum
of the generators [az] with z ∈ Js such that 0 < 2z < m, and coefficients not divisible
by (1−m). Hence Fs is torsion free, for all s ≥ 1. Since Π �π Π is the increasing
union ∪s≥0Fs, it is also torsion free.

If m = ±1 and w = 1 then Π �π Π ∼= Z. However, if m = ±1 and w �= 1 then
Π �π Π = Z/2Z, and so the theorem does not extend to this case.

Note that the argument of the final paragraph implies that every generator of
Π �π Π is m-divisible, and that Π �π Π is a free Z[ 1

m ]-module of infinite rank.

Corollary 31 If π = Z∗m with |m|> 1 then Z⊗Z[π]ΓW (Π) is torsion free.

Proof. If m is even this follows immediately from the theorem and the short exact
sequence of Lemma 18, since H2(π;F2) = 0 then. If m is odd we may apply the
final part of Lemma 18. Letting x be the image of 1 ∈ Z[π], we see that γΠ (x)
generates Π/(2, Iw)Π = H2(π;F2), while the image of f (1) = x� x in Π ⊗π Π is
not 2-divisible.

It is not immediately obvious that the models for Π �π Π in Lemma 19 and
Theorem 30 agree when π ∼= Z∗m. However (assuming for simplicity that m ≥ 1
and w = 1), the relations

tkax ∼1 tkaxtμm = tk+1a
x
m μm and tkax ∼2 (tkax)−1 = t−ka−mkx

together imply that Π �π Π is generated by the image of E and that

az ∼1 ta
z
m μm = Σ i=m−1

i=0 taia
z
m ∼2 Σ i=m−1

i=0 t−1a−mi−z = mt−1a−z

∼1 ma−
z
m μm ∼2 mΣ i=m−1

i=0 a−ia
z
m = ma

z
m μm,

for all z ∈ J. This is enough to see that Z[π]/(U +Δ) is a quotient of E/N, as an
abelian group, when Δ = (am −1, t −μm)Z[π].

Can we extend the argument of Theorem 30 in any way? In particular, does the
hypothesis of Theorem 27 hold for ascending HNN extensions F∗ϕ with base F
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a finitely generated free group and ϕ an endomorphism such that p ≺ ϕ(p) for all
1 ≺ p with respect to some left ordering ≺ on F? When ϕ is an automorphism π is a
semidirect product F(r)�ϕ Z, and the result of Theorem 27 holds by Theorem 22. If
ϕ has odd order and w = 1 then it can be shown that Π�π Π is 2-torsion free. How-
ever, as we have seen, the argument of Theorem 27 itself must be changed in order
to accommodate other semidirect products F(r)�ϕ Z and orientation characters w.

20 4-manifolds and 2-knots

In this section we shall invoke surgery arguments, and so “4-manifold” and “s-
cobordism” shall mean TOP 4-manifold and (5-dimensional) TOP s-cobordism, re-
spectively. We continue to assume that π is a 2-dimensional duality group.

Suppose that π is either the fundamental group of a finite graph of groups,
with all vertex groups Z, or is square root closed accessible, or is a classical knot
group. (This includes all PD2-groups, semidirect products F(n)�Z and the solvable
groups Z∗m.) Then Wh(π) = 0, L5(π,w) acts trivially on the s-cobordism structure
set Ss

TOP(M) and the surgery obstruction map σ4(M) : [M,G/TOP] → L4(π,w) is
onto, for any closed 4-manifold M realizing (π,w). (See Lemma 6.9 and Theorem
17.8 of [34].)

If, moreover, w2(M̃) = 0 then every 4-manifold homotopy equivalent to M is s-
cobordant to M, by Theorem 6.7, Lemma 6.5 and Lemma 6.9 of [Hi]. If w2(M̃) �= 0
there are at most two s-cobordism classes of homotopy equivalences. After stabi-
lization by connected sum with copies of S2 ×S2 there are two s-cobordism classes,
distinguished by their KS smoothing invariants (see [43]).

If π is solvable then 5-dimensional s-cobordisms are products and stabilization
is unnecessary, so homotopy equivalent 4-manifolds with fundamental group π are
homeomorphic if the universal cover is Spin, and there are two homeomorphism
types otherwise, distinguished by their KS invariants.

The Baumslag-Solitar group Z∗m has such a graph-of-groups structure and is
solvable, so the 5-dimensional TOP s-cobordism theorem holds. Thus if m is even
the closed orientable 4-manifold M with π1(M)∼= Z∗m and χ(M) = 0 is unique up
to homeomorphism. If m is odd there are two such homeomorphism types, distin-
guished by whether v2(M) = 0 or v2(M) �= 0.

Let π be a finitely presentable group with c.d.π = 2. If H1(π;Z) = π/π ′ ∼=Z and
H2(π;Z)= 0 then def(π)= 1 [34, Theorem 2.8]. If moreover π is the normal closure
of a single element then π ∼= πK = π1(S4 \K), for some 2-knot K : S2 → S4. (If the
Whitehead Conjecture is true every knot group of deficiency 1 has cohomological
dimension at most 2.) Since π is torsion free it is indecomposable, by a theorem of
Klyachko [44]. Hence π has one end.

Let M = M(K) be the closed 4-manifold obtained by surgery on the 2-knot K.
Then π1(M)∼= π = πK and χ(M) = χ(π) = 0, and so M is a minimal model for π . If
K is reflexive it is determined by M and the orbit of its meridian under the automor-
phisms of π induced by self-homeomorphisms of M. If π = F(n)�Z the homotopy
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type of M is determined by π , as explained in §4 above. Since H2(M;F2) = 0 it
follows that M is s-cobordant to the fibred 4-manifold with #n(S2 × S1) and fun-
damental group π . Knots with Seifert surface a punctured sum #n(S2 × S1)o are
reflexive. Thus if K is fibred (and c.d.π = 2) it is determined (among all 2-knots)
up to s-concordance and change of orientations by π together with the orbit of its
meridian under the automorphisms of π induced by self-homeomorphisms of the
corresponding fibred 4-manifold. (This class of 2-knots includes all Artin spins of
fibred 1-knots. See §6 of [34, Chapter 17] for more on 2-knots with c.d.π = 2.)

A stronger result holds for the group π =Z∗2. This is the group of Fox’s Example
10, which is a ribbon 2-knot [23]. In this case π determines the homotopy type
of M(K), by Theorems 30 and 27. Since metabelian knot groups have an unique
conjugacy class of normal generators (up to inversion) Fox’s Example 10 is the
unique 2-knot (up to TOP isotopy and reflection) with this group. (If K is any other
nontrivial 2-knot such that πK is torsion free and elementary amenable then M(K)
is homeomorphic to an infrasolvmanifold. See [34, Chapters 16-18].)

Let Λ = Z[Z]. There is a hermitian pairing B on a finitely generated free Λ -
module which is not extended from the integers, and a closed orientable 4-manifold
MB with π1(M) ∼= Z and such that the intersection pairing on π2(MB) is equivalent
to B. In particular, MB is not the connected sum of S1 × S3 with a 1-connected 4-
manifold [30]. Let NB ⊂ MB be an open regular neighbourhood of a loop represent-
ing a generator of π1(MB). Suppose that X is a closed 4-manifold with fundamental
group π and that there is an orientation preserving loop γ ⊂ X whose image in π/π ′
generates a free direct summand. (For instance, there is such a loop if X is the total
space of an S2-bundle over an aspherical closed surface F with β1(F)> 1). Then γ
has a regular neighbourhood homeomorphic to NB, and we may identify these regu-
lar neighbourhoods to obtain N = MB ∪S1×D3 X . The inclusion of 〈g〉 into π and the
projection of π onto Z mapping g to 1 determines a monomorphism γ : Λ → Z[π]
and a retraction ρ : Z[π]→ Λ . In particular, Λ ⊗Z[ρ] (Z[π]⊗Z[γ] B) ∼= B. It follows
that as B is not extended from Z neither is Z[π]⊗Z[γ] B. Therefore N is not the
connected sum of E with a 1-connected 4-manifold.

21 Some questions

We shall collect here some of the questions that have arisen en route.

1. Are strongly minimal PD4-complexes always of v2-type II or III?
2. If X has v2-type I and c.d.π = 2 is there a minimal model f : X → Z with v2(Z) =

0?
3. Must a strongly minimal PD4-complex with π a nontrivial free product be a

connected sum?
4. Can we say more about PD4-complexes with π infinitely ended and Π = 0?
5. Are there strongly minimal PD4-complexes with E3Z �= 0?
6. Do strongly minimal PD4-complexes always have k1 = 0?
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7. If X is a PD4-complex such that π = π1(X) has one end and Π = π2(X) is pro-
jective, must π be a PD4-group?

8. To what extent do k2 and v2 determine each other?
9. In Theorem 23 must Y be a PD4-complex?

10. Can we extend Theorems 27 and 30 to encompass the known results for π a
semidirect product F(r)�Z (at least if w = 1)?

11. Can we relax the running hypothesis that π should have one end?

The final four questions are of most interest for the present work.
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Topologically flat embedded 2-spheres in specific

simply connected 4-manifolds

Daniel Kasprowski, Peter Lambert-Cole, Markus Land, and Ana G. Lecuona

Abstract In this note we study whether specific elements in the second homology
of specific simply connected closed 4-manifolds can be represented by smooth or
topologically flat embedded spheres.

Introduction

Let X be a simply connected closed 4-manifold and consider an element in its sec-
ond homology group. It is well known that any such element can be represented by
an embedded closed oriented surface. Finding the minimal genus among all such
representing surfaces is an interesting task; see [6] for a survey on this topic and
[4, 9, 8] for some recent results. The aim of this note is to discuss specific examples
in which it is possible (or not) to push the genus down to be zero, i.e. where it is
possible (or not) to represent specific elements by embedded spheres. Notice that as
X is simply connected, any element in the second homology can be represented by
a sphere and since every topological 4-manifold is smoothable away from a point
[10, Corollary 2.2.3], we can assume the sphere to be regularly immersed. Hence
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the above question is equivalent to asking whether this regularly immersed sphere
is homotopic to an embedded one.

To be more precise, in this note we consider the manifolds M = 8CP2#CP2,M′ =
8CP2#�CP2 and CP2#M. The groups H2(M;Z), H2(M′;Z) and H2(CP2#M;Z) will
be considered with their ‘evident’ bases; for example, for H2(M;Z) the basis con-
sists of 8 spheres of self-intersection 1, denoted e1, . . . ,e8, and a last sphere e9 of
self-intersection −1. Within these groups and with respect to the evident bases, we
will be interested in the elements x = (1, . . . ,1,3) ∈ H2(M;Z), x′ = (1, . . . ,1,3) ∈
H2(M′;Z) and (0,x) ∈ H2(CP2#M;Z). The aim of this note is to show that x can-
not be represented by a topologically flat embedded sphere while the elements x′
and (0,x) can be represented in such a way. At first we use the Kirby-Siebenmann
invariant as an obstruction for x and Freedman’s classification of simply connected
manifolds to prove the statement for x′ and (0,x). In the second part of this paper,
we reprove these statements using the Kervaire-Milnor invariant.

Existence of smooth or topologically flat embedded

representatives

The intersection form of M = 8CP2#CP2 is given by

λM = 8〈1〉⊕〈−1〉 .

So we observe the following:

1. x = (1, . . . ,1,3) is a characteristic element for λM , i.e. x · y = y · y mod 2 for all
y ∈ H2(M;Z), and x · x =−1.

2. the orthogonal complement 〈x〉⊥ of 〈x〉 is isomorphic to E8: In fact the following
elements give a basis of 〈x〉⊥ whose representing matrix is the E8-matrix: For
1 ≤ j ≤ 7 take f j = e j+1 − e j, and let f8 = e9 − e6 − e7 − e8.

Remark 1. The element x cannot be represented by a smoothly embedded sphere.
Arguing by means of contradiction, we assume that x can be represented by a
smoothly embedded sphere. Then the normal bundle of such an embedding is a
complex line bundle with Euler class −1. Its associated disk bundle is thus diffeo-
morphic to CP2

with an open disk removed and its sphere bundle is S3. Removing
the interior of a tubular neighbourhood of the embedded S2 one obtains a manifold
with boundary S3 to which we can glue D4. This construction is called a “blow-
down” since it is the inverse to a “blow-up”, i.e. taking connected sum with CP2

.
The intersection form of the resulting smooth (and simply connected) manifold X
is isometric to the orthogonal complement of 〈x〉, hence isometric to E8. In particu-
lar, its intersection form is even, so that X is a smooth spin manifold. By Rokhlin’s
theorem the signature cannot be 8 and we obtain a contradiction.
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In contrast to the smooth case considered in the previous remark, a topological
spin 4-manifold with signature 8 exists by the work of Freedman. So one is led
to ask whether x can be represented by a topologically flat embedding of S2. We
answer this question to the negative.

Theorem 1. The element x cannot be represented by a topologically flat embedding
S2 → M.

Proof. As in the smooth case, a topologically flat embedding would give rise to
a simply connected topological manifold with intersection form E8. This manifold
exists and is unique up to homeomorphism by Freedman’s classification of sim-
ply connected topological 4-manifolds ([2, Theorem 1.5]). It is denoted by E8.
More precisely, the topologically flat embedding would yield a homeomorphism
M ∼= E8#CP2. Recall that the Kirby–Siebenmann invariant KS is an obstruction
for topological manifolds to admit a smooth (in fact PL) structure. It is a bordism
invariant of 4-manifolds, hence we have

KS(M#N) = KS(M)+KS(N) ,

for all 4-manifolds M and N. As E8 is spin, we have KS(E8) ≡ σ(E8)/8 mod 2
by [5, Theorem 13.1], where σ(−) denotes the signature. As CP2 is smooth, we
have KS(CP2) = 0. Thus we find KS(M) = 0 but KS(E8#CP2) = 1 so that these
manifolds are not homeomorphic. It follows that x cannot be represented by a topo-
logically flat embedding of S2. �

Let us consider the following variant, namely the manifold M′ = 8CP2#�CP2,
where �CP2 is a fake CP2, i.e. a manifold homotopy equivalent to CP2, but with
non-trivial Kirby–Siebenmann invariant. The existence of such a manifold again
makes use of Freedman’s theorem. One nice way to construct �CP2, see [2, p. 370]
where it is called the Chern manifold, is to consider the Poincaré 3-sphere, which
by Freedman’s theorem bounds a unique contractible 4-manifold. The trace of a
+1-framed surgery on the trefoil knot produces a 4-manifold with boundary given
by the Poincaré 3-sphere. Glueing together these two manifolds along their com-
mon boundary produces a simply connected 4-manifold with intersection form 〈1〉,
so this manifold is homotopy equivalent to CP2. However, one can check that its
Kirby–Siebenmann invariant is non-trivial.

The intersection form of M′ is thus also given by

λM′ = 8〈1〉⊕〈−1〉 ,

and we consider again the element x′ = (1, . . . ,1,3) ∈ H2(M′;Z).

Theorem 2. The element x′ can be represented by a topologically flat embedding
S2 → M′.

Proof. Since there is an isomorphism of forms 8〈1〉 ⊕ 〈−1〉 ∼= E8 ⊕ 〈−1〉 send-
ing x′ = (1, . . . ,1,3) to (0,1) and KS(8CP2# �CP2

) = KS(E8#CP2
) = 1, there
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is a homeomorphism 8CP2# �CP2 ∼= E8#CP2
which sends x′ to a generator of

H2(CP
2
;Z) by Freedman’s classification of simply connected topological manifolds

([2, Theorem 1.5 and its addendum]). The theorem now follows from the fact that
the generator of H2(CP

2
;Z) can be represented by a smoothly embedded sphere.

�
Finally, we consider CP2#M = 9CP2#CP2 and the element (0,x)= (0,1, . . . ,1,3)∈

H2(CP2#M;Z).

Theorem 3. The element (0,x) can be represented by a topologically flat embedding
S2 → CP2#M, but not by a smooth embedding.

Proof. Again by Freedman’s classification of simply connected topological mani-
folds, there is a homeomorphism CP2#M ∼= �CP2#M′ sending (0,x) to (0,x′) and
we know by Theorem 2 that (0,x′) can be represented by a topologically flat em-
bedding.

As in Remark 1, if x were represented by a smooth embedding, there would be a
smooth manifold with intersection form E8 ⊕〈1〉. Since E8 ⊕〈1〉 is definite but not
diagonalizable, no compact, smooth, simply connected, orientable 4-manifold with
this intersection form exists by Donaldson’s theorem ([1, Theorem 1]). �

The Kervaire–Milnor invariant

The topological part of the above theorems can also be shown using the Kervaire–
Milnor invariant km, introduced by Freedman and Quinn [3, Definition 10.8A]. For
an immersed 2-sphere ι with an algebraically dual sphere g, i.e. λ (ι ,g) = 0, in
a simply connected closed 4-manifold M the Kervaire–Milnor invariant takes val-
ues in Z/2, if ι is s-characteristic, and it lives in the trivial group, if ι is not s-
characteristic. Here, an immersed 2-sphere ι is called s-characteristic, if for every
other immersed 2-sphere ι ′ one has λM(ι , ι ′)≡ ι ′ · ι ′ mod 2.

One can describe km(ι) as follows: Assume that the algebraic self-intersection
number μ(ι) vanishes (this can always be achieved by introducing local kinks,
which only change the Euler number of the normal bundle by an even number).
In this case, the geometric self-intersection points of ι can be paired up in couples
with canceling signs. Therefore, one can choose a framed Whitney disc for each pair
of self-intersections, and arrange that all the boundary arcs are disjoint. Then one
counts the mod 2 number of intersection points of the interior of the Whitney disks
with ι . The number obtained in this fashion then does not depend on the particular
choice of Whitney disks, and the particular choices of changing ι to have algebraic
self-intersection number 0.

Note that in general the Kervaire–Milnor invariant lives in the trivial group if
ι is not r-characteristic, where ι is called r-characteristic if it is s-characteristic
and for every immersion ι ′ : RP2 → M we have for the Z/2-intersection form that
ι · ι ′ = ι ′ · ι ′. However in a simply connected 4-manifold every immersion RP2 → M
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factors up to homotopy through RP2/RP1 � S2 and hence every s-characteristic
sphere is r-characteristic.

Theorem 4 ([11, pp. 1310-1311]). An immersed 2-sphere with an algebraically
dual sphere is homotopic to a topologically flat embedded sphere if and only if it
has trivial Kervaire–Milnor invariant.

The problem of embedding spheres that represent homology classes of general odd
divisibility was considered by Lee and Wilczyński [7].

Reproving Theorem 1

Recall that we are considering the manifold M = 8CP2#CP2 and the element
x = (1, . . . ,1,3) ∈ H2(M;Z). The element x intersects the canonical 2-sphere rep-
resenting (1,0 . . . ,0) ∈ H2(M;Z) in a single point and hence has an algebraically
dual sphere. Furthermore, x is characteristic and hence s-characteristic. This implies
that km(x) lives in Z/2.

We can pick embedded spheres representing 1 ∈ H2(CP2;Z) and an immersed
sphere y in CP2 representing 3 ∈ H2(CP2;Z). We can add local kinks to y and pick
Whitney disks inside CP2 for y to compute km(y). The element x can be represented
by taking a connected sum of the embedded spheres representing the generator in
H2(CP2;Z) and y. We can take the connected sum in M avoiding the Whitney disks
chosen for y. It follows that km(x) = km(y). By [11, p. 1313], we have the formula

km(ι)≡ (ι · ι −σ(M))/8+KS(M) mod 2 (1)

for an s-characteristic sphere ι in a simply connected 4-manifold. Thus

km(y)≡ (y · y−σ(CP2))/8+KS(CP2) = (−9− (−1))/8+0 =−1 .

By Theorem 4, km(x) = km(y) = 1 implies that x cannot be represented by a topo-
logically flat embedding.

Reproving Theorem 2

Recall that we are considering the manifold M′ = 8CP2#�CP2 and the element
x′ = (1, . . . ,1,3) ∈ H2(M′;Z). It has the same algebraically dual sphere as x. For x′

we can consider the homeomorphism M′ ∼= �CP2#7CP2#CP2. As for x, we see that
km(x′) = km(y′)+km(y) where y′ represents the generator of H2(�CP2;Z). Using
(1), we have

km(y′)≡ (y′ · y′ −σ(�CP2))/8+KS(�CP2) = (1−1)/8+1 = 1 .
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Hence km(x′) = 1+1 = 0. By Theorem 4, x′ can be represented by a topologically
flat embedding.

Reproving Theorem 3

Recall that we are considering the manifold CP2#M = 9CP2#CP2 and the element
(0,x)= (0,1, . . . ,1,3)∈H2(CP2#M;Z). Consider the element z :=(1,(1,0, . . . ,0))∈
CP2#M. Then λ (z,z) = 2 and λ (z,(0,x)) = 1. Hence (0,x) is not s-characteristic.
Therefore km((0,x)) lives in the trivial group and hence is itself trivial. By Theo-
rem 4, (0,x) can be represented by a topologically flat embedding.
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Trisections of 5-Manifolds

Peter Lambert-Cole and Maggie Miller

Abstract Gay and Kirby introduced the notion of a trisection of a smooth 4-
manifold, which is a decomposition of the 4-manifold into three ekementary pieces.
Rubinstein and Tillmann later extended this idea to construct multisections of
piecewise-linear manifolds in all dimensions. Given a PL manifold Y of dimension
n, this is a decomposition of Y into �n/2�+ 1 PL submanifolds. We show that ev-
ery smooth, oriented, compact 5-manifold admits a smooth trisection. Furthermore,
given a smooth cobordism W between trisected 4-manifolds, there is a smooth tri-
section of W extending the trisections on its boundary.

Key words: trisection, topology, cobordism, 5-manifold

1 Introduction

We recall trisections of 4-manifolds, as introduced by Gay and Kirby [4].

Definition 1 ([4]). A (g;k1,k2,k3) trisection of a smooth, oriented, closed 4-manifold
X is a triple (X1,X2,X3) such that

• X = X1∪X2∪X3 and Xi ∩Xj = ∂Xi ∩∂Xj for each i �= j,
• Each Xi ∼= �ki S

1×B3 is a 4-dimensional 1-handlebody,
• Each double intersection Xi ∩Xj is a 3-dimensional 1-handlebody, and
• The triple intersection Σ = X1∩X2∩X3 is a closed, oriented surface of genus-g.

P. Lambert-Cole
University of Georgia, Athens, GA 30602, USA
e-mail: plc@uga.edu

M. Miller
Massachusetts Institute of Technology, Cambridge, MA 02139, USA
e-mail: maggiehm@mit.edu

https://doi.org/10.1007/978-3-030-62497-2_5

117© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
D. R. Wood et al. (eds.), 2019-20 MATRIX Annals, MATRIX Book Series 4,

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62497-2_5&domain=pdf


Peter Lambert-Cole and Maggie Miller

Moreover, every inclusion Xi ↪→ X is smooth in the interior of X̊i and piecewise
smooth on ∂Xi.

Gay and Kirby proved that every closed, oriented smooth 4-manifold admits a
trisection (which is unique up to a stabilization operation). The genesis was their
study of Morse 2-functions, although they also showed that it is possible to build a
trisection from a handle decomposition (see the proof of Theorem 4). Subsequently,
Rubinstein and Tillmann generalized these ideas and found nice decompositions
of piecewise-linear manifolds in all dimensions [8]. Given a PL manifold Y of di-
mension n, this is a decomposition of Y into k = �n2�+ 1 PL submanifolds, each
of which is an n-dimensional 1-handlebody. The intersection of any j pieces, for
j = 2, . . . ,k, must satisfy further restrictions on their topology. When n = 5, the
number of pieces is �5/2�+1= 3 and so PL 5-manifolds admit trisections as well.

Definition 2. A smooth trisection M = (Y1,Y2,Y3) of a 5-manifold Y is a decompo-
sition of Y into three pieces Y1,Y2,Y3 so that the following conditions hold:

• Y = Y1∪Y2∪Y3, where Yi ∩Yj = ∂Yi ∩∂Yj for i �= j.
• Each Yi is embedded in Y smoothly in its interior Y̊i and piecewise smoothly in

∂Yi.
• For integers k1,k2,k3 ≥ 0, we have Yi ∼= �kiS

1×B4.
• Each Yi ∩Yj is a 4-manifold which is a regular neighborhood of its 2-skeleton.
• The triple intersection Yi ∩Yj ∩Yk is a 3-manifold properly embedded in Y .
• If ∂Y �= /0, then the triple (Y1∩∂Y,Y2∩∂Y,Y3∩∂Y ) is a trisection of ∂Y .

We refer to Y1∩Y2∩Y3 as the central submanifold of M .

Definition 2 agrees completely with the definition of [8] (in the 5-dimensional
case), except where we require all inclusions to be smooth rather than piecewise
linear.

From now on, “trisection” will always mean “smooth trisection.” Our main the-
orems are the following:

Theorem 1. Every closed, smooth, oriented 5-manifold Y admits a trisection.

Theorem 2. Let Y be smooth, oriented 5-manifold with positive boundary A and
negative boundary B. Fix trisections TA and TB of A and B, respectively. There
exist a trisection TY of Y whose restriction to A (resp. B) is TA (resp. TB).

Theorem 2 together with the fact that every closed 4-manifold admits a trisec-
tion [4] implies the following theorem.

Theorem 3. Every compact, smooth, oriented 5-manifold Y admits a trisection.

Similarly, Theorem 1 could be taken to be a consequence of Theorem 2.
Note that we do not consider the question of uniqueness of smooth trisections of

5-manifolds up to stabilization. In dimension 4, the central submanifold of a trisec-
tion is an orientable surface, and the stabilization operation increases the genus of
this surface. Since any two orientable surfaces are related by such stabilization, it
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is initially plausible that two trisections of a 4-manifold are related by stabilization.
In contrast, a trisection of a 5-manifold has a 3-manifold as its central submani-
fold. The natural stabilization operation on the trisection adds a connect-summand
of S1× S2 to this 3-manifold. In general, two 3-manifolds are not related by such
stabilization, so we do not expect two arbitrary trisections of a 5-manifold to be
related by stabilization.

Example 1. Fix coordinates (r,θ ,x,y,z) on R5, where (r,θ) are polar coordinates
and (x,y,z) are Cartesian. View S5 as R5 ∪ {∞}. For i = 1,2,3, let Yi = {2π(i−
1)/3≤ θ ≤ 2πi/3}∪{∞}. Then T = (Y1,Y2,Y3) is a trisection of S5.

On the other hand, we may view S5 as ∂ (D2 × D2 × D2). In this coordinate
system, let W1 = S1 × D2 × D2, W2 = D2 × S1 × D2, W3 = D2 × D2 × S1. Then
T ′ = (W1,W2,W3) is a trisection of S5.

The central submanifold of T is a a 3-sphere, while the central submanifold of
T ′ is a 3-torus. Since S3#m(S1×S2) �∼= T 3#n(S1×S2) for any m,n, we conclude that
T and T ′ have no common stabilization.

Question 1. Is there a suitable class of trisections of closed 5-manifolds and a “nat-
ural” set of stabilization operations which relate any two of these trisections which
are of the same 5-manifold?

2 Trisecting Closed 5-Manifolds

In this section, we trisect closed 5-manifolds, which we might view as cobordisms
between two empty manifolds. We begin by recalling how one trisects a closed 4-
dimensional manifold.

2.1 Trisections of Closed 4-Manifolds

As preparation for the proof of Theorem 1, we review the construction in [4] of a
trisection from a handle decomposition of a closed 4-manifold X . Roughly speaking,
we partition the handles of X into three subsets — (1) the 0- and 1-handles; (2) the
2-handles; and (3) the 3-and 4-handles — and each group becomes one sector of the
trisection.

Theorem 4 ([4]). Every closed, oriented, smooth 4-manifold admits a trisection.

Proof. Take a self-indexing Morse function f on X and let ki be the the number
of index-i critical points. Without loss of generality, assume k0 = k4 = 1. Identify
the attaching link L of the 2-handles in the level set f−1(3/2) and choose a tubular
neighborhood ν(L) in f−1(3/2). Choose a relative handle decomposition on the link
complement f−1(3/2)�ν(L), which we can assume consists of 1-,2- and 3-handles.
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Let H1 be the union of the 2- and 3-handles of this decomposition and let H2 be the
union of ν(L) with the 1-handles. Then clearly H1 and H2 are 3-dimensional 1-
handlebodies, meeting along a closed surface S. Equivalently, this gives a Heegaard
splitting f−1(3/2) = H1∪S H2 of the level set.

The attaching link lies completely in H2, so by flowing along a gradient vec-
tor field we can find the cylinder H1× [3/2,5/2] in X . Define X1 = f−1([0,3/2])∪
H1× [3/2,2]; it retracts onto the sublevel set f−1([0,3/2]) and so is a 1-handlebody.
Similarly, define X3 = f−1([5/2,4])∪ H1 × [2,5/3]; it retracts on the superlevel
set f−1([5/2,4]) and is also a 1-handlebody. Finally, let X2 be the complement of
X1 ∪ X3 in X . Abstractly, it is diffeomorphic to H2 × I ∪ {2-handles}. The man-
ifold H2 × I is a 1-handlebody and H2 was obtained from ν(L) by attaching 1-
handles. Thus each 2-handle cancels a unique 1-handle in H2× I. Thus, the result
is a 1-handlebody. Moreover, the double intersections X1∩X2 = H2, X3∩X1 = H1,
X2∩X3 = ( the result of performing Dehn surgery to H2 along the link L ⊂ H2) are
all 3-dimensional 1-handlebodies (note that L is contained in a 1-skeleton of H2).
The central submanifold is the surface X1∩X2∩X3 = S.

2.2 Trisections of Closed 5-Manifolds

We can now describe how to obtain a trisection of a closed 5-manifold from a handle
decomposition. The essential idea, as in the prequel, is to partition the handles into
three sets: (1) the 0- and 1-handles; (2) the 2- and 3-handles; and (3) the 4- and
5-handles.

Proof (Proof of Theorem 1). Take a self-indexing Morse function f and let ki be the
the number of index-i critical points. Without loss of generality, assume k0 = k5 = 1.
In the level set f−1(5/2), let S denote the attaching 2-spheres of the 3-handles above
and let R denote the belt 2-spheres of the 2-handles below. We can assume they in-
tersect transversely and then choose a tubular neighborhood ν(R ∪ S). Choose a
relative handle decomposition of f−1(5/2)�ν(R∪S) which we can assume has no
0-handles. Let H1 be the union of the 2-,3- and 4-handles of this handle decomposi-
tion and let H2 be the union of ν(R∪S) with the 1-handles. Clearly, H1 and H2 can
be built with only 0-,1- and 2-handles and meet along a closed 3-manifold.

By flowing along a gradient vector field, we can find the cylinder H1× [3/2,7/2]
in Y . Define Y1 = f−1([0,3/2])∪H1 × [3/2,5/2]; it retracts onto the sublevel set
f−1([0,3/2]) and so is a 1-handlebody. Similarly, define Y3 = f−1([7/2,5])∪H1×
[5/2,7/2]; it retracts on the superlevel set f−1([7/2,5]) and is also a 1-handlebody.
Finally, let Y2 be the complement of Y1 ∪Y3 in Y . Although it contains the 2- and
3-handles ofY , it is abstractly diffeomorphic to the union of H2× [0,1]with two col-
lections of 3-handles. The 3-handles of Y are attached along the link S ⊂ H2×{1}.
By turning the 2-handles of Y upside down, we can view them as 3-handles at-
taching along R ⊂ H2×{0}. Each of these three handles cancel a unique 2-handle
in H2 × [0,1]. Moreover, these are the only 2-handles and so the result is a 1-
handlebody. Moreover, the double intersections Y1 ∩Y2 = ( the result of surgering
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H2 along the belt spheres of the 2-handles), Y3 ∩Y1 = H1, Y2 ∩Y3 = (the result of
surgering H2 along the attaching spheres of the 3-handles) are all 4-dimensional 0, 1,
2-handlebodies (note that the belt spheres of the 2-handles and the attaching spheres
of the 3-handles are contained in a 2-skeleton of H2). The central submanifold is the
3-manifold Y1∩Y2∩Y3 = ∂H1.

3 Trisecting 5-Manifolds with Boundary

Tillmann and Rubinstein [8] do not fix a definition of a multisection of a mani-
fold with boundary. A relative trisection of a 4-manifold X with boundary is well
understood, having been originally introduced in [4] and fleshed out in [2]. A dia-
grammatic theory for relative trisections then appeared in [3], and has continued to
appear throughout trisection literature. Briefly, a relative trisection of a 4-manifold
with boundary is required to induce an open book on ∂X , so that relative trisections
inducing the same boundary data can be glued to find trisections of the union. We
give an analogous condition in this section.

3.1 Gluing Cobordisms

In order to build a trisection of Y from trisections of elementary pieces, we need to
check that the topological conditions on a trisection hold after gluing together a pair
of trisected cobordisms.

Let Y be a compact, smooth 5-manifold with boundary. Let M = (Y1,Y2,Y3) be
a trisection of Y , and let X be one of the boundary components of Y . A trisection M
of Y is compatible with a trisection T = (X1,X2,X3) of X if its restriction M |X is
equal to T . A trisection M of Y is strongly compatible with T if it is compatible
with T and the inclusion Xi ↪→ Yi induces an injection π1(Xi) ↪→ π1(Yi), in which
each generator of the free group π1(Xi)maps to a distinct generator of the free group
π1(Yi).

We could alternatively state this condition as the inclusion maps a core of Xi to
a core of Yi, after isotopy. A core of an (n > 3)-dimensional genus-g handlebody H
is a collection of g curves in the interior of H which generate π1(H). We may abuse
notation and refer to one curve C in H as a core of H when [C] is a generator of
π1(H) (and thus a subset of a core of g curves).

If M is strongly compatible with its restriction to X , we also say M is strongly
compatible with X . If M is strongly compatible with every boundary component,
we say that M is strongly compatible with Y .

Let Y be a 5-manifold with boundary. To view Y as a cobordism of 4-manifolds,
choose a decomposition ∂Y = ∂Y+  (−∂Y−) (where one of ∂Y± may be empty).
Suppose that W is another cobordism of 4-manifolds and there is a diffeomorphism
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φ : ∂Y+ → ∂W−. Then we can glue Y toW and obtain a new cobordism Y ∪φ W with
boundary ∂Y ∪φ ∂W = ∂W+ (−∂Y−).

Lemma 1. Let Y and W be cobordisms of 4-manifolds and let φ : ∂Y+ → ∂W−
be a diffeomorphism. Suppose that MY = (Y1,Y2,Y3) and MW = (W1,W2,W3) are
strongly compatible trisections of Y and W (respectively) and that φ identifies
M |∂Y+ with M |∂W− . Then MY∪φW = (Y1∪W1,Y2∪W2,Y3∪W3) is a trisection that
is strongly compatible with Y ∪φ W.

Proof. By definition, each of Yi and Wi has a handle decomposition with only 0-
and 1-handles. Since they are glued along a 1-handlebody, Yi ∪Wi has a handle
decomposition with only 0-, 1-, and 2-handles. The 2-handles may be chosen to each
run geometrically along a 1-handle of Yi ∩ ∂Y+ and an identified 1-handle of Wi ∩
∂W− (as well as other 1-handles) once, since MY and MW are strongly compatible
with Y and W respectively. By assumption, the 2-handles can then be cancelled
geometrically, so we conclude that Yi ∪Wi ∼= �S1×B4.

For i �= j, we have (Yi ∪Wi)∩ (Yj ∪Wj) = (Yi ∩Yj)∪Yi∩Yj∩(∂Y+∼=∂W−) (Wi ∩Wj).
Therefore, (Yi ∪Wi) ∩ (Yj ∪Wj) is obtained by gluing two 4-dimensional 0-,1-
,2-handlebodies along a 3-dimensional handlebody. To glue along a handlebody,
we need need only add 1- and 2-handles, so (Yi ∪Wi)∩ (Yj ∪Wj) is a 0-, 1-, 2-
handlebody, as desired.

The rest of Definition 2 follows easily.

3.2 Standard Trisections

For this subsection, refer to Figure 1. Our local models of trisections are obtained
by pulling back a trisection on the unit disk D in R2. In radial coordinates, the
symmetric trisection D=Ds

1∪Ds
2∪Ds

3 is defined by choosing the following subsets:

Ds
1 =

{
0≤ θ ≤ 2π

3

}
, Ds

2 =

{
2π
3

≤ θ ≤ 4π
3

}
, Ds

3 =

{
4π
3

≤ θ ≤ 2π
}

.

The symmetric trisection is symmetric under rotation by 2π/3 (up to permuting
indices). We also define a rectangular trisection D = Y1∪Y2∪Y3 by setting

Dr
1 = {x ≥ 0} , Dr

2 = {x ≤ 0,y ≥ 0} , Dr
3 = {x ≤ 0,y ≤ 0} .

Geometrically, the rectangular trisection is asymmetric. Up to diffeomorphism, this
trisection is equivalent to the symmetric trisection.

Definition 3. The standard trisection of Sk for k ≥ 2 is the decomposition Tstd =
{π−1(Ds

i )∩ Sk} where π : Rk+1 → R2 is a coordinate projection and Ds
1 ∪Ds

2 ∪Ds
3

is the standard trisection of the unit disk in R2.
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Fig. 1 Left: The symmetric
trisection of the unit disk in
R2. Right: The rectangular
trisection of the unit disk in
R2.

Ds
1

Ds
2

Ds
3

Dr
1

Dr
2

Dr
3

The standard trisection of Bk, for k ≥ 2 is the decomposition Tstd = {π−1(Ds
i )∩

Bk} where π : Rk → R2 is a coordinate projection and Ds
1∪Ds

2∪Ds
3 is the standard

trisection of the unit disk in R2.

When k �∈ {4,5}, a multisection of Sk is not a trisection.
Note that we could have defined the standard trisection using the rectangular

trisection of the disk rather than the symmetric trisection of the disk. Both definitions
give equivalent (up to isotopy) trisections. Generally, we will use the coordinates
of the rectangular trisection instead (for convenience). We will specify “standard
symmetric trisection” or “standard rectangular trisection,” but a reader comfortable
with trisections may read this as “standard trisection.”

Lemma 2. Let Tstd = (S1,S2,S3) be the standard trisection of Sk. Then each Si is
diffeomorphic to Bk; each double intersection Si ∩ S j is diffeomorphic to Bk−1 and
the central surface is diffeomorphic to Sk−2.

Let Tstd = (D1,D2,D3) be the standard trisection of Bk. Then each Di is diffeo-
morphic to Bk; each double intersection Di ∩D j is diffeomorphic to Bk−1 and the
central surface is diffeomorphic to Bk−2.

Proposition 1. Let Tstd be the standard trisection of S4 and Mstd be the standard
trisection of B5.

1. Tstd is a trisection of S4,
2. Mstd is a trisection of B5, and
3. Mstd is strongly compatible with Tstd .

The standard trisection of S1×S3 is obtained from the standard trisection of S3

by taking the product of each sector with S1. It is clear from Lemma 2 that this is a
trisection.

3.3 Trisection Stabilization

Definition 4. Let T = (X1,X2,X3) be a (g;k1,k2,k3)-trisection of a 4-manifold
X . We say that a (g + 1;k1 + 1,k2,k3)-trisection T ′ of X is an elementary 1-
stabilization of T if there exists a boundary-parallel arc C properly embedded in
X2∩X3 so that
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X ′
1 = X1∪ν(C) ,

X ′
2 = X2 \ν(C) ,

X ′
3 = X3 \ν(C) ,

for some fixed open neighborhood ν(C) of C. We say that C is the stabilization arc
of the stabilization T �→ T ′.

We similarly define elementary 2- and 3-stabilization by permuting the indices
1,2, and 3.

Lemma 3. Let X be a closed 4-manifold. Fix a (g;k1,k2,k3)-trisection T =(X1,X2,X3)
of X. Let T ′ be an elementary 1-stabilization of T , so that T ′ = (X ′

1,X
′
2,X

′
3) is

a (g + 1;k1 + 1,k2,k3)-trisection of X. There exists a smooth multisection M =
(Y1,Y2,Y3) of X × I whose restriction to X ×{0} is T and whose restriction to
X ×{1} is T ′.

Proof. See Figure 2 for a schematic.
LetC be the stabilization arc of T �→T ′. For i= 1,2,3, letYi := (Xi× [0,1/2])∪

(X ′
i × [1/2,1]), so that Y = Y1∪Y2∪Y3. We immediately have Yi ∩ (X ×0) = Xi and

Yi ∩ (X × 1) = Xi. Obviously this implies that M = (Y1,Y2,Y3) induces a trisection
on ∂Y .

Note that for each i and j, Yi and Yi ∩Yj strongly deformation retract onto Yi ∩
(X × 1/2) and (Yi ∩Yj)∩ (X × 1/2), respectively. We will describe each of these
intersections.

Y1∩
(

X × 1
2

)
= X ′

1×
1
2
,

Y2∩
(

X × 1
2

)
= X2× 1

2
,

Y3∩
(

X × 1
2

)
= X3× 1

2
.

We conclude thatY1 ∼= �k1+1S1×B4,Y2 ∼= �k2S1×B4, andY1 ∼= �k3S1×B4. Moreover,

Y1∩Y2∩
(

X × 1
2

)
=
(
(X1∩X2)∪

(
X2∩ν (C)

))
× 1

2
,

Y2∩Y3∩
(

X × 1
2

)
= (X2∩X3)× 1

2
,

Y3∩Y1∩
(

X × 1
2

)
=
(
(X1∩X3)∪

(
X3∩ν (C)

))
× 1

2
.

Then immediately, Y2∩Y3 ∼= �gS1×B3. Moreover, we note that Y1∩Y2∩ (X ×1/2)
is obtained from the 3-dimensional handlebody (X1 ∩X2)× 1/2 by attaching a 4-
dimensional 1-handle, so strongly deformation retracts to a 1-skeleton. Therefore,
Y1∩Y2 ∼= �g+1S1×B3. Similarly, Y3∩Y1 ∼= �g+1S1×B3.
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Finally, we have that Y1 ∩Y2 ∩Y3 is the 3-dimensional trace of the cobordism
from X1∩X2∩X3 to X ′

1∩X ′
2∩X ′

3 obtained by attaching the 3-dimensional 1-handle
(ν(C)�X1). That is,Y1∩Y2∩Y3 is a compression body from a genus (g+1)-surface
to a genus g-surface.

We will refer to the trisected 5-manifold Y of Lemma 3 as a stabilization cobor-
dism. Figure 2 shows a schematic of a stabilization cobordism.

Proposition 2. Let X be a closed, oriented, smooth 4-manifold and let T0,T1 be
trisections of X. There exists a trisection M = (Y1,Y2,Y3) of X × [0,1] whose re-
striction to X ×{i} is Ti.

Proof. By [4, Theorem 11], there exists a common stabilization T̃ of T0 and T1.
Therefore, the claim holds by induction on Lemmas 3 and 1.

3.4 Morse Theory for Manifolds with Boundary

For a comprehensive treatment, we refer the reader to [1].
Let f be a Morse function on X ; for the sake of exposition we assume the critical

values are all distinct. By theMorse lemma, we can choose coordinates around every
nondegenerate critical point of f in which the function takes the form

f (x1, . . . ,xn) = x21+ · · ·+ x2n−k − x2n−k+1−·· ·− x2n (1)

for some k, which is called the index of the critical point. Let Xs = f−1((∞,s]). Up
to diffeomorphism, the sublevel set Xε can be obtained from the sublevel set X−ε by
attaching a k-handle along some Sk−1 in the level set f−1(−ε).

Now suppose that X has nonempty boundary and f is a Morse function on X that
restricts to a Morse function on ∂X . If z ∈ ∂X is a critical point of f , we can find
Morse coordinates near z as in Equation 1 and such that ∂X is sent to the hyperplane
{x j = 0} for some j. The critical point z is boundary unstable if 1 ≤ j ≤ n− k and
is boundary stable if n− k+1≤ j ≤ n.

Fig. 2 A schematic of a
stabilization cobordism cor-
responding to an elemen-
tary 1-stabilization about
arc C ⊂ X2 ∩X3. This is a
cobordism from X to X in-
ducing trisection T on the
left boundary and T ′ on the
right boundary (where T ′
is obtained from T by 1-
stabilization), as in Lemma 3.

X1 X3

X2

X1 X3

X2

ν(C)
X ′
1 X ′

3

X ′
2

X1 X3

X2

X ′
1 X ′

3

X ′
2

125



Peter Lambert-Cole and Maggie Miller

The topological change to a sublevel set when f has a Morse critical point on
the boundary depends on whether the critical point is boundary stable or boundary
unstable.

Proposition 3. Let z ∈ ∂X be a Morse critical point of index-k.

1. If z is boundary stable, then Xε is diffeomorphic to X−ε . Furthermore, (∂X)ε is
obtained from (∂X)−ε by attaching a handle of index-k−1.

2. If z is boundary unstable, then Xε is obtained from X−ε by attaching a handle of
index-k. Furthermore, (∂X)ε is obtained from (∂X)−ε by attaching a handle of
index-k.

Proof. The statements about the topology of ∂X are standard Morse theory. The
statements about the topology of X are the combination of Lemmas 2.18 and 2.19
and Theorem 2.27 in [1].

3.5 Index-1

In this and the following subsections, let Y be a cobordism between closed 4-
manifolds X and Z; let TX = (X1,X2,X3) and TZ = (Z1,Z2,Z3) be trisections of
X and Z, respectively; and let f : Y → [0,1] be a relative Morse function so that
∂Y = f−1({0,1}), where X = f−1(0) and Z = f−1(1).

Suppose that S is an embedded S0 in the central surface Σ of the trisectionTX . Let
νΣ (S) be a tubular neighborhood in the central surface. Then we can choose a tubular
neighborhood νX (S) ∼= νΣ (S)×D2 such that TX restricts to a trisection obtained
by pulling back the standard (which we view to be the rectangular) trisection of
the disk under the projection νX (S) → D2. Note that the trisection determines a
framing of the bundle νΣ (S)×D2, but this framing is unique up to isotopy since
νΣ (S)∼= S0×D2.

Proposition 4. Suppose that there is a unique critical point of f of index-1 in the in-
terior of Y . There exists a trisection M = (Y1,Y2,Y3) of Y that is strongly compatible
with the trisections TX and TZ.

Proof. First we describe the local model in Morse coordinates. Near a Morse critical
point of index 1, we have Morse coordinates such that

f = x21+ x22+ x23+ x24− x25 .

We can view this as a function on R2×R3 and decompose f as g+ f̃ , where

g(x1,x2) = x21+ x22 , f̃ (x3,x4,x5) = x23+ x24− x25 .

Using the projection π :R2×R3 →R2, we obtain a trisection near the Morse critical
point (i.e. of a small 5-ball centered about the critical point) by pulling back the
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Fig. 3 The construction of
Proposition 4. We trisect a
cobordism Y from X to Z
which includes an index-1
critical point. We isotope so
that the descending manifold
of the index-1 point intersects
X in the central surface of a
trisection TX on X . We then
trisect the 1-handle radially.

Descending manifold of
index-1 critical point

rectangular trisection of the disk, as described at the beginning of this subsection.
In this model, the central submanifold is the hyperplane {x1 = x2 = 0} and the
restriction of f̃ to the central submanifold is a Morse function with a critical point
of index 1. We take this local model to agree with the restriction of TX near the
critical point.

Let g be the standard Euclidean metric on R5 and ∇ f the gradient of f with
respect to g. The desending manifold of the critical point, with respect to ∇ f , is
contained in the line {x1 = x2 = x3 = x4 = 0} and intersects the level set f−1(−ε)
in the 0-sphere R = (0,0,0,0,±√

ε). Let R̃ = (0,0,±√
ε) ⊂ R3 be its projection.

Let ν(R̃)⊂ R3 be a tubular neighborhood of R̃ in f̃−1(−ε). Flowing along ∇ f̃ , we
obtain tubular neighborhoods of (0,0,±(

√
ε +δ ) in f̃−1(−ε − δ )) for all δ > 0.

We can find a tubular neighborhood ν(R) of R in f−1(−ε) of the form

ν(R)∼= ν(R̃)×D2 = ν(R̃)×g−1
([

0,
ε
2

])
.

The trisection of the local model restricts a trisection of ν(R) obtained by pulling
back the rectangular trisection of the disk under the projection ν(R)→ D2.

Via an identification

νX (S)∼= νΣ (S)×D2 ∼= ν(R̃)×D2 ∼= ν(R) ,

we can use this model to extend a trisection from below the critical point to above
the critical point. See Figure 3.

The topological result is as follows. In the local model, The central submanifold
is the hyperplane {x1 = x2 = 0} and the function f restricts to a Morse function
with a critical point of index-1. Thus, moving from height −ε to height ε results in
surgery on S ⊂ Σ , increasing the genus by 1. The double intersection H1 = Dr

1∩Dr
3

is {x1 ≥ 0;x2 = 0} and the restriction of f restricts has a boundary unstable critical
point of index 1. Thus, topologically moving from height −ε to height ε adds a
1-handle to H1 along S. By symmetry, this is also true of the remaining double
intersections. Finally, the top dimensional sector Dr

1, in the rectangular model of the
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Fig. 4 In Lemma 4, we iso-
tope S to lie in X1 ∩X2 and
then 3-stabilize until S is con-
tained in a core of X3.

X1∩X2 S After stabilizations, S ⊂ X3

trisection, is the halfspace {x1 ≥ 0}. The restriction of f has a boundary unstable
critical point of index 1 and so the topological effect when moving from height
−ε to ε is to add a 1-handle to Dr

1 along S. Again by symmetry, this is true of the
remaining sectors.

The local model gives a trisection M ′ on Y that restricts to TX on X and some
T ′

Z = (Z′
1,Z

′
2,Z

′
3) on Z. The sector Xi is a 4-dimensional 1-handlebody of genus ki.

The sector Yi is obtained by thickening Xi and attaching a 1-handle. Thus clearly the
inclusion Xi ↪→ Yi includes the cores of Xi into the cores of Yi. Moreover, the sector
Yi retracts onto Z′

i . Thus M ′ is strongly compatible. By Proposition 2, we can find a
trisection on Z× I strongly compatible with T ′

Z and TZ . Then by Lemma 1, we can
glue these together to obtain the required trisection.

3.6 Index-2

Lemma 4. Let S be some embedded S1 in a 4-manifold X. After stabilizing the tri-
section TX and isotopy of S, we can assume that S lies in the central surface Σ of TX
so that it includes in each 3D and 4D piece as a core, and that the framing induced
on S by Σ may be chosen arbitrarily.

Proof. Since X1 ∩X2 generates the unbased fundamental group of X , we may iso-
tope S to lie in X1 ∩X2, disjoint from a 1-skeleton of X1 ∩X2. Let π(S) denote the
projection of S onto Σ = ∂ (X1∩X2). Take π(S) to have only double points of self-
intersection, and let c(S) denote the number of such double points. Then we may
perform 2+ c(S) 3-stabilizations (see Figure 4) so that S is contained in a core of
X3. Perform a 1- and a 2-stabilization, taking S to run through the core of each added
genus to X1 and X2, and project S onto Σ to obtain an embedded curve C in Σ . By
construction, this projection can be taken to be an isotopy.

Let A be the α curve in a triple of α,β ,γ curves arising from the 1-stabilization,
so A is parallel to a β curve, intersects a γ curve in point, and intersects C in one
point. Since A bounds a disk whose interior is disjoint from Σ , μ(A) = 0, where
μ : H1(Σ ;Z)→ Z/2 is the Rokhlin quadratic form. Let C′ be a curve in Σ obtained
by Dehn twisting C about A (in either direction). Then μ(C) �= μ(C′). Note C′ is
isotopic to C in X , so C′ is isotopic to S. Both C and C′ include into each 3D and
4D piece of T as subsets of cores. Because there are only two possible framings on
S ⊂ X , one of C or C′ is the desired curve.
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Proposition 5. Suppose that there is a unique critical point of f of index-2 in the in-
terior of Y . There exists a trisection M = (Y1,Y2,Y3) of Y that is strongly compatible
with the trisections TX and TZ.

Proof. The proof is analogous to the proof of Proposition 4, so we only sketch it.
Near a Morse critical point of index 2, we have Morse coordinates such that

f = x21+ x22+ x23− x24− x25 .

We can view this as a function on R2×R3 and decompose f as g+ f̃ , where

g(x1,x2) = x21+ x22 , f̃ (x3,x4,x5) = x23− x24− x25 .

Using the projection π : R2×R3 → R2, we obtain a trisection near the Morse crit-
ical point by pulling back the rectangular trisection of the disk. In this model, the
central submanifold is the hyperplane {x1 = x2 = 0} and the restriction of f̃ to
the central submanifold is a Morse function with a critical point of index 2. The
desending manifold of the critical point, with respect to ∇ f , is contained in the
plane {x1 = x2 = x3 = 0} and intersects the level set f−1(−ε) in the 1-sphere R.
Let R̃ = {(0,a,b) | a2+ b2 = ε ⊂ R3 be its projection. Let ν(R̃) ⊂ R3 be a tubular
neighborhood of R̃ in f̃−1(−ε). We can find a tubular neighborhood ν(R) of R in
f−1(−ε) of the form

ν(R)∼= ν(R̃)×D2 = ν(R̃)×g−1
([

0,
ε
2

])
.

The trisection of the local model restricts a trisection of ν(R) obtained by pulling
back the rectangular trisection of the disk under the projection ν(R) → D2. By
Lemma 4, we can take this trisection to agree with TX . Via an identification

νX (S)∼= νΣ (S)×D2 ∼= ν(R̃)×D2 ∼= ν(R) ,

we can use this model to extend a trisection from below the critical point to above
the critical point.

The topological result is as follows. In the local model, The central submanifold
is the hyperplane {x1 = x2 = 0} and the function f restricts to a Morse function
with a critical point of index 2. Thus, moving from height −ε to height ε results in
surgery on S ⊂ Σ , decreasing the genus by 1. The double intersection H1 = Dr

1∩Dr
3

is {x1 ≥ 0;x2 = 0} and the restriction of f restricts has a boundary unstable critical
point of index 2. Thus, topologically this adds a 2-handle to H1 along S; however, by
assumption, this handle is attached along a core and therefore cancels a 1-handle in
H1. By symmetry, this is also true of the remaining double intersections. Finally, the
top dimensional sector Dr

1, in the rectangular model of the trisection, is the halfspace
{x1 ≥ 0}. The restriction of f has a boundary unstable critical point of index 2 and
so the topological effect of moving from height −ε to ε is to add a 2-handle to
Dr
1 along S. Since S represents a core, this 2-handle cancels a 1-handle. Again by

symmetry, this is true of the remaining sectors.
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Strong compatibility follows as in the proof of Proposition 4. Then we can glue
this local model to a model that changes the trisection on Z to obtain the required
trisection of Y .

We remark that we now have all of the technology needed to prove Theorem 2.
For now, if f is self-indexing with only index-1, -2, -3, -4 points, we may trisect
f−1[0,5/2] and f−1[5/2,5] separately (by turning f−1[5/2,5] upside down) and
then glue the two copies of f−1(5/2). However, we instead continue to build the
trisection upward from level 0 for completion of the analogy between the handle
structure and the trisection structure.

3.7 Index-3

Lemma 5. Let S be an embedded S2 ⊂ X. By an isotopy, we can assume that S is in
1-bridge position with respect to a stabilization of TX .

Proof. This is a specialization of [7, Theorem 1.2].

Proposition 6. Suppose that there is a unique critical point of f of index-3 in the in-
terior of Y . There exists a trisection M = (Y1,Y2,Y3) of Y that is strongly compatible
with the trisections TX and TZ.

As hinted at the end of Subsection 3.6, this Proposition follows from Proposition
5 by replacing f with − f . However, here we give a direct proof without changing
perspective.

Proof. This model can be obtained by turning the model in Proposition 5 upside-
down. Near a Morse critical point of index 3, we have Morse coordinates such that

f = x21+ x22− x23− x24− x25 .

We can view this as a function on R3×R2 and decompose f as f̃ −g, where

f̃ (x1,x2,x3) = x21+ x22− x23 , g(x4,x5) = x24+ x25 .

Using the projection π :R3×R2 →R2, we obtain a trisection near the Morse critical
point by pulling back the rectangular trisection of the disk. In this model, the central
submanifold is the hyperplane {x4 = x5 = 0} and the restriction of f̃ to the central
submanifold is a Morse function with a critical point of index 1.

Now, however, the descending manifold intersects f−1(−ε) along the 2-sphere
R = {−x23 − x24 − x25 = −ε}. The trisection of the local model restricts to give the
standard rectangular trisection of R. We can choose a neighborhood ν(R) and a
splitting ν(R) = R×D2 such that the trisection of local model, restricted to ν(R), is
the same as the trisection obtained by pulling back the standard trisection of S2 by
the projection ν(R)→ R.
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Now suppose S is in 1-bridge position via Lemma 5. This means that TX re-
stricted to S is exactly the standard rectangular trisection of S2 (up to isotopy). We
can choose an identification ν(S) = S×D2 such that TX restricted to ν(S) is exactly
the trisection obtained by pulling back the standard rectangular trisection of S2 by
the projection ν(S)→ S. Via an identification

νX (S)∼= νΣ (S)×D2 ∼= ν(R̃)×D2 ∼= ν(R) ,

we can use this model to extend a trisection from below the critical point to above
the critical point.

The topological result is as follows. In the local model, The central submanifold
is the hyperplane {x4 = x5 = 0} and the function f restricts to a Morse function
with a critical point of index 1. Thus, moving from height −ε to height ε results in
surgery on S ⊂ Σ , increasing the genus by 1. The double intersection H1 = Dr

1∩Dr
3

is {x1 ≥ 0;x2 = 0} and the restriction of f restricts has a boundary stable critical
point of index 2. Thus, moving from height −ε to height ε does not change the
topology. The top dimensional sector, in the rectangular model of the trisection, is
the plane {x5 ≥ 0}. This is a boundary stable critical point of index 3, so moving
from height −ε to height ε does not change the topology.

Strong compatibility follows as in the proof of Proposition 4. Then we can glue
this local model to a model that changes the trisection on Z to obtain the required
trisection of Y .

3.8 Index-4

An S3 ⊂ X4 is in standard position with respect to some trisection T = (X1,X2,X3)
of X if S � Σ is a simple closed curve c that bounds disks in all three handlebodies
Xi∩Xj. When an embedded S3 is in standard position with respect to T , the restric-
tion of T is exactly the standard rectangular trisection of S3 (up to isotopy). Note
that if the curve c is separating, this is a locally a model for connected sum; if the
curve is nonseparating, this is a model for an S1×S3 factor.

Lemma 6. Let S be an embedded S3 ⊂ X. By an isotopy and a stabilization of the
trisection TX , we can assume that S is in standard position with respect to TX .

Proof. Suppose that S is separating. Then X decomposes as a connected sum
X = X1#SX2. Choose trisections T1 and T2 of X1 and X2, respectively. X therefore
admits a trisection TS =T1#T2 and S is in standard position with respect to TS. The
trisections T and TS admit a common stabilization T̃ . Furthermore, 1-stabilization
preserves the fact that S is in standard position.

Now suppose S is nonseparating. Let γ be a closed curve that intersects S trans-
versely in a single point. Then X decomposes as a connected sum along the bound-
ary of the tubular neighborhood ν(S∪ γ) into X ′#S1×S3. Let T ′ be a trisection of
X ′ and let Tsphere be the standard trisection of S1× S3. The sphere S is isotopic to
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{pt}× S3 and this sphere is in standard position with respect to Tsphere. The con-
nected sumT ′#Tsphere is a trisection of X . Again, the trisectionsT andT ′#Tsphere

have a common stabilization T̃ and S is in standard position with respect to this tri-
section.

Proposition 7. Suppose that there is a unique critical point of f of index-4 in the in-
terior of Y . There exists a trisection M = (Y1,Y2,Y3) of Y that is strongly compatible
with the trisections TX and TZ.

As hinted at the end of Subsection 3.6, this Proposition follows from Proposition
4 by replacing f with − f . However, here we give a direct proof without changing
perspective.

Proof. This model can be obtained by turning the model in Proposition 4 upside-
down. Near a Morse critical point of index 4, we have Morse coordinates such that

f = x21− x22− x23− x24− x25 .

We can view this as a function on R3×R2 and decompose f as f̃ −g, where

f̃ (x1,x2,x3) = x21− x22− x23 , g(x4,x5) = x24+ x25 .

Using the projection π :R3×R2 →R2, we obtain a trisection near the Morse critical
point by pulling back the standard rectangular trisection of the disk. In this model,
the central submanifold is the hyperplane {x4 = x5 = 0} and the restriction of f̃ to
the central submanifold is a Morse function with a critical point of index 2.

Now, however, the descending manifold intersects f−1(−ε) along the 3-sphere
R = {−x22− x23− x24− x25 = −ε}. The trisection of the local model restricts to give
the standard rectangular trisection of R. We can choose a neighborhood ν(R) and a
splitting ν(R) = R×D1 such that the trisection of local model, restricted to ν(R), is
the same as the trisection obtained by pulling back the standard trisection of S3 by
the projection ν(R)→ R.

Now suppose S is in standard position (using Lemma 6). This means that TX
restricted to S is exactly the standard trisection of S3. We can choose an identification
ν(S) = S×D1 such that TX restricted to ν(S), is exactly the trisection obtained by
pulling back the standard rectangular trisection of S3 by the projection ν(S) → S.
Via an identification

νX (S)∼= νΣ (S)×D1 ∼= ν(R̃)×D1 ∼= ν(R) ,

we can use this model to extend a trisection from below the critical point to above
the critical point.

The topological result is as follows. In the local model, The central submanifold
is the hyperplane {x4 = x5 = 0} and the function f restricts to a Morse function
with a critical point of index 2. Thus, moving from height −ε to height ε results in
surgery on S ⊂ Σ , decreasing the genus by 1. The double intersection H1 = Dr

1∩Dr
3

is {x1 ≥ 0;x2 = 0} and the restriction of f restricts has a boundary stable critical
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point of index 3. Thus, moving from height −ε to height ε does not change the
topology. The top dimensional sector, in the rectangular model of the trisection, is
the plane {x5 ≥ 0}. This is a boundary stable critical point of index 4, so moving
from height −ε to height ε does not change the topology.

Strong compatibility follows as in the proof of Proposition 4. Then we can glue
this local model to a model that changes the trisection on Z to obtain the required
trisection of Y .

Theorem 5. Let Y be a cobordism between smooth, closed, connected, nonempty
4-manifolds X and Z. Fix trisections TX = (X1,X2,X3) of X and TZ = (Z1,Z2,Z3)
of Z.

Then there exists a trisection M =(Y1,Y2,Y3) of Y so that Yi∩X =Xi and Yi∩Z =
Zi for each i = 1,2,3. Moreover, M is strongly compatible with Y .

Proof. The theorem follows via induction on Propositions 4, 5, 6, and 7.

Note that Proposition 4 (for cobordisms including index-1 critical points) holds
even when the two manifolds X and Z are disconnected, if we take a trisection of a
disconnected manifold to consist of trisections on each connected component.

Theorem 6. Let Y be a connected cobordism between smooth, closed, 4-manifolds
X and Z, which are potentially disconnected or empty. Fix trisections TX =(X1,X2,X3)
of X and TZ = (Z1,Z2,Z3) of Z.

Then there exists a trisection M =(Y1,Y2,Y3) of Y so that Yi∩X =Xi and Yi∩Z =
Zi for each i = 1,2,3. Moreover, M is strongly compatible with Y .

Proof. By the remark above the theorem statement, the claim follows as in Theorem
5 when X and Z are nonempty. If X is empty and Z is nonempty, take X ′ = S4 and
TX ′ to be the standard trisection of X ′ ∼= S4. Puncture Y to obtain a cobordism Y ′
from X ′ to Z and apply the theorem to obtain a trisection of Y ′. Glue a copy of B5

with the standard trisection to Y ′ to obtain a trisection of Y extending TZ . Reversing
the roles of X and Z, the claim similarly holds when X �= /0 and Z = /0. If X = Z = /0,
then the claim follows by puncturing Y twice and proceeding in the same fashion.

The following corollary follows immediately from Theorem 5 and the definition
of strongly compatible.

Corollary 1. Let Y be a cobordism between smooth, closed, connected 4-manifolds
A and B. Let W be a cobordism between closed, connected 4-manifolds B and C.
Fix trisections TA,TB,TC of A,B, and C respectively. Let TY ,TW be trisections of
Y and W as in Theorem 5 so that TY restricts to TA on A, TW restricts to TC on
C, and both TY and TW restrict to TB on B. Moreover, TY and TW are strongly
compatible with Y and W, respectively. Then we can glue TY and TW to obtain a
trisection T of the cobordism Y ∪B W from A to C.

Note here that the gluing of B ⊂W to B ⊂ Y is induced by TB.
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The octonionic projective plane

Malte Lackmann

1 Introduction

As mathematicians found out in the last century, there are only four normed di-
vision algebras1 over R: the real numbers themselves, the complex numbers, the
quaternions and the octonions. Whereas the real and complex numbers are very
well-known and most of their properties carry over to the quaternions (apart from
the fact that these are not commutative), the octonions are very different and harder
to handle since they are not even associative. However, they can be used for several
interesting topological constructions, often paralleling constructions known for R,
C or H.

In this article, we will construct OP2, a space having very similar properties to
the well-known two-dimensional projective spaces over R, C and H.

We will begin, in the second section, by recalling a construction of the octonions
and discussing their basic algebraic properties. We will then move on to actually
constructing the octonionic projective plane OP2. In the fourth section, we will dis-
cuss properties of OP2 and applications in algebraic topology. In particular, we will
use it to construct a map S15 −→ S8 of Hopf invariant 1. Moreover, it will be ex-
plained why there cannot be projective spaces over the octonions in dimensions
higher than 2.

Malte Lackmann
Mathematisches Institut, Universität Bonn, Endenicher Allee 60, 53115 Bonn, e-mail:
lackmann@math.uni-bonn.de

1 A division algebra over R is a finite-dimensional unital R-algebra without zero divisors, not
necessarily commutative or associative. A normed algebra over R is an R-algebra A together with
a map ‖·‖ : A→ R coinciding with the usual absolute value on R ·1 ∼= R, satisfying the triangular
inequality, positive definiteness and the rule ‖xy‖= ‖x‖‖y‖.
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2 Construction of O

In this section, we will explain how the octonions can be constructed. Of course,
there are many ways to define them – the simplest way would be to choose a basis
of O as a vector space and then specify the products of each pair of basis elements.
We will try to explain a little better the “reason” for the existence of octonions by
giving a construction which leads from the quaternions to the octonions, but which
can also be used to construct C out of R and H out of C, the so-called Cayley-
Dickson construction.

As mentioned in the introduction, the octonions are neither commutative nor even
associative. However, they have the following crucial property called alternativity:

For any two octonions x and y, the subalgebra of O generated by x and y is
associative.

Here a subalgebra is always meant to contain the unit. By a nontrivial theorem
of Emil Artin [Zor31, Sch95], the above condition is equivalent to requiring that the
formulas

x(yy) = (xy)y and (xx)y = x(xy) (1)

hold for any two elements x,y ∈O.
We will now begin to construct the octonions. To do this, note that the well-

known division algebras R, C and H are not only normed R-algebras, but they
come together with a conjugation: an anti-involution ∗ (i.e., a linear map ∗ from
the algebra to itself such that (xy)∗ = y∗x∗ and (x∗)∗ = x) with the property that
xx∗ = x∗x = ‖x‖2.

This extra structure goes into the following construction, called “doubling con-
struction” or “Cayley-Dickson construction”: Let (A,‖·‖ ,∗ ) be a normed real alge-
bra with conjugation. Then we define the structure of a normed real algebra with
conjugation on the real vector space A2 by

• (a,b) · (c,d) = (ac−d∗b,da+bc∗),

• ‖(a,b)‖=
√

‖a‖2 +‖b‖2,
• (a,b)∗ = (a∗,−b).

It can be checked that this turns A2 indeed into a real algebra with conjugation.
Furthermore, it also conserves most of the properties as an algebra that A has had,
though not all:

• The real numbers are an associative and commutative division algebra and have
the additional property that the conjugation is just the identity. Applying the
Cayley-Dickson construction, we obtain the complex numbers which are still an
associative and commutative division algebra, but the conjugation is not trivial
any longer – it is the usual complex conjugation.

• Going from C to H, we lose the property of commutativity: H is only an asso-
ciative division algebra.
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• Applying the construction to H, we get the octonions O, which are not even
associative any more, but are still a normed division algebra and are alternative
as explained above.

• Continuing to apply the Cayley-Dickson construction, one obtains a 16-dimensional
real algebra called the sedenions. The sedenions have zero divisors, and therefore
cannot have a multiplicative norm. They are by far less important than the other
four division algebras. However, they still satisfy a property called flexibility
which is a very weak form of associativity. Interestingly, if the Cayley-Dickson
construction is applied again, this property is not lost, so there are flexible 2n-
dimensional normed real algebras for every n [Gui97].

The proofs of these statements are rather lengthy, but straightforward. We will
carry them out for the passage from quaternions to octonions, since this is the case
we are most interested in and also the most difficult one, and leave the remaining
cases to the reader.

Proposition 1. O is an alternative normed division algebra.

Proof. For the alternativity, we prove (1) and then use Artin’s theorem to deduce
alternativity. We write x = (a,b) and y = (c,d) with a,b,c,d ∈ H and write out
both sides of the first equation, using the definition of the multiplication displayed
above. Doing the calculation and obvious cancellations, this leaves us to show the
two identities

d∗bc+d∗da+d∗bc∗ = add∗+ c∗d∗b+ cd∗b

and
dac−dd∗b+dac∗ = dca+dc∗a−bdd∗ .

Considering the first equation, note that dd∗ = d∗d = ‖d‖2 is a real number and thus
central, so that d∗da = add∗. The remaining terms can be regrouped as follows:

d∗b(c+ c∗) = (c+ c∗)d∗b .

However, c+c∗ is a real number as well, as can for instance be seen easily from the
Cayley-Dickson construction, so that we have proved the first of the two identities.
The second can be traced back similarly to the facts that dd∗b = bdd∗ and

da(c+ c∗) = d(c+ c∗)a .

We now prove that the octonion norm is multiplicative. This is also not com-
pletely formal, as can be seen from the fact that it is not true for the sedenions. With
notation as above, the equation ‖(a,b)‖2 ‖(c,d)‖2 = ‖(a,b)(c,d)‖2 can be simpli-
fied to

acb∗d +d∗bc∗a∗ = bacb∗+bc∗a∗d∗ . (2)

Following [KS89, p. 48], we consider two cases: If d is real, the equation holds true
trivially. If d is purely imaginary in the sense that d∗ = −d, then the equation is
equivalent to
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d(acb∗+bc∗a∗) = (acb∗+bc∗a∗)d ,

which is true since
acb∗+bc∗a∗ = acb∗+(acb∗)∗

is real. By linearity, (2) is true for all d.
The multiplicativity of the norm at hand directly implies the fact that O is a

division algebra: If xy = 0, then

‖x‖‖y‖= ‖xy‖= 0 ,

so ‖x‖= 0 or ‖y‖= 0 and thus x = 0 or y = 0 since ‖·‖ is a norm. ��
Remark 1. (i) Note that all formulas of the above proof are written without paran-
theses, thus we used secretly that H is associative. This is essential: As mentioned
above, the sedenions, constructed out of the non-associative octonions, are neither
alternative, nor a division algebra (and, consequently, they cannot possess a multi-
plicative norm).

(ii) The book [CS03] gives a geometric argument that the octonions are alterna-
tive, which does not use Artin’s theorem. See Section 6.8, in particular Theorem 2.

3 Construction of OP2

This section discusses a construction of a projective space of dimension 2 over the
octonions (which is very similar to the construction in [Bae02]). Our goal is to get
spaces with similar properties as their analogues over the real and complex numbers
and the quaternions. The naïve ansatz would be to define the n-dimensional octo-
nionic projective space as a quotient of On+1 \ {0}, identifying every vector with
its (octonionic) multiples. However, when one starts calculating, one sees that as-
sociativity is needed for this to be an equivalence relation. Since the octonions are
not associative, we have to be more careful. In fact, the construction given in the
following only works for n ≤ 2 (thanks to the property of alternativity), and we will
see that there are theoretical obstructions to the existence of higher OPn.

One main difference to the other three projective planes is that we don’t construct
OP2 as a quotient of O3 \{0}, but we restrict ourselves to the subset

T =
{
(x,y,z) ∈O3; ‖x‖2 +‖y‖2 +‖z‖2 = 1 and the subalgebra generated

by x,y and z is associative
}
.

We call two triples (x,y,z),(x̃, ỹ, z̃) ∈ T equivalent, (x,y,z)∼ (x̃, ỹ, z̃), if and only
if the six equations

xx∗ = x̃x̃∗, xy∗ = x̃ỹ∗, xz∗ = x̃z̃∗, yy∗ = ỹỹ∗, yz∗ = ỹz̃∗, zz∗ = z̃z̃∗
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hold. (The three remaining relations of a similar form follow from these by the
properties of the conjugation.) It is obvious that this is an equivalence relation, and
thus we can set

OP2 = T/∼ .

3.1 Manifold structure

A first observation is that our space OP2 constructed like this is quasi-compact
since it is the quotient of a quasi-compact space. We will now show that it’s a 16-
dimensional real manifold.

The proof uses the following construction. Let a,b,c be real numbers. Define an
R-linear map

�= �(a,b,c) : O3 −→O , �(x,y,z) = ax+by+ cz .

Note that for two triples (x,y,z) ∼ (x̃, ỹ, z̃) in T , we have �(x,y,z) = 0 if and only
if �(x̃, ỹ, z̃) = 0, since �(x,y,z) vanishes exactly if �(x,y,z)�(x,y,z)∗ vanishes, and
�(x,y,z)�(x,y,z)∗ = �(x̃, ỹ, z̃)�(x̃, ỹ, z̃)∗ by the definition of ∼ and since a,b,c are
real.

Thus we get a well-defined open set

U� =U(a,b,c) = {[x,y,z]; �(x,y,z) 
= 0} ⊂OP2.

Proposition 2. OP2 is a locally Euclidean topological space.

Proof. Suppose that c 
= 0. Consider the maps

ϕ� : U� →O2 , [x,y,z] �→
(

x�∗

‖�‖2 ,
y�∗

‖�‖2

)
,

where �= �(x,y,z). This map is well-defined (the argument given above shows that
‖�‖2 = ��∗ only depends on [x,y,z] and not on (x,y,z); the same argument works for
x�∗ and y�∗) and thus continuous by the universal property of the quotient topology.
An inverse map is given by

ψ� : O2 →U� ,

(x,y) �→
[

x
r
,

y
r
,

1−ax−by
cr

]
, r =

√
‖x‖2 +‖y‖2 +

1
c2 ‖1−ax−by‖2 .

Recall that in the definition of OP2, we only consider triples whose entries lie in an
associative subalgebra of O. Thus this map is only well-defined since O is alterna-
tive, as defined in Section 2. Here we use that for every octonion y, the conjugate y∗
lies in the subalgebra generated by y since it only differs from −y by a real number.
This can directly be seen from the Cayley-Dickson construction.
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Note that equation (1) would not be sufficient at this point, but we use the nontriv-
ial Artin theorem which states that (1) implies alternativity. Moreover, it is exactly
at this point (and in the next paragraph) where our procedure breaks down if we
want to construct higher OPn in the same way.

Checking that ϕ� and ψ� are inverse to each other is a simple calculation. The
reader may amuse herself by reproducing them. Note that we evade associativity of
O by carrying out calculations only with elements lying in an associative subalgebra
of O – by definition of T for the one and by the alternativity of O for the other
direction.

The same obviously works with a or b instead of c, thus for all triples (a,b,c) 
=
(0,0,0). Thus we have covered OP2 by the three chart regions U(1,0,0),U(0,1,0) and
U(0,0,1). ��
Remark 2. (i) It is easy to check that the coordinate changes are smooth, such that
OP2 in fact becomes a smooth manifold.

(ii) The referee raised the question whether OP2 admits the structure of a complex
manifold. Since it is an (n−1)-connected 2n-manifold for n = 8, we may apply the
criterion of [Yan12, Thm. 1], which says that OP2 doesn’t even admit a stable almost
complex structure. Note that HP2 admits a stable almost complex structure, but no
almost complex structure [Yan12, Thm. 1, 2].

Lemma 1. OP2 is Hausdorff.

Proof. Let (x,y,z) and (x′,y′,z′) two elements in T . We have to find (a,b,c) ∈ R3

such that �(a,b,c)(x,y,z) 
= 0 and �(a,b,c)(x′,y′,z′) 
= 0, since then it follows that [x,y,z]
and [x′,y′,z′] both lie in the open subset U(a,b,c) which we already know to be Haus-
dorff.

To find (a,b,c) as above, note that given x, y and z, the set of all solutions to the
equation ax+by+ cz = 0 is a subspace of R3 of dimension at most 2, and the same
is true for the equation ax′+ by′+ cz′ = 0. Since the union of two planes is never
the whole R3, we find a point that fails to satisfy both of these equations. ��
Corollary 1. OP2 is a closed 16-dimensional real manifold. ��

3.2 The projective line OP1

Consider the closed subset of OP2 given by all equivalence classes of the form
[x,y,0] with x,y ∈O. It is immediate from the definitions that this is homeomorphic
to the space

{(x,y) ∈O2;‖x‖2 +‖y‖2 = 1}/∼ ,

where (x,y)∼ (x̃, ỹ) if and and only if the three relations

xx∗ = x̃x̃∗,xy∗ = x̃ỹ∗,yy∗ = ỹỹ∗
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hold. This is of course the analogue of our construction of OP2 in one dimension
lower, so we call the resulting space OP1.

By the same argumentation as in the previous paragraph, OP1 is a closed man-
ifold. Moreover, there is a homeomorphism OP1 ∼= S8. This can be constructed in
the very same way as in the familiar cases over R, C or H (since the map in one
direction involves only one element of O at a time).

3.3 CW structure

The octonionic projective plane has a very simple cell structure with one cell in each
of the dimensions 0, 8 and 16. This cell structure is constructed in exactly the same
way as the analogous structures for RP2, CP2 and HP2.

A little lemma that we will need in the proof of the following statements is the
observation that we can choose a vector space isomorphism O ∼= R8 such that the
norm ‖·‖ becomes the usual Euclidean norm on R8. This follows directly from the
definition of O via the Cayley-Dickson construction, but it can also be deduced
from the formal properties of the conjugation map: 〈x,y〉 = 1

2 (x
∗y+ y∗x) defines a

symmetric, positive definite bilinear form on the vector space O, so we can find an
orthonormal basis by Sylvester’s law of inertia.

To begin with, consider the canonical inclusion

OP1 ↪→OP2, [x,y] �→ [x,y,0] .

By our definition of OP1, this map is a homeomorphism onto its image, which
is closed in OP2. Since OP1 ∼= S8, we can use OP1 as the 8-skeleton in our cell
decomposition. Now consider the map

f : S15 −→OP1, (x,y) �→ [x,y] ,

where we think of S15 as a subset of R16 = R8 ×R8.

Lemma 2. We have OP2 =OP1 ∪ f D16.

Proof. A map from D16 to OP2 coinciding with f on ∂D16 is given by

(x,y) �→
[

x,y,
√

1−‖x‖2 −‖y‖2
]
.

It is easily checked that this map induces a bijective continuous map from OP1 ∪ f
D16 to OP2 which is thus a homeomorphism since OP1∪ f D16 is quasi-compact and
OP2 is Hausdorff. ��
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4 Cohomology of OP2

After having constructed this very simple cell structure for OP2, it is easy to com-
pute the cohomology via the cellular cochain complex:

Corollary 2. Let A be any abelian group. Then

Hk(OP2,A)∼=
{

A , k = 0,8 or 16 ,
0 , else.

The homology groups are computed in exactly the same way and with the same
result.

Similarly, we can compute the homotopy groups of OP2: By cellular approxima-
tion, πn(OP2,∗) = 0 for n ≤ 7 and πn(OP2,∗) = πn(S8) for n ≤ 14.

The following question has been brought to the author’s attention by Jens Rein-
hold.

Question 1. Is there a closed, 8-connected manifold of positive dimension with odd
Euler characteristic?

The octonionic projective plane gives such a manifold which is 7-connected. An
8-connected example would have to have dimension divisible by 32, by a result of
Hoekzema [Hoe18, Thm. 1.2, Cor. 4.2].

4.1 Connection with the Hopf invariant 1 problem

The Hopf invariant is a classical invariant for maps f : S2n−1 → Sn, with n > 1.
It goes back to work of Hopf in the 1930’s. We quickly recall its definition from
[MT08]. Let us consider the mapping cylinder of such a map f . By inspection of
the cellular cochain complex, as in Corollary 2 above, it has cohomology groups in
degree n and 2n which are cyclic with generators τ and σ . These are unique up to
sign, depending on the orientation of the two spheres. The Hopf invariant H( f ) is
defined by the formula

τ2 = H( f ) ·σ .

It is unique up to sign, which only depends on the orientation of S2n−1 since τ
appears squared.

The question in which dimensions there exists a map of Hopf invariant 1 was a
famous open problem in the early days of algebraic topology, until Adams proved
in 1960 that this is only the case for d ∈ {1,2,4,8}. The sought maps for d = 2,4,8
can be constructed as the attaching maps of the top dimensional cell in the projective
planes over the complex numbers, quaternionics and octonionics, and we will now
prove this for the octonionics, by analysing the ring structure on the cohomology of
OP2.
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Theorem 1. The attaching map f : S15 −→ S8 of the 16-cell in OP2 has Hopf in-
variant ±1, the sign depending on the orientation of S15.

Proof. Let τ and σ be generators of H8(OP2,Z) and H16(OP2,Z), respectively.
Since OP2 is the mapping cylinder of f , we just have to show that τ2 = σ (up
to sign) by the definition above. Since we have seen OP2 to be a closed manifold
which is orientable since it is simply-connected, we can profit of Poincaré duality to
do so: Let μ ∈ H16(OP2,Z) be a fundamental class. Using the universal coefficient
theorem as well as Poincaré duality, we get isomorphisms

Hn(OP2,Z)∼= Hom(Hn(OP2,Z),Z)∼= Hom(H16−n(OP2,Z),Z) ,

where the map from the left to the right maps f to the linear map

g �→ 〈 f ,μ ∩g〉= 〈g∪ f ,μ〉 .

Now, Hom(H8(OP2,Z),Z) is isomorphic to Z, generated by the two isomorphisms.
Thus, τ has to be mapped to an isomorphism H8(OP2,Z)−→ Z, which in turn has
to map τ to a generator of Z, so

〈τ2,μ〉=±1 .

Now, setting τ2 = kσ with k ∈ Z, we get

k · 〈σ ,μ〉=±1 ,

so k divides 1, giving k =±1 and thus τ2 = σ . ��
Note that the constructions we have carried out in the last two sections can be

done in a much more general setting: Suppose that A is a normed real algebra A of
dimension d < ∞ with conjugation, which is alternative and has no zero divisors.
Then we can write down the same formulas as above to define a topological space
AP2, prove that it is a manifold and give it a cell structure with one cell in each of
the dimensions 0, d and 2d. The attaching map of the 2d-cell will then be a map
S2d−1 −→ Sd of Hopf invariant 1.

In [EHH+91, Sec. 8.1, 8.2, 9.1], it is shown that the existence of the two extra
structures on A does not have to be claimed on its own: For any real alternative
division algebra, there is a canonical norm and conjugation2.

Summarising, we have argued that the following holds:

Theorem 2. If there exists a real alternative division algebra of dimension d, then
there is a map S2d−1 −→ Sd of Hopf invariant 1.

By Adams’ result, this is only the case for d ∈ {1,2,4,8}. Thus the construction
of the projective plane shows that a real alternative division algebra can only exist

2 As the alert reader may have noticed, we have used exactly one more property of the conjuga-
tion, namely the fact that z∗ always lies in the subalgebra generated by z. However, the canonical
conjugation constructed in [EHH+91] always has this property.
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in dimensions 1,2,4 and 8. Of course, this is still true if the alternativity claim is
dropped, but one needs a different proof for this [Hat09, Sec. 2.3].

4.2 Non-existence of higher octonionic projective spaces

As pointed out above, our construction of the octonionic projective space OP2

doesn’t generalise to higher dimensional projective spaces since we have intensively
used the fact that all calculations are done in associative subalgebras of O. However,
there is also a conceptual reason that there can’t be a space which deserves to be
called OP3 (or OPn for some n ≥ 3) which we will now explain.

We will only claim two properties of our wannabe projective octonionic 3-space:
it should be a closed manifold, and it should have a cell structure with OP2 as the
16-skeleton and only one more 24-cell. It then follows directly that the cohomology
H∗(OP3,Z) is Z in dimensions 0,8,16 and 24 and trivial otherwise.

By a similar argument as for OP2, we also get the ring structure on the cohomol-
ogy:

H∗(OP3,Z)∼= Z[x]/(x4), |x|= 8.

To see this, note that the inclusion of the 16-skeleton induces an isomorphism on
cohomology in degrees smaller than 23 which respects the multiplicative structure,
thus it is sufficient to show that a fourth power of the generator of H8 generates H24.
But this is done in a very similar way as for the octonionic projective plane, using
Poincaré duality.

However, using Steenrod powers modulo 2 and 3, one can show that a space
with cohomology Z[x]/(xm), m > 3, can only exist if x has degree 2 or 4 [Hat02,
Sec. 4.L].

4.3 The story continues

We have used the octonions to construct a map between spheres of Hopf invariant
1. There are other phenomena in the intersection of algebra, topology and geometry
that show deep relations with the octonions. Examples include exotic spheres, Bott
periodicity and exceptional Lie groups (these can be used to see that OP2 is a ho-
mogeneous space, for instance). The article [Bae02] explains these and many more
interesting examples.
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Null-homologous twisting and the algebraic

genus

Duncan McCoy

Abstract The algebraic genus of a knot is an invariant that arises when one consid-
ers upper bounds for the topological slice genus coming from Freedman’s theorem
that Alexander polynomial one knots are topologically slice. This paper develops
null-homologous twisting operations as a tool for studying the algebraic genus and,
consequently, for bounding the topological slice genus above. As applications we
give new upper bounds on the algebraic genera of torus knots and satellite knots.

1 Introduction

In this paper we study the algebraic genus galg(L) of an oriented link L in S3, as
defined by Feller-Lewark [6]. It is a famous theorem of Freedman that a knot K in S3

with Alexander polynomial ΔK = 1 is topologically slice [10]. It was first observed
by Rudolph that this can be used to construct upper bounds on the topological slice
genus of knots even when the Alexander polynomial is non-trivial [15]. If a knot
K has a Seifert surface F containing a subsurface F ′ such that ∂F ′ is a knot with
Alexander polynomial one, then F ′ can be replaced by a locally flat disk in the 4-ball
to show that K cobounds a locally flat surface of genus g(F)−g(F ′). The algebraic
genus can be defined as the optimal upper bound for gtop

4 (L) that can be achieved by
this method:

galg(L) = min
{

g(F)−g(F ′)
∣∣∣∣
F is a Seifert surface for L and F ′ ⊂ F is a subsur-
face such that ∂Σ ′ = K′ is a knot with ΔK′(t) = 1.

}
.

The main utility of the algebraic genus is that it has several equivalent formulations,
including one that depends only on the S-equivalence class of the Seifert form of L
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[6]. These different formulations have made the algebraic genus a valuable tool for
proving results about the topological slice genus [2, 5, 8, 13]. It turns out that, at
least for knots, the algebraic genus has a pleasing topological interpretation as the
minimal possible genus of a compact, locally flatly embedded surface F ⊆ B4 such
that ∂F = K and π1(B4 \F)∼= Z [7].

The purpose of this paper is to explore how the algebraic genus changes under
certain twisting operations. Using these operations, we obtain new upper bounds for
the algebraic genus of satellite knots and torus knots.

Null-homologous twisting

Given an oriented knot or link L in S3 and an integer n, we perform a null-
homologous n-twist by taking an unknotted curve C disjoint from L with lk(C,L)= 0
and performing 1/n-surgery on C. Such a twist can always be performed locally by
adding n full twists on some number of parallel strands with appropriate orienta-
tions. See Figure 1, for example.

It turns out that certain pairs of null-homologous twisting operations change the
algebraic genus by at most one.

Theorem 1.1 If L and L′ are oriented links related by a null-homologous m-twist
and a null-homologous n-twist for m,n ∈ Z such that −mn is a square, then

|galg(L)−galg(L′)| ≤ 1.

Most notably this shows that for any integer n, a single null-homologous n-twist
changes the algebraic genus by at most one. It is also shows that a null-homologous
+1-twist and a null-homologous −1-twist change the algebraic genus by at most
one. This latter observation can be seen as an analogue of the well-known fact that
changing a negative crossing and a positive crossing changes the smooth slice genus
by at most one.

−1

Fig. 1 A negative null-homologous −1-twist on 4 strands.
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For any link one can always find pairs of null-homologous +1- and −1-twists
which decrease the algebraic genus. This leads to the following description of the
algebraic genus.

Theorem 1.2 For any link L, we have

galg(L) = min

⎧
⎨
⎩max{n, p}

∣∣∣∣∣∣

L can be converted to a link L′ with galg(L′) =
0 by p null-homologous +1-twists and n null-
homologous −1-twists.

⎫
⎬
⎭ .

For knots, a stronger formulation of Theorem 1.2 holds. Using the work Borodzik
and Friedl on the Blanchfield form [3, 4], one can show that the null-homologous
twists in Theorem 1.2 can be realized by crossing changes [7].

The condition that −mn be a square turns out to be essential to the proof Theo-
rem 1.1.

Proposition 1.3 For any m,n ∈ Z such that −mn is not a square, there is a knot
K with galg(K) = gtop

4 (K) = 2, which can be unknotted by performing a null-
homologous m-twist and a null-homologous n-twist.

Satellite knots

For satellite knots we prove the following upper bound on the algebraic genus.
This bound was first obtained (using different ideas) by Feller, Miller and Pinzon-
Caicedo [9].

Theorem 1.4 For a satellite knot P(K), we have

galg(P(K))≤ galg(P(U))+galg(K).

One striking feature of Theorem 1.4 is that the upper bound it establishes is inde-
pendent of the winding number of the pattern P. This behaviour should be contrasted
with that of both the classical Seifert genus and the smooth slice genus where depen-
dence on the winding number of the pattern is unavoidable. For example, if one takes
Kn to be the (n,1)-cable of the trefoil, then one can show that g(Kn) = g4(Kn) = n.
However, it follows from Theorem 1.4 that galg(Kn) = gtop

4 (Kn) = 1.
It is natural to wonder whether there is an analogue of Theorem 1.4 for the topo-

logical slice genus. A detailed discussion of this question and related issues can be
found in [9].

Torus knots

Whilst the smooth slice genera of torus knots have now been determined by a
variety of methods, the topological slice genus remains far less well understood.
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Rudolph showed that in general the topological slice genus of a torus knot is strictly
smaller than the classical Seifert genus [15]. Later Baader-Feller-Lewark-Liechti
constructed further upper bounds on the topological slice genus of torus knots,
showing that with the exception of torus knots with |σ(Tp,q)|= 2g4(Tp,q) the topo-
logical slice genus satisfies gtop

4 (Tp,q)≤ 6
7 g4(Tp,q) [1].

Using null-homologous twisting operations we establish the following upper
bound.

Theorem 1.5 For any torus knot or link Tp,q with p,q > 1 we have

gtop
4 (Tp,q)≤ galg(Tp,q)<

pq
3

+ p log2 q+q log2 p.

This bound is particularly effective when p and q are both relatively large. One
can measure the asymptotic difference between the smooth and topological slice
genera of torus knots by considering the following limit:

� := lim
min{p,q}→∞

gtop
4 (Tp,q)

g4(Tp,q)
.

It is known that this limit exists and satisfies the bounds 1
2 ≤ � < 3

4 [1]. Theorem 1.5
provides an improved upper bound for � by showing that �≤ 2

3 .

Structure

In Section 2 we set out the properties of the algebraic genus that will be used
throughout the paper and prove Theorem 1.1. In Section 3, we show that there is
always a null-homologous +1-twist and a −1-twist that can be used to decrease the
algebraic genus. This gives the proof of Theorem 1.2. Then in Section 4 and Sec-
tion 5 contain the results on the algebraic genera of satellite knots and torus knots
respectively. Finally we conclude with Section 6 where we prove Proposition 1.3.

2 Properties of the algebraic genus

In this section we recap some of the necessary properties of the algebraic genus
and prove Theorem 1.1. Throughout this paper, all knots and links will be oriented.
A Seifert surface for a link L is a connected, oriented, embedded surface F ⊆ S3

with ∂F = L. If L has r components, then a genus g Seifert surface has H1(F ;Z)∼=
Z2g+r−1. A Seifert surface comes equipped with its Seifert form θ : H1(F ;Z)×
H1(F ;Z)→ Z. A subgroup H ≤ H1(F ;Z) of rank 2n is said to be Alexander trivial,
if for some (equivalently any) basis, the matrix M representing θ |H has the property
that det(tM − MT ) = tn. We record the following three equivalent definitions of
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the algebraic genus. The equality of all three quantities were essentially proven by
Feller-Lewark, where the third quantity is a variation of their characterization of the
algebraic genus in terms of 3-dimensional cobordism distance [6].

Proposition 2.1 Let L ⊂ S3 be an oriented r-component link. The algebraic genus
can be characterized in the following equivalent ways:

1.

galg(L) = min

⎧
⎨
⎩g(F)−g(F ′)

∣∣∣∣∣∣

F is a Seifert surface for L and F ′ ⊆ F is
a subsurface such that ∂F ′ = K′ is a knot
with ΔK′(t) = 1.

⎫
⎬
⎭

2.

galg(L) = min

⎧
⎪⎨
⎪⎩

m− r+1
2

−n

∣∣∣∣∣∣∣

L has a Seifert form θ : H1(F)×H1(F)→
Z, where H1(F) ∼= Zm and H1(F) con-
tains an Alexander trivial subgroup of
rank 2n.

⎫
⎪⎬
⎪⎭

3.

galg(L) = min
{

n− r+1
2

∣∣∣∣
L can be obtained by n oriented bands
moves on a knot K′ with ΔK′(t) = 1.

}

The following lemma shows the equivalence of the first two definitions. We refer
the reader to [6, Proposition 9] for proof.

Lemma 2.2 Given a link L with a Seifert surface F of genus g and corresponding
Seifert form θ . There is an Alexander trivial subgroup of rank 2n in H1(F ;Z) if and
only if F contains a connected genus n subsurface F ′, where ∂F ′ = K′ is a knot with
ΔK′ = 1. 	

Although it is not known in general which Seifert surfaces for a link realize the
algebraic genus, it turns out that any Seifert surface can be stabilized until it realizes
the algebraic genus. The following is a consequence of the results of [6, Section 2]

Lemma 2.3 Let L be an oriented link with r components and let F be a Seifert
surface for L. Then F can be stabilized to yield a surface F̃ containing a subsurface
F̃ ′ such that ∂ F̃ ′ is a knot with Alexander polynomial one and

galg(L) = g(F̃)−g(F̃ ′).

	

The following lemma shows how the algebraic genus changes under oriented

band moves.

Lemma 2.4 Let L be an r component link and L′ an r+ 1 component link related
by an oriented band move. Then

galg(L′)≤ galg(L)≤ galg(L′)+1.
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Proof. Suppose that L2 is obtained from L1 by an oriented band move, where L1 has
m components and L2 has m±1 components. Choose a connected Seifert surface F
for L1 disjoint from the band B realizing the band move being performed. This is
always possible, since we may choose a diagram for L1 so that the band B appears
as a short planar band between two strands. Applying Seifert’s algorithm to such a
diagram yields a Seifert surface which can be made disjoint from B. Furthermore,
Lemma 2.3 shows that by stabilizing we may assume that F realizes the algebraic
genus. Thus F contains a subsurface F ′ such that ∂F is a knot with Alexander
polynomial one and galg(L1) = g(F)− g(F ′). Take F ′′ to be the Seifert surface for
L2 obtained by attaching the band B to F . Clearly F ′ is still a subsurface of F ′′ so

galg(L2)≤ g(F ′′)−g(F ′).

If L2 has m+ 1 components, then g(F ′′) = g(F). Taking L = L1 and L′ = L2 in
this case shows that galg(L′) ≤ galg(L). If L2 has m− 1 components, then g(F ′′) =
g(F)+1 . Taking L = L2 and L′ = L1 in this case shows that galg(L)≤ galg(L′)+1.
This proves the two required inequalities. 	


With these lemmas in hand we can prove Proposition 2.1

Proof (of Proposition 2.1). The equality of the first two definitions follows from
Lemma 2.2. We prove equality between the first and third definitions. Suppose that a
link L can be obtained from an Alexander polynomial one knot K′ by n oriented band
moves. Suppose that n+ of these band moves increase the number of components
and n− of the moves decrease the number of components. Since n+ + n− = n and
n+−n− = r−1, we see that n− = n−r+1

2 . Thus Lemma 2.4 shows galg(L′)≤ n−r+1
2 .

Conversely, suppose that F is a Seifert surface for L and F ′ a subsurface cobound-
ing an Alexander polynomial one knot K′ realizing the algebraic genus. Consider
the surface Σ = F \ intF ′. The surface Σ can be constructed by starting with K′
and attaching bands. Since g(Σ) = galg(L) = g(F)− g(F ′), the surface Σ can be
constructed by attaching oriented 2galg(L)+ r−1 bands to K′. Thus L can be con-
structed from K′ by 2galg(L)+ r−1 band moves, as required. 	


We conclude the section by proving Theorem 1.1.

Theorem 1.1 If L and L′ are oriented links related by a null-homologous m-twist
and a null-homologous n-twist for m,n ∈ Z such that −mn is a square, then

|galg(L)−galg(L′)| ≤ 1.

Proof. Suppose that L′ is obtained from L by a null-homologous m-twist and a
null-homologous n-twist. That is, L′ is obtained from L by performing 1/m-surgery
and 1/n-surgery on two unknotted curves, say C1 and C2. First we construct a nice
Seifert surface for L. As shown in Figure 2, we can choose a diagram for L such that
Seifert’s algorithm yields a Seifert surface F for L which is disjoint from C1 and C2.
Moreover we can choose a basis H1(F ;Z) such that the classes linking non-trivially
with C1 and C2 can be represented by a collection of disjoint curves forming an un-

152



Null-homologous twisting and the algebraic genus

link. Lemma 2.3 shows that by further stabilizing F we can assume that it realizes
the algebraic genus of L.

C C

. . . . . .

Fig. 2 Choosing a nice surface to twist. The red curves represent the only homology classes in the
basis passing linking with the surgery curve.

Thus with respect to an appropriate ordering of the bases, we can assume that L
and L′ have Seifert matrices M and M′ of the form

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 0
...

...
0 · · · 0

B F1

C

0 · · · 0
...

...
0 · · · 0

F2

F3 F4 F5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and

M′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−m · · · −m
...

...
−m · · · −m

B F1

C

−n · · · −n
...

...
−n · · · −n

F2

F3 F4 F5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

If −mn is a square, then we can assume that m and n take the form m = −ax2 and
n = ay2, for some integers x,y and a. By stabilizing M′ we obtain a new Seifert
matrix M′′ for L′:
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M′′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ax2 · · · ax2

...
...

ax2 · · · ax2

B F1

−ax
...

−ax

0
...
0

C

−ay2 · · · −ay2

...
...

−ay2 · · · −ay2

F2

0
...
0

0
...
0

F3 F4 F5

0
...
0

0
...
0

0 · · · 0 0 · · · 0 0 · · · 0 0 1
0 · · · 0 0 · · · 0 0 · · · 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Consider the following matrix identity:
⎛
⎜⎜⎝

1 0 x 0
0 1 y ay
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

A+ax2 B −ax 0
C D−ay2 0 0
0 0 0 1
0 0 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
x y 1 0
0 ay 0 1

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

A B −ax x
C D 0 y
0 ay 0 1
0 0 0 0

⎞
⎟⎟⎠ . (1)

By replacing the entries of the matrices in (1) by identity matrices and block matri-
ces of the appropriate size, we see that there is an invertible matrix P such that

PT M′′P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 0
...

...
0 · · · 0

B F1

−ax
...

−ax

x
...
x

C

0 · · · 0
...

...
0 · · · 0

F2

0
...
0

y
...
y

F3 F4 F5

0
...
0

0
...
0

0 · · · 0 ay · · · ay 0 · · · 0 0 1
0 · · · 0 0 · · · 0 0 · · · 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Since the upper left submatrix of PT M′′P is precisely M, this shows that L′ has a
Seifert matrix obtained by adjoining two additional rows and columns to M. Since
we started with a surface F realizing the algebraic genus, it follows that

galg(L′)≤ galg(L)+1. (2)

Since L′ can be obtained from L by a null-homologous −m-twist and a null-
homologous −n-twist, we can reverse the roles of L and L′ in (2). This gives the
desired result:

|galg(L)−galg(L′)| ≤ 1.
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3 Decreasing the algebraic genus

Theorem 1.1 accounts for half of Theorem 1.2. In order to complete the proof we
need to show that there are always pairs of null-homologous twisting operations that
decrease the algebraic genus. This can be done by adapting the argument used by
Livingston to prove that any knot can be converted to the unknot using at most 2g
null-homologous twists [14].

Proposition 3.1 Given a link L with galg(L)> 0, then L can be obtained from a link
L′ with galg(L′) = galg(L)−1 by a null-homologous +1-twist and a null-homologous
−1-twist.

bands of F ′
︷ ︸︸ ︷

. . .

r−1 bands︷ ︸︸ ︷

. . .

︸ ︷︷ ︸
2galg −2 bands

. . .
α β

a b

Fig. 3 Arranging the handles of the surface F . The gaps in the bands indicate that they may be
knotted, linked together and twisted.

Proof. Suppose that L has r components. Consider a Seifert surface for F for L
which realizes the algebraic genus. This contains a connected subsurface F ′ with
∂F ′ a knot with Alexander polynomial one and galg(L) = g(F)− g(F ′). We may
view F as obtained by attaching 2galg + r−1 handles to F ′. So if we present F ′ as a
surface obtained by attaching 2g(F) bands to a disk, then we can present F as being
obtained by attaching 2galg(L)+ r− 1 further handles to this disk. Furthermore by
performing handle slides, we can assume that the bands are grouped together into
three groups: the g(F ′) pairs of bands comprising F ′, the r−1 bands increasing the
number of components and the galg pairs of bands contributing to the algebraic genus
of L. This is illustrating in Figure 3. Let a and b be a pair of handles contributing non-
trivially to galg(L). Let α and β be curves running over the cores of these handles as
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shown in Figure 3. Let F ′′ be the surface obtained by deleting the handles a and b
from F and take L′ to be the boundary of F ′′. The existence of the surface F ′′ shows
that galg(L′)≤ galg(L)−1. However L is obtained from L′ by a pair of oriented band
moves, so Lemma 2.4 shows that galg(L′) = galg(L)−1.

The aim is to find a pair of null-homologous twists which will transform L′ into L.
We will produce these twists by taking a surgery presentation for L and manipulating
it until we find a surgery presentation for L which is a diagram for L′ with the
addition of two appropriately framed surgery curves.

By definition the framing of the curve α is given by θ(α,α), where θ is the
Seifert form of F . We may assume that α has odd framing. If β has odd framing,
then we can simply use b in place of a. If both α and β have even framing, then we
can change our handle decomposition of F by sliding a over b. After such a slide
the curve α ′ running over a has the homology class of α +β . This curve has odd
framing, since

θ(α +β ,α +β ) = θ(α,α)+θ(β ,α)+θ(α,β )+θ(β ,β )
≡ θ(β ,α)−θ(α,β )≡ 1 mod 2,

where we have used that the anti-symmetrization of the Seifert form is the intersec-
tion form of H1(F ;Z) in the second line.

2n−1 2n

a a

0+1
0

+1

Fig. 4 Sliding the band a over the +1-framed component.

Now we produce our surgery diagram. Introduce a Hopf link to S3 with one com-
ponent 0-framed and the other +1-framed. This provides a surgery presentation for
S3. Slide the band a over the +1-framed curve. After this slide, the 0-framed curve
forms a meridian of a and the framing of the core curve α becomes an even integer.
Since the 0-framed curve forms a meridian of a, we can slide other bands over it to
effect “crossing changes” between a and other bands in the handle decomposition
of F and also to pass the band a through itself. Thus after some sequence of such
moves we can assume that the curve α is unknotted and the band a lies entirely
above the band b and is unlinked from all other bands. Moreover notice that sliding
a over the 0-framed curve changes the framing of α by ±2 and that sliding any
other band over a does not change the framing of α . Thus the framing on α is still
an even integer and moreover by performing further slides we can assume that α
has framing 0. So by performing a sequence of isotopies and handle slides, we can
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obtain a surface F ′ where a appears as in Figure 5 but F ′ is otherwise identical to
F . Notice that the link ∂F ′ is isotopic to L′, the link bounding the surface F ′′.

ab

Fig. 5 The band a after simplification.

Now slide the 0-framed component of the Hopf link over the +1-framed compo-
nent so that it becomes a two component unlink with a +1-framed component and
a −1-framed component. Thus we have a surgery description showing that L can be
obtained from L′ by perfoming a null-homologous +1-twist and a null-homologous
−1-twist as required. 	


a a0 +1 −1

+1

Fig. 6 Sliding the 0-framed component over the +1-framed component.

Thus we can prove Theorem 1.2.

Theorem 1.2 For any link L, we have

galg(L) = min

⎧
⎨
⎩max{n, p}

∣∣∣∣∣∣

L can be converted to a link L′ with galg(L′) =
0 by p null-homologous +1-twists and n null-
homologous −1-twists.

⎫
⎬
⎭ .

Proof. Theorem 1.1 shows that if L is obtained from L′ with galg(L′) = 0 by p null-
homologous +1-twists and n null-homologous −1-twists, then galg(L)≤max{n, p}.
On the other hand, applying Proposition 3.1 repeatedly shows that L can be con-
verted into a link L′ with galg(L′) = 0, by galg(L) pairs of null-homologous +1-twists
and −1-twists. 	
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4 Satellite knots

In this section we prove Theorem 1.4. First we note that null-homologous twisting
is preserved under satellite operations.

Lemma 4.1 Let K and K′ be knots related by a null-homologous n-twist, then for
any pattern P ⊆ S1 ×D2, the satellite knots P(K) and P(K′) are related by a null-
homologous n-twist.

Proof. Let XP denote the complement XP = S1×D2\νP which comes with a merid-
ian μ and distinguished longitude λ in ∂ (S1×D2). The knot complement S3\νP(K)
is obtained by gluing XP to S3 \νK so that μ and λ are glued to the meridian and
null-homologous longitude of K respectively. The complement S3 \νP(K′) is con-
structed similarly by gluing XP to S3 \νK′.

Since K and K′ are related by a null-homologous n-twist there is a null-homologous
curve C ⊂ S3 \νK such that performing 1/n surgery on C yields S3 \νK′. Since C
is null-homologous in S3 \νK, surgering C takes the meridian and null-homologous
longitude of S3 \ νK to the meridian and null-homologous longitude of S3 \ νK′.
Thus if we consider C as a curve in S3 \ νP(K) = S3 \ νK ∪XP, we see that 1/n
surgery on C will produce S3 \ νP(K′). Since C is null-homologous in S3 \ νK
it is null-homologous in S3 \ νP(K), thus P(K) and P(K′) are related by a null-
homologous n-twist. 	

Lemma 4.2 Let K′ be a knot with ΔK′(t) = 1, then for any pattern P, we have
galg(P(K′)) = galg(P(U)).

Proof. We refer the reader to [12, Proof of Theorem 6.15]. In this proof, Lickorish

constructs a Seifert matrix for P(K′) of the form
(

M 0
0 X

)
where M is a Seifert

matrix for P(U) and X is a matrix satisfying det(tX −XT ) = ΔK′(tw), where w is
the winding number of P. Since ΔK′(t) = 1, this shows that P(K′) and P(U) are
S-equivalent, and hence have the same algebraic genus. 	

Theorem 1.4 For a satellite knot P(K), we have

galg(P(K))≤ galg(P(U))+galg(K).

Proof. By Proposition 3.1, K can be converted into a knot K′ with Alexander poly-
nomial one by a sequence of at most galg(K) pairs of null-homologus +1-twists
and −1-twists. By Lemma 4.1 this shows that P(K) can be converted to P(K′) by a
similar sequence of twists. Thus we have

galg(P(K))≤ galg(K)+galg(P(K′)).

By Lemma 4.2 we have galg(P(K′)) = galg(P(U)) so this is the desired bound. 	
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5 Torus knots

We now gather the ingredients to prove Theorem 1.5.

Lemma 5.1 For any a,b ≥ 1, we have

galg(T2a,2b)<
2a+b

3
.

Proof. We will show that T2a,2b can be converted to the unlink using at most 2a+b

3
null-homologous twists. By Theorem 1.1, this shows that

galg(T2a,2b)≤
⌊

2a+b

3

⌋
<

2a+b

3
,

where the strict inequality follows from the fact that 2a+b

3 is not an integer. Given a
full twist on 2k+1 strands oriented so that all crossings are positive, we can perform
a null-homologous −1-twist to produce two parallel sets of 2k strands each with two
positive full twists. This is depicted in Figure 7. Thus if we let Tk denote the number
null-homologous twisting moves required to undo a full twist on 2k strands we see
that Tk satisfies the recursive bound Tk+1 ≤ 1+ 4Tk. Note that T1 = 1 since a full
twist on two strands can be undone by a single crossing change. Now the solution
to the recursion relation ck+1 = 1+4ck with c1 = 1 is ck =

4k−1
3 . Thus we see that

Tk ≤ 4k−1
3 for all k.

Without loss of generality suppose that 2a ≤ 2b. The link T2a,2b can be viewed as
2b−a full twists on 2a strands. Thus T2a,2b can be converted into the unlink T2a,0 by
removing 2b−a positive full twists on 2a strands. Thus

galg(T2a,2b)≤ 2b−a × 4a −1
3

<
2a+b

3
.

	

Lemma 5.2 For any a,b,c ≥ 1,

galg(Ta,b+c)≤ galg(Ta,b)+galg(Ta,c)+a.

Proof. Observe that Ta,b+c can be converted into the split link Ta,b
Ta,c by perform-
ing a oriented crossing resolutions: if one considers Ta,b+c as the closure of the braid
word (σ1 · · ·σb+c−1)

a, then these resolutions corresponding to deleting all instances
of σb from this braid word. Thus Ta,b+c can be obtained from the split link Ta,b
Ta,c
by a oriented band moves. Thus, Lemma 2.4 implies that

galg(Ta,b+c)≤ galg(Ta,b)+galg(Ta,c)+a,

as required. 	
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−1

︸ ︷︷ ︸
2k strands

︸ ︷︷ ︸
2k strands

︸ ︷︷ ︸
2k strands

︸ ︷︷ ︸
2k strands

+1 +1 +1 +1

+1 +1

Fig. 7 Converting a full twist on 2k+1 strands into four full twists on 2k strands with a single
null-homologous twist. Each box contains a full twist.

Combining the bounds from Lemma 5.1 and Lemma 5.2 yields Theorem 1.5.

Theorem 1.5 For any torus knot or link Tp,q with p,q > 1 we have

gtop
4 (Tp,q)≤ galg(Tp,q)<

pq
3

+ p log2 q+q log2 p.

Proof. Suppose that p and q are represented in binary as ∑k
i=0 2ai = q and p =

∑l
j=0 2b j , i.e. so that when represented in binary q has k+ 1 non-zero digits and p

has l +1 non-zero digits when represented in binary. Notice that we have

k ≤ log2 q and l ≤ log2 p. (3)

For any given any i and j, Lemma 5.1 shows that the algebraic genus of the link
Li, j := T

2b j ,2ai
satisfies

galg(Li, j)<
2ai+b j

3
.

By applying Lemma 5.2 to L0, j, . . . ,Lk, j, we see that T
q,2b j satisfies

galg(Tq,2b j )< 2b j k+
k

∑
i=0

(
2ai+b j

3

)

= 2b j
k+

2b j q
3

.

So by applying Lemma 5.2 to Tq,2b0 , . . . ,Tq,2bl , we see that Tp,q satisfies
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galg(Tp,q)< lq+
l

∑
j=0

(
2b j q

3
+2b j k

)

=
pq
3

+ql + pk.

By (3), this shows that

galg(Tp,q)<
pq
3

+ p log2 q+q log2 p,

as required. 	


6 Anisotropic Seifert forms

In this section we prove Proposition 1.3 which shows that shows that most pairs of
null-homologous twisting operations can change the algebraic genus and the topo-
logical slice genus by two. Recall that a quadratic form q : Zn → Z is isotropic if
there is v �= 0 such that q(v) = 0 and anisotropic otherwise.

Lemma 6.1 Let K be a knot with a Seifert surface F and associated Seifert form
θ . If gtop

4 (K)< g(F), then the quadratic form on H1(F ;Z) defined by v �→ θ(v,v) is
isotropic.

Proof. Given a knot with a genus g Seifert surface F and Seifert form θ : Z2g ×
Z2g → Z, Taylor defines a knot invariant [16]:

t(K) := g−a(θ),

where a(θ) is the rank of a maximal isotropic subgroup of Z2g (i.e. the maximal
rank of a subgroup on which θ is identically 0). As discussed in [11, Section 2], this
invariant is known to be a lower bound for the topological slice genus. In particular,
we have a(θ) ≥ g(F)− gtop

4 (K). Thus if gtop
4 (K) < g(F), then θ has a non-trivial

isotropic subgroup, as required. 	

In order to apply Lemma 6.1 we will need to show certain forms are anisotropic.

This requires some elementary number theory. For a prime p, we use
(

n
p

)
to denote

the Legendre symbol of n modulo p.

Lemma 6.2 Let p be an odd prime and let a,b,M,N be positive integers coprime
to p. The quadratic form

q(x1,x2,x3,x4) = ax2
1 −bx2

2 + p(Mx2
3 +Nx2

4)

is anisotropic if
(

ab
p

)
=−1.
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Proof. We will show that if q is isotropic, then
(

ab
p

)
= 1. If q is isotropic, then there

are integers y1,y2,y3,y4 such that gcd(y1,y2,y3,y4) = 1 and

ay2
2 −by2

1 = p(My2
3 +Ny2

4). (4)

Since p divides the right hand side, we see that y1 and y2 provide a solution to the
equation aX2 ≡ bY 2 mod p. Moreover, this is a non-trivial solution, that is y1,y2 �≡
0 mod p. Assume for sake of contradiction that y1 ≡ y2 ≡ 0 mod p. If both sides of
(4) are non-zero, then the largest power of p dividing the left hand side is even, but
the largest power of p dividing the right hand side is odd. Thus both sides of (4) must
be zero. This implies that y3 = y4 = 0, which would imply that gcd(y1, . . . ,y4)≥ p>
1. Thus we must have y1,y2 �≡ 0 mod p.

Since the quadratic residues form an index two subgroup in (Z/pZ)×, the equa-
tion aX2 ≡ bY 2 mod p has a non-trivial solution if and only if both a and b are
quadratic residues or both a and b are quadratic non-residues modulo p. In either
case, this implies that if aX2 ≡ bY 2 mod p has a non-trivial solution, then

(
ab
p

)
= 1,

as required. 	

Lemma 6.3 For any integer n > 0 which is not a square, there is an odd prime p
such that (

n
p

)
=−1.

Proof. This is a standard application of quadratic reciprocity and Dirichlet’s the-
orem on primes in arithmetic progressions. Suppose that n has prime factoriza-
tion n = pa1

1 . . . pak
k . Since n is not a square, at least one of the ai is odd. Without

loss of generality assume that a1 is odd. Suppose first that p1 is an odd prime.
By the Chinese remainder theorem and Dirichlet’s theorem on primes in arithmetic
progressions, we can choose a prime p satisfying the congruences p ≡ 1 mod 4,
p ≡ 1 mod pi for i > 1 and p ≡ q mod p1, where q satisfies

(
q
p1

)
=−1. It follows

from quadratic reciprocity that such a p satisfies
(

n
p

)
=−1.

If p1 = 2, then we choose p to be a prime satisfying p ≡ 5 mod 8 and p ≡ 1 mod
pi for all i > 1. Using quadratic reciprocity and the fact that

(
2
p

)
= −1 for p ≡

5 mod 8, we see that such a p satisfies
(

n
p

)
=−1. 	


Proposition 1.3 For any m,n ∈ Z such that −mn is not a square, there is a knot
K with galg(K) = gtop

4 (K) = 2, which can be unknotted by performing a null-
homologous m-twist and a null-homologous n-twist.

Proof. For integers a,b,c,d let K = K(a,b,c,d) be the knot as shown in Figure 8.
With respect to the Seifert surface and basis shown in Figure 9, this has Seifert
matrix

M =

⎛
⎜⎜⎝

a 0 1 0
0 b 0 1
0 0 c 0
0 0 0 d

⎞
⎟⎟⎠ . (5)
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a twists︷ ︸︸ ︷ b twists︷ ︸︸ ︷

︸ ︷︷ ︸
c twists

︸ ︷︷ ︸
d twists

. . .

. . .. . .

. . .

Fig. 8 The knot K(a,b,c,d).

α1 α2

α3 α4

. . .

. . .. . .

. . .

Fig. 9 A Seifert surface for K(a,b,c,d).

Notice that for any c and d the knot K(0,0,c,d) is the unknot. Thus we see that
K = K(a,b,c,d) can be unknotted by performing a null-homologous a-twist and a
null-homologous b-twist. The aim is to show that for any a,b such that −ab is not
a square, then we can find c and d such that gtop

4 (K(a,b,c,d)) = 2. Without loss of
generality, assume that a > 0. First suppose that we also have b > 0. In this case,
one can easily see from (5) that σ(K(a,b,c,d)) = 4 for any c > 0 and d > 0.

Thus it suffices to consider the case where a > 0 and b < 0. By Lemma 6.1 it
suffices to find c,d ensuring that the Seifert form is anisotropic. That is we need to
show that the quadratic form

q(x1,x2,x3,x4) = ax2
1 + x1x3 + cx2

3 −|b|x2
2 + x2x4 + cx2

4 (6)

is not always isotropic. This can be diagonalized over Q as
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q(x1,x2,x3,x4) = a
(

x1 +
x3

2a

)2
+a(4ac−1)

( x3

2a

)2

−|b|
(

x2 − x4

2|b|
)2

+ |b|(4|b|d +1)
(

x4

2|b|
)2

.

Since a quadratic form is isotropic over Z if and only if it is isotropic over Q. It
suffices to show that the form

q̃(x1,x2,x3,x4) = ax2
1 −|b|x2

2 +a(4ac−1)x2
3 + |b|(4|b|d +1)x2

4

is anisotropic for some choice of c and d. Since we are assuming that −ab is not a
square, then Lemma 6.3 shows there is an odd prime p with

(
a|b|

p

)
= −1. Since p

is coprime to a and b, we can find c and d such that p divides both (4ac− 1) and
(4|b|d+1) but p2 does not divide either (4ac−1) or (4|b|d+1). Lemma 6.2 shows
that for such c and d the Seifert form is anisotropic and hence gtop

4 (K(a,b,c,d)) = 2,
as required. 	
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A slicing obstruction from the 10/8+4 theorem

Linh Truong

Abstract Using the 10/8+ 4 theorem of Hopkins, Lin, Shi, and Xu, we derive a
smooth slicing obstruction for knots in the three-sphere using a spin 4-manifold
whose boundary is 0–surgery on a knot. This improves upon the slicing obstruction
bound by Vafaee and Donald that relies on Furuta’s 10/8 theorem. We give an ex-
ample where our obstruction is able to detect the smooth non-sliceness of a knot by
using a spin 4-manifold for which the Donald-Vafaee slice obstruction fails.

1 Introduction

A knot in the three–sphere is smoothly slice if it bounds a disk that is smoothly em-
bedded in the four–ball. Classical obstructions to sliceness include the Fox–Milnor
condition [3] on the Alexander polynomial, the Z2–valued Arf invariant [14], and
the Levine–Tristram signature [8, 15]. Furthermore, modern Floer homologies and
Khovanov homology produce powerful sliceness obstructions. Heegaard Floer con-
cordance invariants include τ of Ozsváth–Szabó [10], the {−1,0,+1}–valued in-
variant ε of Hom [6], the piecewise–linear function ϒ (t) [11], the involutive Hee-
gaard Floer homology concordance invariantsV0 andV0 [5], as well as φi homomor-
phisms of [1]. Rasmussen [13] defined the s–invariant using Khovanov–Lee homol-
ogy, and Piccirillo recently used the s–invariant to show that the Conway knot is not
slice [12].

We study an obstruction to sliceness derived from handlebody theory. We call
a four-manifold a two-handlebody if it can be obtained by attaching two-handles
to a four-ball. In [2] Donald and Vafaee used Furuta’s 10/8 theorem [4] to obtain
a slicing obstruction. This obstruction is able to detect nontrivial torsion elements
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in the concordance group as well as find topologically slice knots which are not
smoothly slice.

We apply the recent 10/8+ 4 theorem of Hopkins, Lin, Shi, and Xu [7], which
improves on Furuta’s inequality, to improve the Donald–Vafaee slicing obstruction.

Theorem 1. Let K ⊂ S3 be a smoothly slice knot and X be a spin two-handlebody
with ∂X ∼= S30(X). If b2(X) �= 1, 3, or 23, then

b2(X)≥ 10
8
|σ(X)|+5.

We will give an example in Proposition 1 of a knot K and a spin two-handlebody
with boundary S30(K) where our obstruction detects the non-sliceness of K and the
Donald-Vafaee slice obstruction fails using this spin 2-handlebody.

2 The slicing obstruction

In [2] Donald and Vafaee used Furuta’s 10/8 theorem to obtain a slicing obstruction.

Theorem 2 ([2]). Let K ⊂ S3 be a smoothly slice knot and X be a spin 2-handlebody
with ∂X ∼= S30(X). Then either b2(X) = 1 or

4b2(X)≥ 5|σ(X)|+12

Recently, Hopkins, Lin, Shi, and Xu have improved Furuta’s theorem with the
following 10/8+4 theorem.

Theorem 3 ([7]). Any closed simply connected smooth spin 4-manifold M that is
not homeomorphic to S4, S2×S2, or K3 must satisfy the inequality

b2(M)≥ 10
8
|σ(M)|+4.

Using the above theorem, we prove Theorem 1.

Proof (Proof of Theorem 1). The proof is identical to the proof of [2, Theorem 1.1],
except one applies the 10/8+4 theorem of [7] instead of Furuta’s 10/8 theorem.

If K is smoothly slice, then S30(K) embeds smoothly in S4 (see for example [9,
Theorem 1.8]). The embedding splits S4 into two spin 4-manifolds U and V with a
common boundary S30(K). Since S30(K) has the same integral homology as S1×S2,
the Mayer-Vietoris sequence shows that U and V have the same integral homology
as S2×D2 and S1×D3, respectively.

Let X be a spin 2-handlebody with ∂X ∼= ∂V ∼= S30(K) (where ∼= denotes
orientation-preserving diffeomorphism), and let W = X ∪S30(K) −V 4. We restrict

the spin structure on X to the boundary S30(K) and extend this spin structure on
S30(K) over the manifold V . Then W is spin since the spin structures of X and
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V agree on the boundary and spin structures behave well with respect to gluing.
By Novikov additivity, W has signature σ(W ) = σ(X) +σ(V ). Since σ(V ) = 0,
we have σ(W ) = σ(X). As in [2] we will show that b2(W ) = b2(X)− 1. The Eu-
ler characteristic satisfies χ(W ) = χ(X) = 1+ b2(X), where the first equality uses
χ(V ) = χ(S30(K)) = 0 and the second equality holds since X is a 2-handlebody.
Since H1(W,X ;Q) ∼= H1(V,Y ;Q) = 0, it follows from the exact sequence for the
pair (W,X) that b1(W ) = b3(W ) = 0. Therefore, b2(W ) = b2(X)−1.

If b2(X) �= 1, 3, or 23, then W cannot be homeomorphic to S4, S2× S2, or K3.
The result follows by applying the Hopkins, Lin, Shi, and Xu theorem [7]. ��
Remark 1. This improves upon the slicing obstruction by Donald and Vafaee (under
some restrictions on the second Betti number of the spin 2-handlebody).

We give an example of a knot and a spin 4-manifold where one can apply our
obstruction. Let K′ be a knot that is the closure of the braid word

K′ = (σ12σ11 · · ·σ1)
12(σ7σ8 · · ·σ12)

−7(σ1σ2 · · ·σ10)
−11b,

where
b = (σ3σ2σ1)(σ4σ3σ2)(σ2σ1)(σ3σ2)(σ1)

−2(σ3σ4)
−1σ−2

5 .

See Figure 1. The knot K′ is presented as a generalized twisted torus knot. It is
the closure of a braid formed by taking a (13,12) torus knot and then adding one
negative full twist on seven strands, one negative full twist on eleven strands, and
the braid b. As noted in [2] the obstruction from Theorem 1 is generally easier to
apply to knots like this because they can be unknotted efficiently by blowing up to
remove full twists.

Proposition 1. The knot K′ is not smoothly slice.

Proof. Add a 0-framed 2-handle to ∂D4 along K′ and blow up three times as fol-
lows. Blow up once negatively across thirteen strands on the top, then blow up pos-
itively across seven and eleven strands indicated by the two boxes labeled with −1
in Figure 1. This gives a manifold with second Betti number 4 and signature 1. The
characteristic link has one component, with framing−132+72+112 = 1. Four Rei-
demeister I moves immediately show that this knot is isotopic to the knot in Figure
5 of [2], which in turn is isotopic to the figure eight knot.

At this point, we follow the procedure that Donald and Vafaee use to show that the
figure eight knot is not slice. They apply a sequence of blow-ups, blow-downs, and
handleslides until the characteristic link is empty and then apply their slice obstruc-
tion. Starting with the 1-framed figure eight knot, the same sequence of blow-ups,
blow-downs, and handleslides can be applied until the characteristic link is empty.

This procedure is shown in Figure 2 and detailed below.

1. First blow up negatively twice as indicated in Figure 2(B). This gives b2 = 6 and
σ =−1.

2. Slide one of the two blow up curves over the other, resulting in Figure 2(C).
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(σ12σ11 · · ·σ1)
12

−1

−1
b

Fig. 1 The knot K′ is a generalized twisted torus knot obtained from the torus knot T13,12 by adding
one negative full twist around seven adjacent strands, one negative full twist around eleven adjacent
strands, and the braid b.

3. Figure 2(D) shows just the characteristic link, a split link whose components are
a 1-framed trefoil and a −2-framed unknot. Blowing up negatively once around
the three strands of the trefoil changes the characteristic link to a two-component
unlink with framings−8 and−2 as in Figure 2(E). This is inside a four-manifold
with σ =−2 and second Betti number b2 = 7.

4. Positively blowing up the meridians eight times changes both framings in the
characteristic link to −1 and gives b2 = 15 and σ = 6.

5. Blow down negatively twice, resulting in an empty characteristic link.

The result is a spin 4-manifold X with boundary S30(K
′)with b2(X)= 13 and σ(X)=

8. Thus, Theorem 1 concludes that K′ is not smoothly slice. ��
We observe that with the spin two-handlebody in the above proof, the Donald-

Vafaee slice obstruction fails to detect the smooth non-sliceness of K′.
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1

(a) The figure
eight knot.

1

−1

−1

(b) Blow up nega-
tively twice.

1

−1

−2

(c) Perform a
handleslide.

1

−2

(d) The charac-
teristic sublink.

−8

−2

(e) Blow up the
trefoil once.

Fig. 2 A sequence of blow-ups and handleslides that shows S30(K
′) bounds a spin manifold with

b2 = 13 and σ = 8. These diagrams come from the figure eight example in [2] with different
framing coefficients.
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Chapter 2

Ergodic Theory, Diophantine

Approximation and Related Topics



A generalised multidimensional

Jarnı́k-Besicovitch theorem

Mumtaz Hussain

Abstract In this short note we prove a general multidimensional Jarnı́k-Besicovitch
theorem which gives the Hausdorff dimension of simultaneously approximable set
of points with error of approximations dependent on continuous functions in all di-
mensions. Consequently, the Hausdorff dimension of the set varies along continuous
functions. This resolves a problem posed by Barral-Seuret (2011).

1 Localised Jarnı́k-Besicovitch theorem

The Jarnı́k-Besicovitch set is of foundational nature in the theory of metric Dio-
phantine approximation;

W (τ) :=
{

x ∈ [0,1) :
∣∣∣∣x−

p
q

∣∣∣∣<
1
qτ for infinitely many (p,q) ∈ Z×N

}
.

It has been generalised in various directions such as replacing the error of approx-
imation by an arbitrary function tending to zero and hence studying the associated
metrical theory has received much attention over the years. We refer the reader to
[2] for a survey of metric theory of Diophantine approximation. Staying within the
scope of Jarnı́k-Besicovtich set, for any x ∈ [0,1), let us define the approximation
order of x to be

δ (x) = sup{τ : x ∈W (τ)}.
From the asymptotic form of Dirichlet’s theorem (1842), it follows that δ (x)≥ 2

for all irrational numbers x. For any τ ≥ 2, the classical Jarnı́k-Besicovitch theorem
(1928, 1934) states that
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dimH {x ∈ [0,1) : δ (x)≥ τ}= dimH {x ∈ [0,1) : δ (x) = τ}= 2
τ
.

Here and throughout, dimH (X), denotes the Hausdorff dimension of a set X . For
any s ∈ R+, H s denotes the s-dimensional Hausdorff measure of X . In the case
s = d, the s-dimensional Hausdorff measure is comparable with the d-dimensional
Lebesgue measure. Finally, B(x,r) denotes a ball centred at x and of radius r.

In [1], Barral-Seuret investigated the structure of the set of points with their ap-
proximation order varying along a continuous function τ(x) ≥ 2. They called the
corresponding set as the localised Jarnı́k-Besicovitch set

Wloc(τ(x)) := {x ∈ [0,1) : δ (x) = τ(x)} .

They proved that the Hausdorff dimension of the set Wloc(τ(x)) to be

2
min{τ(x) : x ∈ R} .

Roughly speaking this result gives the size of the set of real numbers with a
prescribed order of approximation. For example, for real numbers 0 < a < b < 1, it
gives

dimH {x ∈ [a,b] : δ (x) = 2(1+ x)}= 1
1+a

.

The result of Barral-Seuret was further generalised to the settings of continued frac-
tions by Wang-Wu-Xu in [8].

In the higher dimensions the analogue of Jarnı́k-Besicovitch set has been well
studied specifically by Rynne in a sequence of papers in the 90’s. To state the most
relevant result, we introduce a little notation first. Let τ = (τ1, . . . ,τd) be a vector of
strictly positive numbers and let Wd(τ) denote the set of all x ∈ [0,1)d for which the
system of inequalities

|qxi − pi|< q−τi , 1 ≤ i ≤ d,

are satisfied for infinitely many (p1, . . . , pd ,q) ∈ Zd ×N. The Hausdorff dimension
of this set was determined by Rynne [5].

Theorem 1 (Rynne, 1998). Let 1
d ≤ τ1 ≤ τ2 . . .≤ τd. Then

dimH Wd(τ) = min
1≤ j≤d

{
1+d + jτ j −∑ j

i=1 τi)

1+ τ j

}
.

In this paper, we replace the constant vector τ in the set Wd(τ) with the function

τ(x) := {(τ1(x1), . . . ,τd(xd)) : x1, . . . ,xd ∈ [0,1]} ,
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where every function τi(xi) is a continuous function on [0,1]. To be precise, let
Wd(τ(x)) denote the set of all x ∈ [0,1)d for which the system of inequalities

|qxi − pi|< q−τi(xi), 1 ≤ i ≤ d,

are satisfied for infinitely many (p1, . . . , pd ,q)∈Zd ×N. We calculate the Hausdorff
dimension of this set and, thus, answer a question [1, §6] raised by Barral-Seuret of
extending their one dimensional result to higher dimensions.

Theorem 2. Let

1
d
≤ min

x1∈[0,1]
τ1(x1)≤ min

x2∈[0,1]
τ2(x2)≤ ·· · ≤ min

xd∈[0,1]
τd(xd).

Then

dimH Wd(τ(x)) = min
1≤ j≤d

⎧
⎪⎨
⎪⎩

d +1+ j min
x j∈[0,1]

τ j(x j)−∑ j
i=1 j min

xi∈[0,1]
τi(xi)

1+ min
x j∈[0,1]

τ j(x j)

⎫
⎪⎬
⎪⎭
.

2 Proof

2.1 The upper bound

The upper bound relies on the natural covering of the set Wd(τ(x)). Here we prove
for d = 2 for clarity by showing that the s-dimensional Hausdorff measure of this
set is zero whenever s > dimH W2(τ(x)). The general case d > 2 follows similarly.

W2(τ(x)) =

{
(x1,x2) ∈ [0,1]2 :

|qx1 − p1|< q−τ1(x1), |qx2 − p2|< q−τ2(x2)

for infinitely many (p1, p2,q) ∈ Z2 ×N

}

⊆
∞⋃

q=N

⋃

p1,p2≤q

{
(x1,x2) ∈ [0,1]2 : |qx1 − p1|< q−τ1(x1), |qx2 − p2|< q−τ2(x2)

}

=
∞⋃

q=N

⋃

p1,p2≤q

B
(

p1

q
,q−1−τ1(x1)

)
×B

(
p2

q
,q−1−τ2(x2)

)

⊆
∞⋃

q=N

∞⋃

p1,p2≤q

B
(

p1

q
,q

−1− min
x1∈[0,1]

τ1(x1)
)
×B

(
p2

q
,q

−1− min
x2∈[0,1]

τ2(x2)
)

So, W2(τ(x)) is a subset of a collection of rectangles and each one of them
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R = B

⎛
⎝ p1

q
,

1

q
1+ min

x1∈[0,1]
τ1(x1)

⎞
⎠×B

⎛
⎝ p2

q
,

1

q
1+ min

x2∈[0,1]
τ2(x2)

⎞
⎠

can be covered in two ways: either by collection of squares formed by shorter side
lengths or by a bigger square of side length as the longer side of the rectangle.

Case I. Since min
x1∈[0,1]

τ1(x1) ≤ min
x2∈[0,1]

τ2(x2), the rectangle R can be covered by at

most

2q

(
min

x2∈[0,1]
τ2(x2)− min

x1∈[0,1]
τ1(x1)

)

squares of side length q
−1− min

x2∈[0,1]
τ2(x2)

. Hence the s-dimensional Hausdorff measure
of W2(τ(x)) can be estimated as

H s
(

W2(τ(x))
)
≤ 2liminf

N→∞

∞

∑
q=N

q2q

(
min

x2∈[0,1]
τ2(x2)− min

x1∈[0,1]
τ1(x1)

)

q
−s

(
1+ min

x2∈[0,1]
τ2(x2)

)

≤ 2liminf
N→∞

∞

∑
q=N

q
2+ min

x2∈[0,1]
τ2(x2)− min

x1∈[0,1]
τ1(x1)−s

(
1+ min

x2∈[0,1]
τ2(x2)

)

.

Therefore, for any

s >
3+ min

x2∈[0,1]
τ2(x2)− min

x1∈[0,1]
τ1(x1)

1+ min
x2∈[0,1]

τ2(x2)
,

H s
(

W2(τ(x)
)
= 0. This shows that

dimH W2(τ(x)≤
3+ min

x2∈[0,1]
τ2(x2)− min

x1∈[0,1]
τ1(x1)

1+ min
x2∈[0,1]

τ2(x2)
.

Case II. The second case concerns covering the rectangle R by the square formed by

the longer side length q
−1− min

x1∈[0,1]
τ1(x1)

. Hence the s-dimensional Hausdorff measure
of W2(τ(x)) can be estimated as

H s
(

W2(τ(x))
)
≤ liminf

N→∞

∞

∑
q=N

q
2−s

(
1+ min

x1∈[0,1]
τ1(x1)

)

.

Therefore, for any s > 3
1+ min

x1∈[0,1]
τ1(x1)

, H s
(

W2(τ(x)
)
= 0. This shows that
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dimH W2(τ(x))≤ 3
1+ min

x1∈[0,1]
τ1(x1)

.

Hence combining both the above cases, we have

dimH W2(τ(x))≤ min

⎛
⎝ 3

1+ min
x1∈[0,1]

τ1(x1)
,

3+ min
x2∈[0,1]

τ2(x2)− min
x1∈[0,1]

τ1(x1)

1+ min
x2∈[0,1]

τ2(x2)

⎞
⎠ .

Following similar line of covering, as above, for arbitrary d, we have

dimH Wd(τ(x))≤ min
1≤ j≤d

⎧
⎪⎨
⎪⎩

d +1+ j min
x j∈[0,1]

τ j(x j)−∑ j
i=1 min

xi∈[0,1]
τi(xi)

1+ min
x j∈[0,1]

τ j(x j)

⎫
⎪⎬
⎪⎭
.

2.2 The lower bound

The main ingredient in proving the lower bound of Theorem 2 is the following mass
transference principle, from balls to rectangles, proved by Wang-Wu-Xu in [7]. We
refer the reader to [3] for more intricate result regarding the generalised Hausdorff
measure criterion which also, of course, implies the Hausdorff dimension results.
To state the Wang-Wu-Xu result we need a bit more notation. Let {xn}n∈N ⊂ [0,1]d

with d ≥ 1 be a sequence of rationals and let {rn}n≥1 be a sequence of positive
numbers tending to zero. Define the limsup set generated by balls

W :=
{

x ∈ [0,1]d : x ∈ B(xn,rn) for i.m. n ∈ N
}
= limsup

n→∞
B(xn,rn).

For any a = (a1, . . . ,ad), with 1 ≤ a1 ≤ . . .≤ ad , define the limsup set generated by
rectangles

W a :=
{

x ∈ [0,1]d : x ∈ Ba(xn,rn) for i.m. n ∈ N
}
= limsup

n→∞
Ba(xn,rn)

where Ba(x,r) denotes a rectangle with center x and side length (ra1 . . . ,rad ).
The main result of [7] is the following mass transference principle (see also [6,

Theorem 2.4].

Theorem 3 (Wang-Wu-Xu, 2015). Let {Bi : i ≥ 1} be a sequence of balls such that
for any ball B⊂ [0,1]d, H d(B∩ limsupi→∞ Bi) =H d(B). Let a= (a1, . . . ,ad), with
1 ≤ a1 ≤ . . .≤ ad. Then we have
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dimH W a ≥ min
1≤ j≤d

{
d + ja j −∑ j

i=1 ai

a j

}
:= s(a)

and for any ball B ⊂ [0,1]d,

H s(a) (B∩W a) = H s(a)(B).

It is worth stressing that the Lebesgue measure of the set W a being full i.e.
H d(W a) = 1, in general settings, follows from the Khintchine-Groshev type the-
orem proved in [4, 2]. Having Theorem 3 at our disposal, we are in a position to
prove the lower bound of Theorem 2. First note that the sequence of rectangles in
[0,1]d can be written as

Ba(xn,rn) :=
d

∏
i=1

B(xn,i,rai
n )

It is also clear from the definition of Hausdorff measure that, since s(a)≤ d, we
have H s(a)(B∩W a) = H s(a)(B)> 0.

Now consider a localised limsup set by replacing the constant exponents ai
with continuous functions ai(xi) for all 1 ≤ i ≤ d. Given a sequence of balls
{Ba(x)(xn,rn)}n≥1 in a compact bounded cube C =C1 ×·· ·×Cd of [0,1]d , where

a(x) = (a1(x1), . . . ,ad(xd))

is a d-dimensional continuous function with

1 ≤ a1(x1)≤ . . .≤ ad(xd).

Consider the limsup set

W a,L =
{

x ∈ C : x ∈ Ba(x)(xn,rn) for infinitely many n ∈ N
}
.

Let
a0 = min

x∈C
{a1(x1), . . . ,ad(xd)}.

Then there exists a ball B := Ba(x)(xn,rn)⊂ C such that

min(a1(x1), . . . ,ad(xd))≤ a0 + ε ∀x ∈ B. (1)

Then

W a0+ε = limsup
n→∞

Ba0+ε(xn,rn) = limsup
n→∞

d

∏
i=1

B
(
xn,i,ra0+ε

n
)
.

Now for a(x) satisfying (1), define
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s(a(x)) := min
1≤ j≤d

⎧
⎪⎨
⎪⎩

d + j min
x j∈Cj

a j(x j)−∑ j
i=1 min

xi∈Ci
ai(xi)

min
x j∈Cj

a j(x j)

⎫
⎪⎬
⎪⎭
.

Then

H s(a(x))(W a,L)≥ H s(a(x))(B∩W a,L)

≥ H s(a(x))(B∩W a0+ε)

≥ H s(a(x))(B) by letting ε → 0
> 0.

Hence from the definition of Hausdorff dimension, it follows that

dimH W a,L ≥ s(a(x)).

The lower bound of the proof of Theorem 2 follows by identifying

C = [0,1]d ,a(x) = τ(x),B(xi,ri) = B
(

pi

q
,

1
q1+τi(xi)

)

to yield that

dimH Wd (τ(x))≥ min
1≤ j≤d

⎧
⎪⎨
⎪⎩

d +1+ j min
x j∈[0,1]

τ j(x j)−∑ j
i=1 min

xi∈[0,1]
τi(xi)

1+ min
x j∈[0,1]

τ j(x j)

⎫
⎪⎬
⎪⎭
.

Remark 1. It is worth stressing that if we look at the set W a,L locally, then the power
functions (ai(xi)) in the above proof are almost constants. In this sense the Hausdorff
measure result of Theorem 3 is applicable. In comparison, the proof of Barral-Seuret
[1] is much more involved as they tackled the problem of exact approximation order
and Hausdorff dimension of level sets.

Finally we would like to point out that, very recently, Wang-Wu has introduced
a mass transference principle [6] from rectangles to rectangles for the linear form
settings. Given this new avatar, we envisage that the main result of this paper may
be extended to the dual linear forms but it would require careful synthesis of the
framework introduced in their paper.
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Model structures and structural identifiability:

What? Why? How?

Jason M. Whyte

Abstract We may attempt to encapsulate what we know about a physical system
by a model structure, S. This collection of related models is defined by parametric
relationships between system features; say observables (outputs), unobservable vari-
ables (states), and applied inputs. Each parameter vector in some parameter space
is associated with a completely specified model in S. Before choosing a model in S
to predict system behaviour, we must estimate its parameters from system observa-
tions. Inconveniently, multiple models (associated with distinct parameter estimates)
may approximate data equally well. Yet, if these equally valid alternatives produce
dissimilar predictions of unobserved quantities, then we cannot confidently make
predictions. Thus, our study may not yield any useful result.

We may anticipate the non-uniqueness of parameter estimates ahead of data col-
lection by testing S for structural global identifiability (SGI). Here we will provide
an overview of the importance of SGI, some essential theory and distinctions, and
demonstrate these in testing some examples.

1 Introduction

A “model structure” (or simply “structure”) is essentially a collection of related
models of some particular class (say the linear, first-order, homogeneous, constant-
coefficient ODEs in n variables), as summarised by mathematical relationships be-
tween system variables that depend on parameters. For example, in a “controlled
state-space structure” we may draw on our knowledge of the system to relate time-
varying quantities such as “states” (x) that we may not be able to observe, and
(typically known) controls or “inputs” (u) which act on some part of our system,
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to “outputs” (y) we can observe. A structure is a useful construct when seeking to
model some physical system for which our knowledge is incomplete. We choose
some suitable parameter space, and each parameter vector therein is associated with
a model in our structure, where we use “model” to mean a completely specified set
of mathematical relationships between system variables.

In order to illustrate the concept of a structure, we will consider S1, a controlled
state-space structure of “compartmental” models, meaning that these are subject to
a “conservation of mass” condition—matter is neither created nor destroyed. When
we are interested in a system evolving in continuous time, a structure will employ or-
dinary differential equations (ODEs) to describe the time course of the states. Com-
partmental structures are often appropriate for the modelling of biological systems.
To illustrate this, let us consider a simple biochemical system, where we consider
the interconversion and consumption of chemical species, as in a cellular process.

Using standard notation for compartmental systems, a real parameter ki j (i, j =
1,2,3, i �= j) represents the rate constant for the conversion of x j into xi. A real
parameter k0 j is the rate constant associated with the loss of material from x j to
the “environment” outside of the system. If reactions are governed by “first-order
mass-action kinetics”, the rate of conversion (or excretion) of some species at time
t depends linearly on the amount of that species at time t.

Given our physical system and modelling paradigm, (and understanding that an
expression such as ẋ represents dx/dt) we may write the “representative model” of
S1 as

ẋ1(t) =−(k01+ k21)x1(t)− k12x2(t) ,

ẋ2(t) = k21x1(t)− (k12+ k32)x2(t)+ k23x3(t) ,

ẋ3(t) = k32x2(t)− k23x3(t)+u(t) ,
(1)

(
x1(0) x2(0) x3(0)

)�
=
(
0 x20 0

)�
. (2)

Supposing that x1 is the only variable we can observe over time, our output is
y(t) = x1(t) . (3)

186

Structure S1 has three state variables, x1, x2, and x3, representing concentrations of
three distinct chemical species, or “compartments”. Matter may be excreted from
the system, delivered into the system, or converted between the forms. We assume
that the system receives some infusion of x3 via input u.

where we set initial conditions for our state variables (where � denotes transpose)

We may represent this “single-input single-output” (SISO) structure by a com-
partmental diagram, as in Fig. 1. Squares represent distinct chemical species, thin
arrows show the conversion of mass to other forms, or excretion from the system.
The rates of conversion or excretion are determined by the product of the associated
parameter and the state variable at the source of the arrow. The thick arrow shows an
input, and the circle linked to x1 indicates that this compartment is observed. More
specifically, Fig. 1 and (1)–(3) illustrate the representative model of a controlled
(due to the input u) compartmental (mass is conserved) linear (describing the man-
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Fig. 1 A compartmental diagram of the chemical system as modelled by the representative model
shown in (1)–(3). Matter in the compartments representing the chemical species x1, x2, and x3, is
transferred between compartments. Matter is lost from the x1 compartment to the environment and
this compartment is observed. Input u delivers mass to the x3 compartment.

At this juncture, establishing some conventions will aid our further discussion of
structures.

Convention 2. When we apply some descriptors (e.g. controlled compartmental lin-
ear time-invariant state-space) to either a structure’s representative system (as in the
example above) or to a structure, these descriptors transfer to the other. The descrip-
tors also apply to all systems in the structure, except for possibly degenerate systems
associated with a subset of parameter space of measure zero.

Property 1. Given structure M with parameter set Θ , a property of M is generic if it
holds “almost everywhere” in Θ . That is, we allow that the property may not hold
on some subset(s) of Θ of measure zero.

Having specified a structure for a physical system, we may expect it to contain
some model which will encapsulate the system’s features of interest, and provide in-
sights into aspects of the system’s behaviour. For example, we may hope to achieve
objectives, such as to accurately:

1 We will treat classes of structures more formally in Sect. 2.
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ner in which the states and input appear) time-invariant (coefficients of the input and
state variables are constants) state-space structure.1

Convention 2 foreshadows a case where some small number of models in a struc-
ture may have properties different from those of other models. We may account for
this complication in a manner that assists our intended analysis of structures.

Convention 1. When discussing features of a structure M, we represent its associ-
ated parameter space withΘ , which we may specify more particularly as necessary.
Given arbitrary parameter vector θθθ ∈ Θ , we shall always use M(θθθ) to represent
M’s representative system. When considering some specific parameter vector, say
ααα , we shall represent the associated model by M(ααα), which we will understand to
be completely specified.
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O1 predict system outputs at unobserved times within the time range for which
we have data,

O2 estimate the time course of states,
O3 anticipate system behaviour in situations for which we do not have data, such

as under a proposed change in experimental or environmental conditions,
O4 compare the effects of a range of proposed actions on the system, allowing us

to discern which actions have the potential to produce beneficial results.

We can only hope to consistently gain such insights if our modelling effort pro-
vides reliable predictions. Yet, features of an assumed structure may make this chal-
lenging, or impossible. As such, we can benefit from interrogating structures in
advance of their use to ascertain their suitability.

To explain further, we may expect to arrive at a particular model in M that we
can use for prediction after using data to estimate our parameter vector in a process
of “parameter identification” (PI). In essence, PI uses some objective function to
quantify the goodness-of-fit of predictions made for some ααα ∈ Θ to data, and an
algorithm that searches through Θ to improve upon this as much as possible. The
goal is to determine those parameter vectors which optimise the objective function.
Suppose that there is a “true” (unknown) parameter vector θθθ ∗ ∈Θ such that M(θθθ ∗)
reproduces the actual dynamics of our physical system, including that relating to
any unobservable states. As data is typically sparse and subject to noise, whilst
we expect that we cannot exactly recover θθθ ∗, we intend that PI can obtain a good
approximation to it.

This ambition is frustrated when the value of the objective function is virtually
constant over some region of parameter space. Upon encountering such a region,
a search algorithm is unable to find a search direction that will improve the objec-
tive function’s value. This may lead to an unsatisfactory result. For example, the PI
process may terminate without returning any parameter estimate.

Alternatively, PI’s results may defy interpretation. Suppose PI returns multiple
feasible, equally valid estimates of θθθ ∗. If we lack further constraints on the elements
of θθθ ∗ (e.g. relative sizes), we cannot discern which of the alternative estimates to
use as our approximation.

This state of affairs may not matter if our only concern is O1, or we do not need
to specifically know θθθ ∗. However, suppose that using M with alternative parame-
ter estimates yields substantially different results for outcomes O2–O4. Then, we
cannot confidently use M for prediction.

Cox and Huber [9] provided one example of such an unsatisfactory outcome. The
authors showed that two parameter vectors returned by PI lead to equally good pre-
dictions of the observed time series of counts of malignant cancer cells in a patient,
yet produce substantially different counts for the time after an “intervention”—a
reduction in the carcinogenic components to which the patient is exposed.

PI may fail to uniquely estimate a parameter vector due an inherent property of
M. As such, our non-uniqueness problem is independent of the amount and quality
of data we have. That is, improvements in the volume of data or accuracy of its
measurement cannot resolve the problem.
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We expect to anticipate the non-uniqueness of parameter estimates when scrutiny
of our structure shows that it is not structurally globally identifiable (SGI).2 The
concept was first formalised for state-space structures in Bellman and Åström [4]
with reference to compartmental structures similar to that shown in Fig. 1.

One tests a structure to determine whether or not it is SGI in an idealised frame-
work.

Convention 3. The framework employed in testing a structure M for SGI is defined
by assumptions including:

• the structure correctly represents our physical system,
• a record of error-free data that is infinite in extent is available,
• and others that may be particular to the assumed class of structure, or testing

method.

Some methods, e.g. those employing similarity transforms [21] or Markov and ini-
tial parameters, [14], are only applicable when M is “generically minimal”. That
is, for almost all θθθ ∈ Θ we cannot reduce M(θθθ) to a system of fewer states that
produces an identical output.

The test aims to discern whether or not it is possible for PI applied to idealised
data to only return the true vector θθθ ∗, for almost all θθθ ∗ ∈ Θ . The test result is
definitive in this case.

Suppose that structure M is classified as SGI. Then, it may be possible for PI
applied to actual (limited in extent, noisy) data to return a unique estimate for θθθ ∗,
but this is not guaranteed. As such, we can only consider an SGI model as possibly
useful for prediction. Still, the value of knowing that M is SGI is the assurance
that we are not almost certain to fail in our objective before we commence our
study. Alternatively, it is extremely unlikely that PI applied to a non-SGI model
and actual data will return a unique estimate of θθθ ∗. In this case, we should not
immediately proceed to make predictions following PI. Instead, we may seek to
propagate parameter uncertainty through our structure so as to produce a range of
predictions, allowing us to quantify prediction uncertainty. From this we may judge
whether or not we can obtain sufficiently useful predictions for our purposes.

Aside from merely encouraging caution, the result of testing structure M for
structural global identifiability3 can deliver useful insights. The test result allows us
to distinguish between individual parameters we may estimate uniquely, and those
we cannot.

2 The literature has various alternative terms for SGI, some of which may be equivalent only under
particular conditions. For two examples, Audoly et al. [3], used “structurally a priori identifiable”,
where a priori emphasises that one can test a structure in advance of data collection. Godfrey [12]
favoured “deterministic identifiability” in discussing compartmental models, for reasons relating
to the degree of a priori knowledge of a system and the dependence of the result of testing on the
combination of inputs. We will consider this second matter in Sect. 4.
3 In the interests of brevity, henceforth we use SGI as a shorthand for this noun, in addition to the
adjective used earlier, expecting that the reader can infer the meaning from context.
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Further, awareness that a structure is not SGI can assist in correcting the prob-
lem. The test may allow us to recognise those parameter combinations which PI may
return uniquely. This knowledge may guide reparameterisation of M(θ) so as to pro-
duce the representative system of a new structure that is SGI. Additionally, having
learned that M is not SGI, one can examine whether it is possible that modifying M
(e.g. holding some parameters constant), or the combination of M and planned data
collection (e.g. supposing that an additional variable is measured, and rewriting M
to include this as another output), will remedy this. Thus, we can treat the process
of testing a structure for SGI as an iterative process. We can detect a structure’s un-
desirable features ahead of data collection, address them, test the revised structure,
and continue this process until the structure is satisfactory.

Analytical inspection of (in particular, more complex) structures to anticipate the
uniqueness or otherwise of parameter estimates is often not straightforward. The
difficulties of testing a structure for SGI, as well as how the results of PI applied to
real data can be worse than that predicted by theory, have encouraged numerical ap-
proaches to the task. (See [12, Chapter 8] for an introduction.) Broadly, approaches
seeking to demonstrate “numerical” (or “practical”) identifiability are based on as-
suming some number of parameter vectors; using each of these with the structure to
simulate data at a limited number of observation times, or under a limited number
of conditions (e.g. applied inputs or values of experimental variables), or subject to
noise, or some combination of these; conducting PI; and investigating the features of
parameter estimates to determine if these adequately approximate assumed values.

Testing a structure for numerical identifiability may determine when PI is un-
likely to yield accurate results. However, unlike analytical scrutiny, these investiga-
tions may not provide clear guidance on how to remedy the problem.

In this paper we will provide an introduction to the testing of (state-space) struc-
tures for SGI. There are a variety of testing methods available (see, for example,
[11]) although many are not an ideal means of introducing the field of identifiability
analysis. As such, we intend that our choices of testing method and examples will
allow us to illustrate some important issues without having to encounter unnecessary
algebraic and conceptual complexity.

In choosing example structures, we have limited ourselves to a class which are
linear in the state variables, as demonstrated in the representative model given in
(1)–(3) . We further restrict these to compartmental structures. Given these choices,
the “Transfer Function Approach” (TFA, see for example [8]), which makes use of
features of the Laplace transform of a structure’s output function,4 is appropriate
for our purposes. Although one of the older testing methods, it is still included in
relatively recent texts presenting a range of methods (e.g. [11]), and:

1. is conceptually rather more straightforward than other methods,
2. has the unusual distinction of being applicable to a structure that is not generi-

cally minimal, and
3. is unambiguously appropriate for compartmental structures.

4 For this reason, the approach is also known as the “Laplace transform method”, as seen in [12,
Chapter 6].
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To explain the significance of Points 2 and 3, we note that a general linear state-
space structure may be judged as generically minimal as a consequence of having
the generic properties of controllability and observability. The conditions used in

a vector space. However, the state space of a positive linear system is a polyhedral
cone, and so it does not seem appropriate to treat these as we would a general linear
system.

. . . that the minimality problem for positive linear systems is inherently different from that
of ordinary linear systems . . . ” ([5, Page 219]).

Whyte [26, Chapter 3, Section 5.2] considered some of the literature’s perspectives
on controllability of linear state-space systems. Briefly, the origins of the area re-
lated to linear “structured” systems (see Poljak [17]) which are generally distinct
from linear compartmental systems (a type of “descriptor” system; see Yamada and
Luenberger [27]). This lead to suspicions that it may not always be inappropriate
to test a linear compartmental structure for generic minimality using the machinery
designed for general linear structures. By choosing to use the TFA in analysing a
structure, Point 2 allows us to avoid this potential issue.

Further, the TFA has shown promise in the analysis of structures of linear switch-
ing systems (LSSs) (Whyte [25, 26]). Structures of switching systems (especially
those which evolve in continuous time) are largely neglected in the literature. Yet
methods under development may assist in the scrutiny of structures used to model
epidemics, such as where an intervention causes an abrupt change in some parame-
ter values.

Discussions at a recent workshop “Identifiability problems in systems biology”
held at the American Institute of Mathematics ([1]) highlighted a degree of incon-
sistency in certain key definitions used in the field of identifiability analysis. As
such, here we will draw on efforts to propose transparent and coherent definitions
in the analysis of uncontrolled structures (Whyte [25, 26]) in suggesting equivalent
definitions for controlled structures.

We conclude this section by establishing notation.
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deciding this are appropriate for linear systems—these have a state space which is

Certain authors have sought to highlight differences between features of linear
systems and linear positive systems. In the context of discrete-time systems, Ben-
venuti and Farina sought to show

The remainder of this paper is organised as follows. In Sect. 2 we present some
preliminary material and introduce certain classes of structures that aid us in pre-
senting the TFA. In Sect. 3 we outline the general theory of testing an uncontrolled
structure for SGI, particularise this to uncontrolled linear time-invariant (LTI) state-
space structures, and consider an example. Section 4 proceeds similarly for con-
trolled LTI state-space structures, where we draw an important distinction between
testing approaches based on how much information we are able to elicit from our
structure. Finally, in Sect. 5 we summarise some concepts in the testing of structures
and offer some concluding remarks.



Jason M. Whyte

1.1 Notation

The field of real numbers is denoted by R. The subset of R containing only positive
(non-negative) values is denoted by R+ (R̄+). The natural numbers {1,2,3, . . .} are
denoted by N, and we define N0 � N∪{0}.

The field of complex numbers is denoted by C. The real part of z ∈ C is denoted
by Re(z). Given some a ∈ R, a useful set for the following discussion is

Ha � {s ∈ C
∣∣Re(s)> a} . (4)

2 Preliminaries

In this section we will define certain classes of structures, and present an overview
of some useful properties, in preparation for a discussion of how we may test these
structures for SGI.

We will aim to illustrate the features of systems by introducing sufficient systems
theory, beginning with some conventions. Suppose we have a set of input valuesU , a
set of output values Y , and a time set T ⊆ R̄+. Let U denote a set of input functions
such that for u ∈U ,u : T →UT : t �→ u(t)∈U . That is, U is a set of input functions
taking values in the set U . Similarly, let Y denote a set of functions such that for
y ∈ Y ,y : T → Y T : t �→ y(t) ∈ Y . That is, Y is a set of output functions taking
values in a set Y . Finally, let ζ denote an “input-output” map from U to Y . We use
these definitions in presenting a general type of system in Definition 1. From this
we may obtain other system types by imposing suitable conditions.

Definition 1. An input-output system on time set T is a triple (U ,Y ,ζ ).

Contained within the input-output systems are the state-space systems, which are
of particular interest to us here. To aid our discussion of these, given some time set
T we define the set
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We use a bold lower-case (upper-case) symbol such as a (A) to denote a vector
(matrix), and a superscript� associated with any such object indicates its transpose.
Given vector a, ȧ denotes its derivative with respect to time. To specify the (i, j)-th
element of A we may use ai, j, or prefer the simplicity of (A)i,j when A is a product
of terms. For n ∈ N, we use diag(a1,a2, . . . ,an) to denote the square diagonal ma-
trix having a1, . . . ,an on the main diagonal and zeros elsewhere. A special diagonal
matrix is the (n×n) identity matrix In ∈ Rn×n, having a main diagonal of n 1s.

Given field F and some indeterminate w, F(w) denotes the field of rational func-
tions in w over F. Given a,b ∈ N0 and F, we use Fa×b to denote the set of matrices
of a rows and b columns having elements in F. When at least one of a or b is zero, it
is convenient to have Fa×b represent a set of “empty matrices”, and we can disregard
any matrix in this set as it arises.

T 2
+ �

{
(t2, t1); t2 ≥ t1, t1, t2 ∈ T

}
. (5)
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2.1 State-space structures

In the following definitions and discussion we draw on Whyte [26, Section 3.4],
which was informed by Caines [6, Appendix 2]).

Definition 2 (Adapted from Whyte [26, Definition 3.8]). A state-space system Σ
is a quintuple (U ,X ,Y ,Φ ,η) where

• U is a set of input functions.
• X is a set, called the state-space of Σ , with elements called states.
• Y is a set of output functions.
• Φ(· , · , · , ·) is the state transition function, which maps T 2

+×X ×U into X .
To illustrate this, consider time interval T ⊆ R̄+ with t0 � infT . Suppose Σ is
subject to input function u ∈ U . Further, suppose that at t = t0 we have that
x0 ∈ X is the initial state of Σ . Then, for (t, t0) ∈ T 2

+, Φ(t, t0,x0,u) determines the
state of Σ as a consequence of time t, x0, and u. Under these conditions, we may
concisely refer to Φ(t, t0,x0,u) as the state of Σ at time t.

• η(· , · , ·) is the output map, which maps T ×X ×U into Y .
That is, at some time t ∈ T , η determines the output vector that results from three
inputs: t, the state of Σ at that time, and the input u.

Further, the following four properties hold:

SS1: The Identity Property of Φ

Φ(t, t,x,u) = x, for all t ∈ T, x ∈ X and u ∈ U .

That is, suppose the state of Σ at time t is x. Then, if no time has elapsed from t,
Φ does not move the state away from x.

SS2: The Nonanticipative Property of Φ
Suppose we have any u1,u2 ∈ U such that these functions are identical on time
interval [t0, t1], where (t1, t0) ∈ T 2

+ ⊂ R2
+. Then, for all x ∈ X we have

Φ(t1, t0,x,u1) = Φ(t1, t0,x,u2) .

To explain this, suppose the state of Σ at time t0 is some x ∈ X . The Nonanticipa-
tive Property of Φ means that Σ reaches the same state at time t1 for Φ subject to
either u1 or u2. Equivalently, differences between u1 and u2 for any time greater
than t1 do not influence the evolution of the state of Σ on [t0, t1] under Φ .

SS3: The Semigroup Property of Φ
For all (t1, t0),(t2, t1) ∈ T 2

+, x ∈ X , and u ∈ U ,

Φ(t2, t0,x,u) = Φ
(
t2, t1,Φ(t1, t0,x,u),u

)
.
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To explain, suppose we have system Σ with initial state x at time t0 and input u.
Suppose Φ acts on time interval [t0, t1] resulting in some particular state (say x1 �
Φ(t1, t0,x,u)) at t1. Suppose then Φ uses x1 as an initial state for evolving the state
of Σ on [t1, t2], resulting in a particular state (say x2 � Φ

(
t2, t1,Φ(t1, t0,x,u),u

)
)

at t2. Due to the Semigroup Property of Φ , system Σ also reaches state x2 at t2 if
Φ is used to evolve the state on [t0, t2].

SS4: The Instantaneous Output Map η
For all x ∈ X , u ∈ U , (t, t0) ∈ T 2

+, the function y : T → Y defined via

y(t) = η
(
t,Φ(t, t0,x,u),u(t)

)

is a segment of a function in Y .
That is, we can use η to define the instantaneous output of Σ at current time t
through t, the state of Σ at time t (Φ(t, t0,x,u)) and the value of the input at time
t (u(t)). This property is useful as y provides a simpler means of illustrating the
output of Σ than does η when we wish to introduce particular system types.

We will now illustrate some useful classes of continuous-time state-space struc-
tures, beginning with a general type. Henceforth we consider spaces for states, in-
puts, and outputs of X ⊆ Rn, U ⊆ Rm, and Y ⊆ Rk, respectively, where accordingly
indices n,m,k ∈ N determine the dimensions of our state, input, and output vectors.
For arbitrary parameter vector θθθ ∈ Θ , and input u ∈ U , at time t ∈ T a controlled
state-space structure M has representative system M(θθθ) of the general form:

ẋ(t;θθθ) = f(x,u, t;θθθ), x(0;θθθ) = x0(θθθ) ,
y(t;θθθ) = g(x,u, t;θθθ) ,

(6)

where f and g satisfy the relevant properties SS1–SS4 of Definition 2.
A subtype of the controlled state-space structures are an uncontrolled class, lack-

ing inputs. If an uncontrolled state-space structure has indices for the state and out-
put spaces of n and k respectively, then a representative model is similar to (6):

ẋ(t;θθθ) = f(x, t;θθθ), x(0;θθθ) = x0(θθθ) ,
ẏ(t;θθθ) = g(x, t;θθθ) .

(7)

We will now introduce a particular class of the general state-space structures
described above—that of linear time-invariant (LTI) structures. An LTI structure has
a representative system that is particular form of (6). We will use specific examples
of LTI structures to illustrate the testing of a structure for SGI in Sects. 3 and 4.

2.2 Continuous-time linear, time-invariant structures

The following definitions are adapted fromWhyte [26, Definition 3.21], which drew
on concepts from van den Hof [14].
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Definition 3. Given indices n,m,k ∈N, a controlled continuous-time linear time-

invariant state-space structure (or, more briefly, an LTI structure) M has state,
input, and output spaces X = Rn, U = Rm, and Y = Rk, respectively. For parameter
set Θ ⊆ Rp (p ∈ N), M has mappings

A :Θ → Rn×n , B :Θ → Rn×m , C :Θ → Rk×n , x0 :Θ → Rn , (8)

where the particular pattern of non-zero elements in the “system matrices” shown in
(8) defines M. More specifically, mappings in (8) dictate the relationships between
state variables x, inputs u, and outputs y for all times t ∈ T ⊆R+. Thus, for arbitrary
θθθ ∈Θ , M’s representative system M(θθθ) has the form

ẋ(t,u;θθθ) = A(θθθ)x(t,u;θθθ)+B(θθθ)u(t) , x(0;θθθ) = x0(θθθ) , (9)
y(t;θθθ) = C(θθθ)x(t;θθθ) . (10)

Defining

LΣP(n,m,k)� Rn×n ×Rn×m ×Rk×n ×Rn , (11)
then

SLΣP(n,m,k)�
{(

A(Θ),B(θθθ),C(θθθ),x0(θθθ)
)
∈ LΣP(n,m,k)

∣∣∣θθθ ∈Θ
}

(12)

is the set of system matrices associated with systems in M. Thus, we may consider
the matrices of a particular system in M as obtained by the parameterisation map
f :Θ → SLΣP(n,m,k) such that

f (θθθ) =
(

A(θθθ),B(θθθ),C(θθθ),x0(θθθ)
)
.

Together, the matrices and vector defined by (8), and the indices n, m, and k, are
the system parameters of M(θθθ).

We may consider an uncontrolled LTI structure having indices n,k ∈ N as a
form of controlled LTI structure having n,m,k ∈ N0 by setting m = 0. As such, sys-
tems in the uncontrolled structure have X = Rn and Y = Rk. By omitting the empty
matrix B from (9) we obtain the form of the uncontrolled structure’s representative
system:

ẋ(t;θθθ) = A(θθθ)x(t;θθθ), x(0;θθθ) = x0(θθθ) , (13)
y(t;θθθ) = C(θθθ)x(t;θθθ) , (14)

where the system matrices are A ∈ Rn×n, C ∈ Rk×n, and x0 ∈ Rn.
As a notational convenience, we allow sets defined in (11) and (12) to apply to

this context, where LΣP(n,0,k) and SLΣP(n,0,k) are understood as neglecting the
irrelevant B.

In modelling biological systems, we may employ a subclass of the LTI state-
space structures in which systems have states, inputs, and outputs subject to con-
straints informed by physical considerations. This, in turn, imposes conditions on
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the structure’s system matrices. Our summary of the conditions in the following
definition is informed by the treatment of compartmental LTI systems given in
van den Hof [14].

Definition 4 (Classes of LTI state-space structures). A positive LTI state-space

structure with indices n,m,k ∈ N is an LTI state-space structure after Definition 3,
having representative system of the form given in (9) and (10), where states, outputs,
and inputs are restricted to non-negative values. That is, the structure has X = R̄n

+,
U = R̄m

+, and Y = R̄k
+.

A compartmental LTI structure with indices n,m,k ∈N is a positive LTI state-
space structure for which systems in the structure have system matrices subject to
“conservation of mass” conditions:

• all elements of B and C are non-negative, and
• for A = (ai, j)i, j=1,...,n,

ai j ≥ 0 , i, j ∈ {1, . . . ,n} , i �= j ,

aii ≤−
n

∑
j=1
j �=i

a ji , i ∈ {1, . . . ,n} . (15)

An uncontrolled positive LTI structure or an uncontrolled compartmental LTI

structure with indices n,k belongs to a subclass of the corresponding class of con-
trolled LTI structures with indices n,k,m. The relationship between the controlled
and uncontrolled forms is as for that between LTI structures and uncontrolled LTI
structures presented in Definition 3. The representative system of any such uncon-
trolled structure has the form outlined in (13) and (14), subject to appropriate re-
strictions on state and output spaces, X and Y , respectively.

We shall now consider some properties of controlled LTI structures which will
inform our testing of these structures for SGI subsequently.

2.3 Features of the states and outputs of a controlled LTI structure

A consideration of some features of the states and outputs of LTI structures here
will allow us to appreciate the utility of the TFA in testing such a structure for SGI
in Sect. 3.

2.3.1 The time course of states and outputs

In this discussion we adapt the treatment of uncontrolled LTI systems given in
Whyte [26, Chapter 3] and combine this with insights from Seber and Wild [18,
Chapter 8]. In this subsection, in the interests of brevity, we we will neglect the
dependence of systems on θθθ .
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Let us consider a structure defined by system matrices in SLΣP(n,m,k) (recall
(11)), where we assume the structure is defined on time set T = R̄+. Recall that
states evolve according to an ODE system as in (9). Given state space X = Rn, the
solution for state vector x(t) depends on the matrix exponential eAt ∈Rn×n through

x(t) = eAtx0 +
∫ t

0
eA(t−t′)Buuu(t′)dt′ , (16)

provided that the integral exists. Assuming this existence, we may use (14) and the
convolution operator ∗ to express response as

yyy(t) = CeAtx0 +CeAtB∗u(t) . (17)

Let us presume a situation typical in the modelling of physical systems—that the
elements of A are finite. Let us suppose that the n (finite and not necessarily distinct)
eigenvalues of A are ordered from largest to smallest and labelled as λi, i = 1, . . . ,n.
In the interests of simplicity, we also assume that A has n linearly independent right
eigenvectors si, i = 1, . . . ,n, where each is associated with the appropriate λi. We
define S ∈ Rn×n as the matrix for which the i-th column is si. We may then employ
a spectral decomposition A ≡ SΛΛΛS−1, where ΛΛΛ = diag(λ1, . . . ,λn). As a result, we
may rewrite our matrix exponential:

eAt ≡ SeΛΛΛtS−1 , (18)

noting that each element is a sum of (up to n) exponentials, with exponents drawn
from λi (i = 1, . . . ,n).

With this in mind, let us turn our attention towards the terms CeAtx0 ∈Rk×1 and
CeAtB ∈ Rk×m on the the right-hand side of (17). As x0 is a constant vector, and B

and C are constant matrices, then each element of CeAtx0 and CeAtB is also a sum
of exponentials in λi (i = 1, . . . ,n).

Suppose λ1 has multiplicity μ ≥ 1. Hence, the largest possible dominant term in
any of our sums of exponentials involves tμ eλ1t . Hence, there exist real constants
K > 0 and λ > λ1 such that for all t ∈ R̄+ we have

Keλ t ≥

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

∣∣∣
(
CCCeAtx0

)
i,1

∣∣∣ i = 1, . . . ,k ,

∣∣∣
(
CeAtB

)
i, j

∣∣∣ i = 1, . . . ,k ,
j = 1, . . . ,m .

(19)

The existence of these bounds will prove important when we consider the appli-
cation of the TFA to an LTI structure. Towards this, we shall consider some features
of the Laplace transform of the output of LTI structures.
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2.3.2 The Laplace transform of an LTI structure output function

We recall the definition of the Laplace transform of a real-valued function.

Definition 5. Suppose some real-valued function f is defined for all non-negative
time. (That is, f : R̄+ �→ R, t �→ f (t).) We represent the (unilateral) Laplace trans-
form of f with respect to the transform variable s ∈ C by

L { f}(s)�
∫ ∞

0
f (t) · e−stdt ,

if this exists on some domain of convergence D ⊂ C.

Let us consider a controlled LTI structure S with parameter set Θ , with a repre-
sentative system S(θθθ), having the form shown in (9) and (10). We assume system
matrices belong to SLΣP(n,m,k) (recall (12)). Suppose that given input u,L {u}(s)
exists. In this case the Laplace transform of output y given u is5

L {y(·,u;θθθ)}(s;θθθ) = V(s;θθθ)+W(s;θθθ)L {u}(s) ∈ R(s)k×1 , (20)
where

V(s;θθθ)� C(θθθ)
(
sIn −A(θθθ)

)−1
x0(θθθ) ∈ R(s)k×1 , (21)

W(s;θθθ)� C(θθθ)
(
sIn −A(θθθ)

)−1
B(θθθ) ∈ R(s)k×m , (22)

and, owing to (19), each element of V and W is defined for all s ∈ Hλ .

Definition 6. We refer to V and W as “transfer matrices”, and each element of these
is a transfer function—specifically, a rational function in s. We term any such ele-
ment an unprocessed transfer function.

Property 2. The degree of the denominator of any unprocessed transfer function in
V or W is at most n. Similarly, if S is a compartmental structure, the degree of the
numerator of any transfer function is at most n−1. If we can cancel any factors in
s between the numerator and denominator of the transfer function (pole-zero can-
cellation), then we will obtain a degree for each of the numerator and denominator
which is lower than previously.

Suppose that pole-zero cancellation occurs in each unprocessed transfer function
in V and W. Then, S is not generically minimal (recall Convention 3).

When we have an uncontrolled LTI structure, (20) reduces to

L {y(·;θθθ)}(s) = V(s;θθθ) ∈ R(s)k×1 , (23)

with V as in (21), and the discussion of matrix elements given above also applies.

5 We note that others, such as Walter and Pronzato [22, Chapter 2, Page 22], have considered such
expressions. However, the notation employed may make the description of transfer functions in
testing a structure for SGI unnecessarily complicated. As such, we employ a simpler notation here.
We also include x0 in V (unlike say in the equivalent matrix H2 in [22]), as otherwise the initial
conditions do not feature in the test equations.
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We may now proceed to consider definitions and processes relating to structures
and structural global identifiability, informed by Convention 3. By way of introduc-
tion, we begin with the rather more straightforward matter of the testing of uncon-
trolled structures.

3 Testing an uncontrolled structure for structural global

identifiability

We will consider the testing of an uncontrolled structure for SGI following what
we may call the “classical” approach originally outlined by Bellman and Åström
[4]. We follow the treatment of [26] which drew on aspects of Denis-Vidal and
Joly-Blanchard [10]. In essence, we judge a structure as SGI (or otherwise) with
reference to the solution set of test equations.

Definition 7. Suppose we have a structure of uncontrolled state-space systems M,
having parameter set Θ (an open subset of Rp, p ∈ N), and time set T ⊆ [0,∞).
For some unspecified θθθ ∈ Θ , M has representative model M(θθθ), which has state
function x(·;θθθ) ∈ Rn and output y(·;θθθ) ∈ Rk (recall (7)). Suppose that systems in
M satisfy conditions:

1. The functions f(x, ·;θθθ) and g(x, ·;θθθ) are real and analytic for every θθθ ∈Θ on S
(a connected open subset of Rn such that xxx(t;θθθ) ∈ S for every t ∈ [0,τ], τ > 0).

2. f(x0(θθθ);θθθ) �= 0 for almost all θθθ ∈Θ .

Then, for some finite time τ > 0, we consider the set

I (M)�
{

θθθ
′ ∈Θ : y(t;θθθ

′
) = y(t;θθθ) ∀t ∈ [0,τ]

}
. (24)

If, for almost all θθθ ∈Θ :

I (M) = {θθθ}, M is structurally globally identifiable (SGI);
the elements of I (M) are denumerable, M is structurally locally identifiable
(SLI);
the elements ofI (M) are not denumerable, M is structurally unidentifiable (SU).

We note that some care is needed in the application of Definition 7, as it is not
appropriate in all cases. Condition 1 ensures that the definition is not applicable to
all classes of systems, including switching systems. Condition 2 indicates that the
initial state cannot be an equilibrium point, as otherwise response is constant for
all time. Such a response cannot provide information on system dynamics. If the
constant response is atypical, it does not provide an appropriate idealisation of real
data. Thus, it is inappropriate to use a constant response in testing the structure for
SGI.

Remark 1. Instead of the test described above, one may test a structure for the prop-
erty of structural local identifiability ([20]). This is able to judge a structure as either
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SLI (the structure may actually be SGI, but we cannot discern this), or SU. Discern-
ing that a structure is SLI may be adequate in some circumstances, and the tests tend
to be easier to apply than tests for SGI.

In general, the output of system M(θθθ) features “(structural) invariants” [19] (or
“observational parameters” [15]) φ(θθθ) which define the time course of output. We
may use these to summarise the properties of the whole structure.6

Thus, invariants allow us to test a structure for SGI using algebraic conditions
that are addressed more easily than a functional relationship as in (24). Here we
formalise this property by rewriting Definition 7 in terms of invariants. This leads
to a test of a structure for SGI that is easier to apply than its predecessor.

Definition 8. Suppose that structure M satisfies Conditions 1 and 2 of Definition 7.
Then, for some arbitrary θθθ ∈Θ , we define the set

I (M,φ)�
{

θθθ
′ ∈Θ : φφφ(((θθθ

′
))) = φ(θθθ)

}
≡ I (M) . (25)

It follows that determination of I (M,φ) allows classification of M according to
Definition 7.

Given Definition 8, we may propose a process for testing a structure for SGI.

Proposition 1.

Step 1 Obtain invariants φ(θθθ): there are various approaches, but some have re-
quirements (e.g. that the structure is generically minimal) that may be dif-
ficult to check.

Step 2 Form alternative invariants φ(θθθ ′) by substituting θθθ ′ for θθθ in φ(θθθ).
Step 3 Form equations φ(θθθ ′) = φ(θθθ).
Step 4 Solve equations.
Step 5 Scrutinise solution set to make a judgement on M according to Definition 8.

Step 1 poses a key problem : how may we obtain some suitable φ? When consid-
ering an LTI structure, the TFA is appropriate. We will now introduce the approach,
proceeding to illustrate its application to an uncontrolled LTI structure in Sect. 3.2.

3.1 The Transfer Function Approach

Consider a compartmental LTI structure S with indices n,k ∈ N and m ∈ N0, hav-
ing system matrices belonging to SLΣP(n,m,k) (recalling that m = 0 indicates an
uncontrolled structure). Recall the idealised framework employed in the testing of a
structure for SGI shown in Convention 3. As such, we consider S defined for time set

6 We can conceive of invariants most directly when a structure is defined by one set of mathematical
relations for all time. Otherwise, say for structures of switching systems, we require a more flexible
approach ([23, 24]). Such structures are beyond the introductory intentions of this chapter.
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T = R̄+ . Recall (20), and the discussion of Sect. 2.3.1 which guarantees that there
exists some λ such that the Laplace transform of yyy has a domain of convergence.
Then, given transfer matrices V and W (as appropriate), we may extract invariants
for use in testing S for SGI. First, we must place the transfer functions into a specific
form.

Definition 9 (Canonical form of a transfer function). Given compartmental LTI
structure S of n ∈N states, suppose that associated with S(θθθ) is a transfer matrix (as
in (20)) Z, composed of unprocessed transfer functions. Given element zi, j(s;θθθ) ∈
C(s), we obtain the associated transfer function in canonical form by cancelling any
common factors between the numerator and denominator, and rewriting to ensure
that the denominator polynomial is monic. The result is an expression of the form:

zi, j(s;θθθ) =
ωi, j,r+p(θθθ)sp + · · ·+ωi, j,r(θθθ)

sr +ωi, j,r−1(θθθ)sr−1+ · · ·+ωi, j,0(θθθ)
, ∀s ∈ C0 ⊇ Hλ ,

r ∈ {1, . . . ,n} , p ∈ {0, . . . ,r−1} .
(26)

The coefficients ωi, j,0, . . . ,ωi, j,r+p in (26) contribute invariants towards φ(θθθ).

3.2 A demonstration of the testing of an uncontrolled LTI
structure for SGI

Recalling the general form of systems in an uncontrolled compartmental LTI struc-
ture from (13) and (14), let us consider a particular example S0, with representative
system:

ẋ0(t;θθθ) = A(θθθ)x0(t;θθθ) x0(0;θθθ) = x00
(θθθ) , (27)

y0(t;θθθ) = C(θθθ)x0(t;θθθ) , (28)

where the state vector is x0(t;θθθ) =
[
x1 x2 x3

]�, and the system matrices belong to
SLΣP(3,0,1). These have the form:

x00
(θθθ) =

⎡
⎣

0
x20
0

⎤
⎦ , A(θθθ) =

⎡
⎣
−k01− k21 k12 0

k21 −k12− k32 k23
0 k32 −k23

⎤
⎦ , C(θθθ) =

[
1 0 0

]
,

(29)

and we have parameter vector

θθθ = (k01, k12, k21, k23, k32, x20)
� ∈ R5

+ . (30)

Condition 1 of Definition 7 is satisfied for linear systems. To test whether S0
satisfies Condition 2 of Definition 7, we note that
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ẋ0(0,θθθ) = A(θθθ)x00
(θθθ) =

⎡
⎣

k12x20
−(k12+ k32)x20

k32x20

⎤
⎦

�= 0 (as all parameters are strictly positive),

(31)

and thus the condition is satisfied for all θθθ ∈ Θ . As the conditions of Definition 7
are satisfied, we may proceed in testing S0 for SGI following Proposition 1 and
Definition 8.

Recall that in this uncontrolled case, the Laplace transform of the output function
has the form of (23). Following the notation introduced earlier, we write the trans-
form for y0(·;θθθ) as S0V (s;θθθ), which is a scalar, and the only source of invariants for
S0. Deriving the expression (and neglecting the matrix indices of Definition 9 for
simplicity) yields

S0V (s;θθθ) =
φ4(θθθ)s+φ3(θθθ)

s3+φ2(θθθ)s2+φ1(θθθ)s+φ0(θθθ)
, ∀s ∈ C0, (32)

where
φ0(θθθ) = k01k12k23 ,

φ1(θθθ) = k01k12+ k01k23+ k01k32+ k12k23+ k21k23+ k21k32 ,

φ2(θθθ) = k01+ k12+ k21+ k23+ k32 ,

φ3(θθθ) = k12k23x20 ,

φ4(θθθ) = k12x20 .

(33)

We set

φ0(θθθ)�
(

φ0(θθθ), φ1(θθθ), φ2(θθθ), φ3(θθθ), φ4(θθθ)
)�

, (34)

and defining

θθθ ′ �
(
k′01, k′12, k′21, k′23, k′32, x′20

)� ∈ R5
+ (35)

allows us to form the test equations

φ0(θθθ ′) = φ0(θθθ) . (36)

We have six parameters, and merely five conditions. As such, we expect that S0
is not SGI. Solving System (36) for feasible θθθ ′ yields the solution set:

I (S0,φ0) =⎧
⎪⎨
⎪⎩

θθθ ′ ∈ R5
+

∣∣∣∣∣∣∣

{
x′20k01

x20
, k12x20

x′20
, Ψ −

√
Π

2x′20
, k23,

χ+
√

Π
2x′20

, x′20
}
,

{
x′20k01

x20
, k12x20

x′20
, Ψ +

√
Π

2x′20
, k23,

χ−√
Π

2x′20
, x′20

}

⎫
⎪⎬
⎪⎭

, (37)

where we interpret x′20 as a free parameter,
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Ψ � φ1(θθθ)
2

− k01x′20
x20

− k12x20
2x′20

,

and setting Ξ � k01+ k21− k23 allows us to write
χ � (Ξ + k12+ k32)x′20− k12x20,

Π �
(
Ξ 2+2(k12− k32)Ξ +(k12+ k32)2

)
x′

2

20

−2k12x20(Ξ − k12+ k32)x′20+ k212x220 .
(38)

By substituting x′20 = x20 into either of the solution families given in (37) we see
that the trivial solution θθθ ′ = θθθ is also valid, as we would expect. We note that the
parameter k23 is SGI.

Even though structure S0 contains relatively simple models, (37) with (38) show
that the solutions for θθθ ′ in terms of θθθ are somewhat complicated, and not particu-
larly easy to categorise. However, we see in (37) that there are two distinct families
of solutions. As x′20 is free in each, there are uncountably infinitely-many feasible
vectors θθθ ′ that reproduce the structure’s output for a nominated θθθ . As such, we
judge S0 as SU.

4 Testing a controlled structure for structural global

identifiability

In considering the properties of a controlled state-space structure, we must account
for the effects of inputs. Returning to the testing overview outlined in Proposition 1,
it is appropriate to precede Step 1 with a new step:

Step 0 Specify the set of inputs which may be applied to the structure.

It is also appropriate for us to adapt the definitions that suit uncontrolled struc-
tures for this setting.

Definition 10. Suppose we have controlled state-space model structure M having
parameter set Θ and set of input functions U , and time set T ⊆ [0,∞). For some
unspecified parameter vector and input, θθθ ∈Θ and u ∈U respectively, we illustrate
M with representative model M(θθθ) (say, as in (6)), having state function x(·,u;θθθ) ∈
Rn and output function y(·,u;θθθ) ∈ Rk.

Suppose that for each u ∈ U systems in M satisfy conditions:

1. Functions f(x,u, ·;θθθ) and g(x,u, ·;θθθ) are real and analytic for every θθθ ∈ Θ on
S (a connected open subset of Rn such that x(t,u;θθθ) ∈ S for every t ∈ [0,τ],
τ > 0).

2. For t belonging to (at least) some subinterval of [0,τ], f(x,u, t;θθθ) �= 0 for almost
all θθθ ∈Θ .

Given finite time τ > 0, we define
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I (M,U )�
{

θθθ
′ ∈Θ : y(t,uuu;θθθ

′
) = y(t,uuu;θθθ) ∀t ∈ [0,τ], ∀uuu ∈ U

}
. (39)

If, for almost all θθθ ∈Θ :

I (M,U ) = {θθθ}: M is structurally globally identifiable for input set U (U -
SGI);
the elements of I (M,U ) are denumerable: M is structurally locally identifiable
for input set U (U -SLI);
the elements of I (M,U ) are not denumerable: M is structurally unidentifiable
for input set U (U -SU).

Remark 2. Conditions 1 and 2 of Definition 10 play similar roles to the correspond-
ing conditions of Definition 7. Condition 1 excludes from consideration structures
subject to discontinuities in the state or output functions, for which we cannot read-
ily define invariants. Condition 2 relates to conditions which allow us to elicit in-
formative input from a system in M. This loosens the condition of the uncontrolled
case, where a system at equilibrium at t = 0 remains there. The controlled case is
different; a system at an equilibrium state may be displaced by the action of an
input. However, this alone does not guarantee that the output of a controlled sys-
tem is informative for any input in U . As such, Condition 2 seeks to preclude the
case where the system’s state is largely constant, possibly changing only at isolated
points on [0,τ]. By doing so, we expect to obtain useful (non-degenerate) output,
and possibly, invariants subsequently, depending on the nature of U .

Should Conditions 1 and 2 not hold for any u ∈ U , it is appropriate to remove
these from the input set.

Suppose M satisfies Conditions 1 and 2 of Definition 10, and we may observe
M’s outputs for U containing a sufficiently broad range of inputs (e.g. the set of
piecewise continuous functions defined on T , [19]). Then, within our idealised test-
ing framework (Convention 3) we can access the structure’s invariants, say φ . In
such a case, rather than making a judgement on M using Definition 10, we may use
φ with the more convenient Definition 8.

Let us turn our attention to the application of Definition 10 when M is a con-
trolled compartmental LTI structure. By physical reasoning (x is real and does not
exhibit jumps, and these properties are transferred to y) we expect that Condition
1 is satisfied. Checking Condition 2 may not be trivial in general, and so it may be
easier to verify an alternative condition, even if this is stricter than necessary. For
example, if we were to show that ẋ(t;θθθ) �= 0 for almost all θθθ ∈Θ and any t ∈ [0,τ]
for finite τ , then Condition 2 is satisfied.

In practice, conditions such as those of Definition 10 do not typically feature in
discussions of the testing of controlled LTI structures for SGI. This is likely due to
the expectation that one can access a structure’s invariants if the input set meets only
modest requirements: that U is sufficiently diverse, and that the Laplace transform
of any input in U exists. Satisfying these conditions allows us to derive transfer
matrices W and V as in (20), place transfer functions contained therein in canonical
form (recall Definition 9), and obtain φ from their coefficients.
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In various situations, for practical or ethical reasons, one is limited in the nature
and number of inputs that one can apply to some physical system. In such a case,
it is not appropriate to assume that we may access φ from M. As such, the testing
framework seen in Definition 8 is an inappropriate idealisation. However, we may
consider the result of such a test as a “best case scenario”—we would not expect to
obtain a more favourable result from a limited set of inputs. As such, if a test using φ
shows that M is SU, we can be almost certain that PI applied to the output from our
physical system resulting from a limited set of inputs will not obtain unique param-
eter estimates. Inconveniently, when the test classifies M as SGI or SLI, we cannot
necessarily ascertain whether this judgement will also apply when we know that
limited inputs are available. As such, it is appropriate to return to Definition 10 and
consider a test for generic uniqueness of parameter vectors that takes into account
the set of available inputs, and which does not require invariants.

Some authors have noted situations where—unlike in the testing of a structure for
SGI based on invariants—we may not consider inputs as being applied sequentially
to yield separate output time courses. For example, in considering LTI compartmen-
tal structures, Godfrey [12, Page 95] cautioned:

However, when more than one input is applied simultaneously, identifiability may depend
on the shape of the two inputs, and it is then essential to examine the form of the observa-
tions Y(s) [the Laplace transform of y] rather than individual transfer functions.

In noting the importance of the available set of inputs, Jacquez and Greif [15,
Page 201] sought to distinguish “system identifiability” (which we understand as
SGI) from “model identifiability” which depends on some particular inputs (as we
have allowed for in Definition 10). The authors noted the confusion caused by fail-
ing to distinguish between these different properties. To the best of our knowledge,
the literature does not have consistent terminology to distinguish these concepts,
which may be a consequence of how infrequently it is explicitly considered.

We will seek to reuse the TFA machinery in considering what parameter infor-
mation we may glean from the idealised output of a compartmental LTI structure
subject to a single input. Let us consider such a structure S having system matrices
in SLΣP(n,m,k). Suppose that we can observe idealised output for a single input u,
that is U = {u}, and that L {u}(s) exists. Then, we may obtain parameter infor-
mation for testing S for SGI given uuu from

L {y}(s;θθθ) = C(θθθ)
(
sI−A(θθθ)

)−1(
x0(θθθ)+B(θθθ)L {u}(s)) . (40)

In order to demonstrate the difference between the testing of a controlled struc-
ture when invariants are and are not obtainable, we shall consider an example struc-
ture for which different input sets are available. Recall the SISO structure S1 from
Sect. 1. Following definitions from Sect. 2, we rewrite the representative system in
state-space form as

ẋ1(t;θθθ) = A(θθθ)x1(t;θθθ)+B(θθθ)u(t) , x1(0;θθθ) = x10
(θθθ) , (41)

y1(t;θθθ) = C(θθθ)x1(t;θθθ) , (42)
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where the state vector is x1(t;θθθ) =
[
x1 x2 x3

]�, and system matrices belong to
SLΣP(3,1,1). Specifically we have

x1(0;θθθ) =

⎡
⎣

0
x20
0

⎤
⎦ , A(θθθ) =

⎡
⎣
−k01− k21 k12 0

k21 −k12− k32 k23
0 k32 −k23

⎤
⎦ ,

B(θθθ) =

⎡
⎣
0
0
1

⎤
⎦ , C(θθθ) =

[
1 0 0

]
.

(43)

Recalling (21) and (22), the transfer matrices here are scalars, which henceforth we
denote by S1W and S1V . We note that by neglecting B we obtain the uncontrolled
LTI structure S0 (recall (27) and (28)). Structure S1 has the same parameter vector
as S0, shown in (30).

Below we proceed to test S1 for SGI under the assumption that we can obtain its
invariants.

4.1 A demonstration of the testing of a controlled LTI structure for
SGI when invariants are accessible from outputs

Let us assume that we have the idealised outputs of S1 for a sufficiently large input
set U such that we can obtain S1W and S1V . By converting each of these rational
functions into the canonical form, we may obtain each coefficient of s. The collec-
tion of these specifies a vector of invariants. We shall recall the steps of Proposition 1
in testing S1 for SGI.

Towards Step 1, those invariants relating to the response due to the initial condi-
tions reside in S1V ≡ S0V . We collected these invariants in (34).

The behaviour of S1 differs from that of S0 due to the invariants relating to inputs,
held in S1W . Following (22), we see that S1W � C(sI3 −A)−1B, from which we
obtain the transfer function in canonical form:

S1W (θθθ) =
ω0(θθθ)

s3+φ2(θθθ)s2+φ1(θθθ)s+φ0(θθθ)
, (44)

where the denominator invariants repeat the corresponding coefficients inL {y0}(s;θθθ)
(recall (33)), and

ω0(θθθ) = k12k23 . (45)

Thus, only ω0(θθθ) provides an invariant that is novel compared to those from S0V (θθθ).
Drawing on (34) and (45), we complete Step 1 by forming the vector of distinct

invariants associated with S1:
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φ1(θθθ)� (φ0(θθθ),φ1(θθθ),φ2(θθθ)︸ ︷︷ ︸
common to

S1V (θθθ), S1W (θθθ)
denominators

,φ3(θθθ),φ4(θθθ)︸ ︷︷ ︸
from numerator

of S1V (θθθ)

, ω0(θθθ)︸ ︷︷ ︸
from numerator
of S1W (θθθ)

)� . (46)

Following Step 2 we use φ1(θθθ) from (46) to form the invariants dependent on our
alternative parameter θθθ ′, (as in (35)), φ1(θθθ ′). Step 3 directs us to form the test equa-
tions φ1(θθθ ′) = φ1(θθθ). Upon solving for feasible θθθ ′ we obtain

I (S1,φ1) ={
θθθ ′ ∈ R5

+

∣∣∣∣∣

{
k01, k12, k21, k23, k32, x20

}
,

{
k01, k12, −k01+ k23+ k32, k23, k01+ k21− k23, x20

}
}
. (47)

Equation (47) shows that we can obtain unique estimates for k′01, k′12, k′23, and
x′20 (i.e. the corresponding true values in θθθ ) for any θθθ ∈ R6

+. However, for each of
k′21 and k′32 we see there are two distinct solutions whenever −k01+ k23+ k32 > 0
and k01+ k21− k23 > 0. That is, the structure is SLI.

Inspection of the second solution family in (47) reveals k′21+k′32 = k21+k32. This
may hint that a reparameterisation of S1 so as to replace occurrences of k21 + k32
(which may occur in combination with other parameters) with appropriate new pa-
rameters would produce a new structure which is SGI. Whilst there are techniques
for generating alternative structures that produce the same output (e.g. [21]), in gen-
eral, finding a suitable reparameterisation amongst these is not a trivial undertaking.
Given this, we may have to find some means of managing an SU structure. For
example, we may determine bounds on the values of parameters by testing for “in-
terval identifiability”. If the bounds are sufficiently narrow, we may tolerate an SU
structure (see [13] for examples).

We shall now consider S1 in the more restrictive setting where our idealised out-
put results from the application of one specific input.

4.2 A demonstration of the testing of a controlled LTI structure for
SGI when invariants are not accessible from outputs

Suppose that we can only observe the idealised output of S1 for the single input
u = δ (t − 0)—the impulsive input at time zero. Noting that L {δ (t − 0)}(s) = 1,
and recalling (20), we may write

L {y2(·,θθθ)}(s) = S1V (s;θθθ)+ S1W (s;θθθ), (48)

where the terms on the right-hand side are given by (32) (recalling S1V (s;θθθ) ≡
S0V (s;θθθ)) and (44), respectively.

The sum of the two transfer functions on the right-hand side of (48) is also a
rational function in s, and hence is analogous to a transfer function. As such, it is
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convenient to process this in a manner similar to that shown in Sect. 4.1. Thus,
ensuring that the right-hand side of (48) is in the canonical form, and simplifying,
yields an expression (which is similar to the canonical form of L {y0(·,θθθ)}(s),
recall (32)):

L {y2}(s;θθθ) = φ4(θθθ)s+β (θθθ)
s3+φ2(θθθ)s2+φ1(θθθ)s+φ0(θθθ)

, ∀s ∈ C0, (49)

where, recalling (33) and (45),
β (θθθ)� φ3(θθθ)+ω0(θθθ) = k12k23(x20+1) .

Remark 3. Given the input u = δ (t −0) and that S1 is an open system, mass present
in the system due to the input and initial conditions is lost to the environment over
time. As t → ∞, the system approaches its steady state x∗ = 0. We note that (49)
is the Laplace transform of an output function that is a sum of exponentials in t
(recall Sect. 2.3.1) as a result of being a linear combination of the individual state
variables. As all θθθ are positive, all invariants in (49) are also positive. As such, we
see that y is not constant. We infer that the state function x is time-varying, and that
it leads to an informative output function. Thus, S1 for this u satisfies Condition 2
of Definition 10.

We note that L {y2}(s;θθθ) and L {y0}(s;θθθ) differ only in the constant term of
their numerators. The coefficients in (49) play a similar role to invariants as they
determine the output. As a further conceptual and notational convenience, we write

φ2(θθθ)� (φ0(θθθ),φ1(θθθ),φ2(θθθ),β (θθθ),φ4(θθθ))�.

Following Steps 2 and 3 of Proposition 1 leads to a system of test equations φ2(θθθ ′)=
φ2(θθθ), containing four of the five equations used in testing S0 for SGI.

Let us consider the difference between the systems of equations which follow
from φ0 and φ2. The analysis of S0 produces a novel equation involving φ3. In
analysing S1 output due to a single input here, the novel equation is due to β (θθθ).
This allows k12, k23, and x20 more freedom than that permitted by the φ3 equation.
Thus, solving φ2(θθθ ′) = φ2(θθθ) yields an even more complicated solution set than
that seen for S0 in (37) and (38). As a kindness to the reader, we shall not present
the solution sets here. However, classification of the structure is straightforward as
φ2(θθθ) provides five equations, yet we have six parameters. Thus, when the input set
is U = {δ (t −0)}, we classify S1 as U -SU.

This is a less-favourable result than the classification of S1 as SLI (recall the
the assumption that outputs are available for a broad enough range of inputs) as
demonstrated in (47). This result reinforces the claim that, when intending to test
a structure for SGI, it is appropriate to specify the inputs which will be applied
to physical system. Thence, we may judge whether or not the associated idealised
output allows determination of invariants, and use this knowledge in choosing an
appropriate testing method.
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5 Concluding remarks

This overview has aimed to highlight the benefits of testing model structures for the
property of structural global identifiability (SGI). Moreover, by assembling crucial
definitions, drawing important distinctions, and providing test examples, we have
sought to illuminate some important concepts in the field of identifiability analysis.
We hope that this will encourage and assist interrogation of proposed structures so
as to recognise those that are not SGI. This will allow researchers to anticipate the
frustrations almost certain to accompany the use of a non-SGI structure (especially,
an unidentifiable one) in modelling and parameter estimation.

Progress in the field of identifiability analysis is ongoing through the develop-
ment of new methods of testing structures for SGI or SLI, and refinements to their
implementation. However, certain practical matters are yet to receive widespread
consideration. We conclude with brief comments on a selection of these.

Competition—or collaboration—between testing methods? Over a period of
time, the literature has reported that one cannot generally anticipate which method
will be easiest to apply to a given case, (e.g. [12, Page 96]), or that testing methods
may suit some problems more than others (e.g. [7]). Consequently, when consid-
ering software implementations of testing methods, we may not be able to antici-
pate which method will produce a result in the shortest time, or at all. This uncer-
tainty has prompted various comparisons aimed at evaluating the utility of alterna-
tive methods for testing structures for SGI.

One may wonder if a competitive treatment of methods is a limiting one. That is,
might there be benefits in combining methods so as to draw upon their strengths? For
example, in considering controlled compartmental LTI structures, the TFA provides
a means of ascertaining whether or not a structure is generically minimal. If the
conclusion is positive, we may then change our approach and apply a suitable testing
method that uses a type of invariant expected to be simpler than those used in the
TFA. For example, we may choose Markov and initial parameters as invariants,
expecting these polynomials in the parameters to have a lower degree than those
seen in transfer function coefficients. Given such simpler invariants, the resulting
test equations will have a reduced algebraic complexity. We could reasonably expect
to solve these more quickly than equations obtained from the TFA.

Reproducibility of analysis There is a growing concern over the reproducibility
of studies in computational biology ([16]). We expect a greater awareness of iden-
tifiability analysis to encourage the asking of questions that will contribute to a
rigorous and defensible modelling practice. Beyond this, we may also ponder how
to promote reproducibility through the processes by which identifiability analysis is
undertaken.

For all but the simplest cases, testing a structure for SGI requires the use of a
computer algebra system (CAS). Often this is a commercial product, such as Maple,
Mathematica, or MATLAB. However, as for all complex computer code, one cannot
necessarily guarantee that results produced by a CAS will be correct in all situations
(see, for example, [2] noting a limitation of certain versions of Maple). As such, it



Jason M. Whyte210

is good practice for us to check that results obtained from one CAS agree with those
from another.

Performing such a comparison might not be straightforward. Recall that the clas-
sical approach to testing a structure for SGI requires the solution of a system of
algebraic equations. If two CASs employ differing methods in solving a given sys-
tem, the solution sets may appear quite dissimilar, even if they are, in fact, the same.
This complicates the task of determining whether or not the solution sets are equiv-
alent.

We may be able to make choices that can reduce the complexity of the compar-
ison problem. One approach is to seek to direct the output of CASs by specifying
similar options in their commands where this is possible. For example, the “solve”
command in Maple allows the user to specify various options, including some relat-
ing to how any solutions are displayed. Another Maple option allows some variables
to be specified as “functions of a free variable”. We may be encouraged to use this
given the form of solutions obtained from another CAS which we would like to
emulate.

The seeming dissimilarity of solutions may be due to features of CAS solution
algorithms that we cannot directly control. As such, we may seek to manage these
by further scrutinising our equations (or more fundamentally our invariants φ(θθθ)),
before we attempt to solve them.

Suppose that each (multivariate polynomial) element of φ(θθθ) is some combina-
tion of simpler polynomials in parameters θθθ . We may determine these new polyno-
mials by calculating a Gröbner basis for φ(θθθ).7 This requires an “ordering” of pa-
rameters, which determines how terms are arranged within a polynomial, and how
monomials are arranged within terms.8 We may obtain differing bases depending
on the chosen ordering.

In certain solution methods (such as “nonlinsolve” in version 1.4 of Python pack-
age SymPy) a CASmay (effectively) calculate a Gröbner basis for invariants, choos-
ing an ordering without user input. In such cases, should different CASs employ
differing orderings, the solutions of test equations may appear quite different. As
such, it may be useful for the user to obtain a Gröbner basis for a specified ordering,
and use this in formulating test equations for each CAS.

We shall illustrate the importance of the choice of ordering by returning to our
example structure S1. In Maple 2019 (version 1) we used the “Basis” command
(from the “Groebner” package) to compute Gröbner bases for φ1(θθθ) under different
orderings. We varied the ordering of parameters, as specified by the “plex()” option
(pure lexicographical ordering). The ordering indicates a decreasing preference for
eliminating parameters from our input polynomials (here, our invariants) as we pro-
ceed from the start of the list, with the aim of forming a “triangular” system in θθθ . As

7 We may consider a Gröbner basis for a list of polynomials as analogous to the reduced row-
echelon form of a system of linear equations.
8 For example, the polynomial x2y+ 2xy3− 4x+ y employs “pure lexicographical ordering” with
“x > y”—terms are arranged by decreasing degree of monomials in x, and within each term any
monomial in x appears before one in y. Changing the ordering to “y > x” yields an alternative form:
2y3x+ yx2+ y−4x.
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such, those parameters occurring earlier in the list are more likely to be eliminated
than those occurring later.

Using the ordering k21 > k32 > k01 > k12 > k23 > x20 yields the Gröbner basis:

b1(θθθ)�

⎡
⎢⎢⎣

k12x20,
k12k23,

−k01k12+ k12k32+ k223+2k23k32+ k232,
k01+ k12+ k21+ k23+ k32

⎤
⎥⎥⎦ . (50)

Alternatively, with the ordering k23 > k32 > x20 > k21 > k12 > k01, Maple produces
the Gröbner basis:

b2(θθθ)�

⎡
⎢⎢⎣

k201+2k01k21+ k21k12+ k221
k12x20

k01k12+ k212+ k21k12+ k12k32
k01+ k12+ k21+ k23+ k32 .

⎤
⎥⎥⎦ (51)

The Gröbner bases b1(θθθ) and b2(θθθ) are not identical, having only two components
(the first and fourth components of b1(θθθ)) in common. (We also note that although
(46) shows φ1(θθθ) as comprised of six invariants, (50) (or (51)) shows that in the
testing of S1 for SGI, θθθ is subject to only four independent conditions.)

Suppose now that—in a similar manner as we did for φ1(θθθ)—we use b1(θθθ)
and b2(θθθ) in turn to define two distinct systems of four SGI test equations. The
associated solution sets for θθθ ′, I (S1,b1) and I (S1,b2) respectively, determined
by Maple appear to be quite different. For example, I (S1,b1) shows k′12 and k′32 as
free parameters, whereas I (S1,b2) has k′01 and k′21 free. This result suggests that
using a Gröbner basis of our invariants to define SGI test conditions may remove
one cause of unwanted variation between results obtained by different CASs.

When faced with (potential or actual) disparities between CAS results, access
to the source code may illuminate the cause of the divergence, and contribute to
its resolution. However, certain CAS do not permit such access to the source. In
light of this, we are currently developing open-source code using the programming
language Python, making particular use of the SymPy (symbolic algebra) package.
By implementing this in the Jupyter notebook environment, we intend to develop
implementations of testing algorithms (as we have for the TFA approach) that are
readily accessible to the scientific community, and permit user customisation.
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Spatial modelling of linear regression
coefficients for gauge measurements against
satellite estimates

Benjamin Hines, Yuriy Kuleshov and Guoqi Qian

Abstract Satellite imagery provides estimates for the amount of precipitation that
has occurred in a region, these estimates are then used in models for predicting
future precipitation trends. As these satellite images only provide an estimate for
the amount of precipitation that has occurred, it is important that they be accurate
estimates. If we assume that a rain gauge correctly measures the amount of precipi-
tation that has occurred in some location over a specified time interval, then we can
compare the satellite precipitation estimate to the gauge measurement for the same
time interval. By expressing the relationship between the gauge measurement and
the satellite precipitation estimate for the same time interval as a linear equation
we can then spatially map the coefficients of this linear relationship to inspect the
spatial trends of the regression coefficients. We then model the coefficients of the
linear equations of each location by a spatial linear model and then use this model
to predict the coefficients in location where there are no rain gauges available.

1 Introduction

The ability to measure precipitation accurately is very important for many reasons.
Knowing how much precipitation has occurred in a given region will help us im-
prove our knowledge about the seasonal patterns and climate trends in said region
and the regions around it. Rain gauges are used to measure the amount of precipi-
tation that has occurred in a given time period, where precipitation is captured and
then measured at equally spaced intervals. Figure 1 shows the locations of all the
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Bureau of Meteorology’s monthly rain gauges around Australia that are operational
as of August 2018 in which there are 865 of. Clearly, the gauges are not uniformly
placed around Australia, but are distributed based on the population concentration.
If we wanted to know how much precipitation has occurred in a region where there
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Fig. 1: Bureau of Meteorology’s Australian monthly rain gauge locations as of
August 2018.

are no rain gauges, we would have to rely on satellite precipitation estimates. Satel-
lite precipitation estimation is done by taking an image of a cloud from above and
then estimating the amount of precipitation that will come from that cloud based on
its physical characteristics [9]. As these satellite images only provide an estimate
for how much precipitation has occurred in a region, it is important to know if these
estimates are close to what a rain gauge would measure. If the satellite images do
indeed provide us with good estimates for the amount of precipitation, then there
is no issue with using these estimates as measurements for regions in which there
are no rain gauges located. However, if the satellite images do not provide us with a
good estimate for how much precipitation a rain gauge has measured for some time
interval for a given location, then we can look at the difference between the gauge
measurement and the satellite estimate and how there may be some relationship
between the two, which may depend on the location of interest.
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2 Methodology

Let xi ∈R2 for i = 1, . . . ,m be the two dimensional coordinates description of the ith

location where xi1 and xi2 are the longitude and latitude for location i respectively.
We then define Y [g]

i j and Y [s]
i j to be the gauge measurement and satellite estimate for

the ith location respectively for the jth time period where j = 1, . . . ,ni. We can then
consider Y [g]

i j and Y [s]
i j to have a linear relationship, i.e.

Y [g]
i, j = β [i, j]

0 +β [i, j]
1 Y [s]

i, j .

Now if we consider the relationship between the gauge measurements and satellite
estimates to be temporally stationary (coefficients are the same regardless of time)
[5], then we can express a linear equation for location i as

Y[g]
i = β [i]

0 1ni
+β [i]

1 Y[s]
i + ε i (1)

where Y[g]
i =

(
Y [g]

i,1 , . . . ,Y
[g]
i,ni

)T
, Y[s]

i =
(

Y [s]
i,1 , . . . ,Y

[s]
i,ni

)T
, ε i ∼ N

(
0,σ2

i Ini

)
is the

noise term and 1ni
is an ni ×1 vector with every entry being 1. We would expect to

estimate β [i]
0 = 0 and β [i]

1 = 1 for i = 1, . . . ,m as we expect the satellite precipitation
estimate to be equal to the gauge measurement. The conventional method for esti-
mating the coefficients β [i]

0 and β [i]
1 in this situation is by minimising the ordinary

least squares equation

β̂
[i]
= argmin

β [i]
0 ,β [i]

1

||Y[g]
i −β [i]

0 1ni −β [i]
1 Y[s]

i ||22 (2)

where β̂
[i]
=

(
β̂ [i]

0 , β̂ [i]
1

)T
and ||t||p = (∑n

i=1 |ti|p)1/p. The solution to equation (2)
can be shown to be

β̂
[i]
=
(
V T

i Vi
)−1

V T
i Y[g]

i

with Vi =
(

1ni
, Y[s]

i

)
an ni ×2 matrix [3]. In doing this we can obtain estimates for

the coefficients β [i]
0 and β [i]

1 for all locations which we define by

β � =
[
β̂ [1]
� β̂ [2]

� · · · β̂ [m]
�

]T
(3)

an m×1 vector for �= 0,1.
Once we have our estimates for the coefficients of each location as in equation

(3), we can think of these spatially specified coefficients as a spatial process of a
geostatistical random field [14], where we can construct a model to test if there
is some sort of spatial dependency structure. Consider the following spatial linear
model:
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β � = α�1m +λ�Wm,�β �+ ε(β �) (4)

for �= 0,1, where λ� is the autocorrelation parameter, α� is the intercept coefficient
of the model, Wm,� is a given m×m weight matrix representing the spatial distances
of the observations and ε(β �) ∼ N

(
0,σ2(β �)Im

)
for � = 0,1 [13]. Furthermore,

Wm,� =
{

w[�]
i j

}
, where w[�]

i j is given by some function of a known distance metric

d(xi,x j) where locations xi and x j are the locations for the coefficients β̂ [i]
� and β̂ [ j]

�

respectively. Note that w[�]
ii = 0 for all i = 1, . . . ,m as the observation cannot depend

on itself. The choice of which metric and function we use to define out weight ma-
trix Wm,� is vital to being able to model the spatial data well. If the weight matrix
does not give a good representation of the true nature of spatial region of interest,
then the estimates calculated for the parameters are likely to be biased and incon-
sistent [2, 6]. Clearly, good selection of the weight matrix is essential for providing
unbiased estimates of parameters and should be done in a way such that every entry
is consistent to some rule.

Rearranging equation (4)

β � = α�1m +λ�Wm,�β �+ ε(β �)

β �−λ�Wm,�β � = α�1m + ε(β �)

(Im −λ�Wm,�)β � = α�1m + ε(β �)

β � = α�(Im −λ�Wm,�)
−11m +(Im −λ�Wm,�)

−1ε(β �)

where Im is the m×m identity matrix. It can then be easily shown that the mean and
the variance of β � is

α�(Im −λ�Wm,�)
−11m

and
(Im −λ�Wm,�)

−1(Im −λ�W
T
m,�)

−1σ2(β �)

respectively, and due to linearity, we have

β � ∼ N
(
α�(Im −λ�Wm,�)

−11m,(Im −λ�Wm,�)
−1(Im −λ�W

T
m,�)

−1σ2(β �)
)

for � = 0,1. We can estimate λ� and α� by minimising the ordinary least squares
equation in both λ� and α� . The ordinary least squares equation for β � is given by

{
λ̂� , α̂�

}
= argmin

λ� ,α�

||β �−α�1m −λWm,�β �||22

= argmin
λ� ,α�

(
β �−α�1m −λ�Wm,�β �

)T (β �−α�1m −λ�Wm,�β �

)
.

(5)

We then minimise equation (5) with respect to λ� and α� by taking the derivatives,
setting to zero and then solving simultaneously. This yields
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λ� =
β T
� (Wm,�+W T

m,�)β �−2α�β
T
� W T

m,�1m

2β T
� W T

m,�Wm,�β �

. (6)

and
α� =

1
m

1T
m(Im −λ�Wm,�)β � (7)

Then solving simultaneously gives estimators for λ� and α� as

λ̂� =
β T
� (Wm,�+W T

m,�)β �− 2
m β T

� W T
m,�1m

2β T
� W T

m,�Wm,�β �− 2
m β T

� W T
m,�1m1T

mWm,�β �

(8)

and

α̂� =
21T

mβ �β
T
� W T

m,�Wm,�β �−β T
� (Wm,�+W T

m,�)β �1
T
mWm,�β �

2mβ T
� W T

m,�Wm,�β �−β T
� W T

m,�1m1T
mWm,�β �

(9)

respectively. These estimators given in equations (8) and (9) have been shown
through testing to be biased and inconsistent especially for λ when ||β ||2 is large
[10, 11], and is often accepted to be true [12], thus we should not use them. We can
however use equations (6) and (7) in an iterative algorithm which updates at each
step as following, where for this case X = 1m,

Algorithm 1 Spatial Parameters Estimation (SPE) Algorithm

1: procedure SPE(β ,Wm,�,X)

2: Initialise λ [0]
� = 0 and calculate for i = 1,2, . . .

3: while |λ [i]−λ [i−1]|> ε do
4: α [i]

� =
(
XT X

)−1 XT
(

I −λ [i−1]
� Wm,�

)
β �

5: λ [i]
� =

β T
�

(
W T

m,�+Wm,�

)
β �−

(
β T
� W T

m,�Xα [i]
� +α [i]T

� XT Wm,�β �

)

2β T
� W T

m,�Wm,�β �

6: i = i+1
7: return λ [i] and β [i]

Once we have created these models with estimates for λ� and α� for � = 0,1,
we can then use these models to predict what the coefficients would be for a given
location in Australia by spatial interpolation, i.e. let xh be a location where there is

no rain gauge and let wh,� =
(

w[�]
h,1, . . . ,w

[�]
h,m

)T
be the spatial weight vector with each

entry being a function of the distance metric from xh to all other known coefficient
locations (entries corresponding to locations with unknown coefficients are set to
zero). Thus our estimate for the coefficients at location xh are given by

β̃ [h]
� = α̂�+ λ̂�wh,�β � (10)
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for � = 0,1. From this we can then predict what the corresponding gauge mea-
surement of location xh for the jth time interval would be from the corresponding
satellite estimate by

Ỹ [g]
h j = β̃ [h]

0 + β̃ [h]
1 Y [s]

h j (11)

3 Results

The bureau of meteorology between January 2003 and August 2018 has had over
3000 rain gauge stations taking monthly precipitation measurements be in opera-
tion, 3368 of which we are using for this study (m = 3368). Figure 2 shows us the
locations of the 3368 monthly rain gauge stations as well as the correlation between
the precipitation measured by these gauges and what was estimated by the satellite
imagery. As we can see, majority of these locations have reasonably high correla-
tion between the gauge measurement and the satellite estimate, with 1921 out of the
3368 stations having a correlation factor greater than 0.7. The correlation factor also
appears to be following a spatial trend, indicating that there may be a spatial trend in
the relationship between gauge measurements and Satellite estimates. While gauge
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Fig. 2: Sample pearson correlation between the gauge measurement and the
satellite estimate of the available 3368 Bureau of Meteorology rain gauge

stations.

measurements and satellite estimates are highly positively correlated for the ma-
jority of locations we need to be able to justify that the relationship between the
two is linear and also temporally stationary. Naturally we would assume that the
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relationship between the gauge measurements and the satellite estimates is linear
as in equation (1) as we would assume that the satellites give somewhat accurate
estimates for the amount of precipitation, we have E

[
Y [g]

i, j

]
= Y [s]

i, j . To justify this
assumption, consider figure 3. We can see in the top left and top right plots the time

Fig. 3: Time series of all locations for gauge measurements (top left), satellite
estimates (top right), difference of the gauge measurement and satellite estimate

(bottom left) and linear regression fitted values (bottom right) in millimetres
starting at January 2003 and ending at august 2018.

series for both the gauge measurements and satellite estimates respectively for all
3368 locations, where the satellite estimates are provided by the Japan Aerospace
Exploration Agency (JAXA). In the bottom left plot of figure 3 we have the differ-
ence between the gauge measurements and the satellite estimates (Y [g]

i, j −Y [s]
i, j for all

j = 1, . . . ,ni and i = 1, . . . ,m) and we can see that on average the satellite imagery
tends to overestimate the amount of precipitation that a gauge has measured. We
can also see that there are points in the time series that there are very large differ-
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ences between the gauge measurement and the satellite estimate in both directions.
In the bottom right plot we fit the simple linear model to every location as described
in equation (1) and recreate the time series in the top left plot using the fitted val-
ues of these models. We can see that it tends to recreate the rain gauge time series
fairly well which gives evidence to the assumption of a linear relationship. However,
the points where the gauge measurement and satellite estimate are significantly dif-
ferent suggests that there a significant outliers in the data. To justify the temporal
stationarity assumption we can consider the difference between the gauge and satel-
lite measurements at each location (Y [g]

i, j −Y [s]
i, j ) as a time series then we can perform

the augmented Dickey-Fuller test. We are testing the null hypothesis that there is
a unit root present in the time series against the alternative that the time series is
stationary [4]. The result of this test gives no locations with a p-value above 0.05
meaning the time series at each location are stationary. Meaning that the mean, vari-
ance and autocorrelation of the time series does not change with time [5], and thus
we can justify using one model for each location with one set of coefficients that do
not change with time.

In figure 4, we look at the total amount of precipitation recorded at each rain
gauge station for the entire time that it was operational and compare it to the to-
tal estimates for that location over the same time period. We can see that whilst
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Fig. 4: Total gauge measurement of precipitation versus total satellite estimates
of precipitation for each location over the same time interval compared to the

line y = x.
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the trend follows the red y = x line quiet closely, giving more evidence to the as-
sumption of a linear relationship, the variance in the difference between the total
gauge measurements and the total satellite estimates increases as the measurements
increases. If the satellite consistently only overestimates or only underestimates the
gauge measurement in locations where there is a lot of precipitation, this problem
will only be exacerbated when summing up the entire series. However, this issue
could also be due to a single point in which the satellite estimate is significantly
different to the gauge measurement as was seen in the bottom left plot of figure
3, which then skews the overall difference in the total comparison. In figure 5, we
have the monthly gauge measurements plotted against their corresponding satellite
estimates for rain gauge station 031030 (located on the eastern coast of northern
Queensland, north of Cairns). The black y = x line is what we would expect to see
given that the satellite imagery gives an accurate estimate. We can see that this data
has a significant outlier where the satellite estimates there to have been over 2200
millimetres of precipitation in a month compared to the gauge which only measured
there to be just under 1000 millimetres of precipitation in that same month. Due to

Fig. 5: Monthly gauge measurements of precipitation versus its corresponding
monthly satellite estimates of precipitation for Station 031030, with the least

squares regression line and the Huber’s robust regression line.

the squared nature of the ordinary least squares in equation (2), these outliers can
significantly influence the fit of the regression model (blue line) and thus causes the
model to poorly capture the true trend of the relationship between the gauge mea-
surement and the satellite estimate. We can reduce the influence of the significant
outliers by using a robust regression method to model the relationship between the
gauge measurements and the satellite estimates. Estimating parameters by robust
regression requires us to minimise a different loss function as to what was shown in
equation (2). We will be using Huber’s loss to estimate β [i] in our robust regression
model. Parameter estimation by Huber’s loss is given by
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β̂
[i]
δ = argmin

β [i]
0 ,β [i]

1

{
1
2 ||Y

[g]
i −β [i]

0 1ni −β [i]
1 Y[s]

i ||22 , |Y [g]
i j −β [i]

0 −β [i]
1 Y [s]

i j | ≤ δ
||Y[g]

i −β [i]
0 1ni −β [i]

1 Y[s]
i ||1 − 1

2 δ 2 ,otherwise

(12)
where δ is a tuning parameter found by cross validation. In other words, we min-
imise the squared error for fitted values when they are within δ of the observed
value and then minimise the absolute error for when fitted values are further than δ
away from the observed value [8]. Figure 5 shows how the green robust regression
line compares to the ordinary least squares regression line and we can see that by
using Huber’s loss, the significant outlier has much less influence on the fit of the
regression line and which is a lot closer to the line y = x than the ordinary least
squares regression line.

In figure 6 we can see a clear trend in how the coefficients behave based on
their location. As can be expected, higher values of the intercept coefficient, are

Fig. 6: Mappings of the Huber’s regression coefficient estimates (intercept:left,
slope:right) for the relationship between the gauge measurement and the satellite

estimate for every location.

associated with lower values of the slope coefficient. There appears to be spatial
trends in the relationship between the satellite estimate and the gauge measurement.
Whilst a lot of coefficients are not giving values that we would expect with the
intercept having a range of around −10 to 50 and the slope having a range of 0.05
to 1.8, this is due to the amount of noise that is present in data for some locations.
While the noise is giving values for coefficients far off what we would expect to
see for some locations, majority of locations have coefficients a lot closer to what
we would expect to see. Figure 7 shows histograms of the coefficients estimated by
Huber’s loss in equation (12) we can see that the estimated values for the intercept
are positively skewed with a mean of about 10 while the estimated values for the
slope are quite symmetric with a mean of about 0.8.

To use a spatial linear model, we need to decide on what the weight matrices Wm,�

will be. As mentioned earlier, selection of a weight matrix is essential in creating

226



Spatial Satellite Modelling

Fig. 7: Histograms of the estimated values of β0 (left) and β1 (right) by Huber’s
loss.

a good model. There are many different methods that could be used with different
distance metrics. In this paper we use a mixture of k-nearest neighbours and in-
verse distance weighting (IDW) with an addition of the distance to the coast of the
locations. That is,

wi, j =

⎧
⎨
⎩

1/(d(xi,x j)
γ+dc(xi)+dc(x j))

∑xt∈ne(xi)
1/(d(xi,xt )γ+dc(xi)+dc(xt ))

, if x j ∈ ne(xi)

0 , otherwise
(13)

where ne(xi) is the neighbourhood of the location xi which is determined by which
other observed location are the k closest to it and dc(xi) is the distance from the
location xi to the nearest coastal point. We use the distance to the coast as a factor
in creating the weight matrices as we are working with rainfall data, the nature of
the spatial relationships may change when a location is a further away from the
coast, where there is significantly less rain. As the Surface of Australia lays on the
surface of an approximate sphere, we should use a distance metric that considers the
spherical nature of the domain. Thus we use a cosine distance metric, given by

d(xi,x j) = rΔσ

for
Δσ = arccos

(
sinxi,1 sinx j,1 + cosxi,1 cosx j,1 cos |xi,2 − x j,2|

)

with r ≈ 6371 km (radius of the Earth). Whilst using the cosine distance metric
doesn’t significantly change the results compared to euclidean distance both in terms
of the tuning parameters (k and γ) and also the end result, it is better to use a more
accurate representation of the distance between locations.

Another well known neighbourhood defining method is the d-nearest neighbours
method, where a neighbourhood for location xi is defined to be the other locations
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within a distance d of it. However, this method is not ideal for spatial processes
where the observed locations are inconsistently placed as is gives a high amount
of variance in the number of neighbours locations can have. For example, we can
set our d to be a distance of 167 kilometres, which results in rain gauge station
13043 (South Karlamilyi National Park, Western Australia) having no neighbours,
and rain gauge station 41103 (Toowoomba, Queensland) having 297 neighbours.
The power coefficient γ is a non-negative value that represents the smoothness of
the weight matrix. By cross-validation we can get the optimal values for creating the
weight matrices for the intercept and slope as (k = 7,γ = 0.92) and (k = 8,γ = 0.79)
respectively.

β̂ 0 =0.122×1m +0.983×Wm,0β 0

β̂ 1 =0.021×1m +0.972×Wm,1β 1

(14)

respectively. The estimates for λ0 and λ1 as 0.983 and 0.972 respectively have as-
sociated likelihood ratio p-values that are significantly small (< 10−100) which in-
dicate that there is a high degree of spatial dependency. Figure 8 shows us how the

Fig. 8: Spatially modelled fitted values for the intercept (left) and slope (right)
with estimation done by the SPE algorithm.

equations in (14) model the coefficients and as we can see, our models fit the data
quite well as they appear to have captured the spatial trends present in the data.
We can also see that locations with their coefficients significantly different to the
surrounding locations coefficients’ are not estimated as well by the model.

The fitted values that are not estimated as well as their surrounding coefficients
may be able to be modelled better with the inclusion of a confounding factor. Thus
far we have only looked at longitude and latitude contributing to how our coeffi-
cients are estimated by model (4), but it is possible that the elevation dimension
is significant in modelling a coefficient’s behaviour. Elevation could help us to ex-
plain a coefficient’s behaviour as the satellite’s image in which the precipitation is
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estimated from is taken from above, and rain gauge stations that are at a higher ele-
vation will be closer to the cloud and the satellite. Whilst the difference in elevation
is marginal compared the altitude of the satellite, it is not marginal compared the
altitude of the clouds. The elevation range of the rain gauge stations is 1,868 me-
ters, with multiple at sea level and the highest located in Kosciuszko National Park,
New South Wales. We can see in figure 9 an elevation mapping of Australia with lo-
cations of interest being labelled. Precipitation causing clouds can occur anywhere
between ground level and 6000 metres [7], therefore the altitude of the rain gauge
station may help us better model the coefficients’ behaviour. This new model with

Fig. 9: Map of Australia showing the elevation (m).

the elevation confounding factor included can be expressed as

β � = α�1m +η�e+λ�Wm,�β �+ ε(β �) (15)

for �= 0,1, with e being an m×1 vector where ei is the elevation of the rain gauge
station at location xi for i = 1, . . . ,m. We can again use the SPE algorithm to find es-
timates for the unknown parameters with X = (1m,e). We find here that the optimal
values for defining the weight matrices for the intercept is the same, but the slope
is now (k = 8,γ = 0.8). For the spatial linear model of the intercept, the coefficient
η0 of the elevation confounding factor is estimated to be 0.0016 with an associ-
ated p-value of 5× 10−5, lowering the residual error from 5.429 to 5.417. For the
slope coefficient spatial model, the elevation parameter is significant with the coeffi-
cient η1 being estimated to be 6.3×10−5 with an associated p-value of 4.6×10−7,
lowering the residual error from 0.1502 to 0.1496. Therefore, the equations for the
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intercept and slope models are now given by

β̂ 0 =−0.310×1m +0.0016× e+0.986×Wm,0β 0

β̂ 1 = 0.012×1m +6.3×10−5 × e+0.964×Wm,1β 1

. (16)

Now that we have estimates for the parameters α�, η� and λ�, we can recreate the

Fig. 10: Recreated time series using the fitted values from equations (16) for all
observed locations (left) and the difference between the gauge measurements and

the recreated gauge measurements (right).

time series of observations and compare this to the original gauge measurements
time series as in figure 3. In the left plot of figure 10 we recreated the time series
using the fitted values from the models in equation (16) for all observed locations
over all time intervals. We can see that this method does yield a similar result to
what the simple linear model used for the bottom right plot of figure 3 indicating
that the spatial linear model does a good job of recreating the coefficients estimated
by the linear model in equation (1). We can also see in the right plot of figure 10 that
difference between the gauge measurements and the recreated gauge measurements
is for the most part, around zero. There are many points where the gauge measure-
ments and recreated gauge measurements are significantly different, however we
must remember that we are using Huber’s estimator as a loss function instead of the
ordinary least squares and therefore less weight is given to ‘outliers’ so these points
are not estimated as well by the model.

We can proceed to predict how the intercept and the slope would behave in
regions where there are very few or even no rain gauges. We generate 50000
grid points over all of Australia. We then define the weight matrix wh,� for each
of the new points from their neighbourhoods as defined in equation (13) with
(k = 7,γ = 0.92) and (k = 8,γ = 0.8) for the intercept and slope respectively. Recall
that wh,� will only depend on the existing rain gauge locations. We then use equation
(10) with the addition of the elevation confounding factor

β̃ [h]
� = α̂�+ η̂�eh + λ̂�wh,�β �

230



Spatial Satellite Modelling

to estimate the intercept and slope for location xh, where eh is the elevation at xh
for all new locations (h = m+ 1, . . . ,m+ 50000). Note that due to the sparsity of
existing rain gauges in some areas many of these new points will be defined to have
the same neighbourhoods which results in their coefficients to be predicted as the
same. Figure 11 shows how the models would predict these new points and as we
can see, these added points follow the spatial dependency we had expected to see.
Following from here, the gauge measurement time series at those new locations can
be estimated. For example, consider map coordinates longitude 126.284 and latitude
−29.068, located in Western Australia just east of the Great Victoria Desert Nature
Reserve and about 500 kilometres from Kalgoorli at an elevation of 232 metres. The
models in equation (16) give the estimated intercept and slope for this location as
3.42 and 0.46 respectively. The JAXA satellite estimate for the month of August
2018 is 10.3mm, substituting 10.3 into equation (11) gives 8.2mm as the gauge
replicate for that location for month of August 2018. There are other loss functions

Fig. 11: Spatially Predicted value plots for the intercept (left) and slope (right) of
the Huber’s regression coefficients of the relationship of the gauge measurement

against the satellite estimate of precipitation using the SPE algorithm.

that we could use besides the ordinary least squares to develop an algorithm for
estimating the spatial parameters of a model as in equations (4) and (15). We could
use a robust regression but as can be seen in by the histograms in figure 7 there are
no significant outliers that will skew the estimation of the parameters by having too
much leverage, thus there is no need to use robust regression in this case. However,
at the moment we are estimating the spatial parameters of the intercept and slope
separately when the intercept and slope are obviously dependent. We can also use
the observed values from the gauge measurements and the satellite estimates in our
new minimisation

m

∑
i=1

∣∣∣
∣∣∣Y[g]

i −1ni

(
xT

i α0 +λ0wT
0iβ 0

)−Y[s]
i

(
xT

i α1 +λ1wT
1iβ 1

)∣∣∣
∣∣∣
2

2
(17)
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where α� = (α�,η�). By taking the derivative of equation (17) with respect to the
spatial parameters λ0,λ1,α0 and α1, setting to zero and rearranging, we can obtain
4 equations for each of the parameters which all depend on the other parameters.
We can then create another algorithm similar to the SPE algorithm that can give
estimates for the spatial parameters. This algorithm gives parameter estimates as the
following

λ̂0 = 1.17 α̂0 = 0.97 η̂0 =−0.02

λ̂1 = 0.9 α̂1 = 0.06 η̂1 = 0.0003
.

Note that in some literature there exists the restriction of |λ�| < 1 [1]. We can see
in figure 12 how this new loss function in equation (17), where w0i and w1i are
defined the same as above, alters the prediction of the coefficients, especially in lo-
cations where the number of gauge locations is sparse. Interestingly, the range of the

Fig. 12: Spatially Predicted value plots for the intercept (left) and slope (right) of
the Huber’s regression coefficients of the relationship of the gauge measurement
against the satellite estimate of precipitation using the loss function in equation

(17).

predicted slope values has slightly decreased where as the range for the predicted
intercept values has slightly increased. Again we can give an estimate for what the
gauge measurement would read in a location where there are no rain gauges, in the
same location as used above, the new estimates for the intercept and slope are now
given as −0.487 and 0.538 respectively which gives the recreated gauge measure-
ment as 5.05, significantly lower than the previously estimated gauge measurement.
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4 Conclusion

There is clear evidence that there is some difference between the gauge measure-
ments and the satellite estimates. For the majority of locations, the satellite esti-
mates on average that slightly more precipitation has occurred than what the gauge
has measured for the same time interval. There is also clear evidence of spatial de-
pendency for the relationship between the gauge measurement and satellite estimate.

The spatial linear model appears to be able to model the spatial dependencies of
the robust regression coefficients well. A problem with attempting to predict how
the intercept and slope coefficients would behave for locations where there are no
rain gauges (as shown in figure 11), is that there is potential for areas to have very lo-
calised spatial behaviour. This localised spatial behaviour of the intercept and slope
coefficients may not have been captured as the neighbours for these locations are
far away and may be behaving differently based on their own localised spatial be-
haviour. We can see in the plots of figure 6, in locations such as Tasmania and
north-east Australia that there appears to be very localised behaviour.

In comparing each of the spatial models used, they each have their own pros and
cons. The first model in equation (4) while good as it easy to compute and easy to
interpret, the model is probably overly simple as it does not use any confounding
factors, the estimation is for the coefficients is done independently of each other and
it does not depend on the gauge measurements or the satellite estimates. The sec-
ond model in equation (15) is also easy to compute and it uses elevation which was
found to be statistically significant for both the intercept and the slope. However,
similarly to the first model, it is not good that this model also does estimation of the
coefficients independently and does not depend of the gauge measurements of the
satellite estimates. The last model using the loss function in equation (17) performs
better than the other two models in fitting the known gauge measurements due to
the parameters being estimated dependently and including the gauge measurements
and satellite estimates. However, due to the parameters being estimated dependently
there is a larger residual error of the coefficients and it more computationally com-
plex than the other two models.

The amount of noise with the readings does present a problem in itself. The large
amount of noise makes for the intercept’s coefficient in some locations to be so
large, that even if there was no precipitation estimated by the satellite images for the
month, the model could give that a rain gauge would have recorded 50mm. One way
to adjust for this would be to have each observation be a measured/estimated over a
greater time interval such as 3 months or even a year instead of only a month. An
issue with increasing the length of the time interval is that there are some rain gauge
stations that were only in operation for a couple years or even less and increasing
the length of the time interval would decrease what little amount of observations
they had making for a less accurate estimation of the coefficients. Another approach
to reduce the influence of the amount of noise on the fit of the model is to use an
even more robust loss function to estimate the intercept and slope coefficients.

There is potential for more confounding factors to be included in the spatial lin-
ear models that may help explain the spatial relationship between the gauge mea-
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surements and the satellite estimates. However, we must keep in mind that with
spatial modelling that including too many explanatory variables can result in spatial
over-fitting where the explanatory variables explain the spatial dependencies in the
process, i.e. as the number of explanatory variables increases, |λ̂�| decreases [14].
While in this paper we have modelled the relationship between the gauge measure-
ments and the satellite estimates for each location by a strictly linear relationship,
this may not be the case, the relationship may be more complex and to properly
model this relationship we may need to consider transformations of the variables.
We could also explore more complicated weight functions, that could include more
spatially descriptive factors, or have the distance to the coast factor be included in a
different way.

The loss function in equation (17), which has parameter estimation depending of
the intercept and the slope depending on each other and also the gauge measure-
ments and the satellite estimates, gives interesting results for the coefficient pre-
dicted as in figure 12. There are alterations that could be made to this loss function,
such as the minimisations at each location are given weights. We could do this in
many ways such as the weights being dependent on how many observations are at a
given location, giving more weight to locations with more observations, or we could
define weights depending on how isolated the observed location is.

References

1. Arbia, G.: A primer for spatial econometrics: with applications in R. Springer (2014)
2. Beenstock, M., Felsenstein, D., et al.: The Econometric Analysis of Non-Stationary Spatial

Panel Data. Springer (2019)
3. Freedman, D.A.: Statistical models: theory and practice. cambridge university press (2009)
4. Fuller, W.A.: Introduction to statistical time series, vol. 428. John Wiley & Sons (2009)
5. Hamilton, J.D.: Time series analysis, vol. 2. Princeton university press Princeton, NJ (1994)
6. Herrera, M., Mur, J., Ruiz Marin, M.: Selecting the most adequate spatial weighting matrix:

A study on criteria. Tech. rep., University Library of Munich, Germany (2012)
7. Houze Jr, R.A.: Cloud dynamics, vol. 104. Academic press (2014)
8. Huber, P.J., et al.: Robust estimation of a location parameter. The annals of mathematical

statistics 35(1), 73–101 (1964)
9. Kachi, M., Kubota, T., Ushio, T., Shige, S., Kida, S., Aonashi, K., Okamoto, K., Oki, R.: De-

velopment and utilization of“jaxa global rainfall watch”system based on combined microwave
and infrared radiometers aboard satellites. IEEJ Transactions on Fundamentals and Materials
131, 729–737 (2011)

10. Lee, L.F.: Asymptotic distributions of quasi-maximum likelihood estimators for spatial au-
toregressive models. Econometrica 72(6), 1899–1925 (2004)

11. Lee, L.f., Yu, J.: Estimation of spatial autoregressive panel data models with fixed effects.
Journal of Econometrics 154(2), 165–185 (2010)

12. Li, H., Calder, C.A., Cressie, N.: Beyond Moran’s I: testing for spatial dependence based on
the spatial autoregressive model. Geographical Analysis 39(4), 357–375 (2007)

13. Ord, K.: Estimation methods for models of spatial interaction. Journal of the American Sta-
tistical Association 70(349), 120–126 (1975)

14. Schabenberger, O., Gotway, C.A.: Statistical methods for spatial data analysis. Chapman and
Hall/CRC (2017)

234



Chapter 5

Mathematics of Physiological Rhythms



The new frontier of Network Physiology:

Emerging physiologic states in health and

disease from integrated organ network

interactions

Plamen Ch. Ivanov, Jilin W.J.L. Wang, Xiyun Zhang, and Bolun Chen

Abstract An intriguing question in the new field of Network Physiology is how
organ systems in the human body dynamically interact to coordinate functions, to
maintain healthy homeostasis, and to generate distinct physiological states and be-
haviors at the organism level. Physiological systems exhibit complex dynamics, op-
erate at different time scales and are regulated by multi-component mechanisms,
which poses challenges to studying physiologic coupling and network interactions
among systems with diverse dynamics. We present a conceptual framework and a
method based on the concept of time delay stability to probe transient physiologic
network interactions in a group of healthy subjects during sleep. We investigate the
multi-layer network structure and dynamics of interactions among (i) physiologi-
cally relevant brain rhythms within and across cortical locations, (ii) brain rhythms
and key peripheral organ systems, and (iii) the network structure and dynamics
among peripheral organ systems across distinct physiological states. We demon-
strate that each physiologic state (sleep stage) is characterized by a specific network
structure and link strength distribution. The entire physiological network undergoes
hierarchical reorganization across layers with the transition from one stage to an-
other. Our findings are consistent across subjects and indicate a robust association
of organ network structure and dynamics with physiologic state and function. The
presented Network Physiology approach provides a new framework to explore phys-
iologic states under health and disease through networks of organ interactions.
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1 Introduction

The human organism consists of various physiological systems, each with its struc-
tural organization and exhibits complex dynamics with nonlinear and transient char-
acteristics. States and functions at the organism level are traditionally defined by the
dynamics of individual organ systems, and their modulation in response to inter-
nal and external perturbations. However, coordinated network interactions among
organs are essential to generating distinct physiological states and maintaining
health at the organism level. Manifested as synchronized bursting activities with
certain time delays, these interactions occur through different coupling forms [1, 3],
stochastic and nonlinear feedback across spatial-temporal scales and at multiple lev-
els of integration to optimize and coordinate organ functions. Disrupting network
communications can lead to dysfunction of individual systems or the collapse of the
entire organism. Currently, there is no established theoretical framework, computa-
tional and analytic formalism to probe interactions between diverse systems in the
human organism.

Here we present a new methodology adequate to identify and quantify the cou-
pling of systems with different temporal characteristics and signal outputs. We apply
Network Physiology approach [4, 14, 15] and the novel concept of time delay sta-
bility [2], and we demonstrate their utility to study transient synchronous bursts in
systems dynamics as a fundamental form of physiologic network communications.
We investigate new aspects of network interactions among brain rhythms across and
within cortical locations, and their relation to neural plasticity in response to changes
in autonomic regulation underlying different physiologic states. Further, we uncover
dynamical features of brain-organ and organ-organ networks as a new signature of
physiologic control and establish an association of network structure and dynamics
with physiologic state and function. The presented methodology is an initial step in
developing novel signal processing and computational tools and reported findings
to establish building blocks of an atlas of dynamical interactions among key organ
systems in the human body.

2 Method

2.1 Data

The data used in this work are multi-channel signals synchronously recorded from
key physiological systems during night-time sleep with an average duration of 7.9h
(EU SIESTA databases [18]). We analyze two subsets of the database: (i) 52 healthy
subjects (26 female, 26 male, ages 20-34 years); (ii) 34 healthy subjects (17 female,
17 male, ages 20-40 years). All participants provided written informed consent. The
research protocol was approved by the Institutional Review Boards of Boston Uni-
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versity; data collection conducted according to the principles expressed in the Dec-
laration of Helsinki; sleep stages scored in 30s epochs by certified technicians.

Standard polysomnogram recordings follow the American Academy of Sleep
Medicine Manual [5]. Signals include EEG (channels Fp1, Fp2, C3, C4, O1 and
O2), ECG, respiratory waves, EOG, EMG from chin and leg. From the raw signals
we extract: spectral power in windows of 2s with 1s overlap for all physiologically
relevant cortical rhythms (EEG frequency bands): δ (0.5-3.5Hz), θ (4-7.5Hz), α
(8-11.5Hz), σ (12-15.5Hz), β (16-19.5Hz), γ1 (20-33.5 Hz), γ2 (34-99.5 Hz); vari-
ance of EOG and EMG in 2s windows with 1s overlap; heartbeat RR intervals and
interbreath intervals are re-sampled to 1Hz after which values are inverted to obtain
heart rate and respiratory rate. Thus, all time series have time resolution of 1s prior
to analysis.

2.2 Time Delay Stability (TDS) Method

Physiological systems exhibit complex time-varying dynamics characterized by co-
herent bursts in activation across systems in response to modulation in physiologic
state and condition (Fig. 1 Top left). We develop a new approach to (i) quantify
pair-wise coupling and network interactions among diverse systems with bursting
dynamics, and (ii) track the evolution of networks of organ interactions across states
and conditions. We introduce a novel concept, Time Delay Stability (TDS), and a
TDS method (Fig. 1) to study the time delay with which bursts of activity in a
given system are consistently followed by corresponding bursts in the signal output
of other systems. Within this framework, periods of TDS, i.e., constant time delay
between bursts in the activation of two systems, indicate coupling.

To probe the interaction between two physiologic systems X and Y , we consider
their output signals {x} and {y}, each of length N. We divide signals {x} and {y}
into NL overlapping segments of equal length L = 60s. We chose an overlap of
L/2 = 30s which corresponds to the time resolution of the conventional sleep-stage
scoring epochs, and thus NL = [2N/L]. Prior to analysis, each segment is normalized
separately to zero mean and unit standard deviation to remove constant trends so that
the estimated coupling between signals is not affected by relative amplitudes.

Next, we calculate the cross-correlation function,

Cν
xy(τ) =

1
L

L

∑
i=1

xν
i+(ν−1) L

2
yν

i+(ν−1) L
2 +τ , (1)

within each segment ν = 1, . . . ,(NL −1) by applying periodic boundary conditions.
For each segment ν we define the time delay τν

0 corresponding to the maximum in
the absolute value of Cν

xy(τ) in this segment:

τν
0 = τ||Cν

xy(τ)|≥|Cν
xy(τ ′)| ∀τ ′ . (2)
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Fig. 1 Degree of coupling between brain rhythms quantified by Time Delay Stability (TDS).

Schematic presentation of the TDS method. (Top left) Segments of time series representing EEG
spectral power S(σ) and S(δ ) of the σ and δ cortical rhythms shown for consecutive 60s windows
(vertical dashed lines). (Top right) Coordinated synchronous bursts in S(σ) and S(δ ) lead to pro-
nounced cross-correlation Cδσ with dominant peak within each time window located at time lag
τ0, representing the time delay between the two signals. Time delay τ0 between S(σ) and S(δ ) is
plotted for consecutive 60s windows with step of 30s (green dots mark τ0 for the windows shown
in the Cδσ plot). Note the transition at ∼ 1200s from a segment with strongly fluctuating τ0 to a
stable time delay regime with τ0 ≈ constant. Such regime of time delay stability (TDS) indicates
the onset of physiological coupling. The fraction of time (%) in the EEG recording when TDS is
observed quantifies the degree of coupling strength (%TDS). (Bottom left) TDS matrix represent-
ing the degree of coupling between different brain rhythms (δ , θ , α , σ , β , γ1, and γ2) derived
from two cortical locations (Fp1 and Fp2 EEG channels). Matrix elements represent the coupling
strength, measured as %TDS, for each pair of brain rhythms. (Bottom right) TDS matrix represent-
ing the average coupling of all brain rhythms across each pair of EEG channels (Fp1, Fp2, C3, C4,
O1, O2). Matrix elements show cortical rhythms interactions for one representative healthy young
subject during Wake. Color code indicates the average coupling strength.

Time periods of stable interrelation between two signals are represented by seg-
ments of approximately constant τ0 in the newly defined series of time delays,
{τν

0 }ν=1,...,NL−1. In contrast, absence of stable coupling between the signals cor-
responds to large fluctuations in τ0 (Fig. 1 Top right).

Third, we identify two systems as linked if their corresponding signals exhibit a
time delay that does not change by more than ±1s for several consecutive segments
ν . We track the values of τ0 along the series {τν

0 }: when for at least four out of
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five consecutive segments ν (corresponding to a window of 5×30s) the time delay
remains in the interval [τ0 − 1,τ0 + 1] these segments are labeled as stable. This
procedure is repeated for a sliding window with a step size one along the entire
series {τν

0 }. The TDS value is finally calculated as the fraction (%TDS) of stable
points in the time series {τν

0 }. Thus, longer periods of TDS between the output
signals of two systems reflect more stable interaction and stronger coupling between
these systems, and the links strength in physiologic networks is determined by the
percentage of time when TDS is observed: higher %TDS means stronger links.

We have tested several different values for the window size L, i.e., L = 30, 60,
120, and 180s with non-overlapping windows as well as window overlaps L/2 and
L/4. The overall TDS results were not significantly different for the different com-
binations of L and overlap, however, there was a tendency to noisier τ0 vs t signals
for shorter windows and less overlap (Fig. 1 Top left). On the other hand larger
windows reduce the time resolution of the TDS.

The TDS method is general, and can be applied to diverse systems with burst-
ing dynamics. It is more reliable in identifying physiological coupling compared
with traditional cross-correlation, cross-coherence, and classical Granger causality
approaches, which are not suitable for heterogeneous non-stationary signals with
time varying coupling, and are affected by the degree of auto-correlations and ir-
regular bursts embedded in these signals [4, 23]. Several relevant signal process-
ing techniques have been developed for automated pattern discovery (e.g., dynamic
time wrapping method used for machine learning and information retrieval), which
may perform well when time-series are at a similar scale with low noise. They are
not tailored for high-frequency bursting signals in multiple-channel polysomnogram
recordings that exhibit transient dynamics and strong stochastic fluctuations.

2.3 Averaging procedure for assessing links strength in
physiological networks

Specifically, links in our network analysis are obtained by quantifying TDS for
each pair of physiological systems after calculating the weighted average for all
subjects during a given physiological state (sleep stage): %TDS= (Σisi/ΣiSi)×100
where Si indicates the total duration of a given sleep stage for subject i, and si is the
total duration of TDS within Si for the considered pair of physiological signals.
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We utilize a specific procedure to quantify the group average strength of a particu-
lar network link for a given physiological state (sleep stage). A standard averaging
procedure, where the strength of a network link during a given sleep stage is first
calculated for one subject and is then averaged for all subjects, would give equal
weight for all subjects in the group average. However, we note that the total du-
ration of each sleep stage (sum of all episodes of a given stage) during night-time
sleep varies from subject to subject. Thus, we perform a weighted averaging proce-
dure where the contribution of each subject in the group average link strength for a
sleep stage is weighted proportionally to the total duration of that sleep stage during
the night.
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Artifacts related to specific behaviors of individual subjects (excessive move-
ment, respiratory perturbations, etc.) or to the quality of recording of specific chan-
nels (due to loose lead contact) may lead to outliers in the estimate of some links
strength in the network for a given subject. Further, links that are outliers in the
physiological network of one subject may not be outliers in the network of another
subject (same artifacts may not repeat for different subjects). To address this prob-
lem, for each pair of physiological signals (specific network link) we obtain the
distribution and standard deviation of %TDS values (link strength) derived from all
subjects in the group. Subjects for whom the considered network link has %TDS
value above the group average + 2 are then removed, and a weighted average for
the link is obtained based on the remaining subjects in the group, thus removing
outliers in the calculation of the group-averaged link strength. This procedure is re-
peated for each link in the network. Considering all network links for all subjects in
our database during a given physiologic state, this procedure led to < 3% of links
removed as outliers in the calculation of the reported group average results for the
different physiological networks.

3 Results

We focus on physiological systems network dynamics during sleep because sleep
stages are well-defined physiological states with specific neuroautonomic regula-
tion, and external influences due to physical activity or sensory inputs are reduced.
The structure of our database, comprising of multi-channel synchronously recorded
signals from different organ systems, allows to investigate the dynamics of interac-
tions among organ systems and their network organization during different phys-
iological states (sleep stages). Using the TDS method, specially tailored to probe
interactions among systems with diverse dynamics, we aim to quantify coupling be-
tween organ systems and their network characteristics. It is essential to understand
how physiologic regulation underlying a given state influences the dynamics of or-
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To avoid unreal couplings due to small cross-correlation peaks, we only look at
stable periods of TDS – only when four out of five consecutive segments with max-
imal correlation appear at approximately the same delay do we consider them to
be stable. A network link between two systems is defined when their interaction is
characterized by TDS value above a significance threshold determined by a surro-
gate analysis test. For each link in a given sleep stage, 200 surrogates are generated
considering signals from two distinct and randomly chosen subjects, and a surro-
gate average link strength (%TDS) is obtained. The procedure is repeated for each
network link to obtain a distribution of surrogate link strengths in each sleep stage.
For each distribution, the mean μsurr and standard deviation σsurr are estimated. The
significance threshold at 95% confidence level for network links strength is defined
as μsurr + 2σsurr for each sleep stage. The %TDS thresholds in surrogate tests are
around 2.5% which are much lower than those in real empirical data (around 50-
60%), validating our method’s effectiveness.
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Fig. 2 Dynamic networks of brain rhythms interactions across cortical locations and tran-

sitions with physiological states. (Top) Time Delay Stability (TDS) matrices representing the
average strength of coupling among all cortical rhythms (EEG frequency bands) across EEG chan-
nels, obtained from continuous overnight recordings for different sleep stages and averaged for a
group of healthy subjects. Color code for matrix elements marks the coupling strength (%TDS).
Transitions across sleep stages lead to changes in the average coupling strength of brain rhythm
interactions across cortical locations and associated reorganization in TDS matrix structure char-
acterized by stronger interactions during Wake and LS (warmer colors) compared to REM and
DS (colder colors). (Bottom) Network representation of the group average TDS matrices for dif-
ferent sleep stages. Network nodes indicate cortical areas: Frontal (Fp1 and Fp2), Central (C3
and C4) and Occipital (O1 and O2). Each network link represents the coupling strength averaged
over all pairs of rhythms from two different cortical areas, where wider and darker links indicate
stronger coupling. Links are separated in four modules (with %TDS <12%; 12%-30%; 30%-38%;
>38%). Dramatic reorganization in network structure is observed with transition from one sleep
stage to another, with more homogeneous links (coupling strength) distribution during Wake and
REM, heterogeneous and modularized links during LS and DS. Reorganization in network links
heterogeneity is paralleled by a pronounced sleep-stage stratification pattern – average network
links strength is significantly different comparing all four sleep stages (one-way ANOVA rank
test p ≤ 0.001), and pairwise comparisons of Wake vs REM and LS vs DS both show significant
difference (Mann-Whitney test p ≤ 0.001).

gan network communications, and how integration of organ systems as a network
leads to emergent behaviors and physiological functions at the organism level [16].

3.1 Networks of brain rhythms interactions across cortical
locations

We first investigate the network of interactions among different brain rhythms. Sleep
stages are traditionally defined by the presence of dominant brain rhythms in corti-
cal EEG dynamics. However, little is known whether and how brain rhythms across
cortical locations interact as a network to generate sleep stages [22]. We consider
seven distinct cortical rhythms from six cortical areas (EEG channels) that are tradi-
tionally used in sleep-stage scoring. Our TDS analysis shows pronounced coupling
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for all pairs of rhythms, well above the significance threshold at 2.5%TDS, indi-
cating physiologically relevant network interactions. Further, we find that the com-
plex network of brain rhythms interactions across locations changes with transition
from one sleep stage to another. A clear sleep-stage stratification is observed when
we coarse-grain the network by averaging the coupling strength over all pairs of
rhythms for each two cortical areas – globally the network is characterized by much
stronger coupling among brain rhythms during Wake and LS compared to REM and
DS, as demonstrated by the coarse-grained TDS matrix in Fig. 2. Moreover, there
is a pronounced reorganization in network topology with transition across physio-
logic states, where each sleep state is characterized by specific modules of cortical
locations with strong or weak interactions (Fig. 2).

3.2 Network interactions among brain rhythms within cortical
areas

We next investigate the network of brain rhythms interactions within each of the six
cortical locations separately. We find that higher frequency brain rhythms exhibit
stronger coupling (i.e. more synchronous bursting activity) – a behaviour which is
consistently observed for all six cortical locations and sleep stages, as shown by the
TDS matrices in Fig.3. With transition from one sleep stage to another, there is a
significant reorganization in both links strength and topology for all local networks
of brain rhythms interactions: while Wake is characterized by similar network link
strength and topology for all six cortical areas, local networks of brain rhythms inter-
actions during REM, LS and DS exhibit different structure with higher connectivity
and link strength in the Frontal areas compared to the Central and Occipital areas.

The existing literature focuses on how a given rhythm (such as δ ) interacts with
itself across different brain locations. Since neuronal populations in six cortical lay-
ers generate different brain rhythms that project onto the scalp, cross-frequency cou-
pling naturally occurs at the same location, manifesting neuronal populations’ syn-
chronous activities and quantifying inter-layer coordination between cortical neu-
rons. Moreover, in the next section, we will discuss specific functional forms of
couplings among cortical rhythms in the same brain area [21].

3.3 Coexisting networks of brain rhythm interactions represent
different types of physiologic coupling

In contrast to Fig. 3 where network links represent %TDS (Method), network links
in Fig. 4 [21] represent the degree of synchronous or asynchronous modulation
in the spectral power amplitude of different (dominant and non-dominant) brain
rhythms. To probe the collective behavior of brain rhythms in relation to physiologic
states, we construct networks of positive and anti-correlated interactions from equal-
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Fig. 3 Plasticity in network interactions among brain rhythms at specific cortical locations

as function of physiologic state. (Top) Time Delay Stability (TDS) matrices quantify interactions
for specific pairs of cortical rhythms (EEG frequency bands δ , θ , α , σ , β , γ1, and γ2) within six
cortical areas (EEG channels: Frontal Fp1 and Fp2, Central C3 and C4, Occipital O1 and O2).
Color code of matrix elements marks the coupling strength for each pair of brain rhythms aver-
aged over a group of healthy subjects. Changes in TDS matrix structure for different brain areas
and sleep stages indicates plasticity of brain rhythms interactions as function of physiologic state.
(Bottom) Network presentation of the TDS matrices at six cortical locations for different sleep
stages. Network nodes in color mark cortical rhythms derived from a given EEG channel repre-
senting a cortical location. Network links (in red) represent the strength of interaction for each
pair of brain rhythms at a given EEG channel location (only links with %TDS≥ 25% are shown).
Network connectivity significantly changes at cortical locations during a given sleep stage, as well
as with transition across stages (one-way ANOVA tests p ≤ 0.001), indicating a complex reorga-
nization and plasticity in brain rhythm interactions necessary to facilitate physiologic functions
associated with distinct physiologic states.

time cross-correlation among brain rhythms, and we track their evolution across
sleep stages. This network approach helps to visualize and dissect brain wave inter-
actions where positive- and anti-correlated behaviors coexist [21]. It also provides
a first demonstration of how brain rhythms coordinate collectively as a network to
generate distinct physiologic states.

During DS, we observe a pronounced network cluster of anti-correlated interac-
tions between the δ wave and all other brain waves (Fig. 4). We also identify a co-
existing complementary network during DS comprised of only positively-correlated
interactions between all brain waves except δ (Fig. 4). With the transition from DS
to LS, REM, and wake, the links strength in the anti-correlated cluster between
δ and all other brain waves decreases. In contrast, new positively-correlated links
emerge, indicating a complex reorganization among brain rhythms across physi-
ologic states. We note that links in the positively-correlated networks represent
parallel coordination of brain wave activation, whereas links in the anti-correlated
networks correspond to brain wave interactions of reciprocal and complementary
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Fig. 4 Coexisting networks of brain rhythm interactions at channel C3 represent different

types of physiologic coupling and exhibit distinct topology across sleep stages. Network nodes
represent brain waves (EEG frequency bands) and network links indicate the degree of equal-time
cross-correlations for each pair of brain waves (line thickness and darkness correspond linearly
to link strength). Two types of networks are shown: left column, where links strength reflects the
fraction of time when significant positive correlation (with C > 0.5) is found between a given
pair of brain waves; right column, where links strength corresponds to the fraction of time when
significant anti-correlation (with C < −0.5) is observed. These networks of interactions evolve
across sleep stages – the links strength in the anti-correlated cluster between δ and all other brain
waves decrease, while new positively-correlated links emerge. Remarkably, the coexistence of both
positively- and anti-correlated networks of brain waves interactions within each physiologic state
indicates a transient on/off nature of brain-wave communications, where links of different na-
ture can emerge during different periods of time within the same physiologic state. The specific
topology and clustering of brain wave networks during different sleep stages demonstrate a direct
association between brain wave communications and physiologic state and function.

nature (opposite direction of modulation). Specifically, the δ -α interaction is al-
ways characterized by strong anti-correlation during all sleep stages, and there is
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no δ -α link in the positively-correlated networks (Fig. 4). This observation is con-
sistent with the traditional understanding of δ and α waves as the predominant
brain rhythms for two opposite physiologic states, i.e., sleep vs. wake. However, the
classical description of these physiologic states does not address the nature of δ -α
interaction. Our analyses reveal the complex dynamics of reciprocal and compet-
ing nature in the coupling between δ and α waves, which transcends all physio-
logic states. In contrast to δ -α interactions, links associated with the θ wave that
show positive correlations during DS become increasingly anti-correlated during LS
and REM, indicating a very different role of θ -wave interactions compared to α-
and δ -wave. Note that network links represent the fraction of time when a specific
type of cross-correlation (positive or negative) is observed. Thus, the coexistence of
both positively- and anti-correlated networks of brain-wave interactions within each
physiologic state indicates a transient on/off nature of brain rhythms communica-
tions, where links of different nature can emerge during different times in the same
physiologic state.

The traditional paradigm in brain research focuses on exploring the temporal
dynamics and role of individual brain rhythms, and their association with specific
physiologic states and functions [10, 26]. It is motivated by observations of quasi-
steady-state behavior of brain rhythms at large time scales within a given phys-
iologic state (e.g., sleep or wake, sleep stages) [6, 28], and changes in the am-
plitude (i.e., spectral power) of individual brain rhythms, their synchrony and co-
herence across cortical areas with the transition from one physiologic state to an-
other [7, 11, 12, 31]. Our study aims to address the question of how dominant
and non-dominant brain rhythms dynamically interact. We demonstrate that syn-
chronous short-term modulations in the amplitude of brain rhythms that occur on top
of their quasi-steady-state behavior at large time scales carry key information about
the coupling among brain rhythms that are essential characteristics of a physio-
logic state. The presented here approach can detect higher-order interactions among
both dominant and non-dominant brain rhythms embedded in their fine temporal
structure at small time scales. It can quantify the change in brain rhythms network
communications with transition across distinct sleep stages (Fig. 4). The uncov-
ered coupling forms and network coordination among brain rhythms provide new
insights into intrinsic physiologic interactions.

3.4 Dynamics of brain-organs interactions

Brain dynamics play an important role in the neuroautonomic regulation of organ
systems. However, it remains unknown how brain rhythms simultaneously coordi-
nate the function of different organs. We analyze the coupling of all seven brain
rhythms from all six cortical locations with five key organ systems: heart, lungs,
chin, eye and leg.

There are several key questions related to the nature of brain-organ interactions:
(i) how different brain areas (EEG-channel locations) are involved in the commu-
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nications and control of each organ system, (ii) which brain-wave frequency bands
mediate the brain-organ communications, and (iii) how the networks of brain-organ
interactions evolve with transitions across physiologic states. To this end, we apply
the TDS method to identify and quantify dynamical links in the networks, which
would serve as unique physiological maps of brain-organ interactions.

3.4.1 Brain-heart interactions

To demonstrate the rich dynamical features in brain-organ communications, let us
first examine the network of brain-heart interactions. As indicated by the radar chart
inside the heart hexagon in Fig. 5 [2], the network exhibits a relatively symmetric
distribution of the average links strength for different brain areas, with a slight preva-
lence in strength for the links between the heart and the Central brain areas (C3 and
C4). The spatial symmetry in the average brain-heart link strength holds for all sleep
stages. Systematically investigating the links strength in the brain-heart network for
all seven frequency bands and different sleep stages, we find that the average link
strength for the entire network of brain-heart interactions is highest during W and
LS, lower during REM and lowest during DS (Fig. 5). Further, this sleep-stage strat-
ification pattern is consistently observed for all three sub-networks representing the
Frontal-heart, Central-heart and Occipital-heart links across all frequency bands.
Thus, our analysis shows that the strength of all links in the brain-heart network,
regardless of brain areas or frequency bands, is modulated in the same way with
transitions across sleep stages.

3.4.2 Sub-networks of brain-organ interactions

We find that sub-networks of brain rhythms interacting with distinct organ systems
exhibit different average links strength, indicating a more synchronous activity and
stronger coupling of brain rhythms with the dynamics of some organ systems com-
pared to others, as shown by different size of network nodes in Fig. 6.

Further, we find that while all brain rhythms play certain role in the network of
brain-organs interactions, a particular rhythm serves as the main mediator of net-
work communications for a given organ system. Thus, a very structured dynamic
network of brain-organs interaction emerges, where different brain rhythms are in-
volved as main mediators of the function of different organ systems during a given
physiological state (marked by different node circumference color in Fig.6). With
transition from one sleep stage to another, a different brain rhythm may take the
role as the main mediator in network interaction with a given organ system – e.g.,
brain-heart network interactions are mediated by γ2 rhythms during Wake, γ1 and
β rhythms during REM and LS, and δ rhythms during DS, reflecting previously
unrecognized aspects in the autonomic regulation of organ systems (Fig. 6) [2, 20].
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Fig. 5 Networks of brain-heart interactions during different physiologic states. Brain areas are
represented by Frontal (Fp1 and Fp2), Central (C3 and C4) and Occipital (O1 and O2) EEG chan-
nels. Network nodes with different colors represent seven frequency bands (δ ,θ ,α,δ ,β ,γ1,γ2)
in the spectral power of each EEG channel. Network links between the heart (red hexagon) and
EEG frequency nodes at different locations are determined based on the TDS measure, and links
strength is illustrated by the line thickness. Shown are links with strength 5%TDS. Radar-charts
centered in each hexagon represent the relative contribution of brain control from different brain
areas to the strength of network links during different sleep stages. The length of each segment
along each radius in the radar-charts represents TDS coupling strength between the heart and each
frequency band at each EEG channel location. These segments are shown in the same color as the
corresponding EEG frequency nodes. During W and REM, the brain-heart network interactions
are mediated mainly through high-frequency γ1 and γ2 bands (orange and red links), while during
LS and DS, the interactions are mediated uniformly through all frequency bands. The brain-heart
network is characterized by relatively symmetric links strength to all six brain areas, as shown
by the symmetric radar-charts in each hexagon. A pronounced stratification pattern is observed
for the overall strength of network links—stronger links during W and LS (larger hexagons) and
weaker links during REM and DS (smaller hexagons). Notably, there are no links in the brain-heart
network during DS (all links < 5%TDS).

3.4.3 Networks of organ interactions

Finally, we apply our TDS analysis to probe interactions among organ systems. We
find that pairs of organ systems are characterized by different coupling and corre-
spondingly by different group average network links strength. As in the cases of
brain-brain and brain-organs interactions, our analyses show that each sleep stage is
characterized by a specific network topology of organ interactions (Fig. 6). The re-
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Fig. 6 Dynamic networks of organ interactions across sleep stages. Interactions among organ
systems are represented by weighted undirected graphs, where network links between organ sys-
tems reflect the strength of dynamic coupling measured as %TDS and averaged for a group of
healthy subjects. Darker and thicker links correspond to stronger interaction with higher %TDS.
Network nodes represent key organ systems. The size of each organ node is proportional to the
strength of the overall interaction of the organ with all brain rhythms at six cortical EEG channel
locations (see Fig. 3). Color bars represent physiologically relevant cortical rhythms (EEG fre-
quency bands). The circumference color of each organ node corresponds to the cortical rhythm
exhibiting dominant coupling with the organ system when averaged over all cortical locations.
Significant reorganization in network topology (links strength) for different sleep stages (all stages
comparison one-way ANOVA rank test p≤ 0.001, and pairwise comparisons of Wake vs REM and
LS vs DS with Mann-Whitney test p ≤ 0.003) indicates an association between organs network
interactions and physiologic function.

sults for the group average network characteristics (topology and link strength) are
consistent with results obtained for individual subjects in our database, indicating a
robust association of organ network interactions with physiologic state and function.

3.5 Network integration of interactions between the brain and
peripheral organ systems

After separately investigating the networks of interactions between the brain and
different organ systems, we integrate all brain-organ interactions into a single net-
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Fig. 7 Networks of physiologic interactions between brain areas and key organ systems dur-

ing different physiologic states. Brain areas are represented by Frontal (Fp1 and Fp2), Central
(C3 and C4) and Occipital (O1 and O2) EEG channels. Interactions between brain channels and
organ systems are represented by weighted undirected graphs. The size of each organ node in the
network is proportional to the strength of the overall brain-organ interaction as measured by the
summation of the TDS links strength for all frequency bands and EEG channel locations. The color
of each organ node corresponds to the dominant frequency band in the coupling of the organ sys-
tem with the brain. The width of each link reflects the strength of dynamic coupling as measured by
%TDS, and colors of the links correspond to the colors of the nodes representing the different fre-
quency bands (color bars). Plotted are only links with strength 3%TDS. Thicker links correspond
to stronger coupling and higher time delay stability. The physiological network exhibits transitions
across sleep stages – lowest number of links during DS, higher during REM, and highest during
LS and W. For different organs, brain-organ interactions are mediated through different dominant
frequency bands, e.g., the chin and the leg are predominantly coupled to the brain through the high
frequency γ2 band during all sleep stages whereas brain-eye network interactions are mediated
mainly through low-frequency δ band. The complex networks of dynamic interactions between
key organ systems and the brain undergoes a hierarchical reorganization across different sleep
stages, indicating a previously unknown mechanism of regulation.

work. It allows us to simultaneously compare several essential characteristics of the
global network. Specifically, we track the number of links, their strength, the brain
areas and frequency bands involved in the interactions between the brain and the
group of organ systems and how this global brain-organs network evolves across
physiologic states (Fig. 7) [2].
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This integrative approach makes it possible to compare the predominant fre-
quency band through which the interaction between the brain and different organs is
mediated for several organ systems simultaneously during a given physiologic state.
We find that the heart, leg and chin always interact with the brain mainly through
the high-frequency γ1 and γ2 bands (red-colored links in Fig. 7, whereas the brain-
eye interactions are mediated through lowest-frequency δ band (blue colored links
in Fig. 7). There is no single dominating frequency for the brain-respiration interac-
tion. The interaction between brain and the respiratory system is always weaker than
other brain-organ interactions, indicating a relatively weak physiologic coupling be-
tween brain and respiration compared to other organs at the time scales (> 2.5 min)
over which the TDS analysis is performed. Further, with transitions across sleep
stages, we observe a complex hierarchical reorganization in both the number and
the strength of links in the integrated brain-organs network – lowest number of links
during DS (sparse network), higher during REM, and highest number of links in-
volving most of the frequency bands during LS and W. Remarkably, this structural
reorganization of the integrated brain-organs network is consistent with the sleep-
stage stratification patterns observed for each organ system, indicating a previously
unknown rule for neural regulation of organ systems.

4 Summary

Acknowledgements This work was supported by the W. M. Keck Foundation, the National In-
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We show that the concept of time delay stability and the TDS method we devel-
oped can be successfully employed to quantify the coupling and network interac-
tions of systems with complex time-varying and diverse dynamics. Utilizing con-
tinuous recording during sleep from healthy young subjects, we demonstrate that
each sleep stage is uniquely characterized by a network of physiologic interactions
across scales in the human organism – from coupling among brain rhythms within
and across cortical locations to networks of organ interactions. We find that with
the transition from one state to another, physiologic network structure undergoes
a consistent reorganization that occurs across scales. The introduced here method
to infer interactions among diverse dynamic systems and the reported empirical
findings provide new insights into the mechanisms of autonomic regulation under-
lying physiologic states, and represent first building blocks in the emerging field
of Network Physiology [4, 14], where recent studies have uncovered robust as-
sociations between physiological states and networks of physiologic interactions
[8, 13, 17, 27, 32] and under various clinical conditions [9, 19, 24, 25, 30]. Thus,
the proposed here Network Physiology approach [2, 15, 16, 29], reveals fundamen-
tal new laws of physiologic regulation and can enhance our understanding of how
behaviors and functions emerge at the organism level out of integrated network in-
teraction among diverse systems.
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Modelling oscillating living systems: Cell energy

metabolism as weighted networks of

nonautonomous oscillators

Joe Rowland Adams and Aneta Stefanovska

Abstract Oscillations are a common feature throughout life, forming a key mecha-
nism by which living systems can regulate their internal processes and exchange
information. To understand the functions and behaviours of these processes, we
must understand the nature of their oscillations. Studying oscillations can be diffi-
cult within existing physical models that simulate the changes in a system’s masses
through autonomous differential equations. We discuss an alternative approach that
focuses on the phases of oscillating processes and incorporates time as a key con-
sideration. We will also consider the application of these theories to the cell energy
metabolic system, and present a novel model using weighted nonautonomous Ku-
ramoto oscillator networks in this context.

1 Introduction

It is increasingly clear that a wide variety of biological processes are rhythmic in
nature, from glycolysis within a cell to the heart pumping blood throughout the
body [6, 31]. Replicating this fluctuating behaviour poses a challenge to many tra-
ditional modelling methods, which can rely upon approximations of the system as
thermodynamically closed and linear, and which examine the system asymptotically
in time. Such models may only generate oscillations at particular parameter selec-
tions and modulations, oscillate with a high degree of stability, and exist in a steady
state within most of their parameter space. This is in contrast to much of what has
been observed of oscillating living systems, where the oscillations continually fluc-
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tuate in their frequency and amplitude, and continue until the death of the system
itself [2,5,6,9,13,14,18,19,24–26,28–30,35–37]. We will present and discuss a dif-
ferent approach that rethinks how fluctuating biological systems are best modelled,
applied to the cell energy metabolic system.

2 Principles of an alternative approach

In table 2 we outline the key principles that form our method for modelling oscillat-
ing living systems, which we discuss further in this section.

Table 1 Summary of the principles informing our modelling approach contrasted to those of main-
stream approaches

Mainstream principles Our principles

Open systems can be modelled
as perturbed closed systems

Open systems can only
be fully represented by open models

Oscillations result from instability
of a dynamical system

Oscillations are inherent to the
dynamics of open systems. Living

systems continuously exchange energy
and matter with the environment and each
process is characterized by self-sustained

oscillations on a certain time-scale

Nonlinear systems can be
recombined from linear systems

Nonlinear systems are
best understood by nonlinear models

Time variation in living systems
is often due to noise, and can be

averaged out over asymptotic time

Time variation in living systems
is often deterministic, and must
be modelled as nonautonomous

to reflect the full system dynamics

It is easy to see that biological systems are open: without being able to exchange
mass and energy across its boundary a cell would die, the blood would not be
oxygenated by the lungs, and neurons would not receive the energy they need to
fire [8, 23, 31, 40]. While it can be mathematically simpler to treat these systems
as closed off to their environment, doing so is not modelling them in their healthy,
existing state, but instead a dead or dying one. The first principle of our approach
is therefore to allow the modelled system to be open. Attempting to model transfers
of mass in an open system can be distinctly difficult. Tracking each unit of mass
throughout the entire system necessitates the inclusion of processes that may oth-
erwise not need to be considered, and are often challenging, if not impossible, to
measure experimentally in their living states.
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Oscillations can often be considered as a perturbation of a system away from its
‘natural’ steady state. However, an attempt to remove oscillations from an otherwise
oscillatory system would be equivalent to destroying the system itself: oscillations
not only allow a compartmentalisation of otherwise conflicting processes, but play
a significant role in the exchange of information and regulation throughout living
systems [37]. Therefore we instead treat them as an intrinsic result of the openness
of living systems.

While modelling systems’ interactions linearly also simplifies the mathematics, it
does not reflect the biological reality. Biological systems endemically exhibit transi-
tions in behaviour disproportionate to environmental changes [7], and so we propose
to model them as nonlinearly interacting phase oscillators [32].

The fourth key principle of our approach is that living systems should be studied
according to the time scales in which they actually exist and function. Analysing
the properties of a system in an asymptotic time frame can erase dynamics that exist
for only short times. Lucas et al., for example, demonstrated that nonautonomous
phase oscillators may synchronise intermittently, and that this is missed when using
asymptotic methods [21].

This variation of frequency of oscillation is seen throughout biology [2, 19, 25,
37], and hence our model considers nonlinearly interacting phase oscillations with
nonautonomous frequencies, analysed on finite time scales.

3 Modelling a cell’s energy metabolism

Our model brings together these four principles to examine the oscillations of the
energy metabolism of a single cell. The focus of this model is the production of
ATP, a key molecule in maintaining cellular functions, by glycolysis, consuming
glucose, and mitochondrial oxidative phosphorylation (OXPHOS), consuming oxy-
gen [8, 40]. We build on the work of Lancaster et al. [20], who modelled each
metabolic process as a singular nonautonomous phase oscillator. This model is
based on the theory of chronotaxic systems, which characterises nonautonomous
oscillations as a method for stabilising against external perturbations [34]. We ex-
tend this to include multiple oscillators of each process, transforming the glycolytic
and OXPHOS processes into weighted networks of Kuramoto oscillators [17]. We
also incorporate the findings of Lucas et al. [21], deterministically varying the fre-
quencies of the oscillations.

This model is represented diagrammatically in figure 1. It consists of four main
elements – two weighted Kuramoto networks of phase oscillators representing gly-
colysis and OXPHOS, and two sets of phase oscillators driving these networks,
representing glucose and oxygen.
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Fig. 1 Oscillator model diagram, where each circle represents a glycolysis (GO), glucose (G),
mitochondrial OXPHOS (MO) or oxygen (O) oscillator, and each line a coupling.

That these processes are oscillatory has been extensively established by exper-
imentation, and further, that they may do so nonautonomously [2, 5, 6, 9, 13, 14,
18–20, 24–26, 28–30, 35–37]. The networks of the model reflect the fact that gly-
colysis occurs in a cell distributed throughout the cytosol, undergoing multiple
different reactions simultaneously, and that these reactions appear to communi-
cate through the exchange of acetaldehyde molecules [10, 16, 22, 29, 39]. Similarly,
cells contain multiple mitochondria, each undergoing OXPHOS, communicating
through molecular exchange, common regulation and inter-mitochondrial nano tun-
nels [3, 4, 12, 18, 30, 38]. The weighting of these networks, such that neighbouring
oscillators influence one another more strongly than those more separated, reflects
the spatial distances between these individual processes, and the diffusive nature of
their molecular-exchange-driven communications.

We now introduce the mathematical formulation of these elements, beginning
with the concept of phase oscillators. These are derived from ordinary differential
equations that exhibit self-sustaining oscillations in their state dynamics. Phase, in
this circumstance, is defined as the position of the equation along its oscillatory cy-
cle at a given time. The frequency here refers to the velocity of this phase, which
we allow to vary in time. We choose to focus on phase as the building blocks of our
model, initially discarding the amplitude of the oscillations. This is because at a mi-
croscopic level the oscillator is a unit defined with a phase only, while the amplitude
is built at a mesoscopic level, resulting from the mean field of the network.

The oscillators’ phase can be further defined in the immediate region around its
oscillations in state space through the use of isochrons. Isochrons connect all points
in the region adjacent to a stable cycle with the one point on the cycle that, after
a time, will first meet the perturbed points back on the cycle as the perturbation
decays. Thus all these points are defined by the same phase [27, 32].

For nonautonomous oscillators we may also make this extension of definition,
by considering each state in time as an autonomous system of slightly different
frequency to the ones proceeding and following it. So long as the cycle of each au-
tonomous system exists in the region of attraction of the system proceeding it, we
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may define the former’s phase via the isochrons of the latter system. This assump-
tion hence requires that the change in the oscillator’s frequency over time remains
small in comparison to the frequency itself [15].

Having defined phase in the region of nonautonomous cycles, we can consider
methods of coupling oscillators. Because our approach focuses on the frequencies
and phases of the systems involved, phase coupling is used to model the effects
of the biological processes on one another. Through this form of coupling, oscilla-
tory systems perturb one another’s phase in a backwards or forwards direction, de-
pending on the comparative directions of oscillation of the two systems. Too strong
coupling, however, can perturb the phase beyond the region defined by isochrons.
Therefore in order for the perturbed system to remain in the region of its original cy-
cle, where phase is defined, we must further require that that the coupling generating
the perturbation is only weak [11, 27, 32].

We may now consider the equations of the model. First, the glycolysis and OX-
PHOS intra-network connections are defined as

θ̇GONi =
KGO

N

N

∑
j=1

Wi j sin
(
θGO j −θGOi

)

θ̇MONi =
KMO

M

M

∑
j=1

Wi j sin
(
θMO j −θMOi

)
, (1)

where the subscript GO represents the glycolytic network and MO the OXPHOS, N
the number of glycolytic oscillators, M the number of OXPHOS oscillators, KX the
relevant network coupling strength and θX the phase.

The weighting of edges within the glycolytic and mitochondrial networks con-
sists of more heavily weighting shorter edges, where the nodes are positioned
equidistantly around a ring. Mathematically, for i ≤ N

2

Wi j =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

W
|i− j| , for j ∈ [

1, i+ N
2 −1

]

W
| j−N − i| , for j ∈ [

i+ N
2 ,N

]
,

(2)

and for N ≥ i > N
2

Wi j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

W
|i− j| , for j ∈ [

i− N
2 +1,N

]

W
| j+N − i| , for j ∈ [

1, i− N
2

]
,

(3)
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where i denotes the index of the node under consideration, j the index of the node
at the other end of the corresponding edge, N the number of nodes in the network,
W a constant to be chosen, and Wi j the resulting weighting of the edge connecting
nodes i and j.

Next, the glucose and oxygen driving are defined as,

θ̇GOGi = εG sin(θGOi −θGi)

θ̇MOOi = εO sin(θMOi −θOi) , (4)

where the subscript G represents the glucose driving and O the oxygen, and εX
represents the coupling strength of the relevant driving.

Finally, the inter-network interactions arise through coupling each network to the
mean field of the other [33], such that

θ̇GOMOi = FGOrMO sin(ΨMO −θGOi)

θ̇MOGOi = FMOrGO sin(ΨGO −θMOi) . (5)

Here FX is the intra-network coupling strength, rX the Kuramoto order parameter,
where rX eiφ = 1

N ∑N
k=1 eiθXk and φ is the phase of the mean field arising from the

network, such that rX = 1 indicates a totally ordered network, while rX = 0 a totally
disordered one. Further, the average phase of network X is ΨX = 1

N ∑N
i=1 θXi.

The four governing differential phase equations therefore are,

θ̇Gi = ωGi(t)

θ̇Oi = ωOi(t)

θ̇GOi = ωGOi(t)+ θ̇GONi − θ̇GOGi + θ̇GOMOi

θ̇MOi = ωMOi(t)+ θ̇MONi − θ̇MOOi − θ̇MOGOi, (6)

where ωX (t) is the time-varying natural frequency of oscillator X . The signs of
the inter-network coupling terms are opposite to represent the inhibitory effects of
OXPHOS on glycolysis, and the excitatory effects of glycolysis on OXPHOS [20].

A comparison between an output of this model and an experimental observation
of cellular glycolysis in shown figure 2. The experimental data were obtained by
Amemiya et al. [2], who optically measured the NADH fluorescence, a by-product
of glycolysis, of batches of HeLa cells cultured under a variety of glucose starvation
conditions. The model output is the combined Kuramoto order parameter of the
glycolytic and OXPHOS networks, defined as

ΨGOMO =
1

(N +M)

(
N

∑
i=1

θGOi +
M

∑
j=1

θMO j

)
.
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Fig. 2 Sample output of the model (left) and the NADH fluorescence of a single HeLa cell from
the Amemiya et al experiment [2], normalised to within the range [0, 1] (right). The model output
is represented by the combined Kuramoto order parameter of both the glycolytic and OXPHOS
networks.

The parameter values are given in table 2.

Table 2 Parameters used in the simulation to generate the output displayed in figure 2

Parameter Value(s)

εG [0.1, 0.26]
εO 0.01

KGO 1
KMO 1
FGO 0.05
FMO 0.05
ωG [0.015, 0.065] Hz

ωGO [0.02, 0.04] Hz
ωMO [0.025, 0.075] Hz
ωO [0.02, 0.04] Hz
N 100
M 100
W 1

These results can be compared to the model of the same experiment by Amemiya
et al. [1] who constructed a classical autonomous model of just the glycolytic pro-
cess of a HeLa cell, in which mass was assumed to be conserved. Figure 2 in [1]
presents an analogous output to what we have shown here. The model by Amemiya
et al. involved 22 parameters in 7 governing equations, while our model relies on
the 13 parameters of table 2 in the 4 governing equations shown in equation 6.

While the overall trend and oscillating nature of the model output in figure 2 are
represented in the experimental data, we are undoing more analysis of the model to
better replicate the oscillation death and frequency seen in the experiment. Further
details of this simulation and analysis will be presented elsewhere.

261



Joe Rowland Adams and Aneta Stefanovska

4 Outlook

Modelling oscillating biological systems in their living state is a complex task. In
order to reproduce every oscillation, variation of frequency, and different regime of
stability a system offers, oscillations and nonautonomicity must be built in to the
foundations of a model.

Using this approach, we can replicate oscillatory biological data in all its variety
with only small changes to model parameters, that can themselves be matched to
experimental measurements. Investigating the parameters at which various combi-
nations of the oscillators of the model synchronise, and the transitions between these
relationships, can also reveal a significant amount about a biological system. Each
of these regimes can be understood as a healthy or pathological state of the sys-
tem, revealing the breakdown of which mechanisms can be identified with which
diseases [20].

Further, analysing the synchronisation of nonautonomous oscillator networks in
finite time has already uncovered the new phenomenon of intermittent synchroni-
sation [21]. Investigation of the metabolic model we have presented here, which
introduces multiple networks and more complex forms of coupling, promises yet
more unseen stabilisation behaviours.
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nels. Trends Cell Biol. 27, 787–799 (2017)

39. Weber, A., Prokazov, Y., Zuschratter, W., Hauser, M.J.B.: Desynchronisation of Glycolytic
Oscillations in Yeast Cell Populations. PLoS ONE 7, e43,276 (2012)

40. Wilson, D.F.: Oxidative phosphorylation: regulation and role in cellular and tissue metabolism.
The Journal of Physiology 595, 7023–7038 (2017)

264
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and biomechanical regulatory mechanisms
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Abstract In various areas of Medicine there is interest to incorporate information
on homeostasis and regulation to increase the predictive power of prognostic scales.
This has proven to be difficult in practice because of an uncomplete understanding
of how regulation works dynamically and because a common methodology does not
exist to quantify the quality of regulation independent from the specific mechanism.
In the present contribution, it is shown that time series of regulated and effector
variables from different regulatory mechanisms show universal features that may
be used to assess the underlying regulation.
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City, Mexico

Lorena Garcı́a-Iglesias
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1 Introduction

Apart from diagnosis and treatment, a third important task in medicine is prognosis.
Short-term prognostic scales of the order of days and weeks as for use in critical
and intensive care are based on vital signs, in particular point (one-time) measure-
ments of heart rate, respiration rate, blood pressure, blood oxygen saturation, body
temperature, state of consciousness, etc. Longer-term scales of the order of months
and years as used in geriatrics and palliative care include different aspects of the
patient’s functionality (physical, emotional, social, etc.) because average values of
physiological parameters tend to be within their normative ranges [4]. Attemps are
being made to incorporate also measures related to regulation and physiological
reserves, in particular in geriatric frailty scales, but these attempts have remained
mostly theoretical because of problems related to how to assess and measure regu-
lation [26, 38].

Physiological regulation was first advanced by Claude Bernard in the 2nd half of
the 19th century as the approximate constancy of the internal environment (“milieu
intérieur”) of the human body in the face of perturbations received from the exter-
nal environment. At the beginning of the 20th century, Walter Cannon included also
adaptive physiological responses to these external perturbations in an extended con-
cept which he coined homeostasis. Although homeostasis is one of the core concepts
of physiology, several sticky points remain in its understanding, e.g., how constant is
the approximate constancy of the internal environment, whether physiological reg-
ulation works as an on-off switch or whether it is active continuously, whether the
setpoint of a homeostatic mechanism is stable or whether it may change over time,
and how various homeostatic mechanisms interconnect hierarchically [23].

At least 3 different strategies exist to quantify homeostasis in clinical practice,
but no strategy is 100% satisfactory [9]. First, point (one-time) measurements of
vital parameters allow to check whether these are within their normal ranges. The
most obvious example is measuring body temperature to detect fever. Unfortunately,
only information on the end result of regulation is obtained but not on the dynam-
ical adaptation that underlies regulation. Second, the stimulus-response approach
where responses to standardized stimuli are measured, allowing to distinguish be-
tween adaptive and non-adaptive physiological responses. A typical example is the
glucose tolerance test in the diagnosis of diabetes. The major drawback is that not all
experimental stimuli are applicable in vulnerable populations such as elderly adults
or critical care patients. Third, realizing that the human body is never really in rest
but continuously responding to a wide variety of internal and external stimuli, the
time series of the spontaneous fluctuations of specific physiological variables can be
analyzed statistically in order to quantify the activity of the corresponding regula-
tory mechanisms. The most studied physiological time series is heart rate variability
(HRV) which offers a non-invasive proxy to assess the autonomous nervous system
[20, 32]. The disadvantage of this approach using physiological time series is that
having no information on the perturbations that generate these fluctuations makes it
difficult to compare between different subjects. Also, it is not obvious how the statis-
tics of these fluctuations evolve from ideal conditions of youth and health to adverse

266



A time-series approach to regulatory mechanisms

conditions of ageing or disease when physiological regulation becomes suboptimal.
Two different hypotheses exist to interpret these fluctuations but appear to mutually
contradict each other: the loss of complexity paradigm of Lipsitz and Goldberger
which predicts that complexity and variability decrease [19], whereas the critical
transitions paradigm of Scheffer et al. states that variability and non-gaussianity
increase in adverse conditions [33]. Moreover, West argues that homeostasis and
traditional gaussian statistics constitute conceptual barriers to understand the spon-
taneous fluctuations of physiological variables which should rather be studied within
the context of the new field of fractal physiology [39].

In order to solve this paradox, we point to the fact that different variables may
play different roles in physiological regulation. Indeed, recent advances in physiol-
ogy education distinguish between on the one hand regulated variables such as core
temperature and blood pressure that represent Bernard’s internal environment and
that are supposed to remain constant, and on the other hand effector variables such
as skin temperature and heart rate that are responsible for Cannon’s adaptive re-
sponses [23, 24]. We reasoned that these very distinct roles generate different statis-
tics for the corresponding time series [9, 10, 11]: (i) in optimal conditions, regulated
variables are characterized by a small variability around their respective setpoints
which reflects the characteristic constancy of the internal environment, whereas ef-
fector variables have a large variability reflecting their adaptive capacity, and (ii) in
adverse conditions, adaptive capacity and variability decrease for effector variables
with as a consequence a loss of the constancy of the internal environment and there-
fore an increase of the variability of the regulated variables. In order to compare
the variability from variables that often are measured in different units, we rescaled
fluctuations to percentages around the median value,

ΔX = 100×
(

X −median(X)

median(X)

)
, (1)

where X is the variable of interest, and we introduced a homeostatic parameter,

α = SD(ΔXe)/SD(ΔXr), (2)

which compares the relative variability of the regulated variable Xr of a specific reg-
ulatory mechanism and Xe a corresponding effector variable and where the standard
deviation SD may be used as a measure of variability [10, 28]. It has been sug-
gested that this approach may constitute a “bridge” between the loss of complexity
and critical transition paradigms [25]. In the present contribution, we will focus on
variables that are measurable continuously and in a non-invasive way, and we will
compare examples from our previous publications (body temperature and cardiovas-
cular variables) with new examples from physiology and biomechanics (ventilatory
variables and gait), see Table 1.
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Table 1 Regulatory mechanisms typically consist of one variable that is to be regulated and main-
tained constant and various effector variables that are responsible for adaptive responses to per-
turbations. Specific homeostatic mechanisms are often studied separately as if they function in-
dependently from each other which of course is an approximation; instead, homeostasis is known
to work in a hierarchical or nested way, where a regulated variable such as blood pressure at the
systemic scale may function as an effector variable at a local scale. Time series of regulated and
effector variables may show universal behaviour independent from the specific field of study, from
physiology to biomechanics.

regulated variable effector variables

core temperature skin temperature, vasomotor effects (vasoconstriction, vasodilata-
tion), shivering, sweating, etc.

blood oxygen saturation breathing rate, breathing amplitude, etc.
blood pressurea heart rate, ejection fraction, cardiac output, vasomotor effects (vaso-

constriction, vasodilatation), shivering, sweating, etc.
blood flowb blood pressure, heart rate, ejection fraction, cardiac output, vasomo-

tor effects (vasoconstriction, vasodilatation), etc.
average walking speed step length, cadence, etc.

a systemic/extrinsic regulation
b local/intrinsic regulation or autoregulation

2 Selected physiological and biomechanical regulatory

mechanisms

2.1 Physiological regulation of body temperature

The temperature of the human body depends on where it is measured [31]. It is the
core body temperature which represents the internal environment and which is to be
maintained constant in the face of changes of the external environment. One of the
most important effector variables allowing adaptation to these external changes is
skin temperature, which is modulated by limiting (vasoconstriction) or stimulating
blood flow (vasodilatation) through the capillaries below the skin. Skin temperature
depends on where on the body surface it is measured, in part because of variations in
the local surface-to-volume ratio. Heat transfer is limited and a higher temperature
is maintained proximally (on the trunk), whereas distally (on the extremities) heat
transfer is enhanced and temperature tends to be lower. Temperature variations are
slow and need to be measured over long time intervals, hours to days, to be studied
as a time series, see Fig. 1. Core temperature Tcore is a difficult variable to measure,
because a sensor needs to be introduced in a body orifice and maintained there for
the whole duration of the experiment. We explored body temperature regulation
previously [8, 10], here we also aimed at exploring whether skin temperature when
measured proximally, e.g., at the clavicula fossa Tclav, might function as a proxy for
Tcore to illustrate the dynamics of body temperature homeostasis in a more accessible
way and we contrasted with distal skin temperature measured at the wrist, Twrist.
We compared the probability distribution functions (PDF) of all variables using the
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dimensionless fluctuations of eq. (1) and calculated the homeostatic parameter α
of eq. (2). It can be observed that the PDF of Tcore is a superposition of 2 gaussian
distributions corresponding to small variations of ≈ 1% around a day and a night
setpoint. In the PDF of Tclav the 2 local maxima of the circadian cycle are still
present but in a less prominent way and variability is larger ≈ 5%. In the PDF
of Twrist the circadian cycle almost has become invisible, variability has increased
dramatically ≈ 10% and the distribution is non-gaussian and skewed to the left.
We indeed observe a larger variability for the effector variable Twrist than for the
regulated variable Tcore (α = 3.18) or Tclav (α = 2.15), which confirms our working
hypothesis and indicates that indeed Tclav may possibly serve as a proxy for Tcore
to assess body temperature regulation. Previously, we also found that variability of
Twrist decreases with adverse conditions of being overweight and obesity which may
indicate that adaptive capacity is lost [8, 10].

(a) core temperature and proxy (b) skin temperature at wrist

-15 -10 -5 0 5 10

0.1

0.2

0.3

0.4

X (%)

P
(Δ

X
)

(c) variability

Fig. 1 Homeostasis of body temperature. Shown are (a) the regulated variable of core temperature
Tcore and its possible proxy of skin temperature at the clavicula fossa Tclav, (b) effector variable
of skin temperature at the wrist Twrist, and (c) probability distribution functions (PDF) of fluctua-
tions ΔX of eq. (1) for Tcore, Tclav and Twrist comparing their variability. Time series are measured
continuously using thermochron iButtons at 30s sample intervals over 7 successive days (verti-
cal gridlines indicate midnight) and the prominent 24h periodic pattern is the circadian cycle. All
panels use the same color and style coding for the different variables, Tcore (dashed and shaded
purple curve), Tclav (continuous and shaded purple curve) and Twrist (continuous blue curve). Data
are from a healthy male adult.

2.2 Physiological regulation of blood oxygen saturation

Blood oxygen saturation, the percentage of arterial red blood cells carrying oxy-
gen, is one of the only regulated variables that can be measured continuously and
in a non-invastive way using a digital oximeter which can be developed in a well-
equiped university lab at the undergraduate level [14, 21]. In optimal conditions,
blood oxygen saturation is above 95% at sea level (above 90% at higher altitudes
such as Mexico City located at 2000m), below 80% organ functionality is compro-

269



Ruben Fossion, Ana Leonor Rivera et al.

mised and below 70% consciousness is lost. Corresponding efector variables include
breathing rate and breathing amplitude which can be measured using a chest strap.
Fig. 2 compares conditions of rest and exercise (2km walking). It can be seen that
during physical effort, muscles consume oxygen at an increased rate, breathing rate
is increased but nevertheless blood oxygen saturation is slightly lower than during
rest. The occasional large peaks in breathing amplitude during rest before the effort
correspond to sighs; breathing amplitude is increased drastically during rest after
the effort. Variability is larger for breathing amplitude (50-100%) than for breathing
rate (20-30%), and variability of both effector variables is larger than in the case of
the regulated variable (1%), with a homeostastic parameter of breathing rate with
respect to blood oxygen saturation of α = 18.27 (rest pre), α = 6.27 (walk) and
α = 10.71 (rest post), and a homeostastic parameter of breathing amplitude with
respect to blood oxygen saturation of α = 61.41 (rest pre), α = 38.57 (walk) and
α = 37.59 (rest post), which confirms our working hypothesis.

2.3 Physiological regulation of blood pressure

It is straightforward to realize point (one time) measurements of arterial blood pres-
sure using a sphygmomanometer. It is much more difficult to continuously monitor
blood pressure. Non-invasive devices exist, using volume-clamp techniques based
on control theory, such as the Finapres of Finapres Medical Systems and the CNAP
Monitor from CNSystems (CNAP stands for continuous non-invasive arterial pres-
sure), but these very expensive [1]. Heart rate on the other hand can be measured
easily using an electrocardiogram on the chest (ECG) or photoplethysmography
(PPG) on the finger or earlobes, and which is the principle of measurement used by
commercial smartwatches that monitor hear rate. There is a clear consensus that a
high heart rate variability (HRV) constitutes a protective factor for health [20, 32].
The significance of blood pressure variability (BPV) is less clear, although there are
indications that a high BPV represents a risk factor for negative health outcomes,
which raises the question whether in the specific case of hypertension treatment
should only focus on lowering high blood pressure levels or should try to reduce
BPV as well [27]. In previous publications, we found evidence for a higher variabil-
ity for heart rate than for systolic blood pressure in health [11], and a decrease of
HRV and an increase of systolic BPV in the adverse condition of type-2 diabetes
mellitus, in correspondence with our working hypothesis [9, 10, 28, 29]. In contrast,
here heart rate and systolic blood pressure would seem to have similar variabilities,
see Fig. 3, panels (a)-(c). A difference between both variables is that the distribution
for systolic blood pressure behaves symmetrical and gaussian, whereas the distribu-
tion for heart rate is asymmetrical and right-skewed. Panels (d)-(f) compare average
distributions over 5 min segments with the distribution for the whole time series of 2
hr for heart rate, systolic and diastolic blood pressure. It can be seen that variability
increases only slightly for heart rate with time scale but that it increases much more
importantly for systolic blood pressure. Diastolic blood pressure results to be much
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Fig. 2 Homeostasis of blood oxygen saturation in rest before (top row), after (bottom row) and
during the physical effort of a 2km walk (middle row). Shown are (a) blood oxygen saturation SpO2
in percent, (b) breathing rate BR in cycles per minute and breathing amplitude BA in arbitrary units,
and (c) probability distribution functions (PDF) of fluctuations ΔX of eq. (1) for SpO2, BR and BA
comparing their variability. All time series are fragments of 5 min, measured at 1s sample intervals
using a Masimo MightySAT oximeter (SpO2) and a Zephyr Bioharness (BA and BR). All panels
use the same color and style coding for the different variables, SpO2 (continuous and shaded black
curve), BR (dashed gray curve) and BA (continuous gray curve). Data are from a healthy female
undergraduate student.

more variable than both heart rate and systolic blood pressure. Homeostatic param-
eters for heart rate with respect to systolic blood pressure are α = 1.07 (average
over fragments of 5min) and α = 0.83 (over whole time series of 2hrs) and for heart
rate with respect to diastolic blood pressure α = 0.66 (average over fragments of
5min) and α = 0.61 (over whole time series of 2hrs). Some physiological consider-
ations may be able to explain these values. Systolic blood pressure depends mostly
on cardiac output and in lesser degree also on arterial elasticity, whereas diastolic
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blood pressure depends in the first place on arterial elasticity [36]. Therefore, it may
be expected that systolic blood pressure participates actively in regulation whereas
diastolic blood pressure possible plays a more passive role. Another consideration
is that blood pressure may be a regulated variable at the systemic scale but plays
an effector role at the local scale of specific organs, see Table 1, and the discus-
sion section. This more passive role for diastolic blood pressure may be reflected by
the homeostatic parameter α which appears to be independent from the time scale,
whereas the variation in α with time for systolic blood pressure may indicate an
alternation between the different roles of effector and regulator.
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(f) diastolic pressure (DBP)

Fig. 3 Homeostasis of blood pressure. Shown are (a) systolic SBP and diastolic blood pressure
DBP in arbitrary units, (b) heart rate HR in beats per minute and (c) average probability distribution
functions (PDF) over 5min fragments of fluctuations ΔX of eq. (1) for SBP and HR comparing their
variability. Average PDFs over 5min fragments are compared with PDFs of the complete 2hr time
series for (d) heart rate HR, (e) systolic blood pressure SBP and (f) diastolic blood pressure DBP.
Time series are on beat-to-beat basis with a length of 2hrs in supine rest. Data from a healthy young
adult from the Physionet-Fantasia database [17, 13].

2.4 Biomechanical regulation of gait

The specific term of “homeostasis” is reserved for physiological regulation. Reg-
ulation also appears in other disciplines of medicine, e.g., the dynamics of biped
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gait in biomechanics. Average walking speed v, possibly a regulated variable, is
considered as the 6th vital sign because physical funcionality and independence are
compromised when it drops below approx. 1m/s, e.g., in the case of age-associated
frailty [12]. Elderly adults are often described to walk with a “cautious” or “senile
gait”, i.e., with small steps and a high step frequency or cadence [41, 18], both prob-
ably effector variables. When balance is altered, because of external factors such as
walking in a moving train [2] or on a ship at sea [37] or because of internal fac-
tors such as pregnancy [22], obesity [5] or ageing [18], gait becomes similar to a
“waddle”, i.e., with an increased step width and larger associated mediolateral ac-
celeration, also an effector variable. Fig. 4 shows fragments of time series of the
effector variables of mediolateral aML and anterioposterior acceleration aAP which
oscillate around 0 and where each oscillation corresponds to an individual step, and
vertical acceleration aVT which oscillates around -1 because of the constant contri-
bution of gravity. The PDFs of variability around the corresponding medians show
that variability is smaller for aML than for aAP and aVT, in particular α = 1.53 in
the former case and α = 2.86 in the latter case (comparing here different effector
variables), which makes sense because the former component does not contribute
to the forward movement whereas the latter two components do (this is obvious
for aAP but also applies to aVT where especially for running vertical acceleration
must be large enough to suspend both feet in the air simultaneously for each step).
We have preliminary results that the variability of aAP and aVT decreases and that
the variability of aML increases with age-associated frailty, constituting a subopti-
mal regulation of gait, which is also the reason that these variables are presented in
different panels in Fig. 4.
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Fig. 4 Regulation of gait. Shown are (a) mediolateral acceleration aML in units of the Earth grav-
itational constant g = 9.81m/s2, (b) anterioposterior aAP and vertical acceleration aVT in units of
g and (c) probability distribution functions (PDF) of fluctuations ΔX of eq. (1) for aML,aAP and
aVT comparing their variability. Time series fragments of 5s are shown and the PDFs are for the
complete walk exercise of 2km (approx. 20min) of Fig. 2. Measured with the triaxial accelerome-
ter of the Zephyr Bioharness with a sampling interval of 10ms. All panels use the same color and
style coding for the different variables, aML (shaded orange curve), aAP (blue curve) and aVT (red
curve). Data from a healthy female undergraduate student.
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3 Discussion

Homeostatic principles of approximate constancy and therefore small variability of
regulated variables associated to the internal environment and large variability be-
cause of adaptation to perturbations by effector variables are very clearly observed
in time series related to body temperature homeostasis and the homeostasis of blood
oxygen saturation, where skin temperature is much more variable than core temper-
ature (Fig. 1), and breathing rate and breathing amplitude are much more variable
than blood oxygen saturation (Fig. 2). In previous contributions, we have shown
that in adverse conditions of ageing and/or disease the variability of regulated and
effector variables deviates in opposite directions: decreasing for effector variables
reflecting their diminished adaptive capacity and consequently increasing for reg-
ulated variables reflecting the more instable internal environment [9, 10]. This ap-
proach may offer a “bridge” between the paradigms of loss of complexity [19] and
critical transitions [33].

This time-series approach can help to solve some of the “sticky points” men-
tioned in the introduction. The spontaneous fluctuations of physiological time series
at all time scales clearly contradict the notion that physiological regulation would
work as an on-off switch (on at some times and off at other times) and suggest that
regulation is working continuously. Circadian cycles are a clear example of how the
setpoint of a homeostatic mechanism may change over time, e.g., core body tem-
perature is lower during the night than during the day, probably with the objective
to save energy.

Another “sticky question” is how constant precisely the approximate constancy
of the internal environment is. The answer may be that it depends on the specific
homeostatic regulatory mechanism in question. In the cases of core temperature and
blood oxygen saturation, we saw that they are maintained within a few percent of
their median values. It may be interesting as well to consider the relative variabil-
ity of specific regulated variables with respect to a corresponding effector variable.
Since the work of Schrödinger where he interpreted the phenomenon of life from
the perspective of physics, people have wondered about the order of internal struc-
tures and processes of the human body whereas according to the 2nd law of ther-
modynamics entropy should increase with time [30, 34]. Regulatory processes may
function as an entropy pump, creating order in the internal environment by pump-
ing excess entropy towards the external environment and creating extra entropy in
the process. The homeostatic parameter α may express quantitatively how effective
specific regulatory mechanisms are as an entropy pump. If true, then body temper-
ature regulation and in particular blood oxygen saturation regulation would appear
to work as good entropy pumps.

Standard textbooks on physiology discuss different homeostatic regulatory mech-
anisms one for one and separately, e.g., those listed in Table 1, as if they were
independent from each other. This is not the case, different homeostatic regula-
tory mechanisms are interconnected as conveyed by the concept of hierarchical or
nested homeostasis [6, 24]. One example may be blood pressure homeostasis. Al-
though heart rate variability is one of the best studied physiological time series, its
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statistics and that of the corresponding systolic and diastolic blood pressure is dif-
ficult to interpret in terms of regulatory mechanisms (Fig. 3). A possible reason is
that blood pressure may play the role of a regulated variable at the systemic scale of
the whole body but may function as an effector variable at the local scale of specific
organs. Systemic blood pressure must be kept at a level which is convenient at aver-
age for all organs and tissues in the body, whereas some specific organs are so vital
for survival, e.g., brain, heart, kidney, and possibly also eye [16], skin [40], etc., that
their blood flow is very closely regulated and maintained constant by compensating
between blood pressure on the one hand and vasomotor effects on the other hand
[7, 15].

Regulated variables, such as core temperature and aslo blood pressure, tend to
be more difficult to monitor continuously and non-invasively than corresponding
effector variables, such as skin temperature and heart rate. We saw that regulated
variables tend to be more symmetrical and gaussian, whereas effector variables ap-
pear to be characterized by more asymmetrical and non-gaussian distributions with
a tail. Perhaps the focus on heart rate variability which is easy to monitor and which
is well studied, has led West to conclude that homeostasis and gaussian distribu-
tion are obstacles to understand physiological time series [39]. Our results seem to
indicate that gaussian statistics describes well regulated variables associated to the
approximately constant internal environment, whereas fractal statistics and power
laws may be better suited to describe the associated effector variables [11]. Home-
ostasis then is a concept which allows to combine the dynamics of regulated and
associated effector variables within a same regulatory mechanism.

This time-series approach appears to capture general features of regulatory mech-
anisms and is applicable not only to physiological mechanisms, such as respiration
and body temperature, but also biomechanical mechanisms, such as gait, and there-
fore is promising to incorporate information from regulation in prognostic scales in
various medical disciplines.

4 Conclusions

Time series of physiological and biomechanical variables appear to reflect key as-
pects of the underlying regulatory mechanisms. The relative variability of a regu-
lated variable and the corresponding effector variables would seem to offer a means
to quantify the quality of the regulation. An advantage of focusing on such common
and universal features would be that using the same methodology various regulatory
mechanisms can be incorporated into prognostic scales.
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29. Rivera, A.L., Estañol, B., Fossion, R., Toledo-Roy, J.C., Callejas-Rojas, J.A., Gien-López,
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InterCriteria Analysis Approach as a Tool for

Promising Decision Making in Physiological

Rhythms

Krassimir Atanassov and Tania Pencheva

Abstract Recently developed InterCriteria Analysis (ICrA) approach has being in-
tensively gained popularity as quite promising approach to support decision mak-
ing process in biomedical informatics studies, and in particular – in physiological
rhythms. ICrA has been elaborated to discern possible similarities in the behaviour
of pairs of criteria when multiple objects are considered. The approach is based on
the theories of intuitionistic fuzzy sets and index matrices. Up to now, ICrA has
been successfully applied in economics, different industry fields, ecology, artifficial
intelligence, e-learning, etc. ICrA has been demonstrated as promising tool also in
studies related to medicine and bioinformatics, which are in the focus of this inves-
tigation.

1 Introduction

The idea of InterCriteria Analysis (ICrA) has been originally developed in the pe-
riod 2014-2015 [4, 5]. In the coming years, the interest to the concept increased
significantly. The approach has become a subject of theoretical studies as well as
of applications in various fields, e.g. industry, economics, education, medical and
biotechnological processes, artificial intelligence, including neural networks, expert
systems, bio-inspired and metaheuristics algorithms, etc. Recently, a survey on the-
ory and applications of ICrA approach [7] has been spread to the scientific commu-
nity.
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The concept of ICrA is based on two mathematical formalisms, developed by
Atanassov, namely the theories of Index Matrices (IM) [1, 3] and Intuitionistic
Fuzzy Sets (IFSs) [2], thus relying on methodology different from the classical cor-
relation analysis.

ICrA has been designed as a novel method for detecting the levels of pairwise
correlations for a set of criteria and a set of objects (measurements or evaluations)
against these criteria. The ultimate goal of ICrA is to detect if some of the crite-
ria exhibit high enough correlations with others, so that skipping them from the
further decision making process would not affect the whole process [8]. The mo-
tivation behind this method is for an eventual elimination of some of the criteria,
when measurement against these comes at a higher cost, consumes more time or
other resources, or is considered undesirable in any other reason. Selecting these
high enough correlations requires either an expert decision or an algorithm for the
precise establishment of the thresholds, beyond which the top-correlating criteria
are selected in order to yield certain problem-specific conclusions.

2 Brief description of ICrA

Here we will briefly repeat the theoretical framework of the proposed approach,
firstly proposed in [5]. The approach employs an index matrix M of m rows
{O1, ...,Om} and n columns {C1, ...,Cn}, where for every i, j,k, l (1≤ i≤ j ≤m,
1≤ k ≤ l ≤ n), Oi is an evaluated object,Ck is an evaluation criterion, and eOiCk is the
evaluation of the i-th object against the k-th criterion, defined as a real number or
another object that is comparable according to relation R with all the rest elements
of the index matrix M

M =

C1 . . . Ck . . . Cl . . . Cn
O1 eO1C1 . . . eO1Ck . . . eO1Ck . . . eO1Cn

...
...

. . .
...

. . .
...

Oi eOiC1 . . . eOiCk . . . eOiCk . . . eOiCn

...
...

. . .
...

. . .
...

O j eO jC1 . . . eO jCk . . . eO jCk . . . eO jCn

...
...

. . .
...

. . .
...

Om eOmC1 . . . eOmCk . . . eOmCk . . . eOmCn

(1)

From the above requirement for comparability follows the relation R(eOiCk ,eO jCk)

for each i, j,k. The relation R has dual relation R, which is true in the cases when
relation R is false, and vice versa.

For the needs of this decision making method, pairwise comparisons between
every two different criteria are made along all evaluated objects. During the com-
parison, it is maintained one counter of the number of times when the relation R
holds, and another counter for the dual relation.
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Let Sμ
k,l be the number of cases in which the relations R(eOiCk ,eO jCk) and

R(eOiCl ,eO jCl ) are simultaneously satisfied. Let also Sν
k,l be the number of cases

in which the relations R(eOiCk ,eO jCk) and its dual R(eOiCl ,eO jCl ) are simultane-
ously satisfied. As the total number of pairwise comparisons between the object
is m(m−1)/2, it is seen that there hold the inequalities:

0≤ Sμ
k,l +Sν

k,l ≤ m(m−1)/2. (2)

For every k, l, such that 1≤ k ≤ l ≤ m, and for m ≥ 2 the following two numbers
are defined:

μCk,Cl = 2
Sμ

k,l

m(m−1)
,νCk,Cl = 2

Sν
k,l

m(m−1)
. (3)

In the terms of ICrA, μCk,Cl is a degree of agreement, while νCk,Cl – a degree of
disagreement. Obviously, both μCk,Cl and νCk,Cl , are numbers in the [0, 1]-interval,
and their sum is also a number in this interval. What is complement to their sum to
1 is the number πCk,Cl , which corresponds to a degree of uncertainty.

The pair, constructed from these two numbers, plays the role of the intuitionistic
fuzzy evaluation of the relations that can be established between any two criteria Ck
and Cl . In this way, the index matrix M that relates evaluated objects with evaluat-
ing criteria can be transformed to another index matrix M∗ that gives the relations
among the criteria:

M∗ =

C1 C2 . . . Cn
C1 〈1,0〉 〈μC1,C2 ,νC1,C2〉 . . . 〈μC1,Cn ,νC1,Cn〉
C2 〈μC2,C1 ,νC2,C1〉 〈1,0〉 . . . 〈μC2,Cn ,νC2,Cn〉
...

...
...

. . .
...

Cn 〈μCn,C1 ,νCn,C1〉 〈μCn,C2 ,νCn,C2〉 . . . 〈1,0〉

(4)

From practical considerations, it has been more flexible to work with two index
matrices Mμ and Mν , rather than with the index matrix M∗ of intuitionistic fuzzy
pairs (IFPs).

The final step of the algorithm is to determine the degrees of correlation between
the criteria. Let α,β ∈ [0;1] be the threshold values (which are of the user’s choice),
against which we compare the values of μCk,Cl and νCk,Cl . We call that criteria Ck
and Cl are in:

• positive consonance, if μCk,Cl > α and νCk,Cl < β ;
• negative consonance, if μCk,Cl < β and νCk,Cl > α;
• dissonance, otherwise.

In a completely identical way, it is possible (though not always meaningful) to
build a matrix giving the correlations between the objects. The only difference is
that the input index matrix M has to be transposed, and the resultant matrix, e.g.,
M∗∗, is with dimensions m×m.
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3 ICrAData software package description

Here we provide a quick overview of ICrAData – the software implementing the
ICrA approach [9]. It is written in the Java programming language and requires the
installation of Java Virtual Machine. This makes it usable under Linux andWindows
environment. ICrAData is freely available for use and its latest version ICrAData
v2.3 can be downloaded from http://intercriteria.net/software/ (Last access August
24, 2020).

In order to easily load data from other software products, the capability to load
csv (comma separated values) files with headers (row and column) which are taken
as names for objects and criteria, was added to the software. This allows loading of
tables from MS Excel/LibreOffice Calc.

The user interface consists of a left panel for the input data, the central panel for
the result of ICrA in a coloured table view, and the rightmost panel showing the
graphical interpretation of the results.

For better visualization of the results, table cell colours were added, according to
the following rules, depending on the user defined α and β thresholds:

• The results are displayed in dark-green colour in case of positive consonance;
• The results are displayed in red colour in case of negative consonance;
• Otherwise, in case of dissonance – violet colour.

The default values used by the software ICrAData are α = 0.75 and β = 0.25,
respectively.

ICrAData saves a draft automatically each 15 minutes and on program exit in
order to prevent accidental loss or overwriting of data.

The features outlined above allow for better automation in working process with
program and additional improvements in that regard are also planned in the future.

4 ICrA applications in biomedical research and physiological

rhythms

Going slightly beyond physiological rhythms, ICrA approach has encountered nu-
merous applications aiming to support decision making in different areas, connected
to medical investigations and bioinformatics. In [11], ICrA is applied on a dataset of
thermo-dynamic parameters derived from thermograms of blood plasma proteome
of patients with colorectal cancer recorded by differential scanning calorimetry. The
goal of the study was to establish interdependences between the derived calorimet-
ric parameters that were not inferred so far from the calorimetric data and to discuss
their importance for the clinical application of differential scanning calorimetry.

In [10], ICrA, combined with Pearson’s and Spearman’s correlation analysis,
is applied to a large dataset of calorimetric and biochemical parameters derived
for the serum proteome of patients diagnosed with multiple myeloma. As a result,
intercriteria dependences have been identified that are general for the various types
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of multiple myeloma and thus can be regarded as a characteristic of this largely
heterogeneous disease: strong contribution of the monoclonal protein concentration
to the excess heat capacity of the immunoglobulins-assigned thermal transition; shift
of the albumin assigned calorimetric transition to allocation where it overlaps with
the globulins assigned transition and strong shift of the globulins assigned transition
temperature attributable to monoclonal proteins conformational changes.

In [12], ICrA is applied to real data connected with health-related quality of
life (HrQoL). The EQ-5D-3L questionnaire for measuring HrQoL for a represen-
tative sample of 1050 residents of Burgas (the fourth-largest in Bulgaria) is used.
The data was analyzed to identify the best correlations between the indicators, to
discover dependent and independent indicators and the relationships between them.
The comparison can help to describe the behavior of the used indicators and their as-
sessment. The increase of the coefficient of consonance and the entry in the zone of
strong positive consonance means strong correlation between the respective pair of
criteria, which may justify the removal of one of the criteria in the pair on the basis
that its informational values is lesser. Removal of indicators leads to simplification
of the process of evaluation.

In [13, 14] a dataset of Behterev’s disease patients is analyzed applying ICrA,
aiming at approbation of this novel approach to medical data with the goal to dis-
cover correlations between important health indicators based on available patients’
data. The selected set of health indicators comprises: physical functioning; role
functioning based by physical conditional; bodily pain; general health status; vital-
ity; social functioning; role functioning based by emotional conditional; and mental
health. Results obtained confirm once again that the health condition depends on
the emotional condition and determines the social functioning of the patients under
observation.

When looking for possible application of ICrA toward the physiological rhythms,
in this investigation a novel idea of ICrA application in a totally new direction is
proposed here, namely to adapt ICrA assessments in a way to compare two curves,
which – in particular case, might represent physiological rhythms.

Let us have two lines L1 (see Fig. 1) and L2 (see Fig. 2).
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Fig. 1 Line L1
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Fig. 2 Line L2

Let M, N ad P be the degrees of coincidence, of difference and of uncertainty of
between both lines. Then the three degrees can be evaluated as it is shown on Fig. 3,
where the area of the part of the figure that is in white corresponds to M, the area
of the part marked with horizontal lines corresponds to N and the part marked with
vertical lines corresponds to P (see Fig. 3).
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Fig. 3 An example for evaluation of degrees of coincidence, of difference and of
uncertainty between lines L1 and L2

Further, we can assess the nearness between the two lines based on the intuition-
istic evaluations μ and ν , where

μ =
M

M+N +P
,ν =

N
M+N +P

. (5)

In fact, this is an IFP with a degree of uncertainty π = 1−μ −ν = P
M+N+P .

Thereby, in case of n lines, we can search the nearness between them using ICrA
and working with IFPs.

This idea might be further used in analyses of different types of physiological
rhythms, including ECGs, as well as to even harder from a mathematical point of
view electromyography (EMG) signals.

Some first steps have been done in the ICrA application in analysing the features
in a database of electrocardiography signal (ECGs). The investigation is carried out
over the training set of the Computing in Cardiology Challenge 2017 Database from
PhysioNet (https://physionet.org). Some very promising results have been obtained,
but in this investigation the researchers were faced to some limits of ICrAData,
namely working with a big data. This research is in a fast progress now, both on the
software improvement, as well as in data analysis.
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5 Conclusions

In all applications so far, ICrA shows prerequisites to assist in decision making pro-
cesses in order to guide the selection of the most appropriate choice among many.
In this investigation, ICrA has been demonstrated as a quite promising tool to as-
sist decision making in such challenging field as physiological rhythms. The novel
idea for a comparison of curves presenting physiological rhythms based on ICrA
approach has been introduced, which may be in benefit in other fields of research as
well.
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“Ome” sweet “ome”: From the Genome to the
Conductome

Christopher R. Stephens

Abstract The last few decades have seen science both changed and confronted by
the appearance of enormous quantities of data, that have arisen from the develop-
ment of multiple new technologies. The impact of this “data revolution” has been
particularly acute in the biological sciences, where bioinformatics has made great
strides in integrating such data into new theoretical frameworks and adopting new
computational tools. One framework that has prospered is that of the “ome”, which
adopts a more holistic view of the physical structures that make up a cell, tissue or
organism and their mutual interactions. The structures associated with the principal
“omes” - genome, proteome, transcriptome and metabolome - are all microscopic,
being associated with different biological molecules. Recently, however, the omic
approach has been applied to more “mesoscopic” structures, such as organs and tis-
sues, with the resulting totality of structures conforming the physiolome. However,
all these omes are associated with particular spatial and temporal scales, and are
therefore inadequate for addressing the real complexity of living systems, which
are both multi-scale and highly multi-factorial with respect to those scales. We ar-
gue that a “disease-ome”, for example, as the totality of factors associated with a
given disease, requires the integration all the current omes, and more. Thus, a holis-
tic description of an important disease, such as obesity, requires all micro, meso
and macro factors, as well as an understanding of both their upstream and down-
stream causal relations. This is particularly challenging when the relevant factors
are distant in scale. Thus, the causality between overeating and obesity at the indi-
vidual level is clear. However, the link between a certain genotype and obesity or
the link between food production and obesity is much less clear. In spite of this, all
of these factors can, in principle, be collected and included in a prediction model,
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using present technology and computational tools. We argue that the fundamental
concept that most naturally links the micro, meso and macro is that of behaviour,
as it is influenced by both micro (nature) and macro (nurture) factors and, in turn,
influences them. We discuss the concept of the Conductome - the totality of factors
that influence behaviour, using as an example food consumption and obesity, and
emphasise its utility as an unifying concept that allows for a truly systemic view of
a living organism.

Key words: Conductome, behaviour, genome, physiolome, complexity, obesity

1 The Micro-omes

In the last few decades there has been a trend towards a more global, systemic ap-
proach to the study of biological systems. A manifestation of this more holistic
approach is the proliferation of different “-omes”, and their corresponding fields - “-
omics” [1], where the emphasis is on identifying as complete a set of relevant “struc-
tures” as possible that belong to the corresponding “ome”. The original “omes”,
such as the genome, originated in molecular biology, where the relevant structures,
such as genes, proteins, RNA transcripts and metabolites, are all molecules, and as
such we can think of the corresponding omes as all being micro-omes. In the context
of these micro-omes, the natural mathematical framework for understanding struc-
ture and interactions has been that of a network, where the nodes are structures and
the links represent interactions. The information needed to construct such an “ome”,
as representing a totality of structures, is enormous, and has required the develop-
ment of advanced technologies, such as high-throughput sequencing and capillary
electrophoresis mass spectrometry in the case of bioinformatics [2].

Through a physicist’s eyes, this “omic” approach seems no different in spirit to
the traditional approaches to be found in physics and chemistry. The Periodic Table
is, in that sense, the “atom-ome”, the complete set of relevant structures at the atomic
level. There is also an “elementary particle-ome” and a “moleculome”. Indeed, the
“omes” of molecular biology should be subsets of this moleculome. Although it
is important to be able to identify the set of relevant structures, or the “building
blocks”, that form an “ome”, this difficulty pales in comparison to identifying the
complete set of interactions between these structures. The Periodic Table gives us
the totality of atomic structures but certainly not the totality of atomic interactions.
Thus, the set of possible molecules is much larger than the set of possible atoms.
Additionally, interactions are manifestly contextual, meaning that the interaction be-
tween two structures is intimately dependent on the context of the environment they
are in. For example, the interactions between two carbon atoms are quite different
if they are in different DNA molecules versus the same one, or close versus distant
in the DNA molecule, or within a chromatin complex or not.

Another way to put this is that: understanding interactions at one scale is no guar-
antee that we can understand interactions at another. Thus, just as an understanding
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of atomic physics does not a priori allow for a quantitative, predictive understanding
of molecular physics, as molecules are emergent structures relative to atoms, so an
understanding of the genome “gene by gene” does not a priori allow for a quanti-
tative, predictive understanding of what the genome does or, indeed, even what a
small set of genes do, due to the presence of genetic interactions (epistasis) [4]. The
difficulty of relating structures at one scale to emergent structures at another is one
of the most difficult problems in science. Exceedingly difficult in physics, while in
the biological sciences it is almost overwhelming. In physics there are several the-
oretical frameworks that encompass passing from the micro to the macro, the link
between statistical mechanics and thermodynamics being the most developed. At a
more general level, synergistics [3] has been applied to both physical and biologi-
cal systems and attempts to delineate generic features and general principles, such
as self-organisation and the existence of a relatively small number of order param-
eters, that lead to a description of the macro from the micro. The standard omic
approach, in contrast, is more directly phenomenological in nature. Moreover, the
current molecular omes are also associated with a particular type of structure: genes
with the genome and proteins with the proteome. However, genes and proteins also
interact with each other in a complex fashion, from the production of proteins by
the transcription of DNA through proteins as transcription factors that control gene
expression.

2 Disease-omes: relating the micro to the macro

Although the “omic” approach has its origins in the micro, recently the idea has
been extended to more macro “omes”, such as the physiolome [5, 6, 7, 8], where
the relevant structures, such as organs or tissues, are much fewer in number. In this
case, a network-based approach can naturally be applied and different interaction
measures introduced, such as the degree of correlation in the time series of the dif-
ferent organs such as lung and heart. Like the genome however, the physiolome is
associated with particular spatial and temporal scales that stem from the physical
structures it considers. Thus, although a goal of the omic approach is to be less re-
ductionist, the current omes are all very much linked to a certain scale. However, a
true hallmark of complexity - of living systems - is its multi-scale nature, with rele-
vant structures at many different scales. Thus, for instance, the heart, thought of as a
physiological unit, has multiple associated spatial and temporal scales: the cellular
scale, where pacemaker cells set the underlying heart rate, to circadian variations
in the functioning of the heart at the cellular level [9], and on to the long term irre-
versible changes across a lifetime that are associated with heart disease. In this case,
what we do at the macro scale, such as eating a lot of high-cholesterol foods, has
an effect at the cellular level, leading, for example, to atherosclerosis which, in turn,
has an effect at the macro level, where an artery becomes blocked, leading to a my-
ocardial infarction. However, myocardial infarction itself has also been confirmed
to have a genetic component [10], which then introduces a scale below the cellular
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level, that of a single nucleotide. Unfortunately, as with many genetic studies, the
causal chain that links the observed correlation between a micro property, such as
a particular Single-nucleotide polymorphism (SNP), and a macro property, such as
atherosclerosis and a subsequent myocardial infarction, is very poorly understood.
Of course, the cellular level must enter as a relevant scale that links the two.

Thus, we are faced with one of the principal challenges of describing truly com-
plex phenomena: the ability to incorporate structures, and their interactions, that
exist at multiple scales. In other words, a micro-level molecular “ome” is in no way
sufficient to encompass an important phenomenon such as atherosclerosis. How-
ever, neither is a “meso” ome, such as the physiolome, due to the need to incor-
porate micro factors such as SNPs. The challenge does not stop there, however.
If we consider long term changes in heart structure and function, then two other
principal categories of factor enter: aging and “lifestyle”, which are the remit of
macro-disciplines, such as epidemiology. Studying the disease can be done “bottom
up” - trying to link macro effects, such as the clinical manifestations of disease, to
the micro [11]. Indeed, much of the focus of the micro-omes has been to link macro-
scopic disease states to genomic, proteomic, transcriptomic and metabolomic data.
In this case, the abstract mathematical framework is that of a conditional probabil-
ity, P(disease state|state o f the genome, proteome, metabolome etc). The more
conventional approach to disease prediction however, has been “top down”, linking
the disease state to macro-variables such as age, sex, socio-economic status etc. A
disease state however, is a complex multi-scale phenomenon, requiring a unification
of the bottom-up and top down approaches, as in biological systems the micro and
macro are linked and influence each other in a much deeper way than in physical
systems. For instance, aging sounds simple enough to account for, but, as is known,
chronological age and biological age are not the same, with the latter also having a
genetic component. They are also linked by lifestyle, by which we mean the universe
of external factors that affect the organism at multiple scales, from the genetic via,
for example, environment-induced mutations, to the truly macro, such as the degree
to which the environment itself favours the development of heart disease through,
for example, diet. In contrast, in physics, with a nucleome, atomome, moleculome
etc. we don’t need the nucleome to understand the atomome. “Atomomics” can be
developed in terms of structures - atoms - and their interactions without reference
to the nucleome and its constituents - nucleons - and their interactions - the strong
nuclear force.

We see then that if we wish to understand a phenomenon, such as heart disease,
“omically”, i.e., in the sense of a more holistic, non-reductionist perspective, it is
necessary to go beyond an “ome” that is linked to a particular range of scales, as
each only offers at most a partial view of the phenomenon. So, should we introduce
the concept of a “myocardial infarction-ome”? where it comprehends all the fac-
tors that influence that outcome? This potentially involves the genome, proteome,
metabolome, physiolome and several other omes that are still to be characterized,
such as a “sociolome” or a “psycholome”. However, at the same time the genome
is linked to many more macro phenomenon than that of a myocardial infarction.
Many, if not all diseases, have a genetic component. To try and be more precise:
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imagine a set of diseases, (C1,C2, . . . ,Cm), and a set of factors, (X1,X2, . . . ,XN),
that are potentially related to those diseases. These factors include genetic factors,
epigenetic factors, physiological factors, social factors etc. However, considering
the effect of all possible causative factors on the set of all known diseases is not
a recipe for success. We can group the totality of factors in a particular disease-
ome in groups - genes/SNPs, proteins, metabolites, cell structures, tissue and organ
changes, lifestyle factors etc. In this way however, we are faced with the perennial
question of causation versus correlation. Is a SNP a “direct” cause of a disease or a
correlative, indirect risk factor? Is socio-economic status a direct causal factor in the
development of heart disease or a proxy for, potentially, many other more directly
causal factors? What about diet? More directly causal? Then we have the fact that
the impact of diet is influenced by the genome - nutrigenetics - while diet, in turn,
affects gene expression - nutrigenomics. Life is complex. Literally. Nature affects
nurture and nurture affects nature.

We argue then that the standard “omic” approach is still too reductionist to com-
prehend a complex phenomenon such as a disease, which is associated with struc-
tures and their interactions at multiple scales and where the interactions can be be-
tween structures that are naturally described at quite different scales. Although a
network-based approach can be applied at the level of the disease-ome, by consid-
ering multiple diseases, for example, the natural framework for a given disease is,
again, a conditional probability: P(C = disease|X= disease causes and risk f actors)
where, for example, C could be a disease state and X the set of factors that we wish
to consider as conditioning factors on the probability to be in the disease state. Nat-
urally, the data requirements to construct P(C|X) are far greater than those of the
micro-omes, where the latter are just one component of the disease-ome and, gener-
ically, not even the most predictive part. Furthermore, due to the multi-scale nature
of the disease-ome, its construction through data has to transcend the disciplinarity
that still exists as the principle foundation of scientific research.

Mathematically speaking, the disease-ome, P(C|X), is a prediction model. Such
a prediction model may be transverse or longitudinal, depending on whether or not
C and X can be identified as states in time. For example, that C represents the devel-
opment of a disease in a certain time interval and X represents the set of predictor
variables identified in that time interval (transverse), or that they represent histories
up to the beginning of that time interval (longitudinal). Of course, when X is high
dimensional, a direct estimate of P(C|X) is impossible, as P(C|X) = 0, 1; i.e., every
element is unique and either exists in a single element or doesn’t. For example, no
two genomes are completely identical, and the vast majority of potential genetic se-
quences of length � - 4� - have never existed and probably never will. Thus, P(C|X)
must be estimated indirectly. There are, for instance, many machine learning based
methodologies that can help in this regard. Seen abstractly, P(C|X) represents a
Bayesian belief network, where, in principle, if one could deduce its structure as
a directed acylic graph would reveal the probabilistic relations between the differ-
ent variables Xi, both among themselves and with the disease state itself. The goal
would be to determine that graph that is most in accord with data. Unfortunately,
computationally, this is an NP hard problem. Rather than search through a large
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space of potential graphs, an alternative is to restrict the topology of the graphs. A
particularly useful approximation in this regard is the Naive Bayes approximation,
or generalisations thereof [12], that use Bayes theorem to relate the posterior prob-
ability P(C|X) to a likelihood P(X|C), then assume independence of the features,
Xi. In this approximation P(X|C) = ∏N

i=1 P(Xi|C) and so the contribution, P(Xi|C),
to the disease from each factor can be calculated observationally and studied sepa-
rately.

3 Omes from an Ecological perspective

An ecological analogy may help intuit the difference between the two types of
“ome”. The traditional molecular “omes” are akin to an ecological community,
where one is interested in the mutual interactions between all the structures in the
system. In ecology these are typically species. The construction of a disease-ome,
on the other hand, is more akin to the construction of an ecological niche, where,
now, the disease itself is seen as a “species”, as those factors that favour a high
value for P(C|X), relative, say, to a null hypothesis, P(C), can be viewed as be-
ing niche-like, favouring the presence of the disease, C, while low values relative
to the null hypothesis are anti-niche-like, favouring the absence of the disease. In
this context, taking type 2 diabetes as an example, a niche factor may be the pres-
ence of a disease-related SNP, such as rs8050136 [13], as may be the consumption
of carbonated drinks, or the price of carbonated drinks, or educational status, or
hours of exercise, or age, or knowledge of the health consequences of diabetes or
the health consequences of consumption of sugary foods, or a seemingly endless
array of other factors. Unlike the human genome project there is, to our knowledge,
no diabetes-ome project, where the goal is to obtain and integrate the multi-scale,
multi-discipline data that begins to represent the totality of factors that affect the
development of type 2 diabetes. Project 42, developed at the Centro de Ciencias de
la Complejidad of the UNAM is a step in that direction in the context of obesity and
metabolic disease. With over 3000 participants and several thousand variables, from
a spectrum of previously identified SNPs for risk of obesity and metabolic disease,
through demographic data, personal and family history, an ample set of biomark-
ers, anthropometric measurements, health knowledge, psychometrics, social char-
acteristics, actigraphy and habits; all in a publicly available platform for analysis.
The challenge of such data sets is to go beyond a static, statistical description to a
process-oriented causal characterisation. Besides the right mathematical tools, this
also requires domain-specific knowledge that spans multiple disciplines. The ex-
ample of genetics affecting the impact of diet and diet affecting the expression of
genes, while diet itself is a result of consumption and the consequence of a large
number of other factors, from family environment to culture and mass marketing
campaigns, speaks to the huge challenges of constructing a more process-oriented
framework. Even just discovering the true underlying causal connections between,
say, obesity and a single proxy variable such as educational level presents enormous
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challenges. Thus, the construction of P(C|X) via some suitable algorithm is just a
first necessary step.

An advantage of a Bayesian framework for developing the disease-ome is that,
based on a set of factors - “niche” dimensions - X, it can be naturally extended by
incorporating new information, such as new variables X′. In this case, the poste-
rior probability, P(C|X), relative to the prior probability, P(C), in the absence of
the information X can, in its turn, be taken as a new prior probability and a new
posterior probability, P(C|X′X), that incorporates information from both X and X′
constructed using Bayes theorem: P(C|X′X) = P(X′|CX)P(C|X)/P(X′|X). Again,
P(X′|CX) can then be estimated using one of several Machine Learning method-
ologies. Dynamics can be incorporated by considering X ≡ X(t), where the state
vector X(t) may also contain historical information. For instance, X(t) may contain
information about someone’s historical activity level such as: actual activity level,
activity level one year ago, activity level two years ago etc. [14]. Prediction in time
follows naturally from considering the estimation of P(C(t)|X(t ′)), where t ′ < t.
Thus, we may predict the probability for a disease state to occur at time t given
the disease niche at t ′. An example would be predicting if someone would become
diabetic in a certain year given their disease-ome in previous years.

4 The Conductome

A process-oriented perspective requires us to think in terms of temporal develop-
ment - of change. In the case of living systems, change is most naturally thought of
in terms of behaviour. It is behaviour that naturally links cause and effect, with be-
haviour being the natural response - effect - to external or internal stimuli - causes.
Indeed, one may argue that it is the sole medium by which organisms interact with
their environment, including with other organisms. It is clear that our genome codes
not only the physical structures of an organism but also what they do, up to the
collective behaviour of the organism as a whole, and beyond, to the collectivity of
groups of individuals. However, it should be equally clear that behaviour leaves an
imprint on the genome. To a large degree, the survival of an organism in its environ-
ment is associated with what it does. A behaviour that is apt for a given environment
will be propagated, genetically, if it has at least a partial genetic origin, or culturally.

The majority of, if not all, biologically relevant behaviours, such as sleeping,
eating, reproducing, evading predators, are linked to clocks and underlying physical
rhythms, such as the circadian rhythm, and are biological responses to fundamental
properties of the earth’s motion in space and time. These rhythms are a fundamental
part of the niche of almost all living organisms. Thus, we would argue, that it is be-
haviour that is the most natural link between the micro-omes, such as the genome,
and more macro-omes, that are proxied by those variables that are the area of in-
terest of disciplines such as epidemiology, sociology and psychology. Behaviour
is both caused by genetic structures and functions and, in turn, leads to changes
in those structures and functions. In the omic spirit we have posited the “Conduc-
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tome”1 - the totality of behaviours of an organism and the causative factors asso-
ciated with them - as the most comprehensive link between micro-omes, such as
the genome, and macro-omes. As with the micro-omes, the Conductome can be ap-
proached using Complex Networks by, for instance, considering the “interactions”
between different behaviours, as well as their links to other factors. Similarly, they
may be considered, in analogy with a disease-ome, in terms of a probability func-
tion, P(C|X), where C is the behaviour of interest and X the set of corresponding
factors linked to or predictive of C.

Like many deep concepts, behaviour is difficult to characterise precisely. Take as
an example, thermoregulation in mammals [15]. Mammals have different responses
to external temperature. A human may sweat or may take off a coat. An elephant
may flap its ears while a dog may pant. Should we classify ear flapping, panting and
coat removal as behavioural adaptations and sweating as a physiological adaptation?
Sweating and panting are both controlled by the autonomic nervous system [16, 17].
What about taking off a coat? We would argue that a more general and appropriate
characterisation of behaviour, such as “the internally coordinated responses (actions
or inactions) of whole living organisms (individuals or groups) to internal and/or
external stimuli” [18] would naturally classify them all as behaviours. What about
eating? Is eating more like sweating or taking off a coat? Both, of course. There is
a basal mechanism for generating the urge to eat that comes from the autonomic
nervous system [19]. This is a natural view from a biological perspective. However,
there is much debate about just how “automatic” eating is [20], that is linked to
polemical issues such as “fat shaming” and free will [21]. Clearly, as a fundamental
necessity of life, the desire to seek and obtain food is pre-programed genetically.
However, what about: what we eat? how much we eat? when we eat? where we
eat? etc. When we eat, for instance, is associated now with an entire field of study
- chrononutrition [22], while there is ample evidence that certain food preferences,
such as fatty and sugary foods [23] have a neurobiological link [24]. How much we
eat - portion size - is another dimension that has a strong psychological and social
component, if not a direct biological one.

Although there exist ontologies of behaviour, such as the Neuro Behaviour On-
tology [25], food consumption offers a good example of the complexity of classi-
fying behaviour. We may consider food consumption as a behaviour as a class to
be predicted. Obviously the simple class C = f ood consumption = Y ES/NO is not
useful, as all humans must consume food. Indeed there are a set of underlying basal
behaviours that are intimately associated with the fundamental properties of life,
such as homeostasis, metabolism, reproduction and adaptation to the environment.
Food consumption is vital for metabolic processes and to maintain homeostasis.
However, beyond the pure classification of consumption = YES/NO, we may con-
struct a multitude of classes of interest following the discussion above. For instance,
C may represent overconsumption, as defined with respect to some baseline null
hypothesis, consumption of a certain food type, consumption as classified through

1 The Conductome was introduced in the international workshop “The Human Conductome: A
New Paradigm for Understanding Obesity? in the C3 ? Centro de Ciencias de la Complejidad,
UNAM 29-30th November 2018.
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portion size, consumption by eating times, consumption by frequency, consumption
by place or, indeed, any and all combinations of the above, and more. By consid-
ering different classes we may determine the degree of heterogeneity associated
with these classes/behaviours. The set of predictors, X - genetic, epigenetic, physi-
ological, psychological, social - then represent the Conductome for that behaviour.
Project 42, alluded to above, is, in this sense, an attempt to construct a set of vari-
ables across multiple scales that may begin to approximate in certain dimensions
a Conductome for those behaviours - overconsumption and sedentariness - that are
particularly related to obesity and metabolic disease. Additionally, if we do not have
direct observations of a particular behaviour, we may imagine constructing a Con-
ductome indirectly, by taking as a class C a physiological state, such as obesity or
hypertriglyceridemia, that we hypothesise that is correlated with a behaviour of in-
terest, such as overconsumption of food. Of course, when speaking of behaviour,
there is a natural structural element - the central nervous system and its description
at multiple spatial scales, from the cellular to the cortical - that must be included
as an intermediary between the causes of behaviour and the consequences of be-
haviour. In this sense a “neurome” will be an essential element in understanding the
link between cause and consequence and back again.

As a final reflection, although the workshop focused on physiological rhythms
- periodic and periodic-like processes in human physiology - many life processes
and corresponding behaviours are not periodic. Such periodicity is particularly rel-
evant when we consider those short time intervals that are dominated by the earth’s
principal spatio-temporal rhythms: day, month or season, and is naturally linked to
reversibility, if one thinks of returning to an initial state. However, life and its asso-
ciated behaviours have a cost. Although one may analyse such costs in much more
sophisticated terms - of information, entropy and free energy [26] - for present pur-
poses one can think of the costs in terms of “wear and tear”. Life inevitably leads to
wear and tear, and this can be measured along two principle dimensions - temporal
extent and rate. All else being equal, a human of 50 years of age will exhibit more
wear and tear than a human of 20 years of age [27, 28]. Similarly, twenty years
of chronic stress and inflammation due to morbid obesity will be associated with
a much higher rate of wear and tear than twenty years of abstemious living. Wear
and tear at the physiological level is a result of behaviour. Organisms must feed,
organisms must reproduce, organisms must survive in an uncertain environment.
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Delay-differential equations for glucose-insulin

regulation

Maia Angelova, Sergiy Shelyag

Abstract In this work, a model based on a system of delay differential equations,
describing a process of glucose-insulin regulation in the human body, is studied nu-
merically. For simplicity, the system is based on a single delay due to the practical
importance of one of the two delays appearing in more complex models. The sta-
bility of the system is investigated numerically. The regions, where the solutions
demonstrate periodicity and asymptotic stability, are explicitly calculated. The sen-
sitivity of the solutions to the parameters of the model, which describes the insulin
production in the system, is analysed.

1 Introduction

Delay differential (and, generally, functional differential) equations (DDEs) and
their systems appear in natural and artificial phenomena, when the behaviour of a
system explicitly depends both on its current state and its history in some functional
form. Among such systems are communication networks, systems of biological and
physiological regulations, population growth, infection spread, epidemics and pan-
demics, devices with actuators and delayed feedback, business cycle models in eco-
nomics, decision making [1]. Unlike ordinary differential equations and their sys-
tems, which are finite-dimensional in phase space, DDEs are infinitely-dimensional.
Inclusion of a delay in a dynamical system can lead to rather complicated dynamics,
(sometimes unwanted) oscillations and even chaos. Analysis of DDEs is generally
more involved, in part due to the structure of the corresponding characteristic equa-
tions, and often not allowing for an analytical treatment. Numerical solution of such
equations is also not trivial due to propagating discontinuities and strict require-
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ments for interpolation techniques. Nevertheless, in the recent years advances in
understanding of DDEs, and analytical and computational approaches to their solu-
tion have been achieved.

It is well-known that the chemo-biological process of conversion of insulin into
glucose necessarily involves a delay, which also depends on a number of physio-
logical parameters. Only a limited number of these directly involved in glucose-
insulin regulation system can be observed directly, and mathematical modelling
would help estimate these parameters [2]. Furthermore, the interactions between
the sub-systems of the glucose-insulin regulation may be affected by a variety of
disorders and diseases, such as diabetes of multiple types [3]. Therefore, further
detailed study of the system of the glucose-insulin regulation and its mathematical
counterparts is warranted for better understanding of the human physiology.

In this paper, we numerically analyse the behaviour of a system of delay-
differential equations, which aims to simulate the interactions in a model of glucose-
insulin regulation in the human body. We study only one of the interactive terms of
the system in detail (namely, the term, which describes the glucose-sensitive insulin
production) and demonstrate the presence of periodic and asymptotically-stable so-
lutions.

2 The Model

The system of delay-differential equations, which describes the glucose-insulin sys-
tem regulation in human body, was introduced by [4, 5]. Its mathematical properties
have been extensively studied for one- or two-delay modifications [3, 4, 6, 7, 8, 9].
We are using one-delay system given below:

I′(t) = f1(G(t))− 1
τ0

I(t) (1)

G′(t) = Gin − f2(G(t))−qG(t) f4(I(t))+ f5(I(t − τ)),

Here, I and G are the insulin and glucose blood concentrations, respectively. The
first term f1 in the insulin equation is the insulin secretion caused by glucose intake
(the effect of this term on the solution of the system will be studied in a greater detail
as an example), the second term is the insulin degradation with the time scale τ0. In
the glucose equation, Gin is the constant glucose intake, f2 is the constant glucose
utilisation by the organism, the third term is the glucose utilisation dependent on the
insulin concentration, and the fifth term f5 is the glucose production from insulin,
which includes a positive delay τ . The flowchart of the model is given in Fig. 1

The system does not allow for exact analytical solutions, therefore we produce
numerical solutions for System (2). Also, we perform solution scans over the param-
eter ranges to determine whether the System 2 exhibits periodic or asymptotically
stable behaviour.
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Fig. 1 The flow chart of the model. There are two processes related to production of insulin depen-
dent on glucose concentration and production of glucose dependent on the insulin concentration.
These processes create a loop between glucose and insulin compartments in the flow chart. All
other processes remove glucose or insulin from the system, or add external glucose through the
glucose intake term.

3 Periodic and asymptotically stable behaviour in glucose-insulin

regulation system

The IVP system (2) is solved using a 4-th order Runge-Kutta method with an adap-
tive time step and 4-th order barycentric Lagrange interpolation of the delay term
[10]. The numerical solution is therefore 4-th order precise on time. The func-
tions f1- f5 are chosen as continuously differentiable, non-negative and Lipschitz-
bounded on R, and f5 also satisfies the negative feedback condition. The func-
tions are chosen as follows (see figure 2): f1(u) = a0 + aH(u), f2(u) = bH(u),
f3(u) =−qH(u), f4(u) = d + eH(u), and f5(u) = h(1−H(u)), where

H(u) =
uNH

uNH +1
(2)

is Hill function. The initial conditions are I(0) = G(0) = 0. Also, we set I(t < τ) =
0. The latter choice, as numerical experiments demonstrate, does not change the
character of the solution.

Figs. 3 and 4 show examples of the obtained periodic and asymptotically stable
solutions, respectively. The parameters chosen to produce the numerical solutions
are as follows: NH = 2, Gin = 1, τ0 = 1, τ = 5, q = 1, a0 = 1, b = 1, d = 10, e = 10,
h = 100. Setting the parameter a = 1 led to an asymptotically stable solution, while
with a = 10 the system demonstrated periodic behaviour. Automated differentiation
between the periodic and stable solution types represents some difficulty due to
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Fig. 2 Functions f1 - f5 as used in the numerical solution of System (2).

Fig. 3 An example of periodic solution for the system (2). The time evolution of I (black) and G
(green) is shown in the left panel. The right panel shows the corresponding phase portrait for the
system, plotted for a larger time interval 0< t < 200.

Fig. 4 Same as in Fig. 3, but for an asymptotically stable solution for the System (2).
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the a priori unknown solution period and the time scale of amplitude decrease of
the solution oscillations. This is done as follows. First, all the local extrema of the
solution are located. If the number of local extrema is less than 4 (corresponding
to two periods, if solution is periodic), then the solution is assumed to be stable.
Otherwise, solution values are found at the positions of the solution extrema. Then,
the even and odd pairs of these values are compared, and, if the difference between
them is greater than some value, the solution is assumed to be stable. All other
solutions are assumed periodic.

This is further demonstrated in Fig. 5, which shows solution types for System (2)
on a range of scanned parameters. The scan was performed over a number of values
for the Hill parameter NH, a range of the delays τ = 0.1− 10 and the parameter
a = 0− 10. All other parameters are as used above for solution of the system (2).
We also note that the system exhibits asymptotic stability over the whole range of the
used parameters for the smaller values of NH = 0.5, 1. Only a part of the scanned
parameter space is shown in the figure. The figure clearly demonstrated that the
stronger the non-linearity of the Hill functions in f1− f5 is, the wider the range of
delays τ and parameter a leads to oscillatory behaviour of the solution.

Fig. 5 Solution types obtained from numerical solution of the system (2) over a range of τ and a
parameters for different values of Hill parameters NH.

A scan over a range of values of the glucose intake Gin has also been performed
for the different non-linearity indexes of the Hill function. Two-dimensional scan
of the solution types, which also includes the parameter a, is shown in Fig. 3. The
figure shows that, again, the stronger non-linearity (steepness) in the Hill functions
provokes oscillatory behaviour in System (2) solutions. However, with the increase
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of the amplitude of the non-linear part in f1 = a0+aH (u), the region, where peri-
odic solution occur, shrinks.

Fig. 6 Solution scan of System (2) on the glucose intake Gin and parameter a for a range of the
non-linearity indices NH .

Another scan has been performed on the parameter a0 and Gin (shown in Fig. 3).
Again, the oscillatory region widens in Gin and shrinks in a0 if the non-linearity in
the Hill functions increases.

4 Conclusions

In this work we studied the stability of the DDE system, which describes a model
of glucose-insulin regulation system. We analysed the dependence of the solution
types (periodic or asymptotically stable) on the parameters of the glucose-dependent
insulin production. We have shown that the stronger the nonlinearity in the Hill
functions, which describe the components of the glucose-insulin regulation system,
the wider the parameter range (which includes the delay parameter) for which the
oscillatory behaviour is observed.

Further study is required for precisely diagnosing the behaviour of the system and
connecting it to the physiologically measurable parameters. Also, mathematically,
the system of glucose-insulin regulation exhibits both periodic and asymptotically
stable solutions. However, normally, only periodic behaviour of the insulin and glu-
cose concentrations is observed in the test environments. It would be interesting to
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Fig. 7 Solution scan of System (2) on the glucose intake Gin and parameter a0 for a range of the
non-linearity indices NH .

get a better insight into the existence of physiological equivalents of the asymptoti-
cally stable solutions of the System (2).

References

1. Kyrychko, Y., and Hogan, S.: On the Use of Delay Equations in Engineering Applications.
Journal of Vibration and Control, 16 (2010)

2. Marchetti, L., Reali, F., Dauriz, M., et al.: A Novel Insulin/Glucose Model after a Mixed-Meal
Test in Patients with Type 1 Diabetes on Insulin Pump Therapy. Scientific Reports, 6, 36029
(2016)

3. Huard, B., Bridgewater, A., and Angelova, M.: Mathematical investigation of diabetically im-
pared ultradian oscillations in the glucose-insulin regulation. J. Theor. Biology, 418, 66-76
(2017)

4. Bennett, D. L., and Gourley, S. A.: Global stability in a model of the glucose–insulin interaction
with time delay. Euro. Jnl of Appl. Math. 15, 203–221 (2004)

5. Li, J., Kuang. Y., and Mason, C.: Modeling the glucose-insuline regulatory system and ultradian
insulin secretory oscillations with two time delays. J. Theoret. Biol. 242, 722-735 (2006)

6. Bennett, D. L., and Gourley, S. A.: Periodic oscillations in a model of the glucose–insulin
interaction with delay and periodic forcing. Dynamical Systems, 19(2), 109-125 (2004)

7. Bennett, D. L., and Gourley, S. A.: Asymptotic properties of a delay differential equation model
for the interaction of glucose with plasma and interstitial insulin. AppliedMathematics and Com-
putation, 151, 189-207 (2004)

8. Huard, B., Easton, J. F., and Angelova, M.: Investigation of stability in a two-delay model of
the ultradian oscilaltions in glucose-insulin regulation. Commun. Nonlinear Sci. Numer. Simulat.
26, 211-222 (2015)

305



Maia Angelova, Sergiy Shelyag

9. Angelova, M., Beliakov, G., Ivanov, A., Shelyag, S.: Global Stability and Periodicity in a
Glucose-Insulin Regulation Model with a Single Delay. arXiv:2008.11019 (2020)

10. Berrut, J.-P., & Trefethen, L. N.: Barycentric Lagrange Interpolation. SIAM Review, 46, 501
(2004)

306



Chapter 6

Conservation Laws, Interfaces and

Mixing



Effect of adiabatic index on Richtmyer-Meshkov
flows induced by strong shocks

Cameron E. Wright and Snezhana I. Abarzhi

Abstract Richtmyer-Meshkov Instability (RMI) is an instability that develops at the
interface between fluids of contrasting densities when impacted by a shock wave.
Its applications include inertial confinement fusion, supernovae explosions, and the
evolution of blast waves. We systematically study the effect of the adiabatic index of
the fluids on the dynamics of strong-shock driven flows, particularly the amount of
shock energy available for interfacial mixing. Only limited information is currently
available about the dynamic properties of matter at these extreme regimes. Smooth
Particle Hydrodynamics simulations are employed to ensure accurate shock captur-
ing and interface tracking. A range of adiabatic indexes is considered, approaching
limits which, to the best of the author’s knowledge, have never been considered
before. We analyse the effect of the adiabatic indexes on the interface speed and
growth-rate immediately after the shock passage. The simulation results are com-
pared, wherever possible, with rigorous theories and with experiments, achieving
good quantitative and qualitative agreement. We find that the more challenging cases
for simulations arise where the adiabatic indexes are further apart, and that the initial
growth rate is a non-monotone function of the initial perturbation amplitude, which
holds across all adiabatic indexes of the fluids considered. The applications of these
findings on experiment design are discussed.

1 Introduction

Richtmyer-Meshkov instability (RMI) is a phenomenon in fluid mechanics that
describes the evolution of an interface between two fluids of distinct acoustic
impedance and distinct densities when a shock wave impacts the interface. The flow
evolution is shown in Figure 1, where the light (red) fluid travels with velocity to-
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wards the interface (light green) and heavy fluid (blue) and the Richtmyer-Meshov
instability develops as the interface between the two fluids changes shape and size
over time. ([Richtmyer, 1960]; [Meshkov, 1969]). If the interface between the flu-
ids is given an initial perturbation a0, (seen on the right in Figure 1) the interface
amplitude increases in size with growth-rate v0 as the wave travels and evolves into
a large-scale coherent structure of bubbles and spikes (bottom right of Figure 1)
([Abarzhi, 2010]; [Abarzhi, 2008]).

1.1 Motivation

Richtmyer-Meshkov instability (RMI) appears in a variety of processes in high en-
ergy density plasmas, controlling fluid transformation under strong impact, govern-
ing the formation of hot spots in inertial confinement fusion, determining energy
transport in core-collapse supernova, and strongly influences the evolution of blast
waves and explosions ([Meshkov, 1969]; [Richtmyer, 1960]). RMI forms in situ-
ations characterized by strong impact shocks, sharply and quickly changing flow
fields, and by small effects of dissipation and diffusion, often producing small scale
structures ([Abarzhi, 2010]). Interaction of a shock wave with a density discontinu-
ity such as in the situation in this work may result in the development of RMI and
in extensive interfacial mixing ([Meshkov, 1969]; [Richtmyer, 1960]). Since RMI
plays such a large role in these applications, the ability to understand and control
this instability is very important.

To the best of the author’s knowledge, previous numerical simulations inves-
tigating the dynamics of RMI flows have only contained ideal monotonic gases.
This study aims to investigate RMI flows for gases with more than one atom per
molecule, e.g. diatomic or triatomic gases such as O2 or H2O. This is significant for
investigation, as it will enable RMI studies to have a wider field of application as
it will be able to more accurately model situations with high-speed non-monatomic
gases, and aid in control of the instability through the initial parameter set-up. The
applications include rocket thrust flow (such as those in scramjets), inertial con-
finement fusion, and explosion blast waves ([Drake, 2009]; [Bodner et al., 1998];
[Zel’dovich, 1967]).

1.2 Approach

Sometimes, in applications such as inertial confinement fusion, the effects of the
Richtmyer-Meshkov instability are undesirable, and it is necessary to control the in-
stability’s evolution ([Lindl et al., 2004]). Some methods of achieving this include
suppressing RMI completely, or controlling it through adjusting the initial parame-
ters of the system ([Anisimov et al., 2013]; [Abarzhi, 2010]; [Demskoı̆ et al., 2006]).
In order to do this, information is required about the effect the initial parameters
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have on the development of the instability. Of particular interest in controlling the
development of the instability is the amount of energy available for interfacial mix-
ing deposited into the interface from the shock wave. This is one of the aims of this
study.

The volume of physical experimental data of RMI produced by strong shocks is
sparse as the experiments require challenging control of flow implementation and
diagnostics. ([Motl et al., 2009]; [Orlicz et al., 2009]; [Jacobs and Krivets, 2005]).
Therefore, numerical modeling of RMI is a powerful tool to aid in designing and
building systems in which RMI is present. However, the dynamics of RMI are
complex and a numerical model should be able to manage numerous competing
requirements, such as shock capturing, interface tracking, and accurate account-
ing for the dissipation processes ([Stanic et al., 2012]; [McFarland et al., 2011];
[Herrmann et al., 2008]; [Dimonte et al., 2004]).

Using a hydrodynamic approximation, we systematically study a broad spectrum
of the parameter regime and its influence on the fraction of energy available for in-
terfacial mixing in RM flow. To do this, we will obtain data on three variables of
the flow- the interface speed, the interface growth rate, and the initial curvature of
the front of the interface. These variables inform us to how much mixing of the
interface occurs, and how well the numerical simulations capture small scale struc-
tures, which the simulations must do well in order to obtain data on the interfacial
mixing. The results of each of these variables are compared with rigorous theoretical
theories, finding good quantitative and qualitative agreement.

1.3 RMI Dynamics

RMI develops when a shock impacts an interface between two fluids of differing
densities and the energy is distributed throughout the fluids ([Aleshin et al., 1990]).
This dissertation will only focus on 2 dimensional RMI case, and with the shock
propagating from the light fluid into the heavy fluid. When the shock hits an ide-
ally planar interface (without any perturbation), it splits into a reflected shock trav-
elling back through the light fluid and a transmitted shock travelling through the
heavy fluid ([Stanic et al., 2012]; [Herrmann et al., 2008]; [Demskoı̆ et al., 2006]).
The bulk of the fluid influenced by the shock impact (the bulk between the reflected
shock and the transmitted shock, including the fluid interface) all moves with the
same velocity v∞, called the background velocity, seen in Figure 1.

The velocity v∞ quantifies the amount of energy transferred into the fluid bulk by
the shock and is a function of the shock strength and fluid properties ([Stanic et al., 2012];
[Richtmyer, 1960]).

If the interface between the two fluids is perturbed (no longer planar), the bulk
fluid containing the interface still moves with velocity v∞, but the interface itself
now has growth-rate v0 due to the impulsive acceleration induced by the shock
([Meshkov, 1969]; [Richtmyer, 1960]). Arrows mark the direction of fluid motion
at the tip of the bubble (right) and spike (left). Eventually, the bubble and spike
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Fig. 1 Evolution of the Richtmyer-Meshkov instability for both the planar interface and perturbed
interface cases. In both cases, the interface moves at speed v∞, and the interface also grows with
speed v0 in the perturbed interface case, whereas it stays flat in the planar interface case.

growth decelerates, and small scale structures appear on the sides of the developing
spikes ([Stanic et al., 2012]).

1.4 Parameters of the System

1.4.1 Mach Number

The Mach number, denoted M, is defined as the ratio of the speed of a shock to
the speed of sound in the light fluid cl = 2.039× 103m/s ([Richtmyer, 1960]). For
weak shocks, M ≈ 1, the background motion (the motion of the whole body of
fluid) is subsonic relative to the light fluid, v∞/cl < 1, where cl is the speed of sound
in the light fluid. For M ≈ 3 the ratio is v∞/cl ≈ 1. For shocks with M ≈ 5 the
background motion is supersonic, v∞/cl > 1, and for shocks with M > 7, the back-
ground motion is hypersonic, v∞/cl � 1 ([Stanic et al., 2013]; [Stanic et al., 2012];
[Herrmann et al., 2008]).
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1.4.2 Atwood Number

The Atwood number, denoted A, describes the density difference between two adja-
cent fluids with a common interface.

A =
ρh −ρl

ρh +ρl
(1.4.1)

where ρh,ρl are the densities of the heavy and light fluids respectively.

1.4.3 Adiabatic Index

The adiabatic index of a substance, denoted γ , can be understood from three perspec-
tives. From a thermodynamic point of view, the adiabatic index gives an important
relation for an adiabatic process of an ideal gas:

PV γ = constant (1.4.2)

where P,V, and γ is the pressure, volume, and adiabatic index respectively of the
fluid.

It can also be understood as the ratio of the heat capacity at constant pressure CP
to the heat capacity at constant volume CV ,

γ =
CP

CV
. (1.4.3)

From a molecular dynamics point of view, the adiabatic index can also be related
to the degrees of freedom f of a molecule as

γ = 1+
2
f
. (1.4.4)

To the best of the author’s knowledge, previous simulation analyses of the dy-
namics of RMI flows have been conducted with an adiabatic index of γ = 5/3, which
is the value for ideal monotonic gases. Its value decreases for gases with more than
one atom per molecule, e.g. for diatomic gases γ = 7/5. While γ is known to have
a strong influence on the flow dynamics, no systematic study has been undertaken
on the effect of γ on the dynamics. The gases analysed in this study are theoretical
ones, where we vary the adiabatic index of the heavy and light fluids systematically
instead of choosing particular gases.

1.5 Parameter Regime

The parameter regime we investigate is for the Mach and Atwood numbers, (M,A)=
(5,0.8). This pair has been well documented in previous studies ([Stanic et al., 2012];
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[Dell et al., 2015]). We vary the adiabatic index of the heavy and light fluid (γl ,γh)=
(1.2,1.3, · · · ,1.6). For each pair of γl and γh, the amplitude of the initial perturba-
tion of the interface between the two bulk fluids was varied from 0% to 100% of
the interface wavelength, ie a0/λ = (0,0.1,0.2, . . . ,1) where a0 is the amplitude of
the sinisoidal initial perturbation, and λ is the wavelength of the perturbation. This
is a well studied regime, and has been documented well in the past, allowing us to
compare our results with previous studies ([Dell et al., 2015]; [Stanic et al., 2012];
[Stanic et al., 2013]).

This regime contains 275 cases, and we ran a numerical simulation for each case.
The average simulation takes 36 hours to run, making a total of about 10,000 hours.
The simulations were run on three Windows laptop computers with i7 processors
and with 8GB, 12GB, and 16GB of RAM.

2 Methods

2.1 Theoretical Approaches

In this work, we compare the results from our numerical simulations to analytical
solutions. This analysis takes different forms depending on the progression of the
instability. In the initial linear regime of RMI, the interface perturbation grows at
a constant rate v0, which is a function of the amplitude a0 and wavelength λ of
the initial perturbation ([Richtmyer, 1960]). In the following nonlinear regime, the
interface perturbation growth-rate decreases and a large coherent structure of spikes
and bubbles appears ([Abarzhi, 2010]; [Abarzhi, 2008]). The heavy fluid penetrates
the light fluid in spikes as seen on the bottom right of Figure 1. As they travel,
the spikes decelerate and small scale structures form on the sides of the spikes
([Stanic et al., 2012]).

2.1.1 Zeroth-order theory

An important parameter of RMI dynamics is v∞, the magnitude of the velocity (here-
after: velocity) of the bulk, or the background motion. This value can be precisely
calculated by zeroth-order theory from the conditions of the conservation of mass,
momentum, and energy, and the equations of state of the fluids ([Richtmyer, 1960]).
For ideal gases, it is a function of the initial shock’s Mach number, the adiabatic
index of the fluids γh(l), and the Atwood number, v∞ = v∞(M,A,γh(l)), and it is
useful because it quantifies the amount of energy deposited by the shock into the
fluid bulk ([Stanic et al., 2012]). The analysis of the numerical simulations becomes
much simpler once v∞ is obtained and used as the characteristic time scale so that
the frame of reference is moving at speed v∞ ([Dell et al., 2015]).
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2.1.2 Linear theory

Another important parameter in RMI dynamics is the initial growth-rate v0 of the
interface. It is a function of M, A, γh(l), and the initial perturbation amplitude and
wavelength, v0 = v0(M,A,γh(l),a0,λ ) ([Stanic et al., 2012]; [Nishihara et al., 2010];
[Holmes et al., 1999]). For very small amplitude (a0/λ = 10−2 or smaller), v0
is precisely calculated by linear theory, and grows linearly with a0, v0 ≈ a0

λ Mcl
([Nishihara et al., 2010]; [Wouchuk, 2001]; [Richtmyer, 1960]).

For moderately small values of a0, the growth rate v0 becomes non-linear and has
been calculated in previous studies by [Velikovich et al., 2014]; [Nishihara et al., 2010],
and [Velikovich and Dimonte, 1996]. For larger values of a0, the rate v0 may grow
with a0 even slower than the linear and weakly nonlinear theory predict ([Stanic et al., 2012];
[Holmes et al., 1999]).

2.1.3 Highly nonlinear theory

In the late stages of Richtmyer-Meshkov dynamics v0 has been calculated with
group theory consideration ([Abarzhi, 2010]; [Abarzhi et al., 2003]; [Abarzhi, 2002]).
At this late stage, the bubbles decelerate and flatten, and there is almost no fluid mo-
tion away from the interface, and extensive interfacial mixing occurs ([Stanic et al., 2013];
[Stanic et al., 2012]; [Herrmann et al., 2008]). These late-time dynamics are a com-
plex problem, and many features require better understanding.

2.2 Smoothed Particle Hydrodynamics Simulations

Numerical modelling of RMI in these extreme conditions is a difficult task because
the method should be able to accurately handle large speeds, strong shocks, and
preserve small scale structures with high precision and accuracy. These small scale
structures are embedded in large scale dynamics, moving at high speeds, so the
order of precision required is very large ([Anisimov et al., 2013]). To model these
complex dynamics we have employed the Smoothed Particle Hydrodynamics code
(SPHC), which is an open-source code written in C developed by Dr. Stellingwerf
and has free access to a complete set of validation test cases ([Stellingwerf, 1991]).
This code has been widely used and tested on a broad variety of shock and flow
problems, including RMI dynamics, the Noh problem, and with problems in-
volving plasmas, complex materials, and multiphase flows ([Stanic et al., 2013];
[Stanic et al., 2012]; [Monaghan, 2005]; [Lucy, 1977]; [Stellingwerf, 1990]). Par-
ticularly, it has been used by NASA to investigate the Space Shuttle Columbia in-
cident ([Stellingwerf et al., 2004]). SPHC conserves momentum, angular momen-
tum, mass, and energy globally and locally and reflects particles on the bound-
aries in order to produce the correct boundary solutions, accurate to within 0.001%
([Stellingwerf, 1990]).
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2.2.1 SPH Technique

SPH is a grid-free method that represents a continuous fluid with fixed-mass SPH
particles, which are each represented by a mathematical basis function (or kernel)
([Stellingwerf, 1990]). In essence, SPHC keeps track of a large array of particles
and for each time step, and calculates each interaction between all particles.

2.2.2 SPHC Simulation Setup

In this study, the computational setup is the standard similar to that in [Stanic et al., 2012]
in order to extend the results of previous studies.

The amplitude is set at the start of every run, and when the shock hits the in-
terface, the interface amplitude is compressed and then grows as RMI develops. We
want to obtain the initial growth-rate of the interface, so we locate the first minimum
of the amplitude and take v0 to be the slope of the linear regression line from the
first minimum amplitude over the next few initial data points, as seen in Figure 2.
Note that v0 is defined as the time derivative of the difference of the initial positions
of the bubble and spike, which is twice the amplitude, as in [Stanic et al., 2012].

Fig. 2 The method by which v0 is measured. We take the gradient of the the data points where
0 < t < 0.8τ (marked in orange). The cases displayed are for γl = 1.5, γh = 1.5.

However, an issue arises when choosing what data points to include, because
the value of v0 changes significantly depending on where the cutoff for the initial
growth is defined. To solve this problem, we notice that the shape of the amplitude-
time curve for early time changes depending on the value of the initial perturbation,
marked in orange in Figure 2. For a0/λ = 0.1 the curve is concave, for a0/λ =
(0.2,0.3) the curve is linear, and for a0/λ = (0.4,0.5, · · · ,1) the curve is convex,
forming a bubble like shape. Each of these shapes have clearly defined endpoints,
marked on the diagram by the first blue points: the first finishes at the inflection
point (the transition from concave to convex), the second where the growth starts
to become non linear, and the third finishes at the end of the convex “bubble” (and
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where the second bubble begins). These endpoints for all three shapes all finish at
0.8τ , where τ = v∞/λ , giving 0.8τ = 6.67× 10−7. These patterns are consistent
across all different values of γh(l) and a0/λ considered, and this method produces
good results, which indicates that this is a good choice.

To find v∞, we measure the speed of the interface in the ideally planar interface
case, with a0/λ = 1×10−12 ≈ 0 (which is the smallest perturbation the simulation
software would allow). The position of the interface is taken to be the leftmost po-
sition of the interface, as in [Dell et al., 2015]. The planar interface position motion
is almost perfectly linear in time, allowing very accurate calculation of v∞ by taking
the slope of the linear regression line of the interface position over time. When the
interface is not planar, the growth of the interface interferes with the measurement
of the speed of the bulk, making accurate measurements difficult. However, because
the amplitude of the interface doesn’t affect the speed of the bulk, the values of v∞
calculated for the planar case are taken to be the same for cases where a0/λ �= 0
([Dell et al., 2015]).

3 Results

3.1 Background Motion for Planar Interface Case

Using the SPHC simulations and the method described above, we calculated the
value of v∞ for the cases (M,A) = (5,0.8), with γh and γl ranging from 1.2,1.3, · · · ,
1.6. The results of these calculations are shown in Figure 3. The shape of the curves
formed for each γh value when γl ranges from 1.2 to 1.6 appears to be decreasing
in a non-linear fashion, which may be approaching a value asymptotically. In order
to determine the behaviour accurately, more data points are required and may need
further investigation in future studies.

We compare these results to the analytical calculations produced by zero-order
theory [Richtmyer, 1960], where v∞ can be calculated precisely from zero-order the-
ory in the planar interface case (when the initial perturbation is 0) ([Stanic et al., 2012];
[Richtmyer, 1960]). The percentage error between the simulation results and the
zero-order theory is shown in Table 1.

γl

γh 1.2 1.3 1.4 1.5 1.6

1.2 0.641 4.87 9.52 12.9 16.7
1.3 5.75 0.732 3.56 7.54 10.5
1.4 9.75 4.87 0.597 -2.79 5.68
1.5 12.8 8.04 4.00 0.822 -2.15
1.6 15.3 10.5 6.74 3.68 0.836

Table 1 Percentage error for v∞ calculated from the SPHC simulations for the cases a0/λ =
0,γl ,γh = (1.2,1.3, · · · ,1.6) when compared to the zero-order theory predictions. Values with high
error (> 7%) are marked in red.
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We found that when gamma heavy and gamma light are close, simulation agree-
ment with the linear series is close- <7%. Values with errors above these thresholds
are marked in red. In particular, when γl = γh, the agreement is excellent, > 99%.

Fig. 3 Plot of v∞/cl for values of γl (on the x axis) and γh (coloured data points)

We found that if γl and γh are too different with γh(l) ≥ γl(h) + 2 for γl(h) =
(1.2,1.3) or γh(l) ≥ γl(h) + 3 for γl(h) = (1.4,1.5,1.6), the simulations don’t handle
those situations well and the results are too inaccurate to make predictions and are
excluded from further simulation analysis in this work. To the best of the author’s
knowledge, this observation has not been made before, and may prove useful in the
understanding of scenarios with varying adiabatic indexes.

γl

γh 1.2 1.3 1.4 1.5 1.6

1.2 0.432 0.426
1.3 0.421 0.414 0.409
1.4 0.406 0.402 0.396 0.391
1.5 0.396 0.391 0.386
1.6 0.393 0.387 0.382

Table 2 Results for v∞/(M · cl) for each value of γl and γh with a0/λ = 0. Values with error >7%
are excluded.

Table 2 shows the results for v∞, scaled by cl and M, the speed of sound in
the light fluid and the Mach number, respectively. We see that the velocity of the
background motion, v∞ is only a fraction of the shock velocity, ranging from ∼20%
to ∼40%.
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3.2 Initial Amplitude Growth Rate for Perturbed Interface

3.2.1 Simulation Results

After the shock passes through the interface, the interface amplitude grows approx-
imately linearly with time, as we see in Figure 2. When this value is calculated
from the simulations, we scale it by the velocity of the bulk fluid, v∞, which is done
to compare the interface growth rate to the background motion. This value v0/v∞
quantifies the distribution of the energy imparted by the shock wave between the
interfacial fluid and the bulk fluid ([Dell et al., 2015]).

Fig. 4 Plot of v0/v∞ against a0/λ with an approximate curve fitted.

We ran simulations for (M,A) = (5,0.8),γl ,γh = (1.2,1.3, . . . ,1.6), and a0/λ =
(0,0.1,0.2 . . . ,1). Determining the interface amplitude growth-rate v0 and bulk ve-
locity v∞ from the simulations using the method as described in Section 2.2.2, we
plot their ratio v0/v∞ for each value of a0/λ , displayed in Figure 4. A well-defined
shape is formed, which increases linearly for early time, becomes non linear and
eventually peaks and decreases for late time, asymptotically approaching 0. As in
[Abarzhi et al., 2019]; [Dell et al., 2017], and [Dell et al., 2015], a function satisfy-
ing these criteria is

v0

v∞
· 1

A
= c1 · a0

λ
· e−c2· a0

λ . (3.2.1)
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This depends on the Atwood number and two constants, c1 and c2. Our objective
is to ascertain how well the simulation data fits this curve and to find these constants
to compare them with linear theory and to assess the accuracy of our simulations.

Letting x = a0
λ and y = v0

v∞
· 1

A , we have

y = c1xe−c2x. (3.2.2)

As we see in Figure 4, the curve follows the data closely.

Fig. 5 The combined calculated values of v0/v∞ for all pairs of γl and γh linearised according to
the proposed equation that describes their behaviour with a linear regression line fitted.

To determine the constants c1 and c2 of the equation of the curve and to quantify
the strength of the relationship between the data and the curve, we rearrange Equa-
tion 3.2.2 to form a linear relationship so that a linear regression line can be fitted to
the data:

y = c1xe−c2x

y
c1x

= e−c2x

ln
(

y
c1x

)
=−c2x

ln
(

y
x

)
− ln(c1) =−c2x

ln
(

y
x

)
= (−c2)x+ lnc1

(3.2.3)
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Letting ŷ = ln
( y

x

)
,m =−c2,n = ln(c1), we have the linear relation

ŷ = m · x+n. (3.2.4)

c1 c2

γl

γh 1.2 1.3 1.4 1.5 1.6 γl

γh 1.2 1.3 1.4 1.5 1.6

1.2 2.88 2.76 1.2 2.36 2.27
1.3 3.39 3.53 3.46 1.3 2.78 2.87 2.86
1.4 4.28 4.45 4.40 5.00 1.4 3.40 3.47 3.39 3.80
1.5 4.86 5.18 5.40 1.5 3.67 3.81 3.90
1.6 5.21 5.51 5.80 1.6 3.82 3.95 4.09

Table 3 Values of c1 and c2 for each value of γl and γh in our parameter regime.

Fig. 6 Plots of cl and c2 for values of γl (on the x axis) and γh (coloured data points)

We plot ŷ against x for all chosen values of γl ,γh (excluding those found to pro-
duce high errors) and for a0/λ = (0.1,0.2, · · · ,1). The plot of all the values of γh
and γl combined is shown in Figure 5, where the relationship can be seen to be
strongly negative and linear. The value of c1 is calculated by taking the exponential
of the y-intercept of the linear regression line, m, and c2 is the negative of the slope
of the line, n, which follows from the setup of Equation 3.2.2. The values of c1 and
c2 for each pair of γl ,γh are calculated from the lines of best fit in Figure 5, and are
shown in Table 3.

The plot of the results of the constants c1 and c2 is shown in Figure 6. These
plots reveal some information about the variation in the constants with respect to γl
and γh. Both values of c1 and c2 have roughly the same shapes, but with c1 > c2.
Higher values of γh produce higher values of c1 and c2. We see a linear increase in
c1 and c2 for small γl , which becomes slower than linear for higher values of γl .

We found that if we ordered the adiabatic indexes from small γh and γl to large
γh and γl in a “diagonal” fashion (shown in Figure 7), we notice a trend in the
values of c1 and c2. They appear to increase in a linear fashion, which to the best of
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the author’s knowledge has not been discussed before, and may benefit from future
study.

Fig. 7 Plot of the values of c1 and c2 for the ordered values of γl and γh. The equation of the c1
line is y = 0.1539x+2.8127, and the equation of the c2 line is y = 0.0791x+2.4754

3.2.2 Comparison of Simulation Results with Linear Theory

For small a0/λ , a0/λ ≤ 0.1, the initial growth rate v0 linearly depends on a0. Lin-
ear theory can predict this growth for these small amplitudes, as seen in Figure 8
([Dell et al., 2015]). We compare this linear theory with our simulation results. Re-
stating our equation relating interface growth rate and initial perturbation amplitude,
we have

1
A
· v0

v∞
= c1 · a0

λ
· e−c2· a0

λ . (3.2.5)

The linear theory finds values of v0/(v∞ · a0
λ ) for small a0/λ , so we choose the

smallest initial amplitude, a0/λ = 0.1 � 1. We rearrange Equation 3.2.5 to get
[

v0

v∞ · a0
λ

]

T
= A · c1 · e−0.1c2 , (3.2.6)

where [·]T is the value obtained from the linear theory. The values of the theo-

retical
[

v0
v∞· a0

λ

]

T
are compared to the simulation data A · c1 · e−0.1c2 in Table 4, as

well as the percentage error. The simulation results are in good agreement with the
theoretical values, with an average error of 4.68%. Only one of the fifteen cases
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have an error of more than 10%, making this a very accurate prediction. In order to
investigate the linear approximation more closely, we ran simulations over a finer
increment of a0/λ , increasing by 0.05 instead of 0.1, as displayed in Figure 8.
The approximations for linear theory assume the perturbation amplitude to be very
small, ka0 � 1 or a0/λ < 0.05, but we see that the approximation holds for larger
amplitudes, up to a0/λ < 0.1, which is a result consistent with previous studies
([Dell et al., 2017]; [Dell et al., 2015]).

Fig. 8 Plot showing values of v0/v∞ from the simulations (blue), and the prediction from linear
theory (orange). We see that linear theory only has predicting power for values of a0/λ ≤ 0.1.

3.2.3 Maximum Interface Growth-Rate

Of interest in experiments is the amount of energy that can be deposited into the in-
terface by the shock, which determines the amount of energy available for interfacial
mixing, discussed in Section 3.3. The maximum scaled interface growth rate v0/v∞
quantifies this amount, so is of interest in this study. We have found in Section 3.2.1
that the interface growth-rate is a non-monotone function of the initial perturbation
amplitude, and is described by the relationship

v0

v∞ ·A = c1
a0

λ
e−c2· a0

λ . (3.2.7)

Letting x = a0
λ and y = v0

v∞
· 1

A , we have
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Si
m

ul
at

io
n γl

γh 1.2 1.3 1.4 1.5 1.6

1.2 1.82 1.76
1.3 2.05 2.12 2.08
1.4 2.44 2.51 2.51 2.74
1.5 2.69 2.83 2.92
1.6 2.84 2.97 3.08

T
he

or
et

ic
al γl

γh 1.2 1.3 1.4 1.5 1.6

1.2 1.88 2.07
1.3 2.01 2.24 2.39
1.4 2.35 2.52 2.64 2.72
1.5 2.62 2.75 2.84
1.6 2.69 2.83 2.93

E
rr

or
(%

) γl

γh 1.2 1.3 1.4 1.5 1.6

1.2 3.34 15.2
1.3 2.05 5.45 13.0
1.4 3.60 0.37 4.83 0.63
1.5 2.72 3.20 2.88
1.6 5.56 4.80 5.25

Table 4 Comparison of the values of v0
v∞a0/λ from the linear theory and the simulation results,

obtained using Equation 3.2.6.

y = c1xe−c2x. (3.2.8)

We find the maximum scaled interface growth rate [v0/v∞]max, from the data in
Section 3.2.1. In order to find the a0/λ at this maximum, we find where the gradient
of Equation 3.2.8 is zero,

y′(x) = c1e−c2x − c1c2xe−c2x = 0
0 = c1 − c1c2x

x =
1
c2
.

(3.2.9)

The results for the maximum growth rate and the value of a0/λ at which this max-
imum occurs are plotted in Figure 9. The plots range the adiabatic indexes from
small γh and γl to large γh and γl in a “diagonal” fashion because it is easier and sim-
pler to display the data in this way, and because we noticed a trend in the data when
displayed in this fashion. This trend has not been discussed before, and may benefit
from future study. The maximum growth rate hits a minimum at (γl ,γh)≈ (1.3,1.4)
before increasing in a linear fashion as (γl ,γh) ranges to (1.6,1.6). The amplitude
a0/λ at which these occur decreases as γl ,γh increases. The value v0/v∞ quantifies
the fraction of energy imparted into the interface by the shock, and these results
show that on average, ∼ 45% of the bulk velocity is available for interfacial mixing.
From Table 2 we know that at on average ∼ 30% of the shock velocity is imparted
into the bulk motion, meaning that on average, only ∼ 15% of the shock velocity is
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Fig. 9 Plots showing the maximum scaled interface growth-rate (top) and the initial perturbation
amplitude at which this occurs (bottom) for all cases of γl and γh, arranged from lowest γh(l) to
highest γh(l).

available for interfacial mixing. Despite this very small scale of mixing, our results
are in good agreement with the theory, demonstrating the ability of SPHC to capture
small scale dynamics embedded in large scale dynamics very accurately.

3.3 Discussion and Conclusion

In this study, through use of numerical simulations we have systematically studied
the effect of a previously unconsidered regime of adiabatic indexes of the fluids on
the early time dynamics of RMI, specifically the extent of the interfacial mixing.
The key properties of the dynamics we have analysed are the velocity, growth-rate,
and curvature of the interface. Our regime included the Mach and Atwood numbers,
(M,A) = (5,0.8), a range of adiabatic indexes γl ,γh = (1.2,1.3, · · · ,1.6) and a range
of initial perturbations from 0% to 100% of the wavelength. In this regime, the sim-
ulations are repeatable and qualitatively similar, and we found good quantitative and
qualitative agreement between the simulation results and the theory, demonstrating
the accuracy at which SPHC simulations are able to capture small scale dynamics
embedded within large scale dynamics in extreme and challenging situations.

In order to find the appropriate scale for the amount of energy deposited into
the interface by the shock, we obtained the velocity of the background motion. In
experiments, the background motion makes reliable diagnostics of RMI challenging
because flow measurements must be taken from a quickly moving interface. Numer-
ical simulations have the ability to scale the dynamics by the bulk velocity via the
use of a Galilean transformation to a moving frame of reference. In order to scale
our results, we obtained the bulk velocity v∞ in Section 3.1, and we found that the
more challenging cases for the simulations to model occur when the adiabatic in-
dexes of the two fluids are further apart (Table 1), which to the best of the author’s
knowledge is the first time this observation has been made. To ensure our results
were reliable, we removed the cases that were challenging for our simulations to
model accurately from consideration.
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In order to quantify the amount of energy deposited into the interface by the
shock, we found the initial growth rate of the interface v0, and scaled it by the ve-
locity of the background motion v∞. The speed at which the interface spreads out
indicates how much energy the interface received from the initial shock. We found
that the initial growth rate is a non-monotone function of the initial perturbation
amplitude, and that this relationship is insensitive to the adiabatic indexes of the
fluids (Figure 4). For each pair of adiabatic indexes, we found the maximum values
of the growth-rate scaled by the background motion, v0/v∞, and at which values of
a0/λ this occurred. We found that this maximum changes with γl and γh (Figure 9).
We found that on average, only ∼ 15% of the shock velocity is transferred to the
growth of the interface, indicating that only a fraction of the energy from the shock
is deposited into the interface and is hence available for interfacial mixing. We com-
pared our simulation results to linear theory, and found the average error to be less
than 5% for the bulk velocity (Table 1) and the interface growth-rate (Table 4). This
indicates that the SPHC simulations can handle small scale dynamics embedded in
large scale dynamics with high accuracy.

Our results provide good benchmarks for further studies and experiments and
open up further avenues of investigation for non-ideal adiabatic indexes. Our results
also have implications for hydrodynamic instabilities and mixing in inertial con-
finement fusion (ICF). To achieve ICF ignition, the ability to avoid or control the
Richtmyer-Meshkov instability that forms during the implosion process is neces-
sary ([Lindl et al., 2004]). One method is to fully suppress the development of RMI,
which is based on traditional scenarios of RMI that suggest that the development of
RMI may produce uncontrolled growth of small-scale imperfections and lead to
disordered mixing that is similar to canonical turbulence ([Dimonte et al., 2004]).
However, research conducted in studies like this through simulations and theoretical
analysis suggests that the interfacial mixing may keep a significant degree of order,
shown by the ability to accurately predict the evolution of the interface through theo-
retical analysis. These findings suggest that the dynamics can be controlled through
the initial perturbation, so that turbulent mixing may be prevented without having
to completely suppress RMI, which may be easier to implement ([Dell et al., 2015];
[Anisimov et al., 2013]; [Abarzhi, 2010]; [Demskoı̆ et al., 2006]). This study also
suggests there is reason to have confidence in the ability of the numerical simula-
tions produced by SPHC in accurately capturing small scale dynamics embedded in
large scale structures despite its difficulty.
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Compressibility Effect on Markstein Number

for a Flame Front in Long-Wavelength

Approximation

Keigo Wada and Yasuhide Fukumoto

Abstract The effect of compressibility on the Markstein number for a planar front
of a premixed flame is examined, at small Mach numbers, in the form of M2-
expansions. The method of matched asymptotic expansions is used to analyze the
solution in the preheat zone in a power series in two small parameters, the relative
thickness of the preheat zone and the Mach number. We employ a specific form of
perturbations, valid at long wavelengths, for the thermodynamic variables, which
produces the correction term, to the Markstein number, of second order in the Mach
number in drastically simple form. Our analysis accounts for the pressure variation
as a source term in the heat-conduction equation and calls for the Navier-Stokes
equation. The suppression effect of the front curvature on the Darrieus-Landau in-
stability is enhanced by the viscous effect if Pr > 4/3, but is weakened if otherwise.

1 Introduction

The pioneering work of the linear stability analysis of a planar front of a premixed
flame was made in the low-Mach-number limit by Darrieus [6] and Landau [13,
14] independently. They treated a flame front as a density discontinuity interface
accompanied by an essential parameter of the thermal expansion, or the heat release.
Their conclusion is that a planar flame front is unstable for small perturbations of
any wavelength. This result is now called the Darrieus-Landau instability (DLI),
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or the hydrodynamic instability. Although the DLI effectively explains the intrinsic
instability of a planar flame front, stable flame fronts are observed in the laboratory,
some contradiction between the DLI and the observation. The DLI imposes a major
assumption on the boundary condition that the flame speed S f is constant, which is
expressed in non-dimensional form as

S f = 1. (1)

The flame speed S f is defined as the incoming normal velocity of a gas relative to
a flame front and evaluated at the edge of a flame front on the unburned side. The
constancy of S f was modified phenomenologically by Markstein [16]. It is regarded
as the curvature effect [5].

S f = 1−MrΔF, (2)

where Mr is the Markstein number and F is the infinitesimal displacement of a pla-
nar flame front. Based on (2), not (1), Markstein showed that the DLI is stabilized
at sufficiently large values of wavenumber, or small wavelengths, of perturbations.
In order to find the expression of the Markstein number Mr in (2), many subsequent
works have investigated the transport process inside a flame front in detail. For ex-
ample, the effect of diffusion properties of the mixture on the flame speed was clar-
ified by Eckhaus [7, 8]. These results were generalized to a more comprehensive
concept of flame stretch [2, 17, 18, 22]. However, most of the previous research
stayed at the low-Mach-number limit. In such a treatment, the isobaric condition
prevails, without having to consider pressure variation.

In this paper, we highlight the compressibility effect and shall derive S f corrected
by the compressibility effect in a tidy form as

S f = 1−MrMΔF, (3)

with

MrM = δ
{

1+Ma2(γ −1)
(

4
3

Pr−1
)}

, (4)

where, as will be defined in (11), δ , Ma, γ and Pr are respectively the scale factor
of a preheat zone which is an inner structure of a flame front, the Mach number, the
specific heats ratio and the Prandtl number (= kinematic viscosity/thermal diffusiv-
ity). We reveal that the compressibility effect is accompanied with the viscous effect
as evidenced by Pr in (4) for MrM which is the extension of the Markstein number
Mr to the compressible case. If the value of Pr is larger than 3/4, the compressibility
acts to weaken the DLI for any values of the Mach number. On the other hand, if
the value of Pr lies in the range from 0 to 3/4, then the compressibility reduces the
curvature effect.

The flame speed condition (3) is derived from the study of the preheat zone which
is the inner structure of a flame front. In the preheat zone, the transport process of
the heat and the mass is dominant rather than the exothermic chemical reaction. The
effect of the chemical kinetics is confined in the reaction zone, which is the inner-
most structure of a flame front and is sandwiched by the preheat and the burned
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zones. Although the investigation of the preheat zone requests the jump (bound-
ary) conditions across the reaction zone contained in it [20, 21], we may dispense
with such conditions by postulating the long-wavelength approximation [3], or the
translational symmetry. Thanks to the collaboration of the matched asymptotic ex-
pansions with respect to δ and the long-wavelength approximation, we reach the
substantially compact representation of the Markstein number (4) affected by the
compressibility effect.

There are several works on the DLI with the compressibility effect incorporated.
Some employed the same assumption as (1) with the density perturbation omitted
and concluded that the DLI is enhanced at small values of the Mach number [9, 11,
12]. In contrast to them, works based on the long-wavelength approximation [3, 15]
successfully included the density perturbation in the flame speed condition, although
the viscous effect is ignored. In [15], the second-order effect of the wavenumber is
analysed and the suppression of the DLI by the increasing wavenumber is shown
numerically. In this paper, we reveal that the effect of viscosity comes into play for
the DLI, with the Navier-Stokes equations coupled to the heat-conduction equations
via pressure variation.

We explore the compressibility effect in the form of the M2 expansions for small
Mach numbers Ma (Ma2 � 1), under the long-wavelength approximation, as will be
exposed in Sect. 2. The scheme of the matched asymptotic expansions with respect
to δ (� 1) and Ma, for deriving the condition of the flame speed based on the first
principle, is sketched in Sect. 3. This paper sidesteps handling the reaction term
in the heat-conduction equation, but instead, resort to the large activation energy
asymptotics. The detailed analysis of the translational symmetry is performed to
gain (3), the flame speed with a correction from the weak compressibility effect,
in Sect. 4. In Sect. 5, the dispersion relation of a planar flame front is calculated,
showing that the DLI can be suppressed depending on the Prandtl number Pr and
the Mach number Ma. This paper is closed with a summary in Sect. 6.

2 Non-Dimensional Governing Equations

The Cartesian coordinate system (x,y,z) and the velocity field are made dimension-
less by use of the hydrodynamic length scale L̃ and the laminar flame speed S̃L, the
speed of a flat flame. We consider the situation where a planar flame front propa-
gates in the negative z-direction. The velocity field is partitioned into the tangential
and normal components as �V +W�ez. Besides, the differential operator is defined for
the x-y plane as ∇ = (∂/∂x,∂/∂y) and Δ = ∂ 2/∂x2 + ∂ 2/∂y2. Then we deal with
the following equations governing dimensionless hydrodynamic variables [18, 24]:
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∂R
∂ t

+∇ · (RV)+
∂
∂ z

(RW ) = 0, (5)

R
(

∂V

∂ t
+

(
V ·∇+W

∂
∂ z

)
V

)

=− 1
γMa2 ∇P+δPr

((
Δ +

∂ 2

∂ z2

)
V+

1
3

∇
(

∇ ·V+
∂W
∂ z

))
, (6)

R
(

∂W
∂ t

+

(
V ·∇+W

∂
∂ z

)
W
)

=− 1
γMa2

∂P
∂ z

+δPr
((

Δ +
∂ 2

∂ z2

)
W +

1
3

∂
∂ z

(
∇ ·V+

∂W
∂ z

))
, (7)

R
(

∂T
∂ t

+

(
V ·∇+W

∂
∂ z

)
T
)

= δ
(

Δ +
∂ 2

∂ z2

)
T +

γ −1
γ

(
∂P
∂ t

+

(
V ·∇+W

∂
∂ z

)
P
)
+qQ, (8)

P = RT, (9)

where the non-dimensional variables, R, T and P are the density of the mixture, the
temperature and the pressure, respectively. All of the variables are made dimension-
less with use of those of the fresh mixture at a position far from a flame front, where
the flow field is assumed to be uniform with its velocity identified with S̃L in the
coordinate frame relative to the flame front. Therefore, each quantity is subject to
the following boundary condition in the far field on the unburned side (z < 0).

R =W = T = P = 1, �V =�0 as z →−∞. (10)

Our aim is to derive the condition of the flame speed (3). For this, we need to
investigate the preheat zone whose length scale is represented by l̃d = D̃th/S̃L, with
D̃th being the thermal diffusivity. We find that (3) is highly influenced by the scale
factor of the preheat zone δ , the Mach number Ma, the Prandtl number Pr and the
specific heats ratio γ . These non-dimensional parameters are defined as

δ =
l̃d
L̃
, Ma =

S̃L

c̃s
, Pr =

ν̃
D̃th

γ =
c̃p

c̃v
, (11)

where c̃s, ν̃ , c̃p and c̃v are the adiabatic sound speed defined in the fresh mixture, the
kinematic viscosity, the specific heats at constant pressure and volume, respectively.

The reaction term Q in (8) is not dealt with in this paper by resorting to the large-
activation-energy asymptotics. The coefficient q represents the non-dimensional
heat release whose value is positive for an exothermic chemical reaction. A detailed
analysis, with the compressibility effect taken into consideration, is relegated to an
independent investigation [23].

It is noteworthy that Bychkov et al. [3] ignored the viscous terms in (7), though
it naturally enters through the coupling of the heat-conduction equations with the
Navier-Stokes equation, via pressure variation. However, as seen from (4), the vis-
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cous effect is indispensable for the compressible correction to the Markstein number
and thence to the DLI. The compressible correction is sensitive to the value of Pr.

2.1 Perturbations in Hydrodynamic Zone

We superimpose an infinitesimal perturbation to a plane flame front, which coin-
cides with the x-y plane parametrized by�x = (x,y).

F(x,y, t) = f exp(i�x ·�k+Ω t),

where�k = (kx,ky) and Ω are the wavenumber, with k = (k2
x +k2

y)
1/2, and the growth

rate of the perturbation, which are made dimensionless as follows.

�k =�̃kL̃, Ω = Ω̃ L̃/S̃L. (12)

Any hydrodynamic variable Φ is partitioned into a steady planar solution Φ̄(z) and
a small perturbation Φ ′(x,y,z, t) to it as

Φ = Φ̄(z)+Φ ′(x,y,z, t), (13)

with

Φ ′ = Φ̃(z)exp(i�x ·�k+Ω t) . (14)

For our purpose of taking compressibility into account, we expand all the func-
tions in powers of a small parameter Ma2(� 1), up to O(Ma2). For the basic flow,
M2 expansions tale the form as

R̄ = R̄0M +Ma2R̄2M, W̄ = W̄0M +Ma2W̄2M, M̄ = M̄0M +Ma2M̄2M,

T̄ = T̄0M +Ma2T̄2M, P̄ = 1+ γMa2P̄2M, (15)

and, for the perturbations, as

R′ = R′
0M +Ma2R′

2M, W ′ =W ′
0M +Ma2W ′

2M, M′ = M′
0M +Ma2M′

2M,

T ′ = T ′
0M +Ma2T ′

2M, P′ = γMa2P′
2M + . . . , �V ′ =�V ′

0M + . . . ,

F = F0M +Ma2F2M, (16)

where the mass flux perpendicular to a plane flame front is defined by

M = RW. (17)

We note that the leading term of the pressure is constant under Ma2 � 1 because of
the first term on the right hand side of (6) and (7) with the boundary condition (10).
Furthermore, each quantity is expanded with respect to δ as, for the basic flow,
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R̄0M = R̄0 +δ R̄1, W̄0M = W̄0 +δW̄1,

R̄2M = R̄2M,0 +δ R̄2M,1, W̄2M = W̄2M,0 +δW̄2M,1, (18)

and, for the perturbations,

R′
0M = R′

0 +δR′
1, W ′

0M =W ′
0 +δW ′

1, F0M = F0 +δF1,

R′
2M = R′

2M,0 +δR′
2M,1, W ′

2M =W ′
2M,0 +δW ′

2M,1, F2M = F2M,0 +δF2M,1. (19)

The steady planar state of (5), (7) and (8) should satisfy, in the language of the
notation (13),

dM̄
dz

= 0, (20)

M̄
dW̄
dz

=− 1
γMa2

dP̄
dz

+
4
3

δPr
d2W̄
dz2 , (21)

M̄
dT̄
dz

= δ
d2T̄
dz2 +

γ −1
γ

W̄
dP̄
dz

, (22)

where the reaction term Q is omitted from (23) by use of the assumption of the
large-activation-energy asymptotics. We easily find from (20) that the steady planar
mass flux is constant. Especially, M̄ = 1 from the boundary condition (10) on the
unburned side of a flame front.

The perturbed heat-conduction equation is deduced, from (8) with substitution
from (13), as

R̄
∂T ′

∂ t
+

∂T ′

∂ z
+M′ dT̄

dz

= δ
(

∂ 2

∂ z2 +Δ
)

T ′+
γ −1

γ

(
∂P′

∂ t
+W̄

∂P′

∂ z
+W ′ dP̄

dz

)
. (23)

In deriving the condition for a flame speed, we need to explore (23) in the preheat
zone scale. We omit the detailed derivation of the jump conditions for the hydrody-
namic variables, gained by taking the outer limit of the solution of (23), which is
treated in [15] (See also refs [1, 4, 10, 19]).

2.2 Long-Wavelength Approximation

We focus on the specific form of perturbations of the temperature and the density
posed by Bychkov et al. [3].

T ′ =−F
dT̄
dz

, R′ =−F
dR̄
dz

, (24)
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Fig. 1 Schematic illustration of translational symmetry for small perturbations (F � 1).

where F(x,y, t) is a small-amplitude displacement of the perturbed flame front as
shown in Fig. 1. This form is interpreted to come from the translational symmetry
possessed by the temperature and the density as illustrated by Fig. 1. It follows from
(9), the equation of state, that the pressure inherits the same symmetry.

P′ = R′T̄ + R̄T ′ =−F
dR̄
dz

T̄ − R̄F
dT̄
dz

=−F
dP̄
dz

. (25)

Bychkov et al. [3] proved that these forms of the perturbations lead to the certain
relation for the mass flux valid in the compressible case. This provides the missing
boundary condition for the DLI.

By substitution from the asymptotic expansions (15), (16), (18) and (19), we
rewrite the perturbation of density in (24) as

R′
0 =−F0

dR̄0

dz
, R′

1 =−
(

F1
dR̄0

dz
+F0

dR̄1

dz

)
,

R′
2M,0 =−

(
F2M,0

dR̄0

dz
+F0

dR̄2M,0

dz

)
, (26)

R′
2M,1 =−

(
F2M,1

dR̄0

dz
+F1

dR̄2M,0

dz
+F2M,0

dR̄1

dz
+F0

dR̄2M,1

dz

)
.

3 Equations in Preheat Zone

In this section, we write down the equations for a steady planar flow and perturba-
tions to it in the preheat zone which are used to derive the boundary condition of the
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mass flux in Sect. 4. Our approach successfully links the heat-conduction equation
to the Navier-Stokes equation, via pressure variation, which is absent in the low-
Mach-number limit. In accordance, the viscous effect was neglected in the previous
work [3]. Under the long-wavelength approximation, the stretching transformation
z−F = δζ is employed to analyse the preheat zone of a planar flame front by the
inner variable ζ with the assumption δ � 1.

3.1 Steady Planar Flow

From (9) and (20)-(22), the governing equations for a steady planar flow are

M̄ = 1, (27)

dW̄
dζ

=− 1
γMa2

dP̄
dζ

+
4
3

Pr
d2W̄
dζ 2 , (28)

dT̄
dζ

=
d2T̄
dζ 2 +

γ −1
γ

W̄
dP̄
dζ

, (29)

P̄ = R̄T̄ . (30)

It follows from (15), (17), (27) and (30) that

R̄0MW̄0M = 1, 1 = R̄0MT̄0M,

R̄2MW̄0M + R̄0MW̄2M = 0, 0 = R̄2MT̄0M + R̄0MT̄2M. (31)

Remembering that P̄0M = 1, (29) is rewritten as

dT̄0M

dζ
=

d2T̄0M

dζ 2 . (32)

Because of W̄0M = T̄0M from (31), (28) yields

dP̄2M

dζ
=

(
4
3

Pr−1
)

dT̄0M

dζ
. (33)

The asymptotic expansions of the steady planar solutions and small amplitude of
perturbation with respect to δ in the preheat zone, by use of (15) and (16), are
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T̄0M = θ̄0 +δ θ̄1 +δ 2θ̄2 +δ 3θ̄3, R̄0M = ρ̄0 +δ ρ̄1 +δ 2ρ̄2 +δ 3ρ̄3,

F0M = F0 +δF1 +δ 2F2 +δ 3F3, W̄0M = w̄0 +δ w̄1 +δ 2w̄2 +δ 3w̄3,

T̄2M = θ̄2M,0 +δ θ̄2M,1 +δ 2θ̄2M,2 +δ 3θ̄2M,3,

R̄2M = ρ̄2M,0 +δ ρ̄2M,1 +δ 2ρ̄2M,2 +δ 3ρ̄2M,3, (34)

W̄2M = w̄2M,0 +δ w̄2M,1 +δ 2w̄2M,2 +δ 3w̄2M,3,

P̄2M = p̄2M,0 +δ p̄2M,1 +δ 2 p̄2M,2 +δ 3 p̄2M,3,

F2M = F2M,0 +δF2M,1 +δ 2F2M,2 +δ 3F2M,3.

By introducing (34), (31) and (33) reduce to

ρ̄0w̄0 = 1, 1 = p̄0 = ρ̄0θ̄0, (35)

ρ̄2M,0w̄0 + ρ̄0w̄2M,0 = 0, 0 = ρ̄2M,0θ̄0 + ρ̄0θ̄2M,0, (36)

d p̄2M,0

dζ
=

(
4
3

Pr−1
)

dθ̄0

dζ
. (37)

3.2 Perturbations with Translational Symmetry

The linearised heat-conduction equation (23), valid in the preheat zone, is

R̄
∂T ′

∂ t
+

M̄
δ

∂T ′

∂ζ
+

M′

δ
dT̄
dζ

= δ
(

1
δ 2

∂ 2

∂ζ 2 +Δ
)

T ′+
γ −1

γ

(
∂P′

∂ t
+

W̄
δ

∂P′

∂ζ
+

W ′

δ
dP̄
dζ

)
. (38)

The perturbations (24) and (25) are written in terms of the inner variable as

T ′ =−F
δ

dT̄
dζ

, R′ =−F
δ

dR̄
dζ

, P′ =−F
δ

dP̄
dζ

. (39)

Furthermore, (39) is expanded in powers of Ma2, with the help of (15) and (16), as

T ′
0M =−F0M

δ
dT̄0M

dζ
, T ′

2M =−F2M

δ
dT̄0M

dζ
− F0M

δ
dT̄2M

dζ
,

R′
0M =−F0M

δ
dR̄0M

dζ
, R′

2M =−F2M

δ
dR̄0M

dζ
− F0M

δ
dR̄2M

dζ
,

P′
2M =−F0M

δ
dP̄2M

dζ
. (40)
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By substitution from the asymptotic expansions (34), we rewrite the perturbations
(40) as

T ′
0M =

θ−1

δ
+θ0 +δθ1 +δ 2θ2,

R′
0M =

ρ−1

δ
+ρ0 +δρ1 +δ 2ρ2,

T ′
2M =

θ2M,−1

δ
+θ2M,0 +δθ2M,1 +δ 2θ2M,2, (41)

R′
2M =

ρ2M,−1

δ
+ρ2M,0 +δρ2M,1 +δ 2ρ2M,2,

P′
2M =

p2M,−1

δ
+ p2M,0 +δ p2M,1 +δ 2 p2M,2,

where each term is written, for instance, as

θ−1 =−F0
dθ̄0

dζ
, θ0 =−

(
F1

dθ̄0

dζ
+F0

dθ̄1

dζ

)
,

θ1 =−
(

F2
dθ̄0

dζ
+F1

dθ̄1

dζ
+F0

dθ̄2

dζ

)
,

θ2 =−
(

F3
dθ̄0

dζ
+F2

dθ̄1

dζ
+F1

dθ̄2

dζ
+F0

dθ̄3

dζ

)
,

θ2M,−1 =−
(

F2M,0
dθ̄0

dζ
+F0

dθ̄2M,0

dζ

)
, (42)

θ2M,0 =−
(

F2M,1
dθ̄0

dζ
+F1

dθ̄2M,0

dζ
+F2M,0

dθ̄1

dζ
+F0

dθ̄2M,1

dζ

)
,

θ2M,1 =−
(

F2M,2
dθ̄0

dζ
+F2

dθ̄2M,0

dζ
+F2M,1

dθ̄1

dζ

+F1
dθ̄2M,1

dζ
+F2M,0

dθ̄2

dζ
+F0

dθ̄2M,2

dζ

)
.

The similar is true for other quantities. Following ref [3], the form associated with he
translational symmetry, like (24), is not postulated for the disturbance of the normal
component of the velocity field. Formally we pose the following expansions.

W ′
0M = w0 +δw1 +δ 2w2,

W ′
2M = w2M,0 +δw2M,1 +δ 2w2M,2. (43)

For the perturbation of the mass flux which is introduced in (16), we have, upon
substitution from (15), (41) and (43),

M′
0M =

m−1

δ
+m0 +δm1 +δ 2m2,

M′
2M =

m2M,−1

δ
+m2M,0 +δm2M,1 +δ 2m2M,2, (44)
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where each term is expressed as

m−1 = ρ−1w̄0 =−F0
dρ̄0

dζ
w̄0,

m0 = ρ0w̄0 +ρ−1w̄1 + ρ̄0w0

=−
(

F1
dρ̄0

dζ
+F0

dρ̄1

dζ

)
w̄0 −F0

dρ̄0

dζ
w̄1 + ρ̄0w0, (45)

and the same procedure is repeated for the higher-order terms.

4 Boundary Condition of Mass Flux

We seek the compressibility effect on the flame speed condition, whose original
form of the DLI is given by (1). For this purpose, by leaving the detailed analysis of
the preheat zone to our next paper, we treat, in this investigation, restricted solutions
valid for long wavelengths brought by the constraint of translational symmetry dic-
tated by the previous section. We extend the mass-flux condition by [3] to O(δMa2).
At this order, the viscous effect switches on by coupling the Navier-Stokes equation
with the heat-conduction equation. The end product, equation (74), reflects, remark-
ably in a tidy form, the compressible effect on the Markstein number.

4.1 Matching Condition

In order to calculate the mass-flux condition, we use the matching conditions in
the overlapping region between the preheat and the hydrodynamic zones. For the
density, these conditions read, on the unburned side,

ρ̄0|ζ→−∞ = R̄0|z→F− ,
dρ̄1

dζ

∣∣∣∣−∞
=

dR̄0

dz

∣∣∣∣−
, (46)

ρ̄1−∞ = R̄1−+ζ
dR̄0

dz

∣∣∣∣−
,

dρ̄2

dζ

∣∣∣∣−∞
=

dR̄1

dz

∣∣∣∣−
+ζ

d2R̄0

dz2

∣∣∣∣−
, (47)

d2ρ̄1

dζ 2

∣∣∣∣−∞
= 0,

d2ρ̄2

dζ 2

∣∣∣∣−∞
=

d2R̄0

dz2

∣∣∣∣−
. (48)

The similar conditions apply to the other quantities. Matching conditions (46)-(48)
also hold at O(Ma2), for instance, ρ̄2M,0−∞ = R̄2M,0−, dρ̄2M,1/dζ |−∞ = dR̄2M,0/dz|−
and so on.
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4.2 Low-Mach-Number Limit

We begin with the derivation of the mass-flux condition in the incompressible limit.
Collecting the terms of O(δ−2Ma0) in (38), we get

∂θ−1

∂ζ
+m−1

dθ̄0

dζ
=

∂ 2θ−1

∂ζ 2 . (49)

Substitution from (42) and (45), (49) becomes

F0w̄0

(
dθ̄0

dζ

)2

=−F0
d

dζ

(
d2θ̄0

dζ 2 − dθ̄0

dζ

)
, (50)

by virtue of (35). The right-hand side of (50) is zero, because the last term of (29)
vanishes by p̄0 = 1, the second of (35). Requirement of w̄0 �= 0 enforces

dθ̄0

dζ
= 0. (51)

In view of (35) and (37), (51) leads to

dw̄0

dζ
=

dρ̄0

dζ
=

d p̄2M,0

dζ
= 0. (52)

The terms of O(δ−1Ma0) do not bring any new information. We proceed to the
next order. Collecting the terms of O(δ 0Ma0) in (38), we have

ρ̄1
∂θ−1

∂ t
+ ρ̄0

∂θ0

∂ t
+

∂θ1

∂ζ
+m1

dθ̄0

dζ
+m0

dθ̄1

dζ
+m−1

dθ̄2

dζ
=

∂ 2θ1

∂ζ 2 +Δθ−1. (53)

By substitution from (32), (42), (45), (51) and (52), we are left with

−F0
dρ̄1

dζ
w̄0 + ρ̄0

(
w0 − ∂F0

∂ t

)
= 0. (54)

Taking the outer limit ζ → −∞, (46) gives rise to the matching condition for the
hydrodynamic zone on the unburned side, resulting in

R′
0−W̄0−+ R̄0−

(
W ′

0−− ∂F0

∂ t

)
= 0, (55)

where use has been made of (26) for the density perturbation. This is the desired
mass-flux condition on the unburned side of a flame front in the hydrodynamic zone,
correcting Landau’s assumption [13, 14] with the first term incorporating the com-
pressibility effect. This condition coincides with that of Bychkov et al. [3].

We are ready to go on to the first-order solution in δ , in the preheat zone, to deal
with the curvature effect, embodying the Markstein effect [16]. Collecting the terms
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of O(δMa0) in (38), we have, using (29), (42), (45), (51), (52) and (54),

−
(

F1
dρ̄1

dζ
+F0

dρ̄2

dζ

)
w̄0 −F0

dρ̄1

dζ
w̄1

+ ρ̄1

(
w0 − ∂F0

∂ t

)
+ ρ̄0

(
w1 − ∂F1

∂ t

)
+ΔF0 = 0. (56)

Matching with the hydrodynamic zone, by taking the limit ζ → −∞ of (56), with
use of (46) and (47), leads to

−
(

F1
dR̄0

dz

∣∣∣∣−
+F0

dR̄1

dz

∣∣∣∣−

)
W̄0−−F0

dR̄0

dz

∣∣∣∣−
W̄1−

+ R̄1−
(

W ′
0−− ∂F0

∂ t

)
+ R̄0−

(
W ′

1−− ∂F1

∂ t

)
+ΔF0

= ζ
{

F0
d2R̄0

dz2

∣∣∣∣−
W̄0−+F0

dR̄0

dz

∣∣∣∣−
dW̄0

dz

∣∣∣∣−

−dR̄0

dz

∣∣∣∣−

(
W ′

0−− ∂F0

∂ t

)
− R̄0−

dW ′
0

dz

∣∣∣∣−

}
. (57)

The right-hand side of (57) diverges in the limit of ζ → −∞. But this difficulty is
rescued by the equation obtained from the derivative of (56) with respect to ζ ,

−
(

F1
d2ρ̄1

dζ 2 +F0
d2ρ̄2

dζ 2

)
w̄0 −

(
F1

dρ̄1

dζ
+F0

dρ̄2

dζ

)
dw̄0

dζ
−F0

d2ρ̄1

dζ 2 w̄1 −F0
dρ̄1

dζ
dw̄1

dζ

+
dρ̄1

dζ

(
w0 − ∂F0

∂ t

)
+ ρ̄1

dw̄0

dζ
+

dρ̄0

dζ

(
w1 − ∂F1

∂ t

)
+ ρ̄0

dw̄1

dζ
= 0. (58)

The outer limit (ζ →−∞) of (58), with application of (46), (47) and (48), results in

−F0
d2R̄0

dz2

∣∣∣∣−
W̄0−−F0

dR̄0

dz

∣∣∣∣−
dW̄0

dz

∣∣∣∣−
+

dR̄0

dz

∣∣∣∣−

(
W ′

0−− ∂F0

∂ t

)
+ R̄0−

dW ′
0

dz

∣∣∣∣−
= 0.

Thus, the diverging terms in (57) cancel each other and we eventually reach the
mass flux of O(δ ) by using (26) for the density perturbation.

R′
1−W̄0−+R′

0−W̄1−+ R̄1−
(

W ′
0−− ∂F0

∂ t

)
+ R̄0−

(
W ′

1−− ∂F1

∂ t

)
=−ΔF0. (59)

This is the desired mass-flux condition reflecting the curvature of a flame front, a
feature of the Markstein condition [16]. In the context of the long-wave approxima-
tion, the previous investigation [3] did not enter into O(δ ), and the condition (59) is
new.
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4.3 Compressibility Effect

We make headway to deduce the mass flux on the unburned side of a flame
front, with the compressibility effect taken into account, based only on the heat-
conduction equation. Collecting the terms of O(δ−2Ma2) in (38), we have

∂θ2M,−1

∂ζ
+m2M,−1

dθ̄0

dζ
+m−1

dθ̄2M,0

dζ
=

∂ 2θ2M,−1

∂ζ 2 +(γ −1)w̄0
∂ p2M,−1

∂ζ
. (60)

The last term vanishes because the analogue of the first of (42) reads p2M,−1 =
−F0d p̄2M,0/dζ = 0, the latter equality coming from (52). By use of (45), (51), (52)
and the variant of (42), (60) becomes

∂
∂ζ

(
−F0

dθ̄2M,0

dζ

)
=

∂ 2

∂ζ 2

(
−F0

dθ̄2M,0

dζ

)
,

which is satisfied by (29) because of (52).
Next, collecting the terms of O(δ−1Ma2) in (38), we have

ρ̄2M,0
∂θ−1

∂ t
+ ρ̄0

∂θ2M,−1

∂ t
+

∂θ2M,0

∂ζ
+m2M,0

dθ̄0M

dζ

+m2M,−1
dθ̄1

dζ
+m0

dθ̄2M,0

dζ
+m−1

dθ̄2M,1

dζ

=
∂ 2θ2M,0

∂ζ 2 +(γ −1)
(

∂ p2M,−1

∂ t
+ w̄1

∂ p2M,−1

∂ζ
+ w̄0

∂ p2M,0

∂ζ
+w0

d p̄2M,0

dζ

)
.

By use of (29), (42), (45), (51), (52) and (54), we are left only with

−F0
dρ̄2M,0

dζ
w̄0

dθ̄1

dζ
= 0.

The temperature gradient dθ̄1/dζ should not be zero because the θ0 term in (42)
should not be zero due to the matching condition θ0|ζ→−∞ → T0− �= 0 and dθ̄0/dζ =
0 by (51). Consequently, we have no choice but to put the density gradient zero.

dρ̄2M,0

dζ
= 0. (61)

It follows from (36) that

dw̄2M,0

dζ
= 0,

dθ̄2M,0

dζ
= 0, (62)

with the help of (51) and (52).
Collecting the terms of O(δ 0Ma2) in (38), taking account of (29), (42), (45), (51),

(52), (61) and (62), we have
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{
−ρ̄2M,0

∂F0

∂ t
− ρ̄0

∂F2M,0

∂ t
−
(

F2M,0
dρ̄1

dζ
+F0

dρ̄2M,1

dζ

)
w̄0 (63)

−F0
dρ̄1

dζ
w̄2M,0 + ρ̄2M,0w0 + ρ̄0w2M,0

}
dθ̄1

dζ
(64)

=
γ −1

ρ̄0

(
ρ̄0w0 − ρ̄0

∂F0

∂ t
− w̄0F0

dρ̄1

dζ

)
d p̄2M,1

dζ
, (65)

where, in the same manner as O(δ 0Ma0), the first of (42), valid in the long-
wavelength approximation, has dictated vanishing of θ2M,−1 and therefore of Δθ2M,−1
because of (62). The right-hand side is eliminated owing to (54), and (65) further
simplifies to

−
(

F2M,0
dρ̄1

dζ
+F0

dρ̄2M,1

dζ

)
w̄0 −F0

dρ̄1

dζ
w̄2M,0

+ ρ̄2M,0

(
w0 − ∂F0

∂ t

)
+ ρ̄0

(
w2M,0 − ∂F2M,0

∂ t

)
= 0. (66)

Taking the outer limit ζ →−∞, with use of (46), gives the boundary condition on
the hydrodynamic zone.

R′
2M,0−W̄0−+R′

0−W̄2M,0−

+ R̄2M,0−
(

W ′
0−− ∂F0

∂ t

)
+ R̄0−

(
W ′

2M,0−− ∂F2M,0

∂ t

)
= 0, (67)

where we notice from the second of (26) and (46) that the first two terms of (66) be-
come the first term of (67) as ζ →−∞. This implies that the perturbed mass flux on
the unburned side of the flame front is absent, an extension of Landau’s assumption
to the compressible case. The condition (67) coincides with that of Bychkov et al.
[3].

In the long-wave approximation admitting the translational symmetry, to the
leading order in δ , the perturbed mass flux is zero at the flame front even when
the compressibility effect is included. The compressibility has a non-trivial influ-
ence on the mass flux at the next order in δ , at which the contributions from the
curvature of the flame front and the viscosity play an vital role. Collecting the terms
of O(δMa2) in (38), using the conditions (29), (42), (45), (51), (52), (61) and (62),
we have
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dθ̄1

dζ

{
−ρ̄2M,1

∂F0

∂ t
− ρ̄2M,0

∂F1

∂ t
− ρ̄1

∂F2M,0

∂ t
− ρ̄0

∂F2M,1

∂ t

−
(

F2M,1
dρ̄1

dζ
+F2M,0

dρ̄2

dζ
+F1

dρ̄2M,1

dζ
+F0

dρ̄2M,2

dζ

)
w̄0

−
(

F2M,0
dρ̄1

dζ
+F0

dρ̄2M,1

dζ

)
w̄1 −

(
F1

dρ̄1

dζ
+F0

dρ̄2

dζ

)
w̄2M,0

−F0
dρ̄1

dζ
w̄2M,1 + ρ̄2M,1w0 + ρ̄2M,0w1 + ρ̄1w2M,0 + ρ̄0w2M,1

}

=−ΔF2M,0
dθ̄1

dζ
+(γ −1)

{(
−∂F1

∂ t
+F0

dw̄2

dζ
+F1

dw̄1

dζ
+w1

)
d p̄2M,1

dζ

+

(
−∂F0

∂ t
+F0

dw̄1

dζ
+w0

)
d p̄2M,2

dζ

}
. (68)

In order to reduce the right-hand side of (68), we invoke (31) and (33). We see from
(31) that

ρ̄1w̄0 + ρ̄0w̄1 = 0,
ρ̄2w̄0 + ρ̄1w̄1 + ρ̄0w̄2 = 0.

Then, because of (52), dw̄1/dζ and dw̄2/dζ are rewritten as

dw̄1

dζ
=− w̄0

ρ̄0

dρ̄1

dζ
,

dw̄2

dζ
=− w̄0

ρ̄0

dρ̄2

dζ
− dρ̄1

dζ
w̄1

ρ̄0
− ρ̄1

ρ̄0

dw̄1

dζ
. (69)

Upon substitution of (34) into (33), we get

d p̄2M,1

dζ
=

(
4
3

Pr−1
)

dθ̄1

dζ
. (70)

By taking advantage of (56), (69) and (70), we reduce (68) to

− ρ̄2M,1
∂F0

∂ t
− ρ̄2M,0

∂F1

∂ t
− ρ̄1

∂F2M,0

∂ t
− ρ̄0

∂F2M,1

∂ t

−
(

F2M,1
dρ̄1

dζ
+F2M,0

dρ̄2

dζ
+F1

dρ̄2M,1

dζ
+F0

dρ̄2M,2

dζ

)
w̄0

−
(

F2M,0
dρ̄1

dζ
+F0

dρ̄2M,1

dζ

)
w̄1 −

(
F1

dρ̄1

dζ
+F0

dρ̄2

dζ

)
w̄2M,0

−F0
dρ̄1

dζ
w̄2M,1 + ρ̄2M,1w0 + ρ̄2M,0w1 + ρ̄1w2M,0 + ρ̄0w2M,1

=−ΔF2M,0 − γ −1
ρ̄0

(
4
3

Pr−1
)

ΔF0. (71)

344



Compressibility Effect on Markstein Number in Long-Wavelength Approximation

The outer limit ζ → −∞ of (71) produces terms proportional to ζ , and we are re-
quested to show cancellation of these, otherwise diverging, terms. To confirm this,
it suffices to take the derivative of (71) with respect to ζ , to take the outer limit, and
to impose the matching conditions (46), (47) and (48). The resulting equation is

− dR̄2M,0

dz

∣∣∣∣−
∂F0

∂ t
− dR̄0

dz

∣∣∣∣−
∂F2M,0

∂ t
−
(

F2M,0
d2R̄0

dz2

∣∣∣∣−
+F0

d2R̄2M,0

dz2

∣∣∣∣−

)
W̄0−

−
(

F2M,0
dR̄0

dz

∣∣∣∣−
+F0

dR̄2M,0

dz

∣∣∣∣−

)
dW̄0

dz

∣∣∣∣−
−F0

d2R̄0

dz2

∣∣∣∣−
W̄2M,0−−F0

dR̄0

dz

∣∣∣∣−
dW̄2M,0

dz

∣∣∣∣−

+
dR̄2M,0

dz

∣∣∣∣−
W ′

0−+ R̄2M,0−
∂W ′

0
∂ z

∣∣∣∣−
+

dR̄0

dz

∣∣∣∣−
W ′

2M,0−+ R̄0−
∂W ′

2M,0

∂ z

∣∣∣∣−
= 0. (72)

The remaining task is to take the outer limit of (71), by imposing (46) and (47),
to get the mass flux of O(δMa2), on the unburned side, leaving, with the help of (26)
and (72),

R′
2M,1−W̄0−+R′

2M,0−W̄1−+R′
1−W̄2M,0−+R′

0−W̄2M,1−+ R̄2M,1−
(

W ′
0−− ∂F0

∂ t

)

+ R̄2M,0−
(

W ′
1−− ∂F1

∂ t

)
+ R̄1−

(
W ′

2M,0−− ∂F2M,0

∂ t

)
+ R̄0−

(
W ′

2M,1−− ∂F2M,1

∂ t

)

=−ΔF2M,0 − γ −1
R̄0−

(
4
3

Pr−1
)

ΔF0. (73)

This result attains an extension of the Markstein effect to the compressible case. The
curvature effect, in combination with the Prandtl number, appears for the mass flux.
This implies that the viscosity should be retained when we consider the compress-
ible flow field.

The above results (55), (59), (67) and (73) are summarized as

R−
(

W−− ∂F
∂ t

)
= 1−δ

(
1+Ma2(γ −1)

(
4
3

Pr−1
))

ΔF. (74)

The flame speed (3) is obtained from (74) by assuming that the flow field is incom-
pressible in the hydrodynamic scale as

R =

{
1 (z < F)
1/(1+q) (z > F)

. (75)

5 Effect of Compressible Markstein Number on DLI

We are now in a position to look into how the compressibility modifies the DLI.
As indicated by (3), the compressibility effect is incorporated into the condition of
a flame speed, though the flow field is assumed to be incompressible in the hydro-
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dynamic regions. The flame speed S f is defined as the normal velocity of the fluid
relative to that of a flame front, which is evaluated at the edge of the front on the
unburned side.

S f = (�V −�Vf )|z=F− ·�n ≈ W̄ |z=F− +W ′|z=F− − ∂F
∂ t

, (76)

where the normal velocity of a flame front and the unit normal vector are given by

�Vf ·�n ≈ ∂F
∂ t

, �n ≈
(
−∂F

∂x
,−∂F

∂y
,1
)
. (77)

At O(δ 0Ma0), we solve the following linearised equations of (5)-(7) for the per-
turbation form of (13) on the unburned and burned sides of a flame front.

∂W ′
0

∂ z
+∇ ·V′

0 = 0, (78)

R
∂W ′

0
∂ t

+
∂W ′

0
∂ z

=−∂P′
2M,0

∂ z
, (79)

R
∂V′

0
∂ t

+
∂V′

0
∂ z

=−∇P′
2M,0, (80)

where the density R is assumed to be constant as given by (75). The following jump
conditions are imposed at a flame front, z = F±, at O(δ 0Ma0).

[[R(�V0 −�Vf ) ·�n]] = 0, (81)

[[�V0 ×�n]] =�0, (82)

[[P2M,0 +R((�V0 −�Vf ) ·�n)2]] = 0, (83)

where, for any quantity φ , [[φ ]] = φ(z = F+)− φ(z = F−) denotes the jump across
a flame front in the hydrodynamic zone. In addition to (81)-(83), the condition of a
flame speed for perturbations is given by (3), with the help of (76), as

W ′
0|z=F− − ∂F

∂ t
=−MrMΔF. (84)

Enforcing (81)-(84) on the solutions of (78)-(80), we gain

(σ +1)Ω 2 +2(1+MrMk)σkΩ − (σ −1−2σMrMk)σk2 = 0, (85)

where the non-dimensional growth rate Ω is defined by (12) and σ = 1+ q is the
thermal expansion ratio, with q (> 0) the non-dimensional heat release as defined
in Sect. 2. By imposing the condition of Ω = 0, we find the critical wavenumber as

kc =
σ −1

2σMrM
. (86)
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k

Fig. 2 Growth rate Ω v.s. wavenumber k with γ = 1.4, σ = 6, Ma = 0.5 and δ = 0.5 for several
values of Prandtl number: Pr = 0 (dashed), Pr = 3/4 (dot-dashed) and Pr = 1 (solid). The DLI is
also plotted for comparison.

Because positivity of the Markstein number, MrM > 0, brings the decrease of the
growth rate, we need the following requirement for the suppression of the DLI for
k > kc.

1+Ma2(γ −1)
(

4
3

Pr−1
)
> 0. (87)

This condition means that if Pr > 3/4, the increase of the value of Ma absolutely
reinforce the suppression of the DLI. On the other hand, if 0 < Pr < 3/4, there is
a possibility of the enhancement of the DLI, or MrM < 0, by the compressibility
effect. However, under the condition of Ma2 � 1, this is unlikely to occur.

Finally, we plot the solution of (85) in Figs. 2 and 3, which is given by

Ω =− σ
1+σ

(1+MrMk)k

+
1

1+σ

{
σ2(1+MrMk)2 +σ(σ2 −1)

(
1−2

σ
σ −1

MrMk
)}1/2

k. (88)

We observe from Fig. 2 that the DLI is suppressed at the critical wavenumber given
by (86). In the range of Pr > 3/4, the reduction of the growth rate is achieved by
the increase of the Mach number as shown in Figure 3. Conversely, the rise of the
growth rate is caused by the compressibility in the range of 0 < Pr < 3/4, though
such a growth rate is still less than the DLI.
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k

Fig. 3 Growth rate Ω/k v.s. Mach number Ma with the same parameters as Fig. 2 but for k = 0.5.

6 Conclusions

We have investigated the effect of the compressibility on the Markstein number by
use of the M2 expansions. Our analysis has been performed on the scale of the
preheat zone, represented by δ , by employing the matched asymptotic expansions.
The compressibility brings the pressure variation term as a heat source in the heat-
conduction equation. The pressure term connects the heat-conduction equation with
the Navier-Stokes equation. As a consequence, the viscous effect tales part in the
compressibility correction to the Markstein number.

In this investigation, we have appealed to the long-wavelength approximation for
the perturbations. The resulting condition of the mass flux (74) implies no perturba-
tion of the mass flux to O(δ 0). However, at O(δ ), the perturbation of the mass flux is
generated due to the curvature effect which is virtually equivalent to the Markstein
effect [16]. The term of O(δMa2) is new, of compressibility origin, which modifies
the magnitude of the Markstein number.

The influence of the compressibility on the Darrieus-Landau instability (DLI) is
discussed in Sect. 5. Enhancement or reduction of the Markstein effect is sensitive to
the value of the Prandtl number Pr. In the range of 0<Pr < 3/4, the compressibility
leads to the increase of the growth rate of infinitesimal perturbations, though its
value is still less than that of the DLI. On the other hand, if Pr > 3/4, then the
growth rate decreases as the Mach number increases.

The ansatz (24) for the form of infinitesimal perturbation drastically facilitates
the integration of the coupled system of the heat-conduction and the Navier-Stokes
equations. In a companion paper [23], we tackle with the burning-rate eigenvalue
problem in the reaction zone, with allowance for compressibility, and thereby ma-
nipulate the laminar flame speed. The present investigation establishes a concise
formula (4) for the Markstein number with the compressibility taken into account,
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though assuming the laminar flame speed to be unity, the first term of (3). These two
pieces of papers complements each other. There are a lot to be examined concerning
the compressibility effect on combustions, for instance, the inertia and acceleration
effects [1, 10] and the deflagration to detonation transition (DDT) [24]. These effects
are left for future study.
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Computational fluid dynamics modelling of a

transient solids concentration in a lagoon

Ashfaq A. Khan, Yan Ding

Abstract Investigation of slurry flows is important for the mineral industry, biomass
processing and waste processing. In the design of slurry handling systems such as
channel flows, separators where solids concentrates are separated from clear liquid
streams, knowledge of physics underlying slurry flows is required. In this study,
slurry flows in tanks have been investigated. The transient profiles of the solids
concentration along the length have been modelled using computational fluid dy-
namics(CFD). This investigation examines multiphase flows with settling solids in
a non-Newtonian flow. The dynamical model gives guidance in determining forma-
tion accumulation of solids as a sludge blanket. In addition the clear liquid solids
interface position has been determined this is needed for the recycle of the clear
water for water conservation.

1 Introduction

Biological treatment processes are widely used in wastewater treatment plants. One
of the key factors that control the efficiencies of the plant is the separation processes
that remove the solids concentrated streams from the clear liquids as discussed by
Li([2]). The resulting sludge is caused by sedimentation that consists of settling
solids which have to be of sufficient size to get an efficient settling velocity. In order
to accomplish this the fluid dynamics underlying the multiphase non-Newtonian
flow needs to be understood. For wastewater systems this is done in large tanks or
circular basins in order to achieve enough hydraulic time to settle the solids flocs into
a sludge layer. In a previous work, Zhou and McCorquodale([1]) modelled the flow
in a rectangular tank in a simplified model which did not consider the rheological
effects of the solids. Lakehal et al([5]) further included non-Newtonian effects in
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modelling sludge flows in a wastewater basin. In this investigation, we adopted the
approach used by Lakehal et al([5]). We combine the rheology of wastewater with
large scale settling in turbulent flows and investigated the sludge flow in a lagoon.
Our model flows is represented by a two dimensional tank that is 8 meters high
and 50 meters in length. In this tank we assume a feed of slurry at one end in the
top three meters. There are two outlets in the next end; a top outlet flow for the
clear liquid withdrawal, and the bottom outlet for the sludge withdrawal; both these
outlets are one meter in length. To our knowledge this approach has not been used
on such scale for wastewater systems.

2 Governing equations

The system of equations include the continuity equation and the general equations of
motion. They have been modified to include the complex physics of the clarification
process. The overall multiphase flow process is turbulent and we have used the k−ε
model for this. Detailed explanation of the symbols need to be referred to Lakehal et
al([5]). We have incorporated these modifications as User Defined Functions(UDFs)
into Fluent([6]).
Continuity and X - Momentum Equations

∂Vx

∂x
+

∂Vy

∂y
= 0 (1)

ρ
∂Vx

∂ t
+ρ

∂V 2
x

∂x
+ρ

∂VxVy

∂y
= −∂ p

∂x
+

∂
∂x

(2μt
∂Vx

∂x
)+

∂
∂y

[μt(
∂Vx

∂y
+

∂Vy

∂x
)]+

gC(ρp −ρw)

ρw
(2)

The last term in this equation is a source term for momentum in the X direction. The
density difference provides a buoyancy effect.
Y - Momentum Equations

ρ
∂Vy

∂ t
+ρ

∂V 2
y

∂y
+ρ

∂VxVy

∂x
= −∂ p

∂y
+

∂
∂x

(μt(
∂Vx

∂y
+

∂Vy

∂x
)+

∂
∂y

[2μt(
∂Vx

∂y
)] (3)

The turbulence is described by k and ε by

ρ
∂k
∂ t

+ρ
∂Vxk
∂x

+ρ
∂Vyk
∂y

=
∂
∂x

[(μ +
μt

σk
)

∂k
∂x

]+

∂
∂y

[(μ +
μt

σk
)(

∂k
∂y

)]+Gk +Gb −ρε (4)
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ρ
∂ε
∂ t

+ρ
∂Vxε
∂x

+ρ
∂Vyε
∂y

=
∂
∂x

[(μ +
μt

σε
)

∂ε
∂x

]+
∂
∂y

[(μ +
μt

σε
)(

∂ε
∂y

)]+

C1ε
ε
k
(Gk −C3εGb)−ρC2ε

ε2

k
(5)

The convection-diffusion equation is used to compute the field of suspended solids
concentration C

ρ
∂C
∂ t

+ρ
∂ (Vx +Vs)C

∂x
+ρ

∂ (VyC)

∂y
=

∂
∂x

[
μt

σc

∂C
∂x

]
+

∂
∂y

[
μt

σc

∂C
∂y

]
(6)

The value for the turbulent Schmidt number is 0.7 which is a typical value for free
flow and near wall flow as applied to this situation. The solids settling velocity Vs is
modelled using a settling function of Takacs[3]).

Vs =Vs0exp[−rh(C−Cns)]−Vs0exp[−rp(C−Cns)] (7)

This approach adequately describes the hindered settling of activated sludge.
To physically characterize the rheology of the sludge, we have used the Bingham
turbulent constitutive equation used by Dahl[4]) to characterize the slurry. The yield
stress τb is function of the solids concentration. The shear stress is given as

τxy =−(
τb

2γ
+μp +μt)(

∂Vx

∂y
+

∂Vy

∂x
), (8)

where the turbulent viscosity μt is dependent on k and ε ,

μt = ρCμ
k2

ε
,

and the yield stress τb is given by

τb = β1exp(β2C).

Table 1 lists the values given to the parameters that are used in this simulation

3 Results and Discussion

We are interested in flows in lagoons with long lengths; in which in this case is 50
meters long and 8 meters high. The initial condition has water in the tank with no
solids and zero velocity. The solids are introduced in the inlet stream at a steady
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Table 1 Parameters used for the simulation
Parameters Description Value

Uin Inflow Velocity 0.019 m
s

Cin Inflow Particle Concentration 3.2 kg
m3

ρp Dry Particle Density 1450 kg
m3

ρw Clear Water Density 1000 kg
m3

σc Schmidt Number 0.7
US0 Reference Settling Velocity 0.005 m

s

RH Floc Settling Parameter 0.7 m3

kg

RP Colloidal Settling Parameter 5 m3

kg

CMIN Nonsettleable Concentration 0.01 kg
m3

USMAX Maximum Settling Velocity 0.002 m
s

flow of 0.019 m/s, in which the concentration of solids is 3.2 kg/m3 as shown in
Table 1. This work investigates the accumulations of solids as a sludge blankets by
a transient two dimensional analysis.

The systems Equations (2) - (8) were solved using finite volume method in AN-
SYS Fluent 14.2. The source momentum terms and the rheological properties are
implemented by User Defined Functions (UDFs) of Fluent ([6]). Using a similar ap-
proach to Lakehal et al ( [5]) we have solved slurry model to depict the dynamics of
solids concentration in a lagoon. The suspended solids concentration is determined
by C in Equation (6). The buoyancy effects that result from the solids settling due
to gravity with the density differences cause temporary circulation effects with the
resultant non-uniform sludge layering effects.

The 2D model transient solution provides the profiles of solid concentration, des-
ignated by Scalar 0 at different times. Figure 1 and Figure 2 we present the contours
on the solids concentration(Scalar 0) at times t = 1000s and t = 6000s respectively.
In the case of 1000s, as shown in Figure 1, high concentration flow of solids from
the inlet are pulled by gravity along the wall until the bottom is reached. After the
solids reach the bottom they move along the length towards the outlets due to the
momentum of the flow. However because of gravity there is a stratification with
higher concentration of solids at about 1.5kg/m3 along the bottom. At about 12 me-
ters from the end there is a solids accumulation spot in the bottom of about 5kg/m3.
The reason for this is the recirculation in flow. This causes stagnation in which the
gravity effects dominate and cause a pile up of solids this point. Note that as the
flow get approaches the end, at about 5 meters there is another smaller solids build
up on the bottom. This is again caused by the circulatory currents. In this case since
the overall solids concentration is higher because if dispersion mixing, the overall
settling effect is lower since the negative buoyancy effect is decreased. However, at
the top exit point we see a slight increase in solids concentration to about 0.5kg/m3,
which results in turbid liquid to be extracted from the top end.

Figure2 contours shows a solids concentration at t = 6000s which approaches
a quasi-steady-state in which a distinctive separation layer between the solids and
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Fig. 1 Variation of solids concentration at T=1000s.

water has formed. This top layer is free of solids and can be recycle for use as water.
Also, it can be seen from Figure2 that the solids concentration increases sharply
from approximately 0.5kg/m3 to about 2kg/m3. Furthermore we also note that a
thin layer of high concentration of solids is greater than 4.5kg/m3 along the bottom.
The thickness of this layer is approximately constant after about 4 meters from the
inlet wall.

We have quantified the solids concentration profiles at these times by extracting
numerical results of the biomass(solids) concentration along three positions in the
flow direction (y = 4, 20 and 40 meters). These are shown in Figure 3 ( t = 1000s),
Figure 4( t = 6000s). In Figure 3, we see that overall solids concentration increases
along the y axis. This is consistent with the fact that near the end the recirculation
causes stirring of the solids and hence increases the concentration. Also it should be
noted that the inlet is constantly feeding solids which initially flow along the bottom
along the y axis and then circulate near the end causing an increase in concentration
with height. We confirm that a steady-state is approached at 6000s as shown in
Figure 4 which shows that the Scalar 0 value jumps from approximately 0kg/m3 to
greater than 9kg/m3 at a depth of 3 meters from the surface. From Figure 4 we can
also confirm a formation of a highly concentrated layer of about 3kg/m3 to 9kg/m3

near the bottom.
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Fig. 2 Variation of solids concentration at T=6000s
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Fig. 3 Variation of solids concentration profiles at T=1000s
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Fig. 4 Variation of solids concentration profiles at T=6000s

4 Conclusion

The results for solids concentration at t = 1000s show two pockets of solids build
up on the bottom near the outlet. This is due to flow recirculation due to a combined
effect of turbulence in the slurry and the effect of gravity. However it is noticed that
for a longer time of 6000 s these pockets of solids disappear and a quasi-steady state
is reached with a thin layer of concentrated solids at the bottom and a distinctive
separation of clear water and solids starts at about 3 meters from the surface. Thus
it can be concluded that providing we supply an adequate outlet near the bottom of
the lagoon the solids buildup should be stabilized. Also, overall we have shown that
this method can be used to determine the transient concentration profile which is
an important issue for lagoon solids management for providing guidelines for water
treatment strategy and sludge removal maintenance schedule. Future work will be
focussed on parameter modelling for optimal design of lagoons.
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Regular and Singular Behaviours and New

Morphologies in the Rayleigh Taylor Instability

Kurt Williams, Desmond L. Hill, Snezhana I. Abarzhi

1 Introduction

1.1 Rayleigh Taylor Instability

The problem of Rayleigh Taylor instability was first systematically studied in
1883[12] by Lord Rayleigh, who proposed an experiment in which a dense fluid
(eg: water) is balanced on top of a less dense fluid (eg: oil). The system, if perfectly
balanced, would remain at rest - with the dense fluid on top being unable to penetrate
the lighter fluid. However, any perturbation or deviation away from this equilibrium
state causes the system to rapidly accelerate away from the equilibrium state. Later
experiments by Taylor [7] would confirm the unstable nature of such a system and
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Abstract The Rayleigh Taylor Instability is a fluid instability that develops when
fluids of different densities are accelerated against their density gradient. Its appli-
cations include inertial confinement fusion, supernovae explosion, fossil fuel ex-
traction and nano fabrication. We study Rayleigh Taylor instability developing at an
interface with a spatially periodic perturbation under a time varying acceleration us-
ing group theoretic methods. For the first time, to our knowledge, both regular and
singular nonlinear solutions are found, which correspond to the structure of bubbles
and spikes emerging at the interface. We find that the dynamics of bubbles is regu-
lar, and the dynamics of spikes is singular. The parameters affecting the behaviour
of both bubble and spikes are discussed, including the inter-facial shear, which is
shown to have a profound effect. The results set key theoretical benchmarks for
future analysis.
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provide geometric insight about the problem.

In the most general of terms, the Rayleigh Taylor Instability can be defined to be
a system of two fluids of different densities undergoing a prolonged acceleration
normal to the interface between the fluids. In a system with this configuration, the
less dense fluid “bubbles” up and penetrates the denser fluid, which itself penetrates
the lighter fluid as “spikes”. Both “bubble” and “spike” structures are observed to
have a finger-like structure that is paraboloidal in nature for early time, but may
evolve into more irregular structures in the late-time “mixing” regime.

In a complete description of the system, shearing forces that emerge at the inter-
face are responsible for deformations of these bubble and spike structures. Whilst
at very small scales, this vortical behaviour can be described independently, as has
been done in research of Kelvin Helmholtz instabilities, for the Rayleigh Taylor in-
stability, these structures are tiny, and shear is best described as a global property of
the system that can affect its growth and other behaviour.

Rayleigh Taylor behaviours are observed in a broad range of circumstances and
scales. Examples in nature include supernovae[4], galactic evolution [4], and ocean
dynamics [1]. Industrial examples include laser micromachining [13] (including
laser ablation [5]), inertial confinement fusion [9], optical telecommunications [11]
and aeronautics [6]. With such a large range of fundamental processes being driven
by Rayleigh Taylor dynamics, it is vital that effective theoretical benchmarks are
set.

2 Theoretical Approach

2.1 Governing Equations

2.1.1 Euler Equations

The analytic description of the system begins with the Euler equations for incom-
pressible fluids of uniform density:

Du

Dt
=−∇ω +g (1)

∇ ·u = 0. (2)

By considering an infinitesimal volume dV of fluid, the conservation of mass,
momentum and energy lead to the following conservation equations:
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∂
∂xi

(ρvi) =
∂ρ
∂ t

(3)

∂ρvi

∂ t
+

3

∑
j=1

∂ρviv j

∂xi
+

∂P
∂xi

= 0 (4)

∂E
∂ t

+
∂ (E +P)vi

∂xi
= 0 (5)

where in these equations, ρ is the density, p is the momentum, vi are the com-
ponents of the velocity field, xi are the spatial coordinates of the system and E and
P are the energy and pressure respectively. The energy can also be expressed as
E = ρ(e+v2/2) for specific internal energy e.

2.2 Interface Conditions

In order to separate the dynamics of both the bulk and the interface, we introduce a
scalar function θ(ρ,v,P,E) which has derivatives of at least first order (i.e. ∇θ and
θ̇ exist), with θ being 0 at the interface of the two fluids. Then the denser fluid is
located in the region θ > 0 and the less dense fluid fills the region θ < 0.

Since these two fluids are perfectly separated by this boundary of θ = 0, we may
express our total domain as (ρ,v,P,E) = (ρ,v,P,E)hH(θ) + (ρ,v,P,E)lH(−θ).
Substituting into the conservation equations, we obtain the following conditions at
the interface:

[j ·n] = 0 [(P+
(j ·n)2

ρ
)n] = 0

[(j ·n)( (j · τ)
ρ

)τ] = 0 [(j ·n)(W +
(j)2

2ρ2 )] = 0

n =
∇θ
|∇θ | n · τ = 0,

(6)

where the square brackets [...] denote the “jump” of the function across the in-
terface - essentially the limit of the derivative with respect to θ . The mass flux is
expressed as j.

In the case in which there is no mass flux across the interface ( j ·n|θ=0± = 0), these
boundary conditions at the interface become:

[v ·n] = 0, [P] = 0, [v · τ] = arbitrary, [W ] = arbitrary, (7)

and at infinity:
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lim
z→∞

vh = 0, lim
z→−∞

vl = 0. (8)

Whilst there exist two natural time scales for Rayleigh Taylor systems with time-
varying acceleration [10], we will focus on the the timescale of acceleration-driven
dynamics. The two timescales are τg = (kG)−1/(a+2) and τ0 = 1/(k|v0|) with |v0|
some initial growth rate for the system. Furthermore, there is a unique length scale
1/k imposed by the wave vector.

2.3 Large Scale Dynamics

Any vector field can be expressed as the sum of the gradient a scalar potential plus
the curl of a vector potential field. In this way, we may express our vector field as:

v = ∇Φ +∇×φ . (9)

The large scale dynamics are assumed to be irrotational, since no discontinu-
ities or circulations occur. The small-scale dynamics are rotational, but by Kelvin’s
Circulation Theorem the large scale dynamics are irrotational in the bulk [14]. We
hence set ∇×φ = 0. This means that the velocity field v can be expressed as ∇Φ .

By substituting this expression for v into the conservation equations, we obtain the
following:

ΔΦ = 0 (10)

ρ(
∂Φ
∂ t

+
∇Φ2

2
)+P = 0. (11)

Now substituting the expression for v into 7, we obtain a system of equations to
solve:

ρh(∇Φh ·n+
θ̇

|∇θ | ) = ρl(∇Φl ·n+
θ̇

|∇θ | ) = 0 (12)

∇Φh · τ −∇Φl · τ = arbitrary (13)

ρh(
∂Φh

∂ t
+

|∇Φh|2
2

+(g(t)+
∂v
∂ z

)z) = ρl(
∂Φl

∂ t
+

|∇Φl |2
2

+(g(t)+
∂v
∂ z

)z), (14)

where g(t) = Gta, a power-law function of time. In the frame of reference that
moves with the bubble tip, the boundary conditions are instead expressed:

∇Φh|z→∞ = (0,0,−v(t)),∇Φl |z→−∞ = (0,0,−v(t)). (15)



2.4 Group Theory

In order to capture the highly-symmetric nature of our solution, we appeal to group
theory. The interface between the two fluids is initially flat, or rather very close to
flat and so is essentially R2, a group of Lie Type, which is to say that R2 under some
set of transformations, can be considered to be both a group and a manifold. The
elements of the irreducible representations of this group will inform the structure of
Fourier series over the group. Since we are seeking a solution which has symme-
tries over the entire space, we infer that the group operations in question must be
symmetry transforms on R2. There are seventeen groups of invariants under these
transformations, but by imposing the condition that our structures must have inver-
sions along the interfacial plane, and must be repeating, we need only consider the
two-dimensional groups p2mm, p4mm, p6mm, p2 and cmm for three dimensional
flows; and the one-dimensional group p1m for two-dimensional flows. These groups
are referred to using the international notation [2]. In this notation, m’s denote the
number of reflective or ”mirroring” symmetries a cell has, p’s indicate primitive
cells - which have natural translational symmetries, c’s denote face-centred cells
and free numbers indicate the rotational symmetry of each cell.

x
y

p4mm

a2

a1

m
4
m

p6mm

a1
a2

m
6
m

a1

a2

p2mm

m m
2

3D

Fig. 1 A selection of the seventeen unique wallpaper groups.

We will be examining the symmetry group p6mm, which has six rotational sym-
metries, 2 reflective symmetries and three directions of equal magnitude transla-
tional symmetry, the third of these being the direct sum of the first two. The naive
treatment of such a structure would be to construct vectors ai along each edge and
express our solution in terms of these. However, to actually express our solution, we
need to map these ”lattice vectors” into reciprocal space - a non-euclidean manifold
in which the metric for distances between two points is:

d(x,y) = 1/dE(x,y), (16)

where dE is the Euclidean metric. Each of the vectors k j in inverse space obeys
the relationship ai ·k j = 2π , for i, j ∈ 1,2 and k3 = k1+k2. Since the lattice vec-
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tors are (2π)ai = {(1,0),(−0.5,
√
3/2),(−0.5,−√

3/2)}, our reciprocal vectors are
(
√
3λ/4π)k j = {(√3/2,1/2),(0,1),

(
√
3/2,−1/2)}. There is an interesting geometric relation between the lattice vec-

tors and the reciprocal lattice vectors in euclidean space - the reciprocal vectors form
a basis for the centre of each cell (figure 2). As such, these vectors are the basis for
a Fourier series of structures along the interface.

a1

a2

a3

k1

k2

k3

Fig. 2 The geometric relationship between the lattice vectors ai (dashed) and the reciprocal vectors
k j (solid)

So then, since we require the maxima of our Fourier series along the interface to
be at the centre of the hexagonal cells, we expect our Fourier series for the velocity
potential to be of the form:

Then summing over all the modes of harmonics and the boundary conditions for the
heavy and light fluids, we obtain in a single step:

where r = (x,y) is the position along the interface, Φm and Φ̂m are the Fourier am-
plitudes, with m ∈ Z. It is worth noting that |ai|= λ , k = |ki|= 4π/(λ

√
3).
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Φ ∼
3

∑
j=1

cos(αk j · r).

Φh(r,z, t) =
∞

∑
m=0

Φm(t)(z+ e
−mkz
3mk

3

∑
j=1

cos(mk j · r))+ fh (17)

Φl(r,z, t) =
∞

∑
m=0

Φ̂m(t)(−z+ e
mkz
3mk

3

∑
j=1

cos(mk j · r))+ fl , (18)
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We are interested in the motion at the tips of the bubbles and spikes, so we are
able to Taylor expand the scalar function θ(z) = z− z∗(x,y, t). Knowing that the
structures are symmetric about the centre of each “symmetry cell”, the expansion
is:

z∗(x,y, t) =
∞

∑
N=1

ζN(t)r 2N . (19)

To the first order (N=1), the tip expansion is z∗ = ζ (x2+ y2).

2.5 The Moments Expansion

Since the equation is expanded in terms of harmonics of standing waves (17), it
would be natural to truncate the series to a few terms and analyse those. However,
much of the behaviour of the system is governed by the interplay between these har-
monics. In order to preserve these harmonics in our equations we introduce weighted
sums over all the harmonics known as “moments”:

Mn =
∞

∑
m=0

Φm(t)knmn (20)

M̂n =
∞

∑
m=0

Φ̂m(t)knmn. (21)

2.6 The Dynamical System

Finally, having attained local expressions for the potential field and the interface, we
substitute into 12-2.14 and obtain the following system of equations:

(1+A)(ζ̇ −2ζ M1− M2

4
) = (1−A)(ζ̇ −2ζ M̂1+

M̂2

4
) = 0 (22)

(1+A)(
Ṁ1

4
+ζ Ṁ0− M2

1
8

+ζ g) = (1−A)(
˙̂M1

4
+ζ ˙̂M0− M̂2

1
8

+ζ g) (23)

M1− M̂1 = arbitrary, M0 =−M̂0 =−v. (24)

Where A = (ρh −ρl)/(ρh +ρl), the Atwood number and g = g(t) = Gta.

2.7 Early Time Solutions

For the early time solutions, only the first harmonics are retained in the expressions,
yielding:
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2.8 Nonlinear Dynamics

In general the dynamical system is not solvable. We can, however, generate an
asymptotic solution in the regime of t → ∞. In such a regime, we assume that each
of the modes of oscillation grow at the same rate, since otherwise our problem is
dominated by a single mode which could be analysed in exactly the same way as
our linear, early time dynamics. We also assume that the rate of growth goes as
some power law expansion of time, which is to say that the growth of these modes
is governed by the external acceleration, which has power-law dependence on time.
We presume that asymptotically:

ζ ∼ ta, (M,M̂,Φ ,Φ̂)∼ (m, m̂,φ , φ̂)tβ

In order to ensure our solution resolves issues of closure, and captures the inter-
action between harmonic modes, we expand our moments to the second mode of
oscillation:

Mn(t) = (Φ1(t)+2nΦ2(t))kn, M̂n(t) = (Φ̂1(t)+2nΦ̂2(t))kn (28)

Which yields the following:

ζ1 =− m2

8m1
ζ1 =− m̂2

8m̂1
(29)

m1 =
2m0k
3−8p

m̂1 =
2m̂0

3+8p
(30)

m2 = 3km1−2k2m0 m̂2 = 3km̂1−2k2m̂0 (31)

p =−ζ
k

(32)

Substituting these into equation 23, we obtain:

366

Mi =−M̂i =−kiv, v =
4
k2

ζ̇

(1+A)(ζ̈ −ζ Gta) = (1−A)(−ζ̈ −ζ Gta).

(25)

This system of equations has general solution:

ζ (t) = c1

√
t
τ

I 1
2s
(
√

AG
( t

τ )
s

s
)+ c2

√
t
τ

I− 1
2s
(
√

AG
( t

τ )
s

s
). (26)

With τ = τg being the characteristic timescale of the time-dependent acceleration
force. The case a = 0 yields the classic result:

ζ (t) = c1 exp(
√

AG
t
τ
)+ c2 exp(

√
AG

t
τ
). (27)
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(1+A)(
bm1

4
+ζ1bm0− m2

1
8

t1+b −ζ1Gt1+a−b)

= (1−A)(
bm̂1

4
−ζ1bm̂0− m̂2

1
8

t1+b −ζ1Gt1+a−b).

(33)

In determining solutions to this equation, we find three potential balances:

a <−2,b =−1 a =−2,b =−1 −2< a,b =
a
2

If a is sufficiently small (a <−2), then the external acceleration will have negligible
effect, and the motion will essentially be of Richtmyer Meshkov type. The second
case will be a threshold point at which the dynamics will be both of Rayleigh Taylor
and Richtmyer Meshkov type. The Rayleigh Taylor dynamics are given in the third
case. In letting b = a/2 and −2< a < 0, we solve for the velocity:

v(t) =−
√

G(t/τ)a

k
(64p2−9)

√
2Ap

48p+A(64p2+9)
(34)

=− 1
τk

(
t
τ
)a/2(64p2−9)

√
2Ap

48p+A(64p2+9)
. (35)

The structure with the fastest velocity for a given Atwood number is known as the
Atwood structure. Setting the time derivative of v(t) to be zero yields the follow-
ing condition for the curvature (p = p∗) and velocity (v(t) = v∗(t)) of an Atwood
structure:

p∗4+
1
A

p∗3+
9
32

p∗2− (
3
16

)3 = 0

=⇒ v∗(t) =− 1
τk

(
t
τ
)a/2(8p∗)

3
2 .

(36)

We also seek to account for the vortical structures that emerge strictly at the in-
terface. Although they do not cause global circulation, they do provide a means by
which the two fluids can move or “shear” past each other. We thus introduce a global
parameter to quantitatively measure this interfacial shearing:

Γ (ζ , t) = M1(t)− M̂1(t) =
12k

64p2−9
v(t). (37)

In all of our equations, the curvature (ζ ) and wavelength (k) are natural parameters
of the system. Since the wavelength is fixed by the initial configuration of our sys-
tem it is natural to assume, as Garabedian[8] did, that solutions to the problem of
Rayleigh Taylor instability form a one-parameter family of solutions, and that the
dynamics are single-scale in nature. So then, our full description of the system is:
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v(t) =− 1
τk

(
t
τ
)a/2(64p2−9)

√
2Ap

48p+A(64p2+9)

Γ (ζ , t) =
12k

64p2−9
v(t)

(38)

3 Bubble Dynamics

A=1
A=2/3
A=1/3

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

v√
g/k

ζ
ζcrit

Fig. 3 The velocity (v) of a rising bubble scaled by growth rate (
√

g/k, g = Gta) as a function of
its curvature (ζ ).

We clearly observe that there is a one-parameter family of solutions. For any
given Atwood number, there is a broad range of possible curvatures, each with its
own velocity. The curvature of each solution is uniquely determined by the initial
interface perturbation.

The behaviour seen in figure 3 makes physical sense. If the interface is perfectly
flat (ζ = 0), then there is no dynamic motion and the velocity is zero. However, any
curvature in the interface will allow the heavy fluid to sink and the resultant bubble
to rise up. Thinner bubbles grow faster, and it appears that there is a positive cor-
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Bubbles are formed when the lighter fluid penetrates into the heavy fluid. As such,
they are concave downwards in z and have negative curvature (ζ < 0, p > 0). The
velocity function is shown in figure 3.



relation between curvature and velocity. However, at a sufficient curvature (which
depends on the Atwood number), there is a maximally fast bubble, and at curvatures
higher than this, the velocity becomes decreases with curvature. The velocity even-
tually approaches zero at the critical curvature (ζ =−3/8k). This unique curvature
is a stagnation point for the system.

A=1
A=2/3
A=1/3

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

Γ√
gk

ζ
ζcrit

Fig. 4 The intefacial shear (Γ ) scaled by growth rate (
√

gk, g = Gta) as a function of its curvature
(ζ ), note that larger Atwood numbers give a larger interfacial shear.

The interfacial shearing continuously grows with curvature (figure 4), and is
maximal at ζ =−3/8k. We conclude that whilst the interfacial shearing does grow
with velocity, it eventually dominates the dynamics and those solutions with max-
imal shear do have a lower velocity. Thus, whilst the interfacial shearing is depen-
dent on the velocity, it is a competing mechanism in the dynamics and resists rising
bubbles reaching their maximal velocity. The velocity is highly sensitive to this in-
terfacial shearing and nonlinear bubbles have a multiscale dependence on both the
curvature (a parameter governing its effective acceleration) and the interfacial shear.

In any case, we expect the dynamics to be dominated by the bubble exhibiting the
highest velocity, which we herein call the ”Atwood” bubble. Numerical simulations
involving competing bubbles of various velocities demonstrate that asymptotic dy-
namics are dominated by bubbles with the highest velocity [3]. We thus expect the
Atwood solution to be the physically relevant one.

We can therefore conclude that there is a one-parameter family of solutions that

369Regular and Singular Behaviours and New Morphologies in the Rayleigh Taylor Instability
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arises due to the multiscale character of the dynamics. The dynamics is multiscale
and governed by the interaction of acceleration and the interfacial shearing. How-
ever, any system will be dominated by the fastest or ”Atwood” type solution in the
asymptotic regime.

4 Spike Dynamics

There are a number of unique features in the asymptotic velocities of the spikes.

limA 1

A=0.9

A=2/3

A=1/3

0.2 0.4 0.6 0.8 1.0

2

4

6

8

v√
g/k

ζ
ζcrit

Fig. 5 The dependence of spike velocity (v) scaled by growth rate (
√

g/k, g = Gta) on the cur-
vature (ζ ). The dynamics as A → 1 is unbounded for all curvatures less than the critical curvature.

370

Spikes are the complementary structure of bubbles. They are concave in the positive
θ direction and flow from the heavy fluid into the light (v < 0), they have positive
curvature (ζ > 0, p < 0). The velocity has the form seen in figure 5.

Much like bubbles, there is a critical curvature (ζ = 3/8k) which forms a stagnation
point for spikes. Unlike bubbles, however, spikes with very small curvatures (ζ → 0)
do not tend towards stagnation, but reach unbounded growth. It may be tempting to
suggest that these singularities are nonphysical, but our analysis has restricted itself
to finding dynamics on the order∼ k. A singular velocity suggests that the dynamics
of the system outgrows this scale. This growth is likely the mechanism for the tran-
sition between the nonlinear dynamics and the mixing regime. Thus, this analysis
could open the door to understanding the hitherto unexplored mixing regime.



The exact scaled curvature at which the spike velocity becomes asymptotic is κ(A)k,
where:

κ(A) =
3
8
1−√

1−A2

A
(39)

And it is interesting to note that at this curvature, the interfacial shearing is also
singular (figure 6), suggesting that the dynamics grows beyond ∼ k in both of the
associated scales (wavelength and amplitude). As such, the effect of interfacial shear
is not dominated by this unbounded growth in velocity and the dynamics of the
spikes is also to be understood as a multiscale phenomenon. It should also be noted
that in the limit of the density of the lighter fluid tending towards zero (A → 1), the
spike velocity becomes unbounded for all curvatures less than the stagnant critical
curvature (ζ = 3/8k).

limA 1=

A=0.9

A=2/3

A=1/3

0.2 0.4 0.6 0.8 1.0

10

20

30

40

Γ√
gk

ζ
ζcrit

Fig. 6 The dependence of shear (Γ ) scaled by growth rate (
√

gk, g = Gta) on the curvature (ζ ).
The dynamics as A → 1 is unbounded for all curvatures. In the rescaling, g = Gta

5 Conclusion

By using group theoretic methods, we have explored the linear and non-linear dy-
namics of the large-scale structures in Rayleigh Taylor instabilities under variable
acceleration. We have considered an interface with two translational symmetries un-
der a time-varying acceleration with power-law dependence - in particular, power-
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law with exponents larger than -2. By invoking the theory of group representations.
we have expanded the flow fields, derived a dynamical system from the governing

For the early time regime, we found that the behaviour of bubbles and spikes can
be described using a linear combination of Bessel functions (Equation 26). For non-
linear bubbles and spikes, however we found asymptotic solutions with power-law
time dependence. For non-linear bubbles, we have observed that for small enough
curvatures, the velocity is small (Figure 4). For spikes, we have observed that the
velocity does fall away for sufficiently large curvatures, but is also singular at a cur-
vature determined by the Atwood number (Figure 5). We linked this unexpected and
unusual behaviour to the interfacial shearing. For non-linear bubbles, the interfacial
shear mediates the decrease in velocity that occurs at large curvatures. For the non-
linear spikes, the interfacial shear induces the velocity bounding at large curvatures,
but it also grows with the singular velocity that appears at sufficiently small curva-
tures.

We found that the shear dominates the acceleration induced dynamics in bubbles
and spikes of sufficient curvature, meaning that the velocity is dependent on the
interfacial shearing. The problem of Rayleigh Taylor instability therefore exhibits
multi-scale dynamics and has a one-parameter family of solutions.

To conclude, we have studied the problem of Rayleigh-Taylor instability in time-
varying acceleration using group theoretic methods. We have found the interface
dynamics to directly depend on the interfacial shearing and revealed the multi-scale
dynamics of late-time Rayleigh-Taylor nature. Our analysis has achieved excellent
agreement with available observations, and gives new theoretical benchmarks for
future analysis, experiments and simulations.
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UV-laser materials ablation. Applied Physics A, 57(4):367–374, Oct 1993.

14. Grétar Tryggvason. Numerical simulations of the rayleigh-taylor instability. Journal of Com-
putational Physics, 75(2):253 – 282, 1988.

373Regular and Singular Behaviours and New Morphologies in the Rayleigh Taylor Instability



The extended Prandtl closure model applied to

the two-dimensional turbulent classical far wake

Ashleigh J. Hutchinson

Abstract Prandtl’s mixing length closure model has been used extensively in turbu-
lent wake flows. Although the simplicity of this model is advantageous, it contains
mathematical and physical limitations. In particular, this model results in a poor
estimation of the flow on the center-line and near the wake boundary. Prandtl con-
structed an improved model, which will be referred to as the extended mixing length
model, in an attempt to address many of the limitations of the original model. In this
work, the extended Prandtl model is considered. A similarity solution that leaves
both the governing equation for the stream-wise mean velocity deficit and the con-
served quantity invariant is obtained. The governing partial differential equation
is reduced to an ordinary differential equation. The ordinary differential equation,
which must be solved subject to appropriate boundary conditions and the conserved
quantity, cannot be solved analytically and thus a double-shooting method is devel-
oped to obtain the stream-wise mean velocity deficit. A plot of the mean velocity
deficit is then produced.

Key words: Extended Prandtl’s mixing length, turbulent classical wake, conserved
quantity, mean velocity deficit

1 Introduction

In turbulent flows, the time averaged Navier-Stokes equation is used to solve for the
mean flow variables. Unknown Reynolds stress terms arise, resulting in an incom-
plete system of equations. In order to complete the system of equations, a closure
model is needed. Many closure models have been proposed. Algebraic closure mod-
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els are the simplest type. In algebraic closure models, the Reynolds stresses which
are co-variances, are related to a single mean velocity gradient by a turbulent vis-
cosity function [1]. The effective viscosity is expressed as the sum of the kinematic
viscosity, which is an intrinsic property of the fluid, and the turbulent or eddy vis-
cosity which is not a characteristic of the fluid [2, 3]. In most algebraic closure
models, the kinematic viscosity is neglected as it is negligible when compared to
the turbulent viscosity.

Prandtl’s mixing length closure model [4] falls under the class of algebraic clo-
sure models. In Prandtl’s original model [4], the concept of a mixing length is in-
troduced. The Reynolds stresses are written in terms of the square of this mixing
length, and in terms of the square of the mean velocity gradient perpendicular to the
axis of the wake. This model has been successfully applied to the turbulent classical
far wake and other free shear flows [5]. Prandtl’s mixing length model is convenient
in that it is fairly easy to implement mathematically.

Prandtl’s mixing length model has various limitations. When applied to turbu-
lent wake flows, the predicted width of the wake is underestimated [4, 6]. Another
failing of Prandtl’s mixing length model is that the mixing length cannot be derived
from the model and its form must be independently imposed. Prandtl assumed that
the mixing length is proportional to the width of the wake. These limitations have
been addressed [7] by modifying Prandtl’s model by including the kinematic viscos-
ity. Prandtl neglected the kinematic viscosity in his analysis and it is shown that by
including the kinematic viscosity, the mixing length can be derived using a system-
atic method [7]. It is also shown that when the kinematic viscosity is included, the
predicted width of the wake lies outside of the predicted width when the kinematic
viscosity is neglected.

Prandtl realised the limitations of his closure model and put forth a new extended
version. In this model, the kinematic viscosity is still neglected. Instead, two mixing
lengths are introduced and the turbulent viscosity is considered as a function of
both the first and second derivatives of the mean velocity deficit perpendicular to
the axis of the wake [8]. This new form increases the mathematical complexity of
the model. However, this model suffers from the same issue as the original model
in that the two mixing lengths have to be independently specified. This issue can
again be addressed by including the kinematic viscosity. However, including the
kinematic viscosity further complicates the model and the numerical method and
so is excluded in the current paper. Prandtl’s hypothesis that each mixing length is
proportional to the width of the wake is used to specify the form of each mixing
length.

The aim of this work is to obtain an expression for the mean flow variables when
the extended Prandtl model is applied to the two-dimensional turbulent classical far
wake. A similarity solution, that leaves both the conserved quantity and the gov-
erning equation for the stream-wise mean velocity deficit invariant, is obtained. The
partial differential equation is reduced to an ordinary differential equation which
cannot be solved analytically. As an initial study, the kinematic viscosity is not in-
cluded which simplifies the numerical method significantly.
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This paper is presented as follows. In Section 2, the derivation of the governing
equations, boundary conditions, and conserved quantity for the two-dimensional
turbulent classical far wake is provided. The extended Prandtl closure model is used
to complete the system of equations. In Section 3, similarity solutions are consid-
ered. Each mixing length is assumed to be proportional to the width of the wake. In
Section 3, a numerical method is developed to solve the reduced ordinary differen-
tial equation. The similarity velocity profile is then plotted. Conclusions and further
work are given in Section 4.

2 Mathematical model for the two-dimensional turbulent

classical far wake

In this section a brief review of the derivation of the momentum equation for the
two-dimensional turbulent classical wake far downstream of a stationary slender
object is provided. A more in-depth derivation can be obtained from [9, 7]. The
mean velocity profile for the two-dimensional turbulent classical wake is illustrated
in Figure 1. A Cartesian coordinate system is used with the origin positioned at the
trailing edge of the slender object. A laminar incompressible fluid with constant
velocity (U,0) flows past the stationary slender object. Downstream of the object, a
wake is formed. For large Reynolds number flows, the wake that forms is turbulent.
The turbulent wake region merges smoothly with the laminar mainstream flow.

In this work, the components of the mean velocity deficit, vx and vy, in the wake
region are considered. The work conducted in [7] is expanded upon by consider-

ing an effective viscosity of the form E = E
(

x,y,
∂vx

∂y
,

∂ 2vx

∂y2

)
so that the extended

Prandtl model can be investigated.
In algebraic closure models, the effective viscosity is expressed as the sum of the

kinematic viscosity, ν , and the turbulent or eddy viscosity, νT [1]:

E =
μ +μT

ρ
= ν +νT . (2.1)

For Prandtl’s extended model, the turbulent viscosity is of the form

νT = νT

(
x,y,

∂vx

∂y
,

∂ 2vx

∂y2

)
. (2.2)

The Reynolds number for the mean flow is defined as

Re =
UL
EC

. (2.3)
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Fig. 1 The two-dimensional turbulent classical far wake behind a thin symmetric planar body
aligned with a uniform flow. The mean velocity in the x–direction, vx, and the mean velocity deficit,
w, are shown.

Here, L is the length downstream over which the reduction in velocity is not neg-
ligible, and EC = ν + νTC is the characteristic effective viscosity where ν is the
viscosity, and νTC is the characteristic turbulent viscosity.

Boundary layer theory is used to describe wake flows. Dimensionless variables
for the x and y coordinates, the mean velocity components vx and vy, and the mean
fluid pressure p are now introduced [10]:

x∗ =
x
L
, y∗ =

y
δ
= y

√
Re
L

,

vx
∗ =

vx

U
, vy

∗ = vy

√
Re

U
, p∗ =

p
ρU2 , E∗ =

E
EC

. (2.4)

The dimensionless effective viscosity is

E∗ =
ν

ν +νTC
+

νTC

ν +νTC
ν∗

T , (2.5)

where ν∗
T = νT/νTC is the dimensionless turbulent viscosity. The dimensionless

mean velocities are given by

vx
∗ (x∗,y∗) = 1−w∗ (x∗,y∗) , vy

∗ (x∗,y∗) = 0+ vy
∗ (x∗,y∗) , (2.6)
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where w∗ (x∗,y∗) is the dimensionless mean velocity deficit in the x–direction. In
order to derive the appropriate approximation of the momentum equation for the far
wake flow, these variables are substituted into the momentum equation, the bound-
ary layer approximation is implemented, and terms which are products and pow-
ers of the velocity deficits or their derivatives are neglected. The y– component of

the momentum equation simply gives
d p∗

dy∗
= 0, and from mainstream matching,

d p∗

dx∗
= 0. Thus, there is no external pressure gradient. The momentum equation in

the x– direction reduces to

∂w
∂x

=
∂
∂y

[
E
(

x,y,
∂w
∂y

,
∂ 2w
∂y2

)
∂w
∂y

]
, (2.7)

where the star notation has been suppressed for convenience. The momentum equa-
tion must be solved subject to

w(x,±yb) = 0,
∂w
∂y

(x,±yb) = 0, (2.8)

∂w
∂y

(x,0) = 0, (2.9)

where the boundary y =±yb(x) is left unspecified. For a wake that extends to infin-
ity in the y–direction, yb(x) = ∞. For the purpose of obtaining numerical solutions,
yb(x) can be considered to be the effective half width of the wake. The first condi-
tions, (2.8), state that the turbulent wake flow merges smoothly with the mainstream
flow. The second condition, (2.9), expresses the condition that the mean velocity
deficit is a maximum on the center-line.

In order to derive the conserved quantity, Equation (2.7) is integrated with respect
to y over the width of the wake. The boundary conditions, (2.8), are imposed. This
results in the condition

2
∫ yb(x)

0
wdy = D, (2.10)

where D is the drag.
Prandtl’s extended mixing length model states that the effective viscosity is of

the form

E (x,wy,wyy) = ν + l2
1(x)

[
(wy)

2 + l2
2(x)(wyy)

2
]1/2

, (2.11)

where l1 and l2 are known as the mixing lengths. In order to express this in the form

E∗ =
ν

ν +νTC
+

νTC

ν +νTC
ν∗

T , (2.12)

dimensionless mixing lengths corresponding to l1 and l2 need to be defined. The
mixing lengths are chosen to scale with the boundary layer thickness, δ . In other
words,
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l∗1 =
l1
δ
, l∗2 =

l2
δ
. (2.13)

In terms of the dimensionless variables, νTCν∗
T is given by

νTCν∗
T =Uδ (l∗1)

2
[(

w∗
y∗
)2

+(l∗2)
2 (w∗

y∗y∗
)2
]1/2

, (2.14)

which shows that
νTC =Uδ . (2.15)

Suppressing the star notation for convenience,

E
(

x,
∂w
∂y

,
∂ 2w
∂y2

)
=

ν
ν +νTC

+
νTC

ν +νTC
l2
1(x)

[(
∂w
∂y

)2

+ l2
2(x)

(
∂ 2w
∂y2

)2
]1/2

.

(2.16)
Substituting (2.16) into (2.7) gives

∂w
∂x

=
∂
∂y

⎡
⎣ ν

ν +νTC
+

νTC

ν +νTC
l2
1(x)

[(
∂w
∂y

)2

+ l2
2(x)

(
∂ 2w
∂y2

)2
]1/2

∂w
∂y

⎤
⎦ .

(2.17)
As an initial investigation, the kinematic viscosity is neglected. The first term on the
right hand side of Equation (2.17) can be neglected, and ν +νTC ≈ νTC. Neglecting
the kinematic viscosity leads to

∂w
∂x

=
∂
∂y

⎡
⎣l2

1(x)

[(
∂w
∂y

)2

+ l2
2(x)

(
∂ 2w
∂y2

)2
]1/2

∂w
∂y

⎤
⎦ . (2.18)

3 Similarity solutions

In this section, similarity solutions admitted by (2.18) are considered. The partial
differential equation is then reduced to an ordinary differential equation. Expres-
sions for l1 and l2 cannot be obtained when the kinematic viscosity is neglected.
Instead, Prandtl’s hypothesis that these mixing lengths are proportional to the width
of the wake, which behaves as

√
2x, is imposed. This gives

l1(x) = l01
√

2x, (3.1)

l2(x) = l02
√

2x, (3.2)

where l01 and l02 are constants that can be obtained either numerically or from ex-
perimental results. Because there is no extrinsic length scale for this problem, it is
reasonable to seek for similarity solutions. The width of the wake behaves like

√
2x,

so the similarity variable

380



ξ (x,y) =
y√
2x

, (3.3)

is defined. Let

w(x,y) =
F (ξ )√

2x
, (3.4)

where F is a function to be determined. Substituting (3.3) and (3.4) into (2.18)
results in the ordinary differential equation

d
dξ

[
l2
01

[(
F ′)2

+ l2
02
(
F ′′)2

]1/2
F ′
]
+

d
dξ

[
ξ F

]
= 0. (3.5)

In terms of the similarity variables, the conserved quantity, (2.10), becomes

∫ yb(x)/
√

2x

0
Fdξ =

D
2
, (3.6)

and because this is independent of x,

yb(x) = ξb
√

2x, (3.7)

where ξb is a constant that remains to be determined. The conserved quantity be-
comes ∫ ξb

0
Fdξ =

D
2
. (3.8)

The boundary conditions from Equations (2.8) and (2.9) are, in terms of F

F (±ξb) = 0, F ′ (±ξb) = 0, (3.9)

F ′ (0) = 0. (3.10)

Equation (3.5) can be integrated once. Applying the boundary conditions, (3.9),
results in a zero constant of integration. Thus,

l2
01

[(
F ′)2

+ l2
02
(
F ′′)2

]1/2
F ′+ξ F = 0. (3.11)

4 Numerical results

In this section the numerical method used to solve the ordinary differential equation,
(3.11), subject to the boundary conditions and the conserved quantity is presented.
Because the wake is symmetric about the x–axis, it is convenient to consider only
the upper half of the wake. First let

ξ =
ξ
ξb

. (4.1)

381The extended Prandti closure model applied to the two-dimensional turbulent...



Ashleigh J. Hutchinson

Substituting into (3.8)–(3.11) and omitting the bars for convenience gives

l2
01

ξ 3
b

[(
F ′)2

+
l2
02

ξ 2
b

(
F ′′)2

]1/2

F ′+ξ F = 0, (4.2)

F (1) = 0, F ′ (1) = 0, (4.3)

F ′ (0) = 0, (4.4)
∫ 1

0
F (ξ )dξ =

D
2ξb

. (4.5)

Now, in the upper half of the wake, F ′ ≤ 0 and so (4.2) can be written in the form

l2
01

[(
F ′)2

+
l2
02

ξ 2
b

(
F ′′)2

]1/2 ∣∣F ′∣∣= ξ 3
b ξ F. (4.6)

Squaring both sides and solving for F ′′ leads to

F ′′ =± ξ 4
b

l02l2
01

[
ξ 2F2

(F ′)2 − l4
01

ξ 6
b

(
F ′)2

]1/2

. (4.7)

Let
G = F ′. (4.8)

Then Equation (4.7) can be written as two first order differential equations:

F ′ = G, (4.9)

G′ =± ξ 4
b

l02l2
01

[
ξ 2F2

G2 − l4
01

ξ 6
b

G2

]1/2

. (4.10)

In terms of F and G, the boundary conditions (4.3) and (4.4) become

F(1) = 0, G(1) = 0, (4.11)

G(0) = 0. (4.12)

Although both boundary conditions on G are not required since the differential equa-
tion for G is of first order, using the condition G(0) = 0 is convenient as solving for
G results in solving an initial value problem. However, the only condition on F is at
a boundary, and so a shooting method is required to solve for F .

In the upper half of the wake, F ′ = G ≤ 0. From G(0) = 0 and the fact that G ≤ 0,
it is seen that the negative root in Equation (4.10) must be taken. Using a forward
difference scheme,

Fn+1 = Δξ Gn +Fn, (4.13)
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Gn+1 =−Δξ
ξ 4

b

l02l2
01

[
ξ 2

n F2
n

G2
n

− l4
01

ξ 6
b

G2
n

]1/2

+Gn, (4.14)

where Δξ is the chosen step-size. The initial value for G is G1 = 0 and at the end
boundary, FN = 0. As mentioned previously, a shooting method is required to solve
for F . An initial guess for F1 is obtained from the conserved quantity and the most
basic approximation to it:

∫ 1

0
F(ξ )dξ ≈ 1

2
(F1 +FN) =

1
2

F1 =
D

2ξb
. (4.15)

So,

F1 =
D
ξb

. (4.16)

The value of ξb is also not known and must be determined from the conserved
quantity. Thus a double shooting method is required to determine the boundary value
problem for F , and the value of ξb.

The process is as follows: An initial value for ξb is chosen. Initially, choose
ξb = 1. The value for F1 is obtained from (4.16). For the chosen ξb value, the bound-
ary value problem for F is solved. Once the solutions for F and G are obtained, the
conserved quantity is evaluated and the value of ξb is updated. This process is con-
tinued until convergence is achieved.

For illustration purposes, let

ξ 4
b

l02l2
01

= 1,
l4
01

ξ 6
b
= 0.05, D = 0.1. (4.17)

A step size value of Δξ = 0.001 is used. A plot of the similarity profile is shown in
Figure 2.

5 Further work and conclusions

In this work, the extended Prandtl closure model was applied to the two-dimensional
turbulent classical far wake. A similarity solution that left both the governing equa-
tion for the stream-wise mean velocity deficit in the x–direction and the conserved
quantity invariant, was obtained. The governing partial differential equation was re-
duced to a second order ordinary differential equation. This second order differential
equation was then expressed as two first order ordinary differential equations. Nu-
merical methods were required to solve these two equations. The numerical method
of choice involved using a double shooting method to solve a boundary value prob-
lem and the unknown value of the boundary which was determined from the con-
served quantity. A plot of the similarity velocity profile was provided for illustrative
purposes.
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Fig. 2 Similarity profile of the mean velocity deficit.

The numerical scheme presented in Section 4 takes time to converge and is very
sensitive to the initial choices for ξb and F1. It also appears that convergence is only
achieved for a limited range of values of l01 and l02. A much more in-depth analysis
of this numerical scheme is required. Alternative schemes need to be developed that
allow for faster convergence without compromising accuracy.

The values for l01 and l02 were chosen arbitrarily. In order to obtain the correct
order of magnitude for these values, the numerical result must be compared to ex-
perimental data. To date, the skills required for fitting parameters in a model to data
are being investigated.

Once an improved numerical scheme is developed, and parameter fitting methods
are well-understood, the aim is then to compare the different closure models.
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Mixing, tunnelling and the direction of time in

the context of Reichenbach’s principles

Alexander Y. Klimenko

Abstract This work reviews the understanding of the direction of time introduced
by Hans Reichenbach, including the fundamental relation of the perceived flow of
time to the second law of thermodynamics (i.e. the Boltzmann time hypothesis), and
the principle of parallelism of entropy increase. An example of a mixing process
with quantum effects, which is advanced here in conjunction with Reichenbach’s
ideas, indicates the existence of a physical mechanism that reflects global conditions
prevailing in the universe and enacts the direction of time locally (i.e. the ”time
primer”). Generally, this mechanism, whose effects are often enacted by presuming
antecedent causality, remains unknown at present. The possibility of experimental
detection of the time primer is also discussed: if the time primer is CPT-invariant,
its detection may be possible in high-energy experiments under the current level of
technology.

Key words: the direction of time, the second law of thermodynamics, mixing, de-
coherence, quantum tunnelling, the time primer
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1 Introduction

Discussing time is always difficult since the notion of time is deeply embed-
ded into both our language and our intuition. Many key words in English (e.g.
“then”,“follows”, “since”) and most other languages and cultures imply both a logi-
cal link and a temporal arrangement. The perceived flow of time and conceptual in-
ferences are almost indistinguishable, or at least they are not properly distinguished
by most languages we use. Immanuel Kant [1] wrote in 1781:

Time is a necessary representation that grounds all intuitions. In regard to appearances in
general one cannot remove time, though one can very well take the appearances away from
time. Time is therefore given a priori.

One one hand this intuition assists us in everyday life and in the formulation of sci-
entific theories not related to the nature of time. One the other hand, this intuition
needs to be subordinated to rational thought when the nature of time is discussed,
and this can be difficult. It is worthwhile to note that the conventional intuitive in-
terpretation of the flow of time is the most common interpretation, but certainly not
the only one possible: there are indigenous tribes living in the North-Western part
of Queensland, who intuitively perceive time as being directed from East to West.

The perceived flow of time is thought to reflect causality — the fundamental di-
rectional connection between events unfolding in time, as well as the possibility of
explaining observed phenomena in terms of more basic principles. The two sides of
causality, related to 1) atemporal logical statements of a generic nature (e.g. objects
fall because of the action of gravity) and 2) directional dependence between specific
consecutive events (the vase is shattered because it was pushed from the table), may
be interpreted synergistically [2] or be clearly distinguished [3]. It is the second in-
terpretation, which is often referred to as antecedent causality, that we are interested
most in this work. In the 1st half of the 20th century, there was a common belief that
the directional properties of the perceived flow of time can be explained in terms of
more objective casual relations that are postulated a priori as one of the fundamental
intrinsic properties of nature. This belief had to face mounting difficulties in defin-
ing causality, and largely evaporated toward the end of the 20 century. As early as
in 1914, Bertrand Russell [4] noted that

The view that the law of causality itself is a priori cannot, I think, be maintained by anyone
who realises what a complicated principle it is.

The conceptual understanding of causality has grown to accommodate random-
ness, counterfactual logic, etc. but, overall, our interpretation of causality remains
largely intuitive and rather short of being the basis of rational thought. Antecedent
causality is now explained in terms of physical laws rather than placed at the foun-
dation of these laws. Dowe [5] defines the direction of casual action in terms of
physical laws that possess temporal asymmetry: either the second law of thermody-
namics or CP violations in the quantum world. Tying causality to the second law of
thermodynamics in one form or another has become the central element of conven-
tional thinking about the problem ([6–9]). The strongest form of the link between
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the direction of time and the second law of thermodynamics is given by the Boltz-
mann time hypothesis, which proclaims that the arrow of time and the second law
are two sides of the same physical effect [10–13]. Hawking [12] explains this: “the
second law of thermodynamics is really a tautology”, since the direction of our per-
ceived flow of time is, in fact, determined by the second law. The physical side of
the direction of time is covered in a number of principal publications [14–17].

The second half of the 20th century is marked by two seminal, yet very differ-
ent, books that endeavour to bridge philosophical and physical arguments about the
direction of time [11, 18]. The book by Huw Price is well written and delivers its
message

I have been trying to correct a variety of common mistakes and misconceptions about time
in contemporary physics — mistakes and misconceptions whose origins lie in the distorting
influence of our own ordinary temporal perspective, and especially of the time asymmetry
of that perspective

in a clear and articulate form. The other book is the last book written by Hans
Reichenbach. He was not able to complete his work and the book was published
by Mrs. Reichenbach in 1956, after her husband’s death in 1953. The book tends
to mix philosophical and physical arguments in a way that might be confusing for
both philosophers and physicists, yet Reichenbach’s book is probably the greatest
book about time ever written. According to his wife, Reichenbach considered his
last book to be the culmination of his contribution to philosophy. The Boltzmann
time hypothesis, the principle of parallelism of entropy increase and the principle of
the common cause are, perhaps, the most important contributions presented in the
book. While the Boltzmann time hypothesis gradually became accepted by many
philosophers and physicists, the principle of parallelism of entropy increase is still
a subject of debates [7, 8, 19–22].

The present work is, of course, not intended to review all issues related to the
arrow of time and causality within a short article. Conceptual issues are discussed
only in the context of selected examples that can illustrate physical statements in
a concise and transparent manner. Without attempting to overview or replace the
comprehensive publications cited above, this work focuses on select few problems.
Section 2 briefly overviews the understanding of the directionality of time suggested
by Reichenbach. Section 3 analyses an example of a mixing process and demon-
strates the significance of time priming pointing to existence of unknown physical
mechanisms of very small magnitude associated with the direction of time. Sec-
tion 4 discusses a wider scope of issues focusing on the possibility of experimental
evaluation of these mechanisms. The Appendix considers the example of Section
3 and involves evaluation of a quantum system in thermodynamic conditions when
decoherence or recoherence are present.
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2 The direction of time and the second law

Our experience of time is very directional — we remember the past but cannot pos-
sibly remember the future and our photographs always show us younger than we
are now. If we see dents on bumpers of two cars that are standing next to each
other, we conclude that these cars have just collided and, certainly, not that they
are going to collide in the future. At an intuitive level, we characterise these direc-
tional properties of time as “time flow” but, according to the fundamental Boltzmann
time hypotheses, these properties of time reflect the objective reality and directional
nature of the second law of thermodynamics. Unlike most physical theories (e.g.
classical and quantum mechanics, relativity and electromagnetism) which are time-
symmetric, this law is time-directional, stating that, in an isolated system, entropy
must increase (or stay the same) forward in time. Following Reichenbach, the Boltz-
mann time hypotheses is explained below by using a gedanken experiment called
“footsteps on a beach”.

Fig. 1 Footprints on a beach: a) effect of the second law of thermodynamics and b) effect of
random disturbances. Curves: 1-realistic; 2-violating the second law; 3,3’- realistic disturbed by
wind.

2.1 Why don’t we remember the future?

The sand on a beach is always levelled by wind and water – this is the state of maxi-
mal entropy where all specific information is destroyed. We might try to change this
by stepping on the sand and leaving footprints. These footprints, however, cannot
stay forever and will soon disappear. This process, shown by line 1 in Figure 1, is
perfectly consistent with the second law of thermodynamics. Another possibility is
shown by line 2 — footsteps gradually appear and then are removed by a walking
man. The second scenario is not realistic as it contradicts the second law of thermo-
dynamics: footsteps cannot appear forward in time under the influence of random
factors such as wind and waves. To be more precise, this can, in principle, happen,
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but the probability of such event is so small so that it can be safely neglected. The
second law of thermodynamics is a probabilistic law — it predicts the behaviour of
entropy not with absolute certainty but with overwhelming probability.

If we see footsteps on the beach, do they mean that someone walked on the
beach in the past (line 1) or that someone will walk on the beach in the future (line
2)? According to the second law, footsteps cannot possibly appear without a reason
(i.e. a man walking) in the past but do not need a reason to disappear. In the same
way marks, photos, memories, scratches of car paint, etc. reflect past events but tell
us nothing about future events. This conclusion is obvious but its link to the second
law of thermodynamics is not trivial.

The Boltzmann time hypothesis has not been accepted universally. Karl Pop-
per, one of the most distinguished philosophers of the 20th century, argued that the
Boltzmann time hypothesis cannot be true due to thermodynamic fluctuations and
that Boltzmann would not suggest his hypothesis if he knew more about these fluctu-
ations [23]. Popper’s remarks are usually accurate, sharp and impressively prescient,
but this statement seems rather controversial. First, Boltzmann was well aware of
thermodynamic fluctuations and even interpreted (for the sake of illustration) his
imaginary world of reversed time as a gigantic galactic fluctuation [10]. Second,
exactly the same fluctuation argument was later used not against but in support of
connection between the arrow of time and the second law of thermodynamics [5].
The flow of time is a powerful illusion; it is very useful in real life and even in
scientific applications, but, as noted by Price [18], it can easily produce a distorted
view when issues related to the direction of time are discussed. Although details
of specific opinions may vary, most philosophers and physicists tend to accept the
existence of deep underlying link between the perceived direction of time and the
action of the second law of thermodynamics [5, 10–12, 18, 24].

2.2 Parallelism of entropy increase

The importance of this principle was stressed by Reichenbach, who considered the
main system to be divided into branch systems (i.e semi-independent subsystems
branching from the main system) and suggested that “in the vast majority of branch
systems, the directions toward higher entropy are parallel to one another and to
that of the main system”. Since “the main system” can be deemed to encompass
the whole universe, its direction toward higher entropy is the temporal direction
of overall entropy increase in the universe. This principle does not preclude occa-
sional fluctuations that might slightly decrease local entropy and, therefore, it is not
clear to what extent this principle represents an independent statement. For exam-
ple, Boltzmann believed that local entropy trends simply reflect global increase of
entropy in the observable part of the universe, while Reichenbach insisted that par-
allelism of entropy increase is an independent principle, which, generally, cannot be
derived from the global temporal conditions imposed on the universe: despite the
presence of fluctuations, entropy increases in branch systems are more consistent
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than it can be inferred from the global entropy increase. Since a microstate of each
branch system can be characterised by a point in a phase space of very large dimen-
sions, the state of maximal entropy corresponds to the uniform distribution of such
points over all possible microstates. Reichenbach interprets increase of entropy as a
generalised mixing process, which is associated with diffusion of particles or points
towards being distributed over larger volumes in the physical and/or phase spaces.
This interpretation of the entropic directionality as a trend to expand distributions
in phase spaces of large dimensions is often used by physicists [15]. The principle
of parallelism of entropy increase is presented and discussed in a few publications,
most notably in books by Davies [19] and Sklar [20].

While association of causality with the second law is now widely acknowledged,
the physical origins of the second law remain unclear. The second law is fundamen-
tal but largely empirical: it declares that entropy increases forward in time but does
not explain why. Since all major physical laws and theories are time symmetric, the
most common explanation is that the temporal asymmetry of the second law is due
to asymmetric temporal boundary conditions imposed on the universe (these con-
ditions can be referred to as the past hypothesis or low-entropy Big Bang). Albert
[7, 8] believes that this explanation is perfectly sufficient but, according to Reichen-
bach, the principle of parallelism of entropy increase is needed (in addition to the
commonly presumed low-entropy conditions in the early universe) to explain the ob-
served consistency of the second law [11]. Winsberg [21] agrees with Reichenbach,
while North [22] supports Albert. As discussed further in Section 3, there are rea-
sonable arguments on both sides of this debate but, overall, it seems rather unlikely
that the second law can be replaced by a combination time-symmetric physical laws
and time-assymetric temporal boundary (i.e. initial and final) conditions.

The principle of parallelism of entropy increase allows us to apply entropic con-
siderations to relatively small thermodynamic systems or even to non-thermodynamic
macroscopic objects. We often imply this principle when we commingle macro-
scopic and microscopic considerations. For example, one can associate an entropy
change to random reshuffling of playing cards, although this change is insignifi-
cant compared to changes in thermodynamic entropy — the latter is larger by a
factor of ∼ 1/kB, where kB is the Boltzmann constant. While applying entropic con-
siderations to macroscopic objects mostly produces reasonable outcomes and good
intuitive illustrations of thermodynamic principles, such applications are less rig-
orous compared to the very high level of statistical certainty associated with the
laws involving the thermodynamic entropy. Macroscopic interpretations of entropy
are subject to conditions that are difficult to stipulate in a rigorous and universal
manner and, therefore, may produce incorrect inferences if taken out of context.
Reichenbach notes that we can put cards back into their original order if we need to,
but we cannot possibly reorder molecules exactly into their original positions. The
grains of sand from the example shown in Figure 1 may be very small, but they are
macroscopic objects.
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2.3 The principle of the common cause

Reichenbach states this principle as “if an improbable coincidence has occurred,
there must exist a common cause”; this cause should be in the past as common
effects in the future cannot cause improbable coincidences. The term “improbable
coincidence” for two events A and B, refers to the simultaneous occurrence of A and
B in excess of P(A)P(B) — the probability if they were independent events. Price
refers to this property as the principle of the independence of incoming influences
(PI3) — indeed incoming influences (i.e. those that do not have a common cause)
must be statistically independent. This principle is intuitively obvious but, again, the
essence of the Boltzmann time hypothesis is that this effect is, in fact, a consequence
of the second law. Figure 1b illustrates this point. Consider a model when wind and
waves naturally impose some degree of roughness on the sand level. The lines 3
and 3’ shown in this figure correspond to the effect of wind and waves causing the
surface at two selected points to fluctuate at random. These points level out only if
only someone steps on them. Levelling, however, does not last for long, since wind
and waves gradually introduce new disturbances, which erase the footprints. The
usual state of the surface is rough and influences of events cannot propagate back
in time (since this propagation specified by curve 2 contradicts the second law) —
these conditions require that dependences are induced by past events.

It is probably true that Reichenbach’s treatment of mutual causes and mutual
effects in his last book presents a combination of physical and philosophical argu-
ments, intermixing them to extent that may become puzzling for both physicists
[12] and philosophers [25]. Perhaps applying these ideas to conventional elements
of statistical physics can provide a more transparent illustration. In the next sub-
section, we give an example of chemical kinetics that illustrates Reichenbach’s key
point — the link between the principle of the common cause and the second law of
thermodynamics.

2.4 Chemical kinetics and causality

Consider the following reactions

1) A+B −→ AB, 2) AB −→ A+B (1)

which are assumed not to have any heat effect. As illustrated in Figure 2, these re-
actions can be interpreted as open (left) and closed (right) casual forks analysed
by Reichenbach, who denoted AB by C (cause) or E (effect). Events A, B, AB re-
spectively denote appearance of molecules A, B, AB in a volume V, which is much
smaller than Vt — the total volume under consideration. In the first reaction, A and
B are causes that have a common effect AB, while in the second reaction, A and B
are effects that have a common cause AB. Hence, according to the principle of the
common cause P(A+B) = P(A)P(B) for the first reaction but not for the second.
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Here, P(A+B) is the probability of simultaneous presence of A and B in the vol-
ume V . If P(A+B) is significantly larger than P(A)P(B), then, in accordance with
the third principle of Reichenbach, there must be a common cause — the second
reaction in (1).

Considering that A and B are independent causes of the first reaction and AB is
the cause of the second reaction, the overall reaction rates of the first and second
reactions can be expressed by

W1 =VtK
NA

Vt

NB

Vt
, W2 =VtK

NAB

Vt
(2)

where P(X) = NXV/ Vt for any X = A, B, AB, NX is the total number of molecules
X in the volume Vt and K is the reaction rate constant. Note that kinetic equation

dNA

dt
=

dNB

dt
=−dNAB

dt
=W2 −W1 (3)

implies that the entropy defined as
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+NB ln

(
e

Vt

NB

)
+NAB ln

(
e

Vt

NAB

)
(4)

cannot decrease; i.e.

dS
dt

=
dNA

dt
ln
(

VtNAB

NANB

)
= K

(
NAB − NANB

Vt

)
ln
(

VtNAB

NANB

)
≥ 0 (5)

in accordance with the second law of thermodynamics.

Fig. 2 Chemical reations shown in the form of casual forks.

We may try alternative anticasual arrangements when causes are located in the
future and effects are in the past. According to the anticasual assumptions, the first
reaction is caused by AB while the second reaction is caused by two independent
events A and B. This means that the overall reaction rates are now

W1 =VtK
NAB

Vt
, W2 =VtK

NA

Vt

NB

Vt
(6)

so that the entropy change rate is given by
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dS
dt

=
dNA

dt
ln
(

VtNAB

NANB

)
= K

(
NANB

Vt
−NAB

)
ln
(

VtNAB

NANB

)
≤ 0 (7)

This illustrates that casual or anticasual assumptions imply the following trends for
the entropy: increasing in time for the former and decreasing in time for the latter.
Of course, only the casual case corresponds to the real world.

If quantum effects are to be considered (it is arguable that interactions of atoms
are determined by quantum effects), then the casual case (2)-(5) corresponds to per-
sistent decoherence of the molecules before and after the reaction, while the anti-
casual case (6)-(7) corresponds to persistent recoherence [26]. There is a physical
connection between causality and the temporal direction of decoherence [26, 27].
The second law of thermodynamics is a macroscopic law, but it is enacted by micro-
scopic irreversible processes — quantum decoherences and collapses [15–18]. (We
tend to use these the terms “decoherences” and “collapse” interchangeably, as there
is a significant overlap between implications of these terms — see Appendix of Ref.
[13] for details.)

3 Why mixing is time-directional?

Despite temporal symmetry of the overwhelming majority of the physical laws, en-
tropy tends to increase or stay the same with a high degree of certainty for any
thermodynamic system, small or large. The temporal boundary conditions imposed
on the universe (e.g. a low-entropy Big Bang) must play a key role in this trend —
these conditions are often sufficient to explain many effects associated with direc-
tionality of time even if physical laws are deemed to be completely time-symmetric.
Indeed, if the universe has a very strong overall trend to increase the entropy and
the universe is divided into semi-autonomous subsystems (branches according to
Reichenbach), then increase of entropy must be more likely than decrease of en-
tropy in these subsystems. While the low-entropy initial conditions imposed on the
universe are important and instrumental in explaining entropy increase for many
physical phenomena, this does not mean that all observed physical effects can be
directly explained by imposing these conditions while assuming that all physical
laws are strictly time-symmetric. Therefore, the principle of parallelism of entropy
increase is indicative of some fundamental properties of the universe that need to be
understood and examined further.

These points are illustrated here by analysing time-directional properties of mix-
ing. We consider diffusion of Nt molecules (called particles) of a substance in a gas.
The number Nt is relatively small so that molecules do not interact with each other;
the admixture remains passive and does not affect major thermodynamic quanti-
ties such as pressure and density, although Nt is large enough in absolute terms to
produce reliable statistical quantities that can be observed macroscopically as con-
centrations.
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3.1 Importance of the initial conditions

The particles (molecules) j = 1, ..., Nt are released at the same location x j = x0 at
t = t1 and diffuse forward in time t > t1. The particle trajectories x j(t) represent
Brownian motion, while the average concentration of particles f (x, t) satisfies the
diffusion equation

∂ f
∂ t

= D
∂ 2 f
∂x2 (8)

Note that particle trajectories are time-symmetric — that is we cannot distinguish
trajectories running forward in time from those running backward in time. The di-
rection of diffusion is determined by the initial conditions x j = x0 at t = t1. If we
impose final conditions at t = t2 > t1 (for example, this can be done by consid-
ering the following process x′j(t) = x j(t)− x j(t2) + x0, which satisfies x′j = x0 at
t = t2), then the concentration of trajectories x′j(t) would be characterised by dif-
fusion equation (8) but with a negative diffusion coefficient D′ = −D; i.e. this is
diffusion occurring backward in time1.

This seem to favour temporal boundary conditions as a driving force behind ir-
reversibility. The processes described by the diffusion equation with positive and
negative diffusion coefficients are radically different. The direction of the diffusion
is determined not by the random variations of particle positions, which do not have
a time arrow, but by imposing the initial or the final conditions. The influence of
initial or final conditions, however, disappears in the equilibrium state f = const
of fully mixed components (assuming that the diffusion takes place in a finite vol-
ume). Indeed, once the steady-state is achieved, say within the interval t◦1 < t < t◦2
where t1 < t◦1 < t◦2 < t2, it is impossible to tell the direction of the diffusion process,
even if the most detailed current characteristics of trajectories are monitored — in-
formation about initial or final conditions has been lost. Setting initial conditions at
t = t1 cannot be distinguished from setting the final conditions at t = t2 by observing
equilibrium solution at t◦1 < t < t◦2 . Equilibria achieve maximal entropy and destroy
information.

The example of this subsection reflects the lattice of mixture model examined by
Reichenbach [11]. We see that, within limitations of this model, the overall initial
conditions imposed on the whole system are sufficient to ensure directionality of
mixing processes in every macroscopic subsystem. The evolution of the universe can
be interpreted as a generalised mixing process where particles diffuse to occupy a
larger and larger number of microstates. Since the universe was presumably formed
with low-entropy initial conditions and has not achieved its equilibrium state, this
consideration provides a justification for generally preferring initial conditions to
final conditions in today’s environment. It might seem that Reichenbach’s principle
of parallelism of entropy increase is excessive — the low-entropy initial condition

1 Note that this reversal is different from the reversal of the Kolmogorov backward equation and
time reversal of Markov diffusion processes preserving f (x, t) — see ref. [28]. It is also possible
to use both conditions at t = t1 and t = t2, leading to so called Brownian bridge, but this case is not
considered here.
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imposed on the universe ensures both overall entropy increase and, as long as overall
equilibrium is not reached, proper directionality of various local thermodynamical
processes. While under some idealised conditions, global entropy increase induces
entropy increases in local processes, there are important details that are missing
in this inference. The lattice of mixture model reveals some useful properties but,
nevertheless, is a significant oversimplification of the physical reality.

xm

xm, NB

Nt=NA

1 

Long period of 
equilibrium

Long period of 
equilibrium

t

NA

2 

3 4 

NB

VB,NB

VA,NA

x

Fig. 3 Experiment with admixture passing through semi-permeable membrane. Curves: 1 – posi-
tion of the piston xm(t); 2 – equilibrium NB(t); 3 – NB(t) for C =+1; 4 – NB(t) for C =−1.

3.2 Why is the principle of parallelism of entropy increase
essential?

At this point we consider a modified experiment, which is illustrated in Figure 3.
A cylinder having a finite volume Vt contains Nt particles of the passive admixture
(as considered previously) and is kept in a state of thermodynamic equilibrium for
a long time. The cylinder is located in a remote part of the universe away from any
possible influences of the matter that populates the universe. The piston remains
at x = 0 for a long time so that VA = Vt and VB = 0, then moves down and up in
a time-symmetric manner so that VB > 0 as shown in Figure 3 and then, again,
remains at x = 0 for a very long time so that VB = 0. In addition to admixture
molecules, the cylinder may also be filled by a gas to ensure that the system under
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consideration is thermodynamic. The volumes A and B are divided by a very thin
semi-permeable membrane that is fully permeable for the gas (if gas is present) and
only partially permeable for the molecules of admixture, so that these molecules
can occasionally tunnel through the membrane. When considered from a quantum-
mechanical perspective, the membrane is interpreted as a potential barrier that can
be tunneled through, while the rest of the walls are formed by impervious barriers of
a high potential. We note that such experiments are not only conceptually possible
but, due to recent technological advances [29], also practically feasible. Obviously,
NA +NB = Nt = const and VA = const . The number of particles Nt is sufficiently
large to ensure that NA and NB are macroscopic parameters, which can be measured
by classical instruments.

For simplicity of evaluation, the probability of successful tunnelling of admixture
molecules through the membrane is assumed to be small so that the concentrations
of particles remain uniform in volumes A and B (although not necessarily the same
on both sides of the membrane — see Figure 3). Since particles do not interact, they
can be considered autonomously from one another. The concentrations of particles
on both sides of the membrane are determined by quantum tunnelling through the
membrane. Classical statistics is assumed so that most of the quantum states are
vacant: all states have the same probability of occupation determined by the con-
centrations of the particles: NA/VA on one side and NB/VB on the other.

As the particles tunnel through the membrane, they must decohere since, other-
wise they would be simultaneously present in volumes A and B, be governed by
unitary evolutions and not subject to the laws of statistical physics (see Ref. [30]).
We, however, do not have any experimental evidence that this can happen when an
object is progressively screened from the direct influence of the initial and final con-
ditions imposed on the universe. If decoherence is terminated, we would effectively
obtain a less cruel version of Schrödinger’s cat — a substance whose particles are
not located in volumes A or B but are in superposition states between these vol-
umes (strictly speaking, NA and NB are not classically defined in this case). After
decoherence and collapse of the wave function, particles appear either on one side
of the membrane or the other with some classical probability. As we do not wish to
discriminate the direction of time a priori, we must admit that the particles can de-
cohere or recohere (i.e. decohere backward in time), as discussed in the Appendix.
The concentration of particles is governed by the equation (see Appendix and Refs.
[26, 27])

dNB

dt
=−dNA

dt
=CK

(
NA

VA
− NB

VB

)
(9)

where K is the rate constant for transition through the membrane, which, as shown
in the Appendix, must be the same for transitions from A to B and from B to A.
The constant C =+1 corresponds to predominant decoherence and C =−1 to pre-
dominant recoherence (i.e. decoherence back in time). In principle, we also need to
consider the case of C = 0 (assuming that intensities of decoherence and recoherence
exactly match each other) but this case is not realistic. Indeed, if the piston moves
very slowly, then the densities of particles must approach the same values on both
sides of the membrane NA/VA = NB/VB = Nt/ Vt and, obviously, NA(t) = VANt/
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Vt(t). On the one hand, NA(t) changes but, on the other hand, equation (9) with
C = 0 enforces that dNA/dt = 0. Therefore, particles must either predominately
decohere or predominantly recohere. This can be easily determined by moving the
piston a bit faster so that the solution of equation (9) deviates from the equilibrium
given by NA(t) = VANt/ Vt(t), as illustrated in Figure 3. We can observe either the
behaviour indicated by line 3, which corresponds to C =+1, or the behaviour indi-
cated by line 4, which corresponds to C =−1. The difference between the two cases
is in the definition of the direction of time. As we use the conventional definition
of the direction of time, where entropy increases toward t =+∞ , then C =+1 and
particles predominantly decohere.

From the perspective of quantum mechanics, the state of equilibrium corresponds
to the maximally mixed quantum state, where the density matrix is proportional to
the unit matrix and the entropy is maximal. This state of maximal entropy cannot
be altered without external interference; neither by unitary evolution (which cannot
change entropy), nor by decoherence (which cannot reduce entropy). The effect of
decoherence, therefore, is not observable in equilibrium conditions (as it should be
— equilibrium states do not evolve). It would be rather unphysical to assume that
decoherence, which exists at its full strength under smallest deviations from equilib-
rium, physically disappears once full equilibrium state is reached. It is the statistical
effect of decoherence that disappears, not decoherence itself: it still affects individ-
ual particles at microscopic level. This can be illustrated by the Ehrenfest urn model:
balls are located in two urns are picked up at random and are placed into another urn
(possibly with a fixed probability reflecting the transmission rate between the urns).
Each act of redistribution of balls increases uncertainty of ball locations, and there-
fore, increases the corresponding entropy. Once equilibrium is reached and the two
urns have the same number of balls, the process (which still continues physically)
does not change the distribution and does not change the entropy.

We observe a very interesting situation: the system stays in complete equilib-
rium for a very long time and should not be affected by any initial conditions that
were imposed on the system or on the whole universe a long time before the experi-
ment. According to the conditions of the experiment, all external influences must be
macroscopic. These influences are limited to the movements of the piston, which are
conducted in a time-symmetric manner and cannot possibly create any directional-
ity of time. The known laws of classical, quantum and relativistic physics are also
time-symmetric. Why do the particles behave in a time-directional manner (deco-
here and not recohere)? Reichenbach’s principle of parallelism of entropy increase
clearly requires that C =+1 in (9) and, at least under conditions shown in Figure 3,
this cannot be directly explained by the low-entropy initial conditions imposed on
the universe. Something must be missing.
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3.3 The time primer

We, of course, do not suggest that predominance of decoherence (C = +1 in (9))
is not related to the low-entropy initial conditions imposed on the universe, but
rather observe that there must be a physical mechanism that connects decohering
properties of matter to the fundamental state of the universe. There is, however,
no obvious or known mechanism that translates a low-entropy Big Bang into the
fact that matter predominantly decoheres under conditions when matter is screened
from the Big Bang by an equilibrium state (presumably destroying all information
about the previous states of the universe). We can call this mechanism the “time
primer”[13]. The time primer is related to the most fundamental properties of matter
and its primary effect should be predominance of quantum decoherence, resulting
in the second law of thermodynamics, causality and in the perceived “flow of time”.
The time primer must exist and, at least in principle, should be represented by a
mechanism that can be detected in experiments but, as discussed in the rest of this
paper, this is likely to be a very difficult task. The time primer may, of course,
reflect environmental interferences but these interferences should be measurable and
enacting the arrow of time without presuming antecedent causality.

The conventional quantum theories [31–33] explain the physical mechanism of
decoherence quite well, but only under conditions, in which the direction of time
is discriminated by implied causality: setting initial (and not final) conditions is es-
sential for these theories. Therefore, we are trapped in a logical loop: we explain
causality by the second law, the second law by decoherence, and decoherence by
causality (Figure 4). The time primer points to an unknown physical effect that is
needed to break this loop. For the case illustrated in Figure 3 there is no obvious jus-
tification for discriminating the directions of time by preferring the initial conditions
to the final conditions. Price [18] noted that physical theories often discriminate the
directions of time by intuitively implying time-directional causality — these may be
valuable theories in many respects but they cannot serve, as physical explanations of
the directional properties of time as these properties are presumed and not deduced.

4 Discussion

The current state of arguments about direction of time (illustrated in a simplified
form by Figure 4) reflects persisting confusion: philosophers seek the assistance
of the physical laws (and especially that of the second law of thermodynamics) in
defining antecedent causality, while physicists base their justifications of physical
laws and theories on implications of causality (often tacitly or implicitly). This state
forms an unsatisfactory explanatory loop, in which antecedent causality is associ-
ated with the action of the second law and the second law is explained by the effects
of antecedent causality. While the action of the second law can be related at an el-
ementary level to implications of quantum decoherence and collapse, the quantum
theory, as was remarked by Einstein half-a-century ago, still cannot provide a uni-
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Quantum mechanics is often in discord (but 
perhaps not in direct contradiction) with causality

Fig. 4 If considered from a transdisciplinary perspective, arguments commonly used in physics
and philosophy in explaining antecedent causality and the second law of thermodynamics form a
logical circle

fied picture of physical reality. The time primer is not a physical theory but rather
a placeholder for such a theory, recognising that something important is missing in
our understanding of thermodynamic time.

Over the last few decades, the direction of time has experienced a gradual drift
from the domain of philosophy to the domain of physics. While the influence of
physical ideas and theories gradually increases, this transition has not been com-
pleted yet since the possibility of experimental validation is a necessary attribute of
any physical theory. The possibility of experimental testing of the time priming is
discussed in this section.

4.1 Environmental time priming

Decoherence may be induced by relatively weak interactions with the rest of the
universe, since our universe is far away from equilibrium and (at least in princi-
ple) can induce time-directional effects in the system. Numerous quantum theories
point to environmental interferences as the mechanism responsible for decoherence
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and thermodynamic behaviour in quantum systems [33–39]. These theories, how-
ever, are not specific with respect to the physical mechanism of interactions, which
make experimental validation of these interactions rather difficult and uncertain.
Environmental interference of CP-violating and CPT-invariant quantum systems is
expected to produce apparent CPT violations [13, 40] and detected CPT discrepan-
cies [41] may be related to interference from the environment. The problem with
experimental validation of environmental interference is that, even if this interfer-
ence is detected, there is no guarantee that it is this interference and not something
else that represents the principal mechanism controlling the time priming. To prove
this point we need to reduce this interference and expect a corresponding reduction
in consistency of time priming.

Radiation is likely to be the first suspect for thermodynamic interactions. Since
radiation itself must be decoherence-neutral [26], its role should be in connecting
the equilibrated system (in Figure 3) to matter that populates the universe and re-
mains far from equilibrium. If the experiment is located in a remote area of the
universe, incoming radiation can be interpreted as a random signal. This signal can
stimulate decoherence, but it seems that presuming causality is unavoidable under
these conditions [32, 33, 35].

If a system is placed far away from all other matter, a reduction in effectiveness
of interactions can be expected. At present, however, we do not have any evidence
that thermodynamic time slows down when a system is screened from the influ-
ence of (or placed far from) other thermodynamic systems. Would radioactive de-
cays become any slower if an radioactive object is placed in a very remote part of
the universe? There is no direct evidence that this would be the case. Reichenbach
believed that complete insulation of a subsystem would not affect the rate of its en-
tropy increase. This does not rule out environmental mechanisms of time priming,
but it does illustrate that obtaining experimental proof of environmental time prim-
ing would be very difficult. In principle, there might be a “time field” that is present
everywhere, and the direction of time is determined by very weak, yet very impor-
tant, interactions with this field. This case, however, is practically indistinguishable
from intrinsic mechanisms of decoherence.

4.2 Intrinsic mechanisms of time priming

Various theories modifying equations of quantum mechanics to incorporate quan-
tum collapses and decoherences have been suggested [34, 42–45]. These theories,
however, assume causality rather than attempt to explain causality (and some are
merely empirical). The physical mechanism of entropy-increasing processes at mi-
croscopic level remains uncertain. Penrose [42, 46] suggested a physical mechanism
that can “prime” the direction of time. This theory (due to Diosi and Penrose) points
to gravitational effects as a culprit of irreversibilities observed in the quantum world.
Gravity induces quantum violations causing collapses of otherwise reversible uni-
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tary evolutions. This provides a very good illustration of how small these violations
might be and how difficult it would be to directly detect them in experiments [46].

Considering that radiation is expected to remain decoherence-neutral we might
extend this inference to all bosons and expect that the intrinsic source of decoher-
ence must be hidden in the properties of matter, most likely in quark - containing
particles (e.g. neutrons and protons) since quarks are known of being capable to
violate time symmetry in weak interactions (e.g. known CP violations in mesons,
which, in conjunction with CPT invariance, imply T violation). One may prefer to
imagine that baryons are capable of accumulating and confining very large quanti-
ties of information (i.e. baryons have effectively infinite numbers of internal degrees
of freedom that are not externally accessible under normal conditions). In this case,
there remain two possibilities: baryons and antibaryons can violate unitarity of ex-
ternal quantum evolutions in a symmetric or antisymmetric manner, which result in
either symmetric or antisymmetric extension of thermodynamics from matter into
antimatter [27, 47]. Symmetric and antisymmetric versions of thermodynamics re-
spectively correspond to CP- and CPT-invariant time priming and can not be valid
simultaneously — only one of them can be (and is) real. The antisymmetric version
may or may not correspond to the real world but, conceptually, it is quite attractive
due to a number of reasons. One of these reasons is that, if antisymmetric thermody-
namics is valid, it kinetically favours conversion of antimatter into matter and, at the
same time, explains the present arrow of time by the relative abundance of matter
over antimatter [27, 47]. If detected in experiments, antisymmetric thermodynamics
can pinpoint at the intrinsic mechanisms of time priming. If it is the symmetric ver-
sion that is real, then experimental examination of the intrinsic mechanisms of time
priming becomes a more difficult task.

4.3 Testing the symmetry of time priming.

From a theoretical perspective, testing whether thermodynamics possesses symmet-
ric or antisymmetric properties may seem straightforward — we just need to cre-
ate thermodynamically significant quantities of antimatter and see which thermo-
dynamic properties it has. Practically, producing significant quantities of antimat-
ter can be extremely difficult. It might be possible, however, to test the symmet-
ric/antisymmetric properties of thermodynamics at the present level of technology.

It seems that a system with some thermodynamic properties (i.e. quark-gluon
plasma [48]) can be created at very small scales as a result of collision of high-
energy protons and nuclei. For example, two protons may collide elastically pro-
ducing two protons with different momenta or inelastically producing jets of mul-
tiple particles. While the former collisions are unitary, we are tempted to assume
that the latter collisions have some thermodynamic features. If this thermodynamic
interpretation of inelastic collisions is correct, collisions of two antiprotons should
be the same as collisions of protons according to symmetric thermodynamics, and
can be expected to be different from collisions of protons according to antisym-
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metric thermodynamics. While the overall energy, momentum and other conserved
properties must always be preserved, antisymmetric thermodynamics involves op-
posite entropy trends for matter and antimatter. Therefore, assuming that thermo-
dynamic effects can play a role within very short times associated with collisions
(which is a big assumption, of course), antisymmetric thermodynamics predicts that
antiproton-antiproton collisions should tend to have smaller inelastic collision cross-
sections than the inelastic cross-sections of the proton-proton collisions under the
same conditions. In simple terms, collisions of antiprotons should be biased towards
elastic collisions compared to collisions of protons under the same conditions. This
attributes the action of the time primer to complex interactions of partons inside
baryons, which are clearly revealed only when collision energies are sufficiently
high. The extent of the differences between baryons and antibaryons is determined
by persistency of the time primer (i.e. it might be difficult to collide two antiprotons
inelastically). Symmetric thermodynamics does not predict any differences between
inelastic cross-sections of protons and antiprotons.

Note that the implications of antisymmetric thermodynamics may produce an
impression of CPT violations: protons and antiprotons can have different overall
inelastic collision cross-sections [49]. According to interpretation given above, this
conclusion would be incorrect — antisymmetric thermodynamics is based on com-
plete CPT symmetry exhibited both at small and large scales. This effect is similar to
apparent CPT violations that can be observed due to the presence of environmental
mechanisms of time priming — see Ref [40] for details. It seems that microscopic
action of time priming can be detected (due to its interference with unitarity) as
apparently present CPT violations in systems that in fact strictly preserve the CPT
symmetry.

Another possibility for testing the extension of thermodynamics from matter to
antimatter is investigation of photon absorption and radiation by atoms and an-
tiatoms under the same conditions. The antiatoms need to be trapped and cooled
down, which is not easy but still possible [50]. The kinetics of light absorption and
radiation is the same for atoms and antiatoms in symmetric thermodynamics and
different in antisymmetric thermodynamics[26]. In simple terms, if antiatoms are
somewhat more reluctant to adsorb photons than the corresponding atoms under
the same conditions, then this would indicate validity of antisymmetric thermody-
namics. Again, if such effects are detected, they must not be confused with CPT
violations — antisymmetric thermodynamics is very much consistent with the CPT
invariance.

5 Conclusions

This work briefly reviews and explains the principal ideas about time that were
brought by the late Hans Reichenbach in his last book. The Boltzmann time hy-
pothesis and the Reichenbach principle of parallelism of entropy increase seem to
be most important among these ideas. While the Boltzmann time hypothesis tends
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to be accepted by modern philosophers and physicists (at least by those who have
thought about or investigated these issues), the principle of parallelism of entropy
increase is still subject to debate. In the present work, we consider a mixing process
involving quantum effects and demonstrate that, although the low-entropy initial
conditions that characterised early universe are most important, there should be an
unknown mechanism that delivers the influence of these initial conditions to thermo-
dynamic subsystems observed in the real world. We call this mechanism the “time
primer”. The time primer is responsible for prevailing forward-time decoherence in
quantum systems, which increases entropy and, according to the Boltzmann time
hypothesis, introduces antecedent causality and other components of the perceived
flow of time.

The possibility of experimental detection of the time primer is discussed in the
last section — in general, this task is quite difficult. If, however, the time primer
is CPT-invariant (rather than CP-invariant) and objects with some thermodynamic
properties emerge at small scales in inelastic high-energy collisions, the direct ef-
fects of the time primer may be detected under the current level of technology.
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Appendix. Quantum tunnelling and decoherence

The quantum outcomes of tunnelling can be expressed by the scattering matrix S, which is a
unitary matrix (i.e. SS†= I) that connects the amplitudes A− and B− of incoming waves with the
amplitudes of the outgoing waves A+ and B+ (see Figure 5) so that:

[
Ã+

B̃+

]

︸ ︷︷ ︸
ψ(t+)

=

[
r q
q r

]

︸ ︷︷ ︸
S

[
Ã−
B̃−

]

︸ ︷︷ ︸
ψ(t−)

,

[
Ã−
B̃−

]

︸ ︷︷ ︸
ψ(t−)

=

[
r∗ q∗
q∗ r∗

]

︸ ︷︷ ︸
S†

[
Ã+

B̃+

]

︸ ︷︷ ︸
ψ(t+)

(10)

where Ã+ = A+eikΔ/2, Ã− = A−e−ikΔ/2, B̃+ = B+eikΔ/2, B̃− = B−e−ikΔ/2 are the corresponding
wave amplitudes evaluated at the boundaries of the barrier at x =±Δ/2, the asterisk denotes com-
plex conjugates and the values of q and r are specified below. The quantum barrier is assumed to be
symmetric, which corresponds to a symmetric matrix S. The matrix S should not be confused with
the commonly used transfer matrix that links the wave amplitudes on one side of the barrier to the
wave amplitudes on the other side. Note that |q|2 + |r|2 = 1 and

∣∣r2 −q2
∣∣= 1 due to the unitary of

S. The tunnelling parameters q and r can be determined for specific shape of the potential barrier
U(x), which is assumed to have a rectangular shape as shown in Figure 5. The solution of this
problem can be found in standard textbooks [51]:

r = (k2 +κ2)
(1−Q2)

W
, q = 4ikκ

Q
W

, Q = exp(−κΔ)

W = (k+ iκ)2 − (k− iκ)2Q2, k =

√
2mE

, κ =

√
2m(U0 −E)

|q|−2 = 1+
1
4
(k2 +κ2)2

k2κ2 sinh2 (κΔ) ≈
U0�E

1
4

U0

E
sinh2

(
Δ
√

2mU0
)

(11)
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where E is the energy of the particle, is the Planck constant and |q|2 is the transmission coefficient.
The barrier is assumed to be thin: i.e. its thickness Δ is small but its magnitude U0 is large. We can
assume that U0 � E and therefore q � 1, r ∼ 1.

t

ikxA e

ikxB e

ikxA e

ikxB e

x

xm

U

U0E

t- t+ tt- t+

ikxA e

ikxB e

ikxA e

ikxB e

Fig. 5 Tunnelling of a particle through the membrane: left – with decoherence, right – with reco-
herence, middle – the membrane potential U =U(x)

The quantum description of tunnelling specified by (10) is time-symmetric, while its effect
on the thermodynamic system considered here (Figure 3) is determined by the decoherence of
quantum waves as shown in Figure 5. The decoherence transforms the time-reversible Schrodinger
equation into the Pauli master equation, which is the principal equation that combines quantum
description with directionality of time [52]. The Pauli master equations are general equations that
incorporate decoherence, which determines the direction of the entropy increase, into the quantum
world; i.e. different forms of the Pauli master equation are obtained for the same quantum system
depending on properties of decoherence and recoherence [26, 27].

Since particles do not interact and classical statistics is implied (i.e. most quantum states are not
occupied), one can consider the wave function ψ j of a single particle. The Pauli master equation
for the probabilities p j = ψ jψ∗

j (no summation over j) is given by [27]

d p j

dt
= ∑

k
Cwk

j pk −∑
k

Cw j
k p j (12)

where C =+1 corresponds to dominant decoherence and C =−1 corresponds to dominant recoher-
ence, and wk

j = w j
k are transitional probabilities. Note that, unlike in Ref. [26, 27], the predominant

direction of the time priming is assumed to be the same for all quantum states. Consider states
a = a1,a2, ... on side A of the membrane and states b = b1,b2, ... on side B of the membrane so
that j = a1,a2, ...b1,b2, ... and the states ai and bi, i = 1,2,3, ... correspond to interacting waves
with the same energy Ei. Evaluation of the two sums over j = a1,a2, ... and over j = b1,b2, ... in
equation (12) while taking into account

∑
a

pa =
NA

Nt
, ∑

b
pb =

NB

Nt
, Nt = NA +NB (13)

yields
1
Nt

dNB

dt
=− 1

Nt

dNA

dt
=C∑

b
∑
a

(
wa

b pa −wb
a pb

)
(14)
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Substituting the equilibrium distribution g◦j (which are assumed to be classical Gibbs distributions
due to g◦j � 1) and the density of quantum states ρ j

pa =
NA

NtVA
ρag◦a, pb =

NB

NtVB
ρbg◦b, g◦ai

= g◦bi
= exp

(
μ −Ei

kBT

)
(15)

where μ is the chemical potential, we obtain

dNB

dt
=−dNA

dt
=C

(
K1

NA

VA
−K2

NB

VB

)
(16)

and
K1 = ∑

b
∑
a

wa
bρag◦a = ∑

i
wai

bi
ρai

g◦ai
, K2 = ∑

b
∑
a

wb
aρbg◦b = ∑

i
wbi

ai
ρbi

g◦bi
(17)

since only the corresponding states ai and bi interact, i.e. wbi
a j = wai

b j
= 0 for j = i. The symmetry

of the coefficients wb
a = wa

b and equilibrium distributions g◦ai
= g◦bi

= g◦i and the same conditions
on both sides of the membrane ρai

= ρbi
= ρ i yield equation (9) with K = K1 = K2. The direction

of thermodynamic time in this equation is determined by the temporal direction of decoherence
(i.e. by C = +1 or C = −1). As expected [26], the transmission rate is proportional to the con-
centration of decohered particles and does not depend on the concentration of recohered particles,
irrespective of the temporal direction of decoherence or recoherence.

Considering that the scattering matrix is close to unity, one can write S= I+ iT where T is small
(since |q|2 � 1) and Hermitian T† = T at the leading order. The operator T can be conventionally
be expressed in terms of the interaction Hamiltonian by using perturbation methods, but this is not
needed here as we already have the exact solution for the tunnelling problem. Substituting wbi

ai =

wai
bi
= Aui |q|2i /2, where A is the area of the membrane, |q|2i ≈ 4Eie−2κΔ/U0 is the transmission

coefficient, u2
i = 2Ei/m and κ = (2mU0)

1/2 /, into (17) results in

K = 22 1
2

A

U0m
1
2

e−2κΔ ∑
i

E
1 1

2
i ρ ig

◦
i (18)

A more detailed analysis of tunnelling without decoherence under these conditions can be found
in Ref. [30].
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Controlling stability of longwave oscillatory
Marangoni patterns

Anna Samoilova and Alexander Nepomnyashchy

Abstract We apply nonlinear feedback control to govern the stability of long-wave
oscillatory Marangoni patterns. We focus on the patterns caused by instability in
thin liquid film heated from below with a deformable free surface. This instabil-
ity emerges in the case of substrate of low thermal conductivity, when two mono-
tonic long-wave instabilities, Pearson’s and deformational, are coupled. We provide
weakly nonlinear analysis within the amplitude equations, which govern the evolu-
tion of the layer thickness and the temperature deviation. The action of the nonlinear
feedback control on the nonlinear interaction of two standing waves is investigated.
It is shown that quadratic feedback control can produce additional stable structures
(standing rolls and standing squares), which are subject to instability leading to trav-
eling wave in the uncontrolled case.

1 Introduction

The onset and development of oscillatory Marangoni convection in a thin film
heated from below without control was recently investigated by Shklyaev et al. [5].
Among all the variety of possible patterns, only a few were stable: one-dimensional
traveling waves, traveling rectangles and alternating rolls. In this paper we aim at
revealing more complex and exotic stable patterns, such as alternating rolls and
standing squares.

We have recently considered the influence of the feedback control on the oscil-
latory Marangoni instability in a thin film heated from below. We have shown that
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a linear control gain can delay the onset of instability [3] and a quadratic control
gain can eliminate the subcritical excitation of instability [4]. The analysis of pat-
tern formation was done for an infinite region, nonlinear interaction of the traveling
waves was considered. In the case of traveling waves we showed that quadratic feed-
back control can produce additional stable structures, besides conventional traveling
rolls. However, in a realistic system the reflection of waves on the lateral boundaries
results in emergence of standing waves, which can interact to each other. Extending
our previous investigation, we examine here the effect of nonlinear feedback control
on development of Marangoni instability in a system of standing waves propagating
with a definite angle between the wave vectors.

The paper is organized as follows. We start with the mathematical formulation
of the long-wave Marangoni convection problem in Sec. 2. There we present a set
of coupled amplitude equations which governs the evolution of the layer thickness
and the temperature deviation under nonlinear feedback control [4]. In Sec. 3 we
perform the weakly nonlinear stability analysis of wave patterns within these am-
plitude equations. Nonlinear interaction of standing waves is investigated by means
of the analysis of a system of four complex Landau equations. The paper concludes
with summary in Sec. 4.

2 Amplitude Equations

We consider a horizontal liquid layer confined between a deformable free upper sur-
face and a solid bottom wall. The layer is heated from below; the thermal conduc-
tivity of the liquid λ is assumed to be large in comparison with that of the substrate,
so that the vertical component of the heat flux λA is fixed. The unperturbed layer
thickness H is assumed sufficiently small, so that the influence of buoyancy is neg-
ligible and the free surface deformation is important. The surface tension decreases
linearly with the temperature: σ = σ0 −σT T , where T is the deviation of the tem-
perature from a reference one, which is the temperature of the gas above the liquid
layer. The heat flux from the free surface is governed by Newton’s law of cooling,
which describes the rate of heat transfer from the liquid to the ambient gas phase
with the heat transfer coefficient q. The Cartesian reference frame is chosen in such
a way that the x- and y-axes are in the substrate plane and the z-axis is normal to the
substrate.

The problem of convective instability in the given system is characterized by the
following dimensionless parameters,

Ca =
σ0H
ρνχ

, Bi =
qH
λ

, Ga =
gH3

νχ
, Ma =

σT AH2

ρνχ
,

which are the capillary, Biot, Galileo and Marangoni numbers, respectively. Here g
is the gravitational acceleration, χ is the thermal diffusivity, ρ is the density, and ν
is the kinematic viscosity.
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In the uncontrolled case, the oscillatory long-wave Marangoni instability was
revealed in [5]. To govern this instability we apply the feedback control based on
the measurement of the temperature deviation on the free surface from its value in
the conductive state. This feedback control strategy was recently demonstrated as
the most effective one to delay the onset of instability under consideration [3].The
heat flux applied on the solid substrate is changed as

∂T
∂ z

∣∣∣∣
z=0

=−1−K( f ) f , f = T |z=h − T (0)
∣∣∣
z=1

, (1)

where T (0) is the temperature of no-motion state, h is the local layer thickness, K is
the non-dimensional scalar control gain.

Within the lubrication approximation we employ a standard long-wave scaling

x = ε−1X , y = ε−1Y, t = ε−2τ (2)

and restrict ourselves to following assumptions

Ca = ε−2C, Bi = ε2β , K = ε2κ , (3)

where ε � 1 can be thought of as the ratio of H to a typical horizontal lengthscale.
The long-wave Marangoni convection in this layer is governed by the following

system of dimensionless amplitude equations [4]

∂h
∂τ

= ∇ ·
(

h3

3
∇P+Ma

h2

2
∇ f

)
≡ ∇ ·�j , (4)

h
∂Θ
∂τ

= ∇ · (h∇Θ)− 1
2
(∇h)2 − (β −κ( f )) f +�j ·∇ f

+∇ ·
(

h4

8
∇P+

h3

6
Ma∇ f

)
, (5)

where Θ(X ,Y,τ) is the temperature deviation from its conductive value

T =−z+
1
Bi

+Θ . (6)

Here P = Gah −C∇2h, f = Θ − h has a meaning of perturbation of the free
surface temperature; ∇ = (∂/∂X ,∂/∂Y,0). The vector −�j has a meaning of the
longitudinal flux of a liquid integrated across the layer.

Hereinafter we assume that the term corresponding to the feedback control in (5)
is a quadratic polynomial of the free surface temperature perturbation:

κ( f ) f = κl f +κq f 2 , (7)
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where κl and κq are constant.
The influence of the linear part of control gain κl can be expressed as replace-

ment β → β −κl in formulas describing the instability threshold [3]. The quadratic
part of control gain κq affects the nonlinear development of instability. In the fol-
lowing sections we investigate the influence of a nonlinear feedback control on the
pattern formation (the linear part κl will be omitted). Specifically, we are interested
in the elimination of subcritical instability.

3 Weakly Nonlinear Analysis

Below we study the nonlinear dynamics of small perturbations close to the threshold
of the oscillatory instability Ma0

Ma−Ma0 = δ 2Ma2,δ � 1 , (8)

where Ma0 = 3+Ga+Ck2 +3β/k2 is obtained from the linear analysis [3].

3.1 Basic Expansions

We present h, Θ , Ma and the time derivative as a series in power of the small pa-
rameter δ :

h= 1+δξ1+δ 2ξ2+ . . . ,Θ = 1+δθ1+δ 2θ2+ . . . ,
∂

∂τ
=

∂
∂τ0

+δ 2 ∂
∂τ2

+ . . . , (9)

where two time variables, τ0 and τ2, are introduced according to the multiscale ap-
proach [2] as the dynamics of wave patterns is characterized by two different time
scales. The frequency of oscillations is of order of 1, while the growth rate of dis-
turbances is of the order of Ma−Ma0, i.e. O(δ 2)

Substituting the ansatz (9) into equations (4)-(5), and collecting the terms of
equal powers in δ , we obtain at the first order the linear stability problem. Its solu-
tion can be presented as

ξ1 =
n

∑
j=1

A j (τ2)exp
(

i�k j ·�r− iωτ0

)
+ c.c. , (10)

θ1 = (α +1)
n

∑
j=1

A j (τ2)exp
(

i�k j ·�r− iωτ0

)
+ c.c. , (11)

where c.c. denotes complex conjugate terms, |�k j| = k is the wavenumber, α =
−2

(
Ga+Ck2

)
/3Ma0 + 2iω/Ma0k2. Frequency of neutral perturbations is deter-

mined by formula
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ω =
k2

12

√
(72+Ga+Ck2)(Mamon −Ma0),

where

Mamon =
48

(
β + k2

)(
Ga+Ck2

)

k2 (72+Ga+Ck2)

is the threshold of a monotonic instability [3].
The analysis can be done for any k, but the case of the critical wavenumber kc,

corresponding to the minimum of the neutral curve, is especially important, because
one can expect that patterns with the wavenumber kc will appear in the natural way
by the growth of Ma. Below we consider the nonlinear interaction of disturbances
and the wave patterns supported by that interaction. The computations will be done
for k = kc, k2

c =
√

3β .

3.2 Interaction of Waves

In order to investigate the nonlinear interaction of waves, consider the class of so-
lutions corresponding to two pairs of waves with the wave vectors ±�k1, ±�k2, where
�k1 = (k,0) and �k2 = (k cosφ ,k sinφ), that propagate with a phase velocity ω/k and
complex amplitudes A1,2 and B1,2

ξ1 =
[
A1(τ2)eikX +A2(τ2)e−ikX +B1(τ2)ei�k2·�r +B2(τ2)e−i�k2·�r

]
eiωτ0 + c.c. (12)

Here φ is an arbitrary angle different from 0 and π . That class of solutions includes
travelling and standing waves as particular cases.

At the second order we obtain

∂ξ2

∂τ0
−Δ

(
1
3

P2 +
Ma0

2
f2

)
= ∇ · (ξ1∇P1 +Ma0ξ1∇ f1) , (13)

∂θ2

∂τ0
−Δ

(
θ2 +

1
8

P2 +
Ma0

6
f2

)
+β f2 =−ξ1

∂θ1

∂τ0
+∇ · (ξ1∇θ1)− 1

2
(∇ξ1)

2

+κq f 2
1 +

(
1
3

P1 +
Ma0

2
f1

)
·∇ f1 +∇ ·

(
ξ1

2
∇P1 +

Ma0

2
ξ1∇ f1

)
,(14)

where P1,2 = Gaξ1,2 −CΔξ1,2, f1,2 = θ1,2 −ξ1,2. The solution can be chosen in the
form
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ξ2 = a10 (A1B∗
2 +A2B∗

1)eiψ+ +a1−0 (A1B∗
1 +A2B∗

1)eiψ−

+
[
a11

(
A1B1eiψ+ +A2B2e−iψ+

)
+a1−1

(
A1B2eiψ− +A2B1e−iψ−

)

+ a22

(
A2

1e2ikX +A2
2e−2ikX +B2

1e2i�k2·�r +B2
2e−2i�k2·�r

)]
e2iωτ0

+a20

(
A1A∗

2e2ikX +B1B∗
2e2i�k2·�r

)
+ c.c. (15)

θ2 = b20

(
A1A∗

2e2ikX +B1B∗
2e2i�k2·�r

)
+b02 (A1A2 +B1B2)e2iωτ0

+b10 (A1B∗
2 +A2B∗

1)eiψ+ +B1−0 (A1B∗
1 +A2B∗

1)eiψ−

+
[
b11

(
A1B1eiψ+ +A2B2e−iψ+

)
+B1−1

(
A1B2eiψ− +A2B1e−iψ−

)

+ b22

(
A2

1e2ikX +A2
2e−2ikX +B2

1e2i�k2·�r +B2
2e−2i�k2·�r

)]
e2iωτ0

+b00
(|A1|2 + |A2|2 + |B1|2 + |B2|2

)
+ c.c., (16)

where ψ+ = kX +�k2 ·�r, ψ− = kX −�k2 ·�r . Hereafter the asterisk denotes the
complex-conjugate term; b00, b02, a10, b10, ..., b1−1 are constants, which are very
cumbersome and therefore they are not given here.

At the third order in δ , we obtain

∂ξ3

∂τ0
−Δ

(
1
3

P3 +
Ma0

2
f3

)
= F(1) , (17)

∂θ3

∂τ0
−Δ

(
θ3 +

1
8

P3 +
Ma0

6
f3

)
+β f3 = F(2) , (18)

where P3 = Gaξ3 −CΔξ3, f3 = θ3 −ξ3 ; inhomogeneities F(1,2) are defined as

F(1) =−∂ξ1

∂τ2
+

1
2

Ma2Δ f1 +∇ · (Ma0ξ1∇ f2 +ξ1∇P2)

+∇ ·
[

ξ 2
1

(
∇P1 +

Ma0

2
∇ f1

)
+ξ2 (∇P2 +Ma0∇ f1)

]
, (19)

F(2) =−∂θ1

∂τ2
−ξ2

∂θ1

∂τ0
−ξ1

∂θ2

∂τ0
+2κq f1 f2 +

1
6

Ma2Δ f1

−∇ξ1 ·∇ξ2 +∇ · (ξ1∇θ2 +ξ2∇θ1)+
1
3

∇P2 ·∇ f1

+∇P1 ·
(

ξ1∇ f1 +
1
3

∇ f2

)
+

3
4

∇ · (ξ 2
1 ∇P1

)
+

1
2

∇ · (ξ1∇P2 +ξ2∇P1)

+Ma0

[
ξ1∇ f1

2 +∇ f1 ·∇ f2 +
1
2

∇ · [(ξ 2
1 +ξ2

)
∇ f1

]
+

1
2

∇ · (ξ1∇ f2)

]
. (20)
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The solvability condition at the third order can be formulated as
(

iω +
Ma0k2

6
+ k2 +β

)
F(1)

sec =
Ma0k2

2
F(2)

sec , (21)

where F(1,2)
sec are secular parts of inhomogeneities. It yields a set of four complex

differential equations that govern the evolution of wave amplitudes A1,2 and B1,2

dA1

dτ2
=
(

γ −K0|A1|2 −K1|A2|2 −K2 (φ) |B1|2 −K2 (π −φ) |B2|2
)

A1 −K3 (φ)A2
∗B1B2

dA2

dτ2
=
(

γ −K0|A2|2 −K1|A1|2 −K2 (φ) |B2|2 −K2 (π −φ) |B1|2
)

A2 −K3 (φ)A1
∗B1B2

dB1

dτ2
=
(

γ −K0|B1|2 −K1|B2|2 −K2 (φ) |A1|2 −K2 (π −φ) |A2|2
)

B1 −K3 (φ)B2
∗A1A2

dB2

dτ2
=
(

γ −K0|B2|2 −K1|B1|2 −K2 (φ) |A2|2 −K2 (π −φ) |A1|2
)

B2 −K3 (φ)B1
∗A1A2

(22)

Here

γ =
k2Ma2

2

(
1− i

3k2
(
Ga+Ck2 +72

)

2ω0

)
,

expressions for Landau coefficients K0, K1, K2(φ) and K3(φ) are very cumbersome
and therefore they are not given here.

Equations (22) were studied in detail by [6] in the case of square symmetry, i.e.
for φ = π/2. They found six types of solutions.

(i) Traveling rolls (TR) |A1|2 = γr/K0r, A2 = B1 = B2 = 0.

(ii) Standing rolls (SR) A1 = A2, |A1|2 = γr/(K0r +K1r) , B1 = B2 = 0.

(iii) Traveling squares (TS) A1 = B1, |A1|2 = γr/(K0r +K2r) , A2 = B2 = 0.
(iv) Standing squares (SSq) A1 = A2 = B1 = B2,

|A1|2 = γr/(K0r +K1r +2K2r +K3r) .

(v) Alternating rolls (AR) A1 = A2 = iB1 = iB2,

|A1|2 = γr/(K0r +K1r +2K2r −K3r) .

(vi) Standing cross-rolls (SCR) A1 = A2, B1 = B2, |A1| �= |B1| .

For any parameters, we use notation Kr = ReK, Ki = ImK.
A stability analysis for the patterns on the square lattice shows that they are

selected if they emerge through the direct Hopf bifurcation (γr > 0). The remaining
stability conditions also obtained by [6], are as follows
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(TR): K0r < K1r, K0r < K2r

(SR): K0r > K1r, K0r +K1r −2K2r < 0, |K0 +K1 −2K2|2 > |K3|2 .
(TS): K0r > K2r, K0r −K1r −K3r < 0, K0r −K1r +K3r < 0.
(SSq): K0r +K1r −2K2r −3K3r > 0, K0r −K1r −K3r > 0,

[K∗
3 (K0 +K1 −2K2)]r < |K3|2 .

(AR): K0r +K1r −2K2r +3K3r > 0, K0r −K1r +K3r > 0,
− [K∗

3 (K0 +K1 −2K2)]r < |K3|2 .
(SCR) is always unstable.

These conditions provide boundaries of selection between two stable patterns.
Obviously, equation K0 =K2r defines boundary between stable TR and TS; equation
K0r = K1r – between stable TR and SR. Equations K0r −K1r = K3r and K0r −K1r =
−K3r define selection between stable TS and SSq or AR, respectively.

Below we apply the general results described above to the particular problem,
which is the subject of the present paper. Our goal is the computation of coefficients
K0r, K1r, K2r(π/2) and K3r(π/2) as functions of the problem parameters, which are
β , Ga and κq .

For uncontrolled convection, pattern selection was investigated previously in the
case φ = π/2 [5]. It was shown that a small area of stable alternating rolls was
discovered (see Fig.1 (a)). However, this area intersects with the domain of sub-
critical traveling rolls, so here depending on the initial condition the system ei-
ther approaches AR or demonstrates the infinite growth of one of the amplitudes.
Note, that the boundary of stability for alternating rolls here is defined by condition
K0r −K1r +K3r < 0 corresponding to the boundary between AR and TS. Thus, al-
ternating rolls first become unstable against traveling squares, that in turn become
unstable against traveling rolls.

3.3 Nonlinear Feedback Control

Quadratic control gain varies Landau coefficients, resulting in a change of stability
boundaries for the patterns.

Influence of the quadratic feedback control on pattern selection for φ = π/2 is
presented in Fig.1 (b). Recall that the oscillatory instability is critical only inside the
domain bounded by the dashed line in Fig.1.

Positive control gain reduces the domain of stability for traveling wave, whereas
the domain of subcriticality for traveling wave is enlarged. Additional domain of
subcriticality arises due to the standing squares. Stable standing squares emerge
for κq = 0.1 instead of alternating rolls in the uncontrolled case. However, the do-
main of stable standing squares intersects with the domain of subcritical traveling
rolls, so here depending on the initial condition the system either approaches SSq or
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Fig. 1 Pattern selection for φ = π/2 in the case of uncontrolled convection (a),for κq = 0.1 (b) and
for κq = −0.1. Domains of stability for traveling rolls, standing squares and alternating rolls are
marked by “TR”, “SSq” and “AR”, respectively. The domains of subcriticality for traveling rolls
and standing squares are marked by “subTR” and ”subSSq”, respectively. Domains of bistability
of traveling rolls and standing squares is shaded and marked by ”SSq/TR”.

Fig. 2 Pattern selection for φ = π/2, κq = −0.2. Domains of stability for traveling rolls, stand-
ing rolls and standing squares are marked “TR”, “SR” and “SSq”, respectively. Panel (c) shows
zoomed-in domains of bistability (marked ”SR/SSq” and SSq/TR). “subSSq” marks domain of
subcriticality for standing squares.

demonstrates the infinite growth of one of the amplitudes. Note, that the boundary of
stability for standing squares here is defined by condition K0r −K1r −K3r < 0 corre-
sponding to the boundary between SSq and TS. Thus, standing squares first become
unstable against traveling squares, that in turn become unstable against traveling
rolls.

For negative control gain traveling rolls are stable within the whole domain,
where the oscillatory mode is critical, see Fig.1 (c). However, there is a domain
of subcriticality for standing squares. Moreover, there are two small areas of stable
standing squares, which intersect the domain of stable traveling rolls, resulting in
the bistability.

Pattern selection for φ = π/2 under the control gain κq = −0.2 is presented in
Fig. 2. Small areas of subcritical traveling rolls, standing rolls and standing squares
exist for a small values of β .
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Traveling rolls are stable in most of the domain, where the oscillatory mode
is critical. But there are also domains of stability for standing rolls and standing
squares, see Figs.2(a) and (b), respectively. Note that domains of stability for TR
and SSq, SR and SSq intersect partially, resulting in bistability.

4 Conclusions and Discussion

We have studied pattern formation of oscillatory Marangoni instability in a thin film
under nonlinear feedback control.

We have performed a weakly nonlinear analysis within the amplitude equations,
which describe coupled evolution of the thickness and temperature of thin film in
the presence of the nonlinear control. Our analysis is based on the consideration
of the nonlinear interaction of a pair of standing waves propagating at the angle φ
between the wave vectors. That consideration leads to a set of four complex Landau
equations that govern the evolution of wave amplitudes. The coefficients of Landau
equations, which define pattern formation, have been calculated in the case φ =
π/2 for different values of the control gain, Galileo and Biot numbers. We have
demonstrated, that besides conventional traveling rolls an additional stable patterns
(such as standing rolls and standing squares) emerges under nonlinear feedback
control. In the case of negative control gain, we have shown that a quadratic control
can eliminate the subcritical excitation of instability within entire domain, where
oscillatory mode is critical.

Acknowledgements This research was supported by the Israel Science Foundation (grant No.
843/18).
The authors are grateful to the organisers of the programme “Conservation laws, interfaces and
mixing” at MATRIX (Creswick, Victoria, November 4-8 2019) for the invitation to present the
results of their research.

References

film heated from below. J. Fluid Mech. (2019) doi:10.1017/jfm.2019.578

terns in a thin film heated from below. Phys. Rev. E (2020) doi:10.1016/j.physd.2020.132627

heated from below. Phys. Rev. E (2012) doi:10.1103/PhysRevE.85.016328

420

1. Nayfeh, A.H.: Introduction in Perturbation Techniques. Wiley-VCH, New York (1993)
2. Samoilova, A.E., Nepomnyashchy, A.: Feedback control of Marangoni convection in a thin

3. Samoilova, A.E., Nepomnyashchy, A.: Nonlinear feedback control of Marangoni wave pat-

4. Shklyaev, S., Khenner, M., Alabuzhev, A. A.: Long-wave Marangoni convection in a thin film



Controlling stability of longwave oscillatory Marangoni patterns

doi:10.1088/0951-7715/4/4/003

421

5. Silber, M., Knobloch, E.: Hopf bifurcation on a square lattice. Nonlinearity (1991)



Rigorous modelling of nonlocal interactions
determines a macroscale advection-diffusion
PDE

Prof A.J. Roberts

Abstract A slowly-varying or thin-layer multiscale assumption empowers macroscale
understanding of many physical scenarios from dispersion in pipes and rivers, in-
cluding beams, shells, and the modulation of nonlinear waves, to homogenisation of
micro-structures. Here we begin a new exploration of the scenario where the given
physics has non-local microscale interactions. We rigorously analyse the dynamics
of a basic example of shear dispersion. Near each cross-section, the dynamics is
expressed in the local moments of the microscale non-local effects. Centre manifold
theory then supports the local modelling of the system’s dynamics with coupling
to neighbouring cross-sections as a non-autonomous forcing. The union over all
cross-sections then provides powerful new support for the existence and emergence
of a macroscale model advection-diffusion PDE global in the large, finite-sized,
domain. The approach quantifies the accuracy of macroscale advection-diffusion
approximations, and has the potential to open previously intractable multiscale issues
to new insights.

1 Introduction

This paper introduces a new rigorous approach to the multiscale challenge of sys-
tematically modelling by macroscale PDEs the dynamics of microscale, spatially
nonlocal, systems. This approach provides a novel quantified error formula. Previous
research using this type of approach rigorously modelled systems that were expressed
as PDEs on the microscale. This previous research encompassed both cylindrical
multiscale domains (Roberts 2015a) and more general multiscale domains (Roberts
and Bunder 2017; Bunder and Roberts 2018). But recall that PDEs are themselves
mathematical idealisations of physical processes that typically take place on mi-
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croscale length scales. Hence, here we begin to address the challenges arising when
the given mathematical model of a system encodes microscale physical interactions
over finite microscale lengths.

Physical systems with nonlocal, microscale, spatial interactions arise in many ap-
plications. In neuroscience, a spatial convolution expresses the excitatory/inhibitory
effects of a neurone on a nearby neurone, giving rise to nonlocal neural field equa-
tions, and “have been quite successful in explaining various experimental findings”
(Ermentrout 2015, e.g.). Models of free crack propagation in brittle materials invoke
microscale nonlocal stress-strain laws, called peridynamics (Silling 2000, e.g.): one
challenge is to derive the effective mesoscale PDEs from the nonlocal laws (Silling
and Lehoucq 2008; Lipton 2014, e.g.). Nonlocal dispersal and competition models
arise in biology (Omelyan and Kozitsky 2018; Duncan et al. 2017, e.g.). Other ex-
amples are non-local cell adhesion models (Buttenschön and Hillen 2020, e.g.). In
this introduction we begin by exploring the specific example of a so-called ‘Zappa’
dispersion in a channel (Section 2) in which material is transported by finite jumps
along the channel, and also is intermittently thoroughly mixed across the channel.

General scenario

Zappa dispersion is a particular case of the following general scenario—a scenario
that is the subject of ongoing research. In generality we consider a field u(x,y, t),
on a ‘cylindrical’ spatial domain X×Y (where X ⊆ R and where Y denotes the
cross-section). We suppose the field u is governed by a given autonomous system
in the form

∂u
∂ t

=
∫

Y

∫

X
k(x,ξ ,y,η)u(ξ ,η , t)dξ dη , (1)

where the given kernel k(x,ξ ,y,η) expresses both nonlocal and local physical effects
at position (x,y) from the field at position (ξ ,η), both within the cylindrical domain
X×Y. We allow the kernel to be a generalised function so that local derivatives
may be represented by derivatives of the Dirac delta function δ : for example, a
component δ ′(x−ξ )δ (y−η) in the kernel k encodes the differential term −∂u/∂x
in the right-hand side of (1). In general the physical effects encoded in the kernel k
may be heterogeneous in space. But, as is common and apart from boundaries, Zappa
dispersion is homogeneous in space (translationally invariant) in which case some
significant simplifications ensue.

The nonlocal system (1) is linear for simplicity, but we invoke the framework of
centre manifold theory so the approach should, with future development, apply to
nonlinear generalisations as in previous work on such modelling where the system is
expressed as PDEs on the microscale (Roberts 2015a).

Our aim is to rigorously establish that the emergent dynamics of the nonlocal
system (1) are captured over the 1D spatial domain X by a mean/averaged/coarse/
macroscale variable U(x, t) that satisfies a macroscale, second-order, advection-
diffusion PDE of the form
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∂U
∂ t

≈ A1
∂U
∂x

+A2
∂ 2U
∂x2 , x ∈ X , (2)

for some derived coefficients A1 and A2.1 This macroscale PDE (2) is to model the
dynamics of the microscale nonlocal (1) after transients have decayed exponentially
quickly in time, and to the novel quantified error (6d).

2 Zappa shear dispersion

This section introduces a basic example system (non-dimensional) of nonlocal mi-
croscale jumps by a particle (inspired by W. R. Young, private communication).
Section 3 systematically derives an advection-diffusion PDE (2) for the particle that
is valid over macroscale space-time. Consider a particle in a channel −1 < y < 1,
Y= (−1,1), and of notionally infinite extent in x, X= R. Let u(x,y, t) be the proba-
bility density function (PDF) for the particle’s location: equivalently, view u(x,y, t) as
the concentration of some continuum material.

The ‘Zappa’ dynamics of the particle’s PDF is encoded by

∂u
∂ t

=
[

1
v(y)

∫ x

−∞
e−(x−ξ )/v(y)u(ξ ,y, t)dξ

︸ ︷︷ ︸
= e−x/v(y)�u, the convolution (5)

−u
]
+

[
1
2

∫ 1

−1
udy−u

]
(3)

for some jump profile v(y)> 0 —v(y) is an effective velocity along the channel. That
is, the kernel of the Zappa system is the generalised function

k(x,ξ ,y,η) =
[

1
v(y)e−(x−ξ )/v(y)H(x−ξ )−δ (x−ξ )

]
δ (y−η)

+
[ 1

2 −δ (y−η)
]

δ (x−ξ ), (4)

where H(x) is the unit step function. The nonlocal equation (3) governs the PDF of
the particle in Zappa dispersion through the following two physical mechanisms.

• We suppose that, at exponentially distributed time intervals with mean one, the
particle gets ‘zapped’ across the channel (by a burst of intermittent turbulence
for example) and lands at any cross channel position y with uniform distribution.
Consequently the Fokker–Planck PDE (3) for the PDF contains the terms ut =[ 1

2
∫ 1
−1 udy−u

]
+ · · ·.

• Further, suppose that, at exponentially distributed time intervals with mean one,
the particle jumps in x a distance to the right, a distance which is exponentially
distributed with some given mean v(y). Consequently the Fokker–Planck PDE (3)
for the PDF contains the terms ut =

[ 1
v(y)e−x/v(y) � u− u

]
+ · · ·, in terms of the

upstream convolution

1 Ongoing research aims to generalise the approach here to certify the accuracy of PDEs truncated
to Nth-order for every N.
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e−x/v(y) �u =
∫ x

−∞
e−(x−ξ )/v(y)u(ξ ,y, t)dξ . (5)

We derive the macroscale model that the cross-sectional mean field U(x, t) evolves
according to an advection-diffusion PDE: Ut ≈ A1Ux +A2Uxx . The field U(x, t) may
be viewed as the marginal probability density of the particle being at x, averaged
over the cross-section y. Innovatively, we put the macroscale modelling on a rigorous
basis that additionally quantifies the error.

In particular, say we choose v(y) := 1− y2 then computer algebra (Section 6)
readily derives that over large space-time scales, and after transients decay roughly
like e−t , from every initial condition the Zappa system (3) has the quasistationary
distribution (Pollett and Roberts 1990, e.g.)

u(x,y, t)≈U +(y2 − 1
3 )

∂U
∂x

+(2y4 − 8
3 y2 + 22

45 )
∂ 2U
∂x2 , (6a)

such that
∂U
∂ t

=−2
3

∂U
∂x

+
28
45

∂ 2U
∂x2 +ρ , (6b)

in terms of a macroscale variable here chosen to be the cross-sectional mean,

U(x, t) :=
1
2

∫ 1

−1
u(x,y, t)dy . (6c)

The macroscale PDE (6b) is a precise equality because we include the error terms
in our analysis to find a precise, albeit complicated, expression for the final error ρ .
The remainder error ρ in (6b) has the form

ρ := r0 + 〈Z0,W0:BeBt � r′〉+ 〈Z0,W0:r′〉
−A1〈Z0,W1:eBt � r′〉−A2〈Z0,W2:eBt � r′〉 (6d)

where here the convolutions are over time, f (t)�g(t) =
∫ t

0 f (t − s)g(s)ds , and other
symbols are introduced in the next Section 3. We anticipate this error ρ is

• ‘small’ in regions of slow variations in space, small gradients, and
• ‘large’ in regions of relatively large gradients such as spatial boundary layers.

Then, simply, the macroscale PDE model (6b) is valid whenever and wherever
the error ρ is small enough for the application purposes at hand. The next section
includes deriving this error term and clarifies the notation.

3 Many kernels generate local models

Inspired by earlier research (Roberts 2015a, Proposition 1), this section’s aim is to
rigorously derive and justify the model (6) that governs the emergent macroscale
evolution of Zappa dispersion. The algebra starts to ‘explode’—Section 4 discusses
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how to compactly do the algebra in physically meaningful forms, and connect to
other mathematical methodologies.

To derive the advection-diffusion model (6b) we truncate the analysis to second
order quadratic terms. Higher-orders appear to be similar in nature, but much more
involved algebraically, and are left for later development.

3.1 Rewrite the equations for local dynamics

Let’s analyse the dynamics in the spatial locale about a generic longitudinal cross-
section X ∈ X. Then invoke Lagrange’s Remainder Theorem—which empowers us
to track errors—to expand the PDF as

u(x,y, t) = u0(X ,y, t)+u1(X ,y, t)(x−X)+u2(X ,x,y, t)
(x−X)2

2!
, (7)

where u0 := u and u1 := ∂u/∂x both evaluated at the cross-section x = X , and where
u2 := ∂ 2u/∂x2 evaluated at some point x = x̂(X ,x,y, t) which is some definite (but
usually unknown) function of cross-section X , longitudinal position x, cross-section
position y, and time t. By the Lagrange Remainder Theorem, the location x̂ satisfies
X ≶ x̂ ≶ x. The function x̂ is implicit in our analysis because it is hidden in the
dependency upon x of the second derivative u2(X ,x,y, t).

Substitute (7) into the Zappa nonlocal equation (3) to obtain

∂u0

∂ t
+

∂u1

∂ t
(x−X)+

∂u2

∂ t
(x−X)2

2!

=
∫

Y

[∫

X
k(x,ξ ,y,η)dξ

]
u0(X ,η , t)dη

+
∫

Y

[∫

X
k(x,ξ ,y,η)(ξ −X)dξ

]
u1(X ,η , t)dη

+
∫

Y

∫

X
k(x,ξ ,y,η)

(ξ −X)2

2!
u2(X , ξ̂ ,η , t)dξ dη . (8)

The effect at cross-section x of the nth moment of the kernel at cross-section X is
summarised in the integrals

∫
X k(x,ξ ,y,η) (ξ−X)n

n! dξ . So define the local nth moment
of the kernel to be, for every n ≥ 0,

kn(X ,y,η) :=
∫

X
k(X ,ξ ,y,η)

(ξ −X)n

n!
dξ

=
[
(−v)n −δn0

]
δ (y−η)+

[ 1
2 −δ (y−η)

]
δ0n (9)

upon substituting the Zappa kernel (4). This Zappa problem is homogeneous in x,
as are many problems, and so the kernel moments kn are independent of the cross-
section X (except near the boundary inlet and outlet).
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The last integral term in the local expansion (8) requires special consideration:
apply Lagrange’s Remainder Theorem to write u2(X ,ξ ,η , t) = u2(X ,X ,η , t)+(ξ −
X)u2x(X , ξ̂ ,η , t) for some uncertain function ξ̂ (X ,ξ ,η , t) that satisfies X ≶ ξ̂ ≶ ξ
for every η , t, and where u2x := ∂/∂x [u2(X ,x,η , t)]. Then the last term distributes
into two:

∫

Y

∫

X
k(x,ξ ,y,η)

(ξ −X)2

2!
u2(X , ξ̂ ,η , t)dξ dη

=
∫

Y

∫

X
k(x,ξ ,y,η)

(ξ −X)2

2!
dξ

︸ ︷︷ ︸
k2(X ,y,η)

u2(X ,X ,η , t)dη

+

∫

Y

∫

X
k(x,ξ ,y,η)3

(ξ −X)3

3!
u2x(X , ξ̂ ,η , t)dξ dη

︸ ︷︷ ︸
a remainder, with a third x derivative in u2x

.

Define u2(X ,y,η) := u2(X ,X ,y,η) for notational consistency with lower moments—
see the definition (9).

The local equation (8) is exact everywhere, but is most useful in the vicinity of the
cross-section X , that is, for small (x−X). Notionally we want to ‘equate coefficients’
of powers of (x−X) in (8), but to be precise we must carefully evaluate limx→X of
various x-derivatives of (8). For example, let x → X in (8), then

∂u0

∂ t
=

∫

Y
k0(X ,y,η)u0(X ,η , t)dη +

∫

Y
k1(X ,y,η)u1(X ,η , t)dη

+
∫

Y
k2(X ,y,η)u2(X ,η , t)dη

+3
∫

Y

∫

X
k(X ,ξ ,y,η)

(ξ −X)3

3!
u2x(X , ξ̂ ,η , t)dξ dη .

Rewrite this conveniently and compactly as the integro-differential equation (IDE)

∂u0

∂ t
= L0u0 +L1u1 +L2u2 + r0 , (10)

for y-operators defined to be, from the moments (9),

Lnu :=
∫

Y
kn(X ,y,η)u|y=η dη =

{
1
2
∫ 1
−1 udy−u , n = 0 ,

[−v(y)]nu , n = 1,2, . . . .
(11)

The IDE (10) also has the remainder r0 which couples the local dynamics to neigh-
bouring locales via u2x and is the n = 0 case of

rn(X ,y, t) := 3
∫

Y

∫

X

∂ nk
∂xn

∣∣∣
x=X

(ξ −X)3

3!
u2x(X , ξ̂ ,η , t)dξ dη . (12)
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Now we can see how this approach to modelling the spatial dynamics works: given
that the y-operators (11) are evaluated at X , the spatially local power series with
remainder, in IDEs like (10), ‘pushes’ the coupling with neighbouring locales to
a higher-order derivative term in r0, here third-order via the u2x factor. Hence the
local dynamics in u0,u1,u2 are essentially isolated from all other cross-sections
whenever and wherever the coupling r0 is small enough for the purposes at hand—
here when third derivatives are small—that is, when the solutions are, in space,
slowly varying enough.

The previous paragraph obtains the IDE for u0 by simply taking the limit of (8) as
x → X . We straightforwardly and similarly obtain IDEs for u1 and u2 by finding the
limits of spatial derivatives of (8):

lim
x→X

∂ (8)
∂x

=⇒ ∂u1

∂ t
= L0u1 +L1u2 + r1 ; (13a)

lim
x→X

∂ 2(8)
∂x2 =⇒ ∂u2

∂ t
= L0u2 + r2 ; (13b)

for local coupling remainders r1 and r2 defined by (12).

3.2 Local-to-global system modelling theory

This section considers the collection of ‘local’ systems as one ‘global’ (in space X)
system. Then theory establishes that the advection-diffusion PDE (6b) arises as a
globally valid, macroscale, model PDE.

Denote the vector of coefficients u(X ,y, t) := (u0,u1,u2), and similarly for the
local coupling remainder r(X ,y, t) := (r0,r1,r2). Then write the IDEs (10) and (13),
in the form of the ‘forced’ linear system

du
dt

=

⎡
⎣
L0 L1 L2
0 L0 L1
0 0 L0

⎤
⎦

︸ ︷︷ ︸
L

u+ r(X , t). (14)

for upper triangular matrix/operator L . The system (14) might appear closed, but it
is coupled via the derivative u2x, through the ‘forcing’ remainders r, to the dynamics
of cross-sections that neighbour X .

At each locale X ∈X, treat the remainder coupling r (third-order) as a perturbation
(and if this was a nonlinear problem, then the nonlinearity would also be part of
the perturbation). Thus to a useful approximation the global system satisfies the
local linear ODEs du/dt ≈ L u for each X ∈ X. Hence, the linear operator L is
crucial to modelling the dynamics: all solutions are characterised by the eigenvalues
of L . Since L is block triangular, a structure exploited previously (Roberts 2015a,
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§2), its spectrum is thrice that of L0 = 1
2
∫ 1
−1 udy− u (definition (11)). Here it is

straightforward to verify that the y-operator L0 has:

• one 0 eigenvalue corresponding to eigenfunctions constant across the channel;
and

• an ‘infinity’ of eigenvalue −1 corresponding to all functions with zero average
across the channel.

Then globally in space, with du/dt = L u+(perturbation) at every X ∈ X, and
because of the ‘infinity’ of the continuum X, the linearised system has a ‘thrice-
infinity’ of the 0 eigenvalue, and a ‘double-infinity’ of eigenvalue −1. Consequently,
the theory of Aulbach and Wanner (2000) asserts:

1. there exists a ‘(3∞)’-D slow manifold—the quasistationary (6a);
2. which is exponentially quickly attractive to all initial conditions, with transients

roughly e−t—it is emergent; and
3. which we approximate by approximately solving the governing differential equa-

tions (14)—done in encoded form by Section 6.

We obtain a useful approximation to the global slow manifold by neglecting the
‘perturbing’ remainder r. Because the remainder r is the only coupling between
different locales X this approximation may be constructed independently at each and
every cross-section X . Further, because the Zappa system is homogeneous in space,
the construction is identical at each and every X ∈ X. These two properties vastly
simplify the construction of the attractive slow manifold.

Neglecting the coupling remainder r gives the linear problem du/dt = L u.
The approximate slow manifold is thus the zero eigenspace of L . We find the
zero eigenspace via (generalised) eigenvectors. With the (generalised) eigenvec-
tors in the three columns of block-matrix V , in essence we seek u(t) = V U(t)
such that dU/dt = A U for 3×3 matrix A having all the zero eigenvalues. To be
an eigenspace we need to solve LV = VA . Now let’s invoke previously estab-
lished results (Roberts 2015a, §2). The linear operator L , defined in (14), has the
same block Toeplitz structure as previously (Roberts 2015a, (7) on p.1496). Con-
sequently (Roberts 2015a, Lemma 4), a basis for the zero eigenspace of L is the
collective columns of

V =

⎡
⎣

V0 V1 V2
0 V0 V1
0 0 V0

⎤
⎦ , and further, A =

⎡
⎣

0 A1 A2
0 0 A1
0 0 0

⎤
⎦ .

The hierarchy of equations to solve for the components of these has been previously
established (Roberts 2015a, Lemma 3): the hierarchy is essentially equivalent to the
hierarchy one would solve if using the method of multiple scales, but the theoretical
framework here is more powerful. The upshot is that for Zappa dispersion, in which
overlines denote cross-channel averages,

V0 = 1, V1 = v− v, V2 = 2(v2 − v2 − vv+ v2),

A1 =−v, A2 = (v− v)2 + v2 . (15)
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In the specific case of v(y) = 1− y2, these expressions reduce to the coefficients and
polynomials of the slowly varying, slow manifold, model (6).

So now we know that the evolution on the zero eigenspace, the approximate
slow manifold, is dU/dt = A U: let’s see how this translates into the macroscale
PDE (6b). Now, the first line of dU/dt = A U is the ODE dU0/dt = A1U1 +A2U2.
Defining U0 =U(X , t) := u(X ,y, t), Proposition 6 of Roberts (2015a) applies, and so
generally U(x, t) satisfies the macroscale effective advection-diffusion PDE (2)—a
PDE that reduces to the specific (6b) in the case v(y) = 1− y2.

3.3 Account for the coupling remainder

Now we treat the exact ‘local’ system du/dt =L u+r as non-autonomously ‘forced’
by coupling to all cross-sections in X through the remainder (aka Mori–Zwanzig
transformation, e.g., Venturi, Cho, and Karniadakis 2015). There are two justifica-
tions, both a simple and a rigorous, for being able to project such ‘forcing’ onto
the local model. First, simply, the rational projection of initial conditions for low-
dimensional dynamical models leads to a cognate projection of any forcing (Roberts
1989, §7). Second, alternatively and more rigorously, Aulbach and Wanner (2000)
developed a general forward theory, that applies here, of centre manifolds for non-
autonomous systems in suitable ‘infinite-D’ state spaces: the theory establishes the
existence and emergence of an ‘infinity-D’ global centre manifold—a centre man-
ifold whose construction (Potzsche and Rasmussen 2006, Prop. 3.6) happens to
be symbolically identical at each X ∈ X. Keep clear the contrasting points of view
that contribute: on the one hand we consider the relatively low-dimensional system
at each locale X in space, a system that is weakly coupled to its neighbours; on
the other-hand we consider the relatively high-dimensional system of all locales X
coupled together and then theory establishes global properties.

The upshot is that here we need to project the coupling remainder r(t) onto each
local slow manifold. Fortunately, the structure of the linear local dynamics (14) is
identical to that discussed by Roberts (2015a). Hence, many of the results reported
there apply here. Linear algebra involving adjoint eigenvectors Z0 and Wn (L†

0Z0 = 0
and L †W = WA , Roberts 2015a, §2.3), together with the history of the coupling
remainder e−t �r, leads to the error formula (6d) (equation (23) from Roberts 2015a).
Then the general macroscale advection-diffusion model (2) becomes exact with the
error term ρ included (here the error (6d) is third-order in spatial derivatives)

∂U
∂ t

= A1
∂U
∂x

+A2
∂ 2U
∂x2 +ρ .

Then, simply, the macroscale effective advection-diffusion model PDE (2) is valid
simply whenever and wherever the error term ρ is acceptably small. There is:
no ε; no limit; no required scaling; no ‘balancing’; no ad hoc hierarchy of
space-time variables.
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4 Compact analysis, and connect to well-known methodology

It is very tedious to perform all the algebraic machinations of Section 3 on the Taylor
series coefficients. Instead, we may compactify the analysis by defining the quadratic
generating polynomial (Roberts 2015a, §3.1)

ũ(X ,ζ ,y, t) := u0(X ,y, t)+ζ u1(X ,Y, t)+ 1
2 ζ 2u2(X ,X ,y, t) (16)

(or a higher-order polynomial if the analysis is to higher-order). This generating
polynomial then satisfies the exact differential equation (17). Consider ∂ ũ/∂ t, at
(X ,ζ ,y, t), and substitute the equations (14) for the Taylor coefficients at (X ,y, t):

∂ ũ
∂ t

=
∂u0

∂ t
+ζ

∂u1

∂ t
+ 1

2 ζ 2 ∂u2

∂ t
= L0u0 +L1u1 +L2u2 + r0

+L0ζ u1 +L1ζ u2 +ζ r1

+L0
1
2 ζ 2u2 + 1

2 ζ 2r2

= L0ũ+L1
∂ ũ
∂ζ

+L2
∂ 2ũ
∂ζ 2 + r̃

=⇒ ∂ ũ
∂ t

=

[
L0 +L1

∂
∂ζ

+L2
∂ 2

∂ζ 2

]
ũ+ r̃ (17)

for the generating polynomial of the coupling remainder, r̃ := r0 +ζ r1 +
1
2 ζ 2r2 .

Appropriate analysis of the IDE (17) then reproduces the previous Section 3. But
the algebra is done much more compactly as the separate components u0,u1,u2 are
all encompassed in the one generating polynomial ũ. One important property of the
analysis is that although we normally regard the derivative ∂/∂ζ as unbounded, in
the analysis of IDE (17) the space of functions is just that of quadratic polynomials
in ζ , and so here ∂/∂ζ is bounded, as well as possessing other nice properties.

Indeed, since we are only interested in the space of quadratic polynomials
in ζ , the analysis neglects any term O

(
ζ 3

)
. Equivalently, we would work to ‘er-

rors’ O
(
∂ 3/∂ζ 3

)
. This view empowers us to organise the necessary algebra in a

framework where we imagine ∂/∂ζ is ‘small’. Note: in the methodology here ∂/∂ζ
is not assumed small, as we track errors exactly in the remainder r̃, it is just that we
may organise the algebra as if ∂/∂ζ was small. Such organisation then leads to the
same hierarchy of problems as in Section 3.2, just more compactly.

Connect to extant methodology

Since the notionally small ∂/∂ζ is effectively a small spatial derivative, we now con-
nect to extant multiscale methods that a priori assume slow variations in space. That
is, we now show that the non-remainder part of IDE (17) appears in a conventional
multiscale approximation of the governing microscale system (1).
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In conventional asymptotics we invoke restrictive scaling assumptions at the start.
Here one would assume that the solution field u(x,y, t) is slowly-varying in space x.
Then the argument goes that the field may be usefully written near any X ∈ X as the
local Taylor quadratic approximation2

u(ξ ,y, t)≈ u|ξ=X +(ξ −X)uξ |ξ=X +
(ξ −X)2

2!
uξ ξ |ξ=X .

Substituting into the nonlocal microscale (1) gives, at (X ,y, t) and letting dashes/
primes denote derivatives with respect to the first argument,

∂u
∂ t

=
∫

Y

∫

X
k(X ,ξ ,y,η)u(ξ ,η , t)dξ dη

≈
∫

Y

∫

X
k(X ,ξ ,y,η)

[
u|ξ=X +(ξ −X)u′|ξ=X +

(ξ −X)2

2!
u′′|ξ=X

]
dξ dη

=
∫

Y

∫

X
k(X ,ξ ,y,η)dξ u(X ,η , t)+

∫

X
k(X ,ξ ,y,η)(ξ −X)dξ u′(X ,η , t)

+
∫

X
k(X ,ξ ,y,η)

(ξ −X)2

2!
dξ u′′(X ,η , t) dη

=
∫

Y
k0(X ,y,η)u(X ,η , t)+ k1(X ,y,η)u′(X ,η , t)

+ k2(X ,y,η)u′′(X ,η , t)dη
= L0u+L1u′+L2u′′. (18)

Now the generating polynomial ũ, defined by (16), is such that u(X + ζ ,y, t) =
ũ(X ,ζ ,y, t)+O

(
ζ 3

)
. Hence, rewriting the approximate PDE (18) for u(X +ζ ,y, t) at

fixed X gives precisely the IDE (17) except that the remainder coupling r̃ is omitted.
Consequently, extant multiscale methodologies continuing on from PDE (18) generate
equivalent results to that of Section 3, but in a different framework—a framework
without the error term (6d).

Most extant multiscale analysis invokes, at the outset, balancing of scaling pa-
rameters, requires a small parameter, is only rigorous in the limit of infinite scale
separation, and often invents heuristic multiple space-time variables. The approach
developed herein connects with such analysis, but is considerably more flexible
and, furthermore, justifies a more formal approach developed 30 years ago (Roberts
1988), and implemented in Section 6. Further this approach derives the rigorous error
expression (6d) at finite scale separation.

2 I continue to conjecture that truncations to orders other than quadratic give corresponding analysis
and results. Ongoing research will elucidate.
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5 Conclusion

This article initiates a new multiscale modelling approach applied to a specific basic
problem. This article considers the scenario where the given physical problem (1)
has non-local microscale interactions, such as inter-particle forces or dynamics on a
lattice. Many extant mathematical methodologies derive, for such physical systems,
an approximate macroscale PDE, such as the advection-diffusion (2). The novelty of
our approach is that it derives a precise expression for the error of the macroscale
approximate PDE, here (6d). Then, simply, and after microscale transients decay,
the macroscale advection-diffusion PDE (2) is valid wherever and whenever the
quantified error (6d) is acceptable.

Of course, in all such applications, we need the third moment of the microscale
interaction kernel k(x,ξ ,y,η) to exist (see definition (12)) for the error analysis of
Section 3.1 to proceed and provide the error term. All moments exist for the Zappa
problem, see (9). If, in some application, the third moment does not exist, but the
second moment does, then the advection-diffusion PDE (2) may be an appropriate
macroscale model, but this work would not provide a quantifiable error.

Another important characteristic of our new approach is that the validity of the
macroscale PDE is not confined by a limit ‘ε → 0’—the approach holds for finite
scale separation in the multiscale problem, in the large but finite domain X. Further,
and in contrast to most extant methodologies, the approach here should generalise
in further research to arbitrary order models just as it does when the microscale is
expressed as PDEs (Roberts 2015a).

The developed scenario here is that of linear nonlocal systems (1). However, key
parts of the argument are justified with centre manifold theory (Aulbach and Wanner
2000; Potzsche and Rasmussen 2006; Haragus and Iooss 2011; Roberts 2015b, e.g.).
Consequently, further research should be able to show that cognate results hold for
nonlinear microscale systems.

With further research, correct boundary conditions for the macroscale PDEs should
be derivable by adapting earlier arguments to derive rigorous boundary conditions
for approximate PDEs (Roberts 1992; Chen, Roberts, and Bunder 2018).

Interesting applications of this novel approach would arise whenever there are
microscale nonlocal interactions in the geometry of problems such as (e.g., Roberts
2015b) dispersion in channels and pipes, the lubrication flow of thin viscous fluids,
shallow water approximations whether viscous or turbulent, quasi-elastic beam
theory, long waves on heterogeneous lattices, and pattern evolution.

Acknowledgements This research was partly supported by the Australian Research Council with
grant DP180100050. I thank Carlo Laing for prompting this direction for research.
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6 Appendix: Computer algebra derives macroscale PDE

The following computer algebra derives the effective advection-diffusion PDE (6b),
or any higher-order generalisation, for the microscale nonlocal Zappa system (3).
This code uses the free computer algebra package Reduce.3 Analogous code will
work for other computer algebra packages, and/or for cognate problems (Roberts
2015b, e.g.).

1 % a d v e c t i o n−d i f f u s i o n PDE o f Zappa t r a n s p o r t i n a c h a n n e l
2 % AJR , 20 Jan 2017 −− 20 Jan 2020
3 on d i v ; o f f a l l f a c ; on r e v p r i ; f a c t o r d , uu ;
4
5 l e t d ˆ5=>0; % t r u n c a t e t o t h i s o r d e r o f e r r o r
6 o p e r a t o r uu ; depend uu , x , t ; % uu ( n ) := d f ( uu , x , n )
7 l e t { df ( uu ( ˜ n ) , x)=>uu ( n + 1 ) , d f ( uu ( ˜ n ) , t )=>df ( g , x , n ) } ;
8 o p e r a t o r mean ; l i n e a r mean ; % average a c r o s s c h a n n e l
9 l e t { mean ( 1 , y )=>1 , mean ( y ˆ ˜ ˜ p , y )=>(1+(−1)ˆ p ) / 2 / ( p +1) } ;

10
11 % P r e p r o c e s s n o n l o c a l x−jumping : i n e s s e n c e f i n d s t h e
12 % k e r n e l i n t e g r a l s are (−v ) ˆ n
13 depend w, x ; % dummy f u n c t i o n f o r u ( x )
14 % T a y l o r expand w( x i )=w( x+z ) where z=x i−x
15 jmp := f o r n : = 0 : deg ( ( 1 + d ) ˆ 9 9 , d ) sum d ˆ n∗ df (w, x , n )∗ z ˆ n / f a c t o r i a l ( n ) $
16 jmp := i n t ( exp ( z / v )∗ jmp , z ) $ % i n t e g r a t e exp ( ( x i−x ) / v )w( x )
17 % e v a l from z=− i n f t o 0 f o r t h e c o n v o l u t i o n
18 jmp := sub ( z =0 , jmp / v)−w$
19
20 % i t e r a t e from quas i−e q u i l i b r i u m s t a r t
21 u := uu ( 0 ) $ g :=0 $
22 f o r i t : = 1 : 9 9 do b e g i n
23 r e s :=− df ( u , t )+ sub ({w=u , v=1−y ˆ 2} , jmp )+(−u+mean ( u , y ) ) ;
24 w r i t e l e n g t h r e s := l e n g t h ( r e s ) ;
25 g := g +( gd := mean ( r e s , y ) ) ;
26 u := u+ r e s−gd ;
27 i f r e s =0 t h e n w r i t e ” S u c c e s s : ” , i t := i t +10000;
28 end ;
29 w r i t e ” The r e s u l t i n g slow m a n i f o l d and e v o l u t i o n i s ” ;
30 u := u ; duud t := g ;
31 end ;
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Influence of an oblique magnetic field on planar
flame front instability

Mako Sato and Yasuhide Fukumoto

Abstract We investigate the effect of external magnetic field on the Darrieus-
Landau instability (DLI), the linear instability of a planar premixed flame front,
in an electrically conducting fluid. This setting has applicability to combustion phe-
nomena of the astrophysical scale. Without magnetic field, the planar flame front
is necessarily unstable. Previous investigation treated independently the normal and
tangential magnetic fields. Here we focus on the case of their simultaneous appli-
cation, namely, oblique magnetic field. Rederiving the jump conditions, across the
flame front, of the physical variables based on the ideal magnetohydrodyamics equa-
tions, we correct the previous treatment of the Markstein effect and extend it to in-
corporate the disparity of the magnetic permeability. A genuinely oblique magnetic
field has an unusual characteristics that discontinuity in tangential velocity across
the flame is induced. It is found that the Kelvin-Helmholtz instability takes over the
stabilizing effect on the DLI in a limited parameter regime when the normal Alfvén
speed exceeds the normal fluid velocity in both the unburned and burned regions.

1 introduction

Combustion is a multiscale phenomenon of a reacting fluid from the molecular
scale, on which a succession of complicated chemical reactions occur, to the hy-
drodynamic scale, flows of a fuel (= an unburned gas) and a burned gas on the
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macroscopic scale, as exemplified by the Bunsen burner and rocket engines [5].
It is a phenomenon whose precise description needs consideration of a number of
chemical processes and the mixture and diffusion of a number of reactant species
and the heat as well. If we consider combustion phenomena in the universe, such as
explosion of supernovae, we have to include the magnetic field [9] which is macro-
scopically described by the Maxwell equations.

It may well be thought that we have to deal with an innumerable number of
equations of governing an innumerable number of chemical species, hydrodynamic,
thermodynamic variables and electro-magnetic fields. Extensive studies since the
middle of the 20th centuries have clarified that the macroscopic scale behavior of
a phenomena is somewhat independent from the microscopic processes, now be-
ing known as the concept of the scale separation. In this paper, we consider the
combustion subjected to imposed magnetic field, on the hydrodynamic scale, of an
electrically conducting fluid. We make the linear stability analysis of a planar front,
of infinitesimal thickness, of a premixed flame, based on the equations of the ideal
magnetohydrodynamics (MHD), consisting of the continuity and the Euler equa-
tions augmented by the induction equation for the magnetic field [10].

The Darrieus-Landau instability (DLI) is an exponential amplification, in time,
of wavy deformations of a planar flame front of incompressible fluids (=burned and
unburned gases), put forward independently by Darrieus (1938) and Landau (1944)
[6, 13, 14]. For this treatment of the hydrodynamic instability, the flame front is
reckoned as an infinitely thin interface with density discontinuity across it. In accor-
dance, we skip chemical reactions occurring in it. Darrieus and Landau assumed that
the flame front advances to the unburned gas (fuel) at a constant speed SL, and dealt
with the Euler equation and the continuity equation for an incompressible fluid. The
growth rate n of the DLI is given by

n
kSL

=
α

1+α

(√
1+α − 1

α
−1

)
,

where α = ρu/ρb(> 1), with ρu(ρb) being the density of unburned (burned) gas,
represents the thermal expansion and k is the wavenumber. The result of n > 0 for
all α(> 1) means that a planer flame front is necessarily linearly unstable, with the
growth rate being proportional to the wavenumber. However stable flame fronts are
observed in experiments, which motivated successors to improve the original DLI.
Markstein [15] considered effect of the flame front curvature on the flame speed S f
[5]. Matalon and Matkowsky [16] elaborated the Markstein effect based on the heat-
conduction equation for the temperature and the diffusion equation for the reactant,
and formulated the Markstein effect as the jump conditions, on the hydrodynamic
scale, of the hydrodynamic and thermodynamic variables across the flame front.
Class et al. [3, 4] devised the jump conditions to take account of chemical reactions
through the heat release at the interface concomitant with the gas expansion.

For combustion phenomena in the universe, we have to add the induction equa-
tion etc. to the governing equations for plasmas, because the space around large-
scale objects is filled with magnetic field. The magnetic field is expected to sup-
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press the instability of an interface, and its influence has extensively studied for the
Kelvin-Helmholtz (KHI), the Rayleigh-Taylor and the Richtmeyer-Meshkov insta-
bilities [10, 17], toward the goal of controlling them. However relatively little is
known about the its influence on the DLI [9]. Dursi [7] addressed the magnetic DLI,
with treating normal and tangential external magnetic field separately, but has gone
untouched the coexistent case of the both fields. The latter half of this paper is de-
voted to handling simultaneous application of the both fields, that is, the oblique
external magnetic field. This case exhibits a marked contrast with the cases of a sin-
gle component, in the sense that only the genuinely oblique magnetic field is able to
admit a discontinuity of tangential velocity. For a neutral fluid, the non-zero mass
flux is in no way compatible with the tangential-velocity discontinuity, and hence,
an oblique magnetic field may drastically alter the DLI. The coexistence of the DLI
and the KHI is of our primary concern, and we shall shoe that this is indeed the case.

The detail of derivation of the jump conditions across the flame front is not often
described in the literature [7]. We begin, in section 2, with it, following the method
of refs [1, 11]. As a reward, a generalization is achieved to incorporate the disparity
of the magnetic permeability and to correct the Markstein effect. With these jump
conditions as a basis, we revisit, in section 3, the effect of the tangential magnetic
field on the DLI. We include the gravity, the surface tension and the Markstein
effects, and look into the effect of the disparity of the magnetic permeability, which
are missing in [7]. Section 4 focuses on the effect of the obliques magnetic field.
As anticipated above, we find a possible emergence of the KHI to compete with the
stabilizing action of the magnetic field. We close, in section 5, with a summary and
a list of remaining problems.

2 Basic equations and jump conditions

The governing equations of the magnetohydrodynamics of an inviscid, incompress-
ible and perfectly conducting fluid are

∂�U
∂ t

+(�U ·∇)�U − 1
ρμ

(�B ·∇)�B+∇

(
�B2

2ρμ

)
=− 1

ρ
∇P+�g

δρ
ρ

, (1)

∂�B
∂ t

−∇× (�U ×�B) = 0, (2)

∇ ·�U = 0, (3)

∇ ·�B = 0, (4)

where �U is the velocity, �B is the magnetic field, ρ is the density, p is the pressure, μ
is the magnetic permeability and�g= (0,0,−g) is gravity acceleration directed in the
negative z-axis. For sake of simplicity, we employ the Boussinesq approximation to
treat the buoyancy effect.
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We put the xy-plane parallel to the unperturbed planer flame front and the z-
axis is perpendicular to it with the front lying on z = 0. In the sequel, we derive
the boundary conditions, or the jump conditions, across the flame front, from the
unburned to the burned sides, by utilizing the Heaviside step function H(θ) defined
by

H(θ) =
{

1 (θ > 0)
0 (θ < 0) , (5)

[1, 10, 11]. This function is used to express the discontinuity of the basic flow out-
side a flame front. The Dirac delta function δ (θ) appears as the derivative of the
Heaviside step function.

δ (θ) =
d

dθ
H(θ).

The position of the perturbed flame front is set to be z = ζ (x,y, t). In deriving the
jump conditions across the flame front, it is useful to introduce θ = ζ (x,y, t)−z with
the flame located at θ = 0. The unit normal vector to the flame front is expressed as

�n = ∇θ/|∇θ | ≈ (∇ζ ,−1). (6)

The normal component of the velocity of a flame front is

�u f ·�n =−∂ζ
∂ t

, (7)

and θ̇ = ∂θ/∂ t = ∂ζ/∂ t. We should keep in mind that θ < 0 and θ > 0 represent
the burned and unburned regions respectively.

With this setting, the density field ρ = ρ(�x, t), for example, is expressed as

ρ(�x, t) = ρu(�x, t)H(θ)+ρb(�x, t)H(−θ). (8)

Here the subscripts b and u denote the quantities on the burned and the unburned
sides, respectively. Substituting (8) and the corresponding representations of the
other hydrodynamic and thermodynamic variables into the MHD equations (2)-(4),
each of equations is divided into three independent parts, identified respectively by
H(θ), H(−θ) and δ (θ). The part including H(θ) corresponding to the equation on
the unburned side, and the one including H(−θ) corresponding to the equation on
the burned side.

The jump conditions across the flame front are gained by picking up the terms
including δ (θ). We introduce the notation for the jump of any function f across a
flame front,

[ f ] = fb|θ=0− − fu|θ=0+ .
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The unit normal vector �n and the tangential vectors�t1 and�t2 on the flame front are
given by �n ≈ (∂ζ/∂x,∂ζ/∂y,−1),�t1 ≈ (1,0,∂ζ/∂x) and�t2 ≈ (0,1,∂ζ/∂y). We
denote the mass flux across the flame front by�q= ρ(�u+ θ̇�n/|∇θ |), with |∇θ | ≈ 1 to
be understood. We take the surface tension, with its coefficient σ , into consideration
in the jump condition. The surface tension term appears only in the jump condition.
With this setting, we write down the jump conditions. To first order in perturbation
amplitude, they read

[�q ·�n] = 0, (9)

[�B ·�n] = 0, (10)

[�U ·�t](�q ·�n)− (�B ·�n)
[
�B ·�t
μ

]
= 0, (11)

[�U ·�n](�q ·�n) =−
[

p+
�B2

2μ

]
+

[
1
μ

]
(�B ·�n)2 +σ

(
∂ 2ζ
∂x2 +

∂ 2ζ
∂y2

)
, (12)

(�q ·�n)
[
�B ·�t
ρ

]
= (�B ·�n)[�u ·�t]. (13)

These jump conditions (11) and (12) accomplish an extension of the previous ones
[18, 7, 10] to include the effect of the difference of the magnetic permeability.

It is worthwhile to recollect Landau’s assumption. The flame speed S f is the
speed of the gas incoming to the flame front. Noting that vector�n is directed to the
unburned side, it is given by

S f = �Uu|θ=0+ · (−�n)−�u f · (−�n), (14)

where �u f ·�n is normal perturbation speed of the flame front. Landau’s assumption
is interpreted as S f = SL [6, 13, 14], though generically the flame front is not flat.
This assumption is too restrictive. One of the major efforts to improve the original
DLI was to incorporate effect of the flame curvature. It is now established as the
Markstein effect [15, 5]. In section 3.4, we look into the Markstein effect in the
context of the magnetic DLI in the presence of parallel magnetic field.

3 Magnetic DLI subject to tangential magnetic field

In this section, we derive the growth rate when magnetic field parallel to the front is
imposed. We follow closely the approach and notation of Dursi [7].

443



Mako Sato and Yasuhide Fukumoto

3.1 Hydromagnetic waves

We consider velocity, magnetic fields and pressure of the form

�U = (u,v,w+W ) (u,v,w �W ), (15)
�B = (bx +B,by,bz) (bx,by,bz � B), (16)
P = P0 + p (p � P0), (17)

where W , B and P0 are the values of the basic state, which are taken to be constants
within each region. The jump conditions (9) and (13) require jump of the values of
W and B across the flame front by

[ρW ] = 0, [WB] = 0. (18)

These physical quantities may vary rapidly but smoothly inside the flame front [16,
3, 4, 19], but we do not pursue it in this paper.

We take the perturbation of normal form ei�k·�x+nt with infinitesimal amplitude.
Here the wavevector is defined as�k =(kx,ky) with its magnitude being k =

√
k2

x + k2
y

and n is the growth rate of the wave on the flame front. Here, we exclusively deal
with two-dimensional deformation�k = (kx,0)

The linearized equations are obtained by substituting (15)-(17) into (1)-(4). We
find that a perturbed quantity is expressed by a linear combination of the following
modes [7]:

(
C1ekz +C2e−kz +C3e−

n+iakx
W z +C4e−

n−iakx
W z

)
ei�k·�x+nt , (19)

where a= B/
√μρ is the the Alfvén speed. It should be born in mind that the Alfvén

modes, with amplitude C3 and C4, have a distinguishing feature of possessing the
vorticity. There is another mode in each region, but this mode turns out to vanish and
is irrelevant. We note that the perturbation must be finite. Provided that the real part
Re[n]> 0 for instability, the unburned side accepts only the mode with amplitude C1
and the burned side accepts modes with C2,C3 and C4. The vorticity field introduced
on the burned side for a neutral fluid [13, 14] is realized by the Alfvén waves, having
amplitude C3 and C4, for the MHD.

3.2 Linear perturbations in unburned and burned regions

At the outset, we specify a possible combination of waves for bux and bbx. By in-
tegrating the linearized MHD equations, we obtain the expressions for perturbed
quantities as follows [7].

On the unburned side, we have
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bux = BuC1ekz, (20)

byu = Bu
ky

kx
C1ekz, (21)

buz =−iBu
k
kx

C1ekz, (22)

uu =−i
(n+Wuk)

kx
C1ekz, (23)

vu =−i
(n+Wuk)ky

k2
x

C1ekz, (24)

wu =− (n+Wuk)
k

(1+
k2

y

k2
x
)C1ekz, (25)

pu =
ρu(n+Wuk)2

k2
x

C1ekz. (26)

On the burned side, we have

bbx = BbC2e−kz +BbC3e−
n+iabkx

Wb
z
+BbC4e−

n−iabkx
Wb

z
, (27)

byb =
ky

kx
BbC2e−kz +BbC5e−

n+iabkx
Wb

z
+BbC6e−

n−iabkx
Wb

z
, (28)

bbz = iBb
k
kx

C2e−kz + iWbBb
kxC3 + kyC5

n+ iabkx
e−

n+iabkx
Wb

z

+ iWbBb
kxC4 + kyC6

n− iabkx
e−

n−iabkx
Wb

z
, (29)

ub =− i
kx
(n−Wbk)C2e−kz −abC3e−

n+iakx
Wb

z
+abC4e−

n−iakx
Wb

z
, (30)

vb =−iky
n−Wbk

k2
x

C2e−kz −abC5e−
n+iakx

Wb
z
+abC5e−

n−iakx
Wb

z
, (31)

wb =
(n−Wbk)k

k2
x

C2e−kz − i
Wb(kxC3 + kyC5)

n+ iabkx
abe−

n+iakx
Wb

z

+ i
Wb(kxC4 + kyC6)

n− iabkx
abe−

n−iakx
Wb

z
, (32)

pb = ρb
(n−Wbk)2

k2
x

C2e−kz − (ρba2
b)C3e−

n+iakx
Wb

z − (ρba2
b)C4e−

n−iakx
Wb

z
. (33)

3.3 Jump conditions and dispersion relation

We specialize the jump conditions (9)-(13) to the case in which only magnetic field
parallel to the flame front is externally imposed in the unperturbed state. These jump
conditions reduce to
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[bz − ikx

n
wB] = 0, (34)

ρW [u+
ikx

n
wW ]− (bz − ikx

n
wB)[

B
μ
] = 0, (35)

ρW [v+
iky

n
wW ] = 0, (36)

[p+
Bbx

μ
] =

gw
n
[ρ]+σ(

∂ 2ζ
∂x2 +

∂ 2ζ
∂y2 ), (37)

[Wbx] = 0, (38)
[Wby] = 0. (39)

In (37), we see the the gravity effect entering into in jump condition for the pressure.
In view of (7), Landau’s assumption dictates that

−wu +
∂ζ
∂ t

= 0. (40)

The jump condition (9) then tells us that

−wb +
∂ζ
∂ t

= 0. (41)

We take the advantage of (40), or equivalently (41), to eliminate ζ .
According to the zeroth-order relations in jump conditions

ρu

ρb
=

Wb

Wu
=

Bu

Bb
= α,

we make the following replacement ρb = ρu/α,Wb = αWu and Bb = Bu/α . We
introduce dimensionless variables n̄ = n/kWu, the growth rate, āu = au/Wu, σ̄ =
σk/ρuW 2

u , ḡ = g/kW 2
u , k̄x = kx/k, k̄y = ky/k and ν = μu/μb. After some ma-

nipulation, we cast the jump conditions into a system of linear equations �M ·
(C1,C2,C3,C4,C5,C6)

T = 0 with a square matrix �M. For the existence of nontrivial
perturbation (C1,C2,C3,C4,C5,C6) �=�0, the determinant of �M should be zero, and
we arrive at the eigenvalue equation for n̄.

{
ā2

uk̄2
x +(n̄−α)2αν

}{
ā2

uk̄2
x(1+ n̄−2α +α2ν + n̄α2ν)

+(1+ n̄)αν
(
ḡ(−1+α)+2n̄α + n̄2(1+α)+α(1−α + σ̄)

)}
= 0. (42)

This result extends Dursi’s dispersion relation [7] to include the difference of the
magnetic permeability as indicated by ν . The magnetic permeability depends on the
material and the temperature. As a typical astrophysical combustion, the supernova
is considered to be a diamagnetic object (ν < 1).

446



Influence of an oblique magnetic field on planar flame front instability

3.4 Markstein effect

This subsection focuses on the Markstein effect, putting aside the effect of the sur-
face tension (σ = 0). Markstein [15] amended Landau’s assumption phenomenolog-
ically by including the effect of the flame-front curvature on the flame speed. As a
consequence, Landau’s condition is augmented with a term proportional to the front
curvature.

S f =−(�Uu ·�n−ν ·�n) = SL(1−L Δζ ), (43)

where the coefficient L (> 0) is referred to as the Markstein length.
At the zeroth order, the flame velocity coincides with the laminar flame speed SL

and balances with the basic flow on the unburned side.

Wu = SL. (44)

The variation of linear order in (43) incorporates the curvature effect.

wu − ∂ζ
∂ t

=−SLL Δζ . (45)

As before, we substitute superposition of the basic flow and perturbations to (34)-
(39) and (43). Landau’s condition (40) is taken over by (45). For a normal mode
ζ ∼ eik�x+nt , (45) reads

wu = (WuL k2 +n)ζ , (46)

by virtue of SL =Wu,
We restrict our attention to the 2D problem on the xz-plane, and take ky = 0

and C5 = C6 = 0. With the help of (46), we replace ζ by wu. Repeating the same
procedure, we transform the jump conditions to a system of 4 linear equations �M ·
(C1,C2,C3,C4)

T = 0. The condition of vanishing the determinant of matrix �M yields
{

ā2
uk̄2

x +(n̄−α)2αν
}{

ā2
uk̄2

x(1+ n̄+2(−1+L )α +α2ν + n̄α2ν)

+(1+ n̄)αν
(
ḡ(−1+α)+2(1+L )n̄α + n̄2(1+α)+α(1−α +2L α + σ̄)

)}

= 0, (47)

where L = L k is the dimensionless Markstein length, or the Markstein number.
Given typical values of the Markstein number L = 0.1 and the dimensionless

gravity acceleration ḡ = 2, we draw in Fig. 1 the stability boundary (Re[n] = 0)
in the parameter space of āu = Bu/

√ρuμu and α , for various values of the ratio
ν = μu/μb of the magnetic permeability. To this aim, we resort to the Routh-Hurwitz
or the Lienard and Chipart criterion for roots of a polynomial equation [2, 8, 12].
The boundary curves correspond to ν = 4,1,0.5,0.3 from left to right, except that
the stability region is splitted into two parts for ν = 0.3 and 0.5. The dark region, the
right hand side of the curve, except for ν = 0.3 and 0.5, corresponds to the stable
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Fig. 1 Dependence on the magnetic-permeability ratio ν = μu/μb of stability boundary of the
magnetic DLI in the plane of the tangential magnetic field āu = Bu/

√ρuμu and the thermal ex-
pansion α (1 < α < 30), with the Markstein (L = 0.1) and the gravity (ḡ = 2) effects taken into
account. The boundary curves correspond to ν = 4,1,0.5,0.3 from left to right. Colored region
(the right hand side of each curve) corresponds to stability region. Notice that stability region is
splitted into two regions for ν = 0.5 and 0.3.

parameters, meaning that stronger tangential magnetic field is able to suppress the
DLI. For smaller α , the critical value of āu for stability is smaller. The stability
region depends sensitively on the magnetic-permeability ratio. The stability region
shrinks as ν decreases, implying that the diamagnetic fuel (ν < 1), as is the case of
a supernova, enhances the DLI.

We point out that Dursi [7] made an attempt at incorporating the Masrkstein
effect into the magnetic DLI. He applied the Markstein condition (45) not only to
the unburned side, but also burned side. However, the condition (45) is applicable
only to wu, the burned side.

4 Magnetic DLI subject to oblique magnetic field

We turn to the general case of presence of both the parallel and normal components
of external magnetic field, which was not considered in the previous investigation
[7]. We reveal that the simultaneous existence of parallel and normal components
drastically alters the situation of a single component. Only when the both compo-
nents are present, discontinuity of the tangential velocity along the flame front is
induced, which may cause the Kelvin-Helmholtz instability (KHI). For the sake of
simplicity, we disregard the jump of the magnetic permeability across the flame
front and take the common value μ0 of the vacuum for the both sides.
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4.1 Jump of basic state

Consider a superposition of the basic state with the unperturbed flame front lying
on the plane of z = 0, imposed by the external magnetic field (Bx,Bz) imposed, and
linear perturbation to it. We restrict our attention to the two-dimensional flow in the
xz-plane, and express the flow field as

�U = (u+U,w+W ) (|u|, |w| � |U |, |W |), (48)
�B = (bx +Bx,bz +Bz) (|bx|, |bz| � |Bx|, |Bz|), (49)
p̃ = P+ p (|p| � |P|). (50)

If we set U = 0 and Bz = 0, the situation reduces to the case considered in section 3.
We examine the jump conditions (9)-(13) in this general context. Substituting the

basic flow field among (48)-(50), these jump conditions become

[ρW ] = 0, (51)
[Bz] = 0, (52)

[U ]ρW − Bz

μ0
[Bx] = 0, (53)

[WBx] = Bz[U ]. (54)

The first two conditions give αWu =Wb and Bz := Buz = Bbz, by use of the thermal
expansion rate α = ρu/ρb. Simultaneous solution of (53) and (54) gives rise to

[U ] =Wu
aux

auz

(1−α)a2
uz

αW 2
u −a2

uz
, (55)

Bbx = Bux
W 2

u −a2
uz

αW 2
u −a2

uz
, (56)

where aui = Bui/
√ρuμ0 (i = x,z) is the Alfvén speed on the unburned side and

abi = Bbi/
√ρbμ0 the Alfvén speed on the burned side.

It is remarkable that the discontinuity of the tangential velocity U is induced,
as opposed to the case of section 3. As is well known, in the absence of the mag-
netic field, the presence of mass flux penetrating through a discontinuous interface
requires continuity of the tangential velocity [14], and hence rules out the possibil-
ity of the KHI. The distinguishing feature of the case of oblique magnetic field is
emergence of tangential discontinuity [U ]( �= 0), which is made possible only by the
simultaneous application of Bx and Bz as is seen from (55). It is also noteworthy that
the relation between Bux and Bbx is different from the case of the parallel magnetic
field, in section 3, due to the imposition of Bz(�= 0).
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4.2 Hydromagnetic waves

We send perturbations of the form eikx+nt and expand the MHD equations (1)-(4) to
linear order in the perturbation amplitude.

(n+Uik+WD)u− Bz

ρμ0
Dbx +

Bz

ρμ0
ikbz =− ik

ρ
p, (57)

(n+Uik+WD)w− Bx

ρμ0
ikbz +

Bx

ρμ0
Dbx =− 1

ρ
Dp, (58)

(n+Uik+WD)bx = (Bxik+BzD)u, (59)
(n+Uik+WD)bz = (Bxik+BzD)w, (60)

iku+Dw = 0, (61)
ikbx +Dbz = 0, (62)

where we have introduced the differential operator D = d/dz.
To gain the z-dependence of perturbed variables, we combine (57)-(62) into a

single equation. Applying D to (57) and adding it to −ik times (58), we have

(n+Uik+WD)(Du− ikw)− 1
ρμ0

(Bxik+BzD)(Dbx + ikbz) = 0. (63)

Substituting u from (61) and bx from (62), we further reduce ik times (63) to

(n+Uik+WD)(D2 − k2)w− 1
ρμ0

(Bxik+BzD)(D2 − k2)bz = 0. (64)

Applying (Bxik+BzD) to (64) to eliminate w, with use of (60), we are eventually
left with

(D2 − k2)

{
(n+Uik+WD)2 − 1

ρμ0
(Bxik+BzD)2

}
bz = 0. (65)

The first factor corresponds to the incompressible limit of the sound wave, and
the second factor represents the Alfvén waves for the oblique magnetic field, modi-
fied by the Doppler effect. The MHD offers the Alfvén waves as agents of carrying
the vorticity with them.

4.3 Linear perturbations in unburned and burned regions

In each region, the perturbation should not diverge in the far region from the flame
front, as z → −∞ on the unburned region and as z → ∞ on the burned side. We
seek the instability and suppose that Re[n] > 0. We assume k > 0 without loss of
generality.
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A possible combination of linear waves, with their z-dependence specified by
(65), in each region is given as follows. In the unburned region (θ > 0), the permis-
sible perturbation is, on the condition that Re[−n/(Wu −auz)]> 0,

C1ekz +C2e
−n−Uuik+auxik

Wu−auz z
, (66)

where C1 and C2 are constants. In the burned region (θ < 0), the permissible pertur-
bation is, on the conditions that Re[−n/(Wb+abz)]< 0 and Re[−n/(Wb−abz)]< 0,

C3e−kz +C4e
−n−Ubik−abxik

Wb+abz
z
+C5e

−n−Ubik+abxik
Wb−abz

z
, (67)

where C3, C4 and C5 are constants. The first condition is necessarily fulfilled for
n > 0. The wave with C2 is allowable only in the case of Wu < auz and that of C5
only in the case Wb > abz. In the marginal case of W = az in either the unburned or
burned side, the factor {(n+Uik+WD)2 − (axik+ azD)2} in (65) degenerates to
(n+Uik− axik){n+Uik+ axik+(az +W )D}, and the corresponding wave, with
C2 or C5, is lost. In such a degenerate case, separate treatment is required [7].

A concrete representation of the perturbation velocity and magnetic field in each
region is determined by (57)-(62). For the sake of simplicity, we set U = 0 in the
unburned side. Given buz, the other perturbation variables in the unburned side are
built so as to satisfy (57)-(62), resulting in

buz = BzC1ekz +BzC2eA2z, (68)

bux = iBzC1ekz +
i
k

A2BzC2eA2z, (69)

wu = Bz
n+Wuk

Buxik+Bzk
C1ekz +auzC2eA2z, (70)

uu = Bzi
n+Wuk

Buxik+Bzk
C1ekz +auz

i
k
−n+auxik
Wu −auz

C2eA2z, (71)

pu =−ρu

k
(n+Wuk)2

Buxik+Bzk
BzC1ekz −ρu

{
a2

uz +auxauz
i
k
−n+auxik
Wu −auz

}
C2eA2z, (72)

where

A2 =
−n+auxik
Wu −auz

. (73)

In case Re[n] > 0, Wu < auz is required for Re[A2] > 0. Likewise, given bbz, the
perturbation variables on the burned side are found to be
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bbz =BzC3e−kz +BzC4eA4z +BzC5eA5z, (74)

bbx =− iBzC3e−kz +
i
k

A4BzC4eA4z +
i
k

A5BzC5eA5z, (75)

wb =
n+Ubik− kWb

Bbxik−Bzk
BzC3e−kz −abzC4eA4z +abzC5eA5z, (76)

ub =− i
n+Ubik−Wbk

Bbxik−Bzk
BzC3e−kz −abz

i
k

A4C4eA4z +abz
i
k

A5C5eA5z, (77)

pb =
ρ
k
(n+Ubik− kWb)

2

Bxik−Bzk
BzC3e−kz

−ρb

{
a2

bz +abxabz
i
k

A4

}
C4eA4z −ρb

{
a2

bz +abxabz
i
k

A5

}
C5eA5z, (78)

where

A4 =
−n−Ubik−abxik

Wb +abz
, (79)

A5 =
−n−Ubik+abxik

Wb −abz
. (80)

The condition Re[A4] < 0 is always satisfied. The condition Re[A5] < 0 requires
Wb > abz. Substituting from (55) and (56), the wave numbers A2, A4 and A5 are
expressed in terms of dimensionless variables as

A2

k
=

−n̄+ āuxi
1− āuz

, (81)

A4

k
=

(
−n̄− γi

(1−α)ā2
uz

α − ā2
uz

−√
α āuxi

1− ā2
uz

α − ā2
uz

)/
(α +

√
α āuz), (82)

A5

k
=

(
−n̄− γi

(1−α)ā2
uz

α − ā2
uz

+
√

α āuxi
1− ā2

uz

α − ā2
uz

)/
(α −√

α āuz), (83)

where n̄ = n/kWu is the dimensionless growth rate, āiu = aiu/Wu the dimensionless
Alfvén speed and we have introduced γ = Bux/Bz, the measure for the angle of the
magnetic field from the normal on the unburned side.

4.4 Jump of perturbation fields

We are in a stage to substitute the solution of each region, written out in section 4.3,
into the jump conditions (9)-(13) to connect them at the flame front. These jump
conditions are no other than the conservation laws of the mass, the momentum and
the magnetic flux and the induction equation in a region, of infinitesimal thickness,
centered on the flame front [1, 11]. To spotlight the influence of the oblique external
magnetic field, we employ Landau’s assumption (40).
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wu − ∂ζ
∂ t

= 0, (84)

and we ignore the gravity force and the surface tension. Recall that the basic state is
constructed so as to comply with the jump conditions (51)-(54) to leading order. The
remaining task is to satisfy the conditions to first order in perturbation amplitude.

The jump conditions (9)-(13) linearized for perturbed quantities become

Ub
∂ζ
∂x

−wb +
∂ζ
∂ t

= 0, (85)
[

Bx
∂ζ
∂x

−bz

]
= 0, (86)

ρuWu

[
u+W

∂ζ
∂x

]
− Bz

μ0
[bx]+

(
Bux

∂ζ
∂x

−buz

)
1
μ0

[Bx] = 0, (87)
[

p+
Bxbx +bzBz

μ0

]
= 0, (88)

[Wbx]−Bz[u]+
(

Bux
∂ζ
∂x

−buz

)
[U ] = 0. (89)

The quantities on both sides of the flame front z = ζ is evaluated at z =±0, because
the difference of the values at z = ±ζ and those at z = ±0 add only second-order
corrections.

After substituting the solution (68)-(72) and (74)-(78) into (85)-(89) and elim-
inating ζ by use of (84), we obtain a system of linear algebraic equations �M ·
(C1,C2,C3,C4,C5)

T =�0. We notice, by an analysis of the 5 × 5 matrix �M, that,
without specifying n̄, the rank of of �M is four and that one of (85), (86) are (89)
may be discarded. Retaining (86)-(89), we are left with 4 equations for 5 constants
C1,C2,C3,C4 and C5, amplitude of the waves. A separate treatment is needed, de-
pending on whether Wu (Wb) is larger or smaller than the Alfvén speed auz (abz).

4.5 Growth rate

By removing one of the constants C1,C2,C3,C4 and C5, on the physical ground,
from the system (86)-(89) of linear algebraic equations, we coin 4×4 non-singular
matrix �̂M from �M. The growth rate n̄ is determined by requiring det �̂M = 0. We
have to separately deal with four cases specified by Wu ≶ auz and Wb ≶ abz and, in
addition, with the marginal cases specified by Wu = auz or Wb = abz.

With a view to seeing how the KHI enters the DLI, we concentrate on two cases,
super-Alfvénic and sub-Alfvénic in the both regions, with the detailed classification
of the results left for a future paper. We begin with the both super-Alfvénic case, the
case of smaller magnetic field, as a natural extension of the original DLI. It is to be
remembered that abz =

√
αauz because of Bbz = Buz.
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4.5.1 Super-Alfvénic flame: Wu > auz,Wb > abz

The wave with amplitude C2 diverges as z →−∞ because Re[A2]< 0, and we have
to set C2 = 0. The situation becomes the same as that of the classical DLI in the sense
that the flow in the unburned region becomes irrotational. In the burned region, the
vorticity, emerging from the flame front, is carried by the two Alfvén waves with
their propagating velocity Wb ± abz(> 0). The coupled system (86)-(89) of linear
algebraic equations is the matrix equation with 4× 5 matrix {�m1,�m2,�m3,�m4,�m5}
represented in the form of an array of columnar vectors �mi (i = 1, · · · ,5). When
C2 = 0, �m2 is excluded, and, with n̄ being unspecified, we are left with a non-singular
square matrix �̂M = {�m1,�m3,�m4,�m5}. The requirement of det �̂M = 0 produces a 5th-
order polynomial equation for n̄.

{
α3 −2α2(ā2

uz − iāuzāux + n̄)+α(ā2
uz − iāuzāux + n̄)2 +(āux + iāuzn̄)

}

×{
(1+ n̄)[α3 +(−iāux + āuzn̄)2]

+α[2ā2
ux −2iāuzāux(−2+ ā2

uz − n̄)n̄− n̄(2ā4
uz + n̄+ n̄2)

+ ā2
uz(1+(3+2ā2

ux)n̄+3n̄2 + n̄3)]

+α2[ā2
uz(−1+ n̄)+2iāuzāuxn̄− (1+ n̄)(ā2

ux +(1+ n̄)2)]
}
= 0. (90)

Fortunately, this 5th-order equation is factorized into second-order and third-order
equations, in the same way as the classical DLI. The roots of the second-order equa-
tion are both trivial, with vanishing eigenfunctions (C1,C3,C4,C5) =�0. Thus the
eigen-value equation is simplified into the third-order polynomial equation. If we
take the limit āux → 0 of (90), we reproduce the result of Dursi [7] for the magnetic
DLI subject only to the normal magnetic field,

{−α2 − n̄2 +α(ā2
uz +2n̄)

}

×{
(1+ n̄)(α2 − n̄2)−α(1+3n̄−2ā2

uzn̄+3n̄2 + n̄3)
}
= 0, (91)

and if we take the limit āuz → 0, we reproduce (42) with ν = 1 and ḡ = σ̄ = 0,
supporting for (90).

Figure 2 depicts the stability boundary of the magnetic DLI in the āuzα-plane
(āuz < 1, 1 < α < 30) for typical values 2,3,4 and 6 of āux. For a polynomial equa-
tion with complex constants, the Bilharz criterion applies to determine the neutral
stability condition Re[n̄] = 0 [2, 8, 12]. The solid and broken lines correspond to
the neutral stability curves for āux = 6,4,3,2 from above, except for the case of
āux = 2 where the neutral stability curve consists two lines. The region below the
neutral curve gives parameter values for which the magnetic DLI is suppressed. For
āux = 2, the region between the two lines is the stability region. Given āuz, the sta-
bility range in the thermal expansion α is widened as āux or Bux is increased. In
the super-Alfvénic case in two dimensions, the magnetic DLI can be suppressed by
imposing larger tangential magnetic field. When we turn off the tangential magnetic
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Fig. 2 Variation of stability boundary of the magnetic DLI in the āuzα-plane (1 < α < 30), with
obliqueness of the external magnetic field, for the super-Alfvénic flame (āuz = auz/Wu < 1). The
solid and broken lines correspond to the neutral stability curves for āux = 6,4,3,2 from above,
except for the case of āux = 2 where the neutral curve consists of two lines. The region below
the neutral stability curve (the dark side) gives parameter values for which the magnetic DLI is
suppressed. The stability region disappears for āux = 0.

field (āux = 0), the stability region disappears, a result being acceptable as a natural
continuation of the DLI for a neutral fluid.

4.5.2 Sub-Alfvénic flame: Wu < auz,Wb < abz

The effect of the external magnetic field will clearly show up by increasing Buz =Bbz
so that the Alfvén speed goes beyond the flow speed in each region: auz > Wu and
abz >Wb. In this case, Re[A2]> 0, and the Alfvén wave with amplitude C2 is permit-
ted, but, because of Re[A5] > 0, the Alfvén wave with amplitude C5 is prohibited.
We have to take C5 = 0, while keeping C2. With this, we reduce the connecting
conditions across the flame front to the Matrix equation with non-singular matrix
�̂M = {�m1,�m2,�m3,�m4}. The Alfvén waves traveling away from the flame front are
incorporated in both the unburned and burned regions. The vorticity baroclinically
created in the flame front is carried, by these Alfvén waves, to both z → −∞ and
z → ∞.

Enforcement of det �̂M = 0 yields the dispersion relation determining the growth
rate n̄. As in the super-Alfvénic case, the resulting relation takes the form of 5th-
order polynomial equation in n̄, which is factorized into a second-order and a third-
order polynomial equations. The two roots of the first factor

(n̄+1− āuz − iāux)
{

α
√

α −√
α(ā2

uz − iāuzāux + n̄)− iāux + āuzn̄
}
,
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turn out to be trivial. As a consequence, we have only to solve the third-order
polynomial equation. Compared with the the super-Alfvénic case, this equation is
lengthy. Below we write down the coefficients of the same power of n̄ order by
order. The coefficient of n̄3 is

(1+α)(
√

α − āuz)
2(
√

α + āuz),

with no imaginary part. The real part of the coefficient of n̄2 is

−(1+
√

α)
√

α(
√

α − āuz)
{

α3/2 −α −2α āuz +(1−√
α)ā2

uz +2ā3
uz

}
,

and its imaginary part is

(1−√
α)(

√
α − āuz)

{
α3/2 +(3+α)āuz +

√
α(1+2āuz)

}
āux.

The real part of the coefficient of n̄ is

α7/2 −α3(4+3āuz)−3āuzā2
ux +

√
α(1+2āuz)ā2

ux +α2āuz(−1+2āuz + ā2
uz − ā2

ux)

+α5/2(1+6āuz +3ā2
uz + ā2

ux)−α3/2āuz
{

āuz(1+2ā2
ux)+6ā2

uz +4ā3
uz +2ā2

ux
}

+α
{

2ā4
uz +2ā5

uz + ā3
uz(1+2ā2

ux)+2āuzā2
ux

}
,

and its imaginary part is

−2(1+
√

α)
√

α
{

α3/2 +α ā2
uz + ā2

uz(1+2āuz)−
√

α āuz(1+3āuz + ā2
uz)

}
āux.

Finally, the real part of the coefficient of n̄0 is

(
√

α −1)(
√

α +α)(
√

α − āuz)
{

α2 −α(ā2
uz + ā2

ux)− (1+2āuz)ā2
ux
}
,

and its imaginary part is

(
√

α −1)āux

{
α3 +2α5/2(1+ āuz)−2α3/2āuz(1+ āuz)− ā2

ux

+α2(1−2āuz −5ā2
uz − ā2

ux)+α ā2
uz(1+2āuz +2ā2

uz +2ā2
ux)

}
.

Figure 3 depicts the stability boundary of the magnetic DLI in the āuzα-plane
(āuz > 1, 1 < α < 30) for typical values 2,4 and 6 of āux. The solid line draws
āuz =

√
α . This line coincides with the critical line āux = 1, the left-hand side of

which is the trans-Alfvénic regime with Wu < auz,Wb > abz and the left-hand side
of which is the sub-Alfvénic regime, and happens to give the neutral stability curve
for all values of āux(> 1). The broken lines draw the neutral stability curves for
āux = 2,4 and 6 from inside. The region bounded by the solid line and the broken
gives parameter values for which the magnetic DLI is suppressed. This is the region
complementary to the banana-shaped region encircled by the dashed line, on the
right-hand side of the solid line. For āux = 1, the whole right-hand side is the stability
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Fig. 3 Variation of stability boundary of the magnetic DLI in the āuzα-plane (1 < α < 30), with
obliqueness of the external magnetic field, for the sub-Alfvénic flame (āuz = auz/Wu > 1). The
solid line āuz =

√
α is the critical line āux = 1 dividing the trans-Alfvénic regime (left) from the

sub-Alfvénic regime (right) and gives the neutral stability curve for all values of āux(> 1), and
the broken lines enclosing banana-shaped regions, with their vertices located at (āuz,α) = (1,1),
correspond to the neutral stability curves for āux = 2,4,6 from inside. The stability parameters lie
in the exterior to the banana-shaped region on the right hand side of the solid line. For āux = 1, the
whole region on the right-hand side of the solid line corresponds to the stability region.

region. The stability region shrinks as āux is increased. Comparing Figs. 2 and 3, the
stability boundary exhibits opposite behavior near (āuz,α) = (1,1). In the super-
Alfvénic case (Fig. 2), given a moderate value of α , α = 3 say, smaller values of
āuz(< 1) is required for stability, with its critical value larger for a larger value of
āux. The predominance of Bux over Buz is vital to stability, and the stability region
expands as āux is increased. By contrast, in the sub-Alfvénic case (Fig. 3), for α = 3,
larger values of āuz(> 1) is required for stability, with its critical value larger for a
larger value of āux.

The banana-shaped instability region is a peculiar feature intrinsic to the case of
large imposed magnetic field. Given the value of āux, it emanates from (āuz,α) =
(āux,1). Figure 3 admits an interpretation that, for a moderate value of α , a distinct
species of instability with āuz ≈ āux parasitizes in the stability region of the DLI.
Requisite for this instability is simultaneous application of Bux(�= 0) and Buz(�= 0),
namely, of an oblique external magnetic field, a result drastically different from the
case of the tangential magnetic field alone as discussed in section 3 (see also [7]).
As emphasized in section 4.1, the tangential velocity discontinuity [U ] is induced
only in the simultaneous presence of Bux and Buz. It is probable that this instability
has an origin of the KHI. A scrutiny of the eigenfunction is required for convincing
this. By increasing āuz beyond the critical value depending on āuz, this instability
disappears.
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The tans-Alfvénic regime (Wu < auz,Wb > abz), located on the left-handed side of
the solid line in Fig. 3, poses a difficult problem of shortage of the jump conditions
[7]. As is readily seen from (66) and (67), all the three Alfvén waves with coeffi-
cients C2, C4 and C5 are excitable, yet the number of the jump conditions (85)-(89)
at the flame front remains the same. Dursi [7] somehow identified an unstable mode
over the whole tras-Alfvénic regime, and we rely on this result.

5 Conclusion

In general, the magnetic field is expected to be an agent for stabilizing the insta-
bility of an interface, across which the density and/or the velocity are discontinu-
ous (cf. [10, 17]). We have explored the influence of the external magnetic field on
the Darrieus-Landau instability of a front of a premixed flame, a less investigated
problem. Dursi [7] made a pioneering theoretical work on this problem. We have
revisited this and have extended to include the effect of the surface tension and of
the difference of the magnetic permeability between the unburned and burned gases.
Furthermore, we have tackled the case of the oblique magnetic field, a problem left
untouched.

To extend the analysis of [7], we have derived the jump conditions from the first
principle of the magnetohydrodynamics following [1, 11], whereby we have incor-
porated the effect of the magnetic permeability disparity, in addition to the surface
tension. Section 3 considered the situation in which only the tangential magnetic
field is externally imposed. In section 3.4, we have disclosed that the DLI is en-
hanced for a diamagnetic fuel. For improving Landau’s assumption, we have recon-
sidered the Markstein effect, and have corrected the previous result [7]. The analysis
described in section 3 is limited to two dimensions and it is shown that sufficient
strong tangential magnetic field is able to subside down the magnetic DLI. We have
also carried out the analysis of three-dimensional stability, that is, the stability of a
flat flame to disturbances with wavenumber�k = (kx,ky). We can verify that the sta-
bilizing effect of tangential magnetic field �B is completely lost when it is orthogonal
to the wavenumber: �B ·�k = 0.

In section 4, we have dealt with the oblique external magnetic field, the simulta-
neous application of both the normal and the tangential magnetic field. Only by the
existence of the both fields, the discontinuity of the tangential velocity is induced, an
unusual situation when the basic flow penetrates the interface. The presence of the
tangential-velocity discontinuity offers the situation where the KHI coexists with
the DLI. In section 4.5.2, we have captured this symptom for sufficiently strong
magnetic field that the Alfvén speed is faster than that of the basic normal flow on
the both sides.

This paper has treated only the limited cases, and a substantial effort will be re-
quired to grasp an overall perspective of the magnetic field effect. A separate treat-
ment is necessary for the tras-Alfvénic flame, as touched upon at the end of section
4.5.2, and for the marginal cases where the Alfvén speed coincides with the normal-
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flow speed in the unburned and the burned regions. Dependence of the magnetic
DLI on the effect of the gravity force, the surface tension and the Markstein effect
is left for a future study. For astrophysical phenomena as exemplified by supernova
explosions [9], the compressibility effect may be called into play. The Markstein
effect corrected by the compressibility effect [19] is worth testing.

Acknowledgements We are grateful to Snezhana Abarzhi, Alexander Klimenko, Kaname Mat-
sue, Saleh Tanveer and Keigo Wada for helpful advices and invaluable comments. Y.F. was sup-
ported by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of
Science (grant no.19K03672).

References

1. Abarzhi, S.I., Fukumoto, Y., Kadanoff, L.P.: Stability of a hydrodynamic discontinuity. Phys.
Scr. 90, 018002 (2015)

2. Bilharz, H.: Bemerkung zu einem Satze von Hurwitz. Z. Angew. Math. Mech. 24, 77-82
(1944)

3. Class, A.G., Matkowsky, B.J., Klimenko, A.Y.: A unified model of flames as gasdynamic
discontinuities. J. Fluid Mech. 491, 11-49 (2003)

4. Class, A.G., Matkowsky, B.J., Klimenko, A.Y.: Stability of planar flames as gasdynamic dis-
continuities. J. Fluid Mech. 491, 51-63 (2003).

5. Clavin, P., Searby, G.: Combustion Waves and Fronts in Flows. Cambridge University Press
(2016)

6. Darrieus, G.: unpublished works presented at La Technique Moderne (1938)
7. Dursi, L.J.: The linear instability of astrophysical flames in magnetic fields. Astrophys. J. 606,

1039-1056 (2004)
8. Frank, E.: On the real parts of the zeros of complex polynomials and applications to continued

fraction expansions of analytic functions. Trans. Amer. Math. Soc. 62, 272-283 (1947)
9. Hillebrandt, W., Niemeyer, J.C.: Type IA supernova explosion models. Ann. Rev. Astron.

Astrophys. 38, 191-230 (2000)
10. Hosking, R.J., Dewar, R.L.: Fundamental Fluid Mechanics and Magnetohydrodynamics.

Springer Verlag (2016)
11. Ilyin, D.V., Fukumoto, Y., Goddard III, W.A., Abarzhi, S.I.: Analysis of dynamics, stability,

and flow fields’structure of an accelerated hydrodynamic discontinuity with interfacial mass
flux by a general matrix method. Phys. Plasmas 25, 112105 (2018)

12. Kirillov, O.N.: Nonconservative Stability Problems of Modern Physics. Walter de Gruyter
GmbH, Berlin/Boston (2013)

13. Landau, L.D.: On the theory of slow combustion. Acta Phys. (USSR) 19, 77-85 (1944)
14. Landau, L.D., Lifshitz, E.M.: Fluid Mechanics: Course of Theoretical Physics Vol. 6, 2nd

edn., p. 488 Butterworth-Heinemann (1987)
15. Markstein, G.H.: Experimental and theoretical studies of flame-front stability. J. Aero. Sci. 18,

199–209 (1951)
16. Matalon, M., Matkowsky, B.J.: Flames as gasdynamic discontinuities. J. Fluid Mech. 124,

239-259 (1982)
17. Matsuoka, C., Nishihara, K., Sano, T.: Nonlinear interfacial motion in magnetohydrodynamic

flows High Energy Density Phys. 31, 19-23 (2019)
18. Shu, F.H.: Gas Dynamics, Mill Valley: University Science Books (1992)
19. Wada. K., Fukumoto, Y.: Compressibility effect on Markstein number in long-wavelength

approximation. 2019 Matrix annals., to appear (2020)

459



Numerical Study of Crystal Growth in

Reaction-Diffusion Systems using Front

Tracking

Saurabh Joglekar and Xiaolin Li

Abstract We study the crystal growth in a Reaction-Diffusion System for the
generic reaction A+B −→C. Reactants A and B react to form the product C which
then undergoes phase transition. We have used the Lagrangian Front Tracking to ex-
plicitly track the crystal surface. The evolution of the concentrations of A, B and C
is described by a system of three partial differential equations. This system is solved
using finite difference method. Main focus of the study is on observing the effects
of different parameters on the crystal growth, namely the diffusion coefficients, ho-
mogeneous reaction constant, heterogeneous reaction constant and the equilibrium
concentration.

Key words: Reaction-Diffusion Equations, Crystal Growth, Lagrangian Front Track-
ing

1 Introduction

Xiaolin Li et al [1] have studied a single component Reaction-Diffusion system
through front tracking without consideration of advection, in which the reaction
term is replaced by precipitation term at the fluid-solid interface. The governing
equations for the solute concentration C =C(�x, t) are as follows:

∂C
∂ t

= D∇2C, for �x ∈ Ω (1)

Here Ω is the ambient region containing solute and D is diffusion coefficient. At the
fluid-solid interface ∂Ω , the front growth is governed by:
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D
dC
dn

(�xs) = k(C(�xs)−Ce) (2)

where k is the reaction rate per unit area for the solute from the liquid phase to
precipitate onto the solid phase at the interface, Ce is the equilibrium concentration
and C(�xs) is the local concentration of solute at the interface. Interface is propagated
with the normal velocity,

vn =
D
ρs

dC
dn

(�xs) (3)

where ρs is the density of solid phase. Interface growth and the dendritic structure of
the precipitate have been studied at different Damkohler numbers. Front tracking is
well suited to dendritic structures at large Damkohler numbers where high resolution
is necessary.

Tartakovsky et al [3] have studied multi-component Reaction-Diffusion systems
for the chemical reaction A+B−→C(aq + solid), on two different spatial scales, Pore-
scale and Darcy-scale. Smoothed particle hydrodynamics (SPH) has been applied
to carry out hybrid simulations on two different spatial scales. Let A(�x, t), B(�x, t),
C(�x, t) and Da, Db, Dc be the concentrations and diffusion coefficients of compo-
nents A, B and C in solute phase. Let k and kAB be heterogeneous and homogeneous
reaction rates, and ρs be the density of solid phase. Then the Pore scale model sat-
isfies following system of equations:

∂A
∂ t

= ∇ · (Da∇A)− kABAB (4)

∂B
∂ t

= ∇ · (Db∇B)− kABAB (5)

∂C
∂ t

= ∇ · (Dc∇C)+ kABAB− k
∫

F
H(C−Ceq)δ (�x−�x f )d�x f (6)

where H(x) is the Heaviside step function and the integration is taken over the whole
fluid-solid interface. Soluble precipitate C follows the first order kinetic reaction
model on the fluid-solid interface,

Dc
dC
dn

= k(C−Ceq) (7)

The interface advances into the liquid with normal velocity,

vn(�xs) =
Dc

ρs
∇C ·�n (8)

Simulations start with a crystal seed already present in the domain. Hence, although
the same equations govern the formation of Liesegang Patterns, nucleation theories
have not been considered in Tartakovsky et al [3].
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2 Front Tracking

The “Front” is defined as the boundary point between two regions containing a
sharp discontinuity of a physical variable, e.g. density, concentration, viscocity etc.
Theoretically, the function representing the physical variable is not differentiable at
a point of discontinuity. This problem can be handled by using the integral form
of the governing equations. However, if the numerical scheme is of low order, then
the front diffuses quickly losing its sharpness. On the other hand, a high order nu-
merical scheme may cause numerical oscillations near the front and reduce the high
order of accuracy near the region[40]. To solve these diffculties, there exist two main
strategies, namely front-capturing and front-tracking.

The main idea of front capturing is to use a high order scheme and use artificial
viscosity around the front to diffuse it slightly to avoid oscillations. Front capturing
works well for shocks but does not work very well for contact discontinuities[40]. It
also requires high resolution.

Second appoach is front tracking in which the front is represented by hypersur-
face elements (line segments in 2D and triangles in 3D). This approach is best suited
to sharp discontinuities.

We apply the front tracking method and the FronTier code to study crystal for-
mation in a generic 3 component reaction-diffusion system. We use front tracking to
track the position of the front where there is a discontinuity in solute concentration.
We then use finite difference scheme (Crank-Nicolson) to update the concentrations
of the reactants and the product which are still in the liquid phase.

The front tracking method treats the moving interface as an interior boundary
and applies finite difference method to each subdomain where concentration fields
are smooth.

We use the FronTier library to implememnt the front tracking and crystal growth.
The functions implemented in the library can be classified as follows: [1]

1. Initialization: Initialization functions are capable of initializing the problem pa-
rameters as well as geometrical parameters for the computations such dimension,
domain, computational grid and boundary conditions. This is done through the
input routines. Initialization of the interface is also done through these functions
as well as the front velocity initialization.

2. Query Functions: Query functions are used to obtain information about the front
interface such as vertex coordinates, hypersurface elements (bonds in 2D and tri-
angular surface elements in 3D), access to the manifold (hypersurface), tangents
and normals to the surface elements etc.

3. Propagation Control Functions: These functions include advancement of the
front interface, redistribution and bifurcation.

4. Front and Subdomain Interaction Functions: These include the functions
which couple the PDE solvers with the front interface functions. These func-
tions can be used to obtain information like the nearest grid points, values of the
physical variables in a cell/grid point near the interface etc.
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5. Output and Data Saving Functions: These functions mainly deal with the
data output which is used for visualization of the simulations. The compatible
file types include VTK for VisIt, Paraview, Geomview, HDF and GD packages.
These functions also have the capability to halt and/or restart the program run
from a specific time or time-step.

3 Numerical Method

Consider a reaction-diffusion system given by nA+mB −→C and let a seed be
already present inside the computational domain. The evolution of concentrations is
governed by the following system of equations:

∂A
∂ t

= ∇ · (DA∇A)− kABAnBm (9)

∂B
∂ t

= ∇ · (DB∇B)− kABAnBm (10)

∂C
∂ t

= ∇ · (DC∇C)+ kABAnBm − k
∫

F
H(C−Ceq)δ (�x−�x f )d�x f (11)

where A(�x, t), B(�x, t), C(�x, t) are normalized concentrations, DA, DB, DC are dif-
fusion coefficients, kAB > 0 is the rate coefficient of homogeneous reaction (liquid
phase), k > 0 is the rate coefficient of heterogeneous reaction (precipitation), �x f is
a point on fluid-solid interface and Ceq is the equilibrium concentration. H(·) repre-
sents the Heaviside step function and δ (·) represents the dirac-delta function. The
integration is taken over the whole fluid-solid interface.

The fluid-solid interface propagates with the normal velocity:

vn(�xs) =− 1
ρs

DC
dC
dn

(12)

where ρs is the crystal density and dC
dn is the normal derivative of the concentration

C(�x, t).
The FronTier code has the ability to detect if a cell contains liquid phase or

solid phase. We use this capability, and for purely liquid phase, we note that
k
∫

F H(C−Ceq)δ (�x− �x f )d�x f = 0. Assume that the diffusion coefficients stay con-
stant throughout the liquid phase. Then, for the computational cells containing only
the liquid phase, the equations are reduced to:

∂A
∂ t

= DA∇2A− kABAnBm (13)

∂B
∂ t

= DB∇2B− kABAnBm (14)

464



∂C
∂ t

= DC∇2C+ kABAnBm (15)

Any high order finite difference scheme may be used to solve this system of
equations. In the present work, we use Crank-Nicolson scheme.

When a cell contains purely solid phase, we assume that there is neither reaction
nor diffusion taking place. Thus there is no need to solve the system for the cells
containing purely solid phase.

When a cell contains fluid-solid interface, both liquid and solid phases are present
inside the cell. At a point on the interface, k

∫
F H(C−Ceq)δ (�x− �x f )d�x f = kH(C−

Ceq). To update the concentrations at the grid point of a cell containing the interface,
we introduce ghost points in the direction opposite to that of the interface and then
solve the system using finite differences. The ghost points are introduced to maintain
second order accuracy of the finite difference scheme.

Once the concentrations are updated, we propagate the fluid-solid interface by
the methods described by Li et al.[1]. To update the concentrations at a point on the
interface, we assume that the solute concentrations at the fluid-solid interface are
As = Bs = 0. Thus, for the (n+ 1)-th time step, the discretized equation for Cs is
given by:

C(n+1)
s −C(n)

s

Δ t
=

(
DC

C(n+1)
s+h −C(n+1)

s

h
− kH(C(n+1)

s −Ceq)

)
· 2

h
(16)

where h is the spatial step in normal direction. The superscripts denote time step.
Once the concentration of C is updated, it is also necessary to update the con-

centrations of A and B in the region near the front. To do this, we first approximate
the area swept by the moving front. The situation is shown more precisely in the
following figure.

Fig. 1: Advancing the Front and updating concentations

For each segment of the front at time step (n), we approximate the area swept
by that segment by the length of the segment times the spatial step in the normal
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direction, h. i.e. ΔV (n)
k = |S(n)k −S(n)k+1| ·h. The mass of A and B contained in this area

is given by A ·ΔV (n)
k and B ·ΔV (n)

k respectively. A and B in this case are taken to be
the interpolated concentrations at the center of the computational cell in which the
segment of the front is located. In case the center already lies inside the solid phase,
we approximate A and B to be the concentrations at the nearest grid point. We then
redistribute this mass equally among the nearest grid points at time step (n+1).

4 Numerical Results

In this section, we present the numerical results which show the effects of dif-
ferent parameters on the crystal growth. The parameters which control the reaction-
diffusion system described by equations (9) to (11) are DA, DB, DC and kAB, k.

We set the computational domain to be the square [0,1]× [0,1]. The boundary
conditions used for testing are A(x,0, t)=B(x,1, t)= 0 and A(x,1, t)=B(x,0, t)= 1.

4.1 Effects of kAB and k

We first explore the effects of kAB and k on the crystal growth. Initial concen-
trations are assumed to be uniformy distributed along the y-axis.

It can be observed from the following tests that the dendritic growth is pro-
nounced when k is high. kAB has negligible effect on the dendritic growth. It will
also be observed that in general, the direction in which dendrites grow is controlled
by DA

DB
. This point will be further explored in the next section.

(a) t = 0 (b) t = 2.755

Fig. 2: Parameters are kAB = 150, k = 800 and DA = 0.3, DB = 0.7, DC = 0.5
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(a) t = 0 (b) t = 2.755

Fig. 3: Parameters are kAB = 1500, k = 200 and DA = 0.3, DB = 0.7, DC = 0.5

4.2 Effect of the diffusivities

As mentioned in the previous section, the direction in which the dendrites grow is
controlled by the value of DA

DB
. The effects are explored in this section. The initial

conditions vary for each simulation. However, initial conditions are found to have
negligible effect on the direction of growth.

(a) DA = 0.3, DB = 0.7 (b) DA = 0.5, DB = 0.5 (c) DA = 0.7, DB = 0.3

Fig. 4: Parameters are kAB = 150, k = 800 and DC = 0.5 Each image is taken at
t = 2.68

4.3 Effect of the Damkohler Number

The Damkohler Number, d, is defined by d = kL
DC

[1, 2] where k is the hetero-
geneous reaction constant, L is the characteristic length and DC is the diffusion
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coefficient for the product C. Damkohler number is closely tied with the dendritic
growth of the crystal. High Damkohler number produces high dendritic structure
and vice-versa. In this section, we provide numerical results which show that the
dendritic growth in a Reaction-Diffusion System for A+B −→C occurs only when
the Damkohler number is higher than a threshold value. In most of our simulations,
the threshold was in the range of 60 to 80. Although it is diffcult to predict the
exact value of the threshold, we mention that traces of dendritic structures started
to appear for d = 60 and they were well formed for d = 80. For lower Damkohler
numbers, the crystal growth was smooth without any dendrites. The direction of the
growth was still controlled by DA

DB
. The initial shape of the seed had no effect on the

threshold value.
The computational domain is [0,1]× [0,1]. Reactants A and B are initially sepa-

rated at y = 0.5. Other parameters are as follows: kAB = 1500, DA = 0.3, DB = 0.7.
We wish to mention that the simulations were carried out for a range of Damkohler
Numbers, in particular for d = 0.1,0.5,1,5,10,20,40,60,80,160. For small values
of d, the crystal growth was not qualitatively different, the only signi

cant difference being the amount of growth in a given time. We also carried
out the simulations for a range of values of DA and DB. Numerical results showed
difference in the direction of crystal growth.

(a) d = 20 (b) d = 40 (c) d = 60 (d) d = 80

Fig. 5: Effects of the Damkohler Number. Parameters are kAB = 1500, DA = 0.3 and
DB = 0.7. Each image is taken at t = 2.57. Initial seed is circular.

4.4 Effect of the equilibrium concentration

The supersaturation theory asserts that the deposition of mass occurs only when
Cs >Ceq where Cs is the concentration of C at a point on the fluid-solid interface and
Ceq is the equilibrium concentration. The theory also asserts that once the concentra-
tion C attains the equilibrium concentration, the deposition occurs instantaneously.
It is natural to expect that this process will have effect on the dendritic growth.
This is confirmed by the following numerical results. Lower equilibrium concentra-
tion produces more dendritic growth and vice-versa, when all other parameters are
held constant. Parameters used are kAB = 1500, k = 100, DA = 0.3, DB = 0.7, and
DC = 0.5. Other computational setup is the same as previous sections.
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(a) Ceq = 0.1 (b) Ceq = 0.01 (c) Ceq = 0.001

Fig. 6: Effects of the Equilibrium Concentration. Parameters are kAB = 1500, k =
100, DA = 0.3, DB = 0.7, and DC = 0.5. Each image is taken at t = 2.629. Initial
seed is circular.

5 Summary and Conclusions

In the present work involving the crystal growth in a reaction-diffusion system con-
taining three components, we examined the effects of parameters DA, DB, DC and
kAB, k. We found that the dendritic growth is controlled predominantly by the het-
erogeneous reaction constant k, and the homogeneous reaction constant kAB has no
effect on the dendrites. We also observed that the direction in which the dendrites
grow is controlled by DA

DB
. Numerical simulations show that the Damkohler num-

ber produces dendritic growth only if it’s value is higher than some threshold. The
threshold for the tests done in the presenst study appears to be in the range of d = 60
to d = 80. The equilibrium concentration, Ceq also has effect on the dendrites with
lower Ceq being responsible for higher dendritic growth and vice-versa.
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Numerical Study of Center of Reaction Front for
Reaction-Diffusion System nA+mB −→C with
Arbitrary Diffusivities

Saurabh Joglekar and Xiaolin Li

Abstract We study the movement of the center of reaction front in the reaction-
diffusion system nA+mB −→ C for arbitrary diffusivities (Da �= Db). We present
numerical evidence that x f (t) ∝

√
t for all t ∈ (0,∞). Numerical experiments are

carried out for (n,m) = (1,1),(1,2),(2,1) and (2,2) and for various Da
Db

. Finite dif-
ference method is used. Empahsis is not on asymptotic behaviour or scaling, rather
on verifying the stated claim for all t.

Key words: Reaction-Diffusion Equations, Reaction Front

1 Introduction

In case of a reaction nA+mB −→ C in which the two reactants are initially
separated, the formation of a reaction front is a well studied phenomenon. Galfi
and Racz [1] assume that for the case when (n,m) = (1,1), the width of reaction
zone is negligible to the width of depletion zone in large time limit. Magnin [2]
has expanded on this assumption for the general case (n,m). 1D and effectively 1D
reaction-diffusion systems for the given chemical reaction with rate k are believed
to be accurately described by following equations [2, 3, 5]:

∂A(X ,T )
∂T

= Da
∂ 2A(X ,T )

∂X2 − knAn(X ,T )Bm(X ,T ) (1)

∂B(X ,T )
∂T

= Db
∂ 2B(X ,T )

∂X2 − kmAn(X ,T )Bm(X ,T ) (2)
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∂C(X ,T )
∂T

= kAn(X ,T )Bm(X ,T ) (3)

At T = 0, the reactants are separated at X = 0 with constant densities i.e. A =
a0,B = 0 for X < 0 and A = 0,B = b0 for X > 0. To render the system di-
mensionless, characteristic length, time and concentration are introduced as [1, 2]
l =

√
Da/(ka0), t = 1/(ka0) and a0. With these substitutions, equations (1), (2) and

(3) become:

∂a(x, t)
∂ t

=
∂ 2a(x, t)

∂x2
−nan(x, t)bm(x, t) (4)

∂b(x, t)
∂ t

=
Db

Da

∂ 2b(x, t)
∂x2

−man(x, t)bm(x, t) (5)

∂c(x, t)
∂ t

= an(x, t)bm(x, t) (6)

This problem, as described by J. Magnin [2], is an initial value problem over the
domain Ω = {(x, t)|(x, t) ∈ R× [0,∞)}. Initial conditions are given by

a(x,0) = θ(−x); b(x,0) =
b0
a0

θ(x); c(x,0) = 0 (7)

Here θ(x) is the Heaviside Step function and a0 and b0 are the initial concentrations
of species A and B respectively. It is clear from the dimensionless equations that
Db
Da

,n,m and q = b0
a0

are free parameters which completely describe the reaction-
diffusion system. Many authors [1, 2, 3, 4, 9, 16] on the subject make a key
assumption that Da = Db for the sake of keeping mathematics within reach. Others
[7, 11] describe the asymptotic behaviour of the system with arbitrary diffusivities
as t −→ ∞. The center of reaction front x f has been variably defined as the point
where a/n = b/m (Magnin, [2]) or as the point of maximal reaction rate (Koza et al.
[11]) (which need not necessarily be the same points). We adopt the first definition.
With this particular definition, it has been proved [2, 3] that for the dimensionless
system in which Da = Db,

x f (t) = 2
√

t er f−1

(
a0/n−b0/m
a0/n+b0/m

)
= 2

√
t er f−1

(
1− n

m q
1+ n

m q

)
(8)

To the best of our knowledge, no such analytical result yet exists in the case
of Da �= Db. Nonetheless, it seems possible that x f (t) ∝

√
t for all possible values

of (Da,Db) and (n,m). The reason for this proposal is that the term x/
√

t is the
signature of diffusion process in general. Our aim in the present work is to provide
compelling numerical evidence to support the claim that x f (t) = η

(
Db
Da

,n,m,q
)√

t

holds true for all values of Db
Da

,n,m and q as t runs through its domain (0,∞).

η
(

Db
Da

,n,m,q
)
can be thought of as a constant of proportionality which depends on

the parameters of the problem. We use finite difference method to solve the equa-
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tions. To establish the accuracy of our method, we compare our numerical results
with the analytical results in case of equal diffusivities (Da = Db). We also discuss
the effect of grid refinement. Once the accuracy of our method has been established,
we present the numerical results for the case of unequal diffusivities (Da �= Db).

2 Numerical Method

We use Crank-Nicolson method to solve Eqn. (4) and (5). Discretization is
given as follows:

a(k+1)
j −a(k)j

Δ t
=

1
2

(
a(k+1)

j−1 −2a(k+1)
j +a(k+1)

j+1

Δx2
+

a(k)j−1−2a(k)j +a(k)j+1

Δx2

)

−n(a(k)j )n(b(k)j )m (9)

b(k+1)
j −b(k)j

Δ t
=

1
2

Db

Da

(
b(k+1)

j−1 −2b(k+1)
j +b(k+1)

j+1

Δx2
+

b(k)j−1−2b(k)j +b(k)j+1

Δx2

)

−m(a(k)j )n(b(k)j )m (10)

Here the subscript j represents spatial index and the superscript (k) represents
time step. Since Eqn. (6) is decoupled from Eqn. (4) and (5), consistency and stabil-
ity of it’s numerical solution will have no effect on the other two. Hence we neglect
the equation. Notice that the original problem is an Initial Value Problem. So
ideally j runs through all non-negative integers. However, due to the finite mem-
ory constraints of any computing platform, we restrict the computational domain
to [−1,1] and let j run through 0,1,...,M where 2/Δx = M. Since the left and right
boundaries are reasonably far from the initial reaction zone, it is also reasonable to
approximate the boundary conditions as follows:

∂a(x, t)
∂x

∣∣∣∣∣
x=−1

=
∂a(x, t)

∂x

∣∣∣∣∣
x=1

=
∂b(x, t)

∂x

∣∣∣∣∣
x=−1

=
∂b(x, t)

∂x

∣∣∣∣∣
x=1

= 0 (11)

We implement these boundary conditions numerically as follows:

a(k+1)
0 = a(k+1)

1 ; a(k+1)
M = a(k+1)

M−1 ; b(k+1)
0 = b(k+1)

1 ; b(k+1)
M = b(k+1)

M−1 (12)

We note that the numerical boundary conditions can lead to only first order consis-
tency at the boundary while Crank-Nicolson is expected to produce second order
accuracy elsewhere in the computational domain. We overcome this problem by
terminating the program run as soon as any of |a(k)0 − a(k)1 |, |a(k)M − a(k)M−1|, |b(k)0 −
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b(k)1 |, |b(k)M − b(k)M−1| is greater than O(Δx2). To detect the position of the center of
reaction zone x f (t), we use linear interpolation between the grid points x0,x1, ...,xM
at every time step. In particular,at every time step k, we find out the index i ∈
{0,1,2, ...,M} such that (a(k)i − n

m b(k)i )(a(k)i+1 − n
m b(k)i+1) ≤ 0. Then we find out the

location x f (t) by solving the two linear equations y−a(k)i
x−xi

=
a(k)i+1−a(k)i
xi+1−xi

and y− n
m b(k)i

x−xi
=

n
m

b(k)i+1−b(k)i
xi+1−xi

.

3 Results

3.1 Numerical Results for Db
Da

= 1

In this case, x f (t) is given by x f (t) = 2
√

t er f−1

(
1− n

m q
1+ n

m q

)
In this section we

compare the numerical results with analytical results and show that the numerical
method described above indeed gives accurate results. All numerical tests have been
carried out with the FronTier software library released and maintained by Stony
Brook University, NY. The spike and a small oscillatory behaviour near t = 0 in
Fig.1, can be explained by the fact that grid points are finite in number. Hence the
Heaviside Step Function cannot be realized perfectly on any computational grid.
This is illustrated in Fig.2. This fact is further verified by changing the grid-size.
Fig.3 shows the effects of grid-size on the convergence of x f (t)/

√
t. It can be seen

that as the grid is refined, x f (t)/
√

t attains it’s theoretical value at earlier time.

3.2 Numerical Results for Db
Da

�= 1

Previous section presents enough evidence to show that the numerical method de-
scribed indeed gives results that match with theoretical results. This section presents
numerical results for Db/Da �= 1. No closed form analytical expression is available
in this case. Hence, we provide numerical verification that x f (t) is proportional to√

t. Due to the constraints of space, only a few results are presented here. How-
ever, tests were done for all of Db/Da = 0.1,0.2, ...,1.0, q = 0.1,0.2, ...,1.0 and
(n,m) = (1,1),(1,2),(2,1),(2,1). In each case, x f (t)/

√
t was a constant depending

on parameters Db/Da,n,m and q. As mentioned previously, q changes from 0.1 to
1.0 in steps of 0.1 as one moves from the topmost branch of each graph to the lowest
branch.
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(a) (n,m) = (1,1) (b) (n,m) = (1,2)

(c) (n,m) = (2,1) (d) (n,m) = (2,2)

Fig. 1: x f (t)/sqrt(t) for Db/Da = 1 and different (n,m). In all figures, the topmost
to lowermost branch corresponds to q = 0.1,0.2, ...,1.0 respectively.

4 Summary and Conclusion

We have presented enough numerical evidence to support the claim that x f (t) is
proportional to

√
t for every Db/Da,n,m and q. Although the results are presented

only for n = 1,2 and m = 1,2, and only for a few values of the stated parameters, we
mention in passing that similar results were obtained for Db/Da = 0.1,0.2, ...1.0 and
for q = 0.1,0.2, ...1.0. In our opinion, the results are consistent enough to support
the claim.
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Chapter 7

Structural Graph Theory Downunder



Subdivided Claws and the Clique-Stable Set

Separation Property

Maria Chudnovsky∗ and Paul Seymour†

Abstract Let C be a class of graphs closed under taking induced subgraphs. We
say that C has the clique-stable set separation property if there exists c ∈ N such
that for every graph G ∈ C there is a collection P of partitions (X ,Y ) of the vertex
set of G with |P| ≤ |V (G)|c and with the following property: if K is a clique of
G, and S is a stable set of G, and K ∩ S = /0, then there is (X ,Y ) ∈ P with K ⊆ X
and S ⊆ Y . In 1991 M. Yannakakis conjectured that the class of all graphs has the
clique-stable set separation property, but this conjecture was disproved by M. Göös
in 2014. Therefore it is now of interest to understand for which classes of graphs
such a constant c exists. In this paper we define two infinite families S ,K of
graphs and show that for every S ∈ S and K ∈ K , the class of graphs with no
induced subgraph isomorphic to S or K has the clique-stable set separation property.

1 Introduction

All graphs in this paper are finite and simple. Let G be a graph. A clique in G is a
set of pairwise adjacent vertices, and a stable set is a set of pairwise non-adjacent
vertices. Let C be a class of graphs closed under taking induced subgraphs. We say
that C has the clique-stable set separation property if there exists c ∈ N such that
for every graph G ∈ C there is a collection P of partitions (X ,Y ) of the vertex
set of G with |P| ≤ |V (G)|c and with the following property: if K is a clique of
G, and S is a stable set of G, and K ∩ S = /0, then there is (X ,Y ) ∈ P with K ⊆
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X and S ⊆ Y . This property plays an important role in a large variety of fields:
communication complexity, combinatorial optimization, constraint satisfaction and
others (for a comprehensive survey of these connections see [3]).

In 1991 Mihalis Yannakakis conjectured that the class of all graphs has the
clique-stable set separation property [5], but this conjecture was disproved by Mika
Göös in 2014 [2]. Therefore it is now of interest to understand for which classes of
graphs such a constant c exists; our main result falls into that category.

Let G be a graph and let X ,Y be disjoint subsets of V (G). We denote by G[X ]
the subgraph of G induced by X , by N(X) the set of all vertices of V (G) \X with
a neighbor in X , and by N[X ] the set N(X)∪X . We say that X is complete to Y if
every vertex of X is adjacent to every vertex of Y , and that X is anticomplete to Y
if every vertex of X is non-adjacent to every vertex of Y . We say that X and Y are
matched if every vertex of X has exactly one neighbor in Y , and every vertex of Y
has exactly one neighbor in X (and therefore |X |= |Y |). For a graph H, we say that
G is H-free if no induced subgraph of G is isomorphic to H.

Next we define two types of graphs. Let p,q ∈ N. We define the graph F p,q
S as

follows:

• V (F p,q
S ) = K ∪S1 ∪S2 ∪S3 where K is a clique, S1,S2,S3 are stable sets, and the

sets K,S1,S2,S3 are pairwise disjoint;
• |K|= |S1|= p, and K and S1 are matched;
• |S2|= |S3|= q, and S2 and S3 are matched;
• K is complete to S2;
• there are no other edges in F p,q

S .

The graph F p,q
K is obtained from F p,q

S by making all pairs of vertices of S3 adjacent.

S1

K

S2

S3

Fig. 1 The graphs F3,3
S and F3,3

K

Let F p,q be the class of all graphs that are both F p,q
S -free and F p,q

K -free. We can
now state our main result:

Theorem 1. For all p,q > 0 the class F p,q has the clique-stable set separation
property.

Since the clique-stable set separation property is preserved under taking comple-
ments, we immediately deduce:
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Theorem 2. For all p,q > 0 the class of graphs whose complements are in F p,q

has the clique-stable set separation property.

2 The Proof

In this section we prove 1. The idea of the proof comes from [1]. Let G ∈ F p,q.
Define P1 to be the set of all partitions (N[X ],V (G) \N[X ]) and (N(X),V (G) \
N(X)) where X is a subset of V (G) with |X |< p. Clearly |P1| ≤ 2|V (G)|p.

Write R = R(q,q) to mean the smallest positive integer R such that every 2-
coloring of the edges of the complete graph on R vertices contains a monochromatic
complete graph on q vertices. Ramsey’s Theorem [4] implies:

Theorem 3. R(q,q)≤ 22q.

For a,b ∈ N let the graph Fa,b be defined as follows:

• V (Fa,b) = K1 ∪ S1 ∪ S2 ∪W where K1 is a clique, S1,S2 are stable sets, and the
sets K1,S1,S2,W are pairwise disjoint;

• |K1|= |S1|= a, and K1 and S1 are matched;
• |S2|= |W |= b, and S2 and W are matched;
• K1 is complete to S2;
• there is no restriction on the adjacency of pairs of vertices of W ;
• there are no other edges in Fa,b.

From the definition of R we immediately deduce:

Theorem 4. G is Fp,R-free.

For every triple X = (K1,S1,S2) of pairwise disjoint non-emtpy subsets of V (G)
such that |K1|= |S1|= p and |S2|< R we define the partition PX of V (G) as follows.
Let Z be the set of all vertices of G that are anticomplete to K1 ∪ S1. Let AX be the
set of all vertices v of G such that

• either v ∈ K1, or v is complete to K1, and
• either v has a neighbor in S1, or v has a neighbor in Z \N(S2).

Note that, since S1 is a stable set and Z is anticomplete to S1, AX is disjoint from
S1 ∪ Z. Define PX = (AX ,V (G) \AX ), and let P2 be the set of all such partitions
PX . Since |K1 ∪ S1 ∪ S2| ≤ 2p + R − 1, and since by 3 R ≤ 22q, we deduce that
|P2|< |V (G)|2p+22q

.
In order to complete the proof of 1 we will prove the following:

Theorem 5. For every clique K and stable set S of G such that K ∩ S = /0, there
exists (X ,Y ) ∈ P1 ∪P2 with K ⊆ X and S ⊆ Y .
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Proof. Let K and S be as in the statement of 5.

(1)
We may assume that K is a maximal clique of G, and S is a maximal
stable set of G.

Let K′ be a maximal clique of G with K ⊆ K′, and let S′ be a maximal sta-
ble set of G with S ⊆ S′. If K′ ∩ S′ = /0, then the existence of the desired partition
for K,S follows from the existence of such a partition for K′,S′; thus we may as-
sume that K′ ∩ S′ 	= /0. Since K′ is a clique and S′ is a stable set, it follows that
|K′ ∩S′|= 1, say K′ ∩S′ = {v}. But now the partitions (N[{v}],V (G)\N[{v}]) and
(N({v}),V (G) \N({v}]) are both in P1, and at least one of them has the desired
property. This proves (1).

In view of (1) from now on we assume that K is a maximal clique of G, and S is
a maximal stable set of G. Consequently every vertex of K has a neighbor in S. Let
S′1 ⊆ S be a minimal subset of S such that every vertex of K has a neighbor in S′1.
It follows from the minimality of S′1 that there is a subset K′

1 of K such that S′1 and
K′

1 are matched. If |S′1| < p, then the partition (N(S′1),V (G)\N(S′1)) ∈ P1 has the
desired property, so we may assume that |S′1| ≥ p.

Let S1 be a subset of S′1 with |S1|= p, and let K1 =N(S1)∩K′
1. Then S1 and K1 are

matched, and so |K1|= p. Let Z be the set of vertices of G that are anticomplete to
S1∪K1. Then S′1\S1 ⊆ Z∩S, and in particular every vertex of K has a neighbor either
in S1 or in Z∩S. Let S′ be the subset of vertices of S\S1 that are complete to K1. Note
that S′ ∩Z = /0. Let S2 be a minimal subset of S′ such that N(S2)∩Z = N(S′)∩Z. It
follows from the minimality of S2 that there is a subset W ⊆ Z ∩N(S′) such that W
and S2 are matched. Observe that G[K1 ∪S1 ∪S2 ∪W ] is isomorphic to Fp,|S2| (with
K1,S1,S2,W as in the definition of Fa,b). It follows from 4 that |S2|< R.

Let X = (K1,S1,S2). We claim that the partition PX ∈P2 has the desired property
for the pair K,S. Recall that PX = (AX ,V (G)\AX ), where AX is the set of all vertices
v of G such that

• either v ∈ K1, or v is complete to K1, and
• either v has a neighbor in S1, or v has a neighbor in Z \N(S2).

We need to show that K ⊆ AX , and S∩AX = /0.

(2) K ⊆ AX .

Let k ∈K. Clearly either k ∈K1 or k is complete to K1. Moreover, k has a neighbor
in S′1, and S′1 ⊆ S1 ∪ (Z∩S). Since S is a stable set, it follows that Z∩S ⊆ Z \N(S2),
and thus k has a neighbor either in S1, or in Z \N(S2). This proves (2).

(3) S∩AX = /0.

Suppose that s ∈ S∩AX . Then s 	∈ K1; therefore s is complete to K1, and so s ∈ S′.
Since S is a stable set, it follows that s is anticomplete to S1, and therefore s has a
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neighbor in Z \N(S2). But N(S′)∩Z = N(S2)∩Z, a contradiction. This proves (3).

Now 5 follows from (2) and (3). ��
This completes the proof of 1.
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Notes on tree- and path-chromatic number

Tony Huynh, Bruce Reed, David R. Wood, and Liana Yepremyan

Abstract Tree-chromatic number is a chromatic version of treewidth, where the
cost of a bag in a tree-decomposition is measured by its chromatic number rather
than its size. Path-chromatic number is defined analogously. These parameters
were introduced by Seymour [JCTB 2016]. In this paper, we survey all the known
results on tree- and path-chromatic number and then present some new results and
conjectures. In particular, we propose a version of Hadwiger’s Conjecture for tree-
chromatic number. As evidence that our conjecture may be more tractable than
Hadwiger’s Conjecture, we give a short proof that every K5-minor-free graph has
tree-chromatic number at most 4, which avoids the Four Colour Theorem. We
also present some hardness results and conjectures for computing tree- and path-
chromatic number.

1 Introduction

Tree-chromatic number is a hybrid of the graph parameters treewidth and chromatic
number, recently introduced by Seymour [17]. Here is the definition.
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A tree-decomposition of a graph G is a pair (T,B) where T is a tree and
B := {Bt | t ∈ V (T )} is a collection of subsets of vertices of G, called bags,
satisfying:

• for each uv ∈ E(G), there exists t ∈V (T ) such that u,v ∈ Bt , and
• for each v ∈ V (G), the set of all t ∈ V (T ) such that v ∈ Bt induces a non-empty

subtree of T .

A graph G is k-colourable if each vertex of G can be assigned one of k colours,
such that adjacent vertices are assigned distinct colours. The chromatic number of a
graph G is the minimum integer k such that G is k-colourable.

For a tree-decomposition (T,B) of G, the chromatic number of (T,B) is
max{χ(G[Bt ]) | t ∈V (T )}. The tree-chromatic number of G, denoted tree-χ(G), is
the minimum chromatic number taken over all tree-decompositions of G. The path-
chromatic number of G, denoted path-χ(G), is defined analogously, where we insist
that T is a path instead of an arbitrary tree. Henceforth, for a subset B ⊆ V (G), we
will abbreviate χ(G[B]) by χ(B). For v ∈ V (G), let NG(v) be the set of neighbours
of v and NG[v] := NG(v)∪{v}.

The purpose of this paper is to survey the known results on tree- and path-
chromatic number, and to present some new results and conjectures.

Clearly, tree-χ and path-χ are monotone under the subgraph relation, but
unlike treewidth, they are not monotone under the minor relation. For example,
tree-χ(Kn) = n, but the graph G obtained by subdividing each edge of Kn is bipartite
and so tree-χ(G)≤ χ(G) = 2.

By definition, for every graph G,

tree-χ(G)≤ path-χ(G)≤ χ(G).

Section 2 reviews results that show that each of these inequalities can be strict and
in fact, both of the pairs (tree-χ(G),path-χ(G)) and (path-χ(G),χ(G)) can be
arbitrarily far apart.

We present our new results and conjectures in Sections 3-5. In Section 3, we
propose a version of Hadwiger’s Conjecture for tree-chromatic number and show
how it is related to a ‘local’ version of Hadwiger’s Conjecture. In Section 4, we
prove that K5-minor-free graphs have tree-chromatic number at most 4, without
using the Four Colour Theorem. We finish in Section 5, by presenting some hardness
results and conjectures for computing path-χ and tree-χ .

2 Separating χ , path-χ and tree-χ

Complete graphs are a class of graphs with unbounded tree-chromatic number. Are
there more interesting examples? The following lemma of Seymour [17] leads to an
answer. A separation (A,B) of a graph G is a pair of edge-disjoint subgraphs whose
union is G.
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Lemma 1. For every graph G, there is a separation (A,B) of G such that χ(A∩B)≤
tree-χ(G) and

χ(A−V (B)),χ(B−V (A))≥ χ(G)− tree-χ(G).

Seymour [17] noted that Lemma 1 shows that the random construction of
Erdős [6] of graphs with large girth and large chromatic number also have large
tree-chromatic number with high probability.

Interestingly, it is unclear if the known explicit constructions of large girth,
large chromatic graphs also have large tree-chromatic number. For example, shift
graphs are one of the classic constructions of triangle-free graphs with unbounded
chromatic number, as first noted in [7]. The vertices of the n-th shift graph Sn are all
intervals of the form [a,b], where a and b are integers satisfying 1 ≤ a < b ≤ n. Two
intervals [a,b] and [c,d] are adjacent if and only if b = c or d = a. The following
lemma (first noted in [17]) shows that the gap between χ and path-χ is unbounded
on the class of shift graphs.

Lemma 2. For all n ∈ N, path-χ(Sn) = 2 and χ(Sn)≥ �log2 n	.

Proof. The fact that χ(Sn) ≥ �log2 n	 is well-known; we include the proof for
completeness. Let � = χ(Sn) and φ : V (Sn) → [�] be a proper �-colouring of Sn.
For each j ∈ [n] let Cj = {φ([i, j]) | i < j}. We claim that for all j < k, Cj �=Ck. By
definition, φ([ j,k])∈Ck. If Cj =Ck, then φ([i, j]) = φ([ j,k]) for some i< j. But this
is a contradiction, since [i, j] and [ j,k] are adjacent in Sn. Since there are 2� subsets
of [�], 2� ≥ n, as required.

We now show that path-χ(Sn) = 2. For each i ∈ [n], let Bi = {[a,b] ∈ V (Sn) |
a ≤ i ≤ b}. Let Pn be the path with vertex set [n] (labelled in the obvious way).
We claim that (Pn,{Bi | i ∈ [n]}) is a path-decomposition of Sn. First observe
that [a,b] ∈ Bi if and only if a ≤ i ≤ b. Next, for each edge [a,b][b,c] ∈ E(Sn),
[a,b], [b,c] ∈ Bb. Finally, observe that for all i ∈ [n], Xi = {[a,b] ∈ Bi | b = i} and
Yi = {[a,b] ∈ Bi | b > i} is a bipartition of Sn[Bi]. Therefore, Sn has path-chromatic
number 2, as required.

Given that shift graphs contain large complete bipartite subgraphs, the following
question naturally arises.

Open Problem 1 Does there exist a function f : N×N→N such that for all s ∈N
and all Ks,s-free graphs G, χ(G)≤ f (s, tree-χ(G))?

It is not obvious that the parameters path-χ and tree-χ are actually different.
Indeed, Seymour [17] asked if path-χ(G) = tree-χ(G) for all graphs G? Huynh
and Kim [10] answered the question in the negative by exhibiting for each k ∈N, an
infinite family of k-connected graphs for which tree-χ(G)+ 1 = path-χ(G). They
also prove that the Mycielski graphs [14] have unbounded path-chromatic number.

However, can tree-χ(G) and path-χ(G) be arbitrarily far apart? Seymour [17]
suggested the following family as a potential candidate. Let Tn be the complete
binary rooted tree with 2n leaves. A path P in Tn is called a V if the vertex of P
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closest to the root (which we call the low point of the V) is an internal vertex of P.
Let Gn be the graph whose vertices are the Vs of Tn, where two Vs are adjacent if
the low point of one is an endpoint of the other.

Lemma 3 ([17]). For all n ∈ N, tree-χ(Gn) = 2 and χ(Gn)≥ �log2 n	.

Proof. For each t ∈ V (Tn), let Bt be the set of Vs in Tn which contain t. We claim
that (Tn,{Bt | t ∈ V (Tn)}) is a tree-decomposition of Gn with chromatic number 2.
First observe that if P is a V, then {t ∈V (Tn) | P∈ Bt}=V (P), which induces a non-
empty subtree of Tn. Next, if P1 and P2 are adjacent Vs with V (P1)∩V (P2) = {t},
then P1,P2 ∈ Bt . Finally, for each t ∈ Bt , let Xt be the elements of Bt whose low
point is t and let Yt := Bt \Xt . Then (Xt ,Yt) is a bipartition of Gn[Bt ], implying that
tree-χ(Gn) = 2.

For the second claim, it is easy to see that Gn contains a subgraph isomorphic to
the n-th shift graph Sn. Thus, χ(Gn)≥ χ(Sn)≥ �log2 n	, by Lemma 2.

Barrera-Cruz, Felsner, Mészáros, Micek, Smith, Taylor, and Trotter [1]
subsequently proved that path-χ(Gn) = 2 for all n ∈ N. However, with a slight
modification of the definition of Gn, they were able to construct a family of graphs
with tree-chromatic number 2 and unbounded path-chromatic number.

Theorem 2 ([1]). For each integer n ≥ 2, there exists a graph Hn with tree-χ(Hn) =
2 and path-χ(Hn) = n.

The definition of Hn is as follows. A subtree of the complete binary tree Tn is
called a Y if it has three leaves and the vertex of the Y closest to the root of Tn is one
of its three leaves. The vertices of Hn are the Vs and Ys of Tn. Two Vs are adjacent
if the low point of one is an endpoint of the other. Two Ys are adjacent if the lowest
leaf of one is an upper leaf of the other. A V is adjacent to a Y if the low point of the
V is an upper leaf of the Y. The proof that path-χ(Hn) = n uses Ramsey theoretical
methods for trees developed by Milliken [13].

3 Hadwiger’s Conjecture for tree-χ and path-χ

One could hope that difficult conjectures involving χ might become tractable for
tree-χ or path-χ , thereby providing insightful intermediate results. Indeed, the
original motivation for introducing tree-χ was a conjecture of Gyárfás [8] from
1985, on χ-boundedness of triangle-free graphs without long holes 1.

Conjecture 1 (Gyárfás’s Conjecture [8]). For every integer �, there exists c such that
every triangle-free graph with no hole of length greater than � has chromatic number
at most c.

Seymour [17] proved that Conjecture 1 holds with χ replaced by tree-χ .

1 A hole in a graph is an induced cycle of length at least 4.
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Theorem 3 ([17]). For all integers d ≥ 1 and �≥ 4, if G is a graph with no hole of
length greater than � and χ(NG(v))≤ d for all v∈V (G), then tree-χ(G)≤ d(�−2).

Note that Theorem 3 with d = 1 implies that tree-χ(G) ≤ �− 2 for every
triangle-free graph G with no hole of length greater than �. A proof of Gyárfás’s
Conjecture [8] (among other results) was subsequently given by Chudnovsky, Scott,
and Seymour [3].

The following is another famous conjectured upper bound on χ , due to
Hadwiger [9]; see [16] for a survey.

Conjecture 2 ([9]). If G is a graph without a Kt+1-minor, then χ(G)≤ t.

We propose the following weakenings of Hadwiger’s Conjecture.

Conjecture 3. If G is a graph without a Kt+1-minor, then tree-χ(G)≤ t.

Conjecture 4. If G is a graph without a Kt+1-minor, then path-χ(G)≤ t.

By Theorem 2, tree-χ(G) and path-χ(G) can be arbitrarily far apart, so
Conjecture 3 may be easier to prove than Conjecture 4. By Theorem 3, χ and
tree-χ can be arbitrarily far apart, so Conjecture 3 may be easier to prove than
Hadwiger’s Conjecture. We give further evidence of this in the next section, by
proving Conjecture 3 for t = 5, without using the Four Colour Theorem.

Robertson, Seymour, and Thomas [15] proved that every K6-minor-free graph is
5-colourable. Their proof uses the Four Colour Theorem and is 83 pages long. Thus,
even if we are allowed to use the Four Colour Theorem, it would be interesting to
find a short proof that every K6-minor-free graph has tree-chromatic number at most
5.

Conjectures 3 and 4 are also related to a ‘local’ version of Hadwiger’s Conjecture
via the following lemma.

Lemma 4. Let (T,{Bt | t ∈ V (T )}) be a tree-χ-optimal tree-decomposition of G,
with |V (T )| minimal. Then there are vertices v ∈ V (G) and � ∈ V (T ) such that
NG[v]⊆ B�.

Proof. Let � be a leaf of T and u be the unique neighbour of � in T . If B� ⊆ Bu, then
T − � contradicts the minimality of T . Therefore, there is a vertex v ∈ B� such that
v /∈ Bt for all t �= �. It follows that NG[v]⊆ B�, as required.

Lemma 4 immediately implies that the following ‘local version’ of Hadwiger’s
Conjecture follows from Conjecture 3.

Conjecture 5. If G is a graph without a Kt+1-minor, then there exists v ∈V (G) such
that χ(NG[v])≤ t.

It is even open whether Conjectures 3, 4, or 5 hold with an upper bound of 10100t
instead of t. Finally, the following apparent weakening of Hadwiger’s Conjecture
(and strengthening of Conjecture 5) is actually equivalent to Hadwiger’s Conjecture.
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Conjecture 6. If G is a graph without a Kt+1-minor, then χ(NG[v]) ≤ t for all
v ∈V (G).

Proof (Proof of equivalence to Hadwiger’s Conjecture). Clearly, Hadwiger’s
Conjecture implies Conjecture 6. For the converse, let G be a graph without a Kt+1-
minor. Let G+ be the graph obtained from G by adding a new vertex v adjacent to all
vertices of G. Since G+ has no Kt+2-minor, Conjecture 6 yields χ(NG+[v])≤ t +1.
Since χ(NG+[v]) = χ(G)+1, we have χ(G)≤ t, as required.

4 K5-minor-free graphs

As evidence that Conjecture 3 may be more tractable than Hadwiger’s Conjecture,
we now prove it for K5-minor-free graphs without using the Four Colour Theorem.
We begin with the planar case.

Theorem 4. For every planar graph G, tree-χ(G)≤ 4.

Proof. We use the same tree-decomposition previously used by Eppstein [5] and
Dujmović, Morin, and Wood [4].

Say G has n vertices. We may assume that n ≥ 3 and that G is a plane
triangulation. Let F(G) be the set of faces of G. By Euler’s formula, |F(G)|= 2n−4
and |E(G)|= 3n−6. Let r be a vertex of G. Let (V0,V1, . . . ,Vt) be the bfs layering of
G starting from r. Let T be a bfs tree of G rooted at r. Let T ∗ be the subgraph of the
dual G∗ with vertex set F(G), where two vertices are adjacent if the corresponding
faces share an edge not in T . Thus

|E(T ∗)|= |E(G)|−|E(T )|=(3n−6)−(n−1)= 2n−5= |F(G)|−1= |V (T ∗)|−1.

By the Jordan Curve Theorem, T ∗ is connected. Thus T ∗ is a tree.
For each vertex u of T ∗, if u corresponds to the face xyz of G, let Cu :=Px∪Py∪Pz,

where Pv is the vertex set of the vr-path in T , for each v ∈ V (G). See [5, 4] for a
proof that (T ∗,{Cu : u ∈V (T ∗)}) is a tree-decomposition of G.

We now prove that G[Cu] is 4-colourable. Let � be the largest index such that
{x,y,z} ∩V� �= /0. For each k ∈ {0, . . . , �}, let Gk = G[Cu ∩ (

⋃k
j=0 Vj)]. Note that

G� = G[Cu]. We prove by induction on k that Gk is 4-colourable. This clearly holds
for k ∈ {0,1}, since |V (G1)| ≤ 4.

For the inductive step, let k ≥ 2. For each i ∈ {0, . . . , �}, let Wi = Cu ∩Vi. Since
Wi contains at most one vertex from each of Px,Py, and Pz, |Wi| ≤ 3.

First suppose |Wi| ≤ 2 for all i ≤ k. Since all edges of G are between consecutive
layers or within a layer, we can 4-colour Gk by using the colours {1,2} on the even
layers and {3,4} on the odd layers.

Next suppose |Wk| ≤ 2. We are done by the previous case unless k = �, |W�| ∈
{1,2}, and |W�−1|= 3. By induction, let φ ′ : V (G�−2)→ [4] and φ : V (G�−1)→ [4]
be 4-colourings of G�−2 and G�−1, respectively. If |W�| = 1, then clearly we can
extend φ to a 4-colouring of G�. So, we may assume |W�|= 2.
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Note that φ extends to a 4-colouring of G� unless every vertex of W�−1 is adjacent
to every vertex of W� and the two vertices of W� are adjacent. If G[W�−1] is a triangle,
then G[W�−1 ∪W�] = K5, which contradicts planarity. If G[W�−1] is a path, say abc,
then we obtain a K5-minor in G by contracting all but one edge of the a–c path in
T . If W�−1 is a stable set, then φ ′ can be extended to a 4-colouring of G�−1 such that
all vertices in W�−1 are the same colour. This colouring can clearly be extended to
a 4-colouring of G�. The remaining case is if G[W�−1] is an edge ab together with
an isolated vertex c. It suffices to show that there is a colouring of G�−1 that uses at
most two colours on W�−1, since such a colouring can be extended to a 4-colouring
of G�. Note that φ ′ can be extended to such a colouring unless φ ′ uses three colours
on W�−2 and a and b are adjacent to all vertices of W�−2. Since φ is a 4-colouring,
this implies that φ uses at most two colours on W�−2. Thus we may recolour φ so
that only two colours are used on W�−1, as required.

Henceforth, we may assume |Wk| = 3. By induction, let φ : V (Gk−1)→ [4] be a
4-colouring of Gk−1. Let φk−1 = φ(Wk−1).

If |φk−1|= 1, then we can extend φ to a 4-colouring of Gk by using [4]\φk−1 to
3-colour Wk.

Suppose |φk−1|= 2. By induction, Gk−2 has a 4-colouring φ ′. If Wk−1 is a stable
set, then we can extend φ ′ to a 4-colouring of Gk−1 such that all vertices of Wk−1
are the same colour. Thus, |φ ′

k−1| = 1, and we are done by the previous case. Let
a,b ∈Wk−1 such that ab ∈ E(Gk−1). Let c be the other vertex of Wk−1 (if it exists).
By relabeling, we may assume that φ(a) = 1,φ(b) = 2, and φ(c) = 2. Let N(a)
be the set of neighbours of a in Wk and N(b,c) be the set of neighbours of {b,c}
in Wk. Observe that φ extends to a 4-colouring of Gk unless N(a) = N(b,c) = Wk.
However, if, N(a) = N(b,c) = Wk, then we obtain a K5-minor in G by using T to
contract Wk onto {x,y,z} and c onto b (if c exists). This contradicts planarity.

The remaining case is |φk−1|= 3. In this case, φ extends to a 4-colouring of Gk,
unless there exist distinct vertices a,b ∈Wk−1 such that a and b are both adjacent to
all vertices of Wk. Again we obtain a K5-minor in G by using T to contract Wk onto
{x,y,z} and contracting all but one edge of the a–b path in T .

We finish the proof by using Wagner’s characterization of K5-minor-free
graphs [19], which we now describe. Let G1 and G2 be two graphs with V (G1)∩
V (G2) = K, where K is a clique of size k in both G1 and G2. The k-sum of G1
and G2 (along K) is the graph obtained by gluing G1 and G2 together along K (and
keeping all edges of K). The Wagner graph V8 is the graph obtained from an 8-cycle
by adding an edge between each pair of antipodal vertices.

Theorem 5 (Wagner’s Theorem [19]). Every edge-maximal K5-minor-free graph
can be obtained from 1-, 2-, and 3-sums of planar graphs and V8.

Theorem 6. For every K5-minor-free graph G, tree-χ(G)≤ 4.

Proof. Let G be a K5-minor-free graph. We proceed by induction on |V (G)|. We
may assume that G is edge-maximal. First note that if G = V8, then tree-χ(G) ≤
χ(G) = 4. Next, if G is planar, then tree-χ(G) ≤ 4 by Theorem 4 (whose proof
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avoids the Four Colour Theorem). By Theorem 5, we may assume that G is a k-sum
of two graphs G1 and G2, for some k ∈ [3]. Let K be the clique in V (G1)∩V (G2)
along which the k-sum is performed. Since G1 and G2 are both K5-minor-free graphs
with |V (G1)|, |V (G2)| < |V (G)|, we have tree-χ(G1) ≤ 4 and tree-χ(G2) ≤ 4 by
induction. For i ∈ [2], let (T i,{Bi

t | t ∈ V (T i)}) be a tree-decomposition of Gi with
chromatic number at most 4. Since K is a clique in Gi, K ⊆ B1

x ∩B2
y for some x ∈

V (T 1) and y ∈V (T 2). Let T be the tree obtained from the disjoint union of T 1 and
T 2 by adding an edge between x and y. Then (T,{B1

t | t ∈V (T 1)}∪{B2
t | t ∈V (T 2)})

is a tree-decomposition of G with chromatic number at most 4.

5 Computing tree-χ and path-χ

We finish by showing some hardness results for computing tree-χ and path-χ . We
need some preliminary results. For a graph G, let KG

t be the graph consisting of t
disjoint copies of G and all edges between distinct copies of G.

Lemma 5. For all t ∈ N and all graphs G without isolated vertices,

(t −1)χ(G)+2 ≤ tree-χ(KG
t )≤ path-χ(KG

t )≤ t χ(G).

Proof. Let (T,{Bt | t ∈V (T )}) be a tree-χ-optimal tree-decomposition of K := KG
t ,

with |V (T )| minimal. By Lemma 4, there exists � ∈ V (T ) and v ∈ V (K) such that
NK [v]⊆ B�. Since G has no isolated vertices, v has a neighbour in the same copy of
G in which it belongs. Therefore,

tree-χ(K)≥ χ(B�)≥ χ(NK [v])≥ 2+(t −1)χ(G).

For the other inequalities, tree-χ(K)≤ path-χ(K)≤ χ(K) = t χ(G).

We also require the following hardness result of Lund and Yannakakis [12].

Theorem 7 ([12]). There exists ε > 0, such that it is NP-hard to correctly determine
χ(G) within a multiplicative factor of nε for every n-vertex graph G.

Our first theorem is a hardness result for approximating tree-χ and path-χ .

Theorem 8. There exists ε ′ > 0, such that it is NP-hard to correctly determine
tree-χ(G) within a multiplicative factor of nε ′ for every n-vertex graph G. The same
hardness result holds for path-χ with the same ε ′.

Proof. We show the proof for tree-χ . The proof for path-χ is identical. Let ε ′ = ε
3 ,

where ε is the constant from Theorem 7. Let G be an n-vertex graph.
Note that KG

n has n2 vertices, and (n2)ε ′ = n
2ε
3 . If k ∈ [ tree-χ(KG

n )

n
2ε
3

,n
2ε
3 tree-χ(KG

n )],

then k
n ∈ [ χ(G)

nε ,nε χ(G)] by Lemma 5. Therefore, if we can approximate tree-χ(KG
n )

within a factor of (n2)ε ′ , then we can approximate χ(G) within a factor of nε .
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For the decision problem, we use the following hardness result of Khanna, Linial,
and Safra [11].

Theorem 9 ([11]). Given an input graph G with χ(G) �= 4, it is NP-complete to
decide if χ(G)≤ 3 or χ(G)≥ 5.

As a corollary of Theorem 9, we obtain the following.

Theorem 10. It is NP-complete to decide if tree-χ(G) ≤ 6. It is also NP-complete
to decide if path-χ(G)≤ 6.

Proof. Let G be a graph without isolated vertices and χ(G) �= 4. By Lemma 5, if
tree-χ(KG

2 ) ≤ 6, then χ(G) ≤ 3 and if tree-χ(KG
2 ) ≥ 7, then χ(G) ≥ 5. Same for

path-χ . Finally, a tree- or path-decomposition and a 6-colouring of each bag is a
certificate that tree-χ(G)≤ 6 or path-χ(G)≤ 6.

Combining the standard O(2n)-time dynamic programming for computing
pathwidth exactly (see Section 3 of [18]) and the 2nnO(1)-time algorithm of
Björklund, Husfeldt, and Koivisto [2] for deciding if χ(G) ≤ k, yields a 4nnO(1)-
time algorithm to decide to path-χ(G) ≤ k. As far as we know, there is no faster
algorithm for deciding path-χ(G) ≤ k (except for small values of k, where faster
algorithms for deciding k-colourability can be used instead of [2]).

Finally, unlike for χ(G), we conjecture that it is still NP-complete to decide if
tree-χ(G)≤ 2.

Conjecture 7. It is NP-complete to decide if tree-χ(G) ≤ 2. It is also NP-complete
to decide if path-χ(G)≤ 2.
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Note on Hedetniemi’s conjecture and the

Poljak-Rödl function

Xuding Zhu

Abstract Hedetniemi conjectured in 1966 that χ(G×H) = min{χ(G),χ(H)} for
any graphs G and H. Here G×H is the graph with vertex set V (G)×V (H) defined
by putting (x,y) and (x′,y′) adjacent if and only if xx′ ∈ E(G) and yy′ ∈ V (H).
This conjecture received a lot of attention in the past half century. It was disproved
recently by Shitov. The Poljak-Rödl function is defined as f (n) = min{χ(G×H) :
χ(G) = χ(H) = n}. Hedetniemi’s conjecture is equivalent to saying f (n) = n for
every integer n. Shitov’s result shows that f (n) < n when n is sufficiently large.
Using Shitov’s result, Tardif and Zhu showed that f (n) ≤ n− (logn)1/4−o(1) for
sufficiently large n. Using Shitov’s method, He and Wigderson showed that for ε ≈
10−9 and n sufficiently large, f (n)≤ (1− ε)n. In this note we observe that a slight
modification of the proof in the paper of Zhu and Tardif shows that f (n) ≤ ( 12 +
o(1))n for sufficiently large n. On the other hand, it is unknown whether f (n) is
bounded by a constant. However, we do know that if f (n) is bounded by a constant,
then the smallest such constant is at most 9. This note gives self-contained proofs of
the above mentioned results.

1 Introduction

The product G×H of graphs G and H has vertex set V (G)×V (H) and has (x,y)
adjacent to (x′,y′) if and only if xx′ ∈ E(G) and yy′ ∈ E(H). Many names for this
product are used in the literature, including the categorical product, the tensor prod-
uct and the direct product. It is the most important product in this note. We just call
it the product. We may write x ∼ y (in G) to denote xy ∈ E(G).

A proper colouring φ of G induces a proper colouring Φ of G×H defined as
Φ(x,y) = φ(x). So χ(G×H) ≤ χ(G). Symmetrically, we also have χ(G×H) ≤

Xuding Zhu
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χ(H). Therefore χ(G×H) ≤min{χ(G),χ(H)}. In 1966, Hedetniemi conjectured
in [5] that χ(G×H) = min{χ(G),χ(H)} for all graphs G and H. This conjecture
received a lot of attention in the past half century (see [1, 6, 10, 13, 18, 19]). Some
special cases are confirmed. In particular, it is known that if min{χ(G),χ(H)} ≤ 4,
then the conjecture holds [1]. Also, a fractional version of Hedetniemi’s conjec-
ture is true [19]. However, Shitov recently refuted Hedetniemi’s conjecture [11].
He proved that for sufficiently large n, there are n-chromatic graphs G and H with
χ(G×H)< n.

The Poljak-Rödl function [9] is defined as

f (n) =min{χ(G×H) : χ(G) = χ(H) = n}.

Hedetniemi’s conjecture is equivalent to saying f (n) = n for all positive integer n.
Shitov’s result shows that f (n) < n for sufficiently large n. Right after Shitov put
his result on arxiv, using his result, Tardif and Zhu [16] showed that the difference
n− f (n) can be arbitrarily large. Indeed, they proved that f (n)≤ n− (logn)1/4−o(1)

for sufficiently large n. It is also shown in [16] that if a special case of Stahl’s
conjecture in [12] on the multi-chromatic number of Kneser graphs is true, then
limn→∞ f (n)/n ≤ 1/2. He and Wigderson, using Shitov’s method, proved that
f (n) ≤ (1− ε)n for ε ≈ 10−9 and suffciently large n. Very recently, Zhu observed
that the conclusion limn→∞ f (n)/n ≤ 1/2 holds without assuming Stahl’s conjec-
ture.

2 Exponential graph

One of the standard tools used in the study of Hedetniemi’s conjecture is the con-
cept of exponential graphs. Let c be a positive integer. We denote by [c] the set
{1,2, . . . ,c}. For a graph G, the exponential graph KG

c has vertex set

{ f : f is a mapping from V (G)→ [c]},

with f g ∈ E(KG
c ) if and only if for any edge xy ∈ E(G), f (x) �= g(y). In particular,

f ∼ f is a loop in KG
c if and only if f is a proper c-colouring of G. So if χ(G)> c,

then KG
c has no loop.

For convenience, when we study properties of KG
c , vertices in KG

c will be called
maps. The term “vertices” is reserved for vertices of G. That is, to refer to a vertex
of KG

c , we will say that it is a map in KG
c or a map from G to [c].

For two graphs G and H, a homomorphism from G to H is a mapping φ :V (G)→
V (H) that preserves edges, i.e., for every edge xy of G, φ(x)φ(y) is an edge of H. We
say G is homomorphic to H, and write G→H, if there is a homomorphism from G to
H. The “homomorphic” relation “→” is a quasi-order. It is reflexive and transitive:
if G → H and H → Q then G → Q. The composition ψ ◦φ of a homomorphism φ
from G to H and a homomorphism ψ from H to Q is a homomorphism from G to
Q.
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Note that a homomorphism from a graph G to Kc is equivalent to a proper c-
colouring of G. Thus if G → H, then χ(G)≤ χ(H).

Lemma 1. For any graph F, χ(G×F)≤ c if and only if F is homomorphic to KG
c .

Proof. Assume χ(G × F) ≤ c and Ψ : V (G × F) → [c] is a proper colouring of
G×F . For any vertex u ∈V (F), let fu ∈ KG

c be defined as fu(v) =Ψ(u,v). Then the
mapping sending u to fu is a homomorphism from F to KG

c . Indeed, if uv ∈ E(F),
then for any edge xy ∈ E(G), (u,x) ∼ (v,y) in G×F . Therefore fu(x) =Ψ(u,x) �=
Ψ(v,y) = fv(y). Thus fu ∼ fv in KG

c .
Conversely, the mapping Ψ : V (G×KG

c ) → [c] defined as Ψ(x, f ) = f (x) is a
proper colouring of G×KG

c . Indeed, if (x, f ) ∼ (y,g) in G×KG
c , then xy ∈ E(G)

and f g ∈ E(KG
c ). ThereforeΨ(x, f ) = f (x) �= g(y) =Ψ(g,y).

If F is homomorphic to KG
c , then G×F is homomorphic to G×KG

c and hence
χ(G×F)≤ c.

In this sense, KG
c is the largest graph H in the order of homomorphism with

the property that χ(G×H) ≤ c. Thus Hedetniemi’s conjecture is equivalent to the
following statement:

If χ(G)> c, then χ(KG
c ) = c.

The concept of exponential graphs was first used by El-Zahar and Sauer in [1],
where it is shown that if χ(G) ≥ 4, then KG

3 is 3-colourable. Hence the product of
two 4-chromatic graphs has chromatic number 4.

The result of El-Zahar and Sauer is still the best result in the positive direction
of Hedetniemi’s conjecture. We do not know whether or not the product of two
5-chromatic graphs equals 5. On the other hand, there is a nice strengthening of
this result by Tardif [14] in the study of multiplicative graphs. We say a graph Q is
multiplicative if for any two graphs G,H, G �→ Q and H �→ Q implies that G×H �→
Q. Hedetniemi’s conjecture is equiavelnt to say that Kn is multiplicative for any
positive integer n. El-Zahar and Sauer proved that K3 is multiplicative. Häggkvist,
Hell, Miller and Neumann Lara [3] proved that odd cycles are multiplicative and
Tardif [14] proved that circular cliques Kp/q for p/q < 4 are multiplicative, where
Kp/q has vertex set [p] with i ∼ j if and only if q ≤ |i− j| ≤ p− q. (So Kp/1 = Kp
and K(2k+1)/k =C2k+1 ).

3 Shitov’s Theorem

To disprove Hedetniemi’s conjecture, it suffices to find a graph G and a positive
integer c so that χ(G)> c and χ(KG

c )> c.
For a map f ∈ KG

c , the image set of f is Im( f ) = { f (v) : v ∈V (G)}. Note that for
f ,g ∈ KG

c , if Im( f )∩ Im(g) = /0, then f ∼ g. For i ∈ [c], we denote by gi ∈ V (KG
c )

the constant map gi(v) = i for all v ∈V (G). So Im(gi) = {i}. Thus for any graph G
and any positive integer c, {gi : i ∈ [c]} induces a c-clique in KG

c and χ(KG
c )≥ c.
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We denote by G[Kq] the graph obtained from G by blowing up each vertex of
G into a q-clique. The vertices of G[Kq] are denoted by (x, i), where x ∈ V (G) and
i ∈ [q]. So (x, i) and (y, j) are adjacent in G[Kq] if and only if either x ∼ y or x = y
and i �= j. For a graph G, the independence number α(G) of G is the size of a largest
independent set in G. This section proves the following result of Shitov:

Theorem 1 (Shitov). Let G be a graph with |V (G)|= p, α(G)≤ p
4.1 and girth(G)≥

6. Let q ≥ 2p−1p2 and c = 4q+2. Then χ(G[Kq])> c and χ
(

KG[Kq]
c

)
> c.

The above formulation of the theorem is slightly different from the formulation
in [11]. The proof also seems different. But all the claims and lemmas are either
stated in [11] or hidden in the text in [11].

It is a classical result of Erdős [2] that there are graphs of arbtirary large girth and
large chromatic number. This result is included in most graph theory textbooks (see
[17]). The probabilistic proof of this result actually shows that there are graphs G of
arbitrary large girth and arbtirary small independence ratio α(G)/|V (G)|. What we
need here is a graph of girth 6 and with α(G)≤ |V (G)|/4.1.

Proof of Theorem 1 Since G[Kq] has the same independence number as G, we have

χ(G[Kq])≥ |V (G[Kq])|
α(G[Kq])

=
|V (G)|q

α(G)
≥ 4.1q > c.

It remains to show that χ(KG[Kq]
c )> c.

Assume to the contrary that χ(KG[Kq]
c ) = c (recall that KG[Kq]

c has a c-clique and
hence has chromatic number at least c), andΨ is c-colouring of KG

c . We may assume
that the constant map gi is coloured by colour i. Thus for any map φ ∈ KG[Kq]

c , if
i /∈ Im(φ), then φ ∼ gi and henceΨ(φ) �= i. Thus we have the following lemma.

Lemma 2. For any map φ ∈ KG[Kq]
c , Ψ(φ) ∈ Im(φ).

Definition 1. A map φ ∈ KG[Kq]
c is called simple if φ is constant on each copy of Kq

that is a blow-up of a vertex of G, i.e., for any x ∈V (G), i, j ∈ [q], φ(x, i) = φ(x, j).

For simplicity, we shall write φ(x) for φ(x, i) when φ is a simple map.
Note that in KG[Kq]

c , two simple maps φ and ψ are adjacent if and only if for each
edge xy of G, φ(x) �= ψ(y), and moreover, for each vertex x, φ(x) �= ψ(x). This is
so, because for i �= j ∈ [q], (x, i)(x, j) is an edge of G[Kq] and φ(x) is a shorthand for
φ(x, i) and ψ(x) is a shorthand for ψ(x, j).

In this sense, the subgraph of KG[Kq]
c induced by simple maps is isomorphic to

KGo
c , where Go is obtained from G by adding a loop to each vertex of G. We shall

just treat KGo
c as an induced subgraph of KG[Kq]

c and write φ ∈V (KGo
c ) to mean that φ

is a simple map in KG[Kq]
c . Most of our argument is about properties of the subgraph

KGo
c of KG[Kq]

c .
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The graph KG[Kq]
c is a huge graph. As G has girth 6 and fractional chromatic

number at least 4.1, p = |V (G)| is probably about 200. The number in KG[Kq]
c is cpq,

which is roughly (2200)2
200

. The subgraph KGo
c has cp vertices, which is roughly

(2200)200. So KGo
c is huge, but it is a very tiny fraction of KG[Kq]

c .

Definition 2. For v ∈V (G) and b ∈ [c], let

I(v,b) = {φ ∈ KGo

c :Ψ(φ) = b = φ(v)}.

By Observation 2,Ψ(φ) ∈ Im(φ) for any φ ∈ KGo
c . Therefore

V (KGo

c ) =
⋃

v∈V (G),b∈[c]
I(v,b).

As KGo
c has cp vertices, the average size of I(v,b) is

cp

pc
=

cp−1

p
.

Definition 3. We say I(v,b) is large if |I(v,b)| ≥ 2pcp−2.

Observe that, by hypothesis, c is much larger than p. The power of c is the dom-
inating factor. So 2pcp−2 is much smaller than the average size of I(v,b). Thus
intuitively, “most” of the I(v,b)’s should be large. So the next lemma is not a sur-
prise.

Lemma 3. There exists a vertex v of G such that

|{b ∈ [c] : I(v,b) is large }|> c/2.

Proof. For each vertex v of G, let S(v) = {b : I(v,b) is small}. Assume to the con-
trary that for each v, |S(v)| ≥ c/2. Let

L = {φ ∈ KGo

c : ∀v ∈V (G),φ(v) ∈ S(v)}.

Then
|L |= ∏

v∈V (G)

|S(v)| ≥
( c
2

)p
.

For any φ ∈ L , if φ ∈ I(v,b), then I(v,b) is small. Thus

L ⊂
⋃

v∈V (G),b∈[c],I(v,b) is small

I(v,b).

Therefore |L |< p · c ·2pcp−2 = 2p2cp−1. But then
( c
2

)p
< 2p2cp−1
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which implies that c < 2p+1p2. But by our choice of c, we have c = 4q+2> 4q ≥
2p+1p2, a contradiction. ��

For two vertices x,y of G, denote by dG(x,y) the distance between x and y. Let v
be a vertex of G for which |{b ∈ [c] : I(v,b) is large }|> c/2. For t ∈ {2q+1,2q+
2, . . . ,4q+2}, let μt ∈ KG[Kq]

c be defined as

μt(x, i) =

⎧
⎪⎨
⎪⎩

i, if dG(x,v) = 0,2,
q+ i, if dG(x,v) = 1,
t, if dG(x,v)≥ 3.

Observe that μt are not simple maps. These will be the only non-simple maps
used in the proof.

Claim. The set of maps {μt : t ∈ {2q+ 1,2q+ 2, . . . ,4q+ 2}} induces a clique in
KG[Kq]

c .

Proof. Assume to the contrary that for some t �= t ′, μt �∼ μt ′ . Then there is an edge
(x, i)(y, j) of G[Kq] such that μt(x, i) = μt ′(y, j). Let α = μt(x, i) = μt ′(y, j).

Then α ∈ Im(μt)∩ Im(μt ′) ⊆ {i,q+ i, t}∩{ j,q+ j, t ′}. As t �= t ′, we conclude
that i = j and α = i or q+ i. Since (x, i),(y, i) are distinct adjacent vertices, we
conclude that x �= y and xy ∈ E(G). If α = i, then dG(x,v),dG(y,v) ∈ {0,2} implies
that G has a 3-cycle or a 5-cycle, contrary to the assumption that G has girth 6. If
α = q+ i, then dG(v,x) = dG(v,y) = 1, and G has a 3-cycle, again a contradiction.
This completes the proof of Claim 3.

So maps {μt : t = 2q+ 1,2q+ 2, . . . ,4q+ 2} are coloured by distinct colours,
and hence there exists t such that Ψ(μt) �∈ {1,2, . . . ,2q}. As Ψ(μt) ∈ Im(μt) =
{1,2, . . . ,q, t}, we haveΨ(μt) = t.

Since |{b ∈ [c] : I(v,b) is large }| > c/2 = 2q + 1, there is a colour b ∈ [c]−
{1,2, . . . ,2q, t} such that I(v,b) is large. Let θ ∈ KGo

c be defined as follows:

θ(x) =

{
b, if dG(x,v)≥ 2,
t, if dG(x,v)≤ 1.

Claim. For t ∈ {2q+1,2q+1, . . . ,4q+2}, θ ∼ μt .

Proof. Assume to the contrary that θ �∼ μt . Then there is an edge (x, i)(y, j) ∈
E(G[Kq]) such that θ(x) = θ(x, i) = μt(y, j). (Note that θ(x, i) = θ(x) as θ is a
simple map). As Im(θ)∩ Im(μt) = {t}, we conclude that θ(x) = μt(y, j) = t. But
then dG(x,v) ≤ 1 and dG(y,v) ≥ 3, and hence x �= y and xy /∈ E(G), contrary to the
assumption that (x, i)(y, j) ∈ E(G[Kq]).

ThusΨ(θ) �=Ψ(μt) = t. AsΨ(θ) ∈ Im(θ), we conclude thatΨ(θ) = b.

Claim. For any φ ∈ I(v,b), there exists a vertex x �= v such that φ(x) ∈ {b, t}.
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Proof. Let φ ∈ I(v,b). By definition Ψ(φ) = b = φ(v). So Ψ(φ) = Ψ(θ). Hence
φ �∼ θ . So there is an edge xy ∈ E(Go) such that φ(x) = θ(y). If x = v, then θ(y) =
φ(v) = b. By definition of θ , we have dG(y,v) ≥ 2. Hence xy cannot be an edge in
Go, a contradiction. So x �= v. As φ(x) = θ(y) ∈ {b, t}, this completes the proof of
the claim.

For each x �= v, let

Jx = {φ ∈ I(v,b) : φ(x) ∈ {b, t}}.

For a map φ ∈ Jx, the image φ(v) of v is fixed, i.e., φ(v) = b. The image φ(x)
of x has two choices: b and t. For each of other n− 2 vertices y of G, φ(y) has c
choices. Therefore |Jx| ≤ 2cn−2. By Claim 3, I(v,b) = ∪x∈V (G)−{v}Jx. So |I(v,b)| ≤
2(n− 1)cn−2, contrary to the assumption that I(v,b) is large. This completes the
proof of Theorem 1.

Remark 1. The key part of the proof of Theorem 1 is to show that KG[Kq]
c is not

c-colourable. For each vertex v of G, for t ∈ {2q+1,2q+2, . . . ,4q+2}, let

μv,t(x, i) =

⎧
⎪⎨
⎪⎩

i, if dG(x,v) = 0,2,
q+ i, if dG(x,v) = 1,
t, if dG(x,v)≥ 3;

Let H be the subgraph of KG[Kq]
c induced by

V (KGo

c )∪{μv,t : v ∈V (G), t ∈ {2q+1,2q+2, . . . ,4q+2}}.

What we have proved is that the subgraph H of KG[Kq]
c is not c-colourable. Note that

H is a very tiny fraction of KG[Kq]
c , although H by itself is a huge graph.

The reviewer of this note asks if there is an intuition as to why this subgraph
H is the right thing to be thinking about. Also, once you have the intuition that
this subgraph should have high chromatic number, why are the sets I(b,v) the right
things to look at to analyse this?

This is also a question in my mind. Reading Shitov’s paper, one naturally won-
ders how did he come up with this proof? I am not the right person to answer this
question. However, since one main purpose of this note is to explain Shitov’s proof,
I will give it a try.

The maps {gi : i ∈ [c]} is already a c-clique. So all the c colours are used by these
maps in a proper c-colouringΨ of KG[Kq]

c , where we assume that Φ(gi)= i for i∈ [c].
To derive a contradiction, it is natural to consider maps that have many neighbors in
this c-clique, namely, maps φ with a small image set Im(φ). The smallest image set
has size 2 (for otherwise it is one of these constant maps). For each vertex v of G,
for any two colors b, t ∈ [c], let θv,b,t ∈ KGo

c be defined as
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θv,b,t(x) =

{
b, if dG(x,v)≥ 2,
t, if dG(x,v)≤ 1.

NowΨ(θv,b,t) = b or t, as it is adjacent to every gi with i �= b, t. If we can some-
how fix the colour of θv,b,t to be b, that is very useful. The maps μv,t are used to
forces θv,b,t to be colored by b.

Now it remains to find a map φ with Ψ(φ) = b which is adjacent to θv,b,t , so
that we obtain a contradiction to the assumption that Ψ is a proper colouring of
KG[Kq]

c . The candidates are those maps φ ∈ KGo
c such thatΨ(φ) = φ(v) = b, because

if Ψ(φ) = b, then there is a vertex x ∈ V (G) such that φ(x) = b. If x �= v, then φ is
not adjacent to θv,b,t . Indeed, the definition of θv,b,t is chosen in such a way that its
neighors coloured with colour b has a simple structure.

This is why we have the definition of I(v,b).
Can we find such a map in I(v,b)? Intuitively, this is promising: For a map φ ∈

I(v,b) to be a neighbor of θv,b,t , one just need to avoid assigning color b to any other
vertex, and avoid assigning color t to the neighbours of v. If I(v,b) is large enough,
then such a map shall exists. Once we have shown that for approriate v,b, t, I(v,b) is
large enough and by using maps μv,t , we can force θv,b,t be coloured by b, we arrive
at a contradiction.

4 The Poljak-Rödl function

The Poljak-Rödl function is defined in [9]:

f (n) =min{χ(G×H) : χ(G),χ(H)≥ n}.

Hedetniemi’s conjecture is equivalent to saying that f (n) = n for all positive integer
n. Shitov’s Theorem says that for sufficiently large n, f (n) ≤ n−1. Using Shitov’s
result, Tardif and Zhu [16] proved that f (n) ≤ n− (logn)1/4−o(1). Tardif and Zhu
asked in [16] if there is a positive constant ε such that f (n)≤ (1−ε)n for sufficiently
large n. This question was answered in affirmative by He and Wigderson [4] with
ε ≈ 10−9. On the other hand, in [16], Tardif and Zhu proved that if a special case of
a conjecture of Stahl [12] conserning the multi-chromatic number of Kneser graph
is true, then we have limsupn→∞

f (n)
n ≤ 1

2 .
Recently, I proved in [20] that the conclusion limsupn→∞

f (n)
n ≤ 1

2 holds without
assuming Stahl’s conjecture.

Theorem 2. For d ≥ 1, let G be a p-vertex graph of girth 6 and with α(G) ≤ p
8.1d .

Let q ≥ 2p−1p2 and c = 4q+ 2. Then χ(G[Kq]) ≥ 2dc− 2c+ 2 and χ(KG[Kq]
dc ) ≥

2dc−2c+2. Consequently, f (2dc−2c+2)≤ dc.
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Proof. As explained before, the existence of a graph G described above was proved
by Erdős. Similarly as in the proof of Theorem 1, χ(G[Kq]) ≥ |V (G[Kq])

α(G[Kq])
≥ pq

p/8.1d =

8.1dq ≥ 2dc > 2dc−2c+2. Now we show that χ(KG[Kq]
dc )≥ 2dc−2c+2.

Assume Ψ is a (dc+ t)-colouring of KG[Kq]
dc with colour set [dc+ t]. We shall

show that dc+ t ≥ 2dc− 2c+ 2, i.e., t ≥ dc− 2c+ 2. Let S = [dc+ t]− [dc]. The
colours in [dc] are called primary colours and colours in S are called secondary
colours. So we have t = |S| secondary colours.

Similarly as before, we may assume that Ψ(gi) = i for i ∈ [dc]. Then for any
map φ ∈ KG[Kq]

dc , if i /∈ Im(φ), then φ ∼ gi and Ψ(φ) �= i. Thus for any φ ∈ KG[Kq]
dc ,

Ψ(φ) ∈ Im(φ)∪S.
For positive integers m ≥ 2k, let K(m,k) be the Kneser graph whose vertices are

k-susbets of [m], and for two k-subsets A,B of [m], A ∼ B if A∩B = /0. It was proved
by Lovász in [7] that χ(K(m,k)) = m−2k+2.

For a c-subset A of [cd], let HA be the subgraph of KG[Kq]
cd induced by

{φ ∈V (KG[Kq]
cd ) : Im(φ)⊆ A}.

Then HA is isomorphic to KG[Kq]
c . By Theorem 1, |Ψ(HA)| ≥ c+ 1. As Im(φ) ⊆ A

and |A|= c, Φ(HA) contains at least one secondary colour. Let τ(A) be an arbitrary
secondary colour contained inΨ(HA).

If A,B are c-subsets of [dc] and A∩B = /0, then every vertex in HA is adjacent to
every vertex in HB. HenceΨ(HA)∩Ψ(HB) = /0. In particular, τ(A) �= τ(B). Thus τ
is a proper colouring of the Kneser graph K(dc,c). As χ(K(dc,c)) = dc− 2c+ 2,
we conclude that t = |S| ≥ dc−2c+2. This completes the proof of Theorem 2.

For a positive integer d, let p = p(d) be the minimum number of vertices of
a graph G with girth 6 and χ f (G) ≥ 8.1d. It follows from Theorem 2 that for any
integer q≥ p22p−1, f (2(d−1)(4q+2)+2)≤ (4q+2)d. As f (n) is non-decreasing,
for integers n in the interval [2(d − 1)(4q+ 2)+ 2,2(d − 1)(4q+ 6)+ 2], we have
f (n)≤ (4q+6)d.

Hence for all integers n ≥ 2(4q+2)(d −1)+2,

f (n)
n

≤ (4q+6)d
2(4q+2)(d −1)+3

=
1
2
+

4q+4d +1
2(d −1)(4q+2)+2

.

Note that if d → ∞, then p = p(d) goes to infinity, and q ≥ p32p goes to infinity.
Therefore

limsup
n→∞

f (n)
n

≤ 1
2
.

Theorem 2 improves the result of He and Wigderson [4]. However, He and
Wigderson use a modification of Shitov’s method, which might be of independent
interest.

In the proof of Theorem 2, we actually showed that a tiny subgraph of KG[Kq]
dc

has chromatic number close to 2dc. It is not clear if the remaining part of the graph
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KG[Kq]
dc can be used to show that this graph actually has a much larger chromatic

number. We observe that if one can show that the chromatic number of KG[Kq]
dc

is more than kdc for some positive integer k, then Stahl’s conjecture implies that
limsupn→∞

f (n)
n ≤ 1

k+1 .

5 Lower bound for f (n)

The breakthrough result of Shitov leads to an improvement of the upper bound for
the function f (n). On the other hand, the only known lower bound for f (n) is that
f (n) ≥ 4 for n ≥ 4. We do not know if f (n) is bounded by a constant or not. What
we do know is that if f (n) is bounded by a constant, then the smallest such constant
is at most 9.

To prove this result, we need to consider the product of digraphs. For a digraph
D, we use A(D) to denote the set of arcs of D. An arc in D is either denoted by an
ordered pair (x,y), or by an arrow x → y. Digraphs are allowed to have digons, i.e.,
a pair of opposite arcs.

Assume D1,D2 are digraphs. The product D1×D2 has vertex setV (D1)×V (D2),
where (x,y)→ (x′,y′) is an arc if and only if (x,x′) is an arc in D1 and (y,y′) is an
arc in D2. The chromatic number of a digraph D is defined to be χ(D), where D is
the underlying graph of D, i.e., obtained from D by replacing each arc (x,y) with an
edge xy. Given a digraph D, let D−1 be the digraph obtained from D by reversing
the direction of all its arcs. It is easy to see that for any digraphs D1,D2,

D1×D1 = (D1×D2)∪ (D1×D−1
2 ).

Hence
χ(D1×D1)≤ χ(D1×D2)×χ(D1×D−1

2 ).

Let

g(n) = min{χ(D1×D2) : χ(D1),χ(D2)≥ n},
h(n) = min{max{χ(D1×D2),χ(D1×D−1

2 )} : χ(D1),χ(D2)≥ n}.

Since E(D1×D2) = E(D1×D2)∪E(D1×D−1
2 ), we have

g(n)≤ h(n)≤ f (n)≤ h(n)2.

The following result was proved by Poljak and Rödl in [9].

Theorem 3. If g(n) (respectively h(n)) is bounded by a constant, then the smallest
such constant is at most 4. Consequently, if f (n) is bounded by a constant, then the
smallest such constant is at most 16.
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Proof. For a graph D, let ∂ (D) be the digraph with vertex set A(D), where (x,y)→
(x′,y′) is an arc of ∂ (D) if and only if y = x′. In particular, if (x,y),(y,x) is a digon
in D, then (x,y)→ (y,x) and (y,x)→ (x,y) is a digon in ∂ (D).

Lemma 4. For any digraph D,

min{k : 2k ≥ χ(D)} ≤ χ(∂ (D))≤min{k :
(

k
�k/2�

)
≥ χ(D)}.

Proof. If φ :V (∂ (D))→ [k] is a proper colouring of ∂ (D), then for each vertex v of
D, let ψ(v) = {φ(e) : e ∈ A+(v)}, where A+(v) is the set of out-arcs at v. Then ψ
is a proper colouring of D (with subsets of [k] as colours). Indeed, if e = (x,y) is an
arcs of D, then φ(e) ∈ ψ(x)−ψ(y). So ψ(x) �= ψ(y). The number of colours used
by ψ is at most the number of subsets of [k], which is 2k.

If ψ : V (D)→ ( k
�k/2�

)
is a proper colouring of D (where the colours are �k/2�-

subsets of [k]), then for any arc e= (x,y) of D, let φ(e) be any integer in ψ(y)−ψ(x)
(as ψ(y) �= ψ(x), such an integer exists). Then if (x,y) → (y,z) is an arc in ∂ (D),
then φ(x,y) ∈ ψ(y) and φ(y,z) /∈ ψ(y). Hence φ(x,y) �= φ(y,z). I.e., φ is a proper
colouring of ∂ (D). This completes the proof of Lemma 4.

It follows easily from the definition that

∂ (D1×D2) = ∂ (D1)×∂ (D2),

∂ (D−1) = (∂ (D))−1.

Suppose g(n) is bounded and C is the smallest upper bound. As g(n) is non-
decreasing, there is an integer n0 such that g(n) =C for all n ≥ n0. Let n1 = 2n0 , and
let D1,D2 be digraphs with χ(D1),χ(D2)≥ n1 and χ(D1×D2) =C. It follows from
Lemma 4 that χ(∂ (D1)),χ(∂ (D2))≥ n0 and hence χ(∂ (D1)×∂ (D2)) = χ(∂ (D1×
D2))≥C. By Lemma 4 again, we have

C ≥ χ(D1×D2)>

(
C−1

�(C−1)/2�
)
.

This implies that C ≤ 4.
The same argument shows that if h(n) is bounded by a constant, then the smallest

such constant is at most 4. Since h(n) ≤ f (n) ≤ h(n)2, if f (n) is bounded by a
constant, then the smallest such a constant is at most 16.

Next we show that if g(n) (respectively, h(n)) is bounded by a constant, then the
smallest such constant cannot be 4. Assume to the contrary that the smallest constant
bound for g(n) is 4. Let n0 be the integer given above, and let n1 = 2n0 ,n2 = 2n1 .
Then g(n2) = g(n1) = g(n0) = 4. Let D1,D2 be two digraphs with χ(D1),χ(D2)≥
n2 and χ(D1×D2) = 4. The same argument as above shows that

χ(∂ (∂ (D1×D2))) = 4.
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However, we shall show that if χ(D) ≤ 4, then χ(∂ (∂ (D))) ≤ 3. Let �K4 be
the complete digraph with vertex set {1,2,3,4}, where (i, j) is an arc for any
distinct i, j ∈ {1,2,3,4}. If χ(D) = 4, then D admits a homomorphism to �K4.
Hence ∂ (∂ (D)) admits a homomorphism to ∂ (∂ (�K4)). So it suffices to show that
∂ (∂ (�K4)) ≤ 3. In 1990, I was a Ph.D. student at The University of Calgary. After
reading the paper by Poljak and Rödl [9], I found a 3-colouring of ∂ (∂ (�K4)) by
brute force. I was happy to tell this to my supervisor Professor Norbert Sauer, who
then told the result to Duffus. Then I learned from Duffus the following elegant
3-colouring of ∂ (∂ (�K4)), given earlier by Schelp that was not published.

Each vertex of ∂ (∂ (�K4)) is a sequence i jk with i, j,k ∈ [k], i �= j, j �= k (but i may
equal to k). Let

c(i jk) =

{
j, if j �= 4,
s, if j = 4 and s ∈ {1,2,3}−{i,k}

Then it is easy to verify that c is a proper 3-colouring of ∂ (∂ (�K4)). This completes
the proof that g(n) is either bounded by 3 or goes to infinity. Similarly, h(n) is either
bounded by 3 or goes to infinity, and consequently, f (n) is either bounded by 9 or
goes to infinity.

Later I learned from Hell that Poljak also obtained this strengthening indepen-
dently and that was published later (in 1992) [8].

Tardif and Wehlau [15] proved that f (n) is bounded if and only if g(n) is
bounded.

The fractional version of Hedetniemi’s conjecture was proved in [19]: For any
two graphs G and H, χ f (G×H) =min{χ f (G),χ f (H)}. Thus if f (n) is bounded by
9, and G and H are n-chromatic graphs with χ(G×H) ≤ 9, then at least one of G
and H has fractional chromatic number at most 9.

In [19], I defined the following Poljak-Rödl type function:

ψ(n) =min{χ(G×H) : χ f (G),χ(H)≥ n}.

I proposed a weaker version of Hedetniemi’s conjecture, which is equivalent to the
statement that ψ(n) = n for all positive integer n. However, Shitov’s proof actually
refutes this weaker version of Hedetniemi’s conjecture, as the graph G used in the
proof of Theorem 1 has large fractional chromatic number. The proof of Theorem 2
shows that

limsup
n→∞

ψ(n)
n

≤ 1
2
.

On the other hand, it follows from the definition that f (n)≤ ψ(n). A natural ques-
tion is the following:

Question 1. Is ψ(n) bounded by a constant? If ψ(n) is bounded by a constant, what
could be the smallest such constant?
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Remark Very recently, I constructed relatively small counterexample to Hedet-
niemi’s conjecture in [21]: There are graphs G and H with 3,403 and 10,501 vertices
respetively such that χ(G),χ(H)≥ 126 and χ(G×H)≤ 125.
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Notes on Graph Product Structure Theory

Zdeněk Dvořák, Tony Huynh, Gwenaël Joret, Chun-Hung Liu, and David R. Wood

Abstract It was recently proved that every planar graph is a subgraph of the strong
product of a path and a graph with bounded treewidth. This paper surveys gener-
alisations of this result for graphs on surfaces, minor-closed classes, various non-
minor-closed classes, and graph classes with polynomial growth. We then explore
how graph product structure might be applicable to more broadly defined graph
classes. In particular, we characterise when a graph class defined by a cartesian or
strong product has bounded or polynomial expansion. We then explore graph prod-
uct structure theorems for various geometrically defined graph classes, and present
several open problems.
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Zdeněk Dvořák, Tony Huynh, Gwenaël Joret, Chun-Hung Liu, and David R. Wood

1 Introduction

Studying the structure of graphs is a fundamental topic of broad interest in com-
binatorial mathematics. At the forefront of this study is the Graph Minor Theorem
of Robertson and Seymour [47], described by Diestel [8] as “among the deepest
theorems mathematics has to offer”. At the heart of the proof of this theorem is
the Graph Minor Structure Theorem, which shows that any graph in a minor-closed
family1 can be constructed using four ingredients: graphs on surfaces, vortices, apex
vertices, and clique-sums. Graphs of bounded genus, and in particular planar graphs
are basic building blocks in graph minor structure theory. Indeed, the theory says
nothing about the structure of planar graphs. So it is natural to ask whether planar
graphs can be described in terms of some simpler graph classes. In a recent break-
through, Dujmović, Joret, Micek, Morin, Ueckerdt, and Wood [15, 16] provided an
answer to this question by showing that every planar graph is a subgraph of the
strong product2 of a graph of bounded treewidth3 and a path.

Theorem 1 ([15, 16]). Every planar graph is a subgraph of:
(a) H �P for some graph H of treewidth at most 8 and for some path P;
(b) H �P�K3 for some graph H of treewidth at most 3 and for some path P.

This graph product structure theorem is attractive since it describes planar graphs
in terms of graphs of bounded treewidth, which are considered much simpler than
planar graphs. For example, many NP-complete problem remain NP-complete on
planar graphs but are polynomial-time solvable on graphs of bounded treewidth.

Despite being only 10 months old, Theorem 1 is already having significant im-
pact. Indeed, it has been used to solve two major open problems and make additional
progress on two other longstanding problems:
• Dujmović et al. [15, 16] use Theorem 1 to show that planar graphs have queue

layouts with a bounded number of queues, solving a 27 year old problem of
Heath, Leighton, and Rosenberg [33].

1 A graph H is a minor of a graph G if a graph isomorphic to H can be obtained from a subgraph of
G by contracting edges. A class of graphs G is minor-closed if for every graph G ∈ G every minor
of G is in G , and some graph is not in G . A graph G is H-minor-free if H is not a minor of G.
2 The cartesian product of graphs A and B, denoted by A�B, is the graph with vertex set V (A)×
V (B), where distinct vertices (v,x),(w,y) ∈ V (A)×V (B) are adjacent if: v = w and xy ∈ E(B); or
x = y and vw ∈ E(A). The strong product of graphs A and B, denoted by A�B, is the graph with
vertex set V (A)×V (B), where distinct vertices (v,x),(w,y) ∈ V (A)×V (B) are adjacent if: v = w
and xy ∈ E(B); or x = y and vw ∈ E(A); or vw ∈ E(A) and xy ∈ E(B). If X is a subgraph of A�B,
then the projection of X into A is the set of vertices v ∈ V (A) such that (v,w) ∈ V (X) for some
w ∈V (B).
3 A tree decomposition of a graph G is a collection (Bx ⊆ V (G) : x ∈ V (T )) of subsets of V (G)
(called bags) indexed by the nodes of a tree T , such that (i) for every edge uv ∈ E(G), some bag
Bx contains both u and v, and (ii) for every vertex v ∈ V (G), the set {x ∈ V (T ) : v ∈ Bx} induces
a non-empty (connected) subtree of T . The width of a tree decomposition is the size of the largest
bag minus 1. The treewidth of a graph G, denoted by tw(G), is the minimum width of a tree
decomposition of G. See [3, 4, 32, 45, 46] for surveys on treewidth. A path decomposition is a tree
decomposition where the underlying tree is a path. The pathwidth of a graph G, denoted by pw(G),
is the minimum width of a path decomposition of G.
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• Dujmović, Eppstein, Joret, Morin, and Wood [12] use Theorem 1 to show
that planar graphs can be nonrepetitively coloured with a bounded number of
colours, solving a 17 year old problem of Alon, Grytczuk, Hałuszczak, and Ri-
ordan [1].

• Dębski, Felsner, Micek, and Schröder [10] use Theorem 1 to prove the best
known results on p-centred colourings of planar graphs, reducing the bound
from O(p19) to O(p3 log p).

• Bonamy, Gavoille, and Pilipczuk [5] use Theorem 1 to give more compact graph
encodings of planar graphs. In graph-theoretic terms, this implies the existence
of a graph with n4/3+o(1) vertices that contains each planar graph with at most n
vertices as an induced subgraph, This work improves a sequence of results that
goes back 27 years to the introduction of implicit labelling schemes by Kannan,
Naor, and Rudich [34].

The first goal of this paper is to introduce several product structure theorems
that have been recently established, most of which generalise Theorem 1. First Sec-
tion 2 considers minor-closed classes. Then Section 3 considers several examples
of non-minor-closed classes. Section 4 introduces the notion of graph classes with
polynomial growth and their characterisation in terms of strong products of paths
due to Krauthgamer and Lee [36]. We prove an extension of this result for strong
products of graphs of given pathwidth.

The remaining sections explore how graph product structure might be applicable
to more broadly defined graph classes. The following definition by Nešetřil and
Ossona de Mendez [40] provides a setting for this study4. A graph class G has
bounded expansion with expansion function f : Z+ → R if, for every graph G ∈ G
and for all disjoint subgraphs B1, . . . ,Bt of radius at most r in G, every subgraph of
the graph obtained from G by contracting each Bi into a vertex has average degree at
most f (r). When f (r) is a constant, G is contained in a proper minor-closed class.
As f (r) is allowed to grow with r we obtain larger and larger graph classes. A graph
class G has linear expansion if G has bounded expansion with an expansion function
in O(r). A graph class G has polynomial expansion if G has bounded expansion with
an expansion function in O(rc), for some constant c.

We characterise when a graph class defined by a cartesian or strong product has
bounded or polynomial expansion. For �∈ {�,�} and for hereditary5 graph classes
G1 and G2, let

G1 �G2 := {G : G ⊆ G1 �G2,G1 ∈ G1,G2 ∈ G2}.

Note that G1 � G2 is hereditary. Sections 5 and 6 characterise when G1 � G2 has
bounded or polynomial expansion. In related work, Wood [53] characterised when

4 Let dG(u,v) be the distance between vertices u and v in a graph G. For a vertex v in a graph G
and r ∈N, let Nr

G(v) be the set of vertices of G at distance exactly r from v, and let Nr
G[v] be the set

of vertices at distance at most r from v. The set Nr
G[v] is called an r-ball. We drop the subscript G

when the graph is clear from the context.
5 A class of graphs is hereditary if it is closed under induced subgraphs.
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Zdeněk Dvořák, Tony Huynh, Gwenaël Joret, Chun-Hung Liu, and David R. Wood

G1�G2 has bounded Hadwiger number, and Pecaninovic [43] characterised when
G1 �G2 has bounded Hadwiger number.

Section 7 explores graph product structure theorems for various geometrically
defined graph classes. We show that multi-dimensional unit-disc graphs have a
product structure theorem, and discusses whether two other naturally defined graph
classes might have product structure theorems. We finish with a number of open
problems in Section 8.

2 Minor-Closed Classes

Here we survey results generalising Theorem 1 for minor-closed classes. First con-
sider graphs embeddable on a fixed surface6.

Theorem 2 ([15, 16]). Every graph of Euler genus g is a subgraph of:
(a) H �P�Kmax{2g,1} for some graph H of treewidth at most 9 and for some path

P;
(b) H �P�Kmax{2g,3} for some graph H of treewidth at most 4 and for some path

P.
(c) (K2g +H)�P for some graph H of treewidth at most 8 and some path P.

Here A+B is the complete join of graphs A and B. The proof of Theorem 2 uses
an elegant cutting lemma to reduce to the planar case.

Theorem 2 is generalised as follows. A graph X is apex if X − v is planar for
some vertex v.

Theorem 3 ([15, 16]). For every apex graph X, there exists c ∈ N such that every
X-minor-free graph G is a subgraph of H�P for some graph H of treewidth at most
c and some path P.

The proof of Theorem 3 is based on the Graph Minor Structure Theorem of
Robertson and Seymour [49] and in particular a strengthening of it by Dvořák and
Thomas [21].

For an arbitrary proper minor-closed class, apex vertices are unavoidable; in this
case Dujmović et al. [15, 16] proved the following product structure theorem.

Theorem 4 ([15, 16]). For every proper minor-closed class G there exist k,a ∈ N
such that every graph G ∈ G can be obtained by clique-sums of graphs G1, . . . ,Gn
such that for i ∈ {1, . . . ,n},

Gi ⊆ (Hi �Pi)+Ka,

for some graph Hi with treewidth at most k and some path Pi.

6 The Euler genus of the orientable surface with h handles is 2h. The Euler genus of the non-
orientable surface with c cross-caps is c. The Euler genus of a graph G is the minimum Euler genus
of a surface in which G embeds (with no crossings). See [39] for background on embeddings of
graphs on surfaces.

516



Notes on Graph Product Structure Theory

If we assume bounded maximum degree, then apex vertices in the Graph Minor
Structure Theorem can be avoided, which leads to the following theorem of Duj-
mović, Esperet, Morin, Walczak, and Wood [14].

Theorem 5 ([14]). For every proper minor-closed class G , every graph in G with
maximum degree Δ is a subgraph of H�P for some graph H of treewidth O(Δ) and
for some path P.

It is worth highlighting the similarity of Theorem 5 and the following result of
Ding and Oporowski [9] (refined in [52]).Theorem 6 says that graphs of bounded
treewidth and bounded degree are subgraphs of the product of a tree and a complete
graph of bounded size, whereas Theorem 5 says that graphs excluding a minor and
with bounded degree are subgraphs of the product of a bounded treewidth graph and
a path.

Theorem 6 ([9, 52]). Every graph with maximum degree Δ � 1 and treewidth at
most k � 1 is a subgraph of T �K18kΔ for some tree T .

3 Non-Minor Closed Classes

A recent direction pursued by Dujmović, Morin, and Wood [17] studies graph prod-
uct structure theorems for various non-minor-closed graph classes. First consider
graphs that can be drawn on a surface of bounded genus and with a bounded num-
ber of crossings per edge. A graph is (g,k)-planar if it has a drawing in a surface
of Euler genus at most g such that each edge is involved in at most k crossings.
Even in the simplest case, there are (0,1)-planar graphs that contain arbitrarily large
complete graph minors [13].

Theorem 7 ([17]). Every (g,k)-planar graph is a subgraph of H � P, for some
graph H of treewidth O(gk6) and for some path P.

Map and string graphs provide further examples of non-minor-closed classes that
have product structure theorems.

Map graphs are defined as follows. Start with a graph G0 embedded in a surface
of Euler genus g, with each face labelled a ‘nation’ or a ‘lake’, where each vertex
of G0 is incident with at most d nations. Let G be the graph whose vertices are the
nations of G0, where two vertices are adjacent in G if the corresponding faces in G0
share a vertex. Then G is called a (g,d)-map graph. A (0,d)-map graph is called a
(plane) d-map graph; see [7, 26] for example. The (g,3)-map graphs are precisely
the graphs of Euler genus at most g; see [13]. So (g,d)-map graphs generalise graphs
embedded in a surface, and we now assume that d � 4 for the remainder of this
section.

Theorem 8 ([17]). Every (g,d)-map graph is a subgraph of:
• H �P�KO(d2g), where H is a graph with treewidth at most 14 and P is a path,

• H �P, where H is a graph with treewidth O(gd2) and P is a path.
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A string graph is the intersection graph of a set of curves in the plane with no
three curves meeting at a single point; see [27, 28, 42] for example. For δ ∈ N, if
each curve is in at most δ intersections with other curves, then the corresponding
string graph is called a δ -string graph. A (g,δ )-string graph is defined analogously
for curves on a surface of Euler genus at most g.

Theorem 9 ([17]). Every (g,δ )-string graph is a subgraph of H�P, for some graph
H of treewidth O(gδ 7) and some path P.

Theorems 7 to 9 all follow from a more general result of Dujmović et al. [17]. A
collection P of paths in a graph G is a (k,d)-shortcut system (for G) if:
• every path in P has length at most k, and
• for every v ∈V (G), the number of paths in P that use v as an internal vertex is

at most d.
Each path P ∈ P is called a shortcut; if P has endpoints v and w then it is a vw-
shortcut. Given a graph G and a (k,d)-shortcut system P for G, let GP denote the
supergraph of G obtained by adding the edge vw for each vw-shortcut in P .

Theorem 10 ([17]). Let G be a subgraph of H �P, for some graph H of treewidth
at most t and for some path P. Let P be a (k,d)-shortcut system for G. Then GP is
a subgraph of J�P′ for some graph J of treewidth at most d(k3 +3k)

(k+t
t

)−1 and
some path P′.

Theorems 7 to 9 are then proved by simply constructing a shortcut system. For
example, by adding a dummy vertex at each crossing, Dujmović et al. [17] noted
that every (g,k)-planar graph is a subgraph of GP for some graph G of Euler genus
at most g and for some (k+1,2)-shortcut system P for G.

Powers of graphs can also be described by a shortcut system. The k-th power
of a graph G is the graph Gk with vertex set V (Gk) := V (G), where vw ∈ E(Gk) if
and only if dG(v,w)� k. Dujmović et al. [17] noted that if a graph G has maximum
degree Δ , then Gk = GP for some (k,2kΔ k)-shortcut system P . Theorem 10 then
implies:

Theorem 11 ([17]). For every graph G of Euler genus g and maximum degree Δ ,
the k-th power Gk is a subgraph of H �P, for some graph H of treewidth O(gΔ kk8)
and some path P.

4 Polynomial Growth

This section discusses graph classes with polynomial growth. A graph class G has
polynomial growth if for some constant c, for every graph G ∈ G , for each r � 2
every r-ball in G has at most rc vertices. For example, every r-ball in an n × n
grid graph is contained in a (2r+ 1)× (2r+ 1) subgrid, which has size (2r+ 1)2;
therefore the class of grid graphs has polynomial growth. More generally, let Zd

be the strong product of d infinite two-way paths. That is, V (Zd) = {(x1, . . . ,xd) :
x1, . . . ,xd ∈ Z} where distinct vertices (x1, . . . ,xd) and (y1, . . . ,yd) are adjacent in
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Zd if and only if |xi − yi| � 1 for each i ∈ {1, . . . ,d}. Then every r-ball in Zd has
size at most (2r + 1)d . Krauthgamer and Lee [36] characterised the graph classes
with polynomial growth as the subgraphs of Zd .

Theorem 12 ([36]). Let G be a graph such that for some constant c and for every
integer r � 2, every r-ball in G has at most rc vertices. Then G ⊆ ZO(c logc).

We show that a seemingly weaker condition also characterises graph classes with
polynomial growth. (We emphasise that in Theorem 13, H1 does not necessarily
have bounded maximum degree.)

Theorem 13. The following are equivalent for a class of graphs G :
(1) G has polynomial growth,
(2) there exists d ∈ N such that every graph in G is a subgraph of Zd,
(3) there exist d,k, �,Δ ∈ N such that for every graph G ∈ G there exist graphs

H1, . . . ,Hd such that:
• G has maximum degree Δ ,
• pw(Hi)� k for each i ∈ {1, . . . ,k},
• Hi has maximum degree at most � for each i ∈ {2, . . . ,d},
• G ⊆ H1 �H2 � · · ·�Hd.

Proof. Krauthgamer and Lee [36] proved that (1) and (2) are equivalent. It is im-
mediate that (2) implies (3) with k = 1 and � = 2 and Δ = 3d − 1. So it suffices
to show that (3) implies (1). Consider graphs G ∈ G and H1, . . . ,Hd satisfying (3).
For i ∈ {2, . . . ,d}, by Lemma 14 below (with d = 0), every r-ball in Hi has at most
(1+�)k(2r+1)k+1 vertices. By the result of Krauthgamer and Lee [36], Hi ⊆Zc for
some c = c(k, �). Thus

G ⊆ H1 �Zc(d−1).

By Lemma 14 again, every r-ball in G has size at most

(1+Δ)k(2r+1)(k+1)(c(d−1)+1),

which is at most rc′ for some c′ = c′(c,Δ ,k) and r � 2. Hence (1) holds. ��
Lemma 14. For every graph H with pathwidth at most k ∈N0, for every connected
subgraph G of H �Zd with radius at most r and maximum degree at most Δ ,

|V (G)|� (1+Δ)k(2r+1)(k+1)(d+1).

Proof. The BFS spanning tree of G rooted at the centre of G has radius at most r.
So it suffices to prove the result when G is a tree. We proceed by induction on k � 0
with the following hypothesis: For every graph H with pathwidth at most k ∈ N0,
for every subtree T of H �Zd with radius at most r and maximum degree at most
Δ ,

|V (T )|� (1+Δ)k(2r+1)(k+1)(d+1).
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Since T is connected, we may assume that H is connected. Since T has radius at
most r,

T ⊆ H �P1 � · · ·�Pd ,

where each Pi is a path on 2r+1 vertices.
In the base case k = 0, we have H = K1 and T ⊆ P1 � · · ·�Pd , implying

|V (T )|� (2r+1)d � (1+Δ)0(2r+1)(0+1)(d+1).

Now assume that k � 1 and the claim holds for k−1. Let T̃ be the projection of
V (T ) into H. Let (X1, . . . ,Xn) be a path decomposition of H with width pw(H). We
may delete any bag Xj such that Xj ∩ T̃ = /0. Now assume that X1 ∩ T̃ 	= /0 and
Xn ∩ T̃ 	= /0. Let x be a vertex in X1 ∩ T̃ , and let y be a vertex in Xn ∩ T̃ . Thus
(x,x1, . . . ,xd) ∈ V (T ) and (y,y1, . . . ,yd) ∈ V (T ) for some xi,yi ∈ V (Pi). Let P be
the path in T with endpoints (x,x1, . . . ,xd) and (y,y1, . . . ,yd). Since T has radius
at most r, P has at most 2r + 1 vertices. Let P̃ be the set of vertices v ∈ V (H)
such that (v,z1, . . . ,zd) ∈ V (P) where zi ∈ V (Pi). Thus |P̃| � 2r+ 1. By the choice
of x and y, we have P̃ ∩ Xj 	= /0 for each j ∈ {1, . . . ,n}. Let H ′ := H − P̃. Thus
(X1 \ P̃, . . . ,Xn \ P̃) is a path decomposition of H ′ with width at most pw(H)−1. Let
R := {(v,z1, . . . ,zd) : v ∈ P̃,zi ∈ V (Pi), i ∈ {1, . . . ,d}}. Thus |R| � (2r+ 1)d+1. Let
T ′ := T −R. Hence T ′ is a subgraph of H ′�P1� · · ·�Pd . Each component of T ′ has
a neighbour in R, implying that T ′ has at most Δ |R| components. Every subtree of T
has radius at most r (centred at the vertex closest to the centre of T ). By induction,
each component of T ′ has at most (1+Δ)k−1(2r+1)k(d+1) vertices. Thus

|V (T )|� |R|+Δ |R|(1+Δ)k−1(2r+1)k(d+1)

= |R|(1+Δ(1+Δ)k−1(2r+1)k(d+1))

� |R|(1+Δ)(1+Δ)k−1(2r+1)k(d+1)

� (2r+1)d+1(1+Δ)k(2r+1)k(d+1)

= (1+Δ)k(2r+1)(k+1)(d+1),

as desired. ��
Property (3) in Theorem 13 is best possible in a number of respects. First, note

that we cannot allow H1 and H2 to have unbounded maximum degree. For example,
if H1 and H2 are both K1,n, then H1 and H2 both have pathwidth 1, but K1,n �K1,n
contains Kn,n as a subgraph, which contains a complete binary tree of Ω(logn)
height, which is a bounded-degree graph with exponential growth. Also, bounded
pathwidth cannot be replaced by bounded treewidth, again because of the complete
binary tree.
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5 Polynomial Expansion

This section characterises when G1 � G2 has polynomial expansion. Separators
are a key tool here. A separation in a graph G is a pair (G1,G2) of subgraphs
of G such that G = G1 ∪ G2 and E(G1)∩ E(G2) = /0. The order of (G1,G2) is
|V (G1)∩V (G2)|. A separation (G1,G2) is balanced if |V (G1)\V (G2)| � 2

3 |V (G)|
and |V (G2) \V (G1)| � 2

3 |V (G)|. A graph class G admits strongly sublinear sepa-
rators if there exists c ∈ R+ and β ∈ [0,1) such that for every graph G ∈ G , every
subgraph H of G has a balanced separation of order at most c|V (H)|β . Dvořák and
Norin [20] noted that a result of Plotkin, Rao, and Smith [44] implies that graph
classes with polynomial expansion admit strongly sublinear separators. Dvořák and
Norin [20] proved the converse (see [18, 22, 25] for more results on this theme).

Theorem 15 ([20]). A hereditary class of graphs admits strongly sublinear separa-
tors if and only if it has polynomial expansion.

Robertson and Seymour [48] established the following connection between
treewidth and balanced separations.

Lemma 16 ([48, (2.6)]). Every graph G has a balanced separation of order at most
tw(G)+1.

Dvořák and Norin [23] proved the following converse.

Lemma 17 ([23]). If every subgraph of a graph G has a balanced separation of
order at most s, then tw(G)� 15s.

We have the following strongly sublinear bound on the treewidth of graph prod-
ucts.

Lemma 18. Let G be an n-vertex subgraph of Zd �H for some graph H. Then

tw(G)� 2(tw(H)+1)1/(d+1)(dn)d/(d+1)−1.

Proof. Let t := tw(H). For i ∈ {1, . . . ,d}, let 〈V i
0,V

i
1, . . .〉 be the layering of G deter-

mined by the i-th dimension. Let

m :=

⌈(
dn

t +1

)1/(d+1)
⌉
.

For i ∈ {1, . . . ,d} and α ∈ {0, . . . ,m−1}, let V i,α :=
⋃{V i

j : j ≡ α (mod m)}. Thus
V i,0, . . . ,V i,m−1 is a partition of V (G). Hence |V i,αi |� n

m for some αi ∈ {0, . . . ,m−
1}. Let X :=

⋃d
i=1 V i,αi . Thus |X | � dn

m . Note that each component of G−X is a
subgraph of Qd �H, where Q is the path on m−1 vertices. Since tw(G) equals the
maximum treewidth of the connected components of G, we have tw(G)� tw(Qd �
H)+ |X |. To obtain a tree decomposition of Qd �H with width (t +1)(m−1)d −1,
start with an optimal tree decomposition of H, and replace each instance of a vertex
of H by the corresponding copy of Qd . Thus
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tw(G)� (t +1)(m−1)d −1+
dn
m

� 2(t +1)1/(d+1)(dn)d/(d+1)−1. ��

Lemma 18 is generalised by our next result, which characterises when a graph
product has polynomial expansion. The following definition is key. Say that graph
classes G1 and G2 have joint polynomial growth if there exists a polynomial function
p such that for every r ∈ N, there exists i ∈ {1,2} such that for every graph G ∈ Gi
every r-ball in G has size at most p(r).

Theorem 19. The following are equivalent for hereditary graph classes G1 and G2:
(1) G1 �G2 has polynomial expansion,
(2) G1�G2 has polynomial expansion,
(3) G1 has polynomial expansion, G2 has polynomial expansion, and G1 and G2

have joint polynomial growth.

Proof. (1) implies (2) since G1� G2 ⊆ G1 �G2.
We now show that (2) implies (3). Assume that G1�G2 has polynomial expan-

sion. That is, for some polynomial g, for every graph G ∈ G1�G2, every r-shallow
minor of G has average degree at most g(r). Since G1 ∪G2 ⊆ G1�G2, both G1 and
G2 have polynomial expansion.

Assume for the sake of contradiction that G1 and G2 do not have joint polynomial
growth. Thus for every polynomial p there exists r ∈N such that for each i ∈ {1,2}
some r-ball of some graph Gi ∈ Gi has at least p(r) vertices. Apply this where p is
a polynomial with p(r) � max{1+ rn,

(n
2

)}, where n := �g(2r)+ 2�. Since G1 and
G2 are hereditary, there exists r ∈N such that there is a graph G1 ∈ G1 with radius at
most r and at least 1+ rn vertices, and there is a graph G2 ∈ G2 with radius at most
r and at least

(n
2

)
vertices.

Let z be the central vertex in G1. Since |V (G1)|� 1+ rn, for some i ∈ {1, . . . ,r},
there is a set A of n vertices in G1 at distance exactly i from z. For all {v,w} ∈ (A

2

)
,

let Pv,w be the shortest vw-path contained with the union of a shortest vz-path and a
shortest wz-path in G1. Thus Pvw has length at most 2r and V (Pv,w)∩A = {v,w}. Let
B be a set of

(n
2

)
vertices in G2. Fix an arbitrary bijection σ :

(A
2

)→ B.
Let G := G1�G2. For each v ∈ A, let Xv := G[{(v,x) : x ∈V (G2)}]; note that Xv

is isomorphic to G2, and thus has radius at most r. Moreover, Xv and Xw are disjoint
for distinct v,w ∈ A. For {v,w} ∈ (A

2

)
, let Yv,w := G[{(x,σ((v,w))) : x ∈ V (G1)}];

note that Yv,w is isomorphic to G1. Let Qv,w be the copy of the path Pv,w within Yv,w.
Since V (Pv,w)∩A = {v,w} , the only vertices of Qv,w in

⋃
u∈A Xu are (v,σ((v,w)))

and (w,σ((v,w))), which are the endpoints of Qv,w in Xv and Xw respectively. Since
Pv,w has length at most 2r, so does Qv,w.

By construction, Qv,w and Qp,q are disjoint for distinct {v,w},{p,q} ∈ (A
2

)
. Con-

tract Xv to a vertex for each v ∈ A, and contract Qv,w to an edge for each {v,w} ∈ (A
2

)
.

We obtain the complete graph Kn as a minor in G. Moreover, the minor is 2r-shallow.
This is a contradiction, since Kn has average degree greater than g(2r).

We prove that (3) implies (1) by a series of lemmas below (culminating in
Lemma 23 below). ��
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For a graph G, a set X ⊆V (G) is r-localising if for every component C of G−X ,
there exists a vertex v ∈ V (G) such that dG(u,v) < r for every u ∈ C (note that the
distance is in G, not in G−X).

The following is a variation on Lemma 5.2 of [36]. For r ∈ N and p,q ∈ R with
0 < p,q < 1, consider the following function fr,p,q defined on {0,1, . . . ,r}. First, let
fr,p,q(r) := p. Now, for every integer s ∈ {0,1, . . . ,r−1}, inductively define

fr,p,q(s) := min(q fr,p,q({s+1, . . . ,r}),1− fr,p,q({s+1, . . . ,r})),

where f (S) := ∑i∈S f (i).

Lemma 20. Fix r ∈N and p,q∈R with 0< p,q< 1, such that fr,p,q({0,1, . . . ,r})=
1 (so fr,p,q defines a probability distribution on {0,1, . . . ,r}). For every graph G,
there exists a probability distribution over the r-localising subsets of V (G) such
that the set X drawn from this distribution satisfies P[v ∈ X ] � p|Nr(v)|+ q for
every v ∈V (G).

Proof. Let V (G) = {v1, . . . ,vn}. For i∈ {1, . . . ,n}, choose ri ∈ {0,1, . . . ,r} indepen-
dently at random such that P[ri = s] = fr,p,q(s). For each x ∈ V (G), let i(x) be the
minimum index i such that d(x,vi)� ri, and let X := {x ∈V (G) : d(x,vi(x)) = ri(x)}.

First we argue that X is r-localising. Consider any component C of G−X , and
let z be the vertex of C with i(z) minimum. Suppose for the sake of contradiction
that C contains a vertex u at distance at least r from vi(z), and let P be a path from
z to u in C. Then P contains a vertex x at distance exactly ri(z) from vi(z). However,
since i(x)� i(z), we conclude i(x) = i(z) and x ∈ X , which is a contradiction.

Next, we bound the probability that a vertex v of G is in X . Consider any i ∈
{1, . . . ,n}. If d(v,vi) > r, then P[i(v) = i] = 0. If d(v,vi) = r, then P[i(v) = i] �
P[ri(v) = r] = p. If d(v,vi)< r, then letting s := d(v,vi) we have

P[v ∈ X |i(v) = i] = P[ri = s |r1 < d(v,v1), . . . ,ri−1 < d(v,vi−1),ri � s]

= P[ri = s |ri � s]

=
fr,p,q(s)

fr,p,q({s, . . . ,r})
� q.

Therefore,

P[v ∈ X ] =
n

∑
i=1

P[i(v) = i] ·P[v ∈ X |i(v) = i]� p|Nr(v)|+q. ��

Corollary 21. For every polynomial g, there exists r0 such that the following holds.
Let r � r0 be a positive integer and let G be a graph such that |Nr(v)| � g(r) for
every v ∈ V (G). Then there exists a probability distribution over the r-localising
subsets of V (G) such that the set X drawn from this distribution satisfies P[v ∈ X ]�
2r−1/2 for every v ∈V (G).
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Proof. Let c be the degree of g plus one, so that g(r)� rc for every sufficiently large
r. Let p := r−c−1/2 and q := r−1/2. Note that for sufficiently large r,

p(1+q)r � peqr/2 = exp(
√

r/2− (c+1/2) logr)> 1.

Hence fr,p,q(r) = p > 1/(q+ 1)r. It follows by induction that fr,p,q({s, . . . ,r}) �
1/(q+1)s for each s ∈ {1, . . . ,r}. Thus fr,p,q(0) = 1− fr,p,q({1, . . . ,r}) and
fr,p,q({0, . . . ,r}) = 1. The claim follows from Lemma 20. ��
Corollary 22. For every polynomial g, there exists r0 such that the following holds.
Let r � r0 be a positive integer and let G be a graph such that |Nr[v]| � g(r) for
every v ∈ V (G). Then for every function w : V (G) → R+

0 , there exists X ⊆ V (G)

such that w(X) � 2r−1/2w(V (G)) and each component of G−X has at most g(r)
vertices.

Proof. Choose an r-localising set X ⊆ V (G) using Corollary 21. Since X is r-
localising and |Nr[v]| � g(r) for every v ∈ V (G), each component of G− X has
at most g(r) vertices. Furthermore,

E[|w(X)|] = ∑
v∈V (G)

P[v ∈ X ]w(v)� 2r−1/2w(V (G)).

Hence there is a choice for X such that w(X)� 2r−1/2w(V (G)). ��
Lemma 23. Suppose G1 and G2 are classes with strongly sublinear separators and
of joint polynomial growth (bounded by a polynomial g). Then G1 �G2 has strongly
sublinear separators.

Proof. Let ε > 0 be such that every subgraph F of a graph from G1 ∪ G2 has a
balanced separator of order at most �|V (F)|1−ε�. Let β > 0 be sufficiently small
(depending on ε and g).

Suppose G1 ∈ G1, G2 ∈ G2, and H is a subgraph of G1�G2. Let π1 and π2 be the
projections from H to G1 and G2. Let n := |V (H)| and r := nβ . By symmetry, we
may assume |Nr[v]| � g(r) for every vertex v of G1. Let w(v) := |π−1

1 (v)| for each
v ∈V (G1). By Corollary 22, there exists X ⊆V (G1) such that w(X) = O(r−1/2n) =
O(n1−β/2) and each component of G1 − X has at most g(r) = g(nβ ) = O(nε/2)
vertices. Let A := π−1

1 (X); then |A|= w(X) = O(n1−β/2).
The graph G2 has treewidth O(n1−ε), and thus the product of G2 with G1−X (as

well as its subgraph H −A) has treewidth O(n1−ε g(r)) = O(n1−ε/2). Consequently,
H −A has a balanced separator B of order O(n1−ε/2), and A∪B is a balanced sepa-
rator of H of order O(n1−min(ε,β )/2). ��
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6 Bounded Expansion

This section characterises when G1�G2 has bounded expansion. The following def-
inition by Kierstead and Yang [35] is the key tool. For a graph G, linear order-
ing � of V (G), vertex v ∈ V (G), and integer r � 1, a vertex x is (r,�)-reachable
from v if there is a path v = v0,v1, . . . ,vr′ = x of length r′ ∈ {0,1, . . . ,r} such that
x � v ≺ vi for all i ∈ {1,2, . . . ,r′ − 1}. For a graph G and r ∈ N, the r-colouring
number colr(G) of G, also known as the strong r-colouring number, is the mini-
mum integer k such that there is a linear ordering � of V (G) such that at most k
vertices are (r,�)-reachable from each vertex v of G. For example, van den Heuvel,
Ossona de Mendez, Quiroz, Rabinovich, and Siebertz [50] proved that every planar
graph G satisfies colr(G) � 5r + 1, and more generally, that every Kt -minor-free
graph G satisfies colr(G) �

(t−1
2

)
(2r + 1). Most generally, Zhu [54] showed that

these r-colouring numbers characterise bounded expansion classes.

Theorem 24 ([54]). A graph class G has bounded expansion if and only if for each
r ∈ N there exists c ∈ N such that colr(G)� c for all G ∈ G .

We now show that if G has bounded r-colouring number and H has bounded
maximum degree, then G�H has bounded r-colouring number.

Lemma 25. If G is a graph with colr(G)� c and H is a graph with maximum degree
at most Δ , then colr(G�H)< c(Δ +2)r.

Proof. Let G+ and H+ be the pseudographs obtained from G and H by adding a
loop at every vertex. Let �G be a vertex-ordering of G witnessing that colr(G)� c.
Let � be an ordering of V (G�H) where v1 ≺G v2 implies (v1,w1)≺ (v2,w2) for all
v1,v2 ∈ V (G) and w1,w2 ∈ V (H). We now bound the number of vertices of G�H
that are (r,�)-reachable from a fixed vertex (v,w) ∈V (G�H). Say (x,y) is (r,�)-
reachable from (v,w). Thus there is a path (v,w) = (v0,w0),(v1,w1), . . . ,(vr′ ,wr′) =
(x,y) of length r′ ∈ {0, . . . ,r}, such that (vr′ ,wr′) � (v,w) ≺ (vi,wi) for each i ∈
{1, . . . ,r′ −1}. Charge (x,y) to the pair (x,(w0,w1, . . . ,wr′)). By the definition of �,
the sequence (v0,v1, . . . ,vr′) is a walk in G+, and the sequence (w0,w1, . . . ,wr′) is a
walk in H+. By the definition of �, we have vr′ � v0 � vi for each i ∈ {1, . . . ,r′ −1}.
Thus vr′ is (r,�G)-reachable from v0 in G. By assumption, at most c vertices are
(r,�G)-reachable from v0 in G. The number of walks of length at most r in H+

starting at w0 is at most ∑r
i=0(Δ + 1)i < (Δ + 2)r. Thus for each vertex x ∈ V (G),

less than (Δ + 2)r vertices (r,�)-reachable from (v,w) are charged to some pair
(x,W ). Hence, less than c(Δ + 2)r vertices in G � H are (r,�G)-reachable from
(v,w) in �. Therefore colr(G�H)< c(Δ +2)r. ��

The next theorem is the main contribution of this section.

Theorem 26. The following are equivalent for hereditary graph classes G1 and G2:
1. G1 �G2 has bounded expansion,
2. G1� G2 has bounded expansion,
3. both G1 and G2 have bounded expansion, and at least one of G1 and G2 has

bounded maximum degree.
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Proof. (1) implies (2) since G1�G2 ⊆ G1 �G2.
We now show that (2) implies (3). Assume that G1� G2 has bounded expansion.

Since G1 ∪G2 ⊆ G1 �G2, both G1 and G2 also have bounded expansion. If neither
G1 nor G2 have bounded maximum degree, then for every n ∈ N, the star graph K1,n
is a subgraph of some graph G1 ∈ G1 and of some graph G2 ∈ G2. Observe that
K1,n�K1,n contains a 1-subdivision of Kn,n. Thus G1�G2 contains a graph with av-
erage degree n (namely, Kn,n) as a 1-shallow minor, which is a contradiction since
G1� G2 has bounded expansion. Hence at least one of G1 and G2 has bounded max-
imum degree.

We now show that (3) implies (1). Assume that both G1 and G2 have bounded
expansion, and every graph in G2 has maximum degree at most Δ . By Theorem 24,
for each r ∈N there exists cr ∈N such that colr(G)� cr for all G1 ∈G1. Let G2 ∈G2.
By Lemma 25, we have colr(G1 �G2)� cr(Δ +2)r, and the same bound holds for
every subgraph of G1 �G2. By Theorem 24, G1 �G2 has bounded expansion. ��

7 Geometric Graph Classes

The section explores graph product structure theorems for various geometrically
defined graph classes.

The unit disc graph of a finite set X ⊆ Rd is the graph G with V (G) = X where
vw∈E(G) if and only if dist(v,w)� 1. Here dist is the Euclidean distance in Rd . Let
Zd be the strong product of d paths P� · · ·�P (the d-dimensional grid graph with
crosses). The next result describes unit discs in terms of strong products, which
implies that the class of unit disc graphs with bounded dimension and bounded
maximum clique size has polynomial growth.

Theorem 27. Every unit disc graph G in Rd with no (k+ 1)-clique is a subgraph
of Zd �Kk�√d�d .

Proof. Let t := k�√d�d . Let xi(v) be the i-th coordinate of each vertex v ∈ V (G).
For p1, . . . , pd ∈ Z, let V 〈p1, . . . , pd〉 be the set of vertices v ∈ V (G) such that pi �
xi(v) < pi + 1 for each i ∈ {1, . . . ,d}. Thus the sets V 〈p1, . . . , pd〉 partition V (G).
Each set V 〈p1, . . . , pd〉 consists of the set of vertices in a particular unit cube. Note
that the unit cube can be partitioned into �√d�d sub-cubes, each with side length at
most 1√

d
and thus with diameter at most 1. The set of vertices in a sub-cube with

diameter at most 1 is a clique in G. Thus at most k vertices lie in a single sub-cube,
and |V 〈p1, . . . , pd〉| � t. Injectively label the vertices in V 〈p1, . . . , pd〉 by 1,2, . . . , t.
Map each vertex v in V 〈p1, . . . , pd〉 labelled �(v) to the vertex (p1, . . . , pd , �(v)) of
Zd �Kt . Thus the vertices of G are mapped to distinct vertices of Zd �Kt . For each
edge vw ∈ E(G), if v ∈ V 〈p1, . . . , pd〉 and w ∈ V 〈q1, . . . ,qd〉, then |pi − qi| � 1 for
each i ∈ {1, . . . ,d}, and if pi = qi for each i ∈ {1, . . . ,d}, then �(v) 	= �(w). Thus v
and w are mapped to adjacent vertices in Zd �Kt . ��
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By a volume argument, every covering of the unit cube by balls of diameter 1
uses at least ( d

18 )
d/2 balls. So the k�√d�d term in the above theorem cannot be

drastically improved.
The k-nearest neighbour graph of a finite set P ⊂Rd has vertex set P, where two

vertices v and w are adjacent if w is the one of the k points in P closest to v, or v is
the one of the k points in P closest to w. Miller, Teng, Thurston, and Vavasis [38]
showed that such graphs admit separators of order O(n1−1/d).

Can we describe the structure of k-nearest-neighbour graphs using graph prod-
ucts?

Conjecture 28. Every k-nearest neighbour graph in Rd is a subgraph of H �Zd−1

for some graph H with treewidth at most f (k,d).

This conjecture is trivial for d = 1 and true for d = 2, as proved by Dujmović
et al. [17]. Note that “treewidth at most f (k,d)” cannot be replaced by “pathwidth
at most f (k,d)” for d � 2 because complete binary trees are 2-dimensional 2-nearest
neighbour graphs without polynomial growth (see Theorem 13).

Here is a still more general example: Miller et al. [38] defined a (d,k)-neighbourhood
system to consist of a collection C of n balls in Rd such that no point in Rd is cov-
ered by more than k balls. Consider the associated graph with one vertex for each
ball, where two vertices are adjacent if the corresponding balls intersect. Miller
et al. [38] showed that such graphs admit balanced separators of order O(n1−1/d).
Note that by the Koebe circle packing theorem, every planar graph is associated
with some (2,2)-neighbourhood system. Thus the result of Miller et al. [38] is a
far-reaching generalisation of the Lipton-Tarjan Separator Theorem [37]. Is there a
product structure theorem for these graphs? Might the structure in Theorem 4 be
applicable here?

Open Problem 29. If G is the graph associated with a (d,k)-neighbourhood sys-
tem, can G be obtained from clique-sums of graphs G1, . . . ,Gn such that Gi ⊆
(Hi�P(d−1))+Ka, for some graph Hi with treewidth at most k, where a is a constant
that depends only on k and d. The natural choice is a = k−1.

One can ask a similar question for graphs embeddable in a finite-dimensional
Euclidean space with bounded distortion of distances. Dvořák [22] showed that such
graphs have strongly sublinear separators.

8 Open Problems

We finish the paper with a number of open problems.
It is open whether the treewidth 4 bound in Theorem 2(b) can be improved.

Open Problem 30. For every g ∈ N, does there exist t ∈ N such that every graph
of Euler genus g is a subgraph of H �P�Kt for some graph H of treewidth at most
3?
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The proofs of Theorems 3 and 4 both use the Graph Minor Structure Theorem of
Robertson and Seymour [49].

Open Problem 31. Is there a proof of Theorem 3 or Theorem 4 that does not use
the graph minor structure theorem?

The following problem asks to minimise the treewidth in Theorem 7.

Open Problem 32 ([17]). Does there exist a constant c such that for every k ∈ N
there exists t ∈ N such that every k-planar graph is a subgraph of H �P�Kt for
some graph H of treewidth at most c?

Open Problem 33. Can any graph class with linear or polynomial expansion be
described as a product of simpler graph classes along with apex vertices, clique
sums, and other ingredients.

Such a theorem would be useful for proving properties about such classes. Re-
cent results say that the “other ingredients” in Open Problem 33 are needed, as
we now explain. Let G′ be the 6tw(G)-subdivision of a graph G. Let G := {G′ :
G is a graph}. Grohe, Kreutzer, Rabinovich, Siebertz, and Stavropoulos [30] proved
that G has linear expansion. On the other hand, Dubois, Joret, Perarnau, Pilipczuk,
and Pitois [11] proved that there are graphs G such that every p-centred colouring of
G′ has at least 2cp1/2

colours, for some constant c > 0. We do not define “p-centred
colouring” here since we do not need the definition. All we need to know is that
subgraphs of H�P, where H has bounded treewidth and P is a path, have p-centred
colourings with f (p) colours, where f is a polynomial function (see [10, 17]). This
result is easily extended to allow for apex vertices and clique sums. This shows
that there are graphs with linear expansion that cannot be described solely in terms
of products of bounded treewidth graphs and paths (plus apex vertices and clique
sums). For related results, see [19].

One way to test the quality of such a structure theorem is whether they resolve
the following questions about queue-number and nonrepetitive chromatic number
mentioned in Section 1:

Open Problem 34. Do graph classes with linear or polynomial expansion have
bounded queue-number?

Open Problem 35. Do graphs classes with linear or polynomial (or even single
exponential) expansion have bounded nonrepetitive chromatic number?

Note that bounded degree graphs are an example with exponential expansion and
unbounded queue-number [51]. Similarly, subdivisions of complete graphs Kn with
o(logn) division vertices per edge are an example with super-exponential expan-
sion and unbounded nonrepetitive chromatic number [41]. Thus the graph classes
mentioned in the above open problems are the largest possible with bounded queue-
number or bounded nonrepetitive chromatic number.
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8.1 Algorithmic Questions

Do product structure theorems have algorithmic applications? Consider the method
of Baker [2] for designing polynomial-time approximation schemes for problems on
planar graphs. This method partitions the graph into BFS layers, such that the prob-
lem can be solved optimally on each layer (since the induced subgraph has bounded
treewidth), and then combines the solutions from each layer. Theorem 1 gives a
more precise description of the layered structure of planar graphs. It is conceivable
that this extra structural information is useful when designing algorithms for planar
graphs (and any graph class that has a product structure theorem).

Some NP-complete problems can be solved efficiently on planar graphs. Can
these results be extended to any subgraph of the strong product of a bounded
treewidth graph and a path? For example, can max-cut be solved efficiently for
graphs that are subgraphs of H � P, where H is a bounded treewidth graph and
P is a path, such as apex-minor-free graphs? This would be a considerable general-
isation of the known polynomial-time algorithm for max-cut on planar graphs [31]
and on graphs of bounded genus [29].

Some problems can be solved by particularly fast algorithms on planar graphs.
Can such results be generalised for any subgraph of the strong product of a bounded
treewidth graph and a path? For example, can shortest paths be computed in O(n)
time for n-vertex subgraphs of H �P, where H is a bounded treewidth graph and
P is a path? Can maximum flows be computed in n logO(1)(n) time for n-vertex
subgraphs of H �P? See [6, 24] for analogous results for planar graphs.
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[20] ZDENĚK DVOŘÁK AND SERGEY NORIN. Strongly sublinear separators and
polynomial expansion. SIAM J. Discrete Math., 30(2):1095–1101, 2016.
doi: 10.1137/15M1017569. MR: 3504982.

Discrete Math. Theor. Comput. Sci., 22(4), 2020. 
https://dmtcs.episciences.org/6867
colorings.

, 67(4):22, 2020. http://dx.doi.org/10.1145/3385731
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A note on bilinear wave-Schrödinger

interactions

Timothy Candy

Abstract We consider bilinear restriction estimates for wave-Schrödinger interac-
tions and provide a sharp condition to ensure that the product belongs to Lq

t Lr
x in

the full bilinear range 2
q +

d+1
r < d +1, 1 � q,r � 2. Moreover, we give a counter-

example which shows that the bilinear restriction estimate can fail, even in the trans-
verse setting. This failure is closely related to the lack of curvature of the cone.
Finally we mention extensions of these estimates to adapted function spaces. In par-
ticular we give a general transference type principle for U2 type spaces that roughly
implies that if an estimate holds for homogeneous solutions, then it also holds in U2.
This transference argument can be used to obtain bilinear and multilinear estimates
in U2 from the corresponding bounds for homogeneous solutions.

1 Introduction

Let u = eit|∇| f be a free wave, and let v = eitΔ g be a homogeneous solution to the
Schrödinger equation. Our goal is to understand for which 1 � q,r � ∞ we have the
bilinear estimate

‖uv‖Lq
t Lr

x(R1+d) � ‖ f‖L2(Rd)‖g‖L2(Rd). (1)

As a first step in this direction, assuming for instance that we have the support
condition supp f̂ ,supp ĝ ⊂ {|ξ | ≈ 1}, then for any 2

q1
+ d−1

r1
� d−1

2 with (q1,r1,d) �=
(2,∞,3), and any 2

q2
+ d

r2
� d

2 with (q2,r2,d) �=(2,∞,2) we have the linear Strichartz
estimates

‖u‖L
q1
t L

r1
x (R1+d) � ‖ f‖L2(Rd), ‖v‖L

q2
t L

r2
x (R1+d) � ‖g‖L2(Rd).
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Consequently an application of Hölder’s inequality and a short computation shows
that the bilinear estimate (1) holds provided that

2
q
+

d
r
� d,

2
q
+

d −1
r

� d −1+
1
d
, (q,d) �=

(4
3
,2
)
,(1,3). (2)

The first condition in (2) is stronger in the region q � 2 and follows by simply plac-
ing u ∈ L∞

t L2
x and using the Strichartz estimate for v. Note that this explains the

Schrödinger scaling of the first condition in (2). The second condition in (2) domi-
nates in the region 1 � q � 2, where we are forced to use the Strichartz estimates on
both u and v.

A natural question now arises, is it possible to improve on the conditions (2)?
This question is particularly relevant in applications to nonlinear PDE, where bi-
linear estimates such as (2) with q,r as small as possible, are extremely useful in
controlling nonlinear interactions. Note that the wave-Schrödinger interactions oc-
cur naturally in important models, see for instance the Zakharov system [21]. In the
case of wave-wave interactions, it is possible to improve significantly on the range
given by simply applying Hölder’s inequality and the Strichartz estimate for the
wave equation provided an additional transversality assumption is made.

Theorem 1 (Endpoint bilinear restriction for wave [20, 16, 18, 19]). Let d � 2
and 1 � q,r � 2 with 2

q +
d+1

r � d + 1 and 1
q < d+1

4 . If f ,g ∈ L2(Rd) and ω,ω ′ ∈
Sd−1 with1 �(ω,ω ′)≈ 1 and

supp f̂ ⊂ {
ξ ∈ Rd ∣∣ |ξ | ≈ 1,�(ξ ,ω)� 1

}
,

supp ĝ ⊂ {
ξ ∈ Rd ∣∣ |ξ | ≈ 1,�(ξ ,ω ′)� 1

} (3)

then
‖eit|∇| f eit|∇|g‖Lq

t Lr
x(R1+d) � ‖ f‖L2(Rd)‖g‖L2(Rd).

The first result beyond the linear Strichartz theory was obtained in [5]. The full
non-endpoint range when q = r was obtained in [20], and extended to q �= r in
[18, 13, 14]. The extension of Theorem 1 to more general frequency interactions
is also known [18, 13, 14, 9]. The range for (q,r) is sharp (except possibly the
case q = 4

3 when d = 2) [9, 17] , and was originally conjectured by Klainerman-
Machedon. The case q = 1 of Theorem 1 can be found in [6]. Theorem 1 is closely
related to the restriction conjecture for the cone, as the free wave eit|∇| f is essentially
the extension operator for the cone. In particular, bilinear estimates of the form (1)
were originally used to obtain restriction estimates for the cone, see for instance
[15].

Theorem 1 is truly a bilinear estimate as it relies crucially on the support assump-
tion (3). This assumption implies that the two subsets of the cone, suppF [eit|∇| f ]⊂
R1+d and suppF [eit|∇|g] ⊂ R1+d , are transverse, where F denotes the space-time
Fourier transform. Since the waves eit|∇| f and eit|∇|g propagate in the normal di-

1 Here �(x,y) = (1− x·y
|x||y| )

1
2 is the angle between x,y ∈ Rd \{0}.
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rections to these surfaces, the two waves can only interact strongly for short times.
Thus we should expect the product eit|∇| f eit|∇|g to decay faster than say (eit|∇| f )2.

If we apply the above discussion to the bilinear estimate (1), since the normal di-
rection to the cone is (1,− ξ

|ξ | ), and the normal direction to the paraboloid is (1,2ξ ),
we should expect to improve on the range (2) obtained via the linear Strichartz esti-
mates, by imposing a transversality condition of the form

∣∣∣ ξ
|ξ | +2η

∣∣∣� 1 (4)

for all ξ ∈ supp f̂ and η ∈ ĝ (here f̂ denotes the spatial Fourier transform). Unfor-
tunately, the simple transversality condition (4) is not sufficient to obtain the full
range in Theorem 1 due to the lack of curvature of the cone along the surface of
intersection

Σwave(a,z) =
{
(τ,ξ ) ∈ suppF [eit|∇| f ]

∣∣ (a,z)− (τ,ξ ) ∈ suppF [eitΔ g]
}
,

where (a,z) ∈ R1+d . In fact it is well known that for certain surfaces, transversality
alone is not sufficient to obtain the full bilinear range, see for instance [12] for the
example of the hyperbolic paraboloid, and the related discussion in [3, 6]. However,
imposing a stronger support condition gives the following.

Theorem 2 (Wave-Schrödinger bilinear restriction [6]). Let d � 2, 1 � q,r � 2,
and 2

q +
d+1

r < d +1. Let ξ0,η0 ∈ Rd such that

∣∣∣
( ξ0

|ξ0| +2η0

)
· ξ0

|ξ0|
∣∣∣�

∣∣∣ ξ0

|ξ0| +2η0

∣∣∣ (5)

and define λ = |η0|, and α = | ξ0
|ξ0| +2η0|. If

supp f̂ ⊂ {|ξ | ≈ λ ,�(ξ ,ξ0)� min{1,α}}, supp ĝ ⊂ {|ξ −η0| � α}

then we have
∥∥eit|∇| f eitΔ g

∥∥
Lq

t Lr
x(R1+d)

� (min{α,λ ,αλ})d+1− d+1
r − 2

q α
1
r −1λ

1
q− 1

2 ‖ f‖L2
x
‖g‖L2

x
.

Theorem 2 is a consequence of a bilinear restriction estimate for general phases
obtained in [6]. The special case q = r and α = λ = 1 could also be deduced from
[3]. As the precise conditions in [6] are complicated, the derivation is slightly non-
trival and we give the details below in Section 2. The dependence on the param-
eters α and λ is sharp, and this is particularly useful in applications to nonlinear
PDE where α and λ roughly correspond to a derivative loss/gain. Clearly, applying
Sobolev embedding and interpolating with the trivial case q = ∞, r = 1 can extend
the range to q,r � 2 and 2

q +
d+1

r < d + 1. However the dependence on α and λ
would no longer be sharp (i.e. losses may occur).
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Fig. 1 The range of 1 �
q,r � 2 in d = 3. The line
corresponds to the sharp
bilinear line 2

q +
d+1

r = d +

1 given by Theorem 2. If
(4) holds but (5) fails, then
Theorem 3 states that the
bilinear estimate (1) can only
hold to the left of the dotted
line.

1
2

1 1
r3

4

1
2

1

1
q

7
8

( 2
3 ,

2
3 )

The condition (5) is necessary to obtain the full bilinear range 2
q +

d+1
r � d +1.

Theorem 3 (Transverse counter example). Suppose that the estimate (1) holds for
all f ,g ∈ L2(Rd) with2

supp f̂ ⊂ {|ξ − e1| � 1}, supp ĝ ⊂ {|2ξ + e1 + e2| � 1}.

Then
2
q
+

d −1
r

+
1
2r

� d. (6)

Note that if we let ξ0 = e1 and η0 =− 1
2 e1− 1

2 e2, then | ξ0
|ξ0| +2η0|= 1 but ( ξ0

|ξ0| +

2η0) · ξ0
|ξ0| = 0. In other words the transversality condition (4) holds, but the stronger

condition (5) fails. The range (6) is stronger than the bilinear range in Theorem 2
when q is close to 1 and d � 5, see figure 1. If we drop the transversality condition
completely, then a similar counter example can be used to prove the following.

Theorem 4 (Non-transverse counter example). Suppose that the estimate (1)
holds for all f ,g ∈ L2(Rd) with supp f̂ ,supp ĝ ⊂ {|ξ | ≈ 1}. Then

2
q
+

d −1
r

� d − 1
2
,

1
q
� d +1

4
. (7)

We give the proof of Theorem 3 and Theorem 4 in Section 3 below. In the positive
direction, if (4) holds, but (5) fails, a naive adaption of the proof of Theorem 2 should
give the region 2

q +
d
r < d. The loss of dimension corresponds to the lack of curva-

ture in the radial direction (i.e. the cone only has d −1 directions of non-vanishing
curvature). Note that there is a large gap between the potential range 2

q +
d
r < d and

the counter example given by Theorem 3. Similarly, even in the “linear” case when

2 Here e j ∈ Rd , j = 1, . . . ,n denote the standard basis vectors.
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the transversality condition (4) is dropped, there is a gap between the counter ex-
ample in Theorem 4 and the linear range given via Strichartz estimates (2). It is an
interesting open question to determine the precise range of (q,r) once the general
condition (5) is dropped. In particular, it is not clear to the author what the optimal
range for (q,r) should be. Presumably the counter examples used in the proof of
Theorem 3 and Theorem 4 can be improved.

In applications to nonlinear PDE, typically the homogeneous estimate in Theo-
rem 2 is not sufficient, and it is more useful to have a version in suitable function
spaces. One option is to work with Xs,b type spaces. However, recently bilinear re-
striction estimates in the U p type spaces have proven useful, see for instance [7] and
the discussion within. In the following we wish to give a general argument which
can allow multilinear estimates for homogeneous solutions, to be upgraded to esti-
mates in the adapted function spaces U2. The underlying idea is straight forward.
The first step is use the classical theorem of Marcinkiewicz-Zygmund that given a
bound for a linear operator, a standard randomisation argument via Khintchine’s in-
equality implies that a vector valued operator bound also holds. The second step is
use the observation that a vector valued estimate immediately implies a U2 bound,
see for instance [6, Section 1.2] or [8, Remark 5.2]. As an example, we extend The-
orem 2, and the multilinear restriction theorem [4] to U2.

We start with the definition of U2. A function φ ∈ L∞
t L2

x is an atom if we can
write φ(t) = ∑I 1I(t)gI , with the intervals I ⊂ R forming a partition of R, and the
gI : Rd → C satisfying the bound

(
∑

I
‖gI‖2

L2
x

) 1
2 � 1.

The atomic space U2 is then defined as

U2 =
{

∑
j

c jφ j

∣∣∣ φ j an atom and (c j) ∈ �1
}

with the induced norm
‖u‖U2 = inf

u=∑ j c jφ j
∑

j
|c j|

where the inf is over all representations of u in terms of atoms. These spaces were
introduced in unpublished work of Tataru, and studied in detail in [11, 10]. To obtain
the adapted function spaces U2

|∇| and U2
Δ adapted to the wave and Schrödinger flows

respectively, we define

U2
|∇| = {u : R1+d → C | e−it|∇|u ∈U2}, U2

Δ = {v : R1+d → C | e−itΔ v ∈U2}.

Note that since 1R(t) f ∈U2, we clearly have eit|∇| f ∈U2
|∇| and eitΔ f ∈U2

Δ . Thus the
adapted function spaces contain all homogeneous solutions. Running the argument
sketched above implies the following U2 version of Theorem 2.
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Theorem 5 (Wave-Schrödinger bilinear restriction in U2). Let d � 2, 1 � q,r �
2, and 2

q +
d+1

r < d+1. Let ξ0,η0 ∈Rd such that (5) holds and define λ = |η0|, and

α = | ξ0
|ξ0| +2η0|. If

supp û ⊂ {|ξ | ≈ λ ,�(ξ ,ξ0)� min{1,α}}, supp v̂ ⊂ {|ξ −η0| � α} (8)

then we have

‖uv‖Lq
t Lr

x(R1+d) � (min{α,λ ,αλ})d+1− d+1
r − 2

q α
1
r −1λ

1
q− 1

2 ‖u‖U2
|∇|
‖v‖U2

Δ
.

Proof. Let u=∑I∈I eit|∇| fI be a U2
|∇| atom, and let v0 = eitΔ g be a homogeneous so-

lution to the Schrödinger equation. Assume that the support conditions (8) hold. Let
(εI)I∈I be a family of independent, identically distributed random variables with
εI = 1 with probability 1

2 , and εI =−1 with probability 1
2 . The since the intervals I

are disjoint, we have via Khintchine’s inequality

|u|�
(
∑

I
|eit|∇| fI |2

) 1
2 ≈ E

[∣∣∣∑
I

εIeit|∇| fI

∣∣∣
]
.

Therefore, since q,r � 1, applying Theorem 2 gives

‖uv0‖Lq
t Lr

x
�

∥∥∥E
[∣∣∣∑

I
εIeit|∇| fI

∣∣∣
]
v0

∥∥∥
Lq

t Lr
x

� E
[∥∥∥eit|∇|

(
∑

I
εI fI

)
v0

∥∥∥
Lq

t Lr
x

]

� (min{α,λ ,αλ})d+1− d+1
r − 2

q α
1
r −1λ

1
q− 1

2 E
[∥∥∥∑

I
εI fI

∥∥∥
L2

x

]
‖g‖L2

x
.

We now observe that Hölder’s inequality, together with another application of Khint-
chine’s inequality, implies that

E
[∥∥∥∑

I
εI fI

∥∥∥
L2

x

]
�

(
E
[∥∥∥∑

I
εI fI

∥∥∥
2

L2
x

]) 1
2
=
(
∑

I
‖ fI‖2

L2

) 1
2

and consequently, applying the definition of the U2
|∇| norm, we obtain

‖uv0‖Lq
t Lr

x
� (min{α,λ ,αλ})d+1− d+1

r − 2
q α

1
r −1λ

1
q− 1

2 ‖u‖U2
|∇|
‖g‖L2

x
. (9)

To replace the homogeneous solution v0 with a general U2
Δ function follows by

essentially repeating the above argument. In slightly more detail, suppose that v =

∑J∈J eitΔ gJ is a U2
Δ atom, and let (εJ)J∈J be a family of i.i.d. random variables

with εJ = ±1 with equal probability. Then as above, but replacing Theorem 2 with
(9), we see that
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‖uv‖Lq
t Lr

x
�

∥∥∥uE
[∣∣∣∑

J
εJeitΔ gJ

∣∣∣
]∥∥∥

Lq
t Lr

x

� E
[∥∥∥u∑

J
eitΔ εJgJ

∥∥∥
Lq

t Lr
x

]

� (min{α,λ ,αλ})d+1− d+1
r − 2

q α
1
r −1λ

1
q− 1

2 ‖u‖U2
|∇|

E
[∥∥∥∑

J
εJgJ

∥∥∥
L2

]

� (min{α,λ ,αλ})d+1− d+1
r − 2

q α
1
r −1λ

1
q− 1

2 ‖u‖U2
|∇|

(
∑
J
‖gJ‖2

L2

) 1
2
.

Applying the definition the U2
Δ norm, the required bound follows.

Strictly speaking the above theorem can also be obtain via the vector valued
version of Theorem 2 from [6], see for instance [6, Section 1.2]. However the above
alternative argument is more direct, and has the distinct advantage that it can be
applied in more general situations. As an example, consider the following special
case of the multilinear restriction theorem [4].

Theorem 6 (Multilinear restriction for Schrödinger [4] ). Let d � 2 and ε > 0.
Then for any R � 1 and any f j ∈ L2(Rd), j = 1, . . . ,d with supp f̂ j ⊂ {|ξ −e j| � 1}
we have ∥∥∥Π jeitΔ f j

∥∥∥
L

2
d−1
t,x ({|t|+|x|<R})

� Rε Π j‖ f j‖L2 .

It is conjectured that the Rε loss can be removed, but this is currently an open
question (however see [1] and [2] for recent progress). The U2 version of Theorem
6 is then the following.

Theorem 7 (Multilinear restriction for Schrödinger in U2). Let d � 2 and ε > 0.
Then for any R � 1 and any u j ∈U2

Δ , j = 1, . . . ,d with supp û ⊂ {|ξ − e j| � 1} we
have ∥∥∥Π ju j

∥∥∥
L

2
d−1
t,x ({|t|+|x|<R})

� Rε Π j‖u j‖U2
Δ
.

Proof. Let BR = {|t|+ |x| < R}. We proceed as in the proof of Theorem 5. Thus
suppose that u1 = ∑I eitΔ fI is U2

Δ atom, and let u0
j = eitΔ f j for j = 2, . . . ,d. Let

εI be a family of i.i.d. random variables with εI = ±1 with equal probability. An
application of Khintchine’s inequality implies that

|u1|�
(
∑

I
|eitΔ fI |2

) 1
2 ≈

(
E
[∣∣∣∑

I
εIeit|∇| fI

∣∣∣
2

d−1
]) d−1

2

and hence Theorem 6 together with Hölder’s inequality gives
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∥∥∥u1Π d
j=2u0

j

∥∥∥
L

2
d−1
t,x (BR)

�
∥∥∥
(

E
[∣∣∣∑

I
εIeitΔ fI

∣∣∣
2

d−1
]) d−1

2 Π d
j=2u0

j

∥∥∥
L

2
d−1
t,x (BR)

�
(

E
[∥∥∥∑

I
εIeitΔ fIΠ d

j=2u j

∥∥∥
2

d−1

L
2

d−1
t,x (BR)

]) d−1
2

� Rε
(

E
[∥∥∥∑

I
εI fI

∥∥∥
2

d−1

L2

]) d−1
2 Π d

j=2‖ f j‖L2

� Rε
(

E
[∥∥∥∑

I
εI fI

∥∥∥
2

L2

]) 1
2 Π d

j=2‖ f j‖L2

≈ Rε
(
∑

I
‖ fI‖2

L2

) 1
2 Π d

j=2‖ f j‖L2 .

Applying the definition of the U2
Δ norm, we conclude that

∥∥∥u1Π d
j=2u0

j

∥∥∥
L

2
d−1
t,x (BR)

� Rε‖u1‖U2
Δ

Π d
j=2‖ f j‖L2 . (10)

As in the proof of Theorem 5, repeating this argument with Theorem 6 replaced
with (10) and u1 replaced with u2 gives

∥∥∥u1u2Π d
j=3u0

j

∥∥∥
L

2
d−1
t,x (BR)

� Rε‖u1‖U2
Δ
‖u2‖U2

Δ
Π d

j=3‖ f j‖L2 .

The required bound follows by continuing in this manner.

We have not attempted to write down the most general transference type argu-
ment that can be deduced from the above arguments. However the underlying idea
is simple; if a estimate holds for free solutions, then via randomisation it should
hold in the vector valued case, and consequently it will also hold in U2. Of course
proving U p bounds, with p �= 2 is substantially more challenging.

2 Proof of Theorem 2

It suffices to check the conditions in [6]. Suppose that ξ0,η0 ∈ Rd such that (5)
holds, and define λ = |η0|, and α = | ξ0

|ξ0| +2η0|. Let

Λ1 =
{|ξ | ≈ λ ,�(ξ ,ξ0)� min{1,α}}, Λ2 = {|ξ −η0| � α}

and
Φ1(ξ ) = |ξ |, Φ2(ξ ) =−|ξ |2, H1 = λ−1, H2 = 1.

In view of [6, Lemma 2.1 and Theorem 1.2], for { j,k}= {1,2} and ξ ∈Λ j, η ∈Λk,
it suffices to check the following conditions:
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(i) for all v ∈ Rd we have

v·(∇Φ j(ξ )−∇Φk(η))= 0 =⇒ ∣∣∇2Φ j(ξ )v∧
(
∇Φ j(ξ )−∇Φk(η)

)∣∣�H jα|v|,

(ii) for ξ ′ ∈ Λ j and η ′ ∈ Λk we have

|∇Φ j(ξ )−∇Φ j(ξ ′)|+ |∇Φk(η)−∇Φk(η ′)| � α,

(iii) the Hessian’s satisfy

|∇Φ j(ξ )−∇Φ j(ξ ′)−∇2Φ j(ξ )(ξ −ξ ′)| � H j|ξ −ξ ′|,

(iv) for 2 < m � 5d we have the derivative bounds

‖∇mΦ j‖L∞(Λ j)(min{α,λ ,αλ})m−2 � H j, H j min{α,λ ,αλ}� α.

(v) we have the surface measure condition

sup
(a,h)∈R1+d

σd−1
({

ξ ∈Λ2∩(h−Λ1)
∣∣ Φ2(ξ )+Φ1(h−ξ )= a})� (

min{α,λ ,αλ})d−1

where σd−1 is the induced Lebesgue surface measure.

To check the first property (i), by unpacking the definition, our goal is to show that
for any ξ ∈ Λ1 and η ∈ Λ2 we have

z · (ω +2η) = 0 =⇒ ∣∣(z− (ω · z)ω)∧ (ω +2η)
∣∣� |z||ω +2η |,

where ω = ξ
|ξ | . In view of the definition of the sets Λ j we have

|(ω +2η) ·ω|� |ω +2η |

and hence as (z ·ω)(ω +2η) ·ω =−2z · (η − (η ·ω)ω) we get

|z ·ω|� 2|z · (η − (η ·ω)ω)|
|(ω +2η) ·ω| � |z− (ω · z)ω|.

Therefore
∣∣(z− (ω · z)ω)∧ (ω +2η)

∣∣�
∣∣z− (ω · z)ω∣∣|(ω +2η) ·ω|� |z||ω +2ω|

as required.
The properties (ii), ... , (iv) follow by direct computation. Finally, to check the

surface measure condition (v), we note that the vector N = ξ0
|ξ0| +2η0 is essentially

normal to the surface. On the other hand, from (5), N is roughly pointing in the
direction ξ0

|ξ0| . Hence the surface measure can be bounded by projecting onto the
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plane orthogonal to ξ0
|ξ0| . Since this projection is contained in a ball of radius �

min{α,λ ,αλ}, the bound follows.

3 Counter Examples

We first observe that by a randomisation argument, if the estimate (1) holds for all
f ,g ∈ L2 with supp f̂ ⊂ Λ1 ⊂ Rn and supp ĝ ⊂ Λ2, then in fact we also have the
vector valued version

∥∥∥
(
∑

j
|eit|∇| f j|2

) 1
2
(
∑
k
|eitΔ gk|2

) 1
2
∥∥∥

Lq
t Lr

x
�

(
∑

j
‖ f j‖2

L2

) 1
2
(
∑
k
‖gk‖2

L2
x

) 1
2

(11)

for all supp f̂ j ⊂Λ1, supp ĝk ⊂Λ2. This follows by noting that if ε j is an i.i.d. family
of random variables with ε j = ± with equal probability, then as in the proof of
Theorem 5, we have via Khintchine’s inequality and (1)

∥∥∥
(
∑

j
|eit|∇| f j|2

) 1
2
eitΔ g

∥∥∥
Lq

t Lr
x
≈
∥∥∥E

[∣∣∣∑
j

ε jeit|∇| f j

∣∣∣
]
eitΔ g

∥∥∥
Lq

t Lr
x

� E
[∥∥∥∑

j
ε jeit|∇| f jeitΔ g

∥∥∥
Lq

t Lr
x

]

� E
[∥∥∥∑

j
ε jeit|∇| f j

∥∥∥
L2

x

]
‖g‖L2

x

� E
[∥∥∥∑

j
ε jeit|∇| f j

∥∥∥
2

L2
x

] 1
2 ‖g‖L2

x
≈
(
∑

j
‖ f j‖2

L2

) 1
2 ‖g‖L2 .

Repeating this argument for the Schrödinger component then gives (11). Conse-
quently, we see that the scalar version (1) holds, if and only if the vector valued
version (11) holds. Thus to prove Theorem 3 and Theorem 4, it suffices to obtain
vector valued counter examples.

3.1 Proof of Theorem 3

Let N � 1 and f̂ , ĝ ∈C∞
0 with

supp f̂ ⊂ {|ξ1 −1| � 1, |ξ ′| � N−1}, supp ĝ ⊂ {|2ξ − e1 − e2| � N− 1
2 }

and ‖ f‖L2 ≈ N
d−1

2 , ‖g‖L2 ≈ N
d
4 . A short computation using integration by parts

shows that we can choose f such that
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|u(t,x)|= |eit|∇| f (x)|� 1

for all |t|� N2, |x1 + t|� 1, and |x′|� N. Similarly we can choose g such that

|v(t,x)|= |eitΔ g(x)|� 1

for all |t| � N, |x1 + t| � N
1
2 , |x2 + t| � N

1
2 , and |x′′| � N

1
2 , where we write x =

(x1,x′) = (x1,x2,x′′). In other words the free wave satisfies |u| � 1 on a plate of
dimension N2 ×1×Nd−1 oriented in the (1,−e1) direction, with short direction e1,
while the free Schrödinger wave satisfies |v| � 1 on a tube of dimensions N ×N

d
2

oriented in the (1,−e1 − e2) direction. Define the set

Ω = {|t|� N2, |x1 + t|� N
1
2 , |x′|� N}.

The support properties of u, implies that for any (t,x) ∈ Ω we have

U(t,x) =
(

∑
j∈Z

| j|�N
1
2

|u(t,x+ je1)|2
) 1

2 � 1.

Similarly, translating the free Schrödinger wave in both space and time gives for any
(t,x) ∈ Ω

V (t,x) =
(

∑
( j2,..., jd)∈Zd−1

| j2|,...,| jd |�N
1
2

∑
k∈Z
|k|�N

∣∣v
(
t +Nk,x+N

1
2 ( j2e2 + · · ·+ jded)

)∣∣2
) 1

2 � 1.

Since the wave and Schrödinger equations are translation invariant, the bound (11)
implies that

N
2
q N

d−1
r + 1

2r � ‖1Ω‖Lq
t Lr

x
� ‖UV‖Lq

t Lr
x

�
(

∑
| j|�N

1
2

‖ f‖2
L2

) 1
2
(

∑
| j2|,...,| jd |�N

1
2

∑
|k|�N

‖g‖2
L2

) 1
2

� N
d−1

2 + 1
4 ×N

d
2 +

1
4 .

Letting N → ∞, we see that this is only possible if 2
q +

d−1
r + 1

2r � d.

3.2 Proof of Theorem 4

Let 1 � M � N and f̂ , ĝ ∈C∞
0 with
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supp f̂ ⊂ {|ξ1 −1| � 1, |ξ ′| � N−1}, supp ĝ ⊂ {|2ξ − e1| � M−1}

and ‖ f‖L2 ≈ N
d−1

2 , ‖g‖L2 ≈ M
d
2 . A short computation using integration by parts

shows that we can choose f ,g such that

|u(t,x)|= |eit|∇| f (x)|� 1 for all |t|� N2, |x1 + t|� 1, |x′|� N

and

|v(t,x)|= |eitΔ g(x)|� 1 for all |t|� M2, |x1 + t|� M, |x′|� M.

In other words the free wave satisfies |u|� 1 on a plate of dimension N2 ×1×Nd−1

oriented in the (1,−e1) direction, with short direction e1, while the free Schrödinger
wave satisfies |v| � 1 on a tube of dimensions M2 ×Md oriented in the (1,−e1)
direction. Similar to the proof of Theorem 3, we consider a number of temporal
translated Schrödinger waves covering the space-time set

Ω = {|t|� N2, |x1 + t|� 1, |x′|� M}.

More precisely, we have for all (t,x) ∈ Ω

V (t,x) =
(

∑
j∈Z

| j|� N2

M2

|v(t + jM2,x)|2
) 1

2 � 1.

Since we clearly have |u| � 1 on Ω by construction, we see that if (1) holds, then
the vector valued version (11) holds, and hence

N
2
q M

d−1
r � ‖1Ω‖Lq

t Lr
x
� ‖uV‖Lq

t Lr
x
� ‖ f‖L2

(
∑

| j|� N2
M2

‖g‖2
L2

) 1
2 � N

d−1
2 ×NM

d
2 −1.

Rearranging, we see that we must have

N
2
q− d+1

2 M
d−1

r − d−2
2 � 1.

Letting M = 1 and N → ∞ gives the restriction 1
q � d+1

4 . On the other hand, letting
M = N → ∞, gives the condition 2

q +
d−1

r � d − 1
2 .
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A note on the scattering for 3D quantum

Zakharov system with non-radial data in L2

Chunyan Huang

Abstract In this note, we give a remark on the scattering for quantum Zakharov
system with non-radial small initial data in L2 with one order additional angular
regularity using the generalized Strichartz estimate with wider range and the normal
form transformation.

1 Introduction

We study the scattering of solutions to the 3D quantum Zakharov system
⎧
⎪⎨
⎪⎩

iut +Δu− ε2Δ 2u = nu,
ntt −Δn+ ε2Δ 2n = Δ(|u|2),
u(0,x) = u0, n(0,x) = n0, ∂tn(0,x) = n1,

(1)

where u(t,x) : R1 ×R3 → C is the envelope electric field and n(t,x) : R1 ×R3 → R
describes the plasma density fluctuation. The quantum parameter 0 < ε ≤ 1 is the
ratio between the ion plasmon energy and the electron thermal energy. For detailed
background of this system, see [6].
The solutions (u,n) of (1) preserve the mass ‖u(t)‖L2 and the energy

E(u,n,∂tn) =
∫

Rd
|∇u(t)|2 + ε2|Δu(t)|2 +n|u|2 + 1

2
(|D−1nt |2 +n2 + ε2|∇n(t)|2)dx.

When ε = 0, (1) reduces to the classical Zakharov system.
For simplicity, we change (1) to a lower order system by letting
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Chunyan Huang

N = n− int√−Δ + ε2Δ 2
. (2)

Then (1) is transformed to
{

iut − (−Δ + ε2Δ 2)u = (N̄u+Nu)/2,
iNt +

√−Δ + ε2Δ 2N = Δ√
−Δ+ε2Δ 2

(|u|2), (3)

with
u(0) = u0, N(0) = n0 − i(−Δ + ε2Δ 2)−

1
2 n1.

The treatment for N̄u is similar to Nu, we may assume that the nonlinear term in
the first equation of (3) is N̄u. The global well-posedness of (1) in energy space
was obtained in [5] when d = 1,2,3. As pointed out in [1] that L2 is the most im-
portant function space in mathematics and it is also important for Zakharov type
system since it measures the total electric energy in physics, to this motivation the
authors studied the local well-posedness with large data(1 ≤ d ≤ 8), global well-
posedness(1 ≤ d ≤ 5) and scattering for small initial data(4 ≤ d ≤ 8) of (3) in
L2(Rd)× L2(Rd), but for 1 ≤ d ≤ 3, scattering is not obtained in [1]. One of the
main difficulties of proving scattering for quantum Zakharov systemin in low di-
mensions is the quadratic nonlinearities. Recently, the scattering for 3D quantum
Zakharov system in L2(R3)×L2(R3) with small radial initial data was proved in [7]
using normal form transformation and radial improved Strichartz estimates. In this
note, we explain that the radial condition can be removed if we assume additional
angular regularity of degree one. The Sobolev space with one order angular regular-
ity H0,1

2,σ is defined in (5), the angular derivative Dσ is defined in Subsection 1.1, the
Strichartz norm S and W are defined in (1). The main result is the following

Theorem 1.1 d = 3. Suppose that ‖(u0,N0)‖H0,1
2,σ (R3)×H0,1

2,σ (R3)
= ε0 > 0 which is

small enough, then there exists a unique global solution (u,N) of (3) satisfy-
ing ‖(u,N)‖S×W ≤ Cε0 and scatters in this space. Namely, there exists a solution
(u±,N±) ∈ H0,1

2,σ (R
3)×H0,1

2,σ (R
3) to the linear system

{
iut − (−Δ + ε2Δ 2)u = 0,
iNt +

√−Δ + ε2Δ 2N = 0,
(4)

satisfying

‖u(t)−u±(t)‖L2 +‖N(t)−N±(t)‖L2 +‖Dσ (u(t)−u±(t))‖L2 +‖Dσ (N(t)−N±(t))‖L2

→ 0, as t →±∞.

Next we introduce some notations used in this note.
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1.1 Notation

For x ∈ Rn, write 〈x〉 := (1+ |x|2)1/2. We use f̂ or F f to denote the Fourier trans-
form of f . Write D :=

√−Δ = F−1|ξ |F and 〈D〉s := F−1(1+ |ξ |2)s/2F . Let
η : R3 → R be a smooth bump function supported in B2(0) and equal to 1 in
B1(0). For k ∈ Z, let χk(ξ ) = η(ξ/2k)−η(ξ/2k−1) and χ�k(ξ ) = η(ξ/2k). The
Littlewood-Paley operators are defined by

P̂k(ξ ) = χk(|ξ |)û(ξ ), P̂≤k(ξ ) = χ�k(|ξ |)û(ξ ).

Let Δσ be the Laplace-Beltrami operator on the unit sphere Sd−1 endowed with
standard metric g and measure dσ . Denote Dσ =

√−Δσ and Λσ =
√

1−Δσ . For
1 ≤ i, j ≤ d, Xi, j = xi∂ j − x j∂i are rotational vector fields and for f ∈ C2(Rd),
Δσ ( f )(x) = ∑1≤i, j≤d X2

i, j( f )(x).
Lp(Rd) denotes the usual Lebesgue space and L p(R+) = L p(R+ : ρd−1dρ).

We follow the notations in [2] and write Lp
σ = Lp

σ (Sd−1), H s
p = H s

p (Sd−1) =

Λ−s
σ Lp

σ . L p
ρ Lq

σ and L p
ρ H s

q are Banach spaces defined by the norms ‖ f‖L p
ρ Lq

σ
=

‖‖ f (ρσ)‖Lq
σ
‖L p

ρ
and ‖ f‖L p

ρ H s
q
= ‖‖ f (ρσ)‖H s

q ‖L p
ρ

.

For s∈R, 1≤ p≤∞, Hs
p denotes Banach space of elements u∈S ′(Rd) such that

F−1(1+ |ξ |2)s/2û ∈ Lp(Rd) and Hs(Rn) = Hs
2(Rn). The homogeneous Sobolev

space Ḣs is defined by Ḣs(Rd) = {u ∈ S ′(Rd) : ‖u‖Ḣs = ‖|ξ |s f̂ (ξ )‖L2
ξ
< ∞}.

For s∈R and 1≤ p,q,r ≤∞, Ḃs
p,q(Rd) is the standard homogeneous Besov space

on Rd with norm ‖u‖Ḃs
p,q(Rd) :=

(
∑k∈Z 2qsk‖Pku(x)‖q

p
)1/q. Ḃs

(p,q),r denotes the Besov
type space with norm

‖u‖Ḃs
(p,q),r

:=

(
∑
k∈Z

2rsk‖Pku‖r
L p

ρ Lq
σ

)1/r

.

For 0 ≤ α ≤ 1, Hs,α
p,σ is the space with norm

‖ f‖Hs,α
p,σ

= ‖Λ α
σ f‖Hs

p . (5)

Ḣs,α
p,σ , Ḃs,α

p,q,σ and Ḃs,α
(p,q),r,σ are defined similarly. For simplicity, we write Ḃs,α

p,σ =

Ḃs,α
p,2,σ and Bs,α

p,σ = Bs,α
p,2,σ .

Let X be any Banach space of functions on Rn, we define Lq
t X to be the space on

R×Rn with space-time norm ‖u‖Lq
t X :=

(∫
R ‖u‖q

X dt
)1/q

.

p′ denotes the conjugate of p ∈ [1,∞] given by 1
p +

1
p′ = 1.
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1.2 Normal form transform

In this subsection, we use the normal form transform technique(which was first
used by Shatah[8] in quadratic Klein-Gordon equations) for the quantum Zakharov
system. Normal form transform method is one of the most powerful tools to exploit
nonlinear structures. Write

ω1(D) = D2 + ε2D4, ω2(D) = D
√

1+ ε2D2,

and
ω1(|ξ |) = |ξ |2 + ε2|ξ |4, ω2(|ξ |) = |ξ |

√
1+ ε2|ξ |2.

Define S(t) = eitω1(D) := F−1e−itω1(ξ )F to be the fourth order Schrödinger semi-
group and W (t) = eitω2(D) := F−1eitω2(ξ )F to be the wave semigroup.
For any u and v, define the low-high, high-low and high-high interactions by

(uv)LH := ∑
k∈Z

(P≤k−5u)(Pkv), (uv)HL := ∑
k∈Z

(Pku)(P≤k−5v),

(uv)HH := ∑
|k1−k2|≤4
k1,k2∈Z

(Pk1 u)(Pk2 v),

then uv = (uv)LH +(uv)HL +(uv)HH . To make a distinction with resonant and non-
resonant terms, we write

(uv)1L := ∑
|k|≤1

(Pku)(P≤k−5v), (uv)L1 := (vu)1L,

(uv)XL := ∑
|k|>1

(Pku)(P≤k−5v), (uv)LX := (vu)XL,

then
(uv)HL = (uv)1L +(uv)XL, (uv)LH = (uv)L1 +(uv)LX .

We use ϕXL,ϕLX , etc. to denote the bilinear symbol of operators uXL,uLX , etc.,

F (uv)XL =
∫

ϕXLû(ξ −η)v̂(η)dη , F (uv)LX =
∫

ϕLX û(ξ −η)v̂(η)dη . (6)

Symbols ϕXL, ϕLX , etc., can be expressed in terms of χk(ξ ), i.e., ϕXL =∑|k|>1 χk(ξ −
η)χ≤k−5(η). Similarly as in [7], (3) are transformed to the following equivalent in-
tegral equations

u = S(t)u0 −Ω1(N̄,u)(t)+S(t)Ω1(N̄,u)(0)− i
∫ t

0
S(t − s)Ω2(D|u|2,u)(s)ds

− i
∫ t

0
S(t − s)Ω1(N̄, N̄u)(s)ds− i

∫ t

0
S(t − s)(N̄u)HH+LH+1L(s)ds. (7)
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N̄ =W (t)N̄0 −DΩ3(u,u)(t)+W (t)DΩ3(u,u)(0)− i
∫ t

0
W (t − s)(DΩ3(N̄u,u)

−DΩ3(u, N̄u))ds− i
∫ t

0
W (t − s)

D√
1+ ε2D2

(uū)HH+L1+1L(s)ds, (8)

where Ω j( j = 1,2,3) are bilinear multipliers

Ω1( f ,g) = F−1
∫

ϕXLΦ−1
ε f̂ (ξ −η)ĝ(η)dη ,

Ω2( f ,g) = F−1
∫ ϕXL

Φε
√

1+ ε2|ξ −η |2 f̂ (ξ −η)ĝ(η)dη ,

Ω3( f ,g) = F−1
∫

ϕXL+LX
f̂ (ξ −η) ˆ̄g(η)

Φ̃ε
√

1+ ε2|ξ |2 dη ,

in which Φε := ω1(|ξ |)− ω1(|η |)− ω2(|ξ − η |) and Φ̃ε = ω2(|ξ |) + ω1(|η |)−
ω1(|ξ −η |) are resonance functions for the Schrödinger and wave component in
(3). After normal form transform, the transformed new system is:

(i∂t +ω1(D))(u+Ω1(N̄,u)) = (N̄u)HH+LH+1L − iΩ2(D|u|2,u)− iΩ1(N̄, N̄u),

(i∂t +ω2(D))(N̄ +DΩ3(u,u)) =
D√

1+ ε2D2
(uū)HH+L1+1L − iDΩ3(N̄u,u)+ iDΩ3(u, N̄u).

(9)

Remark 1.2 In proving scattering, the most difficult terms are the high-low inter-
action terms (Nu)XL, (uū)XL and (uū)XL. The Schrödinger component and wave
component have different propagation speed in these cases. These terms are highly
non-resonant which could be observed from the resonant functions Φε and Φ̃ε . After
normal form transform, these quadratic terms are transformed into trilinear terms
and then have more freedom of space and time integrability which is crucial to close
the argument.

2 Angular Strichartz estimates and nonlinear estimates

In this section, we first recall the generalized spherically averaged Strichartz esti-
mate proved in [2].

Lemma 2.1 ([2]) d = 3, k ∈ Z.
(1) Let 10

3 < r ≤+∞, for any initial data φ ∈ L2
x(R3), we have

‖S(t)Pkφ‖L2
t L r

ρ L2
σ
� 2k( 1

2− 3
r )‖φ‖L2

x
. (1)

(2) Let 4 < r ≤+∞, for any initial data φ ∈ L2
x(R3), there holds
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‖W (t)Pkφ‖L2
t L r

ρ L2
σ
� 2k(1− 3

r )‖φ‖L2
x
. (2)

To state the angular Strichartz estimate, we first give a definition on angular admis-
sible pair:

Definition 2.2 Assume that 2 ≤ q, p ≤ ∞.
(1)A pair (q, p) is called angular Schrödinger-admissible if

2
q
+

5
p
<

5
2

or (q, p) = (∞,2). (3)

(2)A pair (q, p) is called angular wave-admissible if

1
q
+

2
p
< 1 or (q, p) = (∞,2). (4)

Using Lemma 2.1 and interpolating with the classical Strichartz estimate, we obtain
the following:

Lemma 2.3 (Angular Strichartz estimates for the fourth order Schrödinger oper-
ator) Assume that 2 ≤ q, q̃, p, p̃ ≤ ∞, (q, p),(q̃, p̃) are both angular Schrödinger-
admissible pairs and q̃ > 2, then we have the homogeneous Strichartz estimate:

‖S(t)u0‖
Lq

t Ḃ
2
q + 3

p − 3
2

(p,2),2

�‖u0‖L2
x
, (5)

and the inhomogeneous Strichartz estimate
∥∥∥∥
∫ t

0
S(t − s)F(s)ds

∥∥∥∥
Lq

t Ḃ
2
q + 3

p − 3
2

(p,2),2

�‖F‖
Lq̃′

t Ḃ
3
2 − 3

p̃ − 2
q̃

(p̃′,2),2

, (6)

where the implicit constants are independent of ε , 1
q̃ +

1
q̃′ = 1 and 1

p̃ +
1
p̃′ = 1.

Lemma 2.4 (Angular Strichartz estimates for the wave operator) Suppose that 2 ≤
q, q̃, p, p̃ ≤ ∞, (q, p),(q̃, p̃) are angular wave-admissible pairs and q̃ > 2, then there
holds the homogeneous Strichartz estimate

‖W (t)u0‖
Lq

t Ḃ
1
q + 3

p − 3
2

(p,2),2

�‖u0‖L2
x
, (7)

and the inhomogeneous Strichartz estimate
∥∥∥∥
∫ t

0
W (t − s)F(s)ds

∥∥∥∥
Lq

t Ḃ
1
q + 3

p − 3
2

(p,2),2

�‖F‖
Lq̃′

t Ḃ
3
2 − 3

p̃ − 1
q̃

(p̃′,2),2

, (8)

where the implicit constants are independent of ε , 1
q̃ +

1
q̃′ = 1 and 1

p̃ +
1
p̃′ = 1.

For (q, p) 
= (∞,2), we have slightly stronger Strichartz estimates:
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Corollary 2.5 For 2 ≤ q, q̃, p, p̃ ≤ ∞, (q, p) 
= (∞,2) and q > q̃′.
(a)Suppose that (q, p),(q̃, p̃) are Schrödinger admissible pairs, then

‖S(t)u0‖
Lq

t Ḃ
2
q + 3

p − 3
2

(p,2+),2

�‖u0‖L2
x
, (9)

∥∥∥∥
∫ t

0
S(t − s)F(s)ds

∥∥∥∥
Lq

t Ḃ
2
q + 3

p − 3
2

(p,2+),2

�‖F‖
Lq̃′

t Ḃ
3
2 − 3

p̃ − 2
q̃

(p̃′,2),2

. (10)

(b)Suppose that (q, p),(q̃, p̃) are wave admissible pairs, then

‖W (t)u0‖
Lq

t Ḃ
1
q + 3

p − 3
2

(p,2+),2

�‖u0‖L2
x
, (11)

∥∥∥∥
∫ t

0
W (t − s)F(s)ds

∥∥∥∥
Lq

t Ḃ
1
q + 3

p − 3
2

(p,2+),2

�‖F‖
Lq̃′

t Ḃ
3
2 − 3

p̃ − 1
q̃

(p̃′,2),2

. (12)

3 Nonlinear Estimates

For the variables u and N in the transformed system, we use the following angular
Strichartz norms with wider range as working spaces

u ∈ S = L∞
t H0,1

2,σ ∩L2
t Ḃ1/4+δ ,1

(q(δ ),2+),σ ∩L2
t B0,1

6,σ , (1)

N ∈W = L∞
t H0,1

2,σ ∩L2
t Ḃ−1/4−δ ,1

(q(−δ ),2+),σ ,

where 0 < δ � 1 is a fixed small enough number and q is defined by 1
q(δ ) =

1
4 +

δ
3 .

For 0 < δ � 1 small enough, there holds

10
3

< q(δ )< 4 < q(−δ )< ∞,

then the norms defined in (1) are angular Strichartz admissible.
For the resonant terms containing (N̄u)HH+LH+1L and (uū)HH+L1+1L in (7) and

(8), we apply the inhomogeneous generalized Strichartz estimates to estimate them.
We have

‖
∫ t

0
S(t − s)(N̄u)HH+LH+1L(s)ds‖S

� ‖(N̄u)LH‖L1
t H0,1

2,σ
+‖(N̄u)HH‖L1

t H0,1
2,σ

+‖(N̄u)1L‖
Lq̃′

t Ḃ
3
2 − 2

q̃ − 3
r̃ ,1

(r̃′,2),σ

, (2)

and
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‖
∫ t

0
W (t − s)

D√
1+ ε2D2

(uū)HH+L1+1L(s)ds‖W

� ‖ D√
1+ ε2D2

(uū)HH‖L1
t H0,1

2,σ
+‖ D√

1+ ε2D2
(uū)1L+L1‖

L
q̃′1
t Ḃ

3
2 − 1

q̃ − 3
r̃ ,1

(r̃′1,2),σ

, (3)

where (q̃′, r̃′) is the dual angular Schrödinger admissible pair and (q̃′1, r̃
′
1) is the dual

angular wave admissible pair.
To deal with the other nonlinear terms, we follow [3] to use representation theory of
SO(3). Let μ be Haar measure of SO(3) and write Lq

A = Lq(SO(3),μ). Then

‖ f‖L p
ρ Lq

σ
∼ ‖ f (Ax)‖Lp

x Lq
A
, ∀1 ≤ p,q ≤ ∞.

Lemma 3.1 ([10]) For any 1 < q < ∞,

‖ f‖L p
ρ H 1

q
∼ ‖ f‖L p

ρ Lq
σ
+∑

i, j
‖Xi, j f‖L p

ρ Lq
σ
,

where Xi, j = xi∂ j − x j∂i.

Let Tm be a bilinear operator on Rn defined as

Tm( f ,g)(x) =
∫

R2n
m(ξ ,η) f̂ (ξ )ĝ(η)eix(ξ+η)dξ dη .

We recall a bilinear multiplier estimate proved in [3].

Lemma 3.2 ([3]) Let 1 ≤ p, p1, p2 ≤ ∞ and 1/p = 1/p1+1/p2. Assume m(ξ ,η) =
h(|ξ |, |η |) for some function h, m is bounded and satisfies for all α,β

|∂ α
ξ ∂ β

η m(ξ ,η)| ≤Cαβ |ξ |−|α||η |−|β |, ξ ,η 
= 0.

Then for q > 2,

‖Tm(Pk1 f ,Pk2 g)‖L p
ρ H 1

q
�C‖ f‖L

p1
ρ H 1

q
‖g‖L

p2
ρ H 1

q
,

for any k1,k2 ∈ Z with an uniform C.

With Lemma 3.1 and applying Lemma 3.2 for every bilinear dyadic piece, we have
the following two lemmas following the proof of [4] and [7] with slightly modifica-
tions:

Lemma 3.3 (Bilinear Estimates) Let δ be a small number.
(1)For any N and u, there holds
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‖(N̄u)LH‖L1
t H0,1

2,σ
� ‖N‖

L2
t Ḃ−1/4−δ ,1

(q(−δ ),2+),σ
‖u‖

L2
t Ḃ1/4+δ ,1

(q(δ ),2+),σ
,

‖(N̄u)HH‖L1
t H0,1

2,σ
� ‖N‖

L2
t Ḃ−1/4−δ ,1

(q(−δ ),2+),σ
‖u‖

L2
t Ḃ1/4+δ ,1

(q(δ ),2+),σ
,

‖(N̄u)1L‖
Lq̃′

t Ḃ
3
2 − 2

q̃ − 3
r̃ ,1

(r̃′,2),σ

� ‖N‖
L2

t Ḃ−1/4−δ ,1
(q(−δ ),2+),σ

‖u‖
L∞

t H0,1
2,σ∩L2

t Ḃ1/4+δ ,1
(q(δ ),2),σ

,

where in the third estimate 0 ≤ θ ≤ 1, 1
q̃ = 1

2 − θ
2 , 1

r̃ = 1
4 +

θ
3 + δ

3 .
(2)For any u, there holds

‖ D√
1+ ε2D2

(uū)HH‖L1
t H0,1

2,σ
� ‖u‖

L2
t Ḃ1/4−δ ,1

(q(−δ ),2+),σ
‖u‖

L2
t Ḃ1/4+δ ,1

(q(δ ),2+),σ
,

‖ D√
1+ ε2D2

(uū)1L+L1‖
L

q̃′1
t Ḃ

3
2 − 1

q̃ − 3
r̃ ,1

(r̃′1,2),σ

� ‖u‖2
L∞

t H0,1
2,σ∩L2

t Ḃ1/4+δ ,1
(q(δ ),2+),σ

,

where in the last inequality 0 ≤ θ ≤ 1, 1
q̃ = 1

2 − θ
2 , 1

r̃ = 1
4 +

θ
3 − δ

3 .

Sketch of the Proof. We briefly sketch the proof of the first estimate. By dyadic
decomposition,

‖(N̄u)LH‖2
H0,1

2,σ
� ∑

k2

‖ ∑
k1<k2−5

Λ 1
σ (Pk1 N̄Pk2u)‖2

L 2
ρ L2+

σ

� ∑
k2

( ∑
k1<k2−5

‖Pk1N̄Pk2u‖L 2
ρ H 1

2+
)2.

When q > 2, H 1
q is an algebra. Using the bilinear estimate, i.e., Lemma 3.2, we

have

‖(N̄u)LH‖2
H0,1

2,σ
� ∑

k2

( ∑
k1<k2−5

‖Pk1N̄‖
L

q(−δ )
ρ H 1

2+
‖Pk2 u‖

L
q(δ )
ρ H 1

2+
)2

= ∑
k2

( ∑
k1<k2−5

2k1(− 1
4−δ )‖Pk1 N̄‖

L
q(−δ )
ρ H 1

2+
2k1(

1
4+δ )‖Pk2 u‖

L
q(δ )
ρ H 1

2+
)2

� ‖N‖2
Ḃ−1/4−δ ,1
(q(−δ ),2+),σ

‖u‖2
Ḃ1/4+δ ,1
(q(δ ),2+),σ

,

which implies the first estimate by using Hölder’s inequality in time. The other terms
can be estimated similarly, we skip the details.
For the boundary terms, applying homogeneous Strichartz estimates, we obtain

Lemma 3.4 (Boundary terms I) For any N0 and u0,

‖S(t)Ω1(N̄,u)(0)‖S � ‖Ω1(N̄0,u0)‖H0,1
2,σ

� ‖N0‖H0,1
2,σ
‖u0‖H0,1

2,σ
,

‖W (t)DΩ3(u,u)(0)‖W � ‖DΩ3(u0,u0)‖H0,1
2,σ

� ‖u0‖2
H0,1

2,σ
.

Then for any N and u, there holds
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‖Ω1(N̄,u)‖L∞
t H0,1

2,σ
� ‖N‖L∞

t H0,1
2,σ
‖u‖L∞

t H0,1
2,σ
, ‖DΩ3(u,u)‖L∞

t H0,1
2,σ

� ‖u‖2
L∞

t H0,1
2,σ
.

We need the Coifman-Meyer bilinear multiplier estimates to deal with the other
nonlinear terms

Lemma 3.5 Assume m is bounded and satisfying the following estimates:

|∂ α
ξ ∂ β

η m(ξ ,η)| ≤Cαβ |ξ |−|α||η |−|β |, ∀α,β .

Let 1 � p,q,r � ∞, 1/r = 1/p+1/q, then for any k1,k2 ∈ Z, we have

‖Tm(Pk1 f ,Pk2 g)‖Lr �C‖ f‖Lp‖g‖Lq .

Since Xi, j commutes with the radial Fourier multiplier operator and Xi j( f g) =
gXi j f + f Xi jg, applying Xi j to the multiplier on dyadic piece and then estimating
with Lemma 3.5 similarly as in [7], we have the following bilinear and trilinear
estimates:

Lemma 3.6 (Boundary terms II) For any N and u, there holds

‖Ω1(N̄,u)‖
L2

t Ḃ1/4+δ ,1
(q(δ ),2),σ

� ‖N‖L∞
t H0,1

2,σ
‖u‖L2

t B0,1
6,σ
,

‖DΩ3(u,u)‖L2
t Ḃ−1/4−δ

(q(−δ ),2),σ
� ‖u‖L2

t B0,1
6,σ
‖u‖L∞

t H0,1
2,σ
,

where the implicit constant is independent of ε .

Sketch of the Proof. For the first estimate, using dyadic decomposition, Sobolev
embedding and Lemma 3.1

‖Ω1(N̄,u)‖2
Ḃ1/4+δ ,1
(q(δ ),2),σ

� ‖DΩ1(N̄,u)‖2
H0,1

2,σ

� ∑
k2

‖Λ 1
σ Pk2〈D〉−1 ∑

k1≤k2−5
D〈D〉Ω1(Pk2 N̄,Pk1u)‖2

L2

� ∑
k2

(
∑

k1≤k2−5
〈2k2〉−1‖Pk2 D〈D〉Ω1(Pk2 N̄,Pk1u)‖L2

)2

+∑
k2

(
∑

k1≤k2−5
∑
i, j
〈2k2〉−1‖Pk2 D〈D〉Ω1(Xi, jPk2 N̄,Pk1 u)‖L2

)2

+∑
k2

(
∑

k1≤k2−5
∑
i, j
〈2k2〉−1‖Pk2 D〈D〉Ω1(Pk2 N̄,Xi, jPk1 u)‖L2

)2

.

In which D〈D〉Ω1(Pk2 N̄,Pk1 u) is a bilinear multiplier with symbol

m1(ξ ,η) =
|ξ +η |〈ξ +η〉χk2(ξ )χk1(η)

ω1(|ξ +η |)−ω1(|η |)−ω2(|ξ |) .
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One can check that m1(ξ ,η) satisfies the conditions in the Coifman-Meyer multi-
plier estimate, i.e., Lemma 3.5. Then

‖Ω1(N̄,u)‖2
Ḃ1/4+δ ,1
(q(δ ),2),σ

� ∑
k2

( ∑
k1≤k2−5

〈2k2〉−1‖Λ 1
σ Pk2 N̄‖L2‖Λ 1

σ Pk1u‖L∞)2

� ‖N‖2
H0,1

2,σ
‖u‖2

B0,1
6,σ
,

which implies the first estimate. For the boundary term containing Ω3, we skip the
details and refer to [7] for the detailed proof.
For the cubic terms, we have

Lemma 3.7 (Trilinear estimates) For any N and u, we get

‖
∫ t

0
S(t − s)Ω2(D|u|2,u)(s)ds‖S � ‖Ω2(D|u|2,u)‖L1

t H0,1
2,σ

� ‖u‖2
L2

t B0,1
6,σ
‖u‖L∞

t H0,1
2,σ
.

‖
∫ t

0
S(t − s)Ω1(N̄, N̄u)(s)ds‖S � ‖Ω1(N̄, N̄u)‖L2

t Ḃ0,1
( 6

5 ,2),σ
� ‖u‖L2

t B0,1
6,σ
‖N‖2

L∞
t H0,1

2,σ
,

‖
∫ t

0
W (t − s)(DΩ3(N̄u,u)−DΩ3(u, N̄u))ds‖W � ‖DΩ3(N̄u,u)‖L1

t H0,1
2,σ

� ‖u‖2
L2

t B0,1
6,σ
‖N‖L∞

t H0,1
2,σ
.

Sketch of the Proof. We only sketch the main idea of the proof for the first
trilinear estimate. Using dyadic decomposition and Bernstein’s inequality(see for
instance [9]),

‖Ω2(D|u|2,u)‖2
H0,1

2,σ
� ∑

k2

‖ ∑
k1≤k2−5

Λ 1
σ Pk2 Ω2(Pk2 D|u|2,Pk1 u)‖2

L2

� ∑
k2

22k2‖ ∑
k1≤k2−5

Λ 1
σ Pk2Ω2(Pk2 D|u|2,Pk1 u)‖2

L
6
5
.

Recall that the resonant function for the Schrödinger component is

Φε := ω1(|ξ |)−ω1(|η |)−ω2(|ξ −η |).

In the support of the symbol of Ω2, for the low frequency part(|ξ |� 1, |η | � |ξ | ∼
|ξ −η |),

|Φε | ∼ |ξ |.
While for the high frequency part (|ξ | � 1, |η | � |ξ | ∼ |ξ −η |),

|Φε | ∼ |ξ |4.

Therefore it can absorb four derivatives for the high frequency in terms of Coifman-
Meyer multiplier estimate(Lemma 3.5) which helps to close the argument. In detail,

‖Ω2(D|u|2,u)‖2
H0,1

2,σ
� ∑

k2

22k2〈2k2〉−6( ∑
k1≤k2−5

‖Λ 1
σ Pk2〈D〉3Ω2(Pk2D|u|2,Pk1 u)‖

L
6
5
)2
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Noticing that 〈D〉3Ω2(Pk2 D|u|2,Pk1 u) is a bilinear multiplier with symbol

m2(ξ ,η) =
〈ξ +η〉3|ξ |χk2(ξ )χk1(η)

(ω1(|ξ +η |)−ω1(|η |)−ω2(|ξ |))
√

1+ ε2|ξ |2 ,

which satisfies the conditions in Lemma 3.5. Therefore

‖Ω2(D|u|2,u)‖2
H0,1

2,σ
� ∑

k2

〈2k2〉−622k2

(
∑

k1≤k2−5
‖Pk2 |u|2‖L

3
2
‖Pk1 u‖L6

)2

+∑
k2

〈2k2〉−622k2

(
∑

k1≤k2−5
∑
i, j
‖Xi, jPk2 |u|2‖L

3
2
‖Pk1 u‖L6

)2

+∑
k2

〈2k2〉−622k2

(
∑

k1≤k2−5
∑
i, j
‖Pk2 |u|2‖L

3
2
‖Xi, jPk1 u‖L6

)2

� ‖u‖4
B0,1

6,σ
‖u‖2

H0,1
2,σ
,

which yields the first estimate as desired. The other terms can be estimated similarly.
For instance, for the third estimate containing Ω3, one only need to notice that the
resonant function for the wave component is

Φ̃ε = ω2(|ξ |)+ω1(|η |)−ω1(|ξ −η |),

and |Φ̃ε | behaves like 〈ξ 〉3|ξ |(when |η | � |ξ |) which can again absorb four deriva-
tives in high frequency. We skip the details of proof.

Remark 3.8 When ε = 0, namely for the original Zakharov system, the resonant
function for the Schrödinger component behaves like

|Φε | ∼ 〈ξ 〉|ξ |,

which can only absorb two derivatives for the high frequency. This is one of the main
reason that quantum Zakharov system has much better properties than the original
Zakharov system.

4 Scattering in L2

For any small initial data (u0,N0) ∈ H0,1
2,σ (R

3)×H0,1
2,σ (R

3), we define the operators

Ψ 1
u0
(u,N) =S(t)u0 −Ω1(N̄,u)(t)+S(t)Ω1(N̄,u)(0)− i

∫ t

0
S(t − s)Ω2(D|u|2,u)(s)ds

− i
∫ t

0
S(t − s)Ω1(N̄, N̄u)(s)ds− i

∫ t

0
S(t − s)(N̄u)HH+LH+1L(s)ds,
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and

Ψ 2
N̄0
(u,N) =W (t)N̄0 −DΩ3(u,u)(t)− i

∫ t

0
W (t − s)(DΩ3(N̄u,u)−DΩ3(u, N̄u))ds

+W (t)DΩ3(u,u)(0)− i
∫ t

0
W (t − s)

D√
1+ ε2D2

(uū)HH+L1+1L(s)ds.

Write Ψ : (u,N)→ (Ψ 1
u0
,Ψ 2

N̄0
) and choose the resolution space as

D = {(u,N) : ‖(u,N)‖X ≤ α},

with the norm ‖(u,N)‖X = ‖u‖S + ‖N‖W , α is a small number to be determined.
Applying the Strichartz and nonlinear estimates, for any (u,N) ∈ D , we have

‖Ψ 1
u0
(u,N)‖S � ‖u0‖H0,1

2,σ
+‖N‖L∞

t H0,1
2,σ
‖u‖L∞

t H0,1
2,σ

+‖N0‖H0,1
2,σ
‖u0‖H0,1

2,σ

+‖N‖L∞
t H0,1

2,σ
‖u‖L2

t B0,1
6,σ

+‖u‖2
L2

t B0,1
6,σ
‖u‖L∞

t H0,1
2,σ

+‖u‖L2
t B0,1

6,σ
‖N‖2

L∞
t H0,1

2,σ

+‖N‖
L2

t Ḃ−1/4−δ
(q(−δ ),2+),σ

‖u‖
L2

t Ḃ1/4+δ
(q(δ ),2+),σ

,

and

‖Ψ 2
N̄0
(u,N)‖W � ‖N0‖H0,1

2,σ
+‖u‖2

L∞
t H0,1

2,σ
+‖u0‖2

H0,1
2,σ

+‖u‖L2
t B0,1

6,σ
‖u‖L∞

t H0,1
2,σ

+‖u‖2
L2

t B0,1
6,σ
‖N‖L∞

t H0,1
2,σ

+‖u‖
L2

t Ḃ1/4−δ
(q(−δ ),2+),σ

‖u‖
L2

t Ḃ1/4+δ
(q(δ ),2+),σ

.

Then

‖Ψ(u,N)‖X = ‖Ψ 1
u0
(u,N)‖S +‖Ψ 2

N̄0
(u,N)‖W

� ‖u0‖H0,1
2,σ

+‖N0‖H0,1
2,σ

+(‖u0‖H0,1
2,σ

+‖N0‖H0,1
2,σ
)2 +‖(u,N)‖2

X +‖(u,N)‖3
X .

If the initial data is sufficiently small, namely, β0 = ‖u0‖H0,1
2,σ

+ ‖N0‖H0,1
2,σ

� 1, we

choose α = Cβ0, then Ψ : D → D . Similarly Ψ is a contraction mapping on D .
Therefore there exists a unique solution on D with global space-time bound. By
the standard techniques, we obtain that the solution (u(t),N(t)) to (3) scatters in
H0,1

2,σ ×H0,1
2,σ .
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Algebraic and symplectic viewpoint on

compactifications of two-dimensional cluster

varieties of finite type

Man-Wai Mandy Cheung and Renato Vianna

Abstract In this article we explore compactifications of cluster varieties of finite
type in complex dimension two. Cluster varieties can be viewed as the spec of a
ring generated by theta functions and a compactification of such varieties can be
given by a grading on that ring, which can be described by positive polytopes [17].
In the examples we exploit, the cluster variety can be interpreted as the complement
of certain divisors in del Pezzo surfaces. In the symplectic viewpoint, they can be de-
scribed via almost toric fibrations over R2 (after completion). Once identifying them
as almost toric manifolds, one can symplectically view them inside other del Pezzo
surfaces. So we can identify other symplectic compactifications of the same cluster
variety, which we expect should also correspond to different algebraic compactifi-
cations. Both viewpoints are presented here and several compactifications have their
corresponding polytopes compared. The finiteness of the cluster mutations are ex-
plored to provide cycles in the graph describing monotone Lagrangian tori in del
Pezzo surfaces connected via almost toric mutation [34].

1 Introduction

Cluster algebras, introduced by Fomin and Zelevinsky [12], are subalgebras of ratio-
nal functions in n variables. The generators of cluster algebras are called the cluster
variables. Instead of being given the complete sets of generators and relations as
other commutative rings, a cluster algebra is defined from an (initial) seed, which

Man-Wai Mandy Cheung
Harvard University, One Oxford Street, Cambridge, MA 02138, United States of America
e-mail: mwcheung@math.harvard.edu

Renato Vianna
Institute of Mathematics, Federal University of Rio de Janeiro; Av. Athos da Silveira Ramos, 149
- Ilha do Fundão, Rio de Janeiro - RJ, 21941-909, Brazil
e-mail: renato@im.ufrj.br

https://doi.org/10.1007/978-3-030-62497-2_35

567© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
D. R. Wood et al. (eds.), 2019-20 MATRIX Annals, MATRIX Book Series 4,

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62497-2_35&domain=pdf


Man-Wai Mandy Cheung and Renato Vianna

includes a set of the generators and a matrix. An iterative procedure called mutation
would produce new seeds from a given seed and this process gives all the cluster
variables. The cluster algebra is then defined to be the ring generated by all cluster
variables.

Geometrically, the cluster varieties, described by Fock and Goncharov [11], and
by Gross, Hacking, Keel in [16], are defined in a similar manner. A seed data now
would be associated to an algebraic torus. The mutation procedures give the bira-
tional transformations used to glue the tori. A cluster variety is then the union of the
tori under the gluing.

The compactification of the cluster varieties can be given by a Rees construction.
Combinatorially, the construction can be described by ‘convex’ polytopes, called
the positive polytopes [17]. The article [8] showed that the positive polytopes sat-
isfy a convexity condition called ‘broken line convexity’. As the seed mutates, the
polytope mutates correspondingly. One can then give a mutation process to the poly-
topes. Note that under this type of mutation, there is no change in the compactifica-
tion.

More generally, one can similarly describe the compactification of the log Calabi-
Yau surfaces studied in [15]. In this case, one would construct the dual intersection
complex of a given Looijenga pair. The underlying topological space of the complex
will carry an affine manifold structure. The affine structures would correspond to
another type of mutation for the positive polytopes.

On the other hand, in the symplectic viewpoint, mutations were exploited in
four dimensional symplectic geometry [33, 34], inspired by the pioneering work
of Galkin-Usnhish [13] (further developed in [1]), and being grounded on the de-
velopment of almost toric fibrations (ATFs) by Symington [32]. Upon identifying
an almost toric fibration of a open variety, we can symplectically identify it as a
symplectic submanifold of some closed symplectic manifold. We will refer to it as
a (symplectic) compactification. In the examples of this paper, we can identify the
symplectic form as the Kähler form of del Pezzo surfaces. We expect that symplec-
tic compactifications can be translated to algebraic compactifications under certain
nuances discussed in Section 3.

This paper is an attempt to understand the two notions. The motivation of both
sides come from the Strominger-Yau-Zaslow conjecture – the conjecture suggests
there are special Lagrangian fibrations for the Calabi-Yau manifold and its mirror
space over the base B. The construction of the log-CY variety from the symplectic
side is via the almost toric fibration, Meanwhile, in the algebro-geometric side, the
construction can be described in terms of the wall crossing structures called the
scattering diagrams.

We begin with the algebro-geometric perspective in Section 2. In this section,
we will discuss cluster varieties, positive polytopes, compactifications, and the mu-
tations of the polytopes. Then in Section 3.1, we give a perspective on how cluster
varieties and scattering diagrams arise from considering wall crossing corrections
as one attempt to build a mirror in terms of the SYZ picture. In complex dimension
two, the wall-crossing happens when we consider singular Lagrangian fibrations
known as almost toric fibrations (ATFs). In particular, we illustrate the idea in terms
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of the A2 cluster variety – compactified as the del Pezzo surface of degree 5 in Sec-
tion 3.1.3. Afterward, we explore compactifications of cluster varieties using the
almost toric viewpoint in Section 3.2.

The symplectic geometry approach to compactification via almost toric fibrations
makes no reference to the complex structure, while the algebro-geometric approach
does not fix a symplectic form. Nonetheless, because a similar set of data can en-
code the scattering diagram as well as an ATF, we seem to always be able to relate
compactifications, encoded by the same polytope in both pictures. We aim to show
the correspondence between the symplectic compactification of the cluster varieties
to the algebro-geometric version in our upcoming papers.

2 Mutations in algebraic geometry

2.1 Cluster varieties

We will first recall some notation used in the definition of a cluster varieties. A fixed
data consists of a lattice N with a skew-symmetric bilinear form {·, ·} : N×N →Q,
an index set I with |I| = rankN, positive integers di for i ∈ I, a sublattice N◦ ⊆ N
of finite index with some integral properties, the dual lattice M = Hom(N,Z) and
the corresponding M◦ = Hom(N◦,Z). One can refer to [16] for the full definition of
fixed data. Consider NR = N ⊗R and MR = M⊗R.

Given this fixed data, a seed data for this fixed data is s := (ei ∈ N | i ∈ I), where
{ei} is a basis for N. The basis for M◦ would then be fi =

1
di

e∗i . One can then
associate the seed tori

As = TN◦ = Speck[M◦], Xs = TM = Speck[N].

We will denote the coordinates as Xi = zei and Ai = z fi and they are called the cluster
variables. Similar to the definition of cluster algebras, there is a procedure, called
mutation, to produce a new seed data μ(s) from a given seed s. The mutation for-
mula is stated in [16, Equation 2.3] which we will skip here. The essence is that
we will obtain new seed tori Aμ(s), Xμ(s) from the mutated seed. Between the tori,
there are birational maps μX : Xs ���Xμ(s), μA : As ���Aμ(s) which are stated in
[16, Equations 2.5, 2.6]. Note that those birational maps are basically the mutations
of cluster variables as in Fomin and Zelevinsky [12].

Let A be an union of tori glued by A -mutation μA . A smooth scheme V is
a cluster variety of type A if there is a birational map μ : V ��� A which is an
isomorphism outside codimension two subsets of the domain and range. The cluster
variety of type X is defined analogously.

The A and X cluster varieties can be fit into the formalism of the cluster vari-
eties with principal coefficients Aprin. The scheme Aprin is defined similarly to the
A by ‘doubling’ the fixed data, i.e. considering Ñ = N ⊕M◦ as fixed data as in [16,
Construction 2.11]. Then there are two natural inclusions. The first one is
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p̃∗ : N → M̃◦ = M◦ ⊕N,

n 	→ (p∗(n),n),

where p∗(n) = {n, ·} ∈ M◦ in the case of no frozen variable. Then for any seed s,
note that Aprin,s = TÑ◦ , and Xs = TM , the there is the exact sequence of tori

1 → TN◦ → Aprin,s
p̃−→ Xs → 1.

The map p̃ commutes with the mutation maps and thus we get the morphism
p̃ : Aprin → X . Further the TN◦ action on Aprin,s extends to Aprin which makes p̃
a quotient map. Thus, the X variety can be seen as Aprin/TN◦ .

The second inclusion is

π∗ : N → M◦,
n 	→ (0,n).

In this case, the π∗ map induces a projection π : Aprin → TM . Then the usual A
variety is π−1(e), where e is the identity of TM .

We would like to indicate another viewpoint of the cluster varieties here. The
mutation maps may be described in terms of elementary transformation of P1 bun-
dles. Thus the cluster varieties can also be seen as the blowups of toric varieties (up
to codimension two) as well.

Given a seed data, consider the fans

Σs,A := {0}∪{R≥0diei | i ∈ I} ⊆ N◦, Σs,X := {0}∪{−R≥0divi | i ∈ I} ⊆ M,

where vi = p∗(ei) and the i only runs over the unfrozen variables if the frozen vari-
ables exist. Let TVs,A and TVs,X be the respective toric varieties. Denote Di to
be the toric divisor corresponding to the one-dimensional ray in one of these fans.
Define the closed subschemes

ZA ,i := Di ∩V̄ (1+ zvi)⊆ Σs,A , ZX ,i := Di ∩V̄
(
(1+ zei)ind divi

)
⊆ Σs,X ,

where V̄ denote the closure of the variety V , and ind divi is the greatest degree of
divisibility of divi in M. Then consider the pairs (T̃Vs,A ,D) and (T̃Vs,X ,D) consist-
ing of the blowups of TVs,A and TVs,X respectively, with D the proper transform
of the toric boundaries. Define Xs,A = T̃Vs,A \D and Xs,X = T̃Vs,X \D. When the
seed s mutates to s′, the corresponding Xs,A , Xs′,A and Xs,X , Xs′,X are isomorphic
outside a codimension two set. In finite type, where there are only finitely cluster
variables, the A and X would then also isomorphic to Xs,A and Xs,X . Note that
the whole set up here is building a toric model for the cluster varieties. We will
introduce the notion of toric model for log Calabi Yau surfaces later in Section 2.3.
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Scattering diagrams

Scattering diagrams live in the tropicalization of the cluster varieties. One can also
see the diagrams encode the structure of the cluster varieties combinatorially.

A wall in MR is a pair (d, fd) where d⊆ MR is a convex rational polyhedral cone
of codimension one, contained in n⊥ for some n ∈ N, and fd = 1+∑k≥1 ckzkp∗(n),
where ck ∈ C. A wall (d, fd) is called incoming if p∗(n) ∈ d. Otherwise it is called
outgoing. A scattering diagram D is then a collection of walls with certain finiteness
properties. Given a seed, an Aprin-cluster scattering diagram can be constructed [17]
and canonically determined by this given seed data. The A scattering diagram can
be obtained by the projection M̃R → MR while the X scattering diagrams can be
defined as slicing the Aprin scattering diagrams by considering {(m,n) | m = p∗(n)}.

It is worth addressing here that for finite type, each chamber, i.e. the maximal
cone, of the scattering diagram can be associated to a torus. The wall functions
fd are actually representing the birational maps between the tori. Thus the cluster
varieties can be seen as gluing of tori associated to the chamber via the wall crossing.

In this article, we will focus on the dimension 2 cluster varieties of finite type.
The A scattering diagrams are listed as in Figure 1 while the X scattering diagrams
of rank 2 finite type are listed as in Figure 2.

Fig. 1: A -scattering diagrams for rank 2 finite type.

Mutation of scattering diagrams

As noted in the previous section, a seed determines canonically a scattering diagram.
Two mutation-equivalent seeds would then give two different scattering diagrams.
It is natural to consider ‘mutation equivalent’ scattering diagrams. This equivalence
is given by piecewise linear maps on the lattices which are very similar to those in
Section 3 and hence we will state here.

Consider two seeds s and s′ which are just one mutation step apart, i.e. s′ =
μk(s) for some k ∈ I. Then the corresponding scattering diagrams Ds and Ds′ are

571



Man-Wai Mandy Cheung and Renato Vianna

Fig. 2: X -scattering diagrams for rank 2 finite type.

equivalent to each other by the transformation Tk : M◦ → M◦,

Tk(m) =

{
m+ 〈dkek,m〉vk, for m ∈ Hk,+
m, for m ∈ Hk,−

(1)

for m ∈ M◦, vk = p∗(ek), and Hk,+ = {m ∈ MR|〈ek,m〉 ≥ 0}, Hk,− = {m ∈
MR|〈ek,m〉 ≤ 0}. Extending Tk to the wall functions [17, Theorem 1.24] will lead
us to another consistent scattering diagram Tk(Ds) which is shown to be equivalent
to Dμk(s).

We can similarly define the mutation for the X scattering diagrams from Aprin.
For the scattering diagram of type A2 in Figure 2, we can obtain the mutation process
for the X scattering diagram as in Figure 3 and Figure 4.

Fig. 3: Mutation of the X scattering diagram of type A2 starting at the index 1

Note that the scattering diagrams are determined by seeds while the mutation of
seeds are given by blow ups and blow downs of toric varieties. Thus the mutation of
scattering diagrams actually represents this procedure of blowups and blowdowns.
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Fig. 4: Mutation of the X scattering diagram of type A2 starting at the index 2

We are going to discuss a similar construction in Section 3 with a symplectic per-
spective.

Theta functions and the canonical algebras

Theta functions give the generators of the canonical basis of the cluster algebras.
Given the cluster variety V = A ,Aprin,X , the corresponding character lattice is
L = M◦, M̃◦, or N. A theta function ϑp is associated to each point p ∈ L by a combi-
natorial object – broken lines which are piecewise linear paths in LR together with
decorating monomials at each linear segment.

The free module generated by theta functions is endowed with an algebra struc-
ture from the multiplication between theta functions. Indeed the structure constants
in the multiplications of theta functions can be given in terms of counting broken
lines. The product of two theta functions can be expressed as

ϑp ·ϑq = ∑
r

α(p,q,r)ϑr, (2)

where the structure constants α (p,q,r) can be explicitly defined by counting bro-
ken lines with certain boundary conditions [17, Proposition 6.4]. In this finite type
case, the structure constants α define ([17, Corollary 8.18]) the finitely generated
C-algebra structure on

can(V ) :=
⊕

r∈L

C ·ϑr.

We will then define X := Spec(can(V )).
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2.2 Positive polytopes

With the multiplication structure of the theta functions, we can now state the defi-
nition of a positive set– the property required for a set and its dilations to define a
graded ring.

For S ⊆ LR = L⊗R a closed subset, define the cone of S as

C(S) = {(p,r) | p ∈ rS,r ∈ R≥0} ⊂ LR×R≥0.

Denote dS(Z) = C(S)∩ (L×{d}) which is viewed as a subset of L.
A closed subset S ⊂ LR is called positive if for any non-negative integers d1,

d2, any p1 ∈ d1S(Z), p2 ∈ d2S(Z), and any r ∈ L with α(p1, p2,r) �= 0, then r ∈
(d1 +d2)S(Z).

In the ongoing example of cluster varieties of type A2, we consider the polytope
with vertices (1,0),(0,1),(−1,0),(0,−1),(1,−1) as indicated in Figure 5. Note
that this polytope is in the X diagram thus there is a flip from Figure 21. This
polytope is indeed positive. In Section 3.1.3, there is a detail discussion of such a
polytope in the A side. A similar calculation in this X case will still hold, thus this
will correspond to the del Pezzo surface of degree 5 [17].

Fig. 5: Positive polytope of X cluster variety of type A2.

We can apply the mutation sequences in Figures 3 and 4 to the polytope in Fig-
ure 5. Mutations of the polytopes as in Figures 6 and 7 will be obtained respectively.
In the next section, we will describe mutations of the polytopes from a symplectic

point of view. We observe that the mutation sequences of polytope in Figures 6 and
7 are the same as the sequences in Figures 23 and 24 respectively. The cluster mu-
tation of the scattering diagrams comes from a change of seed data, i.e. a change of
the initial variables. Thus the underlying spaces are all isomorphic.
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Fig. 6: Mutation of polytope starting from index 1

Fig. 7: Mutation of polytope starting from index 2

Compactifications from positive polytopes

We will roughly go over the geometric meaning behind the positive polytopes in this
section. The motivation can be seen as the construction of projective toric varieties
from the convex polytopes.

For rank 2 cluster varieties, since the A scattering diagrams are well defined, we
can consider S̄ the positive polytopes in the A scattering diagrams. For this set S̄,
define S̃ = S̄+NR which is obviously positive. Thus we can define the graded ring
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R̃S̃ =
⊕

d≥0

⊕

q∈dS̃(Z)

Cϑqxd ⊂ can(Aprin)[x],

with grading defined by x.
Define YAprin := Proj(R̃S)→ TM . For the A variety, we take YA as the fiber over

e ∈ TM in this map. More generally, for the At variety, t ∈ TM , we can still take YAt

as the fiber over t ∈ TM . Consider X = Spec(can(V )), for V = Aprin,At , as in the
previous subsection. Define B = Y \X . Then [17] showed that, X is a Gorenstein
scheme with trivial dualizing sheaf, in particular, for V = Aprin,At , X is a K-trivial
Gorenstein log canonical variety. In this finite rank 2 case, for V = Aprin,A , X ⊆ Y
is a minimal model, i.e. Y is a projective normal variety, B ⊂ Y is a reduced Weil
divisor, KY +B is trivial, and (Y,B) is log canonical.

For the case of the X varieties, as indicated in Section 2.1, the X varieties
are quotients of the Aprin varieties. Thus we will consider still consider Aprin but
instead see the lattice as M̃◦ instead of Ñ (which are actually isomorphic). We can
repeat the same procedure as before and then obtain the compactification of X =
Spec(can(X )). The scheme X is also a K-trivial Gorenstein log canonical variety.

2.3 Canonical scattering diagrams

In the last section, we note that the cluster mutations of the scattering diagrams are
not changing the underlying schemes. We are proposing another type of mutation
which is given by the monodromy on B. We are going to understand the ideas be-
hind from the mirror construction suggested by Gross, Hacking, and Keel in [15].
In Section 3.1, we will discuss the affine structure and monodromy from the SYZ
perspective.

Consider a pair (Y,D), where Y is a smooth rational projective surface, and D is
an anti-canonical cycle of projective lines. We will call such a pair a Looijenga pair.
Let X = Y \D. The tropicalization of (Y,D) is a pair (B,Σ), where B is an integral
linear manifold with singularities, and Σ is a decomposition of B into cones. The
pair (B,Σ) can be constructed by associating each node pi,i+1 of D a rank two lattice
with basis vi, vi+1. Denote the cone generated by vi, vi+1 as σi,i+1 ⊂ Mi,i+1⊗R. The
cones σi,i+1 and σi−1,i are glued over the ray ρi =R≥0vi to obtain a piecewise linear
manifold B homeomorphic to R2 and Σ = {σi,i+1}∪{ρi}∪{0}.

The integral affine structure on B0 = B\{0} can be defined by the charts

ψi : Ui = Int(σi−1,i ∪σi,i+1)→ MR,

where

ψi(vi−1) = (1,0), ψi(vi) = (0,1), and ψi(vi+1) = (−1,−D2),

and ψi is linear on σi−1,i and σi,i+1.
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Now consider Y the del Pezzo surface of degree 5 and D the anti-canonical cycle
of five (-1)-curves. The construction of the charts ψ will then give

ψ(v1) = (1,0),ψ(v2) = (0,1),ψ(v3) = (−1,1),ψ(v4) = (−1,0),ψ(v5) = (0,−1).

Note however that having ψ(v4) = (−1,0),ψ(v5) = (0,−1) will lead to

ψ(v1)� (1,−1), ψ(v2)� (1,0)

and this is NOT what we began with: ψ(v1) = (1,0), and ψ(v2) = (0,1). Thus we
would like to identify the cone spanned by (1,0) and (0,1), and the cone spanned
by (−1,1) and (1,0). This introduces the monodromy

(1,0) 	→ (1,1), (0,1) 	→ (1,0),

to B0. The affine structure is illustrated in Figure 8.

•••

Fig. 8: The tropicalization (B,Σ) of the del Pezzo surface of degree 5

Now we would like to define the canonical scattering diagrams from (B,Σ).
Rather than obtaining the diagrams by the algorithmic process with some initial
data in [19] [21], the canonical scattering diagrams are defined via some Gromov-
Witten type invariants. We will discuss the two types of diagrams are the ‘same’
later in the discussion about how to go from canonical scattering diagrams to
cluster scattering diagrams. A wall [18] in B is a pair (d, fd) where d ⊂ σi,i+1,
for some i, is a ray generated by avi + bvi+1 �= 0, a,b ∈ Z relatively prime, and
fd = 1 + ∑k≥1 ckX−ak

i X−bk
i+1 ∈ C[[X−a

i X−b
i+1]] with some finiteness properties, and

where ck corresponds to the curve counting invariants. Note that the description
of the wall functions fd indicates that all the wall are outgoing in the sense stated
in the last section. Then the scattering diagrams are again the collections of walls.
For example, the canonical scattering diagram associated to Figure 8 is shown in
Figure 9.

Let B(Z) be the set of points of B0 with integral coordinates in an integral affine
chart and {0}. Theta functions ϑq, q ∈ B(Z), can similarly be defined on the scat-
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1+X−1
1

1+X−1
2

1+X1X−1
2

1+X1

1+X2

Fig. 9: Canonical scattering diagram

tering diagrams. The set of theta functions again generates an algebra structure [15]
in terms of broken lines. In the finite case, we can simply consider A =⊕q∈B(Z)ϑq.

Analogous to the setting in the cluster scattering diagrams, we can use the Rees
construction to compactify the mirrors [20]. Positive polytopes with respect to the
affine structures can be similarly defined to give a graded algebra. Using [25] or
the argument in [8], the polytopes are broken line convex. In this case, since all
the walls are outgoing, the positive polytopes are simply convex with respect to the
affine structures.

Relation to the cluster scattering diagrams

In the case of Y a non-singular toric surface and D = ∂Y the toric boundary of D, the
affine structure on B extends across the origin. This identifies (B,Σ) with MR,ΣY ,
where ΣY is a fan for Y .

Now given a Looijenga pair. Assume there is a toric model p : (Y,D)→ (Ȳ , D̄)
which blows up distinct points xi j on Di. A toric model of (Y,D) is a birational
morphism (Y,D) → (Ȳ , D̄) to a smooth toric surface Ȳ with its toric boundary D̄
such that D → D̄ is an isomorphism. Consider the tropicalisation (B̄, Σ̄) of (Ȳ , D̄).
Thus B̄ ∼= MR =R2 and Σ̄ is the fan for Ȳ . Then there is a canonical piecewise linear
map

ν : B → B̄

which restricts to an integral affine isomorphism on the maximal cones in σ and
Σ̄ . One can then define the scattering diagram D as outlined in Section 2.1 or as in
[15, Definition 3.21] for the more general setting. This step can be seen as ‘pushing
the singularities to infinity’ or ‘moving worms’ [21]. By definition, the singularity
of the affine structure is at {0} as indicated in Figure 8. Then the singularity can
be imagined to be pushed to the infinity of the two incoming walls. The map ν can

578



Compactifications of cluster varieties

be extended to act on the canonical scattering diagram Dcan. It is shown that [15]
D̄= ν(Dcan).

We have discussed in Section 2.1 that every cluster variety can be described
as blow ups of a toric variety, which give the toric models for the cluster variety.
Thus the cluster scattering diagrams can be seen as the diagrams arising from the
canonical scattering diagrams by the map ν (as pushing singularities to infinity).

Mutation of polytopes according to the affine structures

One can imagine or with symplectic motivation as in Section 3.1, the ‘pushing sin-
gularities to infinities’ procedure is more general than just having singularities at the
origin. For example, we can consider Figure 10 which we only push one of the sin-
gularities to infinity, resulting in a scattering diagram with one incoming wall. The

1+ ze1

1+ z−e2

1+ ze1+e2

1+ ze2

Fig. 10: Scattering diagrams with monodromy.

monodromy in Figure 10 is
(

1 0
1 1

)
, or (1,0) 	→ (1,1), (0,1) 	→ (0,1). The poly-

tope in Figure 5 with respect to this affine structure would then be of the form in
Figure 11.

We can apply the sequence of mutations in Figure 3 to the polytope in Figure 11
and then obtain a new sequence of mutation polytopes (Figure 12). Putting the poly-
tope in Figure 5 into the sequence (Figure 12) will get us the sequence Figure 26
which is motivated from the symplectic perspective.

The singularities can also be located on the walls instead of just at infinity or
the origin. For example, one can obtain the canonical scattering diagram shown in
Figure 13. Similar calculation shown in [6] indicates that the scattering diagram is
consistent.

Note that the portions of the walls which go from the singularities to infinity are
all outgoing. Thus using the idea in [8, Remark 6.2], we can consider convex sets in
this affine structure. For example, one can construct the polytope as in Figure 14.
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Fig. 11: Positive polytope with respect with the underlying affine structure

Fig. 12: Mutation of polytopes with monodromy

Applying the mutation sequence as in Figure 3, we obtain the sequence of poly-
topes described in Figure 15. Interestingly, this is the same sequence as in Figure 27
which is motivated from the symplectic perspective.

2.4 Type B2 and G2

The other types are similar and thus we only roughly go over the mutations of type
B2 and G2. For type B2, we will take the same skew-symmetric form with d1 = 1,
and d2 = 2 as our fixed data. We can again take the initial seed as s = {(1,0),(0,1)}.
Then we will obtain the A and X scattering diagrams as in Figure 1 and 2. If we
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1+ z−e1

1+ ze2
1+ ze1+e2

1+ ze1

1+ z−e2

(
1 −1
0 1

)

(
1 0
1 1

)

Fig. 13: Scattering diagram with monodromy on the walls.

Fig. 14: Polytope lives in the affine structure indicated in Figure 13.

mutate at index 1 first, we can get the mutation of scattering diagrams very similar
to the type A2 case.

For type B2, we can again take the primitive generators of the walls and then
consider the polytope as the convex hull of those vertices. By using [8], this polytope
is a positive polytope. The multiplication of the theta functions tells us [7] that the
corresponding space is the del Pezzo surfaces of degree 6. The mutation sequence
of the polytopes is described in Figure 16.
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Fig. 15: Mutation for the polytope in Figure 14

Fig. 16: Mutation of polytope for type B2

One may want to repeat the same trick on the type G2. The sad fact is that the
if we are taking the convex hull of the primitive generators of the walls, the result-
ing polytope would no longer be positive. This is because the polytope is no longer
broken line convex as indicated in [8]. Since we only care about the incoming walls
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for broken line convexity [8], one can see that the top left polytope in Figure 29
in the next section is broken line convex. The mutation sequence of the G2 scatter-
ing diagrams are similar to those for type A2 and B2. Without duplicating, one can
see that the mutation indicate in Figure 29 is in fact the cluster mutation of scatter-
ing diagrams. Thus the mutation of polytopes follows correspondingly. This again
tells us that the mutation sequences of the polytope with the algebro-geometric and
symplectic viewpoints coincide.

3 Mutations in symplectic geometry

We begin this section giving a perspective on understanding cluster varieties, as
well as scattering diagrams, as a way of building mirrors under SYZ [31] T -duality.
In particular, we explain how scattering diagrams can be related to almost toric
fibrations. Later, we explain how one can see compactifications of 2-dimensional
cluster varieties into del Pezzo surfaces from an almost toric fibration perspective.

3.1 Cluster varieties and Mirror Symmetry

In this section we will sketch how to relate a scattering diagram data (described
in Section 2), for constructing a log-CY variety X , with the base of an almost-toric
fibration (ATF), describing a SYZ [31] singular Lagrangian fibration of (X ,ω), with
respect to a Kähler form ω in X .

3.1.1 Almost Toric Fibrations

Informally speaking an almost toric fibrations (ATF) in a symplectic 4-manifold X
is a smooth map to a two dimensional base B, whose regular fibres are Lagrangian
tori, whose allowed singular fibres are of three kinds:

• point (toric - rank 0 elliptic) – locally equivalent to the moment map at the origin
in C2 with the standard toric action, (eiθ1 ,eiθ2) · (x,y) = (eiθ1 x,eiθ2 y);

• circle (toric - rank 1 elliptic) – locally equivalent to S1 ×{0} ⊂C∗ ×C with the
standard toric action;

• nodal (a pinched torus) – with some local model described for the singular point.
[See [32, 22] for precise definition, and see Section 3.1.2 for a local model of
the nodal fibre.]

The toric singularities appear on the boundary of the base, while the nodal singular-
ities project into the interior. For a precise definition of ATFs see [32].

Away from the singular fibres, by the Arnold-Liouville theorem [3], X admits
locally action angle coordinates (p1, p2,θ1,θ2) and the fibration is locally equivalent
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to (p1, p2,θ1,θ2) 	→ (p1, p2), in other words, away from singular fibres X equivalent
to T ∗B/Λ ∗, for some lattice Λ ∗. Hence, B carries a natural dual lattice Λ ⊂ T B. The
lattice has monodromy as we go around the nodal fibre, which is a shear in the
direction dual to the collapsing cycle of that nodal fibre. Locally, the coordinates
(p1, p2), can be thought as the flux f ∈ H1(T 2,R) relative to the Lagrangian fibre
associated with (0,0). The flux f(γ) measures the symplectic area of a cylinder
swept by a cycle γ ∈H1(T 2,Z) as we move in a path of Lagrangian fibres connecting
(0,0) to (p1, p2). [See, for instance, [30] for a more complete understanding of flux
in ATFs.]

So, in practice, we visualise the base minus a set of cuts (one for each nodal fibre)
affinely embedded into R2 endowed with the standard affine structure. We call them
almost-toric base diagrams (ATBDs) representing the ATF. The same ATF can be
represented by different ATBDs, by changing the set of cuts.

Figure 17 shows the base diagram of 3 different ATFs in C2; the right-most dia-
grams on Figure 18 are different diagrams representing the same ATF in C2 \{xy =
1}, related by a change of cut; Figures 23–33 contain examples of ATBDs in closed
4 manifolds. In these diagrams, the crosses represent the nodal fibres, the dashed
lines the cuts, the edges the rank 1 and the dots rank 0 toric singularities.

Remark 1. We expect the above mentioned ATFs to be realisable as a special La-
grangian fibration in the complement of a complex divisor projecting to the bound-
ary of the ATF, with respect to a holomorphic volume form with poles on these
divisor. This is true for the fibration presented in Section 3.1.2, but we will avoid
talking about the ”special” condition.

Fig. 17: Nodal trade and nodal slide operations in ATFs.

There are two ways of modifying ATFs within the same symplectic manifold X ,
known as nodal trade and nodal slide [32]. The diagrams in Figure 17 illustrate the
change of the ATBDs after a nodal trade and a nodal slide. In del Pezzo surfaces, the
monotone symplectic 4-manifolds, we defined mutation of an ATBD, the process of
sliding one nodal fiber through the monotone fibre, and then redrawing the diagram
by changing the direction of the cut used to slide [33, 34]. In the end, the ATBD
mutates by slicing it in the direction of the cut and applying the inverse of the cor-
responding monodromy, which is a shear in the primitive direction associated to the
cut. This transformation is the same polytope mutation as in [1, 2], and completely
analogous to the mutation of seeds, and scattering diagram we will discuss later. We
can extend this notion of symplectic mutation to exact almost toric manifold, for
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instance, the complement of an anti-canonical divisor in a del Pezzo. In this case,
the mutation corresponds to sliding a nodal fibre through the exact torus and then
transferring the associated cut to the opposite side.

3.1.2 Local model for nodal fibre and wall-crossing

We briefly recall ATF presented in [4, Section 5], [5, Section 3.1.1]. This ATF ap-
peared before in [10] and also in [14, Example 1.2], where it was shown to be a
special Lagrangian fibration [with respect to certain holomorphic volume form]. We
consider X∨ = C2 \ {xy = 1}, with ω∨ = i

2 (dx∧dx̄+dy∧dȳ) the standard sym-
plectic form. Using f : X∨ → C \ {1}, f (x,y) = xy, Auroux builds an ATF by par-
allel transport of orbits of the S1 action eiθ · (x,y) = (eiθ x,e−iθ y), over circles in
the base of f centred at 1. One then gets Lagrangian torus fibres, parametrised by
(r,λ ) ∈ R>0 ×R, as:

Tr,λ = {(x,y) ∈ C2;r = |xy−1|,λ = |x|2 −|y|2}.

Note that there is a nodal fibre T1,0, that contains (0,0), the fixed point of the S1

action.
This almost toric fibration can be represented by applying a nodal trade to the

standard toric fibration of C2, replacing the boundary divisor {xy = 0} with the
smooth divisor {xy = 1}, and then deleting this divisor living over the boundary of
the base, as illustrated by Figure 18. Indeed, replacing the role of 1 by 0 in the above
fibration, i.e., considering parallel transport over circles concentric at 0 (considering
r = |xy|) one obtain precisely the standard toric fibration of C2. So, considering
analogous fibrations by changing 0 to 1 in the definition of r constitutes a nodal
trade, and moreover, varying the value of c ∈ R>0 in the definition of r = |xy− c|
provides different fibrations related by nodal slides.

Fig. 18: Nodal trade and an ATF for the complement of a conic. The left diagrams
are a shear by (0,−1) of the diagrams in Figure 17. The rightmost diagrams, repre-
sent the same ATF, and differ by changing the direction of the cut.
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Wall-crossing

Dualising this torus fibration, one gets the mirror variety XΛ of X∨, over the Novikov
field Λ = {∑n

i=0 aiT σi ;ai ∈ C,σi ∈ R, limi σi = ∞}, which is the moduli of almost-
toric fibres (special Lagrangians), endowed with unitary Λ ∗-local systems. We will
be able to relate the valuation val(u) = min{σi;ai �= 0} of an element u ∈ Λ with
the above mentioned flux, whenever val(u) measures the symplectic area of a disk
with boundary in a varying family of the Lagrangian torus fibres. [Notation: Λ0 =
{u ∈Λ ;val(u)≥ 0}, Λ+ = {u ∈Λ ;val(u)> 0}, Λ ∗ = {a0 +Λ+;a0 ∈C∗}.] We will
later consider the mirror of X∨ as X = XC over C, by replacing T with e−1.

So we replace the Lagrangian fibre T 2, by the dual Λ -torus of unitary lo-
cal systems hom(π1(T 2);Λ ∗) ∼= (Λ ∗)2. Locally identifying each relative class,
β ∈ π2(C,Tr,λ ), Auroux defined a function zβ : XΛ → Λ , for a local system ∇ in
Tr,λ , zβ (∇) = T ω∨(β )∇ · ∂β . Choosing a basis {α,β} of π2(C,Tr,λ ), one gets that
w := zα , u := zβ , define local coordinates of XΛ . After that, the idea is to define a su-
perpotential function W : XΛ →Λ+, which is locally defined as W (u,w), and whose
monomials encode the relative Gromov-Witten count of Maslov index 2 holomor-
phic disks in C with boundary on the torus fibre endowed with the respective lo-
cal system determined by (u,w). [The pair (XΛ ,W ) is called the Landau-Ginzburg
model that is mirror dual to C with respect to the divisor D = {xy−1}. We refer the
reader to [4, 5] for details on mirror symmetry in the complement of divisors.]

The issue is that, in the naive definition of the mirror, the superpotential W is dis-
continuous. This is due to the presence of fibres T1,λ , λ �= 0, which bounds Maslov
index 0 holomorphic disks. Let’s denote the relative class represented by this Maslov
0 disks by α for λ < 0, and −α for λ > 0. In [5, Section 3.1.1], it is shown that
for r < 1, the fibres Tr,λ (called Chekanov type) bound one holomorphic disk, in a
class we name β . So W (u,w) = u, for these fibres. The fibres Tr,λ , for r > 1, (called
Clifford type) bound 2 holomorphic disks in relative classes β1, β2, and hence the
superpotential is of the form W (z1,z2) = z1 + z2, where zi = zβi .

We see in [5, Section 3.1.1] that as r approaches 1, from r > 1, we get α =
β1 − β2 (hence w = z1z−1

2 ). Moreover, if we cross the wall at λ < 0, the class β
is naturally identified with β2, and if we cross the wall at λ > 0, the class β is
naturally identified with β1 = β2+α [which is not so surprising, as the monodromy
around the nodal fibre in the ATF would fix ∂α and maps ∂β → ∂β + ∂α]. So
the superpotential W should be corrected by the term (1+w±1), representing the
fact that the holomorphic disk on class β , would not only survive past the wall, but
the superpotential would also acquire a holomorphic disk in class β ±α , coming
from the gluing of the Maslov 2 holomorphic disk on class β with the Maslov 0
holomorphic disk on class ±α . Then, instead of u becoming z2 as we cross over λ >
0, we should correct it to become u= z2(1+w) = z2+z1, and instead of u becoming
z1 as we cross over λ < 0, we should correct it to become u = z1(1+w−1) = z1+z2,
and, thus, ensuring the continuity of W .

By naming v = z−1
2 , so z1 = v−1w, we get the corrected u = v−1(1 + w) =

v−1w(1+w−1). We see that the corrected (and completed) mirror XΛ , is given by
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XΛ = {(u,v,w) ∈ Λ 2 × (Λ \{0});uv = 1+w}.
Figure 19 below describes the mirror SYZ fibrations on X∨ and XΛ . We list sev-

eral remarks about the diagrams in Figure 19 and the mirror XΛ .

Fig. 19: SYZ fibrations for the complement of a conic, which is self-mirror, when
considering XC.

Remark 2. We see that XΛ is given by gluing two torus charts (u,w) ∈ (Λ \ {0})2,
and (v,w) ∈ (Λ \{0})2, by a rational map defined in the complement of {w =−1}.
So, for instance, the case u = 0 would be realised as (v,−1) in the (v,w)-chart.

Remark 3. Considering the symplectic form ω∨ in X∨, the Lagrangian torus fibra-
tion would be viewed in a truncated part of the (u,w)-chart, with 0 < val(u) ≤
a(val(w)) or in the (v,w)-chart, with a(val(w)) ≤ val(v−1) < ∞ for val(w) < 0, for
instance. These bounds on the valuation would give us Xt

Λ , a truncated version of the
mirror XΛ . But in symplectic geometry, we can add to (X∨,ω∨) a contact boundary
∂X∨, and it is most natural to consider a completion procedure called the sym-
plectization of X∨ with respect to this boundary. This endows X∨ with a different
symplectic form ω∨

S . It is equivalent to consider an infinite inflation of (C2,ω∨)
with respect to the divisor D = {xy = 1}. In this limit we would have val(u)→ ∞,
and we would get the completed mirror XΛ .

Remark 4. The expectation regarding the correspondence between the count of
Maslov index 2 disks with boundary on a SYZ fibre and its tropical counterpart was
proven in [24] for a SYZ fibration on the complement of an smooth anti-canonical
divisor in a del Pezzo surface. More precisely, given a del Pezzo surface Y and
a smooth anti-canonical divisor D, there exists a special Lagrangian fibration on
Y \D with respect to the complete Ricci-flat Tian-Yau metric [9]. To understand the
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Landau-Ginzburg superpotential of Y , there exists a sequence of Kähler forms ωi on
Y converging to the Tian-Yau metric pointwisely with

∫
Y ω2

i → ∞ [24, Lemma 2.4].
Thus, these superpotentials of the special Lagrangian fibres can be defined with re-
spect to ωi, i � 0 and the superpotentials coincide with the tropical counterpart [24,
Theorem 5.19]. This gives a geometric explanation of the renormalization procedure
of taking valuation going to infinity.

Remark 5. In the (r,λ ) projection of Figure 19, the singular fibre in position (1,0) is
depicted by an ×, and the wall of fibres with r = 1 that bound Maslov index 0 disks
are represented by a line. This (r,λ ) coordinate does not respect the natural affine
structure on the complement of the singular fibre of B. We instead consider Fluxω∨

,
the flux with respect to a limiting fibre lying over (0,0), in the next diagram. This
map is then continuous, but not differentiable over the dashed ray r ≥ 1, λ = 0,
which we call the cut. Moreover, this composition represents the map to the base
diagram depicted in the rightmost picture of Figure 18. The map φ∨

1 is then an
affine isomorphism to B minus the cut. The affine structure of B minus the node, is
described by the gluing of the chart φ∨

1 and a chart φ∨
2 , going from the third diagram

of Figure 18, corresponding to taking the cut associated to 0 < r ≤ 1, λ = 0. The
symplectic manifold X∨ can be thought then as a local model for gluing in the nodal
fibre to the manifold constructed from gluing the Lagrangian torus fibres associated
to φ∨

1 and φ∨
2 . This is essentially the same model as the description of X∨ as a

self-plumbing of T ∗S2 given in [32, Section 4.2].

Remark 6. The affine structure on B for the dual mirror fibration XΛ →B is endowed
with the dual affine structure in the complement of the node. We call the map that
adjusts this affine structure in R2, Fluxω . In the case we take the SYZ mirror XC
over C (by replacing T by e−1), it endows a symplectic form ω as described in [5,
Proposition 2.3]. In this case, Fluxω becomes the actual flux with respect to this
symplectic form.

Remark 7. The monodromy around the singular fibre of X∨ → B, represented by

the bottom left diagram of Figure 19, is given by M±1, for M =

[
1 −1
0 1

]
, fixing

the cut (1,0). Then, the monodromy around the node for the rightmost diagram

representing XΛ → B is given by (MT )∓1, with (MT )−1 =

[
1 0
1 1

]
. We see that this

fixes the coordinate w, associated to (0,1), which we then name ϑ(0,1), and it sends
the coordinate v−1 = ϑ(1,0) to v−1w = ϑ(1,1).

Remark 8. As described by Mikhalkin [27], we can deform the complex structure
on X∨ to a limit where holomorphic curves would converge to tropical curve on
the base with respect to the so-called complex affine structure, which is dual to
the symplectic affine structure. So, (relative) Gromov-Witten invariants of X∨ are
expected to be described by tropical curves (ϑ functions) in the base B, with the
affine structure describing XΛ (or XC). In particular, the wall becomes straight in
this limit, as illustrated by Figure 20.
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Fig. 20: In a complex structure limit, the wall becomes straight. We can move the
cut to the invariant direction of the monodromy, that is the same direction as the
limit straight wall.

As we mentioned before, we will now replace the formal variable T by e−1 in our
construction, and consider the mirror as the moduli of Lagrangian fibres endowed
with U(1)-local systems. So, after completion the mirror becomes

X = XC = {(u,v,w) ∈ C2 ×C∗;uv = 1+w}
endowed with a completed symplectic form ω as described in [5, Proposition 2.3].
Its SYZ dual ATF (dual to the one on X∨) is then described by any of the diagrams
in Figure 20.

Remark 9. As we take the completion, the val defined in XΛ approaches − log |.|
defined in XC.

We see now that the rightmost diagram in Figure 20, can describe an ATF, and
once decorated with wall crossing functions [(1+w±1) accordingly] along the wall,
it can algebraically determine the space XC. The variety XC is then built out of two
(C∗)2 charts, with coordinates (u,w) and (v,w), glued together in a cluster like tran-
sition birational map uv = 1+w, defined in the complement of {w =−1}. A unique
wall, decorated with such wall crossing function, describing XC is the simplest ver-
sion of a scattering diagram [19, 15] (see Section 2 for more details).

3.1.3 The A2 Cluster Variety: ATF and Scattering Diagram

As described in [17, Example 8.40] (taking the parameters X1,X2 to be 1), we
describe the affine (ϑ0 = 1) A2 Cluster variety by the ring in five variables ϑi,
i = 1, . . . ,5 satisfying the relations:

ϑ1ϑ3 = 1+ϑ2

ϑ2ϑ4 = 1+ϑ3

ϑ3ϑ5 = 1+ϑ4

ϑ4ϑ1 = 1+ϑ5

ϑ5ϑ2 = 1+ϑ1

589



Man-Wai Mandy Cheung and Renato Vianna

We see that this variety is obtained by gluing five algebraic tori (C∗)2, with coor-
dinates (ϑi,ϑi+1) [indices taken mod 5], according to the above cluster relations.
We saw in more details in Section 2 that these relations are encoded by the data of a
scattering diagram, as illustrated in the top-right picture of Figure 21.

Fig. 21: Scattering diagram and ATF for the A2 cluster variety.

Let’s start with the data of an ATF describing a symplectic manifold X , with 2
nodal fibres, whose monodromies are encoded by cuts pointing away from the nodes
in the directions (0,1) and (−1,0), respectively, as illustrated in the bottom-left pic-
ture of Figure 21. We now think think of this as endowed with the completed infinite
volume symplectic form, so the base diagram covers the whole R2. As indicated in
the previous Section, to build complex charts on this space, we add one wall for each
node, represented by a line in the invariant direction of the monodromy. [These walls
represent dual fibres in the mirror X∨, bounding Maslov index 0 disks with respect
to a limit complex structure j∞.] We call the chamber containing the nodes the main
chamber, and we associate to it a complex torus (C∗)2, with coordinates (ϑ2,ϑ3),
and associated with the corresponding wall is a gluing function of the form (1+ϑi).
One can check that changing coordinates around these 4 walls in a full circle, does
not give you identity on the (ϑ2,ϑ3) algebraic torus. To correct for that one needs
to add an extra slab, in this case corresponding to a ray in direction (1,−1), and a
corresponding transition function giving you now 5 chambers, each corresponding
to an algebraic torus, as illustrated in the top-right picture of Figure 21. This col-
lection of walls and slabs is called the scattering diagram [19] [recall the details in
Section 2]. This scattering diagram describe the relations of the A2 cluster variety
given in the beginning of this Section.

We can compactify this A2 cluster variety by homogenizing its defining equa-
tions, as ϑ1ϑ3 = ϑ 2

0 +ϑ2ϑ0, . . . ,ϑ5ϑ2 = ϑ 2
0 +ϑ1ϑ0. As mentioned in [17, Exam-
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ple 8.40], this gives a del Pezzo surface of degree 5 in CP5. Intersecting the hy-
perplane ϑ0 = 0, we see a chained loop of 5 divisors. Symplectically, it is natural to
endow the del Pezzo surface with the monotone symplectic form given by restricting
the Fubini-Study form of CP5. The complement of the five above mentioned divi-
sors can be seen as a (Weinstein) subdomain of X , whose completion give X . Indeed,
there is an ATF on the degree 5 del Pezzo surface, as illustrated in the bottom-right
diagram of Figure 21. [We can obtain this ATF by performing a monotone blowup in
a corner of [34, diagram (A3) of Figure 16].] The chained loop of 5 divisors is iden-
tified with the boundary of this ATF, and the complement of them is a subdomain of
X as illustrated by the bottom-left diagram of Figure 21.

3.2 Compactifications of Cluster varieties

We saw in the previous section how to relate the data representing an almost-toric
fibration in a open symplectic manifold with a set of initial walls, out of which
Gross-Siebert [19] explains how to complete to a scattering diagram that provides
this manifold with complex charts given by gluing algebraic tori (C∗)2 along the
walls.

As mentioned in Section 2.1, we can construct cluster varieties out of this data,
and we will focus on the varieties of finite type A2, B2, G2. These are open exact
almost toric manifolds, built out of the scattering diagram with initial data given
by two orthogonal walls, one of them associated to one node and the other with
one, two and three nodes, respectively, as indicated in Figure 22. Recall we call the
chart containing all nodes the main chart. One sees that symplectic mutation can be
associated to changing the main chart, as illustrated in Figure 22. In other words,
without the prior knowledge, the scattering diagram can be recovered by keeping
track of the “main charts” as we apply the corresponding mutations, as illustrated in
Figure 22. [This is not the case when the scattering diagram has a dense regions of
slabs. For instance, when considering the scattering diagram associated to the mirror
of the complement of an elliptic curve in CP2. Note that this case is considered in
[24].]

In this section, we are interested in understanding compactifications of these clus-
ter varieties from the symplectic perspective. Compact symplectic manifolds have
finite volume, hence we will consider as X a subdomain, whose completion is the
manifold described by the ATF with base diagram covering the whole R2. We will
consider equivalent the subdomains with same completion.

All the symplectic compactifications considered here are symplectic del Pez-
zos, in the sense that they are endowed with a monotone symplectic form, which
is unique up to scaling and symplectomorphisms [26, 23, 28, 29]. This ensures the
existence of a monotone fibre, that can be detected by the intersection point of the
lines in the diagrams that go through the nodes and are in the direction of the cuts.
A symplectomorphism class invariant of these monotone fibres (the star-shape) is
shown [30] to be given by the interior of the polytope seen in H1(T 2,R) ∼= R2,
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Fig. 22: Cluster charts via symplectic mutations on affine cluster varieties

as we forget the nodes and cuts. So there is a symplectomorphism identifying two
monotone fibres of an ATF, if and only if, the associated polytopes are related under
SL(2;Z). If there exists such ambient symplectomorphism, we say the Lagrangians
are symplectomorphic.

In the definition of mutation of ATFs on del Pezzo surface [34], besides mutating
the polytope by changing the direction of the cut, it is required that we slide the cut
through the monotone fibre. In that sense, we say that the corresponding monotone
fibres are related by mutation. We can then form a graph with vertices representing
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symplectomorphism class of a Lagrangian and edges represented these Lagrangians
being related by mutation. One aspect we can extract from the cyclic behaviour of
these finite cluster varieties is the existence of cycles in the above mentioned graph.
This behaviour does not appear in mutations of monotone almost toric fibres in CP2,
and conjecturally in CP1 ×CP1.

Fig. 23: Mutations on degree 5 del Pezzo – 1 torus

Fig. 24: Mutations on degree 5 del Pezzo – 1 torus

Let us start looking at the example from Section 3.1.3 ([17, Example 8.40], [8,
Figure 1]), a compactification of the A2 cluster variety to the degree 5 del Pezzo, by
adding a chain of 5 divisors, whose union represents the anti-canonical class. This
compactification and its mutations are illustrated in Figures 23, 24. Note that we get
the same pattern as in Figures 6, 7, where we get back to the same picture after, re-
spectively, 4 and 6 cycles, depending on the pattern of mutation. This is misleading,
as ATFs, the mutations should not depend on which half-space is fixed, and which
you decide to shear. In fact, in this example, all diagrams are (SL(2;Z)) equiva-
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lent, which in particular implies that the monotone tori in each pictures are mutually
symplectomorphic. The 5-cycle pattern of the A2 cluster appears by looking at the
main charts, which we have already illustrated in Figure 22. In particular, this ex-
ample does not give us a cycle of monotone Lagrangian tori, since we quotient out
the graph associated to mutations by equivalence.

We want to extend a bit our notion of compactification. We will say that a (Wein-
stein) domain X compactifies to Y , if we have X ⊂Y ⊂Y , with X a sub-domain of Y
and Y =Y \⋃i Di, for symplectic divisors Di. This will be used by us to identify our
domains of interest, described in Figure 22, appearing as open pieces of ATFs in del
Pezzo surfaces, where we do not include all the nodes. See for instance, Figures 26,
28, 32, 33. In these cases, our domain of interest X is not the complement Y of the
symplectic divisors projecting over the boundary of the ATF, but rather a subdomain
of Y . The nodes not contained in the ATF describing X will be considered frozen
(not used to mutate), and depicted as a blue ×.

Fig. 25: Moving frozen nodes to the boundary, is equivalent to have over the vertex
a possibly singular Lagrangian representing a vanishing cycle of a degeneration to a
toric orbifold singularity. This vanishing cycle is represented by a pentagon over the
vertex, and the orbifold singularity by a star in the above diagrams. Up to equiva-
lence, the shaded domain can be viewed either as a subdomain of the complement of
the boundary divisors in the left-picture, or the complement of the singular divisors
in the orbifold diagram.

An alternative way of thinking is to disregard the frozen nodes. The total mani-
fold Ỹ becomes singular, and a non-smooth compactification of X , given by adding
the boundary divisor. The singularities are orbifold T -singularities [2] at each ver-
tex, that were previously associated with the frozen nodes. Our original smooth
manifold, that included the frozen nodes, is a smoothing of this orbifold. There is a
continuous way of relating the Lagrangian fibrations on the orbifold with the ATF
on the smoothing. We like to interpret it as a two step process, which is locally il-
lustrated in Figure 25. The first, we keep the symplectic form on Y , and consider
almost-toric fibrations AT Ft , t ∈ [0,1), so that in the limit t → 1 the blue nodes
slide all the way to a limit vertex at the boundary, and we are left with a singular
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Lagrangian fibration SLF1, on Y , such that over the limit vertices live a possibly
singular Lagrangian. The Lagrangian over each limit vertex can be recognised in
each AT Ft , t < 1 living over the associated cut from the boundary of the ATF up
to the farthest blue node and intersecting each fibre over the cut in a collapsing cy-
cle for the corresponding nodes. This limit can be made rigorous but is beyond the
scope of this article. The second step is to consider a degeneration from Y to Ỹ ,
and a family of singular Lagrangian fibrations SLFs, in the fibers corresponding to
s ∈ (0,1], where in the limit s → 0 the singular Lagrangian over each vertex col-
lapses to the corresponding orbifold singularity. The Lagrangian fibrations SLFs are
identified under symplectic parallel transport, so the singular Lagrangian over each
vertex degenerating to an orbifold singularity is precisely the vanishing cycle of that
orbifold singularity. In the examples presented here, the singularities associated with
the frozen nodes will always be of An type, and hence the corresponding Lagrangian
a chain of n−1 spheres.

Fig. 26: Mutations on degree 5 del Pezzo – 5 tori

Let’s turn our attention now to Figure 26, where we realize the degree 5 del
Pezzo surface Y as a compactification of the A2 cluster variety X , in a different
way. We perform a nodal trade in a vertex at the bottom of the second diagram
in Figure 23, and we freeze the top node. Now the boundary divisor represents 4
symplectic spheres, and X is a subdomain of the complement of these divisors. In
this case, the mutation cycle induced by the nodal singularities in X does provides
us with a 5-cycle of distinct monotone Lagrangian tori. Recall that monotone fibres
of non-SL(2,Z) related diagrams are distinct [30].

Remark 10. Disregarding the frozen node creates a double point singularity. In con-
trast with [17, Example 8.40], this is the same as considering X1 = 0 in their setting.
Now, consider the cycle of 5 divisors given by ϑ0 = 0. We claim that if one smooths
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one node of this chain (represented by our nodal trade), and then delete the resulting
chain of 4 divisors in this orbifold, one recovers X , the A2 cluster variety.

Fig. 27: Mutations on degree 8 del Pezzo – 2 tori

We can see that there is a simpler compactification of the A2 cluster variety X by
Y = CP2#CP2, a degree 8 del Pezzo, as illustrated in Figure 27 [which is the same
obtained in Figure 14]. Here, X is the complement of two divisors in classes H and
2H−E, where H is the class of the line, and E is the exceptional class. Note that we
do not get a cycle of monotone Lagrangian tori, though not all tori are equivalent,
we only see 2 tori in the whole cycle, which gives us only an edge on the unoriented
graph of mutations of monotone tori, modulo equivalence.

Clearly, performing a blowup on one of the divisors of Y gives us another com-
pactification of X . The top left diagram of Figure 28 corresponds to a toric blowup
of monotone size [recall that in symplectic geometry, the blowups depend on the
size of a symplectic ball one chooses to delete] in the top left diagram of either Fig-
ure 23 or Figure 26. Note in this case that the third and fourth, as well as the second
and fifth, diagrams are equivalent, failing to deliver a cycle on the mutation graph
of monotone Lagrangian tori in the degree 4 del Pezzo.

Let us consider now X the B2 type cluster variety, with almost toric fibrations as
in the series of diagrams in the middle of Figure 22. The first compactification Y
we look at is the degree 6 del Pezzo, starting with the ATF depicted in the top-left
diagram of Figure 29. [This diagram is SL(2;Z) equivalent to [34, Diagram (A5),
Figure 16] (up to nodal trades).] In this case X is the complement of three divisors
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Fig. 28: Mutations on degree 4 del Pezzo – 3 tori

Fig. 29: Mutations on degree 6 del Pezzo – 6 tori

of Y = CP2#3CP2, having symplectic areas 1, 2 and 3. We see that in this case we
do get a cycle of size 6, with one torus corresponding to each cluster chart.

It is interesting to notice that the sixth diagram seems to have come from the
scattering diagram Figure 16. But it is not quite the case, since that scattering dia-
gram has a square function corresponding to the horizontal cut in the sixth diagram
Figure 29, while a simple function corresponding to the vertical cut. This means
that the natural compactification coming from that scattering diagram would be the
same del Pezzo, but represented by the diagram of Figure 30 coming from apply-
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Fig. 30: This diagram differ from the sixth diagram in Figure 29, by one nodal
trade and one inverse nodal trade. Mutations of the displayed nodes give equivalent
polytopes.

Fig. 31: Mutations on degree 5 del Pezzo – 3 tori

ing a nodal trade to the corner associated to the horizontal cut in the sixth diagram
Figure 29, and an inverse nodal trade on one node at the vertical cut. In particular,
X would be seen as the complement of 3 divisors in Y = CP2#3CP2, each of sym-
plectic area 2. The reader can check that in this case, the mutations associated to
X would give equivalent monotone Lagrangian tori, analogous to the previous case
depicted in Figures 23, 24.

Clearly we can also compactify the B2 type cluster variety X to the degree 5 del
Pezzo, as the complement of four divisors as depicted in Figure 31, by simply ap-
plying a nodal trade to a diagram in Figure 23. In Figure 31, we depicted segments
outside the diagrams to indicate that they come from applying blowups to the dia-
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grams in Figure 29. Curiously, it behaves similarly to the case in Figure 28, where
we have only three non-equivalent Lagrangian tori, not providing a cycle.

Fig. 32: Mutations on degree 3 del Pezzo – 8 tori

We now finish by presenting two compactifications of the G2 cluster variety. We
name it X , and consider it as an almost toric variety corresponding to the bottom
series of diagrams in Figure 22. We start noting that the compactifications described
in [8], see for instance [8, Figure 18], seems to be giving partially, but not fully,
smoothable orbifolds. Here we look to two compactifications to degree 3 and 4
del Pezzo surfaces. [Both contain frozen variables, so the reader may prefer the
alternative idea of seeing X compactifying to a degeneration of these surfaces.]

We start with the top left ATBD in Figure 32, which is equivalent to [34, Dia-
gram (B2), Figure 19], representing an ATF of the cubic CP2#6CP2. In this case,
X is a subdomain of the complement of two symplectic divisors. Sliding the frozen
nodes to the corresponding vertex gives one Lagrangian sphere, in the horizontal cut,
and a chain of two Lagrangian spheres in (1,1)-cut. This indicates that disregarding
the frozen nodes corresponds to considering an orbifold with one double-point sin-
gularity and one triple-point singularity. We do get one monotone Lagrangian torus
for each of the 8 cluster charts in this case.

Another compactification of X is given in Figure 33. The top left diagram of
Figure 33 is equivalent (up to nodal trades) to [34, Diagram (B2), Figure 18]. Here,
X is viewed as a subdomain of the complement of three symplectic divisors in Y =

CP2#5CP2. Sliding the frozen node to the vertex provides Lagrangian sphere, or
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Fig. 33: Mutations on degree 4 del Pezzo – 8 tori

equivalently, disregarding the node gives a double-point orbifold singularity at the
vertex. As before, we get one monotone Lagrangian torus for each cluster chart.
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16. Gross, M., Hacking, P., Keel, S.: Birational geometry of cluster algebras. Algebraic Geometry
2(2), 137–175 (2015)

17. Gross, M., Hacking, P., Keel, S., Kontsevich, M.: Canonical bases for cluster algebras. Journal
of the American Mathematical Society 31(2), 497–608 (2018)

18. Gross, M., Hacking, P., Keel, S., Siebert, B.: The mirror of the cubic surface. arXiv preprint
arXiv:1910.08427 (2019)

19. Gross, M., Siebert, B.: From real affine geometry to complex geometry. Annals of mathemat-
ics 174(3), 1301–1428 (2011)

20. Gross, M., Siebert, B.: Intrinsic mirror symmetry. arXiv preprint arXiv:1909.07649 (2019)
21. Kontsevich, M., Soibelman, Y.: Affine structures and non-Archimedean analytic spaces. In:

The unity of mathematics, Progr. Math., vol. 244, pp. 321–385. Birkhäuser Boston (2006)
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Observations on disks with tropical Lagrangian

boundary

Jeff Hicks

Abstract In this survey, we look at some expectations for Lagrangian submanifolds
which are built as the lifts of tropical curves from the base of an Lagrangian torus
fibration. In particular, we perform a first computation showing that holomorphic
triangles can appear with boundary on the Lagrangian submanifold. We speculate
how these holomorphic triangles can contribute to the count of holomorphic strips
in the Lagrangian intersection Floer cohomology between a tropical Lagrangian
submanifold and a fiber of the SYZ fibration.

1 Tropical Lagrangians and Holomorphic Disks

Mirror symmetry is a geometric duality between symplectic geometry on (X ,ω)
and complex geometry on a “mirror space” (X̌ ,J) [2]. The spaces X , X̌ are expected
to arise as the total spaces of dual Lagrangian torus fibrations over a common base
space Q [9]. The base of a Lagrangian torus fibration always is equipped with an
affine structure, and it is predicted that both the symplectic geometry of X and com-
plex geometry of X̌ degenerate to tropical geometry on Q [4]. In good examples, one
uses the affine structure on Q to identify lattices TZQ and T ∗

ZQ inside the tangent and
cotangent bundle respectively. The mirror spaces can be reconstructed from this data
as:

X := T ∗Q/TZQ val−→ Q
ˇval←− X̌ = T Q/TZQ

which are equipped with their canonical symplectic and almost complex structures.
The simplest example of this (which we will focus on) is the example where Q =Rn

and X = X̌ = (C∗)n. Recently, the independent works of [7, 8, 5, 6] constructed
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Lagrangian submanifolds L(V ) ⊂ X whose valuation projection val(L(V )) could
be made arbitrarily close to a given tropical subvariety V ⊂ Q. These Lagrangians
fit in with predictions from mirror symmetry principles. For example, in [6] the
number of tropical Lagrangians found was at least as many as the number of curves
in the mirror quintic, and in [5] tropical Lagrangian hypersurfaces were shown to be
homologically mirror to sheaves supported on divisors.

Parallel to computations in mirror symmetry, tropical geometry has been em-
ployed to understand the counts of holomorphic disks with boundary on a given La-
grangian inside of a symplectic manifold. One particularly visible instance of this
method of computation is from [10], which used tropical techniques to understand
the holomorphic disk count for Lagrangian tori inside of CP2. These holomorphic
disk counts were used to distinguish Hamiltonian isotopy classes of monotone La-
grangian tori. More generally, the count of holomorphic disks with boundary on
non-exact Lagrangian submanifolds L ⊂ X provide a deformation to the homology
of L. These deformations are a necessary ingredient in the mirror symmetry predic-
tion, as they provide “corrections” to the identification of symplectic and complex
geometric invariants. For example, the correspondence between the moduli space of
Lagrangian tori on X and points on the mirror space X̌ is only expected to hold once
these correction terms have been computed [1].

These invariants are frequently difficult to compute, so the promise of reduc-
ing them to combinatorial type computations in the setting of tropical geometry
is particularly enticing. We exhibit an explicit computation for holomorphic disks
for a fixed example, and speculate on what this computation means for the more
general problem of computing holomorphic strips contributing to the differential in
Lagrangian intersection Floer theory.

2 Disks via sections of Lagrangian fibrations

The first example we consider is the symplectic manifold X = (C∗)2 with base Q =
R2 and torus fibration given by val(z1,z2) = (log |z1|, log |z2|). We consider the three
tropical curves drawn in fig. 1, and consider their lift to 3 Lagrangian cylinders in
X ,

L1 = {(er,eiθ ) | r ∈ R,θ ∈ S1}
L2 = {(eiθ ,er) | r ∈ R,θ ∈ S1}

Lλ = {(er+iθ ,eλ e−r+iθ ) | r ∈ R,θ ∈ S1}

where λ ∈ R is a parameter picked to define the third line. Although these La-
grangians are non-compact, they are conical at infinity and so we may count holo-
morphic disks and polygons with boundary on the Li. For topological reasons, the Li
do not individually bound holomorphic disks. However, the collection of all 3 has
a chance to bound a holomorphic triangle. We parameterize this triangle with the
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Fig. 1 Projection of three
Lagrangians Li ⊂ X to the
base of the SYZ fibration via
the valuation map. These La-
grangians bound a holomor-
phic section of val : X → Q
for particular values of λ . L1

L2

Lλ

Q

domain Δλ := {x+ iy | x,y ≥ 0,x+y ≤ λ}. We then consider the holomorphic map:

uλ : Δλ →(C∗)2

(x+ iy) 	→(ex+iy,ey−ix)

One notices that the boundary uλ (x,0) = (ex,e−ix) is contained in L1 and uλ (0,y) is
contained in L2. However, the remaining boundary uλ (t,λ −t)=

(
et+i(λ−t),eλ−t−it

)

will lie in the Lagrangian Lλ if and only if λ ∈ 2πZ. This leads to the follow-
ing strange behaviour: as one modifies the parameter λ , the three Lagrangians
L1,L2,Lλ periodically bound a holomorphic section over a triangle in the base of
val : (C∗)2 → R2. These holomorphic triangles are not regular, so it is not unex-
pected upon taking a generic choice of λ we see no disk. However, for families of
Lagrangians parameterized by λ , these holomorphic disks do appear regularly.

This sporadic appearance of Maslov index zero disks also occurs in the descrip-
tions of wall-crossings for Lagrangian tori [1]. In that setting, as one takes a family
of Lagrangian tori interpolating between the Chekanov torus and product torus in
C2, a non-regular Maslov index 0 disk with boundary flashes in and out of existence.

Fig. 2 The valuation projec-
tion of a tropical Lagrangian
bounding a holomorphic disk.
The disk is obtained by taking
the holomorphic section of
fig. 1 over the triangle, and
rounding off the corners. It
exists only for certain values
of λ determining the tropical
Lagrangian submanifold

L(Vλ )

uλ

Q

We can replicate this kind of behaviour by turning our holomorphic triangles
into holomorphic disks by performing Lagrangian surgery on the intersections of
L1,L2,Lλ to obtain a embedded tropical Lagrangian submanifold L(Vλ ), whose pro-
jection to the base Q is drawn in fig. 2. After performing surgery on the Lagrangian,

605



Jeff Hicks

it is expected that holomorphic triangles with boundary on the Li become holomor-
phic disks on the Lagrangian L(Vλ ) [3]. The holomorphic triangles described in the
first computation give examples of holomorphic disks with boundary on the tropical
Lagrangian L(Vλ ) when the parameter λ passes through a multiple of 2π . This kind
of holomorphic disk is expected to exists: in fact, for some choice of almost com-
plex structure, the wall crossing phenomenon for tropical Lagrangians observed in
[5] proves that there is a non-regular disk with boundary on this tropical Lagrangian
submanifold corresponding to the wall-crossing phenomenon for the Chekanov and
Clifford tori in CP2.

3 Towards computing Floer Support

The presence of non-regular holomorphic disks plays an important role in homolog-
ical mirror symmetry, where the flux coordinates parameterizing the space of La-
grangian submanifolds must be corrected by contributions from bubbling of disks.
Additionally, the presence of a non-regular holomorphic disk uλ can honestly mod-
ify the behaviour of a regular holomorphic disk us with Lagrangian boundary, as
uλ and us can be glued along their boundary to produce a new regular holomorphic
disk. We now speculate about the Lagrangian intersection Floer theory between the
L(Vλ ) and a fiber of the SYZ fibration, Fq := val−1(q), as drawn in fig. 3a.

L(Vλ )

Fq

us

Q

(a) A small holomorphic strip, ob-
served in [5].

L(Vλ )

Fq

us

uλ #us

Q

(b) Creating a bigger strip by attaching
the non-regular disk to the regular strip.

Fig. 3: Examples of holomorphic strips contributing to the differential of
CF•(L(Vλ ),Fq).

In [5], we gave an example worked out with Diego Matessi regarding an interest-
ing holomorphic strip: us : [0,1]×R → (C∗)2 with boundaries on Fq and Vλ . This
holomorphic strip projects under the valuation to the line segment drawn in fig. 3a.
us is a regular holomorphic strip which persists even as we modify the parameters
λ governing the size of the “hole” in the tropical elliptic curve. As a result, for
choices of λ which the disk uλ appears, the strip us intersects uλ , and we conjecture
that it is possible to glue together us and uλ to obtain a larger regular holomorphic
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strip uλ #us contributing to the Floer differential of CF•(L(Vλ ),Fq). This conjectured
holomorphic strip is drawn in fig. 3b.

The Floer theoretic support, which is the set of Lagrangian branes Fq for which
this Floer cohomology does not vanish, gives the equation of an algebraic curve
in the mirror X̌ . In order to compute this support, it is necessary to compute all of
the holomorphic strips with boundary on Fq and L(Vλ ). We hope that this combi-
natorial description of two such holomorphic strips can be extended to produce a
combinatorial model for the Lagrangian intersection Floer theory of arbitrary tropi-
cal Lagrangian submanifolds, which would significantly improve our understanding
of the interplay between homological mirror symmetry and tropical geometry.
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Compactifying torus fibrations over integral

affine manifolds with singularities

Helge Ruddat and Ilia Zharkov

Abstract This is an announcement of the following construction: given an integral
affine manifold B with singularities, we build a topological space X which is a torus
fibration over B. The main new feature of the fibration X → B is that it has the
discriminant in codimension 2.

1 Introduction

There have been a lot of studies of half-dimensional torus fibrations and their in-
tegral affine structures on the base spaces inspired by the Strominger-Yau-Zaslow
conjecture [SYZ96]. This area was very active in the beginning of the 2000’s with
many approaches of different flavor: topological [Zh00], [G01], symplectic [G00],
[Leung], [Rua], [J03],[CBM09], [Au07], [Au09], [EM19], metric [GW00], [KS00],
[LYZ], non-Archimedean [KS06], tropical [Mi04], combinatorial [HZ05], and log-
geometric [GS06], [GS10], [Pa07]. For surveys on the early developments, see
[T06, G09]. The toric case was considered in [CL, CLL, FLTZ12]. A more re-
cent surge and interest is mostly tropical [Mat, SS18, AGIS, Mi19, H19, MR], non-
Archimedean [NXY] or topological [AS], [P18]. For more recent surveys, we refer
to [G12, Ch]. Broadly speaking, all this research developed into a new field of math-
ematics: tropical geometry.

In this note, we essentially follow the Gross-Siebert setup [GS06], [GS10], with
some slight modifications. We replace the polyhedral decomposition of the base B
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by a regular CW-decomposition for the gain of flexibility, cf. the notion of “symple”
in [Ru20]. Also we relax requirements for the monodromy by allowing arbitrary
lattice simplices for local monodromies, not just the elementary ones. That requires
a little more care for the local monodromy assumptions, but does not seem to affect
the topological side of the story much. On the other hand, when we compare our
model with the Kato-Nakayama space of a canonical Calabi-Yau family, we use
the machinery of log-structures on toroidal crossing spaces, so we restrict ourselves
back to the Gross-Siebert polyhedral base B with elementary simple singularities.

This note consists of two parts. The first three sections are devoted to the con-
struction of the compactification of the torus bundle from over the smooth part B0
of the base to all of B. The last section compares the topology of the total space of
the compactified torus bundle with the Kato-Nakayama space obtained from a toric
log Calabi-Yau space.

The primary purpose of this note is an announcement, however, we do give a
precise definition of the setup, its basic notions, some discussion of these and the
statement of the main results to be achieved. We carry out the compactification
construction in dimension three under a unimodularity assumption for illustration.
Some results may be stated only in special cases and proofs may be sketchy or
omitted. All statements in full generality and rigorous proofs will appear soon in
[RZ2].

2 Integral affine manifolds with singularities

Let B be a pure n-dimensional regular CW complex which is a manifold. We fix the
first barycentric subdivision bsdB of B and let D̄ be the subcomplex of bsdB which
consists of simplices spanned by the barycenters of strata of B which are not vertices
and not facets. That is, D̄ is an (n−2)-dimensional subcomplex of bsdB which lives
inside the (n−1)-skeleton of B and misses all vertices of B.

Suppose that we are given an integral affine structure on B00 := B \ D̄. That is,
B00 is given the structure of a smooth manifold and a flat connection of its tangent
bundle T B00 with holonomy in GLn(Z). We denote by Λ the rank n local system of
flat integral vectors in T B00. Similar, the local system Λ̌ stands for the flat integral
covectors in the cotangent bundle T ∗B00.

Each facet of D̄, being of codimension 2, has a small loop around it in B00 and we
compute the monodromy of the affine structure along this loop. If the monodromy
is trivial we can extend the affine structure over this facet. If the monodromy is not
trivial, then this facet becomes a part of the true discriminant D which is a full-
dimensional subcomplex of D̄, that is still a codimension 2 subcomplex of bsdB.
We denote by B0 := B \D the smooth part of the base, this is as far as the affine
structure extends.

Now we describe the requirements for the monodromy of the affine structure. Let
ι : B0 ↪→ B be the inclusion of the smooth part into the base. Then ι∗Λ and ι∗Λ̌ are
the constructible sheaves of locally invariant sublattices of Λ and Λ̌ . In particular,
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the stalk of ι∗Λ at a point x in the discriminant D extends as a constant subsheaf of
Λ in a neighborhood U of x (the Λ itself is not trivializable on U \D), and similar
for Λ̌ . We denote the restriction of ι∗Λ to D by L, and the restriction of ι∗Λ̌ to D by
Ľ, both are constructible sheaves on D.

Let x ∈ D be a point which lies in the stratum τ . Pick a nearby base point y ∈ B0.
The local fundamental group of B0 in a neighborhood of x is generated by the loops
around the maximal strata of D and we want to see its monodromy image Gx in
GL(Λy). The minimal requirement is that Gx is an abelian subgroup of GL(Λy). In
fact we want to require even more. Since L, Ľ are constant on the relative interior of
each stratum τ of D, we simply refer to the stalk at any point in that relative interior
by Lτ , respectively Ľτ .

Definition 1. For a stratum τ ⊂ D, suppose there are sublattices L1, . . . ,Lr in Lτ , lin-
early independent over Q, and sublattices Ľ1, . . . , Ľr in Ľτ , also linearly independent
over Q. We call the collection of sublattices semi-simple if every Li is orthogonal to
every Ľ j (including i = j). If every stratum τ ⊂ D permits a semi-simple collection
of sublattices so that the monodromy group Gx for any x in the interior of τ has the
form id+L1⊗ Ľ1+ · · ·+Lr⊗ Ľr then we say that (B,D) is an integral affine manifold
with semi-simple abelian (or for short just semi-simple) singularities.

We denote the rank of Li by ki and the rank of Ľi by ǩi, and let � := ∑i ki and
�̌ := ∑i ǩi. It holds s := n− �− �̌ ≥ 0. The semi-simpleness condition says that in a
neighborhood U of x ∈ D the monodromy matrices in a suitable basis of Λy ⊗Z Q
when acting on column vectors have the shape

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0 � 0 · · · 0

0 1 · · · 0 0
. . . . . .

...
... 0

. . .
...

...
. . . . . . 0

...
...

. . . 1 0 · · · 0 �
0 · · · · · · 0 1 0 · · · 0

0 · · · · · · 0 0 1
. . .

...

0 · · · · · · 0
...

. . . . . . 0
0 · · · · · · 0 0 · · · 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where the first columns correspond to a basis of L, the last rows correspond to a
basis of Ľ and the (ki × ǩi)-size �-blocks correspond to the lattices Li ⊗ Ľi.

If dimB = 3, then necessarily r ≤ 1 and D is a graph. Following Gross, we call a
vertex of D positive if dim Ľ = 2 and we call a vertex negative if dimL = 2.

In fact we want even more. To every stratum τ of D we would like to associate
two collections of lattice polytopes (Δ1, . . . ,Δr)τ in Lτ and (Δ̌1, . . . , Δ̌r)τ in Ľτ such
that each Li is generated by the edge vectors of Δi, and similar for Ľi. We denote by
P the collection of {Δi, Δ̌i} for all strata of D. Next we discuss the compatibility of
the collection P that we require for the inclusion maps φ : Lτ ↪→ Lσ and φ̌ : Ľτ ↪→
Ľσ for any two incident strata τ ≺ σ of D. Note that rτ ≥ rσ , and we can always
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match the number r of polytopes in σ and τ by adding the origins {0} to play the
role of missing Δ , Δ̌ to the σ -collection.

Definition 2. The collection of polytopes P is compatible if for any incident pair
τ ≺σ of D, after a suitable integral translation, φ(Δi,τ) is a face of Δi,σ and, similarly
after integral translation, φ̌(Δ̌i,τ) is a face of Δ̌i,σ for all i = 1, . . . ,r (up to reordering
the indices in {1, . . . ,r}).

Next, we describe the correlation between P and the discriminant D. To any
polytope Δi one can associate its normal fan. Let Yi ⊂ Rki be the codimension 1
skeleton of that normal fan. Similarly, Y̌i ⊂ Rǩi is the codimension 1 skeleton of the
normal fan to Δ̌i. For a point x ∈ D in a stratum τ we consider the codimension 2
fans in Rn = Rs ×Rk1 ×Rǩ1 ×·· ·×Rkr ×Rǩr :

Sx,i := Rs ×Yi × Y̌i ×R�−ki+�̌−ǩi . (1)

Let Sx be their union: Sx :=
⋃

i Sx,i. Note that
⋂

i Sx,i = Rs. Maximal cones in Sx are
labeled by the pairs of edges in (e, f ), where e is an edge in Δi and f is an edge in
Δ̌i for some i.

Definition 3. A compatible collection of polytopes P is normal if for every point
x ∈ D there is a homeomorphism of its neighborhood U ⊂ B to an open subset
V ⊂ Rn which maps D∪U to Sx ∪V .

Finally we make connection between P and the monodromy of the affine struc-
ture. Let x be a point in D which lies in the stratum τ . Pick a nearby base point
y ∈ B0. We assume that the polytopal collection is compatible and normal. Then
the local fundamental group of B0 in a neighborhood of x is generated by the loops
around the maximal strata of D, which are labeled by the pairs of edges (e, f ), e in
Δi and f in Δ̌i, some i. Orienting the edges determines an orientation of the loop
around the corresponding stratum σe, f of D, see [GS] for details.

Definition 4. A semi-simple integral affine manifold (B,D) with a compatible nor-
mal collection of polytopes P is called semi-simple polytopal if the local mon-
odromy along the loop σe, f is given by id+e⊗ f .

The collection of polytopes P is reminiscent of the Batyrev-Borisov nef-partitions.
The semi-simple polytopal integral affine manifolds therefore mimic local complete
intersections in algebraic geometry.

We next give an example of a semi-simple affine structure which is not polytopal.
The figure below shows a part of discriminant in a 3-dimensional base and the mon-
odromy matrices around the intervals in D with respect to some base point y ∈ B\D
and a suitable basis of Λy ∼= Z3. The edge τ connects the positive vertex on the left
with the negative vertex on the right. The monodromy around the middle edge τ
is twice the standard focus-focus case. The point is that it is impossible to decide
which of the two intervals Δτ or Δ̌τ has length 2. The vertex on the left requires Δτ
to be length one while the vertex on the right requires Δ̌τ to be length one.
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(1 0 2
0 1 0
0 0 1

)
( 1 0 0

0 1 −1
0 0 1

)

( 1 0 −2
0 1 1
0 0 1

)

(1 −1 0
0 1 0
0 0 1

)

( 1 1 −2
0 1 0
0 0 1

) τ

Fig. 1 A non-polytopal semi-simple affine structure.

Another feature of a polytopal affine structure is some sort of local convexity of
the monodromy. Figure 2 shows an example of a negative vertex in a 3-dimensional
base with the monodromy matrices around the four adjacent edges. The monodromy
vectors do not form a convex polytope.

( 1 0 0
0 1 2
0 0 1

)

(1 0 1
0 1 0
0 0 1

)( 1 0 −2
0 1 −2
0 0 1

)

(1 0 1
0 1 0
0 0 1

)

Fig. 2 Another non-polytopal semi-simple affine structure.

3 Local models

Let us consider a point x in the interior of a stratum τ in the discriminant. We will
describe a local model of the torus fibration over a neighborhood of x in B. The
construction of Xτ as a fiber product (the left side of the diagram in Figure 3) is
pretty standard, see, e.g. [GS]. The novelty here is the rightmost column.

We explain the details now. Let Σ be the cone over the convex hull Conv{(Δ̌i,ei)}⊂
ĽR ⊕Rr, where ei = (0, . . . ,1, . . . ,0) is the i-th basis vector of Rr, and let Σ∨ be
its dual cone and Σ∨

Z the integral points in the dual cone. The affine toric variety
UΣ = SpecC[Σ∨

Z ] has r monomials zwi corresponding to the integral vectors wi in
Σ∨ defined by

wi(Δ̌i) = 1, wi(Δ̌ j) = 0, j �= i,

which gives the map UΣ →Cr. The map μ0 : UΣ → Σ∨ is the moment map, and the
cone Σ∨ projects surjectively to R�̌ by taking the quotient by the subspace spanned
by all wi’s.
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UΣ

μ0

��

(zw1 ,...,zwr )

��

V��

��

Ṽ��

��
(C∗)�

( f1,..., fr)

��

finite abelian cover
��

(C∗)�Φ��

finite abelian cover
��

Σ∨

mod w1,...,wr
��

Cr (C∗)k1 × ...× (C∗)kr

f̄1×...× f̄r
��

log

��

(C∗)k1 × ...× (C∗)krΦ̄��

log

��
R�̌ R� R�

Fig. 3 Bottom pictures: log( f−1(0)) and log(( f ◦Φ)−1(0)) for r = 1, k = 2.

Let L′ ∼= Z� be the sublattice in L generated by L1, . . . ,Lr over Q. That is L′ =
L∩ ((L1 ⊕·· ·⊕Lr)⊗Q) and L′ is the unique direct summand of L that has rank �
and contains L1, ...,Lr. The map

(C∗)� ∼= Hom(L′,C∗)→ Hom(L1 ⊕ ...⊕Lr,C∗)∼= (C∗)k1 × ...× (C∗)kr

is the abelian cover that appears as the center vertical map in Figure 3 (and a home-
omorphic version of it also on the right). The finite abelian cover takes care of the
fact that the sublattice L1 ⊕·· ·⊕Lr may have finite index > 1 in L′ ⊆ L. There are
two ingredients for that. First, the lattice Li may have an index in its saturation in L.
Second, the direct sum (L1 ⊕·· ·⊕Lr)⊗Q may not split over Z.

Each polytope Δi defines a function

fi = ∑
v∈vertΔi

cvzv : Hom(L′,C∗)→ C, for a general choice of cv ∈ C∗.

The same expression also defines a function f̄i : Hom(Li,C∗)→ C, so that the tri-
angle in Figure 3 commutes. The space V is given as the complete intersection
{ fi = wi} in UΣ ×(C∗)�. The full local model for the torus fibration Xτ over a neigh-
borhood of x is given by multiplying V by the factor of log : (C∗)s →Rs. We reserve
the right to split this factor between UΣ and (C∗)� as needed to match the models
for adjacent strata in D.

To actually attach the right column in Figure 3, we will assume that all polytopes
Δi are simplices. At the base of the abelian cover, the map ( f1, . . . , fr) : (C∗)� → Cr
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splits as a product and, by the assumption of Δi to be a simplex, the hypersurface
{ fi = 0} in (C∗)ki is a cover of the pair-of-pants { f̄i = 0}. The right column is en-
tirely defined once we specify Φ̄ = Φ̄1 ×·· ·× Φ̄r if we additionally require that the
two squares adjacent to the right column be Cartesian. Note that Δi is a unimodular
simplex with respect to Li (by definition of Li). In Theorem 1 we will use a universal
notation Φ for any of the maps Φ̄i.

As before, we denote by Y the codimension 1 skeleton of the normal fan
to the standard simplex Δ k. That is, the cones YJ in Y are labeled by subsets
J ⊆ {0,1, . . . ,k} of size at least 2. On the other hand, the coamoeba of the (k−1)-
pants has a well-known (k − 1)-dimensional skeleton S ⊂ Tk (the boundary of a
permutahedron), whose faces are labeled by cyclic partitions σ of {0,1, . . . ,k} with
at least 2 parts, see [RZ20] for details. The ober-tropical pair-of-pants H is the
subcomplex of Y ×S ⊂ Δ k ×Tk:

H =
⋃

YJ ×Sσ

such that J does not lie in a single part of σ .

Theorem 1 ([RZ20]). Let H = {1 + y1 + · · ·+ yk = 0} ⊂ (C∗)k be the (k − 1)-
dimensional pair-of-pants. Then there is a homeomorphism of the pairs

Φ : ((C∗)k,H)→ ((C∗)k,H ),

where H is the ober-tropical pair-of-pants which is mapped by log to Y with equidi-
mensional fibers. The homeomorphism restricts well to the boundary under com-
pactifying (C∗)k to the product Δ ×Tk using the moment map μ : (C∗)k → Δ ◦ (that
maps to the interior of the simplex).

The homeomorphism Φ in the theorem may be viewed as a deformation the log
map so that the image of the pair-of-pants become the tropical hyperplane Y (the
spine of the amoeba), rather then the amoeba itself. Now the fibration Xτ → Rn is
induced after applying the homeomophism Φ̄i on the (C∗)ki factor (replacing V by a
homeomorphic space Ṽ ). The discriminant of the fibration is precisely Sx =

⋃
i Sx,i,

see (1), and this has codimension two in Rn.
Finally, to be able to view the fibration Xτ → Rn as a compactification of the

smooth fibration X0 = T ∗B0/Λ̌ → B0 in a neighbourhood of τ , one needs to replace
the log map on the (C∗)� factor by a suitable (other) moment map μ so that its image
is the interior of a polytope rather than all of Rn. A straight forward calculation then
shows that the monodromy agrees with the local description in the neighborhood of
x ∈ B, see, e.g [GS].

4 Gluing the torus fibration with parameters

Let B be an integral affine manifold with semi-simple polytopal singularities so that
each Δi is a simplex.
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Theorem 2 ([RZ2]). There is a topological orbifold X which compactifies the torus
bundle X0 = T ∗B0/Λ̌ to a fibration X → B with n-dimensional fibers (singular over
D ⊂ B). If all local cones Στ are unimodular simplicial cones then X is a manifold.

In fact one can vary the gluing data (a.k.a. B-field) to get a whole family of torus
fibrations Xγ over B. The parameter space of gluings is a torsor over H1(B, ι∗Λ̌ ⊗
U(1)). One can make sense of the parameter space itself being H1(B, ι∗Λ̌ ⊗U(1))
by carefully choosing preferred matching sections for local models - for these ad-
ditional constructions, we refer to [RZ2]. By the universal coefficient theorem,
H1(B, ι∗Λ̌)⊗ZU(1)⊆ H1(B, ι∗Λ̌ ⊗U(1)) is the component of the identity. We will
relate the resulting family

X → H1(B, ι∗Λ̌)⊗ZU(1) (2)

to the Gross-Siebert program in the next section.
For the remainder of this section, we are going to carry out the compactification

procedure in dimension 3 (and thus for r = 1 at all strata of D as we already pointed
out in Section 2) and we additionally assume that both Δτ and Δ̌τ are unimodular
simplices. We follow the approach of Gross [G01], that is, we successively com-
pactify the fibration over the star neighborhoods of vertices in D (the barycenters of
faces in B) ordered by dimension of the corresponding face in B.

We begin with X0 = T ∗B0/Λ̌ . As mentioned before, there are two types of ver-
tices in D: barycenters of 2-faces (negative vertices if more than bivalent) and
barycenters of 1-faces (positive vertices if more than bivalent) in B. We will first
compactify over the star neighborhoods (in the bsdB) of the 2-face vertices. Let
x ∈ D be the barycenter of a 2-face Q of B. Then Δ̌ is the unit interval and there are
two possibilities for Δx: the standard 2-simplex or the unit interval.

Case 1: For Δ the unit interval, we have the (2,2)-case in [G01] which is the
standard focus-focus compactification times a C∗-factor.

Case 2: For Δ the standard 2-simplex, we find D has a trivalent vertex at x and
this is referred to as the (2,1)-case in [G01]. Let Δ ◦ be the interior of Δ and Y be the
union of the 3 intervals in bsdΔ that connect the barycenter of Δ with the barycenter
of an edge of Δ respectively. In a neighborhood of x, the torus bundle T ∗B0/Λ̌
becomes a trivial T2-bundle once we take the quotient by the coinvariant (vanishing)
circle (ι∗Λ̌)x ⊗U(1), hence this T2-bundle extends over the discriminant. Precisely,
to glue in the cotangent torus bundle T ∗Δ ◦/L∗ ∼= Δ ◦×T2 ∼= Q×(Λ̌/Ľ⊗U(1)) over
the simplex (here L∗ is the dual lattice to L) we just need to identify the interior
of the simplex Δ ◦ with the cell Q. Let Q1,Q2,Q3 be the 3 boundary intervals of Q
which meet D.

Lemma 1. There is a homeomorphism ψ : (Δ ◦,Y )→ (Q,D∩Q) which extends to a
homeomorphism including the 3 boundary intervals of Δ and identifying these with
the 3 boundary intervals Q1,Q2,Q3 of Q.

Thus we have a well-defined (trivial) T2-bundle (the quotient by the Ľ-circle)
over the star neighborhood of x in bsdB. Our next step is to compactify the circle
bundle over the 5-dimensional manifold ((Δ ◦×T2)×R)\ (H ×{0}) to a fibration
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over Δ ◦ ×T2 ×R. Here, H ⊂ (C∗)2 ∼= Δ ◦ ×T2 denotes the ober-tropical pair-of-
pants from [RZ20], a 2-dimensional submanifold of Δ ◦×T2×R. We can either glue
in the local model XQ from the previous section, or use the following proposition,
leading to a homeomorphic result:

Lemma 2 (cf. [G01], Proposition 2.5). Let U be the complement of an oriented
connected submanifold S of codimension 3 in a manifold Ū and let π : X →U be a
principal S1-bundle with the Chern class c1 =±κ in H3

S (Ū ,Z)∼= H0(S,Z) for some
κ > 0. Then there is a unique compactification to an orbifold X̄ = X ∪ S such that
π̄ : X̄ → Ū is a proper map and X̄ is a manifold if κ = 1.

Our local description of the monodromy implies that κ coincides with the lattice
length of Δ̌x which we assumed to be one for this article. As pointed out by [G01]
already, changing the orientation of the S1-action, changes the sign of c1. The label
“negative” for the vertex x of D doesn’t stem from the sign of c1 but the Euler
number of the local model XQ which is −1 (and the same as the Euler number of
the fiber over x).

Now comes the important step of unwiggling the ober-tropical fiber tori for ex-
tending the compactification over the rest of D. Figure 4 shows the T2-fibers over
different points in Δ ◦ indicated by little squares. The red locus inside each square
is the intersection of H with the corresponding T2-fiber, the “ober-tropical fibers”
over points of Y . As we move away from x ∈D we deform the ober-tropical fibers so
that they become more and more straight circles. Outside the second barycentric star
of x (the shaded region) they are true linear circles in T2 and are ready to be glued
with the neighboring model. The S1-fibration over Δ ◦ ×T2 ×R collapses precisely
over the red circles in the T2-fibers over Y ×{0} ⊂ Δ ◦ ×R.

Fig. 4 Fading off the wiggling of red circles along Y ⊂ Δ ◦.

The main point of unwiggling is to achieve the following property: close to the
boundary of the cell Q the constructed space X may not only be thought not only
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as an S1-fibration over Q×R×T2 but also as a T2-fibration over Q×R× S1 via
taking the quotient by the circle in the base T2 that is the homotopy class of the
respective red ober-tropical fiber circle. From this perspective, the fibers over D×S1

are pinched tori (homeomorphic to I1-degenerate elliptic curves). This helps us to
do the last step, namely compactify the fibration over the vertices of D which are
barycenters of the 1-dimensional strata in B.

Let us finally discuss the compactification over a vertex x ∈ D that is the barycen-
ter of a one-cell in B. At this barycenter, Δ is the unit interval. If Δ̌ is also a unit
interval then we are back to the focus-focus (2,2)-case which is straightforward to
compactify, so assume Δ̌ is a standard 2-simplex, this is the (1,2)-case in [G01].

We state a more general result that relates back to Figure 3. Let Σ be a cone
in Rk ×R over a lattice simplex Δ̌ ⊂ Rk ×{1}, and let Σ∨ be the dual cone. The
projection Rk ×R → R gives a linear map of cones w : Σ → R≥0 which, in turn,
defines a map of affine toric varieties zw : UΣ = SpecC[Σ∨

Z ]→C. Let μ0 : UΣ →Rk

be the moment map with respect to the Tk-action on UΣ which fixes zw.
We consider the Tk-torus fibration π : UΣ →Rk×C given by z �→ (μ0,zw). Recall

that Y̌ ⊂ Rk stands for the codimension 1 skeleton of the normal fan to Δ̌ . Away
from Y̌ ×{0}, the map π is a Tk-bundle with the monodromy prescribed by the
pair (Δ = [0,1], Δ̌). Over the strata of Y̌ , the fibers of π become lower-dimensional
tori (reflecting the dimension of the stratum) with the fiber over {0} being just a
single point. We denote by π0 : UΣ \{0}→ (Rk ×C)\{(0,0)} the restriction of the
fibration π to the complement of the origin.

Lemma 3 (cf. [G01], Proposition 2.9, for the 3-dimensional case). Let X → (Rk×
C)\{(0,0)} be a torus fibration homeomorphic to π0. There is a unique one point
compactification to an orbifold X̄ = X ∪{pt} such that π̄0 : X̄ →Rk ×C is a proper
map. Consequently, the fibration π̄0 : X̄ → Rk ×C is homeomorphic to π : UΣ →
Rk ×C and X̄ is a manifold if Δ̌ is a unimodular simplex.

There is a generalization of this statement when the pair (C,{0}) is replaced by
a pair (U,S) of S being a submanifold in U of codimension 2. This, in particular,
covers Lemma 1 as a special case k = 1. The relevant case for us is k = 2, U =
R× (R/Z) and S is the point (0,0) ∈ R× (R/Z). We identify S1 = R/Z and refer
to 0 as the corresponding point in S1 in the following.

First, we note that similar to the (2,1)-vertex, the torus bundle T ∗B0/Λ̌ in a
neighborhood W of x becomes a trivial S1-bundle once we take the quotient by the
coinvariant (vanishing) T2-subbundle (ι∗Λ̌)x ⊗ S1, thus it extends over D. Second,
we may view the torus bundle T ∗(B0 ∩W )/Λ̌ as a T2-bundle over (W \D)×S1.

Lemma 4. The T2-bundle over (W \ D)× S1 extends to a singular T2-fibration
π0 : X → (W ×S1)\(x×{0}) by adding the I1-fibers over (Y̌ \x)×S1. The resulting
fibration X agrees with those coming from the neighboring (2,1)-vertices of D after
the unwiggling. Moreover, the fibration X → (W ×S1)\ (x×{0}) is homeomorphic
to π0, so satisfies the hypothesis of Lemma 3.

Applying Lemma 3, the space X compactifies to X̄ → W × S1 by adding the point
x×{0}. This completes the compactification process.
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Finally we briefly comment on the parameter space H1(B, ι∗Λ̌ ⊗U(1)) of glu-
ings. Already in building the smooth part T ∗B0/Λ̌ one can twist by a Čech cocycle
representing an element in H1(B0,Λ̌ ⊗U(1)). Furthermore when gluing in the local
models around the vertices the twisting can be made when identifying the T3-fibers
of T ∗B0/Λ̌ with the S1-bundle over T2 (for the (2,1)-vertices) or T2-bundles over
S1 (for the (1,2)-vertices). Lastly, when identifying the models between (2,1) and
(1,2)-vertices there is only T2-freedom of twistings which corresponds to the sheaf
ι∗Λ̌ dropping the rank along the edges of D.

5 Canonical Calabi-Yau families and their Kato-Nakayama

spaces

Recall from [GS06, Theorem 5.2, Theorem 5.4] and [GS10, Remark 5.3] that, given
an integral affine manifold with simple singularities B and a compatible polyhe-
dral decomposition P with multivalued strictly convex piecewise affine function ϕ
with integral slopes, there is an associated algebraic family of toric log Calabi-Yau
spaces1

X0(B,P,ϕ)→ S := SpecC[H1(B, ι∗Λ̌)∗] (3)

which is semi-universal by [RS, Theorem C.6]. Analytification and application of
the Kato-Nakayama functor associates to the log morphism (3) a continuous surjec-
tion of topological spaces

X ′′ → S ′′ :=
(
H1(B, ι∗Λ̌)⊗Z C∗)×U(1)

which is a fiber bundle by [NO10, Theorem 5.1]. This family has also been studied
with regards to its real locus in [AS]. We restrict the family to

X ′ → S ′ :=
(
H1(B, ι∗Λ̌)⊗ZU(1)

)×U(1). (4)

Let c1(ϕ) denote the class of ϕ in H1(B, ι∗Λ̌). The inclusion Zc1(ϕ)⊆ H1(B, ι∗Λ̌)
induces a map of real Lie groups

φϕ : U(1)→ H1(B, ι∗Λ̌)⊗ZU(1)

where we have identified (Zc1(ϕ))⊗U(1) =U(1).
As explained in [RS, §4.1], there is an equivariant U(1) action on the family (4)

and for the base space, by [RS, (4.14)], it is given by

U(1)×S ′ → S ′, λ .(s, t) =
(
φϕ(λ ) · s,λ−1 · t).

Consequently, the family (4) is a base change of the restricted family X → S :=
H1(B, ι∗Λ̌)⊗ZU(1) under the base change homomorphism

1 We have implicitly picked a splitting of the surjection H1(B, ι∗Λ̌)→ H1(B, ι∗Λ̌)/H1(B, ι∗Λ̌)tors.
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id×φϕ :
(
H1(B, ι∗Λ̌)⊗ZU(1)

)×U(1)→ H1(B, ι∗Λ̌)⊗ZU(1).

The relevant topological information is therefore already contained in X → S . In
[RS, Section 2.1], a moment map X0(B,P,ϕ)→ B was given under the assumption
that X0(B,P,ϕ) is projective over S. Since we restricted to the U(1)-part of the
gluing torus when taking (4), a moment map exists even without the projectivity
condition. Composing with the log forget morphism yields a fibration

π : X → B

whose discriminant has codimension one (being a union of amoebae in real hyper-
planes). In our upcoming work [RZ2], we are going to prove the following result
which may be viewed as deforming π near the discriminant so that the new discrim-
inant has codimension two. In other words, up to this deformation, the Gross-Siebert
fibration π agrees with the compactification of the Strominger-Yau-Zaslow fibration
constructed in the previous sections.

Theorem 3 ([RZ2]). The topological family X → S is homeomorphic to the fam-
ily of compactified torus bundles given in (2) (over the identity on S ).

The homomorphism in the theorem commutes with the respective torus fibration
maps to B away from a tubular neighbourhood of the discriminant D ⊂ B.

Acknowledgements We are indebted to Mark Gross and Bernd Siebert for sharing their ideas and
unpublished notes on the subject, parts of which will enter [RZ2]. Our gratitude for hospitality
goes to Mittag-Leffler Institute, Oberwolfach MFO, University of Miami, MATRIX Institute, JGU
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Graphical neighborhoods of spatial graphs

Stefan Friedl and Gerrit Herrmann

Abstract We give a definition of a graphical neighborhood of a spatial graph which
generalizes the tubular neighborhood of a link in S3. Furthermore we prove existence
and uniqueness of graphical tubular neighborhoods.

1 Introduction

In this paper we give a precise definition of the notion of a spatial graph. In our
opinion the goals of any good definition in knot theory and related subjects should
be two-fold:

1. the definition should be flexible enough to encompass all “physical” objects that
one has in mind,

2. the definition should be rigid enough to allow for a reasonable theory.

At least to our taste the definitions of a spatial graph used in the literature are often
vague or fall short of (1) or (2). For example, a spatial graph is often defined as
“an embedded (topological) graph in S3”. Since a topological graph (i.e. a finite 1-
dimensional CW-complex) is in general not a manifold it is not entirely clear what
the word “embedded” should really mean in this context.

We start out with a precise definition of a “spatial graph”. We hope that the reader
will be convinced that it satisfies (1). Afterwards we will attempt to show “spatial
graphs” in our sense satisfy (2). More precisely, we will show that spatial graphs ad-
mit a graphical neighborhood, which is unique in an appropriate sense, which makes
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it possible to sensibly study spatial graphs. These results had been announced, with-
out proofs, in [2].

Before we turn to the definition of a spatial graph we recall the notion of an
abstract graph.

Definition 1. An abstract graph G is a triple (V,E,ϕ) where V is a finite non-empty
set, E is a finite set and ϕ is a map

ϕ : E → {subsets of V with one or two elements}.

The elements of V are called the vertices of G and the elements of E are called
the edges of G. Furthermore, given e ∈ E the elements of ϕ(e) ⊂ V are called the
endpoints of e.

We turn to topology.

Definition 2. An arc in S3 is a subset E of S3 for which there exists a map
ϕ : [0,1]→ S3 with the following properties:

1. the map ϕ is smooth, i.e. all derivatives are defined on the open interval (0,1)
and they extend to continuous maps on the closed interval [0,1] that we also call
derivatives,

2. the first derivative ϕ ′(t) is non-zero for all t ∈ [0,1],
3. the restriction of ϕ to (0,1) is injective,
4. ϕ((0,1))∩ϕ({0,1}) =∅ and
5. ϕ((0,1)) = E.

Given an arc E as above we refer to ϕ and ϕ(1) as the endpoints of E. (Note that
the endpoints of E do not lie in E.)

Fig. 1 Illustration of arcs with one or two endpoints.

Definition 3. A spatial graph G is a pair (V,E) with the following properties:

1. V is a finite non-empty subset of S3.
2. E is a subset of S3 with the following properties:

a. E is disjoint from V ,
b. E has finitely many components,
c. each component of E is an arc and the endpoints of each arc lie in V .

arc arc

two endpoints one endpoint
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We refer to the points in V as the vertices of G and we refer to the components
of E as the edges of G. Furthermore, given a spatial graph G = (V,E) we write
|G|=V ∪E ⊂ S3.

Note that for a spatial graph (V,E) as above the corresponding triple

(V,π0(E),ϕ(arc) := endpoints of the arc)

is an abstract graph. Also note that a spatial graph admits an obvious CW-structure,
i.e. the underlying topological space is indeed a topological graph in the above
sense.

Fig. 2 Examples of spatial graphs.

As mentioned above, a good definition in topology should be flexible enough to
capture the examples one has in mind, but it should also be rigid enough to allow
for a sensible theory. One can easily convince oneself that the Figure 2 gives three
examples of spatial graphs, so our definition seems to be broad enough to capture
all “reasonable” examples. On the other hand, one of the key tools in the study of
knots and links is the tubular neighborhood. The goal of the remainder of this paper
is to show that our notion of a spatial graph is rigid enough to define an analogue of
the tubular neighborhood of a knot or link.

More precisely, in Section 3 we introduce the notion of a “graphical neighbor-
hood” of a spatial graph. The following three theorems summarize the key properties
of graphical neighborhoods.

Theorem 1. Every spatial graph admits a graphical neighborhood.

Theorem 2. Let G = (V,E) be a spatial graph and let N be a graphical neighbor-
hood for G.

1. N contains |G|=V ∪E in the interior No = N \∂N of N,
2. |G| is a deformation retract of N,
3. ∂N is a deformation retract of N \ |G|,
4. the exterior EG = S3 \No is a compact 3-dimensional manifold that is a defor-

mation retract of S3 \ |G|.
Since every compact 3-dimensional manifold admits a finite CW-structure we

obtain the following corollary to Theorem 2 (4).

Corollary 1. Given a spatial graph G the fundamental group π1(S3 \G) is finitely
presented and all homology groups H∗(S3 \G) are finitely generated.
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The following theorem concludes our list of three theorems dealing with the key
properties of graphical neighborhoods.

Theorem 3. Any two graphical neighborhoods of a given spatial graph are equiva-
lent (see Section 5 for the precise statement).

The following corollary is an immediate consequence of Theorem 3.

Corollary 2. Let G be a spatial graph and let N be a graphical neighborhood for
G. The diffeomorphism type of the exterior EG := S3 \No does not depend on the
choice of a graphical neighborhood N.

Definition 4. We say that two spatial graphs G = (V,E) and G′ = (V ′,E ′) are equiv-
alent if there exists an orientation-preserving homeomorphism Ψ : S3 → S3 with
Ψ(V ) =V ′, Ψ(E) = E ′ and which restricts to a diffeomorphism S3 \V → S3 \V ′.

The following lemma relates graphical neighborhoods of spatial graphs.

Lemma 1. Let G = (V,E) and G′ = (V ′,E ′) be two spatial graphs.

1. Let Ψ : S3 → S3 be an orientation-preserving homeomorphism with Ψ(V ) = V ′
and Ψ(E) = E ′ and which restricts to a diffeomorphism S3 \V → S3 \V ′. If N
is a graphical neighborhood for G, then Ψ(N) is a a graphical neighborhood of
G′.

2. If G and G′ are equivalent, then the exteriors of G and G′ are diffeomorphic.

Proof. The lemma follows immediately from the definitions and the following basic
fact: if f : B3 → R3 is a homeomorphism onto its image such that the restriction of
f to B3 \ {0} is a diffeomorphism onto its image, then f (B3

) is a submanifold of
R3 that is diffeomorphic to the closed 3-ball, even though f : B3 → f (B3

) is not
necessarily a diffeomorphism. 	


We conclude this introduction with a few remarks:

Remark 1. 1. It is also interesting to consider unions G
 L where G is a spatial
graph and L is a link. A graphical neighborhood in this setting is defined as
the union Z 
W where Z is a graphical neighborhood for Z and W is a tubular
neighborhood for the submanifold L. All of the previous results also hold in that
more general context.

2. The theory of graphical neighborhoods works basically the same for spatial
graphs in any closed orientable 3-manifold. For simplicity’s sake we only deal
with the most important case, namely the case of spatial graphs in S3.

3. The reader might be surprised to note how much effort we spend in our proofs
on ensuring that maps are actually smooth and not just continuous. Even though
in 3-dimensional topology we have Moise’s Theorem which says that any two
3-manifolds that are homeomorphic are also diffeomorphic, this does not imply
that analogous statements hold if one wants to keep more control over subsets.
For example, consider the two three spatial graphs G, G′ and G′′ that are shown in
Figure 3. They are equivalent in our sense, but there is no self-diffeomorphism h
of S3 that turns any of the spatial graphs into any of the other two spatial graphs.
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Fig. 3

4. Some authors on spatial graphs write that they work in the PL-category and use
the notion of a regular neighborhood, that is for example discussed in [7, Chap-
ter 3], [4, p. 7f] or [3, Chapter III.B]. A regular neighborhood is a much more
general concept than a graphical neighborhood. The regular neighborhood of a
spatial graph is unique in an appropriate sense (see [7, Theorem 3.24] or alterna-
tively [3, Theorem II.16n]) and by [7, Corollary 3.30] the analogue of Theorem 2
(2) holds. With some effort one can use [7, Corollary 3.18] to show that (3), and
thus also (4), are satisfied. But it takes some dedication to understand what a
“regular neighborhood” is really supposed to be and at first glance it is not en-
tirely clear that the various definitions given in [7, 3, 4] are actually consistent.
At least to the authors it seems like working in the smooth category and working
with our graphical neighborhoods is esthetically more pleasing and “closer to re-
ality”. On the other hand, for implementing algorithms it seems more reasonable
to work in the PL-category.

The paper is organized as follows. In Section 2 we recall the existence and
uniqueness of tubular neighborhoods of 1-dimensional submanifolds of 3-dimen-
sional manifolds. In Section 3 we prove Theorem 1 and in Section 4 we provide a
proof for Theorem 2. Finally in Section 5 we deal with the hardest part of the paper,
namely we prove Theorem 3.

2 Tubular neighborhoods

Before we get started with the technical details we would like to introduce some
conventions, definitions and notations:

1. By a manifold we mean a topological manifold equipped with a smooth structure.
Every manifold is assumed to be compact and orientable unless we say otherwise.
Throughout this paper we try to follow the definitions and conventions of [9].

2. Given a homotopy F : X × [0,1]→ Y and t ∈ [0,1] we denote by Ft : X → Y the
map that is given by Ft(x) = F(x, t).

3. Let M be a manifold. A diffeotopy of M is a smooth map F : M× [0,1]→ M such
that each Ft : M → M is a diffeomorphism.

4. Given a topological space X and a subset A we denote by Ao its interior and we
denote by A its closure.

5. As usual we make the identification S3 = R3 ∪{∞}.
6. Given r ∈R≥0 we denote by B3

r ⊂R3 the open ball of radius r around the origin.
We write S2

r = ∂B3
r .

G′G G′′
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7. Given 0 < s < t we identify S2 × [s, t] with {z ∈R3 |s ≤ ‖z‖ ≤ t}= B3
t \B3

s in the
obvious way.

In the next section we will introduce the concept of a graphical neighborhood
of a spatial graph. It will build on the notion of a tubular neighborhood of a 1-
dimensional submanifold.

Definition 5. 1. Let M be a 3-manifold. A proper submanifold of M is a compact
submanifold C of M with ∂C =C∩∂M and that meets ∂M transversally.

2. A tubular neighborhood for a proper 1-dimensional submanifold C of M is an
embedding F : C×B2 → M with the following properties:

a. we have F(∂C×B2
) = F(C×B2

)∩∂M,
b. the image F(C×B2

) is a submanifold of M with corners (see [9, p. 30] and
[1, Chapter 86] for the definition of a submanifold with corners),

c. there exists a collar neighborhood ∂M× [0,1] such that the tubular neighbor-
hood of C∩ (∂M× [0,1]) is a product, i.e. we have

(∂M× [0,1])∩Φ(C×B2
) = Φ((∂M∩C)×B2

)× [0,1].

Remark 2. Note that a tubular neighborhood N of a 1-dimensional submanifold C
with non-empty boundary is a submanifold of M with non-empty corners, in par-
ticular N is strictly speaking not a smooth submanifold. Fortunately in practice this
is not a problem. For example we are mostly interested in considering the exterior
EC := M \No where No is the interior of N. The exterior EC is a smooth manifold
with corner, but by “straightening of corners”, see [9, Proposition 2.6.2] we can
view EC = M \No as a smooth manifold in a canonical way.

The following two theorems show the existence and uniqueness of tubular neigh-
borhoods in our setting.

Theorem 4. Every proper 1-dimensional submanifold C of every 3-manifold M ad-
mits a tubular neighborhood F : C×B2 → M.

Proof. This theorem is basically a consequence of [9, Theorem 2.3.3]. We have
the extra condition (2c) in the definition of a tubular neighborhood, which is not
explicitly mentioned in [9], but using [9, Proposition 1.5.6] one can see that this
condition can also be arranged. 	

Theorem 5. [9, Chapter 2.5] Let M be a 3-manifold and let C be a proper 1-
dimensional submanifold of M. If F,G : C×B2 → M are two tubular neighborhoods
of C, then there exists a diffeotopy Φ : M× [0,1]→ M rel C with the following prop-
erties:

1. Φt = idM for small t,
2. the restriction of Φ1 to F(C×B2

) defines a fiber-preserving diffeomorphism from
F(C×B2

) to G(C×B2
).
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3 Definition and existence of graphical neighborhoods

Definition 6. Let G = (V,E) be a spatial graph.

1. We say that an orientation-preserving map Θ : B3
R → S3 is transverse at v ∈ V

if Φ is an embedding, if Φ = v and if for each r ∈ (0,R] the image Θ(S2
r ) is a

submanifold of S3 \V that is transverse to the submanifold E of S3 \V .
2. A small neighborhood of V is a compact 3-dimensional submanifold X of S3 with

components {Xv}v∈V such that for each v∈V there exists a map Θ : B3
R → S3 that

is transverse to v with Θ(B3
r ) = Xv.

Fig. 4 Illustration of a small neighborhood.

We point out that E ∩ (S3 \Xo) is a proper submanifold of S3 \Xo. Now we can
define a graphical neighborhood of a spatial graph.

Definition 7. Let G = (V,E) be a spatial graph. A graphical neighborhood of (V,E)
is a subset N of S3 that can be written as a union N = X ∪Y where X is a small
neighborhood of V and Y is a tubular neighborhood of E ∩ (S3 \Xo) in S3 \Xo.

Remark 3. As remarked above, after “straightening of corners”, we can view S3 \No

as a smooth manifold in a canonical way.

Fig. 5

In the following we will see that every spatial graph admits a graphical neighbor-
hood and that graphical neighborhoods have properties that are very similar to the
properties of tubular neighborhoods.

Θedges
vertex v

S2
r (0)

Θ (S2
r (0))B3

R(0)

X

Y
graphical neighborhood

N = X ∪Y

small neighborhood
for the vertices

spatial graph
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We now prove that every spatial graph admits a graphical neighborhood. This
statement should be viewed as the analogue of Theorem 4.

Theorem 1. Every spatial graph admits a graphical neighborhood.

Proof. Let G = (V,E) be a spatial graph. First we show that V admits a small neigh-
borhood. Since we can always shrink small neighborhoods it suffices to show that
each vertex admits a small neighborhood. Let v be a vertex. To simplify the notation
we might as well assume that v = 0 ∈ R3 ∪{∞}. By definition of a spatial graph
there exist smooth injective maps ϕi : [0, 1

4 ] → S3, i = 1, . . . ,k, with the following
properties:

1. For each i ∈ {1, . . . ,k} we have ϕi = 0 and ϕi(
1
4 ) �= 0,

2. for each i ∈ {1, . . . ,k} we have ϕ ′
i (t) �= 0 for all t ∈ [0, 1

4 ],

3. there exists an s > 0 such that B3
s ∩E = B3

s ∩
( k⋃

i=1
ϕi([0, 1

4 ])
)

.

Let i ∈ {1, . . . ,k}. Since the ϕi are smooth and since ϕi = 0 we see that we can write
ϕi(t) = t ·ϕ ′

i + ν(t) where limt→0
‖ν(t)‖

t = 0. It follows from this observation and
the fact that ϕ ′

i �= 0 that there exists an si ∈ (0, 1
4 ) such that ϕi(t) ·ϕ ′

i (t) > 0 for all
t ∈ (0,si). We set R := 1

2 ·min{s,s1, . . . ,sk}. It is now straightforward to verify that
Φ = id

B3
R

has the desired properties.
Now let X be a small neighborhood for V . By the Tubular Neighborhood Theo-

rem 4 there exists a tubular neighborhood Y of the proper submanifold E ∩ (S3 \Xo)
of S3 \Xo. Then X ∪Y is a graphical neighborhood of G. 	


4 Properties of Graphical Neighborhoods

In this section we want to provide the proof for Theorem 2. Whereas statements
(1) and (4) of Theorem 2 are basically obvious, the proof of the remaining two
statements requires a little effort. We will need the following proposition.

Proposition 1. Let G= (V,E) be a spatial graph and let X be a small neighborhood
for V . Let v ∈V . We denote by Xv the corresponding component of X.

1. There exist points P1, . . . ,Pk ∈ S2 and a homeomorphism Θ : B3 → Xv such that

Θ
( k⋃

i=1
{r ·Pi ∈ B3 |r ∈ [0,1]}

)
= E ∩Xv

and such that each Θ(S2
t ) is transverse to E.

2. Given any neighborhood U of v there exist points P1, . . . ,Pk ∈ S2, some η > 0 with
Θ(B3

η)⊂U and an orientation-preserving diffeomorphism Θ : B3 →Xv such that

Θ−1(E)∩ (S2 × [η ,1]) =
k⋃

i=1
{Pk}× [η ,1]
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and such that each Θ(S2
t ) is transverse to E.

Definition 8. Let a < b be real numbers.

1. A string in S2× [a,b] is a connected 1-dimensional submanifold with one bound-
ary point on S2 ×{a} and one boundary point on S2 ×{b}.

2. A string is called linear if it is of the form {x}× [a,b] for some x ∈ S2.
3. A collection of strings is defined as a finite set of disjoint strings.
4. We call a collection of strings E in S2 × [a,b] unknotted if there exists a dif-

feomorphism Φ : S2 × [a,b]→ S2 × [a,b] with ΦS2×{a} = id such that for every
t ∈ [a,b] the submanifold Φ(E) is transverse to S2 ×{t}.

Lemma 2. Let E be a collection of strings in S2× [a,d]. We suppose that E is trans-
verse to S2 ×{t} for all t ∈ [a,d]. Let c ∈ [a,d]. We write b = a+c

2 . There exists a
level-preserving diffeomorphism φ : S2× [a,d]→ S2× [a,d] with φ |S2×[a,b] = id such
that every component of φ(E)∩ (S2 × [c,d]) is a linear string.

Proof. We enumerate the components of E by E1, . . . ,En and write vi = Ei ∩ S2 ×
{a}. For notational simplicity we assume the case that [a,d] = [0,2]. We pick
parametrizations αi : [0,2]→Ei for each i. Since Ei intersects each S2×{t} transver-
sally we can reparametrize αi to a smooth map α̃i : [0,2]→ S2× [0,2] which is level
preserving, i.e. such that for any t ∈ [0,2] we have α̃i(t) ∈ S2 ×{t}. In other words,
we can write α̃i(t) = (βi(t), t) for some smooth map βi : [0,2]→ S2. Thus we obtain
a map:

h : V × [0,2]→ S2 × [0,2]
(vi, t) �→ (βi(t), t).

By the diffeotopy extension theorem [9, Theorem 2.4.2], we obtain a level preserv-
ing diffeomorphism φ : S2× [0,2]→ S2× [0,2] extending the map h. A quick look at
the proof of the diffeotopy extension theorem [9, Theorem 2.4.2] shows that φ can
be chosen to be the identity on S2×{0}. If c = 0, then φ−1 is the desired diffeomor-
phism. If c �= 0, then again by notational convenience we assume c = 1. We take a
smooth function f : R→R which is f is monotonously increasing, with f (t) = 0 for
t ≤ 1

2 and with f (t) = 1 for t ≥ 1. Since φ is level-preserving, there is a smooth map
ϕ : S2 × [0,2]→ S2 such that φ(x, t) = (ϕ(x, t), t). Note that for every t ∈ [0,2] the
map ϕ( · , t) is a diffeomorphism. The map φ̃(x, t) := (ϕ(x, t · f (t)), t) is a diffeomor-
phism with inverse (ϕ(x, t · f (t))−1, t). Moreover, for t ∈ [0, 1

2 ] we have f (t) = 0 and
hence φ̃ = id and for t ∈ [1,2] we have f (t) = 1 and hence φ̃−1( · , t) = φ−1( · , t).
Therefore in S2 × [1,2] the map φ̃ maps linear strings to E. This shows that φ̃−1 is
the desired diffeomorphism. 	

Proof (Proof of Proposition 1). Let G=(V,E) be a spatial graph and let X be a small
neighborhood for V . Given v ∈ V and Xv ⊂ X we can and will pick an orientation-
preserving diffeomorphism Θ : B3

R → Xv with Θ = v and such that for each r ∈ (0,R]
the image Θi(S2

r ) is a submanifold of S3 \V that is transverse to the submanifold E
of S3 \V .
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1. We pick a strictly decreasing sequence R = a1,a2,a3, . . . of real numbers with
limi→∞ ai = 0 and we iteratively apply Lemma 2 (with c = a) to corresponding
strings in S2× [ai+1,ai] = B3

ai
\B3

ai+1
. We combine the resulting diffeomorphisms

to obtain the desired homeomorphism.
2. Let U be neighborhood U of v. We pick a < c < R such that Θ(S2 × [a,c])⊂U .

We apply Lemma 2 and obtain a map φ : S2 × [a,R]→ S2 × [a,R]. Since φ is the
identity in a neighborhood of S2 ×{a} we see that φ extends to a smooth map
φ : B3

R → B3
R that is the identity on B3

a. The map Θ ◦φ : B3
R → Xv has the desired

properties. 	

Now we can finally prove Theorem 2.

Theorem 2. Let G be a spatial graph and let N be a graphical neighborhood for G.

1. N contains |G| in the interior No = N \∂N of N,
2. |G| is a deformation retract of N,
3. ∂N is a deformation retract of N \ |G|,
4. the exterior EG = S3 \No is a compact 3-dimensional manifold that is a defor-

mation retract of S3 \ |G|.

Proof. Let N = X ∪Y be a graphical neighborhood. Statement (1) is immediate.
Statement (4) is a consequence of of statement (3). Statement (2) and (3) can be
proved easily using Proposition 1 (1), using the fact that Y is a product and using
the following elementary claim.

Claim.

1. a. There exists a deformation retraction from [0,1]× B2 to ([0,1]× {0}) ∪
({0,1}×B2),

b. there exists a deformation retraction from [0,1]× (B2 \{0}) to [0,1]×S1.

2. Let P1, . . . ,Pk ∈ S2 with k ≥ 1. We write Y :=
k⋃

i=1
{r ·Pi ∈ B3 |r ∈ [0,1]}.

a. There exists a deformation retraction from B3 to Y .
b. There exists a deformation retraction from B3 \Y to S2 \{P1, . . . ,Pk}.

The proof of the claim is left to the reader. 	


5 Uniqueness of graphical neighborhoods

Finally we define what is means for two graphical neighborhoods of a given spatial
graph to be equivalent.

Definition 9. Let G be a spatial graph and let N and N′ be two graphical neighbor-
hoods of G. We say N and N′ are equivalent if there exists a map Φ : S3× [0,1]→ S3

with the following properties:
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1. each Φt : S3 → S3 is a diffeomorphism,
2. each Φt is the identity on the vertex set and it preserves each edge setwise,
3. Φ0 = id,
4. we have Φ1(N) = N′.

The goal of this section is to prove Theorem 3 from the introduction, i.e. we
want to show that any two graphical neighborhoods of a given spatial graph are
equivalent.

We turn to our first technical lemma of this section.

Lemma 3. We consider the manifold S2×[a,b]. Suppose we are given points P1, . . . ,Pn
in S2 with n ≥ 1. Let C be a proper submanifold of S2×(a,b) which is diffeomorphic
to S2, which is transverse to all the strings Pi × [a,b] and which meets each string
Pi × [a,b] exactly once. Then there exist a diffeomorphism

Ψ : S2 × [a,b] → S2 × [a,b]

and some c ∈ (a,b) with the following properties:

1. Ψ is the identity near the boundary,
2. Ψ preserves each string {Pi}× [a,b] setwise,
3. Ψ(S2 ×{c}) =C,
4. for each t ∈ [a,b] the image Ψ(S2×{t}) is transverse to each string {Pi}× [a,b].

C

E

S2 ×{a}

S2 ×{b}

Fig. 6

In the proof of Lemma 3 we need the following well-known purely group theo-
retic statement.

Lemma 4. Let ϕ : A→B be a homomorphism between free groups of the same finite
rank. If ϕ∗ : H1(A)→ H1(B) is an epimorphism, then ϕ is a monomorphism.

For the reader’s convenience we include the proof of the lemma.

Proof. Let k be the rank of A and B. Note that Γ := ϕ(A) is a subgroup of the free
group B, thus it is also free group. The rank of Γ is evidently ≤ k. The epimorphism
ϕ∗ : H1(A)→H1(B) factors through the inclusion induced map H1(ϕ(A))→H1(B).
Therefore we see that the rank of ϕ(A) is ≥ k. Thus ϕ(A) is in fact a free group of

637



Stefan Friedl and Gerrit Herrmann

rank k. The map A → ϕ(A) is evidently an epimorphism. Since free groups are
Hopfian [6, p. 109] we see that A → ϕ(A) is also a monomorphism. But this implies
that ϕ itself is a monomorphism. 	


We will also make use of the following theorem.

Theorem 6. Let F be a surface (possibly with boundary) that is not diffeomorphic
to S2. Let D ⊂ F × (0,1) be a properly embedded surface. If D is incompressible,
i.e. if the inclusion induced map π1(D)→ π1(F × [0,1]) is a monomorphism, then
there exists an orientation-preserving diffeomorphism Ψ : F × [0,1] → F × [0,1]
with Ψ(F ×{ 1

2}) = D, Ψ is the identity in a neighborhood of F ×{0,1} and the
restriction of Ψ to ∂F × [0,1] is diffeotopic to the identity.

Proof. This follows, with minor effort, from [8, Proposition 3.1 and Corollary 3.2].
	

Proof (Proof of Lemma 3). For notational convenience we suppose that a =−1 and
b = 1. Thus we consider the manifold S2 × [−1,1]. We denote by p : S2 × [−1,1]→
S2 the obvious projection. Suppose we are given points P1, . . . ,Pn ∈ S2 with n ≥ 1.
Let C be a submanifold of S2 × (−1,1) which is diffeomorphic to S2, which is
transverse to each string {Pi}× [−1,1] and which meets each string {Pi}× [−1,1]
exactly once.

By picking small enough closed disks Di around the Pi we obtain tubular
neighborhoods Di × [−1,1] for the strings such that for each i the intersection
C∩ (Di × [−1,1]) is a single disk and such that the projection p : S2 × [−1,1]→ S2

restricts to a diffeomorphism C ∩ (Di × [−1,1]) → Di. We write Σ = S2 \ n⋃
i=1

Do
i .

Since p also restricts to a diffeomorphism C∩ (∂Di × [−1,1]) → ∂Di we see that
the curve C∩ (∂Di × [−1,1]) represents a generator for H1(∂Di × [−1,1]).

Claim. The surface C′ =C∩ (Σ × [−1,1]) is incompressible in Σ × [−1,1], i.e. the
inclusion induced map π1(C′)→ π1(Σ × [−1,1]) is a monomorphism.

As we noted above, the intersection of the sphere C with each cylinder Di ×
[−1,1] is a single disk. Thus we see that C′ is a sphere with n open disks removed,
i.e. C′ is diffeomorphic to Σ . Thus we see that π1(C′) and π1(Σ × [−1,1]) are free
groups of the same rank. By Lemma 4 it suffices to show that H1(C′) → H1(Σ ×
[−1,1]) is an epimorphism.

We consider the following commutative diagram of inclusion induced maps:

H1(∂Σ)

����

∼= �� H1((∂Σ)× [−1,1])

����

H1(C′ ∩ ((∂Σ)× [−1,1]))����

��
H1(Σ)

∼= �� H1(Σ × [−1,1]) H1(C′).��

The two horizontal maps on the left are evidently isomorphisms. Furthermore, since
Σ is a sphere minus some open disks we see that the left vertical map is an epi-
morphism. Thus the middle vertical map is an epimorphism. Furthermore, since
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C∩ (∂Di × [−1,1]) represents a generator for H1(∂Di × [−1,1]) we see that the top
right horizontal map is an epimorphism. Thus it follows that the horizontal map on
the bottom right is also an epimorphism. This concludes the proof of the claim.

It follows from the fact that C′ is properly embedded in Σ × (−1,1)) and Theo-
rem 6 that there exists a self-diffeomorphism Ψ of Σ × [−1,1], that is the identity in
a neighborhood of Σ ×{±1}, that sends Σ ×{0} to C′ and which has the property
that the restriction to each annulus ∂Di × [−1,1] is diffeotopic to the identity.

It remains to extend Ψ over the cylinders Di × [−1,1] in a suitable way. Recall
that the projection p : S2 × [−1,1] → S2 restricts for each i to a diffeomorphism
C∩(Di× [−1,1])→Di. The existence of the desired extensions is thus an immediate
consequence of Lemma 5 below. 	


The following technical lemma concludes the previous proof.

Lemma 5. Let ε > 0. We denote by p : B2
1+ε × [−1,1]→ B2

1+ε the obvious projec-

tion. Let C be a properly embedded disk in B2
1+ε × (−1,1) such the restriction of p

to C∩ (B2
1 × [−1,1])→ B2

1 is a diffeomorphism. Furthermore suppose we are given
an orientation-preserving self-diffeomorphism Ψ of (S1 × [1,1+ ε])× [−1,1] with
the following properties:

1. Ψ is the identity near (S1 × [1,1+ ε])×{±1},
2. the restriction of Ψ to S1 ×{1}× [−1,1] is diffeotopic to the identity,
3. Ψ((S1 × [1,1+ ε])×{0}) =C∩ (S1 × [1,1+ ε])× [−1,1].

Then there exists a self-diffeomorphism Φ of B2
1+ε × [−1,1] with the following prop-

erties:

(0) it equals Ψ on S1 × [1,1+ ε]× [−1,1],
(1) Φ is the identity in a neighborhood of B2

1+ε ×{±1},
(2) Φ preserves {0}× [−1,1] setwise,
(3) we have Φ

(
B2

1+ε ×{0})=C.

Proof. We write Θ =Ψ |S1×[−1,1]. This is an orientation-preserving self-diffeomor-
phism of the annulus S1 × [−1,1] that is the identity near S1 ×{±1}. By hypothesis
there exists a diffeotopy S1× [−1,1]× [0,1] from Θ to the identity and the diffeotopy
can be chosen to be the identity near S1 ×{±1}× [0,1]. We use this diffeotopy to
extend Ψ to S1× [1, 1

2 ]× [−1,1]. Finally we extend Ψ via the identity to B2
1× [−1,1].

Note that the restriction of the projection p to Ψ ′(C) → B2
1+ε is still a diffeomor-

phism. We can postcompose Ψ ′ with a suitable self-diffeomorphism of B2
1+ε ×

[−1,1] of the form (P,z) �→ (P, f (P,z)) to obtain the desired self-diffeomorphism
Φ . 	
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5.1 Proof of Theorem 3

The theorem will be proved in several steps. To formulate the first step we need to
introduce a new definition.

Definition 10. Let G = (V,E) be a spatial graph. Let X and X ′ be small neighbor-
hoods of V .

1. Given v ∈V we say that X ′
v is covered by Xv if the following properties hold:

a. X ′
v ⊂ Xv,

b. there exists a diffeomorphism Θ : B3
R →Xv that is transverse at v and an R′ <R

such that Θ(B3
R′) = X ′

v,

c. there exist P1, . . . ,Pn ∈ S2 such that Θ−1(E)∩S2 × [R′,R] =
n⋃

i=1
{Pi}× [R′,R].

2. We say X ′ is covered by X if each X ′
v is covered by Xv.

Remark 4. By rescaling we can always arrange that R′ = 1 and R = 2.

Fig. 7 The small neighborhood Θ ′
i is covered by Θi.

Lemma 6 (Small neighborhood shrinking lemma). Let G = (V,E) be a spatial
graph. Let X be X ′ two small neighborhoods of V . If X ′ ⊂ Xo, then X ′ is covered by
X.

Proof. Let X and X ′ be small neighborhoods of V with X ′ ⊂ Xo. Let v ∈ V .
We pick a corresponding diffeomorphism Θ ′

v : B3
R′ → X ′

v that is transverse at v.

By Proposition 1 (2) we can pick a diffeomorphism Θv : B3
R → Xv that is trans-

verse at v and which admits an η > 0 such that Θv(B3
η) ⊂ (X ′

v)
o and such that

F :=Θ−1
v (E)∩S2× [η ,R] is linear. (Here we make the usual identification B3

R\B3
η =

S2 × [η ,R].)
We write C := Θ−1

v (Θ ′
v(S

2
R′)) ⊂ B3

R. Note that by the choice of η we have C ⊂
S2 × [η ,R]. By Lemma 3 there exists a diffeomorphism

Ψ : S2 × [η ,R] → S2 × [η ,R]

and some c ∈ (η ,R) with the following properties:

Θ

ΘB3
R′(0)

B3
R(0) v

X ′
v

Xv
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1. Ψ is the identity near the boundary,
2. Ψ preserves the linear strings Θ−1

v (E)∩ (S2 × [η ,R],
3. Ψ(S2 ×{c}) =C,
4. for each t ∈ [η ,R] the image Ψ(S2 ×{t}) is transverse to F .

We now consider the map Ξ : B3
R → B3

R that is given by the identity on B3
η and that

is given by Ψ on S2 × [η ,R] = B3
R \B3

η . (Note that Ξ is smooth by the first property

of Ψ .) Note that Θv ◦Ξ : B3
R → Xv is transverse at v and that the image of B3

c under
this map is precisely X ′

v. We have thus shown that X ′
v is covered by Xv. 	


Fig. 8 Illustration of the proof of Lemma 6.

Lemma 7 (Graphical shrinking lemma). Let G = (V,E) be a spatial graph. Let
Z = X ∪Y be a graphical neighborhood for G. Suppose that X ′ is a small neighbor-
hood for V . If X ′ is covered by X, then there is a graphical neighborhood Z′ with
decomposition Z′ = X ′ ∪Y ′ and which is equivalent to Z.

Fig. 9 Illustration of Lemma 7.

We will need the following rather technical lemma.

Lemma 8. Let P1, . . . ,Pm be points in S2. Let ε ∈ (0,1) and let f : S2 × [1,1+ ε]→
S2× [1,2] be an embedding such that f |S2×{1} = id and such that f preserves {Pi}×
[1,2] setwise. Then there exists a diffeomorphism Ψ : S2 × [1,2] → S2 × [1,2] with
the following properties:

1. Ψ equals f in a neighborhood of S2 ×{1},

Θ ′
Θ

C

B3
R′(0)

B3
R(0)

v

X ′
v

Xv

B3
η (0)

X ′
vX ′

v
Z′Z v

Xv
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2. Ψ is the identity in a neighborhood of S2 ×{2},
3. for each t ∈ [1,2] and for each Q ∈ S2 the submanifolds Ψ(S2 ×{t}) and {Q}×

[1,2] are transverse,
4. for each i the map Ψ preserves {Pi}× [1,2] setwise.

Proof. We denote by p : S2× [1,2]→ S2 the obvious projection. Since f |S2×{1} = id
we can pick an μ > 0 such that for all Q∈ S2 and t ∈ [1,1+μ] the differential Dp(Q,t)
is an isomorphism and such that for each i we have f ({Pi}× [1,1+μ])⊂ Di× [1,2].
Note that for each t ∈ [1,1+ μ] the map gt := p◦ ft : S2 → S2 is a diffeomorphism
that is the identity on {P1, . . . ,Pm}.

Let σ : [1,1+μ]→ [1,1+μ] be a smooth function which is equal to 1 on some
interval [1,η ] with η > 0 and which has the property that there exists a ν > 0 such
that σ(t) = t for all t ∈ [1+μ −ν ,1+μ]. We consider the map

α : S2 × [1,1+μ] → S2 × [1,1+μ]
(Q, t) �→ f (g−1

σ(t)(Q), t).

Note that the map α has the property that p(α(Q, t)) = Q for all Q ∈ S2 and all
t ∈ [1+ μ −ν ,1+ μ]. This means that there exists a smooth function d : S2 × [1+
μ − ν ,1+ μ] → [1,1+ μ] such that α(Q, t) = (Q,d(Q, t)) for all Q ∈ S2 and all
t ∈ [1+ μ − ν ,1+ μ] and for some smooth function d : S2 × [1+ μ − ν ,1+ μ] →
[1,1+μ]. Note that d has the property that for each Q ∈ S2 the function t �→ d(Q, t)
has positive derivative. We pick an extension of d to a smooth function d : S2 × [1+
μ −ν ,2]→ [1,2] with the following properties:

1. for each Q ∈ S2 the function t �→ d(Q, t) has positive derivative,
2. there exists a neighborhood of S2×{2} such that the map d is just the projection.

Now we consider the map

Ψ : S2 × [1,2] → S2 × [1,2]

(Q, t) �→
{

α(Q, t), if t ∈ [1,1+μ],
(Q,d(Q, t)), if t ∈ [1+μ,2].

One easily verifies that the above map Ψ has all the desired properties. 	

Proof (Proof of the Graphical shrinking Lemma 7). Let v ∈V .

1. Since X ′ is covered by X we can find for each v ∈ V an orientation-preserving
diffeomorphism Θv : B3

2 → Xv such that Θv is transverse at v and such that Θv

restricts to a diffeomorphism B3
1 → X ′

v and such that there exists a finite subset
Pv ⊂ S2 with Θv(S2 × [ 1

4 ,2])∩E =Θv(Pv × [ 1
4 ,2]).

2. By condition (3) on a tubular neighborhood we can find orientation-preserving
embeddings Ωv : S2 × [2,3]→ S3 \Xo, v ∈V with the following properties:

a. the images are disjoint,
b. for each v we have Ωv(S2 ×{2}) = ∂Xv,
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c. for each v there exists a finite subset Qv ⊂ S2 with E ∩ Ωv(S2 × [2,3]) =
Ωv(Qv × [2,3]) and there exist disjoint closed disks {Di}i∈Qv in S2 with

Z ∩Ωv(S2 × [2,3]) = Ωv

( ⋃
i∈Qv

{Di}× [2,3]
)

.

Note that after possibly postcomposing Ωv with the map

S2 × [2,3] �→ S2 × [2,3]
(P, t) �→ ((Θv|S2

2
◦ (Ωv|S2

2
)−1)(P), t)

we can arrange that Θv|S2
2
= Ωv|S2

2
. In particular we have Pv = Qv.

3. Using the Whitney Approximation Theorem, as formulated in [5, Theorem 6.26],
we can extend the embedding Ωv : S2 × [2,3] → S3 \ Xo to a smooth map
Ωv : S2 × [2 − ε,3] → S3 for a suitably small ε > 0. Furthermore we can ar-
range that E ∩Ωv(S2 × [2− ε,2]) = Ωv(Qv × [2− ε,2]). After possibly reduc-
ing the ε these maps are in fact embeddings. Note that Ωv restricts to an
embedding S2 × [2 − ε,2] → Xv, in particular we obtain an embedding f :=
(Θv)

−1 ◦Ωv : S2 × [2− ε,2] → S2 × [1,2] that is the identity on S2 ×{2} and
that preserves Qv × [2− ε,2] setwise.

We pick Ψv : S2× [1,2]→ S2× [1,2] as in Lemma 8. (Here we replace the endpoints
{1,2} by {2,1} and we consider the map f := (Θv)

−1 ◦Ωv : S2 × [2− ε,2]→ S2 ×
[1,2].) We define

Ξv : B3
3 → S3

(P, t) �→
⎧
⎨
⎩

Ωv(P, t), if t ∈ [2,3],
Θv(Ψv(P, t)), if t ∈ [1,2],
Θv(P, t), if t ∈ [0,1].

We set

Fig. 10

Z′ := Z ∪ ⋃
v∈V

⋃
i∈Pv

Ξv
(
Di × [1,2]

)
.

preimage of E

Ξ v

Θv

Ωv

X ′
v

Z
Xv

v
Pi ×{3}

Ωv and Θv define a map that is continuous
but not necessarily smooth at S2 ×{2}
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It is fairly straightforward to show that Z′ is indeed a graphical neighborhood for G.
It remains to show that the graphical neighborhoods Z and Z′ are equivalent. We

pick a smooth strictly monotonously function f : [0,3] → [0,3] with f (t) = t for
t ∈ [0, 1

2 ] and t ∈ [ 5
2 ,3] and with f (2) = 1. The map

Φ : S3 × [0,1] → S3

(P, t) �→
{

Ξv(Q,s · (1− t)+ f (s) · t), if P = Ξv(Q,s) where Q ∈ S2, t ∈ [0,3]
P, otherwise

is a diffeotopy that fixes V pointwise and that fixes E setwise with Φ0 = id and with
Φ1(Z) = Z′. 	

Lemma 9. Let P1, . . . ,Pm ∈ S2, let ε > 0 and let Ψ : (S2 × [1,1+ε))× [0,1]→R3 \
B3

1 be a map with the following properties:

1. Ψt = id for small t,
2. each Ψt is an embedding,
3. each Ψt is the identity on each {Pi}× [1,1+ ε),
4. each Ψt preserves S2 ×{1} setwise.

Then we can extend Ψ to a smooth map (S2 × [ 1
2 ,1+ε))× [0,1]→R3 \B3

1
2

with the

following properties:

1. Ψ0 = id,
2. each Ψt is an embedding,
3. for each i we have Ψi({Pi}× [ 1

2 ,1+ ε))⊂ {Pi}× [ 1
2 ,1+ ε),

4. there exists a ν > 0 such that each Ψt is the identity on S2 × [ 1
2 ,

1
2 +ν ].

Proof. We start out with the following claim.

Claim. There exists a smooth map Ψ ′ : S2 × [ 1
2 ,1+ ε)× [0,1] → B3

1
2

with the fol-

lowing properties:

1. The map agrees with Ψ on S2 × [1,1+ ε)× [0,1],
2. for each i and each t ∈ [0,1] we have Ψ ′

t ({Pi}× [ 1
2 ,1])⊂ {Pi}× [ 1

2 ,1+ ε],
3. on (S2 × [ 1

2 ,1])×{0} the map Ψ ′ is the identity. (Strictly speaking it is the pro-
jection onto the factor in the parenthesis.)

First we extend Ψ to a map Ψ1 on the following closed subset:

Ψ1 = (Ψ x
1 ,Ψ

y
1 ) : (S2 × [1,1+ ε))× [0,1] ∪ (S2 × [12 ,1])×{0} → (S2 × [12 ,1])× [0,1]

P �→ Ψ1(P) = (Ψ x
1 (P),Ψ

y
1 (P))

of (S2 × [ 1
2 ,1+ ε])× [0,1] by defining it to be the identity on (S2 × [ 1

2 ,1])×{0}.
Since Ψt = id for small t we see that Ψ1 is smooth on this closed subset. (Recall that
by definition, [5, p. 45], a map f : A → N on an arbitrary subset A of a manifold is
smooth if given any point P ∈ A there exists an open neighborhood U of P and a
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smooth map on U that agrees with f on A∩U .) It follows from the Whitney Approx-
imation Theorem, as formulated in [5, Theorem 6.26], that Ψ1 can be extended to a
smooth map on (S2× [ 1

2 ,1+ε))× [0,1]. We denote this extension again by Ψ1. Next
we pick disjoint open neighborhoods U1, . . . ,Um around P1, . . . ,Pm. In the following
we make the identification S2 =R2 ∪{∞} in such a way that U1, . . . ,Um ⊂R2. Thus
we can consider the map

Ψ2 : (S2×[1,1+ε))×[0,1] ∪ S2×[12 ,1+ε)×{0} ∪ m⋃
i=1

Ui×[12 ,1+ε)×[0,1]

→ S2×[12 ,1+ε)

that is given by

(Q,s, t) �→
{
(Ψ x

1 (Q,s, t)+Pi −Ψ x
1 (Pi,s, t),Ψ y

1 (Q,s, t)), if Q ∈Ui and s ∈ [ 1
2 ,1],

Ψ1(Q,s, t), otherwise.

One can easily see that Ψ2 is smooth on the open subsets Ui × [ 1
2 ,1+ ε)× [0,1]. It

follows in particular that the restriction of Ψ2 to the closed subset

(S2 × [1,1+ ε))× [0,1] ∪
m⋃

i=1
(Pi × [ 1

2 ,1])× [0,1] ∪ (S2 × [ 1
2 ,1])×{0}

is smooth. Thus, once again by the Whitney Approximation Theorem, as formulated
in [5, Theorem 6.26], we can extend Ψ2 to a smooth map Ψ ′ : S2 × [ 1

2 ,1+ε)× [0,1]
which now has all the desired properties. This concludes the proof of the claim.

It follows from the claim and the Whitney Approximation Theorem, as for-
mulated in [5, Theorem 6.26], that Ψ ′ can be extended to a smooth map on
(S2 × [ 1

2 ,1+ ε))× [0,1]. We denote this extension again by Ψ ′.
Note that for a sufficiently small η ∈ (0, 1

4 ) each map Ψ ′
t : S2× [1−η ,1]→ B3

1 is
an embedding. Thus we can apply Lemma 8 (with the endpoints {1,2} replaced by
{ 1

2 ,1}, with the interval [1,1+ε] replaced by [1−η ,1] and with f replaced byΨ ′) to
obtain an extension of Ψ : (S2 × [1−η ,1])× [0,1]→ B3

1 to a map on (S2 × [ 1
2 ,1])×

[0,1] → S2 × [ 1
2 ,1] that has all the properties we expect on that domain. Together

with our original map it defines the desired map (S2× [ 1
2 ,1+ε))× [0,1]→R3 \B3

1
2
.

	

Now we can finally give the proof of Theorem 3.

Proof. Let G be a spatial graph and suppose that Z = X ∪Y and Z′ = X ′ ∪Y ′ are two
graphical neighborhoods of G. It follows easily from the proof of the existence of
graphical neighborhoods that there exists a graphical neighborhood Z′′ = X ′′ ∪Y ′′
with the following two properties:

1. we have X ′′ ⊂ Xo and X ′′ ⊂ (X ′)o,
2. for each v ∈ V there exists a map Θv : B3

2 → Xv that is transverse at v and such
that Θv(B3

1) = X ′′
v and such that the images Θv(B3

2) are disjoint.

Since for graphical neighborhoods being equivalent is indeed an equivalence rela-
tion it suffices to prove the desired statement for X ′′ and X .
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By the Shrinking Lemma 6 the small neighborhood X ′′ is covered by X . We
apply the Graphical Shrinking Lemma 7 to X and X ′′ and we obtain a new graphical
neighborhood Z̃ = X ′′ ∪ Ỹ which is equivalent to the graphical neighborhood Z =
X ∪Y . Thus it remains to show that Z′′ = X ′′ ∪Y ′′ is equivalent to Z̃ = X ′′ ∪ Ỹ ′.
Now Y ′′ and Ỹ are tubular neighborhoods of the proper submanifold E ∩S3 \ (X ′′)o

in S3 \ (X ′′)o. By uniqueness of tubular neighborhood, see Theorem 5, we obtain a
diffeotopy Ψ of S3 \ (X ′′)o rel E ∩S3 \ (X ′′)o with Ψ0 = id and with Ψ(Y ′′) = Ỹ .

We continue with the above maps Θv : B3
2 → Xv. We apply Lemma 9 to the maps

S2 × [1,1+ ε]× [0,1] → R3

(P,s, t) �→ Θ−1
v (Ψt(Θv(P,s, t)))

for a conveniently chosen ε > 0. We can use the resulting extensions given by
Lemma 9 to extend Ψ over all of S3. 	
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Open Problems in the Topology of Manifolds

Jonathan Bowden, Diarmuid Crowley, Jim Davis, Stefan Friedl, Carmen Rovi and
Stephan Tillmann

Introduction

The problems in this list were collected at MATRIX, during the workshop on the
Topology of Manifolds: Interactions between High and Low Dimensions, January
7th – 18th 2019. Several of the problems below were discussed in the problem ses-
sions during the MATRIX workshop and the organisers wish to thank all partici-
pants for their enthusiasm during the problem sessions and throughout the meeting.
A description of how the problem sessions were run can be found in the preface.

Below, we give a selection of eleven problems that were posed at the workshop.
This selection illustrates the range and scope of the discussions at the meeting. We
would like to thank all participants who contributed problems and further questions
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that helped shape many of them. An evolving record of these and other problems
and questions posed at the workshop can be found at the Manifold Atlas:

http://www.map.mpim-bonn.mpg.de/

We have attributed each problem in this list to the participant(s) who presented
the problem at the workshop. The style in which problems were posed varied widely,
and our selection reflects this. The first nine problems listed here are succinctly for-
mulated and self-contained: references to the literature are minimal and references
for each problem, where they exist, are at the end of the problem. The subject matter
of the final two problems necessitated recalling more background and a somewhat
more detailed referencing of the literature. The order in which we list the problems
is chronological, rather than by subject matter.

Problem 1: A quotient of S2 ×S2

presented by Jonathan Hillman

Let C4 = 〈σ〉 act freely on S2 ×S2 with that action of σ defined by the equation
σ(x,y) = (y,−x) and let M be the quotient manifold.

The real projective plane RP2 = S2/∼ embeds in M via [x] �→ [x,x] and its disk
bundle neighborhood N in M is the tangent disk bundle of RP2. The complement of
the open disk bundle neighborhood is the mapping cylinder of the double cover of
lens spaces L(4,1)→ L(8,1). Thus

M = N ∪MCyl(L(4,1)→ L(8,1)).

This geometric analysis of M was given in [1] where it was shown that there are
at most four closed topological manifolds in this homotopy type, half of which are
stably smoothable.

The smooth manifold M′ =N∪MCyl(L(4,1)→ L(8,3)) is homotopy equivalent
to M.

Question. Are M and M′ homeomorphic? diffeomorphic?

Reference

1. I. Hambleton and J. Hillman, Quotients of S2×S2, Preprint 2017. Available at arXiv1712.04572

Problem 2: Connected sum decompositions of high-dimensional manifolds

presented by Stefan Friedl

Let Cat be one of the categories Top, PL or Diff. A Cat-manifold M is called
irreducible if, whenever we can write M as a connected sum of Cat-manifolds at
least one of the summands is a homotopy sphere. The Kneser-Milnor theorem [2]
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says that every compact Cat 3-manifold admits a connected sum decomposition
into irreducible 3-manifolds, and this connected sum decomposition is unique up to
permutation of the summands.

Stefan Friedl asked to what degree this statement holds in higher dimensions.
During the two weeks of the workshop and during discussions afterwards Imre
Bokor, Diarmuid Crowley, Stefan Friedl, Fabian Hebestreit, Daniel Kasprowski,
Markus Land and Johnny Nicholson obtained a fairly comprehensive answer which
appears in the proceedings [1]. Before we discuss the results, note that exotic spheres
do not have a decomposition into irreducible manifolds. Thus it is reasonable to con-
sider all questions “up to homotopy spheres”.

In the following we summarize a few of the results.

1. It follows from standard algebraic topology and group theory that every Cat-
manifold admits a connected sum decomposition into irreducible manifolds and
a homotopy sphere.

2. The uniqueness statement (up to homotopy spheres) fails to hold in any of the
dimensions ≥ 4 and any of the categories.

3. If one restricts attention to simply connected manifolds, then it is shown that in
any dimension ≥ 17 uniqueness (up to homotopy spheres) fails to hold in any of
the categories.

4. In contrast for many even dimensions 2k, if one restricts attention to the case of
(k−1)-connected smooth manifolds, uniqueness does hold.

References

1. I. Bokor, D. Crowley, S. Friedl, F. Hebestreit, M. Land, D. Kasprowski and J.Nicholson,
Connected sum decompositions of high-dimensional manifolds, to appear in the MATRIX
Annals (2019). Available at arXiv:1909.02628

2. J. Milnor, A unique decomposition theorem for 3-manifolds, Amer. J. Math. 84 (1962), 1–7.

Problem 3: An analogue of Casson-Gordon theory for trisections

presented by Stephan Tillmann

Heegaard splittings have long been used in the study of 3–manifolds. They were
introduced in 1898 by Poul Heegaard, and provide a decomposition of each closed
3–manifold into two 1–handlebodies. A key concept introduced in the theory by
Casson and Gordon [1] was the notion of strong irreducibility, with their main theo-
rem stating that if a closed 3–manifold has a splitting that is not strongly irreducible,
then either the splitting is reducible or the manifold contains an incompressible sur-
face of positive genus. That is, one can either simplify the splitting, or one obtains
topological information on the 3–manifold. Strongly irreducible Heegaard surfaces
turn out to have many useful properties that one usually only associates with in-
compressible surfaces in 3–manifolds. Casson and Gordon also discovered a local
condition, the rectangle condition, which guarantees that a Heegaard splitting is
irreducible.
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The challenge for the analogous theory of trisections of 4–manifold is to deter-
mine properties of trisections that have strong topological consequences and that
can be determined by local information, for instance, from a trisection diagram.

Reference

1. A. Casson and C.McA. Gordon, Reducing Heegaard splittings, Topology Appl. 27 (1987),
275–283.

Problem 4: Aspherical manifolds whose fundamental group has nontrivial cen-

tre

presented by Fabian Hebestreit and Markus Land

Given a closed aspherical manifold M whose fundamental group has nontrivial
centre, we can ask the following:

Question A. Does there exist a finite cover of M with a principal S1-action?

Question B. Is such an M null-cobordant?

Motivation and background for these questions is found in [1, Section 7].

Reference

1. F. Hebestreit, M. Land, W. Lück and Oscar Randal-Williams, A vanishing theorem for
tautological classes of aspherical manifolds, to appear in Geom. Topol.. Available at
arXiv:1705.06232

Problem 5: Is the trisection genus additive under connected sum?

presented by Peter Lambert-Cole

Let M be a closed smooth 4-manifold. The “trisection genus” of M is the minimal
genus of the central surface appearing in a trisection of M.

Question. Is the trisection genus additive under connected sum?

If so, then the following hold:

1. The trisection genus of M is a homeomorphism invariant.
2. The manifolds S4, CP2, S2 ×S2, CP2�CP2 and CP2�CP2 have a unique smooth

structure.

An affirmative answer to the question is known for the class of all standard simply
connected PL 4-manifolds [1].
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Reference

1. J. Spreer and S. Tillmann, The trisection genus of standard simply connected PL 4-manifolds,
34th International Symposium on Computational Geometry, Art. No. 71, 13 pp., LIPIcs.
Leibniz Int. Proc. Inform., 99, Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2018.

Problem 6: Compact aspherical 4-manifolds

presented by Jim Davis

Let M0 and M1 be a compact aspherical 4-manifolds with boundary. The Borel
Conjecture in this setting states that a homotopy equivalence of pairs

f : (M0,∂M0)→ (M1,∂M1),

which is a homeomorphism on the boundary is homotopic, relative to the boundary,
to a homeomorphism.

By topological surgery, the Borel Conjecture is valid when the fundamental
group π = π1(M0) ∼= π1(M1) is good, for example, if π is elementary amenable.
One now proceeds to the following three problems:

1. Decide which good π are the fundamental groups of compact aspherical 4-
manifolds.

2. Determine the possible fundamental groups of the boundary components.
3. Determine the homeomorphism types of the boundary components.

These problems could be considered for compact aspherical 4-manifolds even
when the fundamental group is not good, also in the smooth case.

Question. Let M be a closed smooth aspherical 4-manifold. Is every smooth 4-
manifold homotopy equivalent to M diffeomorphic to M?

The question has not been answered for any M, not even the 4-torus.

Problem 7: Embedding integral homology 3-spheres into the 4-sphere

presented by Jonathan Hillman

Question. Let Σ be an integral homology 3-sphere, not homeomorphic to S3. Is
there a locally flat embedding Σ ↪→ S4 such that one or both complementary regions
are not simply-connected?

This problem is motivated by the problem of classifying such embeddings up
to isotopy. If a complement has non-trivial fundamental group, then a ‘satellite’
construction yields infinitely many isotopy classes of embeddings of Σ into S4.

Problem 8: Stabilising number of knots and links

presented by Anthony Conway
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Let W be a compact 4–manifold with boundary ∂W ∼= S3. We say that a prop-
erly embedded disk (Δ ,∂Δ) ⊂ (W,∂W ) is nullhomologous, if its fundamental
class [Δ ,∂Δ ] ∈ H2(W,∂W ;Z) vanishes.

A link L ⊂ S3 is stably slice if there exists n ≥ 0 such that the components
of L bound a collection of disjoint locally flat nullhomologous discs in the mani-
fold D4#n(S2 ×S2). The stabilising number sn(L) of a stably slice link is the mini-
mal such n.

Schneiderman proved that a link L is stably slice if and only if the following in-
variants vanish: the triple linking numbers μi jk(L), the mod 2 Sato-Levine invariants
of L, and the Arf invariants of the components of L [2].

Question A. Does the inequality sn(L) ≤ gtop
4 (L) hold for stably slice links L of

more than one component?

This question is settled in the knot case: together with Matthias Nagel, we showed
that sn(K) ≤ gtop

4 (K) holds for stably slice knots [1]. We are currently unable to
generalise this proof to links.

Remark. The definition of the stabilising number also makes sense in the smooth
category (one requires that the discs be smoothly embedded). Just as in the topo-
logical category, the inequality snsmooth(K)≤ gsmooth

4 (K) holds, and is unknown for
links.

This discussion of categories leads to the following question:

Question B. Is there a difference between the topological and smooth stabilising
numbers of a knot? More precisely, is there a non-topological slice, Arf invariant
zero knot K such that 0 < sntop(K)< snsmooth(K) ?
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Problem 9: Unknotted surfaces in the 4-spheres

presented by Jim Davis

Kawauchi has published several accounts of the theorem below; however, none
of them are satisfactory. The problem is to give a satisfactory proof.

Theorem. Any two locally flat topological embeddings of a closed oriented surface
in S4 whose complement has infinite cyclic fundamental group are homeomorphic.

There is a corresponding statement in the nonorientable case. Complex conjuga-
tion on CP2 has fixed set RP2 and orbit space S4. Likewise for CP2. The involution
on aCP2#bCP2 thus gives a locally flat embedding of #a+bRP2 in S4.
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Conjecture. Any locally flat topological embedding of a closed nonorientable sur-
face in S4 whose complement has order 2 fundamental group is homeomorphic to
one of the above embeddings.

See also Massey [1] which determined the possible normal bundles.
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Problem 10: Genus bounds for cancellations

presented by Diarmuid Crowley

This problem and the next are about the classification of compact 2q-manifolds
for q ≥ 2. For simplicity, we assume that all manifolds are connected. We state these
problems in the smooth category: there are obvious analogues for PL-manifolds
and topological manifolds but we only discuss the topological case in dimension 4,
which is of course an exceptional dimension and the PL case not at all.

For a natural number g, define Wg := #g(Sq ×Sq) to be the g-fold connected sum
of Sq ×Sq with itself. If M0 and M1 are compact smooth 2q-manifolds of the same
Euler characteristic, then a stable diffeomorphism from M0 to M1 is a diffeomor-
phism

f : M0�Wg → M1�Wg

for some g ≥ 0. In this case we say write M0 ∼=st M1 and we say that M0 and M1 are
stably diffeomorphic. Of course, to define the connected sum operation, M0,M1 and
Wg must be locally oriented. Since Wg admits an orientation reversing diffeomor-
phism for all g, if for i = 0,1 the manifold Mi is orientable, then the diffeomorphism
type of Mi�Wg does not depend on the orientation chosen for Mi.

The stable class of a 2q-manifold M is defined to be the set of diffeomorphism
classes of 2q-manifolds M′ with same Euler characteristic as M and which are stably
diffeomorphism to M:

S st(M) = {M′ | χ(M) = χ(M′) and M ∼=st M′}/diffeomorphism

We say that cancellation holds for M if every manifold which is stably diffeomor-
phic to M is diffeomorphic to M; i.e. |S st(M)| = 1. Our purpose here is to sum-
marise some of what is known about when cancellation holds and to identify two
basic problems about cancellation which remain open. For this we require a further
definition, notation and discussion.

The genus of M, g(M), is defined to be the largest natural number g such that

M ∼= M′�Wg

for some other compact smooth 2q-manifold M′. Since we have assumed that q ≥ 2,
the fundamental group of M, which we denote by π , is unchanged by stabilisation
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with Wg. So far, the majority of work on the cancellation problem has been to iden-
tify cases where cancellation holds via the fundamental group π , the genus g and
the parity of q. For example, the following theorem of Hambleton and Kreck shows
the power of cancellation as a classification technique in dimension 4.

Theorem A. (Topological cancellation for q = 2 and finite π; [2, Thm. B]) Let M
be a closed oriented topological 4-manifold with finite fundamental group and of
genus at least 1. Then cancellation holds for M.

Recall next that a finitely presented group π is polycyclic-by-finite if it has a
finite index subgroup which has a subnormal series where each quotient is cyclic.
The minimal number of infinite cyclic quotients is an invariant of π called the Hirsch
length of π and is denoted h(π). The results of the following theorem all use Kreck’s
theory of modified surgery: the first three are [3, Theorem 5] and the fourth is [2,
Theorem 1.1].

Theorem B. (Cancellation results for q ≥ 3; [3, Thm. 5] and [2, Thm. 1.1]) Let M
be a compact 2q-manifold of genus g with polycyclic-by-finite fundamental group π
and let N be stably diffeomorphic to M with the same Euler characteristic as M.

1. If q is odd and π is trivial then M and N are diffeomorphic;
2. If π is trivial and g ≥ 1, then M and N are diffeomorphic;
3. If π is finite and g ≥ 2, then M and N are diffeomorphic;
4. If g ≥ h(π)+3, then M and N are diffeomorphic.

We now state two problems relating the genus of M to the cancellation problem.
The first of these was explained to the author by Ian Hambleton and uses the fol-
lowing further terminology: let π be a finitely presented group and ε ∈ {±1}. We
say that g0 is a ε-genus cancellation bound for π if cancellation holds for every 2q-
manifold M with ε = (−1)q, π1(M) ∼= π and genus g(M) ≥ g0. If such a g0 exists,
the ε-cancellation genus of π is defined to be minimum genus cancellation bound

cgε(π) := min{g0 | g0 is an ε-genus cancellation bound for π}.

If there is no ε-genus cancellation bound for π , we set cgε(π) = ∞.

Problem A. (Genus bounds for general groups) Is there an example of a finitely
presented group π which is not polycyclic-by-finite and for which cgε(π) < ∞ for
some ε?

It perhaps remarkable that Problem A is still open, but in fact our knowledge
of the cancellation bound for almost all groups π is minimal. By Theorem B(1),
we have cg−({e}) = 0 and there examples which combine with Theorem B(2) to
give cg+({e}) = 1 and indeed cg+(π) ≥ 1 for all π . However, there are no known
examples where cgε(π)≥ 2; i.e. the following problem is still open.

Problem B. ((s the cancellation genus ever greater than one?) Is there a finitely
presented group π and ε ∈ {±1} such that cgε(π) ≥ 2? i.e. is there a pair of 2q-
manifolds M and N with π1(M)∼= π1(M)∼= π such that we have M�Wg ∼= N�Wg for
some g but M�W1 and N�W1 are not diffeomorphic?
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Remark. One source of manifolds in the stable class of M comes from the ac-
tion of the L-group, L2q+1(Z[π],w1), by Wall realisation. To be precise about tor-
sions, the torsion requirements correspond to the L-group denoted LE

2q+1(π) in [7,
17 D] and this L-group is defined as the group of units in the little-� surgery monoid
l2q+1(Z[π],w); see [3, p. 773]. Hence the formations and lagrangians are based, but
the formation is not required to be simple and there is an exact sequence

0 → Ls
2q+1(Z[π],w1)→ L2q+1(Z[π],w1)

τ−→ Wh(π),

where Wh(π) is the Whitehead group of π and the image of τ is described precisely
in [2, Lemma 6.2].

The Wall realisation procedure entails that if ρ ∈ L2q+1(Z[π],w1) is represented
by a formation on a hyperbolic form of rank 2g0 and if M′ = ρM, then we have
M�Wg0

∼= M′�Wg0 . Moreover, applying [2, First theorem of §1.3], it follows that if
g(M)≥ g0, then M′ ∼= M. Hence the cancellation problem is related to the algebraic
problem of the determining the minimal rank of a formation representing a given ρ ∈
L2q+1(Z[π],w1). For example, if every element of L2q+1(Z[π],w1) is represented by
a formation of rank 2g0 or less and g(M) ≥ g0, then L2q+1(Z[π],w1) acts trivially
on S st(M).
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Problem 11: The Q-form Conjecture

presented by Diarmuid Crowley

This problem follows on from the previous problem on genus bounds for cancel-
lation. We use the same notation but now for simplicity we assume that all manifolds
are closed, as well as connected. Recall that π = π1(M) and w1 =w1(M) are the fun-
damental group and orientation character of M and that the L-group L2q+1(Z[π],w1)
acts on the stable class of M via Wall realisation:

S st(M)×L2q+1(Z[π],w1)→ S st(M)

Given that the L-groups L2q+1(Z[π],w1) have been intensively studied, we focus on
the quotient of the action above and suggest the following
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Problem. Determine S st(M)/L2q+1(Z[π],w1), the set of orbits of the action of
L2q+1(Z[π],w1) on the stable class.

Below we present a conjectural solution to this problem, along with some evi-
dence for the conjecture. To do this, we assume the reader is familiar with the setting
of modified surgery; the details are found in [3, §1]. Let ξ : B → BO be a fibration
over a connected space B. An m-dimensional normal smoothing in (B,ξ ) is a pair
(M, ν̄), where M is a compact m-manifold and ν̄ : M → B is a lift of the stable
normal bundle of M, ν̄M , as in the following diagram:

Bq−1
M

ξ q−1
M

��
M

ν̄
��

νM �� BO

If ν̄ is k-connected then (M, ν̄) is called a normal (k−1)-smoothing over (B,ξ ) and
if in addition ξ is k-coconnected, then the fibration ξ represents the normal (k−1)-
type of M, which we denote by ξ k−1

M : Bk−1
M → BO. There is a well-defined notion

of (B,ξ )-diffeomorphism, that is diffeomorphism preserving (B,ξ )-structures up
to equivalence and also (B,ξ )-bordism of closed (B,ξ )-manifolds; the correspond-
ing bordism group is denoted Ωm(B;ξ ). For an m-dimensional normal k-smoothing
(M, ν̄) over (B,ξ ), we let [M, ν̄ ] ∈ Ωm(B;ξ ) denote its bordism class and define

NSξ (M, ν̄)
:={(M′, ν̄ ′) | χ(M′) = χ(M), [M′ν̄ ′] = [M, ν̄ ]}/(B,ξ )-diffeomorphism,

to be the set of (B,ξ )-diffeomorphism classes of m-dimensional normal k-smoothings
which are bordant to (M, ν̄) and have the same Euler characteristic as M.

For m = 2q and k = q−1, a foundational result of Kreck [3, Corollary 3] states
that if (M0, ν̄0) and (M1, ν̄1) ∈ NSξ (M, ν̄) then M0 and M1 are stably diffeomor-
phic. Combined with [2, Lemma 2.3], we obtain for (B,ξ ) = (Bq−1

M ,ξ q−1
M ) that the

forgetful map

F: NSξ q−1
M

(M, ν̄)→ S st(M), (M′, ν̄ ′) �→ M′,

is onto. Moreover aut(ξ q−1
M ), the group of fibre homotopy classes of fibre ho-

motopy automorphisms of ξ q−1
M , acts by post-composition NSξ q−1

M
(M, ν̄) and by

[4, Theorem 7.5], the universal properties of the Moore-Postnikov factorisation
νM = ξ q−1

M ◦ ν̄ ensure that the induced map

Faut(ξ q−1
M )

: NSξ q−1
M

(M, ν̄)/aut(ξ q−1
M )→ S st(M) (1)

is a bijection. Hence it makes sense to study NSξ q−1
M

(M, ν̄) together with the action

of aut(ξ q−1
M ), in order to learn about S st(M).
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We next define the key new invariant we shall use to formulate our conjectures
and this is the extended quadratic form of (M, ν̄). Given ξ : B → BO, we let π =
π1(B) be the fundamental group of B and w1 the orientation character of ξ . We
fix a base-point in B and a local orientation of ξ at the base-point. We all assume
that all normal smoothings (M, ν̄) over (B,ξ ) are base-point preserving and that
ν̄∗ : π1(M)→ π1(B) an isomorphism, which we use to identify π1(M)= π . The local
orientation of ξ gives M a local orientation and hence defines a fundamental class
[M]∈H2q(M;Zw1) and also the equivariant intersection form λ(M,ν̄) : Hq(M;Z[π])×
Hq(M;Z[π])→ Z[π].

For every positive integer n, Ranicki [6, §10], defines a quadratic form parame-
ter over the twisted group ring (Z[π],w1), Qn(ξ ), which is associated to the stable
spherical fibration underlying the stable bundle ξ . In general, if we fix a ring with
involution Λ , then a quadratic form parameter over Λ is a triple Q = (Q,h,p), writ-
ten

Q = (Q h−→ Λ p−→ Q).

Here Q is an abelian group together with a quadratic action of Λ and h and p are
equivariant homomorphisms with respect to the conjugation of Z[π] on itself, which
satisfy certain equations. We refer the reader to [6, §10] for the details and point out
that a similar but more general notion of quadratic form parameter can be found in
the work of Baues [1]. We also mention that there is an exact sequence of abelian
groups (see [6, p. 37])

Q(−1)n(Z[π])→ Qξ (n)→ Hn(B;Z[π])→ 0,

where Q(−1)n(Z[π]) is the classical Q-group appearing in Wall’s quadratic form [7,
Theorem 5.2] and where the homomorphism Qξ (n) → Hn(B;Z[π]) is equal to the
quotient map Qξ (n)→ Qξ (n)/Im(p).

An extended quadratic form over a form parameter Q, briefly a Q-form, is a triple

(H,λ ,μ),

where H is a Λ -module, λ : H ×H → Λ is a sesqui-linear form and μ : H → Q is a
quadratic refinement of λ which means in part that for all x,y ∈ H we have

μ(x+ y) = μ(x)+μ(y)+p(λ (x,y)) and λ (x,x) = h(μ(x)).

The linearisation of (H,λ ,μ) is the Λ -module homomorphism

S(μ) : H → Q/Im(p), x �→ [μ(x)].

If (H,λ ,μ) and (H ′,λ ′,μ ′) are Q-forms then an isometry between them is an λ -
module isomorphism preserving the sesquilinear forms and their quadratic refine-
ments and we write

HomΛ (Q)

for the set of isometry classes of Q-forms on finitely generated Λ -modules.
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The theory of [6, §10] ensures that a normal (q−1)-smoothing ν̄ : M → B over a
stable bundle ξ : B → BO defines a Qξ (q)-form

μ(M, ν̄) :=
(
Hq(M;Z[π]),λ(M,ν̄),μ(ν̄)

)
,

where (Hq(M;Z[π]),λ(M,ν̄)) is the equivariant intersection form of (M, ν̄) and the
map μ(ν̄) : Hq(M;Z[π]) → Qξ (q) is a quadratic refinement of λ(M,ν̄), which has
linearisation

S(μ(ν̄)) = ν̄∗ : Hq(M;Z[π])→ Hq(B;Z[π]).

It follows from the definitions that if f : M0 → M1 is a (B,ξ )-diffeomorphism be-
tween 2q-dimensional (q−1)-smoothings (M0, ν̄0) and (M1, ν̄1) over (B,ξ ), then
the induced homomorphism f∗ : Hq(M0;Z[π]) → Hq(M1;Z[π]) is an isometry of
Qξ (q)-forms. It follows that there is a well-defined map

NSξ (M, ν̄)→ Hom(Z[π],w1)(Qξ (q)), (M, ν̄) �→ μ(M, ν̄).

Now Wall realisation also defines an action of L2q+1(Z[π],w1) on NS(M, ν̄) and
it is elementary to check that the isometry class of the extended quadratic forms is
invariant under this action. Hence the map above descends to define the map

μ : NSξ (M, ν̄)/L2q+1(Z[π],w1)→ Hom(Z[π],w1)(Qξ (q)). (2)

At last, we can state the first version of the Q-form Conjecture.

Conjecture A. (The Q-form Conjecture for normal smoothings) If q ≥ 3, then
the map μ of (2) is injective; i.e. if q ≥ 3 and (M0, ν̄0) and (M1, ν̄1) are 2q-
dimensional (B,ξ )-bordant normal (q−1)-smoothings with equal Euler character-
istic and isometric Qξ (q)-forms, then (M0, ν̄0) and (M1, ν̄1) differ by the action of
L2q+1(Z[π],w1).

Given the bijection of (1), Conjecture A allows us to formulate a conjectural
determination of the stable class of M, at least for q ≥ 3. For this, note that
aut(ξ q−1

M ) acts on Qξ (q) by automorphisms and hence on Hom(Z[π],w1)(Qξ (q)) by
post-composition. Thus we obtain the map

μ/aut(ξ ) : NSξ (M, ν̄)/
(
L2q+1(Z[π],w1)× aut(ξ )

)→ Hom(Z[π],w1)(Qξ (q))/aut(ξ ),

which is a bijection if Conjecture A holds. Since the bijection of (1) is equivariant
with respect to the action of L2q+1(Z[π],w1), when ξ = ξ q−1

M is a representative of
the normal (q−1)-type of M, the map μ/aut(ξ ) induces another map, also denoted
μ/aut(ξ ),

μ/aut(ξ ) : S st(M)/L2q+1(Z[π],w1)→ Hom(Z[π],w1)(Qξ q−1
M

(q))/aut(ξ q−1
M ). (3)

Conjecture B. (The Q-form Conjecture for the stable class) If q ≥ 3, then the
map μ/aut(ξ ) of (3) is injective; i.e. if q ≥ 3 and we have M0,M1 ∈ S st(M) then
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M0 ∼= ρM1 for some ρ ∈ L2q+1(Z[π],w1) if and only if for i = 0,1, there are normal
(q−1)-smoothings ν̄i : Mi → Bq−1

M such that μ(M0, ν̄0) and μ(M1, ν̄1) are isometric
Qξ q−1

M
(q)-forms.

We conclude by briefly discussing Conjectures A and B. Notice that since the
map μ of Conjecture A is aut(ξ q−1

M )-equivariant, Conjecture A implies Conjecture
B. Both conjectures are inspired by the classification of the �-monoids in [2] and
to the best of our knowledge, both conjectures are consistent with the extensive
literature on classifying 2q-manifolds for q ≥ 3. In addition, Conjecture A (hence
Conjecture B) has been proven by Nagy in the case where q is even, π = {e} and
Hq(B;Z) is torsion free [5].

At times, it has been tempting to propose Conjectures A and B as hypotheses;
i.e. as sign posts for organising work on the classification of the stable class, as op-
posed to statements believed to be true. However, the resilience of these statements
to date encourages their proposal as conjectures in the usual sense. This is also con-
sistent with history of the exploration of the stable class, where the “unreasonable
effectiveness” of the (equivariant) intersection form has often been observed.
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Chapter 11

Aperiodic Order meets Number Theory



Aperiodic order meets number theory: Origin
and structure of the field

M. Baake, M. Coons, U. Grimm, J. A. G. Roberts and R. Yassawi

Abstract Aperiodic order is a relatively young area of mathematics with connec-
tions to many other fields, including discrete geometry, harmonic analysis, dynami-
cal systems, algebra, combinatorics and, above all, number theory. In fact, number-
theoretic methods and results are present in practically all of these connections. It
was one aim of this workshop to review, strengthen and foster these connections.

Aperiodic structures and patterns have revolutionised parts of science, as evi-
denced by the 2011 Nobel Prize in Chemistry awarded to Dan Shechtman for the
discovery of quasicrystals. Beautiful, yet profound, examples in mathematics have
captured the attention of many, starting with the famous Penrose tiling from 1974.
The deep connection between these topics emerged from the number-theoretic work
of Yves Meyer (Abel Prize 2017). During this workshop, an international commu-
nity of like-minded researchers came together to discuss recent results and develop
research collaborations at the interface of aperiodic theory and number theory.

From the very beginnings of research on aperiodic order, intriguing links to num-
ber theory were observed; these have become increasingly apparent in recent years.
Over the past decade, there has been a tremendous development in various direc-
tions, including spectra and transport theory of Schrödinger operators, reversing
symmetry groups in dynamical systems and ergodic theory, and topological invari-
ants in symbolic and algebraic dynamics. Additionally, the links between number

Michael Baake
Bielefeld University, Germany. e-mail: mbaake@math.uni-bielefeld.de

Michael Coons
University of Newcastle, Australia. e-mail: michael.coons@newcastle.edu.au

Uwe Grimm
The Open University, Milton Keynes, UK. e-mail: uwe.grimm@open.ac.uk

John A.G. Roberts
UNSW, Sydney, Australia. e-mail: jag.roberts@unsw.edu.au

Reem Yassawi
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theory, dynamical systems, and theoretical computer science are strengthening, and
the lines between them are blurring.

Aperiodic order [36, 5, 6, 24] has several roots in mathematics — predating even
the main impetus for the area: the discovery of quasicrystals. These include Harald
Bohr’s development of the theory of almost periodic functions [13], Robert Berger’s
proof of the undecidability of the tiling problem [11], and Yves Meyer’s work on
model sets [35], which was later developed further in [27, 37, 28, 38, 29], as well as
early works on tilings and patterns including Roger Penrose’s famous fivefold tiling
of the plane [40]. From the very start, there have been connections to various areas

At the same time, within number theory, the advent of modern (digital) com-
putation has underscored the importance of understanding the relationship between
base expansions and algebraic operations. This topic has a rich history, especially in
Australian mathematics through the work of Loxton, Mahler and van der Poorten.
It focussed mainly on results related to finite automata and their generalisations —
structures of importance in aperiodic order.

Recent results and questions at the intersection of aperiodic order and number
theory include the following.

• The study of weak model sets [7, 25] was partially motivated by the set of visible
points of the integer lattice and the set of kth power-free integers [8, 43], and their
connections to Sarnak’s programme on the Möbius disjointness conjecture; see
[39, 31] for recent developments. Under a rather natural extremality assumption,
it is possible to establish pure point spectrum, and that such systems can be seen
as natural generalisations of regular model sets.

• The diffraction theory of infinite point sets in Euclidean space with its corre-
sponding inverse problem shows fundamental connections to almost periodicity
[32, 48, 47] and Lyapunov exponents [34]. Likewise, there are similar structures
in the theory of Schrödinger operators, with surprising applications to spectra on
graphs [17].

• Rather than using diffraction, connections with Diophantine approximations can
be used to investigate and quantify the nature of order in a cut and project set [21].
Quantities of interest here include the complexity function and the repetitivity
function. Another interesting characteristic is the discrepancy, which describes
the difference between the expected and actual number of appearances of a given
patch in a large region.

• Constant-length substitutions are important objects for both number theory and
aperiodic order. A generalisation of these are regular sequences, which are related
to finitely generated semigroups of matrices. The growth properties of these se-
quences are related to questions in both areas, including spectral properties [1]
as well as the finiteness conjecture for integer matrices [2, 30]. These results are
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of mathematics. Number theory features prominently, for instance in the early work
of Peter Pleasants, as reviewed in [42]. Arguably the most obvious relation occurs
for planar tilings with (non-crystallographic) rotational symmetry, which are closely
related to rings of integers in cyclotomic fields.
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connected with the scaling structure of singular continuous measures, as recently
analysed for the Thue–Morse measure; see [4] and reference therein.

• Logarithmic Mahler measures occur as the maximal Lyapunov exponents of ma-
trix cocycles for binary constant-length substitutions [3]. In this way, Lehmer’s
problem for height-one polynomials having minimal Mahler measure becomes
equivalent to a natural question from the spectral theory of binary constant-length
substitutions. This supports another connection between Mahler measures and
dynamics, beyond the well-known appearance of Mahler measures as entropies
in algebraic dynamics [44].

• One of the questions that evolved from the early work on Wang tilings [11] and
has attracted attention over the years is the question of the minimal set of tiles
required to enforce quasiperiodicity. For a long time, it seemed that substitution-
based structures were the way to go, until Kari [23] and Culik [16] came up with
an ingenious way of assigning rational edge values to Wang tiles in a way that

attention, see for instance [45, 22, 26], but the question whether it opens up a
new approach to aperiodic structures remains to be explored. Closely related is
the search for planar monotiles of hexagonal shape [41, 46].

• Constant-size substitutions and characteristic-p S-unit equations are also con-
nected to the question of mixing in algebraic dynamics, as described recently in
work by Derksen and Masser [18, 19]. Techniques in these articles should shed
light on the nature of the symmetry groups of these algebraic dynamical systems,
thus providing additional and powerful methods for the characterisation of (ex-
tended) symmetry groups in algebraic dynamics, as recognised in [9, 20, 15, 14],
as well as the analysis of related systems [12].
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Delone sets on spirals

Shigeki Akiyama

Motivated by phyllotaxis in botany, the angular development of plants widely found
in nature, we give a simple mathematical characterization of Delone sets on spirals.

Let X be a subset of R2 which is identified with the complex plane C. Denote by
B(x,r) the open ball of radius r centered at x. We say X is relatively dense if there
exists r > 0 such that, for any x ∈C, B(x,r)∩X �= /0 holds, X is uniformly discrete if
there exists r > 0 such that, for any x ∈C, we have card(B(x,r)∩X)≤ 1, and finally
X is a Delone set if it is both relatively dense and uniformly discrete.

Set e(z) = e2πiz. Fix an angle α ∈ [0,1) and a strictly increasing function f from
R≥0 to itself. We wish to characterize when the set

Xf =
{

f (n)e(nα) | n ∈ N
}

on a spiral curve
{

f (t)e(tα) | t ∈ R≥0
}

forms a Delone set.
Let us collect necessary conditions. Clearly Xf is not relatively dense if the angle

α is rational, since Xf is contained in a union of a finite number of lines passing
through the origin. An easy discussion leads to the following result.

Lemma 1. If Xf is relatively dense, then limsupn→∞ f (n)/
√

n < ∞. If Xf is uni-
formly discrete, then liminfn→∞ f (n)/

√
n > 0.

Hereafter, we assume that f (n) =
√

n and that α is irrational, and study the set

X(α) =
{√

ne(nα) | n ∈ N
}
.

In other words, we are interested in the sequence of points on the Fermat spiral that
progresses by a constant angle α (see Figure 1).

A real number α is badly approximable if there exists a positive constant C so
that

q|qα − p| ≥C
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Fig. 1 Constant angular progressions on Fermat spiral

holds for all (p,q)∈Z×N. It is well-known that α is badly approximable if and only
if the partial quotients of the continued fraction expansion of α are bounded (com-
pare [3, Theorem 23] and [1, Theorem 1.9]). In particular, if α is a real quadratic
irrational, then α is badly approximable, due to Lagrange’s theorem.

With the help of the three distance theorem on irrational rotation conjectured by
Steinhaus and proved by Sós [5, 6] and then Świerczkowski [8], Surányi [7], Halton
[2] and Slater [4], we can prove the following result.

Theorem 1. The following four statements are equivalent.

a) X(α) is relatively dense,
b) X(α) is uniformly discrete,
c) X(α) is a Delone set,
d) the angle α is badly approximable.

Searching for a possible higher-dimensional extension is an interesting problem.
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Topological methods for symbolic discrepancy

Valérie Berthé

In this lecture, we discuss the notion of bounded symbolic discrepancy for infi-
nite words and subshifts, both for letters and factors, from a topological dynamics
viewpoint. We focus on three families of words, namely hypercubic words, words
generated by substitutions, and dendric words. Symbolic discrepancy measures the
difference between the numbers of occurrences of a given word v in some word of
length n minus n times the frequency μv of v when it exists (in other words, μv is
the measure of the cylinder [v] for some invariant measure μ). Bounded discrepancy
thus provides particularly strong convergence properties of ergodic sums toward
frequencies. More precisely, let u ∈ A Z be a bi-infinite word and assume that each
factor v in its language admits a frequency μv in u. The discrepancy Δv(u) of u with
respect to v is defined as

Δv(u) = sup
n∈N

∣∣|u−n · · ·u0 · · ·un|v − (2n+1)μv
∣∣.

This notion extends to any minimal subshift (X ,T ) in a straightforward way. If
Δv(u) is finite, the cylinder [v] is said to be a bounded remainder set, according to
the terminology developed in classical discrepancy theory. Bounded discrepancy is
closely related to the notion of balance in word combinatorics.

To illustrate the relevance of the topological approach for symbolic discrepancy,
let us start with a first classical remark. Let (X ,T ) be a minimal and uniquely ergodic
subshift and let μ stand for its invariant measure. Given a factor v in its language,
define fv = χ[v] − μ([v]) ∈ C(X ,R), where χ[v] stands for the characteristic func-
tion of the cylinder [v]. Then, according to the Gottschalk–Hedlund theorem, v has
bounded discrepancy in (X ,T ) if and only if the map fv is a coboundary. Bounded
discrepancy thus implies that μ([v]) is an additive topological eigenvalue of (X ,T ).

Here, we deduce that for hypercubic words produced by d-to-1 cut-and-project
schemes (with irrationality assumptions that yield minimality), letters have bounded
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discrepancy, whereas factors of length at least 2 do not have bounded discrepancy
for d ≥ 3. Indeed, frequencies of factors of length at least 2 do not belong to the
group of additive eigenvalues.

In the substitutive case, we stress the role played by the existence of coboundaries
taking rational values and show simple criteria when frequencies take rational values
for exhibiting unbounded discrepancy. For more precise results, see [1].

The third family we consider here is the family of dendric words, and we present
results from [3]. Given a subshift over a finite alphabet, one can associate with ev-
ery word in the associated language a bipartite graph, called extension graph, in
which one puts edges between left and right letter extensions of this factor in the
language. If, for every word in this language, the extension graph is a tree, then
the subshift is a dendric subshift. Dendric subshifts are therefore defined in terms
of combinatorial properties of their language. This class of linear factor complex-
ity subshifts encompasses Sturmian subshifts, Arnoux–Rauzy subshifts, as well as
subshifts generated by regular interval exchanges. We study the dimension group
of dendric subshifts, providing necessary and sufficient conditions for two dendric
subshifts to be (strongly) orbit equivalent. More precisely, let (X ,T ) be a minimal
dendric subshift on the alphabet A = {1, · · · ,d} and let M (X ,T ) stand for its set
of invariant measures. Then, its dimension group with ordered unit is isomorphic to

(
Zd ,

{
xxx ∈ Zd | 〈xxx,μμμ〉> 0 for all μ ∈ M (X ,T )

}∪{
0
}
,�1
)

where μμμ denotes the vector
(
μ([1]), · · · ,μ([d])). We deduce that, as soon as dendric

words are balanced on letters, they are balanced on factors. The proof relies on the
following property of dendric subshift from [3]: let X be a minimal dendric subshift
defined on the alphabet A . Then, for any w in its language, the set of left return
words to w is a basis of the free group over A .
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Extended symmetry groups of multidimensional

subshifts with hierarchical structure

Álvaro Bustos

In this contribution, we discuss the automorphism group, i.e., the centralizer of the
shift action inside the group of self-homeomorphisms of a subshift, together with
the extended symmetry group (the corresponding normalizer) of certain Zd subshifts
with a hierarchical structure, like bijective substitutive subshifts and the Robinson
tiling. This group has been previously studied in the work of Baake, Roberts and
Yassawi [1], among others.

Treating these subshifts as geometric objects, we introduce techniques to identify
allowed extended symmetries from large-scale structures present in certain special
points of the subshift, leading to strong restrictions on the group of extended symme-
tries. We prove that, in the aforementioned cases, Sym(X ,Zd) (and thus Aut(X ,Zd))
is virtually-Zd , and we explicitly represent the non-trivial extended symmetries, as-
sociated with the quotient Sym(X ,Zd)/Aut(X ,Zd), as a subset of rigid transforma-
tions of the coordinate axes. We also show how our techniques carry over to the
study of the Robinson tiling, both in its minimal and non-minimal version. We em-
phasize the geometric nature of these techniques and how they reflect the capability
of extended symmetries to capture such properties in a subshift.

Our discussion starts with the computation of the automorphism group for
d-dimensional substitutive subshifts coming from bijective rectangular substitu-
tions. By an application of desubstitution and some algebraic manipulations, we
generalize Coven’s theorem (see [2]) by showing the following.

Theorem 1. For a non-trivial, primitive, bijective substitution θ on the alphabet
A = {0,1}, Aut(Xθ ,Zd) is generated by the shifts and the relabeling map (flip
map) δ (x) := x, where x represents the sequence obtained from x by swapping all
1s with 0s and vice versa, and thus is isomorphic to Zd × (Z/2Z).

For more general alphabets, the same method of proof yields the following.
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Corollary 1. Let θ be a non-trivial, primitive, bijective substitution on an alpha-
bet A with at least two symbols. For any f ∈ Aut(Xθ ,Zd), there exists a bijection
τ : A → A and a value kkk ∈ Zd such that f = σkkk ◦τ∞. Thus, Aut(Xθ ,Zd) is isomor-
phic to a subgroup of Zd ×S|A |, where Sn is the symmetric group in n elements.

Next, we divert our attention towards extended symmetries, which are a gen-
eralization of shift automorphisms, in the sense that they are homeomorphisms
f : X → X such that there exists a matrix A f ∈ GLd(Z) for which the following
identity holds,

∀nnn ∈ Zd : f ◦σnnn = σA f nnn ◦ f .

The set of all such homeomorphisms is a group, Sym(X ,Zd), which is a group ex-
tension of Aut(X ,Zd) by some subgroup of GLd(Z). Extended symmetries satisfy a
variant of the Curtis–Hedlund–Lyndon theorem and thus are completely determined
by a local mapping F : A U → A (with U ⊂ Zd finite) and the matrix A f .

We devise a ‘fracture method’ in which we recognize special pairs of points
from a subshift which match only on a half-space, in such a way that the discrep-
ancy in the other half-space is preserved in the images under f by an application
of the Curtis–Hedlund–Lyndon theorem. By showing limitations on the possible di-
rections of these fractures, we can compute the extended symmetry group of several
subshifts.

It is known that the automorphism group of the Robinson shift XRob and its min-
imal subshift MRob is isomorphic to Z2 (see e.g. [3]). We show the following.

Proposition 1. For the Robinson shift, Sym(XRob,Z2) ∼= Z2 �D4, where D4 is the
dihedral group of order 8. The same holds for MRob.

In the case of substitutive subshifts coming from bijective substitutions, the desub-
stitution technique allows us to apply a variant of the above fracture argument; the
bijectiveness imposes a restriction on the possible directions on fracture, which lead
to the following result.

Theorem 2. For a d-dimensional, non-trivial, primitive, bijective substitution θ ,
the quotient group of all admissible lattice transformations of the subshift Xθ ,
Sym(Xθ ,Zd)/Aut(Xθ ,Zd), is isomorphic to a subset of the hyperoctahedral group
Qd ∼=(Z/2Z)�Sd =(Z/2Z)d �Sd, which is the symmetry group of the d-dimensional
cube. Thus, the extended symmetry group Sym(Xθ ,Zd) is virtually-Zd.
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Algebraic invariants for group actions on the
Cantor set

Marı́a Isabel Cortez

The algebraic invariants1 associated to the group actions on the Cantor set provide
an interesting connection between the fields of dynamical systems and group the-
ory. For instance, Giordano, Putnam and Skau have shown in [29] that the dimension
group (see [24] for an introduction about dimension groups) of a minimal Z-action
on the Cantor set completely determines its strong orbit equivalence class. Further-
more, the topological full group of such a system, which is known from Juschenko
and Monod [38] to be amenable, determines its flip-conjugacy class (see [6] and
[30] for more details). On the other hand, the amenability of the topological full
groups of minimal Z-actions together with their properties shown in [41] by Matui
make them the first known examples of infinite groups which are at the same time
amenable, simple and finitely generated. Recently, another algebraic invariant, the
group of automorphisms of actions on the Cantor set, has caught the eye of several
researchers working in the field [13, 15, 16, 17, 14, 19, 20]. In [5], Boyle, Lind and
Rudolph focused their attention on the group of automorphisms of subshifts of finite
type, showing that these groups are always countable and residually finite. At the
same time, they gave an example of a minimal Z-action on the Cantor set whose
group of automorphisms contains Q, which implies that the automorphism group of
a minimal action may be a non-residually finite group (recall that the Z-subshifts
of finite type are not minimal). This leads to the natural question about the relation
between the algebraic properties of the group of automorphisms and the dynamics
of the system. Indeed, the residually finite property of the group of automorphisms
of the subshifts of finite type is a consequence of the existence of periodic points.

1 By an algebraic invariant of the dynamical system (X ,T,G) we understand any algebraic struc-
ture associated to the system which determines some dynamical properties of (X ,T,G) or whose
properties depend on the dynamics of (X ,T,G).
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1 Minimal Cantor systems

By a dynamical system we mean a continuous action T : G×X → X of a countable
group G on a compact metric space X (phase space). We denote this as (X ,T,G),
and for every g ∈ G, we call T g : X → X the homeomorphism on X induced by the
action of g on X . The dynamical system is free or aperiodic if T g(x) = x implies
g = 1G (the neutral element in G) for any x ∈ X . The orbit of x ∈ X is the set
OT (x)= {T g(x) : x∈G}, and we say that the system (X ,T,G) is minimal if for every
x ∈ X its orbit is dense in X . Minimality is also equivalent to the non-existence of
non-trivial sub-dynamical systems of (X ,T,G), i.e, the system is minimal if and only
if the unique non-empty closed T -invariant set Y ⊆ X is Y = X . As a consequence
of Zorn’s lemma, we get that every dynamical system (X ,T,G) has a minimal sub-
dynamical system (see for example [1, 3]). It is clear that, if (X ,T,G) is aperiodic,
the minimal sub-dynamical systems are also aperiodic.

A particular class of dynamical systems are the Cantor systems, which are de-
fined as the systems (X ,T,G) where X is a Cantor set. An example of a Can-
tor system is the full G-shift on the finite alphabet Σ . More precisely, given Σ G,
the set of all functions x : G → Σ , the shift action σ of G on Σ G is defined as
σgx(h) = x(g−1h), for every g,h ∈ G and x ∈ Σ G. If we endow Σ with the discrete
topology and Σ G with the product topology, the space Σ G becomes a Cantor set and
every σg is a homeomorphism. Thus, (Σ G,σ ,G) is a Cantor dynamical system.

The full G-shift is neither aperiodic nor minimal. However, in [37], Hjorth and
Molberg show that for every countable group G there exists an aperiodic Cantor sys-
tem (X ,T,G). Moreover, in [4] and [26], the authors show that this aperiodic Cantor
system can be chosen as an aperiodic G-subshift, i.e., an aperiodic sub-dynamical
system of a full G-shift.

2 Algebraic properties of the topological full group of Toeplitz
subshifts

The full group of the dynamical system (X ,T,G) is the subgroup [G] of the group
of homeomorphisms f on X such that for every x ∈ X there exists g ∈ G such that
f (x) = T g(x). This is the topological version of the full group introduced by Dye
[23] in the context of measure-theoretic dynamical systems. It was shown by Me-
dynets in [43] that the full group of a Cantor aperiodic system is a complete invariant
for topological orbit equivalence (see [27, 28, 29, 31] for the notion and results about
topological orbit equivalence).

The topological full group of the dynamical system (X ,T,G) is the subgroup
[[G]] of [G] of all the homeomorphisms f on X such that for every x ∈ X there exist
a neighbourhood U of x and g ∈ G such that f |U = T g (see [30, 33] for definitions
and results). It is straightforward to check that, when X is a connected space, [[G]]
is isomorphic to G. Conversely, when X is a Cantor set, the topological full group
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depends not only on the group G, but on the dynamics of the system. Indeed, from
[43], it is possible to deduce that, for aperiodic Cantor systems, the topological full
group is a complete invariant for continuous orbit equivalence (see [9] and [40] for
definitions and results about continuous orbit equivalence).

From a group theoretical point of view, Jushenko and Monod have shown in [38]
that the topological full group of the minimal Cantor system (X ,T,Z) is amenable
(see for example [7] for definitions and results about amenability of groups and
[34, 35, 41, 42] for more algebraic properties of the topological full group). On the
other hand, Elek and Monod exhibited in [25] an example of an aperiodic minimal
Cantor system given by a Z2-action whose topological full group is not amenable.
Thus the algebraic properties of the topological full groups of minimal Cantor sys-
tems (X ,T,G), when the group G is not Z, still remain unclear. In joint work with
Medynets and Petite, we are investigating some of these algebraic properties for the
class of the Toeplitz G-subshifts.

2.1 Toeplitz G-subshifts

Let Σ be a finite alphabet. An element x ∈ Σ G is Toeplitz if for every g ∈ G there
exists a finite index subgroup Γ of G such that x(g) = x(γg), for every γ ∈Γ . A sub-
shift X ⊆ Σ G is a Toeplitz G-subshift if there exists a Toeplitz element x ∈ X such
that X = Oσ (x); see [21] for a survey on Toeplitz Z-subshifts and [8, 11, 12, 39]
for results about Toeplitz G-subshifts. It is not difficult to show that the Toeplitz
G-subshifts are Cantor minimal systems and that G admits an aperiodic Toeplitz G-
subshift if and only if G is residually finite [12]. The aperiodic Toeplitz G-subshifts
are characterized as the minimal almost one-to-one symbolic extensions of the G-
odometers [12], which correspond to the minimal aperiodic equicontinuous actions
of G on the Cantor set [9]. Furthermore, the G-odometers are among the only min-
imal aperiodic Cantor systems with a topological full group that can be described
in an explicit way (see [18] for Z-odometers and [9] for G-odometers when G is
residually finite). This description allows to deduce that the topological full group
of a G-odometer is amenable if and only if G is amenable (see [9]).

The existence of an almost one-to-one factor map from a Toeplitz G-subshift to a
G-odometer makes it possible to define for those systems nice nested sequences of
Kakutani–Rohlin partitions (see [22, 36] for definitions and results about Kakutani–
Rohlin partitions for Z-actions and [12, 11, 32] for Toeplitz G-subshifts), which
provides a useful tool to study the properties of the topological full group of these
subshifts in order to find examples of Toeplitz Z2-subshifts whose topological full
groups are not amenable.

We are still working on the following general question: Which are the properties
on a Toeplitz G-subshift that ensure that its topological full group is amenable?
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3 Algebraic properties of the group of automorphisms of a group
action on the Cantor set

Let (X ,T,G) be a minimal aperiodic Cantor system. The normalizer group of
(X ,T,G), denoted Norm(X ,T,G), is defined as the subgroup of all the homeo-
morphisms h : X → X such that there exists an isomorphism αh : G → G such
that h ◦ T g = T αh(g) ◦ h, for every g ∈ G. The aperiodicity of the action implies
the uniqueness of αh for any element h ∈ Norm(X ,T,G). Thus we can define the
automorphism group of (X ,T,G) as

Aut(X ,T,G) = {h ∈ Norm(X ,T,G) : αh = id}.

It is immediate that Aut(X ,T,G) is a normal subgroup of Norm(X ,T,G). For the
case G = Z, the quotient of the normalizer group by the group of automorphisms is
either trivial or isomorphic to Z/2Z. Important progress has been made in the study
of the group of automorphisms of minimal Z-subshifts, establishing a connection
between the complexity of the subshifts and the algebraic properties of the group of
automorphisms; see [2, 15, 16, 17, 19].

In [10], we obtained results concerning the realization of groups as subgroups
of the normalizer and the automorphism group of minimal aperiodic actions on the
Cantor set as follows.

• Every countable group is the subgroup of the normalizer of some minimal aperi-
odic action of a countable Abelian free group on the Cantor set.

• Every residually finite group Γ can be realized as the subgroup of the automor-
phism group of a minimal Z-action on the Cantor set [10, Prop. 7]. A key tool for
the proof of this result is the characterization of residually finite groups as those
groups G for which every full G-shift has a dense subset of points with finite
orbit [7, Thm. 2.7.1].

• For any countable group G, the group of automorphisms of a minimal aperiodic
G-action on the Cantor set is a subgroup of the group of automorphisms of a
minimal Z-action on the Cantor set.
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Lyapunov exponents: recent applications of

Fürstenberg’s theorem in spectral theory

David Damanik

Abstract We discuss the phenomenon of Anderson localization and a new proof of
it in one space dimension. This proof is due to V. Bucaj, D. Damanik, J. Fillman, V.
Gerbuz, T. VandenBoom, F. Wang, Z. Zhang, and it is centered around the positivity
of and large deviation estimates for the Lyapunov exponent — a strategy originally
developed in non-random settings by J. Bourgain, M. Goldstein, W. Schlag.

1 The Anderson model

The Anderson model was proposed in 1958 by P. W. Anderson. Its main feature is
that randomness can trap quantum states, a phenomenon called Anderson localiza-
tion. Anderson received the Physics Nobel Prize in 1977 for this work. The model is
given by a discrete Schrödinger operator on the d-dimensional standard lattice with
potential values given by independent identically distributed random variables.

Concretely, given a probability measure ν on R whose topological support is
compact and contains at least two points, we consider Ω = (suppν)Zd

and μ = νZd
.

For every ω ∈Ω and n∈Zd , we set Vω(n) =ωn. This defines, for ω ∈Ω , a potential
Vω : Zd → R, and a Schrödinger operator in �2(Zd):

[Hω ψ](n) = ∑
|m−n|1=1

ψ(m)+Vω(n)ψ(n).

The spectrum and the spectral type of Hω are μ-almost surely independent of ω .
The almost sure spectrum Σ is explicitly given by Σ = [−2d,2d]+ supp(ν).

Anderson localization comes in two standard flavors: spectral localization and
dynamical localization. Here, spectral localization refers to the statement that, μ-
almost surely, Hω has pure point spectrum in a suitable energy region Σ� ⊆ Σ with
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exponentially decaying eigenvectors. Dynamical localization refers to the statement
that quantum states remain trapped. Concretely, this means that e−itHω χΣ�

(Hω)δ0
remains mostly in some fixed finite region for all times.

The size and shape of the localized energy region Σ� depends on the dimension
d and the single-site measure ν :

• d = 1: It is known that Σ� = Σ .
• d = 2: It is conjectured that Σ� = Σ . Currently, the known result is the same as in

the case d ≥ 3.
• d ≥ 3: It is known that Σ� contains nontrivial neighborhoods of ∂Σ . It is conjec-

tured that Σ� �= Σ if the diameter of suppν is not too large, and that there is a
sharp transition from localization to diffusive transport.

We will focus on the case d = 1. The first localization proof was given by Car-
mona, Klein and Martinelli in [4]. A different proof by Shubin, Vakilian and Wolff
appears in [6]. Both of these proofs rely on multiscale analysis. A simpler and more
direct proof was recently given by Bucaj et al. in [3]. The latter proof will be dis-
cussed in what follows.

This proof is centered around the positivity of and large deviation estimates for
the Lyapunov exponent. Approaching localization proofs in this way is a strategy
due to Bourgain, Goldstein in the case of quasi-periodic potentials [1] and to Bour-
gain, Schlag in the case of potentials generated by the doubling map [2].

This new proof also suggests how new results can be obtained. For example,
Damanik, Fillman and Sukhtaiev implemented this approach in the setting of An-
derson models on metric and discrete tree graphs and proved spectral and dynamical
localization for these operators [5].

2 Main results

Here is the pair of theorems for the family {Hω}ω∈Ω of random Schrödinger oper-
ators, acting in �2(Z) via

[Hω ψ](n) = ψ(n+1)+ψ(n−1)+Vω(n)ψ(n),

where the potential Vω is given by independent identically distributed random vari-
ables with a common distribution that has a compact support that contains at least
two elements.

Theorem 1 (Spectral localization for the 1D Anderson model). Almost surely,
Hω is spectrally localized, that is, it has pure point spectrum with exponentially
decaying eigenfunctions.

Theorem 2 (Exponential dynamical localization for the 1D Anderson model).

There is a constant γ > 0 so that for almost every ω and every ε > 0, there is a
constant C =Cω,γ,ε > 0 such that, for all m,n ∈ Z,
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sup
t∈R

|〈δn,e−itHω δm〉| ≤Ceε|m|e−γ|n−m|.

3 Lyapunov exponents: positivity and large deviation estimates

The difference equation (or generalized eigenvalue equation) for the operator Hω :

u(n+1)+u(n−1)+Vω(n)u(n) = Eu(n)

admits a two-dimensional solution space, as any two consecutive values of u de-
termine all other values. Fixing (u(0),u(−1))
 as the point of reference, the lin-
ear map taking this vector to (u(n),u(n − 1))
 is given by the so-called trans-
fer matrix ME

n (ω). Ergodicity of the standard shift transformation T : Ω → Ω ,
[T ω]n = ωn+1 implies that for each E, there are L(E) ≥ 0 and Ω E−,Ω E

+ ⊆ Ω with
μ(Ω E−) = μ(Ω E

+) = 1 such that

L(E) =

{
limn→∞

1
n log‖ME

n (ω)‖ for ω ∈ Ω E
+,

limn→−∞
1
|n| log‖ME

n (ω)‖ for ω ∈ Ω E−.

The number L(E) is called the Lyapunov exponent.
For E, let νE be the push-forward of ν under the map

x �→
(

E−x −1
1 0

)

and let GE be the smallest closed subgroup of SL(2,R) that contains suppνE .
By a result of Fürstenberg, a sufficient condition for L(E)> 0 is

1. GE is not compact,

2. GE is strongly irreducible (which means that there is no finite non-empty invari-
ant set of directions).

A modification of a result of Ishii shows that the condition

3. ∃A,B ∈ GE with tr(A) �= 0, tr(B) �= 0, det(AB−BA) �= 0,

implies 1 and 2. This condition is often easy to check.
For the Anderson model on Z, let us verify 1. and 2. for arbitrary E ∈ R. Since

the support of the single-site distribution has cardinality at least two, it follows that
νE also has at least two points in its support. Thus, GE contains at least two distinct
elements of the form

Mx =

[
x −1
1 0

]
,

say, Ma and Mb with a �= b. Note that
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A = MaM−1
b =

[
1 a−b
0 1

]
∈ GE .

Taking powers of the matrix A, we see that GνE is not compact, verifying 1.
Now, consider V1 := span(e1), the projection of e1 := (1,0)
 to RP1. Then, one

has AV1 = V1 and, for every V ∈ RP1, AnV converges to V1. Thus, if there is a
nonempty finite invariant set of directions F ⊆ RP1, one must have F = {V1}.
However, we also have

A′ = M−1
a Mb =

[
1 0

a−b 1

]
∈ GE

and A′V1 �=V1. This establishes 2.
So far, we have seen that the transfer matrices are almost surely asymptotically

exponentially large. That is,

lim
|n|→∞

1
|n| log‖ME

n (ω)‖= L(E)> 0

for every E ∈ R and μ-almost every ω .
It is natural to ask what can be said about the size of log‖ME

n (ω)‖ before n is
taken to infinity. Large deviation estimates address this issue.

Theorem 3 (Uniform LDT for the Lyapunov exponent). For any ε > 0, there exist
C =C(ε)> 0, η = η(ε)> 0 such that, for all n ∈ Z+ and all E ∈ Σ ,

μ
{

ω ∈ Ω :
∣∣∣∣
1
n

log
∥∥ME

n (ω)
∥∥−L(E)

∣∣∣∣≥ ε
}
≤Ce−ηn.

4 Transfer matrices, Dirichlet determinants, and Green’s

functions

There are well known connections between the transfer matrices discussed above,
the determinant of the restriction Hω,N of Hω to the finite interval [0,N−1]∩Z with
Dirichlet boundary conditions, and the Green function of Hω,N , defined by

GE
ω,N(m,n) = 〈δm,(Hω,N −E)−1δn〉

for 0 ≤ m,n ≤ N −1.

The following formula connects the transfer matrix and the determinants:

ME
N (ω) =

(
det(E −Hω,N) −det(E −HT ω,N−1)

det(E −Hω,N−1) −det(E −HT ω,N−2)

)
, N ≥ 2.
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This formula shows that if the transfer matrix has exponentially large norm, then
at least one of the determinants must be exponentially large.

The following formula connects the determinants and the Green function:

GE
ω,N(m,n) =

det[Hω,m −E]det[HT n+1ω,N−n−1 −E]
det[Hω,N −E]

.

If one has exponentially large determinants, this formula shows that the Green func-
tion must have exponential off-diagonal decay.

Finally, the following lemma connects the Green function and the solutions.

Lemma 1. If u is a solution of the difference equation Hω u = Eu and E /∈ σ(Hω,N),
then

u(n) =−GE
ω,N(n,0)u(−1)−GE

ω,N(n,N −1)u(N)

for 0 ≤ n ≤ N −1.

With this lemma and the results discussed earlier one can readily deduce for
almost all ω’s that a polynomially bounded solution must in fact decay exponen-
tially, thus establishing spectral localization. A second look at the semi-uniform
localization properties of the eigenvectors then allows one to establish dynamical
localization as well.
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Extended symmetries of Markov subgroups

Robbert Fokkink

A symmetry of a tesselation is an isometry of the plane, or space, preserving the
tesselation. What symmetry groups can one get? This is a classical problem in ge-
ometry, leading to the wallpaper groups of the plane or crystallographic groups in
higher dimensions. For dynamical systems with a Zd-action on X , the symmetries
are the homeomorphisms that commute with the action. This is the centralizer of
Zd in Homeo(X). The extended symmetries are given by the normalizer. Baake,
Roberts and Yassawi [1] showed that the centralizer can be non-trivial for well-
known systems such as the Thue–Morse shift or the Ledrappier shift. The latter is
a standard example of a Markov subgroup and the topic of this talk is the extended
symmetry group of arbitrary Markov subgroups in Z2 shifts.

A 2D Markov subgroup is described by a polynomial with two indeterminates
p(X ,Y ) with coefficients in F2. A fundamental result by Quas and Trow [3] gives
precise conditions such that the symmetry group is ‘algebraic’: this occurs if p(X ,Y )
has no collinear factors. Using results from algebraic geometry, one can deduce
from this that the extended symmetry group is a finitely generated Abelian group
if such a p(X ,Y ) is squarefree. It is infinitely generated if it is not squarefree. This
leaves the case of a polynomial with collinear factors. A prime example of this is
p(X ,Y ) = (1+X)(1+Y ). It turns out that the elements of its extended symmetry
group correspond to automorphisms of the Bernoulli shift {0,1}Z that commute
with the flip (the involution that flips 0 and 1). Which automorphisms have this
property? This is not an easy question, and I left this as a homework exercise during
the talk.

It seems likely that the extended symmetry group is non-amenable if p(X ,Y )
has collinear factors. For some cases, other than (1+X)(1+Y ), this is not so dffi-
cult to prove. The full result is topic of ongoing research with Dan Rust and Reem
Yassawi [2]. I would like to thank the participants of the workshop for stimulating
discussions and am looking forward to their solutions of the homework exercise.
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Renormalisation for inflation tilings I:
General theory

Franz Gähler

Inflation tilings are generated by iterating an inflation procedure ρ , which first ex-
pands a (partial) tiling linearly by a factor λ , and then divides each expanded tile
(called supertile) according to a fixed rule into a set of original tiles. The relative
positions of the tiles of type i within a supertile of type j are encoded in a set Ti j
(we assume here finitely many tile types, up to translations). The associated infla-
tion matrix Mρ , which we assume to be primitive, has entries card(Ti j) and a leading
eigenvalue λ d . The information contained in Ti j is also encoded in the matrix-valued
function

Bi j(k) = ∑
t∈Ti j

e2π it·k,

which is known as the Fourier matrix of the inflation. Note that the nth power of ρ
has the Fourier matrix B(n)(k) = B(k)B(λk) · · ·B(λ n−1k).

Suppose now an inflation tiling is decorated with point measures on the control
points of its tiles, with weights which may depend on the tile type. The diffraction
spectrum of the resulting measure is then given by the Fourier transform of its pair
correlation measure. This is again a measure, which can be decomposed into pure-
point (pp), absolutely continuous (ac), and a singular continuous (sc) parts. Here,
we are mainly interested in the presence or absence of an ac part.

As first observed in [2], and further elaborated in [3], the self-similarity of in-
flation tilings results in exact renormalisation equations, which the pair correlation
measure of the tiling must satisfy. These in turn lead to exact scaling relations for the
diffraction measure, which must hold for each spectral component separately. For
instance, the Radon–Nikodym density v(k) of the ac part of the Fourier amplitude
(a vector with one component per tile type) must satisfy the relation

v(λk) = λ d/2 B−1(k)v(k),
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provided B(k) is invertible for almost all k. As v(k) must be translation bounded, ac
spectrum can exist only if the minimal Lyapunov exponent governing the asymptotic
growth of v(k),

χmin(k) = logλ d/2 + liminf
n→∞

1
n
log

∥∥B(k)B(λk) · · ·B(λ n−1k)
∥∥−1
F ,

vanishes for almost all k. Setting χmin(k) = logλ d/2 − χB(k), we need to investi-
gate the behaviour of χB(k). Taking into account that the Frobenius norm is sub-
multiplicative, we get the estimate

χB(k) = limsup
n→∞

1
n
log‖B(n)(k)‖F � 1

N
M
(
log‖B(N)(k)‖F

)

for any fixed N, where M( f ) is the mean of the quasiperiodic function f . More-
over, to compute the mean of the quasiperiodic function log‖B(n)(k)‖F, or rather
log‖B(n)(k)‖2F, we can lift it to a section through a periodic function, and compute
the mean as an integral over the unit cell,

1
N
M
(
log‖B(N)(.)‖2F

)
= 1

N

∫

TD
log

(
∑
i, j

∣∣P(N)
i j

(
k̃
)∣∣2

)
dk̃,

where the P(N)
i j are trigonometric polynomials. In this way, for each N, an upper

bound for χB(k) is obtained, which is readily computable for many examples. If
that upper bound implies that χB(k) < c · logλ d/2 for some c < 1, the presence of
ac spectrum can be ruled out.

This criterion has successfully been applied to many examples, among them sev-
eral with non-Pisot inflation factors. These are known to have no non-trivial pp
part in the spectrum, but the nature of the continous part has long remained un-
clear. Using our approach, it could be shown that the binary non-Pisot tiling [1],
the (non-FLC) Frank–Robinson tiling [4], and the well-known Godrèche–Lançon–
Billard tiling [5], all have singular diffraction spectrum. The same conclusion is
obtained for several other examples with mixed pp and continuous spectrum. In
fact, except for the few examples known to have an ac part in the spectrum, such as
the Rudin–Shapiro tiling, in all examples studied the upper bound on χB(k) quickly
drops below the threshold logλ d/2, showing that the diffraction spectrum is singular.
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Problems in number theory related to aperiodic
order

Jeffrey C. Lagarias

This talk concerns properties of dilated floor functions fα(x) = [αx], where α takes
a fixed real value. Such functions perform quantization of the linear function αx at
length scale 1

α . For α > 1, the set of values [αn] for positive integer n is called the
Beatty sequence associated to α . It is an aperiodic sequence if α is irrational, and
when extended to all integers it is a one-dimensional cut and project set; compare
[1, Ex. 9.8]. This talk studies the composed functions fα ◦ fβ (x) = [α[βx]]. The set
of parameter values (α,β ) where the two floor functions commute were character-
ized in joint work [2] with Takumi Murayama and D. Harry Richman (2016). The
solution set consists of three straight lines through the origin (0,0) plus a countable
set of ‘exceptional’ rational solutions ( 1

m ,
1
n ) for positive integer m,n.

Ongoing joint work [3], [4] with D. Harry Richman (2019) determines the set S of
all values (α,β ) that satisfy [α[βx]] ≥ [β [αx]] for all real x. When α,β have op-
posite signs then (α,β ) ∈ S if and only if α < 0 and β > 0. For positive α,β , the
solution set is a countable collection of half-lines and rectangular hyperbolas, pass-
ing through (0,0), plus the vertical lines α = 1

m ,β > 0 for positive integer m. The
hyperbola solutions are associated to disjoint Beatty sequences when both α,β are
irrational, but also include extra solutions with rational values. For negative α,β ,
the solution set consists of countably infinite families of lines and rectangular hy-
perbolas passing through (0,0), plus vertical finite line segments at every rational
α =−m

n (with − 1
m ≤ β < 0), plus a countable set of ‘sporadic rational solutions’.

The existence of the sporadic rational solutions relates to the Diophantine Frobe-
nius problem in two variables. The classification establishes that the set S is closed.
It establishes various internal symmetries of the set S given by linear and bilin-
ear changes of variables, for positive α,β (resp., negative α,β ). The classification
implies a pre-partial ordering on nonzero α where one says α ≺ β if (α,β ) ∈ S.
Namely, if (α,β ) ∈ S and (β ,γ) ∈ S with αβγ �= 0, then (α,γ) ∈ S.
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Pure point spectrum and regular model sets in
substitution tilings on Rd

Jeong-Yup Lee

It has long been known that every regular model set has pure point spectrum, but
the converse is not true in general. The relation between regular model sets and
pure point spectrum is well studied in [3, 2, 13] in quite a general setting. When we
restrict to substitution tilings, it has been shown in [8] that pure point spectrum and
inter model set are equivalent. However the inter model set is a projected point set
in a cut-and-project scheme (CPS) with an internal space which is constructed with
an autocorrelation topology coming from pure point spectrum. It was not easy to
extract information from the internal space.

In this joint work with Shigeki Akiyama, we show that the internal space can
be a Euclidean space under some additional assumption. This result generalizes
the remark [4], which shows the equivalence between regular model set and pure
point spectrum in the case of one-dimensional substitution tilings, into d dimen-
sions. From this result, we can think of ‘Pisot conjecture’ in more general setting
of d-dimensional substitution tilings [1, 12]. Rigidity was introduced in [11] and
primitive substitution tilings with finite local complexity (FLC) always show this
type of rigidity. But the converse is not true as we can observe in an example in [5].
Under the rigidity assumption, pure point spectrum always gives FLC. So we do not
asume FLC. Instead we assume rigidity.

We first show how to construct a CPS with Euclidean internal space. This con-
struction was already introduced in [7] for other purposes. We make use of it in a
more general setting. Under the assumption of pure point spectrum, we provide con-
ditions under which the representive point set of a primitive repetitive substitution
tiling is a model set. Using Keesling’s argument [6, 9], the model set is in fact regu-
lar. In the process of the proof, we use the equivalence between pure point spectrum
and algebraic coincidence which was introduced in [8].
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Automatic sequences are orthogonal to aperiodic

multiplicative functions

Mariusz Lemańczyk

In 2010, P. Sarnak [7] formulated the following conjecture: For each zero entropy
topological dynamical system (X ,T ), we have

lim
N→∞

1
N ∑

n≤N
f (T nx)μ(n) = 0 (1)

for all f ∈C(X) and x ∈ X . Sarnak’s conjecture has been proved in many classes of
zero entropy systems [1], including so-called automatic sequences (C. Müllner, [6]),
that is when X = Xθ ⊂ AZ and T = S (shift) is determined by a primitive substitution
θ : A → Aλ of constant length λ . One can ask, however, whether Eq. (1) holds when
we replace μ by other arithmetic functions. Especially, we are interested in the class
of multiplicative functions. My talk is to present the main strategies to prove the
following result:

Theorem 1 (M. Lemańczyk, C. Müllner, 2018). Each automatic sequence is or-
thogonal to an arbitrary bounded, aperiodic and multiplicative function, i.e. for
each primitive substitution θ : A → Aλ , all f ∈C(Xθ ) and x ∈ X, we have

lim
N→∞

1
N ∑

n≤N
f (Snx)u(n) = 0

for each u : N→ C as above.

Our main tool is the so-called DKBSZ criterion [3] which says that every
bounded sequence (an) of complex numbers is orthogonal to all bounded multi-
plicative functions if

lim
N→∞

1
N ∑

n≤N
apnaqn = 0 (2)
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for each pair of sufficiently large different primes p,q. Then, in the dynamical con-
text, we consider an = f (Snx), and Eq. (2) leads us to study

1
N ∑

n≤N
f (Spnx) f (Sqnx) =

∫

X
f ⊗ f d

(
1
N ∑

n≤N
δ(Spnx,Sqnx)

)
,

which, by passing to a convergent subsequence of the empiric measures, yields the
following: 1

Nk
∑n≤Nk

δ(Spnx,Sqnx) → ρ implies that the limit in Eq. (2) is equal to
∫

X×X f ⊗ f dρ and that ρ is a joining of Sp and Sq (remembering that primitivity
implies that (Xθ ,Sp) and (Xθ ,Sq) are uniquely ergodic, say, ν denotes the unique
S-invariant measure). Note that we cannot prove the theorem above for all bounded
multiplicative functions, as periodic sequences are always automatic and can also
be multiplicative.

In fact, more than that is true. By taking u(1) = u(2) = 1, u(2n) = u(n) and
u(2n+1) = (−1)n we obtain an automatic sequence which is not periodic but rep-
resents a completely multiplicative function. To explain this phenomenon and the
use of the DKBSZ criterion, we should remember that we do not expect the limit
joinings ρ to be product measure ν⊗ν . This is impossible as (Xθ ,S) has the odome-
ter (Hλ ,R) as its factor. If we consider the odometer Hλ with its unique invari-
ant measure (Haar measure) νHλ the measure-theoretic systems (Hλ ,νHλ ,R

p) and
(Hλ ,νHλ ,R

q) are isomorphic! Whence the only ergodic joinings between them are
graphs of relevant isomorphisms. Hence the simplest possible (ergodic) joinings be-
tween Sp and Sq are relative products over graph joinings. However, if these are the
only ergodic joinings, each pair (x,x) ∈ Xθ ×Xθ is generic for such a relative prod-
uct and the DKBSZ criterion works for all continuous functions f ∈C(Xθ ) provided
that f ⊥ L2(Hλ ,νHλ ). Therefore, we have two tasks:

• to show that in the case of primitive substitutions we have the minimal number
of possible ergodic joinings between Sp and Sq and

• to describe the structure of continuous functions; more precisely, to show that
there are continuous functions orthogonal to the L2-space of the underlying
odometer, in fact (surprisingly) that the conditional expectation of each continu-
ous function with respect to the odometer factor remains continuous.

The first task is done by using some results from the 1980s of Host and Parreau
[2] (and also of Lemańczyk and Mentzen [4]) on the measure-theoretic central-
izer of substitutions of constant length by showing non-isomorphism of different
prime powers and using Mentzen’s theorem on factors (of substitutions) to con-
clude relative disjointness. The second task is fulfilled by developing a (new) theory
of substitution joinings which culminates in showing that each substitution has a
representation in which it is relatively bijective over its synchronizing part.
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Similarity isometries of shifted lattices and point
packings

Manuel Joseph C. Loquias

1 Some preliminaries

A lattice Γ (of rank and dimension d) is a discrete subset of Rd that is the Z-span
of d linearly independent vectors v1, . . . ,vd ∈ Rd over R. The set {v1, . . . ,vd} is
called a basis for Γ , and Γ = Zv1⊕·· ·⊕Zvd . As a group, Γ is isomorphic to the
free Abelian group of rank d. Alternatively, a lattice Γ may be defined as a discrete
co-compact subgroup of Rd .

On the other hand, a (crystallographic) point packing Λ is a non-empty point set
of Rd such that there exists a lattice Γ in Rd and a finite point set F such that

Λ = Γ +F = {�+ f | � ∈ Γ and f ∈ F}.

That is, a point packing is the union of a lattice Γ and a finite number of translated
copies of Γ . We refer to Γ as a generating lattice for Λ and the shifted lattice x+Γ ,
where x ∈ F , as a component of Λ . Observe that a point packing need not be a
lattice.

Point packings have appeared in the literature under different names and different
contexts. For instance, they appeared as non-lattice periodic packings in relation to
the sphere packing problem in [3]. Dolbilin et al. referred to point packings in [4]
as ideal or perfect crystals, and gave minimal sufficient geometric conditions on a
discrete subset of Rd to be an ideal crystal. The term multilattice has also been used
to pertain to a point packing, and arithmetic classification of multilattices have been
studied in [9, 6].

Point packings serve as a standard model for ‘ideal crystals’, that is, crystals
having multiple atoms per primitive unit cell. Examples of point packings include
the honeycomb lattice, diamond lattice (crystal structure of diamond, tin, silicon,
and germanium), and hexagonal closed packing (crystal structure of quartz).
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As point sets, point packings are Meyer sets (relatively dense sets Λ such that
Λ −Λ is uniformly discrete) [2]. Recall that a periodic point set is a discrete set
Λ ⊂ Rd for which per(Λ) := {t ∈ Rd | t +Λ = Λ} is non-trivial. If per(Λ) forms a
lattice in Rd , then we say that Λ is crystallographic. Point packings are exactly the
locally finite point sets that are crystallographic [2].

2 Symmetry groups of point packings

The symmetry group of a point packing is a crystallographic group [4]. In partic-
ular, denote an isometry of Rd by (v,R), where (v,R)x = v+Rx, with v ∈ Rd and
R ∈ O(d,R). The crystallographic restriction for point packings [2] states that if Λ
is a point packing with per(Λ) = Γ , then R is a symmetry of the lattice Γ when-
ever (v,R) is a symmetry of Λ . Here, we discuss several additional results on the
symmetry group of a given point packing Λ .

Suppose Λ = Γ +{x0 = 0,x1, . . . ,xm−1}. It is easy to see that per(Γ )⊆ per(Λ).
The reverse inclusion does not always hold. It has been shown in [8] that there exists
a (maximal) generating lattice Γ ′ of Λ that contains Γ such that per(Λ) = per(Γ ′).
In fact, if S := {xi | (xi, id)Λ =Λ}, then Γ ′ =Γ +S is a lattice that generates Λ with
per(Λ) = per(Γ ′); see [5].

Hence, without loss of generality, we may assume that Λ is a point packing with
per(Λ)= per(Γ ). Then, the isometry (v,R) is a symmetry ofΛ if and only if for each
i ∈ {0, . . . ,m−1}, there exists j ∈ {0, . . . ,m−1} such that (v,R)(xi +Γ ) = x j +Γ ;
see [5]. In words, the symmetries of Λ ⊆ Rd are precisely the isometries of Rd that
induce a permutation of the components of Λ .

3 Similarity isometries of shifted lattices and point packings

Two lattices Γ and Γ ′ of Rd are said to be commensurate if the intersection of Γ
and Γ ′ is a sublattice (of finite index) of both Γ and Γ ′. A linear isometry R of Rd is
called a (linear) similarity isometry of Γ whenever Γ and αRΓ are commensurate
for some α ∈ R+. Equivalently, R is a similarity isometry of Γ whenever βRΓ
is a sublattice of Γ for some β ∈ R+. The lattice βRΓ is referred to as a similar
sublattice of Γ . Given a similarity isometry R of Γ , the set scalΓ (R) of scaling
factors of R is defined to be the set of all real numbers α for which Γ and αRΓ
are commensurate. Meanwhile, the set ScalΓ (R) is comprised of all real numbers β
for which βRΓ ⊆ Γ . The set of similarity isometries of Γ forms a group which we
denote by OS(Γ ). We use the notation SOS(Γ ) for the group of similarity rotations
of Γ . Various studies have examined the existence of similar sublattices as well
as the properties of similarity isometries for particular lattices. We now give some
initial results on similarity isometries of a point packing [1]. To this end, we first
consider affine similarity isometries of lattices which allow us to study similarity
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isometries of shifted lattices. This line of attack is analogous to the one used to
investigate coincidence isometries of point packings [7].

Let (v,R) be an isometry of Rd and Γ be a lattice in Rd . Then, there exists
α ∈ R+ such that Γ and (v,αR)Γ are commensurate if and only if Γ and αRΓ are
commensurate and v ∈ Γ +αRΓ . On the other hand, there exists β ∈ R+ such that
(v,βR)Γ ⊆Γ if and only if βRΓ ⊆Γ and v∈Γ . Observe that we obtain inequivalent
statements when we extend the equivalent definitions of linear similarity isometries
of lattices to affine similarity isometries of lattices. The same phenomenon occurs
when we look at similarity isometries of shifted lattices.

Let OS1(x+Γ ) be the set of linear isometries R such that x+Γ is commensurate
with αR(x+Γ ) for some α ∈ R+, and OS2(x+Γ ) be the set of linear isometries R
such that βR(x+Γ )⊆ x+Γ for some β ∈ R+. We obtain that

OS1(x+Γ ) = {R ∈ OS(Γ ) | αRx− x ∈ Γ +αRΓ for some α ∈ scalΓ (R)}, and
OS2(x+Γ ) = {R ∈ OS(Γ ) | βRx− x ∈ Γ for some β ∈ ScalΓ (R)}.

This implies that OS2(x+Γ )⊆ OS1(x+Γ ). The reverse inclusion does not always
hold. Nonetheless, a sufficient condition for R ∈ OS1(x+Γ ) to be in OS2(x+Γ )
is if there exists M ∈ N such that Mkx− x ∈ Γ , where k = [αRΓ : Γ ∩αRΓ ] with
α ∈ scalΓ (R).

To illustrate, suppose Γ is the square lattice Z[i]. Then OS2(
√
2+Γ ) =∅ while

OS1(
√
2+Γ ) = 〈Tr〉, where Tr is the reflection along the real axis. On the other

hand,
SOS1( 1

1−i +Γ ) = SOS2( 1
1−i +Γ )⊂ SOS(Γ ).

From the above discussion, given a point packingΛ =Γ +{x0 = 0,x1, . . . ,xm−1},
we will say that R is a similarity isometry of Λ if there exists β ∈ R+ such that
βRΛ =

⋃m−1
i=0 βR(xi +Γ )⊂ Λ .
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Renormalisation for inflation tilings II:
Connections to number theory

Neil Mañibo

In the study of spectral properties of a d-dimensional aperiodic tiling which arises
from an inflation rule ρ on a finite set of prototiles, one recovers a system of renor-
malisation relations for measures which make up the diffraction measure γ̂; see [2, 3]
for general notions and [5, 4, 6] for the rigorous treatment of certain classes. One
can show that each component of the Lebesgue decomposition of γ̂ satisfies these
relations independently. In particular, the Radon–Nikodym density h(k) represent-
ing the absolutely continuous component γ̂ac exhibits a certain scaling behaviour,
which is encoded in the Fourier matrix B(k). Here, k ∈ Rd and the dimension of
B(k) is given by the number of prototiles.

When d = 1, the exponential growth of h(k) along orbits of the dilation map k �→
λk is determined by the Lyapunov exponent χB(k) of the matrix cocycle induced
by B(k), where λ is the inflation multiplier of ρ . If, for a set of real parameters k of
full measure, this exponent is bounded from above by log

√
λ − ε for some ε > 0,

the diffraction γ̂ is singular, i.e., γ̂ac = 0.
What is described below is based on joint work with Michael Baake, Michael

Coons, Franz Gähler, and Uwe Grimm. In general, one can view B(k) as a section
of a function B̃ on Tr, where r is the algebraic degree of λ . This allows one to
obtain a sequence of upper bounds for χB(k) via the mean of log |B̃(.)|, which are
normalised logarithmic Mahler measures of multivariate polynomials.

Proposition 1 ([7]). Let ρ be a one-dimensional primitive inflation with inflation
multiplier λ of algebraic degree r. Assuming that B(k) is invertible for some k ∈ R,
there exists a sequence of multivariate polynomials PN ∈ Z[x1, . . . ,xr] such that, for
each N ∈ N,

χB(k)� 1
N
m(PN)

for a.e. k ∈ R, where m(P) is the logarithmic Mahler measure of P. ��
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Neil Mañibo

Whenever λ is an integer or a Pisot number, the Lyapunov exponent χB(k) exists
as a limit and is constant for a.e. k ∈ R. In some cases, this a.e. value is given as
a logarithmic Mahler measure. Finding suitable bounds for χB(k) then reduces to
bounding logarithmic Mahler measures of certain polynomials.

A Borwein polynomial is a polynomial whose coefficients lie in {−1,0,1}. For
an inflation derived from a binary substitution of constant length, one can show
that χB(k) = m(P), for a.e. k ∈ R, where P is a Borwein polynomial. Indeed, for
this class of inflations, m(P) is always strictly bounded from above by log

√
λ , thus

implying the singularity of γ̂ [6]. In fact, the correspondence also goes the other way
as follows.

Proposition 2 ([1]). Let P be a Borwein polynomial. Then, there exists at least one
binary constant-length substitution ρ such that

m(P) = χB(k)

for a.e. k ∈ R. ��
A famous problem regarding logarithmic Mahler measures of polynomials in

Z[x] is Lehmer’s problem, which asks whether there is a universal non-zero constant
c that serves as a lower bound for all non-zero logarithmic Mahler measures m(P),
with P ∈Z[x] . This question has been answered affirmatively for certain subclasses,
but the general case remains open.

In view of Lehmer’s problem, Borwein polynomials form an important class due
to a result by Pathiaux which states that a polynomial P ∈ Z[x] with m(P)< log(2)
must divide a Borwein polynomial, i.e., Q = PR for some Borwein Q.

From his previous calculations, Boyd noted that the other divisor R can be cho-
sen to have relatively small degree with respect to P and so that m(R) = 0. So far,
there is still no proof of the existence of such a mollifier polynomial R; see [1] and
references therein for details. If such an R always exists, the correspondence given
in Proposition 2 gives the following dynamical version of Lehmer’s problem.

Conjecture 1 ([1]). For all binary substitutions ρ of constant length, whose associ-
ated Lyapunov exponent χB(k) is a.e. non-zero, there exists a non-zero constant c
such that χB(k)� c for a.e. k ∈ R.

One should note that Proposition 2 extends to higher dimensions, where one can
always realise a logarithmic Mahler measure of a multivariate Borwein polynomial
as a Lyapunov exponent of a binary block inflation.

As an example, the logarithmic Mahler measure of 1+x+y+ z is realised as the
Lyapunov exponent associated to the following binary block substitution in R3.
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Renormalisation for inflation tilings and number theory

It is interesting to note that m(1+ x+ y+ z) = 7
2π2 ζ (3), where ζ (s) is Riemann’s

zeta function.

References

711
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The Penrose and the Taylor–Socolar tilings, and

first steps to beyond

Robert V. Moody

The Penrose hexagonal tilings form a family of aperiodic tilings comprised of ar-
rowed double-hexagon tiles based on the standard periodic tiling of the plane by
equilateral triangles [7, 8]. Each Penrose tile consists of a hexagon whose edges are
arrowed, and within it a smaller hexagon of 1/3 the area with orthogonal orientation
whose edges are also arrowed. The matching of the arrowing forces aperiodicity, and
remarkably, in spite of the rich symmetry of the usual hexagonal tilings, none of the
Penrose hexagonal tilings has any non-trivial symmetry at all.

As observed in [5], each Penrose hexagonal tiling can be described algebraically
by a pair of inverse sequences based on the nesting of equilateral triangles. This
description is almost always (in a measure theoretical sense) unambiguous, and the
exceptions (singular cases) are seen algebraically to be directly due to the symme-
tries of the underlying triangular lattice. In fact, from this perspective, one can see
the Penrose tilings as being a symmetry-breaking construction.

This talk, which is based on joint work with Jeong-Yup Lee, is concerned with
these symmetries—how they appear both geometrically and algebraically, and how
they are broken by the Penrose tilings themselves. We also explore the relation-
ship of these singularities to the singular Taylor–Socolar tilings. The Penrose tilings
have long been known to be closely connected with another aperiodic tiling based
on the usual hexagonal tiling of the plane, this one due to Joan Taylor and Joshua
Socolar [10, 9]. Still, the connection between the two tilings is subtle [1]; see also
[2, Sec. 6.4]. Here we show the connection directly, seeing it as the outcome of
a 3 : 1 mapping of the inverse sequences which pass from the Penrose tilings to
Taylor–Socolar tilings. Under this mapping, each Penrose tiling gives rise to a
unique Taylor–Socolar tiling, although only one third of its tiles actually appear
directly from the Penrose hexagons (as the smaller interior hexagons of the Penrose
hexagons). In the reverse direction, each Taylor–Socolar tiling gives rise to three
different Penrose tilings.
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A key feature of both tilings is the underlying geometry of what is called a Cox-
eter Euclidean kaleidoscope [3]—the infinite configuration of hyperplanes that de-
fine the reflections of a Euclidean Coxeter group. It seems to us that putting these
two remarkable tilings in the setting of kaleidoscopes might lead to a deeper under-
standing of how they actually arise. We conclude the talk with a brief introduction
to the full classification of all the Euclidean kaleidoscopes that range through the
famous A,B,C,D,E,F,G series, of which the Penrose and Taylor–Socolar tilings
belong to the Euclidean G2 kaleidoscope. In spite of the complications of higher
dimensions, the geometry of these kaleidoscopes is quite articulately described, and
in particular there are good descriptions of both their Voronoi and Delaunay cells
[6]. We make the suggestion that each kaleidoscope may give rise to families of ape-
riodic tilings in ways similar to those from which the Penrose and Taylor–Socolar
tilings can be derived. We give a short initial foray into this by creating a new square
substitution tiling which arises by the same sort of ideas from the Euclidean B2
kaleidoscope.
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Scaling properties of the Thue–Morse measure:
A summary

Tanja Schindler

This is an extended abstract of the paper ‘Scaling properties of the Thue–Morse
measure’ by Baake, Gohlke, Kesseböhmer and Schindler [1].

The Thue–Morse diffraction measure for the balanced-weight case is given by
the infinite Riesz product

μTM =
∞

∏
�=0

(
1− cos(2π2�k)

)
, (1)

with convergence in the vague topology, see [2, Sec. 10.1] and references therein.
As such, μTM is a translation-bounded, positive measure on R that is purely singular
continuous and 1-periodic. Clearly, μTM = ν ∗δZ, with ν = μTM|[0,1) being a prob-
ability measure on T=R/Z, the latter represented by [0,1) with addition modulo 1.
In this case, ν is the weak limit of Radon–Nikodym densities of finite products as
the right-hand side of (1).

If we denote by B(x,r) the ball around x with radius r (either with respect to the
Euclidean or the subshift metric), one way to quantify how concentrated the measure
ν is at a given point x ∈ T is to determine its local dimension, given by

dimν(x) = lim
r→0

logν(B(x,r))
log(r)

,

provided that the limit exists. Due to their highly irregular structure, we cannot hope
to pin down the level sets of dimν explicitly. However, the corresponding Hausdorff
dimension,

f (α) = dimH{x ∈ T : dimν(x) = α},
yields a properly behaved function of α . The analysis of the dimension spectrum
f (α) is one of the open questions considered in [7]. This problem turns out to be
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Fig. 1 The graph of the Birkhoff spectrum b from Eq. (5).

intimately related to pointwise scaling properties of the approximants in Eq. (1).
More precisely, we consider

β (x) := lim
n→∞

1
n log(2)

log
n−1

∏
�=0

(
1− cos(2�+1πx)

)
,

for all x ∈ T for which the limit exists. The limit is known for Lebesgue-a.e. x ∈ T,
in which case it equals −1, and for some particular examples of non-typical points;
see [4, 3].

There is a natural way to interpret β in terms of the Birkhoff average of some
function ψ : T−−→ [−∞, log(2)],

ψ(x) = log
(
1− cos(2πx)

)
, β (x) = lim

n→∞

ψn(x)
n log(2)

, (2)

where ψn (x) = ∑n−1
�=0 ψ(2�x). With this, we are interested in the Birkhoff spectrum

b(α) = dimH B(α) with

B(α) =
{

x ∈ T : lim
n→∞

ψn(x)
n

= α
}
=

{
x ∈ T : β (x) =

α
log(2)

}
. (3)

It is one of the strengths of the thermodynamic formalism to connect such locally
defined functions to the Legendre transform of a globally defined quantity. An ade-
quate choice for the latter in our situation is the topological pressure of the function
tψ , t ∈ R, defined by

p(t) := P(tψ) := lim
n→∞

1
n

log ∑
J∈In

sup
x∈J

exp
(
tψn (x)

)
, (4)

where, for each n ∈ N, In forms a partition of [0,1] into intervals of length 2−n.
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Indeed, the relation between f (α) and b(α) given in [1, Thm. 1.1] is analogous
to known results for Hölder continuous potentials [6, Cor. 1]: If p∗ denotes the
Legendre transform of p, one obtains

b(α) = max
{−p∗(α)

log(2)
,0
}

and f (α) = b
(
log(2)(1−α)

)
, (5)

with the graph of b(α) given in Figure 1, confirming some numerical and scaling-
based results of [5].
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Weak model sets

Nicolae Strungaru

1 Square-free integers

In this talk, which is based on joint work with M. Baake and C. Huck, we will
review the properties of weak model sets of extremal density. These results have
been proved independently in [3] and [6], and we recommend these for more details.

Let us start by recalling the example of the set S of square-free integers,

S := {n ∈ Z : ∀p ∈ P, p2 � n},

where P denotes the set of primes.

Theorem 1 ([4]). The autocorrelation measure γ of S, with respect to the natural
van Hove sequence

(
Am = [−m,m]

)
m∈N, exists. The correponding diffraction mea-

sure, γ̂ , is a pure point measure.

Note that, with respect to other van Hove sequences, S can have mixed diffraction
spectrum. We will see below why the choice of the natural van Hove sequence is
important, and leads to a connection to a cut and project scheme (CPS).

We assume below that the reader is familiar with the cut and project formalism
and with regular model sets. For a review of this, we recommend the monograph [1]
for G = Rd , and [8] for general G.

To describe S, consider the following CPS,

R
πG←−−−−− R×H

πH−−−−−→ H := ∏p∈PZ/p2Z
⋃ ⋃ ⋃

dense

L 1−1←−−−− L := {(n,τ(n)) : n ∈ Z} −−−−→ L�
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where τ : Z−−→ H is defined by τ(n) =
(
n mod p2

)
p∈P. Consider the set

W := ∏
p∈P

(
(Z/p2Z)\{0}),

which acts as a window for the above CPS.

Theorem 2 ([4, 2]). For the square-free integers, the following properties hold.

1. The window W is compact, with W = ∂W and S =�(W ).
2. The natural autocorrelation and diffraction measures of S are given by

γ = ω
1W ∗1̃W

, γ̂ = ω| ˇ1W |2 . (1)

While (1) is the usual formula of the diffraction of regular model sets, the window
W has no interior and a boundary of positive measure. Thus, the standard proofs for
the diffraction of regular model sets do not apply.

2 Weak model sets of maximal density

Definition 1. Let (G,H,L ) be a CPS. If W ⊆ H is compact, we say that �(W ) is
a weak model set. We say that the weak model set�(W ) has maximal density with
respect to A = (An)n∈N if

densA (�(W )) := lim
n

card(�(W )∩An)

θG(An)
= dens(L )θH(W ),

where θG and θH are the Haar measures of the groups G and H, respectively.

Note that the right-hand side is always an upper bound for the left-hand side [5].
Regular model sets have maximal density. Square-free integers, as well as visible
lattice points, have maximal density with respect to the natural van Hove sequence.
The next result shows that generic positions of compact windows define weak model
sets of maximal density.

Proposition 1 ([7]). Let (G,H,L ) be a CPS, let W ⊆H be compact, and let A be a
tempered van Hove sequence. Then, for generic (x,y)+L ∈ (G×H)/L , the weak
model set −x+�(y+W ) has maximal density with respect to A .

For weak model sets of maximal density, we have the following result; see [3, 6]
for details.

Theorem 3 ([3, 6]). Let (G,H,L ) be a CPS, and �(W ) a weak model set of maxi-
mal density with respect to A = (An)n∈N. Then, the following properties hold.

1. With respect to A , the set �(W ) has autocorrelation and diffraction

γ = dens(L )ω1W ∗1̃W
and γ̂ = (dens(L ))2 ω| ˇ1W |2 .
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2. For each χ ∈ Ĝ, the Fourier–Bohr coefficient aχ exists, with

aχ := lim
n

1
θG(An)

∑
x∈�(W )∩An

χ(x) = dens(L )
∫

W
χ�(t)dt.

3. There exists an ergodic measure ν for the dynamical system
(
X(�(W )),G

)
such

that �(W ) is generic for ν .

The measure ν can be identified as the unique invariant measure with maximal
density for generic configurations.
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Doubly sparse measures on locally compact
Abelian groups

Venta Terauds

In this work, joint with Michael Baake and Nicolae Strungaru [3], we are interested
in doubly sparse measures on a locally compact Abelian group (LCAG) G. By a
doubly sparse measure, we mean a Fourier-transformable Radon measure μ such
that both supp(μ) and supp(μ̂) are locally finite point sets in G and Ĝ, respectively.
In particular, both μ and μ̂ must then be pure point measures.

This work has its origins in the study of crystals and quasicrystals: a physical
structure, represented by a point measure in Rd , is considered to have long range
order when its diffraction is also a pure point measure. In the simplest case, we have
a periodic structure represented by the Dirac comb of a lattice, in which case its
diffraction is also periodic: for a general lattice Γ ⊆ Rd , we have from the Poisson
summation formula (PSF) that δ̂Γ = dens(Γ) ·δΓ∗ and hence the diffraction

γ̂Γ = dens(Γ)2 ·δΓ∗ ;

see [1] for general background.
A model set is a point set gained from a cut and project scheme (CPS) by project-

ing onto a group, G, from a lattice in a higher-dimensional superspace, G×H, via
a sufficiently nice, relatively compact window in H. Such sets form natural mathe-
matical models of quasicrystals, being non-periodic with pure point diffraction. We
apply some recent results of Strungaru [7], who characterised measures that may be
written as model combs in a CPS, and Richard and Strungaru [6], who proved the
PSF for measures supported on a model set, using the PSF of the underlying lattice.

Meyer sets possess a strong form of finite local complexity and may always be
constructed as relatively dense subsets of model sets. In fact, a Fourier-transformable
measure μ supported inside a Meyer set with pure point Fourier transform μ̂ can be
written as a model comb in a CPS, with its coefficients determined by a continuous
function of compact support on the internal space, H. Using this, we show that, un-
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der relatively mild conditions of sparseness on the support of μ̂ , both μ and μ̂ (and
hence the diffraction of μ) are supported on finitely many translates of a lattice, and
thus have a periodic structure.

If a measure μ has uniformly discrete support and is positive definite, with pure
point Fourier transform μ̂ , then μ̂ may again be written as a model comb in a CPS,
however with coefficients determined by a continuous function vanishing at infinity
on the internal space, H. In this case, with similarly mild conditions of sparseness
on the support of μ̂ , we show that μ is the limit of a sequence of measures with
periodic structure.

Our results can be seen as a generalisation of many of those of Lev and Olevskii
[4, 5] from the Euclidean to the general LCAG setting. To conclude, we consider
some consequences of our results for measures supported on Rd . In particular, we
show the following. If a measure μ , supported inside a model set in a fully Euclidean
CPS, is such that the support of the pure point part of μ̂ , that is, supp(μ̂pp), is locally
finite then, in fact, μ̂pp = 0; see [3] for details.

References

1. Baake, M., Grimm, U.: Aperiodic Order. Vol. 1: A Mathematical Invitation. Cambridge Uni-
versity Press, Cambridge (2013).

2. Baake, M., Grimm, U. (eds.): Aperiodic Order. Vol. 2: Crystallography and Almost Periodic-
ity. Cambridge University Press, Cambridge (2017).

3. Baake, M., Strungaru, N., Terauds, V.: On pure point measures with sparse support and sparse
Fourier–Bohr support, arXiv:1908.00579 (2019).

4. Lev, N., Olevskii, A.: Quasicrystals and Poisson’s summation formula. Invent. Math. 200,
585–606 (2015).

5. Lev, N., Olevskii, A.: Fourier quasicrystals and discreteness of the diffraction spectrum. Adv.
Math. 315, 1–26 (2017).

6. Richard, C., Strungaru, N.: Pure point diffraction and Poisson summation. Ann. H. Poincaré
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The mean-median map

Franco Vivaldi

Consider a finite multiset ξ = [x1, . . . ,xn] of real numbers. The arithmetic mean 〈ξ 〉
and the median M (ξ ) of ξ are defined, respectively, as

〈ξ 〉= 1
|ξ | ∑

x∈ξ
x and M (ξ ) =

⎧
⎪⎨
⎪⎩

x j n+1
2

n odd,

1
2

(
x j n

2
+ x j n

2+1

)
n even,

where x j1 � x j2 � · · ·� x jn , for some permutation k �→ jk of indices.
We enlarge ξ by adjoining to it a new real number xn+1 determined by the re-

quirement that the arithmetic mean of the enlarged multiset be equal to the median
of the original multiset:

xn+1 = (n+1)M (ξ )−n〈ξ 〉.

This rule is known as the mean-median map (MMM), which was introduced in [5],
and subsequently studied in [2, 1, 3].

Since the MMM commutes with affine transformations [5], the simplest non-
trivial case — three distinct initial numbers — may be studied in full generality
by considering the initial multiset [0,x,1], with x ∈ [ 12 ,

2
3 ], exploiting symmetries

[2]. Here one finds already substantial difficulties, which are synthesised in the fol-
lowing conjectures.

Conjecture 1 (Strong terminating conjecture [5]). The MMM sequence of any initial
multiset is eventually constant.

For the system [0,x,1], we let the transit time τ(x) be the time at which the MMM
sequence becomes constant (letting τ(x) = ∞ if this does not happen). If the MMM
sequence (xn)

∞
n=1 converges at x — with finite or infinite transit time — we have
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a real function x �→ m(x), called the limit function, which gives the limit of this
sequence. This function has an intricate, distinctive structure.

Conjecture 2 (Continuity conjecture [2]). The function x �→ m(x) is continuous.

In [2], both conjectures were proved to hold in a neighbourhood of x = 1
2 , where

m turns out to be affine. Using a computer-assisted proof, this result was then sub-
stantially extended in [1], where the limit function was constructed in small neigh-
bourhoods of all rational numbers with denominator at most 18 lying in the in-
terval

[ 1
2 ,

2
3

]
. The authors also identified 17 rational numbers at which m is non-

differentiable.
In this joint work with Jonathan Hoseana [4], motivated by the above investiga-

tions, we study the mean-median map as a dynamical system on the space of finite
multisets [Y1(x), . . . ,Yn(x)] of piecewise-affine continuous functions with rational
coefficients, the MMM map being defined pointwise. We study the limit function in
the vicinity of its local minima. The latter occur at a distinctive family of rational
points, the so-called X-points, which are transversal intersections of the functionsYk.
We prove the existence of local symmetries (homologies) around X-points, which
result in affine functional equations for the limit function. We establish the general
form of the limit function near an X-point, and show that the X-points form a hier-
archical structure, whereby each X-point typically generates an auxiliary sequence
of like points; such sequences form the scaffolding of the intricate structure of local
minima of the limit function.

We then show that there is a one-parameter family of dynamical systems over Q
— the reduced system — which, after suitable scaling, represent the dynamics near
any X-point with given transit time. This simplification results from the fact that the
reduced dynamics is largely unaffected by the earlier history of the X-point.

By exploiting the dynamics of the reduced system, we have established the strong
terminating conjecture for [0,x,1] in neighbourhoods of 2791 rational numbers in
the interval

[ 1
2 ,

2
3

]
, thereby extending the results of [1] by two orders of magni-

tude. This large data collection makes it clear that the domains over which the limit
function is regular do not account for the whole Lebesgue measure, suggesting the
existence of a drastically different, yet unknown, dynamical behaviour.

For a quantitative assessment of this phenomenon, we have computed a lower
bound for the total variation of the limit function, sampled over a set of some
202,000 Farey points. Our data suggest the following conjecture.

Conjecture 3. The Hausdorff dimension of the graph of the limit function of the
system [0,x,1] is greater than 1.
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Similar sublattices and submodules

Peter Zeiner

In this talk, we want to give an overview of similar sublattices and submodules and
the recent progress in this area. A milestone are some general existence results for
similar sublattices of rational lattices [6] by Conway, Rains and Sloane. Since then,
detailed explicit results have been achieved for a large collection of lattices and
Z -modules in dimensions d ≤ 4, including planar modules related to cyclotomic
integers [1], root lattices such as the A4-lattice [2] and related modules in 4 di-
mensions, where one makes use of certain quaternion algebras [3], but also for less
symmetric lattices in the plane [4]. Another important result is the establishment
of a close connection between similar submodules and coincidence site modules
(CSMs) [7, 8, 10].

A similar sublattice (SSL) of a lattice Γ is a sublattice of full rank that is similar
to Γ ; see [6, 5]. By a Z -module, we mean a Z -module which is (properly) embedded
in Rd , that is, a module M ⊂Rd such that there is a Z -basis {b1, . . . ,bn} of M whose
R-span is Rd ; see [5]. Likewise, a similar submodule (SSM) of M is a submodule of
full rank that is similar to M. In particular, every similar submodule is of the form
αRM, where α ∈ R∗ := R\{0} and R ∈ O(d,R). The key objects are the group of
similarity isometries

OS(M) = {R ∈ O(d,R) | ∃α ∈ R+ such that αRM ⊆ M}

and the sets of scaling factors

ScalM(R) := {α ∈ R | αRM ⊆ M} and

scalM(R) := {α ∈ R | αRM is commesurate to M},

which are non-trivial if and only if R is a similarity isometry.
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If E is the identity operation, then we have ScalΓ (E) = Z for a lattice Γ and
scalΓ (E)∪ {0} = Q is the corresponding field of fractions. In general, the set of
‘trivial’ scaling factors ScalM(E) is an order in a real number field, whose rank sat-
isfies certain restrictions [10, 5]. The set scalM(E)∪{0} is again the corresponding
field of fractions.

The family of these sets, {scalM(R) : R ∈ OS(M)}, has a natural group structure,
which allows one to define a homomorphism [7, 8, 10, 5]

φ : OS(M)→ R/(scalM(E)),

R 
→ scalM(R).

The kernel of this homomorphism is OC(M), the so-called group of coincidence
isometries of M. The latter is defined as the group of all R∈O(d,R) such that M and
RM are commensurate [10, 5]. This establishes a connection between similar sub-
modules and coincidence site modules. In particular, OS(M)/OC(M) is an Abelian
group. If M = Γ is a lattice, all elements of OS(M)/OC(M) have a finite order
which is a divisor of d. For instance, if M is the square lattice, then OS(M)/OC(M)
is an infinite 2-group [7]. In case of modules in general, this is not true any more,
and OS(M)/OC(M) may have factors isomorphic to Z [5].

Finding OS(M) and ScalM(R) for all R ∈ OS(M) are typically the first steps if
one wants to count the SSMs of a given module. If b(n) denotes the number of
SSMs of a given index n, then b(n) is a supermultiplicative arithmetic function, that
is, b(mn) ≥ b(m)b(n) whenever m and n are coprime. If the modules under con-
sideration are related to number fields of class number one, this counting function
is typically multiplicative and it makes sense to consider generating functions of
Dirichlet series type

Φ(s) = ∑
n∈N

b(n)
ns .

For many cases, these generating functions have been calculated explicitly, among
others for certain planar modules of N-fold symmetry [1], and some root lattices
and related modules up to dimension 4, see e.g. [3, 2]. These generating functions
can be used to determine the asymptotic behaviour of the number of SSMs via
Delange’s theorem [9]. In particular, one can calculate the asymptotic behaviour
of the summatory function ∑n≤x b(n) by using some information on the poles of
Φ(s). For explicit calculations on the examples mentioned above (and many more),
see [1, 3, 2, 5, 4] and references therein.
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A diffraction abstraction

Michael Coons

Abstract For some time now, I have been trying to understand the complexity of
integer sequences from a variety of different viewpoints and, at least at some level,
trying to reconcile these viewpoints. However vague that sounds—and it certainly
is vague to me—in this short note, I hope to explain this sentiment.

1 Introduction

My interest in the complexity1 of integer sequences is rooted in some classical re-
sults from the first part of the twentieth century concerning power series. These start
with a result of Fatou [12], that a power series F(z) ∈C[[z]] whose coefficients take
only finitely many values is either rational or transcendental over C(z). Szegő [16]
generalised Fatou’s result to give, under the same assumptions, that F(z) is either
rational or has the unit circle as a natural boundary. Completing this picture in a
certain sense, Carlson [9] then showed that if F(z) ∈ Z[[z]] converges in the unit
disc, the same conclusion holds—either F(z) is rational or it has the unit circle as
a natural boundary. I use the word ‘completing’ as Carlson’s theorem cannot be
extended without adding more restrictive assumptions—there are irrational integer
power series with a smaller radius of convergence that are meromorphic, such as the
algebraic function

1√
1−4z

= ∑
n�0

(
2n
n

)
zn.
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Of course, one would like to know more about the behaviour of these power series
as z approaches the unit circle. Towards addressing this, a beautiful result of Duf-
fin and Schaeffer [11] states that a power series that is bounded in a sector of the
unit disc and has coefficients from a finite set is necessarily a rational function. As
well, this result cannot be extended to full generality—there are integer power series
converging in the unit disc that are bounded in certain sectors, such as the series

∑
n�0

(1− z)nzn!,

which is bounded in the sector arg(z)∈ [−π/4,π/4]. One of the ‘takeaways’ for me
from these results is the importance of asymptotics in relation to the complexity of
integer sequences.

It is worth pointing out that these results occurred during an historically inter-
esting time for integer sequences. Up to the year 1909, problems of probability
were classified as either ‘discontinuous’ or ‘continuous’ (also called ‘geometric’).
Towards filling this gap, in that year, Borel [8] introduced what he called countable
probabilities (probabités dénombrables). In this new type of problem, one asks prob-
abilistic questions about countable sets. As a—now common—canonical example,
Borel considered properties of the frequency of digits in the digital expansions of
real numbers. A central concept in Borel’s approach is that of normality. A real
number x is called simply normal to the base k (or k-simply normal) if each of
0,1, . . . ,k− 1 occurs in the base-k expansion of x with equal frequency 1/k. This
number x is then called normal to the base k (or k-normal) provided it is km-simply
normal for all positive integers m, and the number x is just called normal if this
is true for all integers k � 2. Borel’s use of the word ‘normal’ is well-justified; he
showed, in that 1909 paper, that almost all real numbers, with respect to Lebesgue
measure, are normal. The question he left was to determine if the decimal expansion
of

√
2 is normal. It is now customary to attribute the following broader question to

Borel: Is the base expansion of an irrational algebraic real number normal? It is
not at all an exaggeration to say that nothing substantial is known now, 110 years
later.

The strength of Borel’s approach, as well as the difficulty, rests upon considering
large blocks of a bounded integer sequence, the sequence of digits of a base expan-
sion of a real number. But what if we relax this a bit and consider only the two-point
correlations? This brings us squarely into the realm of diffraction.

In classical Fraunhofer (far-field) diffraction, monochromatic light waves from
a (far) point source come into contact with an object, are scattered (diffracted) and
then meet a (far) screen. The image left on the screen is (essentially) the Fourier
transform of the object. The present situation concerns the specific case of a se-
quence of integers. For a bounded sequence w of integers, one arrives at the diagram

ω := ∑
n∈Z

w(n)δn γω := ω �ω = ∑
m∈Z

η(m)δm γ̂ω = ω̂ �ω� F
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where ω is the (weighted) Dirac comb with weights w, � represents convolution,
the values

η(m) := lim
N→∞

1
2N +1

N

∑
i=−N

w(i)w(i+m)

are the autocorrelation coefficients and F is Fourier transformation. In the more
general context, this diagram is commonly called a Wiener diagram, after the Amer-
ican applied mathematician Norbert Wiener, who pointed out the usefulness of the
autocorrelation function for understanding X-ray diffraction patterns; see Senechal
[15] and Patterson [14]. In fact, Wiener [17] instigated the use of diffraction meth-
ods on integer sequences. In his paper, “The spectrum of an array and its application
to the study of the translational properties of a simple class of arithmetical functions,
Part One,” Wiener outlined a process whereby one uses the autocorrelation function
to produce a spectral function that in a sense encodes some of the complexity of the
underlying sequence. In modern day terms, he was showing, given a subset A of Z,
how to produce the diffraction measure γ̂ω and then using the Lebesgue decomposi-
tion theorem to determine a sort of complexity for the set A. Recall that the Lebesgue
decomposition theorem states that any regular Borel measure μ on Rd has a unique
decomposition μ = μpp + μac + μsc where μpp, μac and μsc are mutually singular
and also |μ|= |μpp|+ |μac|+ |μsc|. Here μpp is a pure point measure corresponding
to the monotone step function part of Wiener’s spectral function (the Bragg part),
μac is an absolutely continuous measure corresponding to the part of the spectral
function that is the integral of its derivative, and μsc is a singular continuous mea-
sure corresponding to the continuous part of the spectral function which has almost
everywhere a zero derivative. Wiener’s purpose is exactly what I am aiming at, “to
extend the spectrum theory [...] to the harmonic analysis of functions only defined
for a denumerable set of arguments—arrays, as we shall call them—and the appli-
cation of this theory to the study of certain power series admitting the unit circle as
an essential boundary.” [17]

In the remainder of this note, I will describe some examples of each (pure) type
of measure with a number-theoretic flavour, then move on to an extended diffraction
example before finishing our exposition with an example of a non-diffractive mea-
sure, which still gives some reasonable information, but for an unbounded sequence.

2 Three examples: diffraction measures of pure type

My current favourite three examples, illustrating each (pure) type of measure are
the characteristic function on k-free integers, the Rudin–Shapiro sequence and the
Thue–Morse sequence. Each of these sequences have power series generating func-
tions having the unit circle as a natural boundary.

The k-free integers. Let Vk ⊂ Z be the set of k-free integers with fixed k � 2, that
is, the elements of Z that are not divisible by a k-th power of any (rational) prime
number. If one lets w = χk be the characteristic function on Vk and considers
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ωk := ∑
n∈Z

χk(n)δn,

then a result of Baake, Moody and Pleasants [6] gives that the diffraction measure
γ̂ωk is a pure point measure, which is explicitly computed in terms of elementary
number-theoretic functions.

The Rudin–Shapiro sequence. In this example, one lets the sequence of weights w
be the Rudin–Shapiro sequence wRS : Z→{±1} determined by the recurrences

wRS(4m+ �) =

{
wRS(m), for � ∈ {0,1},
(−1)m+� wRS(m), for � ∈ {2,3},

with initial conditions wRS(0)=−wRS(−1)= 1. Given this definition, using weights
w = wRS, it turns out that the diffraction measure γ̂ωRS is absolutely continuous with
respect to Lebesgue measure; in fact, the two are equal. See Baake and Grimm [4,
Section 10.2] for more details.

The Thue–Morse sequence. This example is a special case of a result of Kurt
Mahler [13], who wrote “Part Two” of Wiener’s above-mentioned paper [17].

Let {t(n)}n∈Z be the Thue–Morse sequence defined on the alphabet {±1} by
t(0) = 1, for n � 1 by the recurrences t(2n) = t(n) and t(2n+ 1) = −t(n) and ex-
tended to all of Z by the symmetric relation t(−n) = t(n). The right half of this
sequence, which starts

{t(n)}n�0 = {1,−1,−1,1,−1,1,1,−1,−1,1,1,−1,1,−1,−1,1, . . .},

is one of the most ubiquitous integer sequences and one of central importance in
various areas within number theory, combinatorics, theoretical computer science
and dynamical systems theory. In both theoretical computer science and dynamics
one often views this sequence as the infinite iteration of the binary substitution (or
morphism) ρT M defined on the two letter alphabet Σ2 := {a,b} by

ρT M :

{
a �→ ab
b �→ ba .

If one considers the Dirac comb

ωTM = ∑
n∈Z

t(n)δn,

then, as implied by the result of Mahler, the diffraction measure γ̂ωTM is a purely
singular continuous measure. Indeed, this was the first explicit example of such a
measure, and appeared in Mahler’s first published paper!
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3 An extended diffraction example: the Thue–Morse sequence

Standing at the intersection of number theory, dynamics and theoretical computer
science, the most widely interesting of these examples is that of the Thue–Morse
sequence. Fortunately for us, it is also an example where much is known. In this
section, I highlight a few of the known results concerning this sequence and provide
some questions on further relationships.

Before continuing, we note that in this instance, the existence of the autocorre-
lation measure γωTM is guaranteed by an application of Birkhoff’s ergodic theorem;
see Baake and Grimm [4, Section 10.1] for all details regarding measures associ-
ated to the Thue–Morse sequence. As well, the autocorrelation coefficients satisfy
ηTM(−m) = ηTM(m), so that one can determine the coefficients via the one-sided
limit

ηTM(m) = lim
N→∞

1
N

N−1

∑
i=0

t(i)t(i+m),

for all m ∈ N. Using the recursions defining t, with some rearrangement, we arrive
at the recursions

ηTM(2m) = ηTM(m) and ηTM(2m+1) =−1
2
(
ηTM(m)+ηTM(m+1)

)
,

for m� 0. Along with the fact that ηTM(0) = 1, these recurrences specify a sequence
{ηTM(m)}m�0, which is 2-regular in the sense of Allouche and Shallit [2]. This pre-
sumably generalises, the moral result being that the autocorrelation coefficients of a
k-automatic sequence should be k-regular. This added structure is useful and can be
harnessed (as it is in the case for the Thue–Morse sequence) to help decide whether
a given diffraction measure is continuous. See the monograph [1] for background
and details on automatic sequences.

Since the Thue–Morse sequence is an automatic sequence, its generating function
is a Mahler function. A Mahler function is a function F(z) ∈ C[[z]] for which there
exist integers d � 1 and k � 2 and polynomials p0(z), . . . , pd(z) such that

p0(z)F(z)+ p1(z)F(zk)+ · · ·+ pd(z)F(zkd
) = 0.

That is to say, the function F(z) behaves predictably under the map z �→ zk. The
generating function of the (one-sided) Thue–Morse sequence,

T±(z) := ∑
n�0

t(n)zn,

satisfies the Mahler-type functional equation

T±(z)− (1− z)T±(z2) = 0.

The simplicity of this functional equation allows one to write T±(z) as the infinite
product
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T±(z) = ∏
j�0

(
1− z2 j

)
.

It is evident by examining this product that as z radially approaches 1 from the
origin, T±(z) is extremely flat. Indeed, de Bruijn [10] showed that as z → 1−, we
have

T±(z) =CTM(z) · (1− z)1/2 ·2− log2
2(1−z)/2 · (1+o(1)). (1)

Here log2
2(y) = (log(y)/ log(2))2 is the square of the binary logarithm and CTM(z)

is a positive oscillatory term, which in (0,1) is bounded away from 0 and infinity, is
real-analytic, and satisfies CTM(z) =CTM(z2).

These asymptotics of T±(z) are reflected in the scaling behaviour of the distribu-
tion function of the Thue–Morse measure. Indeed, consider

γ̂ωTM = μTM ∗δZ,

where
μTM(x) = ∏

��0

(
1− cos(2�+1πx)

)
,

and where this limit is taken in the vague topology. Setting FTM(x) := μTM([0,x]),
Baake and Grimm [5] have shown that there are positive constants c1 and c2 such
that for small x, we have

c1 x2+α 2− log2
2(x) � FTM(x)� c2 xα 2− log2

2(x), (2)

where α =− log2(π2/2). Presumably inequality (2) holds with equal exponents of
x on each side, but at the moment this remains an open question. A sort of heuristic
for this is the validity of (1).

In this setting, one should view the function T±(z) as an exact “error term” in
the following way. Let A01 be the set of nonnegative integers that have an odd num-
ber of ones in their binary expansion and denote by T01(z) the generating function
of the characteristic function of A01. Note that the set A01 has density 1/2 in the
nonnegative integers. With these definitions, we have

2
(

T01(z)− 1
2
· 1

1− z

)
= T±(z).

Now, de Bruijn’s result gives,

(
T01(z)− 1

2
· 1

1− z

)2

= 1
4 ·CTM(z)2 · (1− z) ·2− log2

2(1−z) · (1+o(1)). (3)

Equation (3) can be interpreted as a probabilistic (or statistical) statement about the
set A01.

The similarities between (2) and (3) are striking and though it is quite tempting,
we refrain from making any direct conjectures, but ask the following question: Is
there a direct transformation (in general) between certain asymptotics of generat-
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ing functions and the asymptotic behaviour near zero of the associated distribution
function of the diffraction measure?

4 A non-diffractive example: the Stern sequence

In the previous section, we considered an example of a bounded integer sequence,
the Thue–Morse sequence. Because of this, one is able to use the setting of diffrac-
tion to consider complexity and to compare with asymptotics of the related generat-
ing function. In this section, I consider an example of an unbounded sequence, the
Stern sequence. Due to this unboundedness, the traditional diffraction paradigm is
not available.

Stern’s sequence {s(n)}n�0, also called Stern’s diatomic sequence, is defined
by the initial conditions s(0) = 0 and s(1) = 1 and for n � 1 by the recurrences
s(2n) = s(n) and s(2n+1) = s(n)+ s(n+1). The sequence starts

{s(n)}n�0 = {0,1,1,2,1,3,2,3,1,4,3,5,2,5,3,4,1,5,4,7,3,8,5 . . .}.

Stern’s sequence has some interesting properties, maybe the most interesting of
which is that the sequence {s(n)/s(n+ 1)}n�0 is an enumeration of the nonnega-
tive rational numbers, without repeats, and already in reduced form! Like the Thue–
Morse sequence, the generating function of the Stern sequence

S(z) := ∑
n�0

s(n+1)zn

is a Mahler function given by an infinite product. In this case,

S(z) = ∏
j�0

(
1+ z2 j

+ z2·2 j
)
.

Due to the structure of this infinite product, one easily sees that the value s(n+ 1)
is the number of hyperbinary representations of n, that is, the number of ways of
writing n as the sum of powers of two with each power being used at most twice.

As stated above, the unboundedness of the Stern sequence rules out the study
of this sequence by means of traditional diffraction. Nonetheless, there is enough
structure to form a measure associated to Stern’s sequence. The following formula-
tion follows my recent work [3] with Michael Baake. It was made possible due to
the well-known relationship

2n+1−1

∑
m=2n

s(m) = 3n, (4)

for n � 0. This allowed us to define
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μn := 3−n
2n−1

∑
m=0

s(2n +m)δm/2n , (5)

where δx denotes the unit Dirac measure at x. Here, we view {μn}n�0 as a sequence
of probability measures on the 1-torus—written as T= [0,1) with addition modulo
1—wherein we have re-interpreted the values of the Stern sequence in the interval
[2n,2n+1) as weights of a pure point probability measure on T with supp(μn) =

{ m
2n :

0 � m < 2n
}

.
The main result of [3] is that the sequence {μn}n�0 of probability measures on

T converges weakly to a singular continuous probability measure μS, which we call
the Stern measure. Moreover, one has μ0 = δ0 and μn =∗n

m=1
1
3

(
δ0+δ2−m +δ−2−m

)

for n � 1. The weak limit as n → ∞ is given by the convergent infinite convolution
product

μS =∗
m�1

1
3

(
δ0 +δ2−m +δ−2−m

)
.

Its Fourier transform μ̂S is given by

μ̂S(k) = ∏
m�1

1
3

(
1+2cos(2πk/2m)

)
= ∏

m�1

1
3

(
1+ e2πk/2m

+ e−2πk/2m)

for k ∈ Z. This infinite product is also well-defined on R, where it converges com-
pactly.

We also proved [3] that the distribution function FS(x) := μS
(
[0,x]

)
is strictly in-

creasing and is Hölder continuous with exponent log2(3/τ), where τ := (1+
√

5)/2
is the golden mean. This implies that there is a positive constant c3 such that

FS(x)� c3 xlog2(3/τ).

Here, the comparison with known asymptotics is again striking. It follows from
a result of mine with Bell [7], that as z → 1−,

S(z) =
CS(z)

(1− z)log2 3 · (1+o(1)),

where, as in the case of the Thue–Morse sequence, CS(z) is a positive oscillatory
term, which in (0,1) is bounded away from 0 and infinity, is real-analytic, and sat-
isfies CS(z) = CS(z2). It is worth noting here, that while the constant 3 essentially
comes from (4), the maximal values of the Stern sequence between 2n and 2n+1 −1
are proportional to τn, in fact, they are Fibonacci numbers. So here, the exponent
in the scaling of the distribution function is the binary logarithm of the ratio of the
average value 3/2 and of the averaged maximum τ/2.
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5 Concluding remark

In this note (and the talks from whence it came), I discussed generating functions
and measures associated to a few paradigmatic integer sequences. For the Thue–
Morse sequence, I discussed the related diffraction measure and asked whether the
asymptotics of the generating function near the unit circle are related to the scaling
behaviour of the distribution function of the measure close to zero. Also, I used the
example of the Stern sequence to define a measure (not a diffraction measure) for an
unbounded integer sequence and again related properties of the distribution function
of that measure to the asymptotics of the generating function of the Stern sequence
near the unit circle. I find the similar structures of the asymptotics in these situations
compelling and worthy of further study.

Acknowledgements Most of the results discussed in this work were joint with Michael Baake. I
thank him for introducing me to the beautiful area of aperiodic order, a very enjoyable collaboration
and, more locally, for his comments on this exposition.
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Chapter 13

Early Career Researchers Workshop on

Geometric Analysis and PDEs



Extrinsic curvature flows and applications

Julian Scheuer

Abstract These notes arose from a mini lecture series the author gave at the Early
Career Researchers Workshop on Geometric Analysis and PDEs, held in January
2020 at The Mathematical Research Institute MATRIX. We discussed some clas-
sical aspects of expanding curvature flows and obtained first applications. In these
notes we will give a detailed account on what was covered during the lectures.

1 Introduction

Expanding curvature flows

This is an introduction to the theory of (expanding) extrinsic curvature flows, i.e.
normal variations of hypersurfaces the speed of which are determined by the prin-
cipal curvatures at each point. The flowing hypersurfaces are parametrized by a
time-dependent family of embeddings

x : [0,T )×Sn → Rn+1

which satisfies

ẋ =
1

f (κ1, . . . ,κn)
ν , (1)

where

κ1 ≤ ·· · ≤ κn
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Julian Scheuer

are the principal curvatures at x, ν is the outward pointing unit normal and a dot
denotes the partial time derivative.

Under a monotonicity assumption on f , this flow is a weakly parabolic system
and we present proofs of the classical results due to Claus Gerhardt [2] and John
Urbas [16]: Under certain assumptions on f and the initial embedding x0 this flow
exists for all times and after exponential blowdown converges to a round sphere.
Furthermore we show that this flow can be used to prove so-called Alexandrov-
Fenchel inequalities, which are inequalities between certain curvature functionals of
a hypersurface. The approach is due to Pengfei Guan and Junfang Li [5]. Classical
examples are the isoperimetric inequality and the Minkowski inequality
ˆ

M
H ≥ cn|M| n−1

n ,

which holds if M is mean-convex (H > 0) and starshaped. Here |M| is the surface
area of M. Equality holds precisely on every geodesic sphere. An appropriate rescal-
ing of the flow (1) has nice monotonicity properties which, together with the con-
vergence result, can be used to prove the inequalities. The approach we take slightly
differs from the original works [2, 5]. Namely we use that the normal component of
the rescaled flow actually moves by

ẋ =
(

1
f
− u

n

)
ν , (2)

where u is the support function of the hypersurface. A priori estimates for (1) are
directly deduced along this rescaling, which makes the estimates a little easier com-
pared to Gerhardt’s original arguments [2]. One interesting aspect of this particular
rescaling is that (2) belongs to the class of so-called locally constrained curvature
flows. The mean curvature type flow of this class,

ẋ = (n−uH)ν ,

was invented by Pengfei Guan and Junfang Li in [6] as a natural flow to prove
the isoperimetric inequality in space forms: It preserves the enclosed volume and
decreases surface area. A variety of such flows have appeared since then and they
have been useful to obtain new geometric inequalities, cf. [7, 9, 13, 14, 17].

Outline

These notes are structured as follows. First we present some background on the
curvature function f . It is known that the ordered principal curvatures are continuous
in time, but if they have higher multiplicity they are in general not smooth. Hence
at first sight the operator in (1) seems to lack regularity. However, this issue can be
worked around by considering the function
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F(A) = f ◦EV(A),

where A is the Weingarten (or shape-) operator of the embedding and EV the eigen-
value map. Interestingly, even though EV is not smooth, if f is smooth and sym-
metric, F will be a smooth and natural map on the space of vector space endo-
morphisms. To people working with fully nonlinear curvature operators this is well
known. We will give the precise setup to make this approach rigorous and state some
important relations between derivatives of f and F , but skip most of the proofs in
these notes. The material is taken from [12].

Afterwards we first fix some notation and conventions about hypersurface ge-
ometry and deduce the evolution equations for various geometric quantities. After
these general considerations, we actually start with the a priori estimates for the in-
verse curvature flows and prove their convergence. We conclude by presenting the
application to Alexandrov-Fenchel inequalities.

Up to some hard results from general parabolic PDE theory, i.e. short-time ex-
istence of fully nonlinear equations, Krylov-Safonov- and Schauder theory, the ex-
position should be mostly self-contained. However, on some occasions we will skip
proofs for elementary statements.

2 Curvature functions

We quickly introduce the algebra of curvature functions using a new approach from
[12]. Along a variation

ẋ =− f ν

the function f is supposed to be a function of the principal curvatures of the flow
hypersurfaces Mt = x(t,M). As we deal with geometric flows, f has to be invariant
under coordinate changes and thus we require it to be symmetric under all permuta-
tions. Hence we may assume the κi to be ordered,

κ1 ≤ ·· · ≤ κn.

We assume that f is smooth. Along the curvature flows considered later, we derive
estimates for the curvature and hence we would like to deduce a parabolic equation
which is satisfied by the κi. However, those are in general not smooth functions, so
we need to find another description of f , namely make it depend on the Weingarten
operator A, the components of which are smooth.

This can be accomplished with the following idea: Suppose Γ ⊂ Rn is an open
and symmetric set and

f ∈C∞(Γ )
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symmetric. It is a classical result [4] that f then is a function of the elementary
symmetric polynomials

sm(κ) := ∑
1≤i1<···<im≤n

m

∏
j=1

κi j , (1)

or also of the power sums

pm(κ) =
n

∑
i=1

κm
i .

This means

f = ρ(s1, . . . ,sn) = ψ(p1, . . . , pn)

for some smooth functions ρ and ψ . The crucial point is, that for the power sums
it is very easy to make the transition from the dependence on the eigenvalues κi to
dependence on the operator. This is formalized as follows:

Definition 1. Let V be an n-dimensional real vector space and D(V )⊂L (V ) be the
set of real diagonalizable endomorphisms. Then we denote by EV the eigenvalue
map, i.e.

EV: D(V )→ Rn/Pn

A �→ (κ1, . . . ,κn),

where κ1, . . . ,κn denote the eigenvalues of A and Pn is the permutation group of n
elements.

For the power sums there is a very obvious candidate to serve as a function de-
fined on linear maps, namely

Pk(A) = tr(Ak).

Then there holds

Pk(A) = pk(EV(A)) ∀A ∈ D(V ).

Now we can just insert the Pk into ψ , i.e. we define

F = ψ(P1, . . . ,Pn).

Then F ∈C∞(Ω) for some open set Ω ⊂ L (V ) and

F|DΓ (V ) = f ◦EV|DΓ (V ),

where DΓ (V ) is the set of those real diagonalizable linear maps with eigenvalues
in Γ . We obtain the following relations for the derivatives, see [12] for the details.
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Denote by F ′(A) the gradient of F , i.e. by the relation

dF(A)B = tr(F ′(A)◦B).

If A is real diagonalizable, then F ′(A) is real diagonalizable and if we denote by
Fi(A) its eigenvalues, then

Fi(A) =
∂ f
∂κi

(κ),

where κ = EV(A). The second derivatives are related via

d2F(A)(η ,η) =
n

∑
i, j=1

∂ 2 f
∂κi∂κ j

η i
i η

j
j +

n

∑
i�= j

∂ f
∂κi

− ∂ f
∂κ j

κi −κ j
η i

jη
j

i ,

where f is evaluated at the n-tuple (κi) of corresponding eigenvalues. The latter
quotient is also well defined in case κi = κ j for some i �= j. Here (η i

j) is a matrix
representation of some η ∈ L (V ) with respect to a basis of eigenvectors of A.

Later we will require F to have certain properties, which we collect in the fol-
lowing definition.

Definition 2. The function F is called

(i) homogeneous of degree one, if Γ is a cone and

F(λA) = λF(A) ∀λ > 0 ∀A ∈ DΓ (V ),

(ii) strictly monotone, if

EV(F ′(A)) ∈ Γ+ ∀A ∈ DΓ (V ),

(iii) concave, if

D2F(A)(η ,η)≤ 0

for all A and for all η which are jointly self-adjoint with A.

Here Γ+ is the positive open cone on Rn,

Γ+ = {κ ∈ Rn : κi > 0 ∀1 ≤ i ≤ n}.

Example 1. Important examples of functions f , such that F has the properties in the
above definition, are the quotients

qm =
sm

sm−1

or the roots
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σm = s
1
m
m .

In either case f has the mentioned properties in the cone

Γm = {κ ∈ Rn : sk > 0 ∀1 ≤ k ≤ m},

see for example [10]. Later we will use the quotients to deduce the Alexandrov-
Fenchel inequalities.

3 Some hypersurface geometry

3.1 Conventions on Riemannian geometry

In this section we state the basic conventions concerning the elementary objects of
Riemannian geometry. Let M be a smooth manifold of dimension n. For vector fields
X ,Y which are also derivations of C∞(M), their Lie bracket is given by

[X ,Y ] = XY −Y X

and for an endomorphism field A we denote by trA ∈ C∞(M) its trace. Let g be a
Riemannian metric on M with Levi-Civita connection ∇. The Riemannian curvature
tensor is

Rm(X ,Y )Z = ∇X ∇Y Z −∇Y ∇X Z −∇[X ,Y ]Z,

and we also use Rm to denote the associated (0,4)-tensor,

Rm(X ,Y,Z,W ) = g(Rm(X ,Y )Z,W ).

The connection ∇ induces covariant derivatives of tensor fields T in the usual way
via

∇T (X1, . . . ,Xl ,Y 1, . . . ,Y k,X)

=(∇X T )(X1, . . . ,Xl ,Y 1, . . . ,Y k)

= X(T (X1, . . . ,Xl ,Y 1, . . . ,Y k))−T (∇X X1,X2, . . . ,Xl ,Y 1, . . . ,Y k)

− . . .−T (X1, . . . ,Xl ,Y 1, . . . ,∇XY k).

Let

x : M → Rn+1

be the smooth embedding of an n-dimensional manifold. The induced metric of
x(M) is given by the pullback of the ambient Euclidean metric 〈·, ·〉,
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g = x∗ 〈·, ·〉 .

The second fundamental form h of the embedding x is given by the Gaussian formula

Dx∗(X)x∗(Y ) = x∗(∇XY )−h(X ,Y )ν , (1)

where D is the standard Euclidean connection. The Weingarten operator is defined
via

g(A(X),Y ) = h(X ,Y )

and the Weingarten equation says that

Dx∗(X)ν = x∗(A(X)). (2)

Finally, we have the Gauss equation,

Rm(W,X ,Y,Z) = h(W,Z)h(X ,Y )−h(W,Y )h(X ,Z).

Remark 1. We will simplify the notation by using the following shortcuts occasion-
ally:

(i) We will often omit x∗, i.e. when we insert a tangent vector field X into an
ambient tensor field, we always understand X to be given by its pushforward.

(ii) When we deal with complicated evolution equations of tensors, we will occa-
sionally use a local frame to express tensors with the help of their components,
i.e. for a (k, l)-tensor field T , an expression like T i1...ik

j1... jl
is understood to be

T i1...ik
j1... jl

= T (e j1 , . . . ,e jl ,ε
i1 , . . .ε ik),

where (ei) is a local frame and (ε i) its dual coframe.
(iii) The coordinate expression for the m-th covariant derivative of a (k, l)-tensor

field T is

∇mT =
(

∇ jl+m... jl+1T i1...ik
j1... jl

)
,

where subscripts to ∇ represent the derivatives.

3.2 Hypersurfaces in polar coordinates

The punctured Euclidean space is isometric to

N = (0,∞)×Sn, ḡ = dr2 + r2σ ,
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where σ is the round metric on Sn and r = |x|. We will deal with closed starshaped
hypersurfaces, i.e. those which can be written as graphs over the fibre Sn. We collect
some useful formulae here.

Differentiating twice along M and using the Gaussian formula (1) gives

1
2

∇2|x|2 = g−uh, (3)

where u is the support function

u = 〈r∂r,ν〉= 〈x,ν〉 .

The flow hypersurfaces we consider are graphs over Sn, so let us recall some
standard formulae, which can be found in [3, Sec. 1.5]. Let M0 = x(M) ⊂ Rn+1 be
a graph over Sn,

M0 = {(ρ(y),y) : y ∈ Sn}= {(ρ(y(ξ )),y(ξ )) : ξ ∈ M}.

Then the induced metric of M0 is

g = dρ ⊗dρ +ρ2σ .

We choose the normal ν to satisfy

〈ν ,∂r〉> 0.

Let

h̄ = ρσ

be the second fundamental form of the embedded slice {r = ρ}, then the second
fundamental form of M0 can be expressed with the help of the graph function,

uh =−ρ∇2ρ +ρ h̄ =−ρ∇2ρ +g−dρ ⊗dρ, (4)

which is an easy exercise using the Gaussian formula and the Christoffel-symbols in
polar coordinates. Also note that the principal curvatures κ̄ of these slices are given
by

κ̄ =
1
ρ
.

Formulae for hypersurface variations

As we consider time-dependent families of embedded hypersurfaces, we have to
know how the previously discussed geometric quantities behave along variations
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with arbitrary speed,

ẋ =−Fν ,

where ν is the same normal as the one in the Gaussian formula (1).

Lemma 1. Let T > 0, Mn a smooth orientable manifold and

x : [0,T )×M → Rn+1

be a normal variation with velocity −F of a smooth hypersurface M0 = x(0,M).
Then the following evolution equations are satisfied.

(i) The induced metric g satisfies

ġ =−2Fh. (5)

(ii) The normal vector field satisfies

D
dt

ν = gradF , (6)

where D
dt is the covariant time derivative along the curve x(·,ξ ) for fixed ξ ∈M.

(iii) The Weingarten operator evolves by

Ȧ = ∇gradF +FA2. (7)

Proof. Let X ,Y be vector fields.

“(5)”: Due to the Weingarten equation (2) we have

ġ(X ,Y ) = 〈DẋX ,Y 〉+ 〈X ,DẋY 〉=−F 〈DX ν ,Y 〉−F 〈X ,DY ν〉=−2Fh(X ,Y ).

“(6)”: We have

0 =
∂
∂ t

〈ν ,ν〉=
〈

D
dt

ν ,ν
〉

and
〈

D
dt

ν ,X
〉
=−〈ν ,DẋX〉= XF = 〈gradF ,X〉 .

“(7)”: Differentiate the Weingarten equation (2) with respect to time. The left
hand side gives

DẋDX ν = DX Dẋν = ∇X gradF −h(X ,gradF )ν ,
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where we have used (6). The right hand side gives

Dẋ(A(X)) = DA(X)ẋ+ Ȧ(X) =−h(X ,gradF )ν −FA2(X)+ Ȧ(X).

Equate both sides to get the result.

4 Classical inverse curvature flows

We prove the classical result of Claus Gerhardt [2] and John Urbas [16], that the
inverse curvature flow

ẋ =
1
F

ν

in the Euclidean space Rn+1, starting from starshaped and F-admissable1 initial data
converges to a round sphere after rescaling. Here is the result in detail.

Theorem 1 ([2, 16]). Let n ≥ 2 and x0 ∈C∞(Sn,Rn+1) be the embedding of a star-
shaped F-admissable hypersurface, where F ∈C∞(Γ )∩C0(Γ̄ ) is a positive, strictly
monotone, 1-homogeneous and concave curvature function on a symmetric, open
and convex cone Γ which contains (1, . . . ,1). Suppose that

F|Γ > 0, F|∂Γ = 0, F(1, . . . ,1) = n.

Then the parabolic Cauchy-problem

ẋ =
1
F

ν

x(0, ·) = x0

has a unique solution x ∈C∞([0,∞)×Sn,Rn+1). The rescaled hypersurfaces

x̃(t, ·) = e−
t
n x(t, ·)

converge smoothly to the embedding of a round sphere.

We use an approach slightly different from the original papers, namely we work
directly on the rescalings. Note that x̃ will solve

˙̃x =
1

F(e
t
n A)

ν̃ − 1
n

x̃. (1)

As the Weingarten operator scales reciprocally to the hypersurfaces,

Ã = e
t
n A

1 At every point the Weingarten operator is in the domain of definition
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is the Weingarten operator of the rescaled surfaces

M̃t = x̃(t,Sn).

For technical reasons we only want to work with normal velocities, so we introduce
a time-dependent family y(t, ·) ∈C∞(Sn,Sn) of diffeomorphisms in order to kill the
tangent part in (1). We calculate

d
dt

x̃(t,y(t, ·)) = 1
F(Ã)

ν̃ − 1
n
〈x̃, ν̃〉 ν̃ − 1

n

〈
x̃, ∇̃ j x̃

〉
∇̃ix̃g̃i j + ∇̃ix̃ẏi.

Thus, if we solve the ODE system

ẏi =
1
n

〈
x̃, ∇̃ j x̃

〉
g̃i j,

we see that z(t) = x̃(t,y(t, ·)) solves

ż =
(

1
F(Ã)

− 1
n

ũ
)

ν̃ , (2)

where

ũ = 〈z, ν̃〉

is positive due to the starshapedness of M̃t . This formal discussion justifies that we
as well may focus on the long-time existence and regularity for the flow (2). In order
to facilitate notation, we will switch back to a more convenient notation and prove
the following theorem, from which Theorem 1 then follows.

Theorem 2. Let x0 and F satisfy the assumption of Theorem 1. Then there exists a
unique solution x ∈C∞([0,∞)×Sn,Rn+1) of

ẋ =
(

1
F(A)

− u
n

)
ν

x(0, ·) = x0.

(3)

The embeddings x(t, ·) converge smoothly to the embedding of a round sphere.

Short time existence

To prove that the system (3) has a unique solution at least for a short time, we
reduce it to a scalar parabolic equation and a system of ODEs. As we assume the
initial hypersurface to be graphical over Sn, if we already had a smooth solution for
a while, the radial function would satisfy
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ρ̇ =
〈x, ẋ〉
|x| =

(
1
F
− u

n

)
u
ρ
, (4)

as can be seen by differentiation of ρ = |x|. From (4), [3, Equ. (2.4.21)] and [3,
Lemma 2.7.6] we see that ρ = ρ(t,xi) would be the solution to the fully nonlinear
equation

∂tρ = G(∇̄2ρ, ∇̄ρ,ρ, ·)
ρ(0, ·) = ρ0,

(5)

where ρ0 is the radial function of the initial surface M0 = x(0,Sn) and ∇̄ is the
Levi-Civita connection of the round metric σ on Sn. Also note that here (xi) are the
spherical coordinates of x in the polar coordinate system of the punctured Euclidean
space. The idea is to solve this Cauchy-problem, which then determines the radial
functions ρ = ρ(t,xi) of the flow hypersurfaces. Then we solve the following ODE
initial value problem on Sn:

ẋi =

(
1

F(A)
− u

n

)
ν i

xi(0) = xi
0,

where we note that the right hand side is fully determined by the function ρ and
its derivatives, which itself solely depend on (xi). Then we plug everything together
and define

x(t,ξ ) = (ρ(t,xi(t,ξ )),xi(t,ξ )),

which solves (3). In particular we note that the maximal time of existence for (3) is
entirely determined by the maximal time of existence for (5).

It would miss the aim of this course to provide the rigorous argument behind this
approach. The proof of existence for (5) uses solvability of linear parabolic equa-
tions in Hölder spaces and the implicit function theorem. In particular the maximal
time of existence is controlled from below by estimates on the initial data. See [3,
Sec. 2.5] for some more details. We have:

Theorem 3. There exists T ∗ ≤ ∞ and a unique maximal solution

x ∈C∞([0,T ∗)×Sn,Rn+1)

to (3). If T ∗ < ∞, then at T ∗ some derivative of x must blow up.
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Evolution equations

In order to prove the immortality of the maximal solution to (3), by Theorem 3 it
suffices to prove uniform estimates on all derivatives of x. As those are controlled
by derivatives of ρ , everything is reduced to prove regularity estimates for ρ .

The proof of these proceed by establishing estimates up to C2-level as well as
a lower F-bound by maximum principle, followed by regularity estimates for fully
nonlinear parabolic operators due to Krylov and Safonov, as well as a bootstrapping
argument using Schauder theory. We need further evolution equations, which are
specifically adapted to the flow (3). We define the operator

L = ∂t − 1
F2 tr(F ′(A)◦ (∇2)�)− 1

n

〈
ρ∂r,∇(·)

〉
.

Lemma 2. Along the flow (3) the radial function ρ = ρ(t,ξ ) satisfies

L ρ =
2
F

u
ρ
− ρ

n
− 1

ρF2 trF ′(A)+
1

ρF2 tr(F ′ ◦∇ρ ⊗ (∇ρ)�),

while the support function u satisfies

L u =
1

F2

(
tr(F ′(A)◦A2)− F2

n

)
u.

Proof. (i) Use (4) to deduce

tr(F ′ ◦ (∇2ρ)�) =
1
ρ

trF ′ − u
ρ

F − 1
ρ

tr(F ′ ◦∇ρ ⊗ (∇ρ)�)

and hence, also using (4),

L ρ =

(
2
F
− u

n

)
u
ρ
− ρ

n

〈
∂r,∇(·)ρ

〉
− 1

ρF2 trF ′+
1

ρF2 tr(F ′ ◦∇ρ ⊗ (∇ρ)�).

There holds

−1
n

u2

ρ
− ρ

n

〈
∂r,∇(·)ρ

〉
=−ρ

n
〈∂r,ν〉2 − ρ

n

〈
∂r,x∗∇(·)ρ

〉

=−ρ
n

(
〈∂r,ν〉2 + |∇ρ|2

)

=−ρ
n

(
〈∂r,ν〉2 +

n

∑
i=1

〈∂r,∇ix〉2

)

=−ρ
n
,

if coordinates are chosen such that (ν ,∇ix) is an orthonormal basis.
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(ii) The position field r∂r is a conformal vector field, hence for all vector fields X̄
on Rn+1 we have

DX̄ (r∂r) = X̄ .

Hence, for vector fields X on M,

u̇ = 〈ẋ,ν〉+ 〈ρ∂r,Dẋν〉= 1
F
− u

n
+

〈
ρ∂r,

∇F
F2

〉
+

〈
ρ∂r,

∇u
n

〉
,

Xu = 〈ρ∂r,A(X)〉

and

∇2u(X ,Y ) = Y (Xu)− (∇Y X)u = h(X ,Y )−h(X ,A(Y ))u+ 〈ρ∂r,∇Y A(X)〉 .

The result follows from combining these equalities, also using the Codazzi equation
to cancel the ∇F-terms and the homogeneity of F which implies

tr(F ′(A)◦A) = F.

We also need specific curvature evolution equations to estimate the principal cur-
vatures and F from below.

Lemma 3. The Weingarten operator satisfies

L A =
1

F2 (F
′ ◦A2)A− 2A2

F
+

A
n
− 2

F3 ∇F ⊗ (∇F)�+
1

F2 d2F(∇(·)A,∇(·)A),

while the curvature function F satisfies

L F =− 1
F2

(
tr(F ′(A)◦A2)− F2

n

)
F − 2

F3 (F
′ ◦∇F ⊗ (∇F)�).

Proof. (i) From (7) we calculate

Ȧ = ∇grad
(

u
n
− 1

F

)
+

(
u
n
− 1

F

)
A2

=
(∇2u)�

n
+

(∇2F)�

F2 − 2
F3 ∇F ⊗ (∇F)�+

(
u
n
− 1

F

)
A2

=
A
n
+

1
n

〈
ρ∂r,∇(·)A

〉
+

(∇2F)�

F2 − 2
F3 ∇F ⊗ (∇F)�− 1

F
A2.

(6)

We have to analyze the term ∇2F and do this is a local coordinate frame. There hold
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∇iF = dF(A)∇iA

and

∇ jiF = d2F(A)(∇iA,∇ jA)+dF(A)∇ jiA.

We have to swap indices in ∇i jA = ∇i jhk
l .

∇ jihk
l = ∇ jlhk

i

= ∇l jhk
i +R jla

kha
i −R jli

ahka

= ∇k
l hi j +R jla

kha
i −R jli

ahka

= ∇k
l hi j +(hk

jhla −h jahk
l )h

a
i − (ha

jhli −ha
l hi j)hka.

Applying dF = dF(A)= (Fl
k ) to this, while using the 1-homogeneity and that dF(A)

commutes with A, gives

Fl
k ∇ jihk

l = Fl
k ∇k

l hi j +Fl
k (h

k
jhla −h jahk

l )h
a
i −Fl

k (h
a
jhli −ha

l hi j)hka

= Fl
k ∇k

l hi j −Fl
k h jahk

l ha
i +Fl

k ha
l hi jhka

= Fl
k ∇k

l hi j −Fh jaha
i +Fl

k ha
l hkahi j.

Application of the sharp-operator gives

(∇2F)� = d2F(∇(·)A,∇(·)A)+ tr(F ′ ◦ (∇2A)�)−FA2 +(F ′ ◦A2)A.

Inserting this into (6) gives the first equation.

(ii) To get the equation for F calculate in local coordinates

Ḟ = Fl
k ḣk

l

and use

Fl
k Fi

j ∇
j
i hk

l = Fi
j ∇

j
i F −Fi

j d
2F(A)(∇iA,∇ jA).

A priori estimates

The following estimates control the flow up to C2-level for the function

ρ : [0,T ∗)×Sn → R.

761



Julian Scheuer

The following proof contains some common of tricks on how to estimate solutions
to parabolic equations. It should be interesting even outside the world of curvature
flows.

Lemma 4. There exists a constant c > 0, which only depends on the initial hyper-
surface, such that

(i)

min
Sn

ρ(0, ·)≤ ρ ≤ max
Sn

ρ(0, ·), (7)

(ii)

c−1 ≤ u ≤ c,

(iii)

c−1 ≤ F ≤ c,

(iv)

|A|2 ≤ c.

It follows that there exists a compact set K ⊂ Γ , in which the principal curvatures
range during the whole evolution.

Proof. (i) Define

ρ̃(t) = max
Sn

ρ(t, ·).

Then ρ̃ is Lipschitz and hence differentiable almost everywhere. It can be shown
that at points of differentiability there holds

d
dt

ρ̃ = ρ̇(t,ξt),

where ξt is a point where the maximum is attained. This technical argument is due
to Hamilton [8]. From (4) we get (note dρ = 0)

˙̃ρ =
1
F
− ρ̃

n
.

Now we recall that F depends on the second fundamental form which is related to
ρ via (3), which gives

A =
id
ρ
− (∇2ρ)� ≥ id

ρ

at ξt . Hence at ξt we have
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F(A)≥ n
ρ̃
,

and hence ρ̃ is non-increasing. The same argument at minimal points gives that the
minimum of ρ is non-decreasing, which concludes the argument.

(ii) In order to bound u−1, we first note that uF is bounded from above and below,
which can be seen as follows. Define

w = logu+ logF,

then w satisfies

L w =
1

u2F2 tr(F ′ ◦∇u⊗ (∇u)�)− 1
F4 tr(F ′ ◦∇F ⊗ (∇F)�).

At critical points of w there holds

∇u
u

=−∇F
F

.

Hence, as above, the functions maxw and minw are non-increasing/decreasing. We
can use the boundedness of uF to prove that u−1 is bounded as well. This and the
subsequent estimates all boil down to finding appropriate test functions.

The evolution equation of u−1 has one bad positive term, which prevents us from
estimating it directly. Namely there holds

L u−1 ≤ u−1

n
− 2

u3F2 tr(F ′ ◦∇u⊗ (∇u)�).

However, we already have one bounded quantity, ρ , and we can use it to build test
functions. Define

w = logu−1 +λρ, λ > 0.

There holds, due to Fu ≥ c > 0,

L w ≤ 1
n
+λ

c
ρ

u2 − λρ
n

< 0

at all critical points of w where w is large enough, provided λ is chosen large enough.
Hence w is bounded. In turn u−1 is bounded. The upper bound for u simply follows
from

u ≤ ρ.

(iii) Follows directly from the bounds on u and those on uF .
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(iv) We use

ġ = 2
(

1
F
− u

n

)
h

to deduce

L h = L hk
i gk j +2

(
1
F
− u

n

)
hk jhk

i

and hence

L h =
F ′ ◦A2

F2 h− 2u
n

h(A, ·)+ h
n
− 2

F3 ∇F ⊗∇F +
1

F2 d2F(∇(·)A,∇(·)A).

The only angry looking term in the evolution of h is the first one. As it also appears
in the evolution of u, we cancel it with this one. Suppose the function

z = u−1κn

attains a maximal value at a point (t0,ξ0). Let η ∈ Tξ0
Sn be an eigenvector corre-

sponding to κn and extend η locally to a vector field such that ∇η(t0,ξ0) = 0. Define

w =
h(η ,η)

g(η ,η)
u−1.

Then, locally around (t0,ξ0) there holds

w ≤ z, w(t0,ξ0) = z(t0,ξ0).

Hence w also attains a local maximum at this point and it suffices to locally estimate
w. At (t0,ξ0) there holds

L w ≤−2
n

h(A(η),η)

g(η ,η)
+

2
n

w−2
h(η ,η)2

g(η ,η)2

(
1

Fu
− 1

n

)

=
2
n

w− 2u
F

w2 − 2
n

h(A(η),η)g(η ,η)−h(η ,η)2

g(η ,η)2

=
2
n

w− 2u
F

w2 − 2
n
|A(η)|2|η |2 −g(A(η),η)2

|η |2 ,

which is negative for large w due to Bunjakowski-Cauchy-Schwarz and where we
used the concavity of F . Hence w is bounded and thus all eigenvalues of A are
bounded from above. As F is also bounded from below, we deduce from the con-
cavity of F that

0 < F ≤ H,
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[3, Lemma 2.2.20]. Hence

κ1 > (1−n)κn ≥−c

and we obtain |A|2 ≤ c. If there existed a sequence κ(tn,ξn) ∈ Γ that leaves every
compact set of Γ , any subsequential limit of this sequence would lie on ∂Γ , which
is impossible due to

F(tn,ξn)≥ c−1, F|∂Γ = 0.

As a corollary we obtain full spatial C2-estimates for the radial function ρ .

Corollary 1. There exists a constant c, which only depends on the initial hypersur-
face, such that

|ρ(t, ·)|C2(Sn) ≤ c ∀t ∈ [0,T ∗).

Proof. The C0-bound of ρ follows from (7). As we are dealing with graphs over Sn

in the product space

Rn+1\{0}= (0,∞)×Sn, 〈·, ·〉= dr2 + r2σ ,

the normal ν(ρ(t,ξ )) is given by

ν =
(1,−ρ−2σ ik∂iρ)√

1+ρ−2|dρ|2σ
and hence the support function is

u = ρ 〈∂r,ν〉= ρ√
1+ρ−2|dρ|2σ

.

As ρ and u are uniformly bounded, so is |dρ|σ , which gives the C1-estimate. C2-
estimates follow from curvature estimates and the representation of the second fun-
damental form in terms of the second derivatives of ρ , (3).

The key for higher order estimates is a regularity result due to Krylov [11]. We
state a very accessible formulation of this result as it can be found in a note by Ben
Andrews [1, Thm. 4].

Theorem 4. Let Ω ⊂ Rn be open and suppose ρ ∈C4((0,T ]×Ω) satisfies

∂tρ = G(D2ρ,Dρ,ρ, ·),

where G is concave in the first variable. Then for any τ > 0 and Ω ′ � Ω there holds
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sup
s,t∈[τ,T ],p,q∈Ω ′

(
|D2ρ(p, t)−D2ρ(q, t)|
|p−q|α + |s− t| α

2
+

|∂tρ(p, t)−∂tρ(q, t)|
|p−q|α + |s− t| α

2

)

+ sup
s,t∈[τ,T ],p∈Ω ′

|Dρ(p, t)−Dρ(p,s)|
|s− t| (1+α)

2

≤C,

where α depends on n and the ellipticity constants λ ,Λ of F ′, and C depends on n,
λ ,Λ , bounds for |D2ρ| and |∂tρ|, d(Ω ′,∂Ω), τ and the bounds on the other first
and second derivatives of G.

As ρ satisfies the fully nonlinear equation

∂tρ = G(∇̄2ρ, ∇̄ρ,ρ, ·) =
(

1
F(A)

− u
n

)
ρ
u
,

cf. [3, Equ. (2.4.21)], let us quickly check the assumptions of this theorem are satis-
fied. We use (4), [3, Lemma 2.7.6] and Lemma 4 to obtain the uniform ellipticity of

∂G
∂ρi j

=− 1
F2 dF

∂A
∂ρi j

and the convexity of G in the first variable,

∂ 2G
∂ρi j∂ρkl

=
2

F3 dF
∂A

∂ρi j
dF

∂A
∂ρkl

− 1
F2 d2F

(
∂A

∂ρi j
,

∂A
∂ρkl

)

where we used that A depends on ∇̄2ρ linearly. Hence theorem 4 does not ap-
ply directly, but we see that −ρ satisfies an equation with a concave operator,
to which we can apply the theorem. Hence ρ lies in the parabolic Hölder space

H2+α,
2+α

2 ([0,T ]×Sn) for every T < T ∗ with estimates independent of T . A stan-
dard bootstrapping argument using parabolic Schauder estimates implies uniform
Ck-estimates of ρ for every k. It follows:

Corollary 2. There exists a constant c, depending only on initial data and k, such
that

|x(t, ·)|Ck(Sn) ≤ c ∀0 ≤ t < T ∗.

The solution to (3) is immortal.

Proof. We have already seen the argument for the uniform estimates. The argument
for immortality of the solution goes as follows. Suppose T ∗ < ∞. From Theorem 3
we know that the maximal time of existence can be estimated from below in terms
of estimates for the initial data. As we have uniform estimates up to T ∗, we may
move as close to T ∗ as required to exceed T ∗ once we start with
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M̃0 = Mt , T ∗ − ε < t < T ∗,

where ε is chosen such that the flow with initial data M̃0 exists longer than ε . Due
to uniqueness we can extend our original flow and thus have shown that T ∗ = ∞.

Convergence to a round sphere

To conclude the proof of theorem 2, we have to show convergence of the embed-
dings x(t, ·) to the embedding of a round sphere. We use the strong maximum prin-
ciple.

Theorem 5. The solution x to (3) limits to the embedding of a round sphere as t →
∞.

Proof. We have shown that the radial function ρ satisfies a uniformly parabolic
equation. Hence its oscillation

oscρ(t) = max
Sn

ρ(t,x(t, ·))−min
Sn

ρ(t,x(t, ·)) = max
Sn

x0(t, ·)−min
Sn

x0(t, ·)

is strictly decreasing, unless it is zero. Suppose it would not converge to zero as
t → ∞. Then it converges to some other value

oscρ(t)→ c0 > 0, t → ∞.

Due to our uniform estimates, a diagonal argument and Arzela-Ascoli, the sequence
of flows

xk(t,ξ ) := x(t + k,ξ )

subsequentially converges to a limit flow x∞ with corresponding radial function ρ∞.
There holds

oscρ∞(t) = lim
k→∞

oscρk(t) = c0.

Hence the strong maximum principle holding for ρ∞ is violated if c0 > 0. Thus
oscρ(t) → 0 as t → 0 and hence the flow converges to a sphere centered at the
origin.

5 Alexandrov-Fenchel inequalities

We use Theorem 2 to prove the classical Alexandrov-Fenchel inequalities for star-
shaped hypersurfaces with σk > 0, cf. [5]. These are inequalities between so-called
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higher order volumes. To motivate the terminology, let us consider a convex body,
i.e. a compact convex K set with non-empty interior and its ε-parallel body

Kε = {x ∈ Rn+1 : dist(K,x)≤ ε}.

A classical result is Steiner’s formula, which provides a Taylor expansion of the
volume of Kε :

vol(Kε) =
n

∑
k=0

(
n+1

k

)
Wk(K)εk ∀ε ≥ 0,

where the Wk(K) are called the quermassintegrals of K, cf. [15]. Locally, such an
expansion even holds for non-convex domains. In the following we prove this and a
useful representation formula. First we need a general variational formula, where Sk
is the operator function associated to the elementary symmetric polynomial sk, see
(1). We also define

s0 := 1, s−1 := u.

We will use the following facts about the Sk without proof:

dSkA = kSk ∀0 ≤ k ≤ n,

tr(dSk+1) = (n− k)Sk ∀0 ≤ k ≤ n−1,

dSkA2 = S1Sk − (k+1)Sk+1 ∀0 ≤ k ≤ n−1.

Furthermore dSk is divergence free. Hence we can deduce:

Lemma 5. Let x and F as in Lemma 1 with M compact. For every 1 ≤ k ≤ n there
holds

∂t

ˆ
Mt

Sk−1 =−k
ˆ

Mt

FSk.

For k = 0 there holds

∂t

ˆ
Mt

〈x,ν〉=−(n+1)
ˆ

Mt

F .

Proof. For k = 0 we have
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∂t

ˆ
Mt

〈x,ν〉=−
ˆ

Mt

F +

ˆ
Mt

(〈x,gradF 〉−FH 〈x,ν〉)

=−
ˆ

Mt

F +

ˆ
Mt

divMt (F x�)−n
ˆ

Mt

F .

For k = 1 we have

∂t Area(Mt) =−
ˆ

Mt

FH =−
ˆ

Mt

FS1,

while for 2 ≤ k ≤ n we calculate using (7):

∂t

ˆ
Mt

Sk−1 =−
ˆ

Mt

Sk−1FS1 +

ˆ
Mt

tr(dSk−1 ◦∇gradF )+

ˆ
Mt

F tr(dSk−1 ◦A2)

=

ˆ
Mt

F (dSk−1A2 −S1Sk−1)

=−k
ˆ

Mt

FSk.

Now we can prove a local Steiner’s formula for C2-domains.

Lemma 6. Let Ω ⊂ Rn+1 be a bounded domain with C2-boundary and let Ω̄ε be
the ε-parallel body. Then there exists some ε0 > 0 such that for all 0 ≤ ε < ε0 we
have the expansion

vol(Ω̄ε) =
n

∑
k=0

(
n+1

k

)
Wk(Ω)εk, (1)

where W0(Ω) = vol(Ω) and

Wk(Ω) =
1

(n+1)
( n

k−1

)
ˆ

∂Ω
sk−1(κi), 1 ≤ k ≤ n+1.

Proof. There holds

vol(Ω̄ε) =
1

n+1

ˆ
Ωε

divx =
1

n+1

ˆ
∂Ω̄ε

〈x,νε〉

and hence

W0(Ω) = vol(Ω) =
1

n+1

ˆ
∂Ω

s−1.
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The parallel hypersurfaces ∂Ω̄ε , which are C2-hypersurfaces for small ε , can be
seen as the flow hypersurfaces of the flow

∂ε x = νε .

According to Lemma 5 we obtain

∂ε vol(Ωε) = Area(∂Ωε)

and

∂ k
ε vol(Ωε) = ∂ k−1

ε

ˆ
∂Ωε

1 = (k−1)!
ˆ

∂Ωε

Sk−1 ∀1 ≤ k ≤ n+1.

For k > n+1 there holds

∂ k
ε vol(Ωε) = 0

due to Gauss-Bonnet. Defining the Wk according to the Taylor expansion in (1) we
see that they must have the form

Wk(Ω) =
1

k!
(n+1

k

)∂ k
ε vol(Ω̄ε)|ε=0 =

1
k
(n+1

k

)
ˆ

∂Ω
Sk−1,

which is the claimed formula.

Hence the Wk(Ω) are nothing but coefficients of higher order in the Taylor expan-
sion of volume with respect to fattening of the boundary. The isoperimetric inequal-
ity provides an estimate between W0 and W1 and hence it is natural to ask whether
such an estimate also holds between the other higher order volumes. While for con-
vex bodies such estimates have long been known, see for example [15] for a broad
overview, here we want to use Theorem 2 to prove them for starshaped hypersur-
face with a certain curvature condition. This approach is due to Pengfei Guan and
Junfang Li [5].

Definition 3. A domain Ω ⊂ Rn+1 is called k-convex, if throughout ∂Ω the princi-
pal curvatures lie in the closure of the cone

Γk = {κ ∈ Rn : sm(κ)> 0 ∀m ≤ k}.

Ω is called strictly k-convex, if the principal curvatures lie in Γk.

Theorem 6. Let Ω ⊂Rn+1 be a starshaped and k-convex domain, then there holds

Wk+1(Ω)

Wk+1(B)
≥
(

Wk(Ω)

Wk(B)

) n−k
n+1−k

,

where B is the unit ball in Rn+1. Equality holds precisely if Ω is a ball.
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Proof. We use Theorem 2 with

F = n

( n
k−1

)
(n

k

) sk

sk−1
=

nk
n− k+1

sk

sk−1

and start the flow with M0 = ∂Ω . Due to the k-convexity of Ω the assumptions of
this theorem are satisfied. We calculate that along the flow

ẋ =
(

1
F
− u

n

)
ν

there holds

∂tWk(Ωt) =
k

(n+1)
( n

k−1

)
ˆ

Mt

(
n− k+1

nk
sk−1

sk
− u

n

)
sk.

As the dSk are divergence free, we obtain after tracing (3) with respect to dSk and
integration:

(n− k+1)
ˆ

Mt

sk−1 = k
ˆ

Mt

usk

and thus

∂tWk(Ωt) = 0.

On the other hand we obtain

n(n+1)
(n

k

)

k+1
∂tWk+1(Ωt) =

ˆ
Mt

(
n− k+1

k
sk−1sk+1

sk
−usk+1

)

=

ˆ
Mt

(
n− k+1

k
sk−1sk+1

sk
− n− k

k+1
sk

)

≤ 0,

by the Newton-Maclaurin inequalities. Hence Wk+1 is decreasing along the flow.
We know the flow converges to a sphere, on which the desired inequality holds
with equality. Hence on Ω the inequality is valid. The equality case follows, since
the Newton-Maclaurin inequalities hold with equality precisely in umbilical points.
This concludes the proof.
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Short time existence for higher order curvature
flows with and without boundary conditions

Yuhan Wu

Abstract We prove short time existence for higher order curvature flows of plane
curves with and without generalised Neumann boundary condition.

1 Introduction

We first introduce the ideal curve flow of plane curves with Neumann boundary
condition. This ideal curve flow is a sixth order curvature flow which is the steepest
descent gradient flow of the energy functional in L2. The Neumann boundary con-
dition here is that there are two parallel lines which has a distance between them,
the two end points of the curve we study are on these two lines respectively and the
ideal curves are orthogonal to the boundaries. We then give the definition of gen-
eralized (2m+4)th-order curvature flows of plane curves with Neumann boundary
condition. Secondly, we introduce the closed curve diffusion flow of plane curves
with constrained length.

1.1 The curvature flows of open curves with Neumann boundary
condition

Let η1,η2 denote two parallel vertical lines in R2, with distance between them. The
immersed curves γ : [−1,1]× [0,T )→R2 satisfying Neumann boundary condition.

γ(−1) ∈ η1(R),γ(1) ∈ η2(R).

Yuhan Wu
University of Wollongong, Australia, e-mail: yw120@uowmail.edu.au
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Yuhan Wu

Denote τ = γs is the unit tangent vector field and ν the unit normal vector along
γ . The Neumann condition is equivalent to 〈ν(±1, t),νη1,2〉 = 0, here νη1,2 is the
unit normal vector field to η1,2. See Figure 1.1.

η1 η2

γ

νη1,2
ντν

Figure 1.1

1.1.1 A sixth order flow of plane curves with Neumann boundary condition

We consider the energy functional

E(γ) =
1
2

∫

γ
k2s ds,

where k is the scalar curvature, ds the arclength element and ks is the derivative of
curvature with respect to arclength s. The corresponding gradient flow has normal
speed given by F , that is

∂tγ = Fν .

Under the evolution of the functional E(γ) a straightforward calculation yields

d
dt

1
2

∫

γ
k2s ds =−

∫

γ
F ·

(
ks4 + k2kss − 1

2
kk2s

)
ds,

where ks4 = kssss. For the flow to be the steepest descent gradient flow of E(γ) in L2,
we require

F = ks4 + k2kss − 1
2

kk2s . (1)
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Short time existence for higher order curvature flows

Let γ be a smooth curve satisfying F = 0, that is a stationary solution to the
L2-gradient flow of E. We call such curves ideal.

We define sixth order curvature flow with Neumann boundary condition as fol-
lows, see more details in [3].

Definition 1. [3] Let γ : [−1,1]× [0,T ) → R2 be a family of smooth immersed
curves. γ is said to move under sixth order curvature flow (1) with homogeneous
Neumann boundary condition, if

⎧
⎨
⎩

∂
∂ t γ(s, t) = Fν , ∀(s, t) ∈ [−1,1]× [0,T )
γ(·,0) = γ0,
〈ν ,νη1,2〉= ks = ks3 = 0, ∀(s, t) ∈ η1,2(R)× [0,T )

(2)

where F = ks4 + kssk2− 1
2k2s k denotes the normal speed of the curves, ν and νη1,2

are the unit normal fields to γ and η1,2 respectively.

Here we give the long-time existence result as:

Theorem 1. [3] Let γ0 be a smooth embedded regular curve. Let γ : [−1,1]×
[0,T )→ Rn be a solution to (2). If the initial curve γ0 satisfies ω = 0 and

‖κs‖22 ≤
π3

7L3
0
,

here L0 is the length of γ0 and κ = k(·,0) is the curvature, then the flow exists for
all time T = ∞ and γ(·, t) converges exponentially to a horizontal line segment γ∞
in the C∞ topology.

We use w to denote the winding number, defined here as

w :=
1
2π

∫

γ
kds.

For closed curves, w ∈ Z, in our setting, the winding number must be a multiple
of 1

2 . For example in Figure 1.1.1,
γ1 has w[γ1] = 1

2π
∫

γ1 kds = 1;
γ2 has w[γ2] = 1

2π
∫

γ2 kds = 1
2 .

Lemma 1. The hypothesis of theorem 1 implies that ω[γ] = ω[γ0] = 0.

1.1.2 Higher order flows of plane curves with Neumann boundary condition

We generalise the sixth order case where we considered the L2-gradient flow for the
energy

1
2

∫

γ
k2s ds.
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η1 η2

γ1

γ2

Figure 1.1.1

Our work is also the arbitrary even order generalisation of [11], where the fourth or-
der curve diffusion and elastic flow of curves between parallel lines are investigated.

We consider the L2-gradient flow for the energy

E(γ) =
1
2

∫

γ
k2smds

with suitable associated generalised Neumann boundary conditions, here m ∈ N∪
{0}.

Under a normal variation of the energy, straightforward calculations yield the
normal flow speed

F = (−1)m+1 ks2m+2 −
m

∑
j=1

(−1) j k ksm+ j ksm− j − 1
2

k k2sm . (3)

And we set the Neumann boundary condition as:

< ν ,νη1,2 > (±1, t) = ks(±1, t) = ...= ks2m−1(±1, t) = ks2m+1(±1, t) = 0.

We define (2m+4)th order curvature flow with Neumann boundary condition in
Definition 2, see more details in [5].

Definition 2. [5] Let γ : [−1,1]× [0,T ] → R2 be a family of smooth immersed
curves. γ is said to move under (2m+4)th-order curvature flow (3) with homoge-
neous Neumann boundary condition, if

⎧
⎨
⎩

∂
∂ t γ(s, t) =−Fν , ∀(s, t) ∈ [−1,1]× [0,T )
γ(·,0) = γ0,
< ν ,νη1,2 >= ks = ...= ks2m−1 = ks2m+1 = 0, ∀(s, t) ∈ η1,2(R)× [0,T )

(4)
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Short time existence for higher order curvature flows

where F =(−1)m+1ks2m+2+∑m
j=1(−1) j+1kksm+ j ksm− j − 1

2kk2sm denotes normal speed
of the curves, m ∈ N∪{0}, ν and νη1,2 are the unit normal fields to γ(±1) and η1,2
respectively.

We are also interested in one-parameter families of curves γ (·, t) satisfying the
polyharmonic curvature flow

∂
∂ t

γ(s, t) = (−1)m+1 ks2m+2ν , (5)

here general m ∈ N∪{0}. Above ν is the smooth choice of unit normal such that
the above flow is parabolic in the generalised sense.

Lemma 2. While a solution to the flow (5) with generalised Neumann boundary
conditions exists, we have

d
dt

L(t) =−
∫

γ
k2sm+1ds,

where L(t) denotes the length of the curve.

In view of this lemma and the separation of the supporting parallel lines η1,2, the
length L(t) of the evolving curve γ (·, t) remains bounded above and below under
the flow (5).

1.2 The length-constrained curve diffusion flow of closed curves

We consider one-parameter families of immersed closed curves γ : S1× [0,T )→R2.
The energy functional

L(γ) =
∫

γ
|γu|du.

The curve diffusion flow is the steepest descent gradient flow for length in H−1.
We define the constrained curve diffusion flow here, see more details about this flow
in [4].

Definition 3. [4] Let γ : S1 × [0,T ) → R2 be a C4,α -regular immersed curve. The
length constrained curve diffusion flow

{
∂tγ =−(kss −h(t))ν , ∀(s, t) ∈ S1× [0,T )

γ|t=0 = γ0,
(6)

where ν denotes a unit normal vector field on γ .

To preserve length of the evolving curve γ(·, t), we take
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h(t) =−
∫

k2s ds
2πw

.

Length-constrained curve diffusion flow fixes length and increases area. Regu-
lar curve diffusion flow fixes area and reduces length. We can say that the length-
constrained curve diffusion flow is ”dual” to curve diffusion flow.

The following theorem is the long time existence result for the length-constrained
curve diffusion flow.

Theorem 2. [4] Suppose γ0: S1 → R2 is a regular smooth immersed closed curve
with A[γ0]> 0 and w[γ0] = 1. Then there exists a constant K∗ > 0 such that if

Kosc[γ0]< K∗, I[γ0]<
4π2

4π2−K∗ ,

then the length-constrained curve diffusion flow γ with initial data γ0 exists for all
time and converges exponentially to a round circle with radius L0

2π .

In Theorem 2, A[γ] denotes the area, Kosc[γ] is the oscillation and I[γ] is the
isoperimetric of the flow. From our calculation, we know that K∗ � 1

9 .
In the setting for this flow, the winding number must be an integer and is always

1 under the assumption in Theorem 2. For example in Figure 1.2,
γ1 has w[γ1] = 1

2π
∫

γ1 kds = 0;
γ2 has w[γ2] = 1

2π
∫

γ2 kds = 1;
γ3 has w[γ3] = 1

2π
∫

γ3 kds = 2.

Lemma 3. The hypothesis of theorem 2 implies that ω[γ] = ω[γ0] = 1.

γ1 γ2

γ3

Figure 1.2
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2 Short time existence for higher order curvature flows with
Neumann boundary condition

Here we state the way to prove the short time existence for higher order curvature
flows of plane curves with generalised Neumann boundary condition. The first step
is to convert the weakly parabolic system (2) together with boundary conditions to a
corresponding nonlinear scalar parabolic equation. This involves fixing a graphical
parametrisation over a reference curve. The reference curve here is a straight line
segment. The conversion process using generalised Gaussian coordinates in the case
with boundary conditions is described for example in Section 2 of [7] (The case of
higher codimension is covered in [9]). The second step is for the scalar parabolic
equation with boundary conditions, we consider the corresponding linearized equa-
tion, for which existence of a unique (smooth) solution is well-known. By using the
solution existence of the linearized problem together with the general result on the
nonlinear evolutionary boundary value problems (for example, Theorem 4.4 in [6])
to see that the scalar graph equation has a unique solution at least for a short time.
We then prove scalar graph equation is equivalent to the flow system (2), thus a so-
lution to (2) exists for a short time. The solution to (2) is necessarily not unique due
to the possibility of choosing different parametrisations, however the image curve is
unique. This method also works for the generalised case (4).

2.1 A sixth order flow of plane curves with boundary condition

Let l([−1,1]) be a straight line segment which is perpendicular to boundaries
η1,η2. Define the flux lines Φ = Φ(u, ·) to l([−1,1]) are perpendicular to l([−1,1])
and tangential to η1,η2. Define a neighbourhood U ⊂ R2 of l([−1,1]), Uε :=
{Φ(u,x) : u ∈ [−1,1], |x| < ε}. In U , let ρ(p0) denote tangential coordinate of
p0 on l([−1,1]), we can define a smooth normal vector field ξ with the following
properties:

〈ξ ,ρ〉|l([−1,1]) = 0, ξ |η1,2
⋂

Uε ∈ T η1,2, ‖ξ‖= 1,

where η1,2∩Uε = {p ∈ R2 : p = Φ(u,x),u ∈ η1,2,x ∈ (−ε,ε)}.
Hence for any given point p = Φ(u,x), we can define x(p) is the length of the

flux line through p between p and intersection point p0 = Φ(u,0) on l([−1,1]). We
define M = {p∈R2 : p=Φ (u,w(u, t)) ,u∈ [−1,1]}, here w(u, t) : [−1,1]× [0,σ ]→
R and σ ∈ [0,T ).

We transform the problem (2) to a scalar initial-boundary-value graph problem
as follows,

⎧
⎨
⎩

∂w
∂ t (u, t) = f (u, t), ∀(u, t) ∈ [−1,1]× [0,σ ]
w(·,0) = w0,
wu = wu3 = wu5 = 0, ∀(u, t) ∈ η1,2× [0,σ ]

(7)
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where f (u, t) = v−6wu6 +g(wu,wuu,wu3 ,wu4 ,wu5), v(u, t) = |γu| and g is a function
depending only on wu,wuu,wu3 ,wu4 ,wu5 .

Next let γ̄(φ(u, t), t) = (φ(u, t),w(φ(u, t), t)) and define φ : [−1,1]× [0,σ ] →
[−1,1] by the following system of ordinary differential equation:

{
d
dt φ(u, t) =−(γ̄u)

−1 ·
(

∂
∂ t γ̄

)T
(φ(u, t), t)

φ(u,0) = u,

where αT :=α−〈α, ν̄〉· ν̄ denotes the tangential component of a vector α , ν̄(φ(u, t), t)=
v−1 · (−wφ ,1

)
denotes normal vector field, wφ (φ(u, t), t) = ∂w

∂φ (φ(u, t), t).
At least for a short time, φ is a diffeomorphism on [−1,1], it’s equivalent to that

φ is tangential to the boundaries η1,2, i.e. u ∈ η1,2 =⇒ φ(u, t) ∈ η1,2,∀t ∈ [0,σ ].
We prove the original problem (2) and the scalar graph problem (7) are equivalent

under tangential diffeomorphism. See [8] for the proof.

Lemma 4. The boundary conditions in (7) satisfy the compatibility condition, ∀(u, t)∈
η1,2× [0,σ ], we have

∂ j
t wu

∣∣∣
t=0

= ∂ j
t wu3

∣∣∣
t=0

= ∂ j
t wu5

∣∣∣
t=0

= 0, j = 0,1,2, ...,n.

Lemma 5. The boundary conditions in (7) satisfy the normal boundary conditions.

For the definition of the normal boundary condition, see [6].
Now we do the linearization at any a ∈ {w : [−1,1]× [0,σ ]→ R} for nonlinear

problem (7). The linear problem of (7) can be written as:

⎧
⎨
⎩

∂w
∂ t (u, t) = fa(a)w(u, t), ∀(u, t) ∈ [−1,1]× [0,σ ]
w(·,0) = w0,
wu = wu3 = wu5 = 0, ∀(u, t) ∈ η1,2× [0,σ ]

(8)

where fa(a)w(u, t) = −v−6(a) ·wu6 +gnwun , gn are depends only on a,au, ...,au7−n

and are all smooth in space and time, n = 1,2, ...,5.

Proposition 1. There is always a unique solution for the linear problem (8).

The proof for Proposition 1 refers to classical results on linear parabolic bound-
ary value problem (for example [2], Ch IV, 6.4).

Lemma 4, Lemma 5 and Proposition 1 allow us to use the result in [6], then our
graph boundary value problem (7) has a unique solution. As (7) is equivalent to (2)
under tangential diffeomorphism, thus we get the short time existence for (2):

Theorem 3. There exists a smooth solution γ : [−1,1]× [0,T )→R2 of the flow sys-
tem (2), unique up to parametrisation. This solution is in the class C6,1,α ([−1,1]× [0,T ))
(with arbitrary 0< α < 1).
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2.2 Higher order flows of plane curves with boundary conditions

The way to proof the short time existence for the (2m+4)th-order curvature flows
of plane curves with generalised Neumann boundary condition (4) is similar to the
method used for the sixth order curvature flow problem (2).

Firstly, we transform the given problem into an equivalent initial-boundary-value
problem for a scalar function and using standard results of the parabolic theory. The
scalar initial-boundary-value problem:

⎧
⎨
⎩

∂w
∂ t (u, t) = f (u, t), ∀(u, t) ∈ [−1,1]× [0,σ ]
w(·,0) = w0,
wu = wu3 = wu5 = ...= wu2m+3 = 0, ∀(u, t) ∈ η1,2× [0,σ ]

(9)

here w : [−1,1]× [0,σ ]→ R.
Secondly, we prove that scalar nonlinear initial-boundary-value problem (9) has

a unique solution for a short time. Next we show that equations (9) and (4) are
equivalent, see the sixth order case for the proof. Thus, flow problem (4) has a
unique solution for finite time up to reparameterization.

Theorem 4. There exists a smooth solution γ : [−1,1]× [0,T ) → R2of the system
(4), unique up to parametrisation. This solution is in the class C2m+4,1,α ([−1,1]× [0,T ))
(with arbitrary 0< α < 1).

Directly, we can get the short time existence for flow (5) satisfying Neumann
boundary condition and ks = ... = ks2m−1 = ks2m+1 = 0 at the boundary and with
smooth initial curve γ (·,0) = γ0 compatible with the boundary conditions, the solu-
tion is also unique up to parametrisation.

3 Short time existence for flow of closed planar curves without
boundary

The framework of short time existence for flow of closed planar curves without
boundary is that we first write the length-constrained curve diffusion flow as a
graph over the initial curve for unknown function of time, we have the scalar nonlin-
ear parabolic problem. Secondly, we prove there is a unique solution for the graph
problem and the length-constrained curve diffusion flow is invariant under tangen-
tial diffeomorphisms. Then these is a unique solution for length-constrained flow
with the unknown time function. Thirdly, we use the Schauder fixed point theorem
to prove the unique solution exists for our original problem with specific h(t).

The constrained curve diffusion flow (6) is introduced in Definition 3. Firstly
we write γ : S1 × [0,T ) → R2 as a graph for unknown function of time h̄(t) over
the initial curve γ0, using ν(u, t), τ(u, t) to denote the tangential and normal vector
fields of the curve γ(u, t) respectively, then 〈ν ,τ〉(u, t) = 0, ν(u, t) = rotπ/2τ(u, t).
Let f : R× [0,T )→ R, ν0(u) = ν(u,0) write
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γ(u, t) = γ0(u)+ f (u, t)ν0(u).

We write the scalar nonlinear parabolic problem as:
{
(∂t f )(u, t) = Q( f ), ∀(u, t) ∈ S1× [0,T )
f (·,0) = 0, (10)

where

Q( f ) = −V 2
0 (1− k0 f )2

V 6 · fu4 +b
(
h̄, f , fu, fuu, fu3

)
,

hereV = |γu(u, t)|,V0= |γu(u,0)| and b is a function depending only on h̄(t), f , fu, fuu, fu3 .
As f ∈ C4,1,α (

S1× [0,T )
)
which means that f is C4,α in space and C1,α in time,

then b( f , fu, fuu, fu3) is bounded and continuous in sapce and time.
Secondly, we linearize Q( f ) at f0 = f (·,0) = 0, then our linearized scalar graph

problem at f0 = 0 is
{
(∂t f )(u, t) =−V−4

0 · fu4 +gl · ful , ∀(u, t) ∈ S1× [0,T )
f (·,0) = 0.

As f ∈C4,1,α (
S1× [0,T )

)
, thus the leading coefficient−V−4

0 and gl , l = 0,1,2,3
are continuous at u, t and uniformly bounded. We also can see that the leading coef-
ficient satisfies Legendre-Hadamard condition (See [1], there exists a positive con-
stant λ ∈ R such that the leading coefficient satisfies | −V−4

0 | ≥ λ ). Thus we can
refer to Main Theorem 5 in [1] and proof that there is a unique solution for the
nonlinear scalar graph problem (10) when h̄(t) is an unknown function of time.

Proposition 2. There exists a positive time T > 0 such that the problem (10) has a
unique solution f ∈C4,1,α(S1× [0,T )).

Lemma 6. Length-constrained curve diffusion flow is invariant under tangential
diffeomorphisms.

For the proof of Lemma 6, we refer to Lemma 2.11 in [10].
Before giving the fixed point argument, we calculate d2

dt2 h(0)≤ c(γ0) first, we do

the second derivative of h(t) =−
∫

γ k2s ds
2πw with respect to time, the highest order term

is
∫

γ k2s5ds. So d2
dt2 h(0) is bounded if γ0 ∈C7,α(S1).

Theorem 5. (Schauder fixed point theorem) Let I be a compact, convex subset of a
Banach space B and let J be a continuous map of I into itself. Then J has a fixed
point.

We get the short time existence for the flow problem (6) by applying Theorem 5
together with d2

dt2 h(0) is bounded. (For the proof see [10].)

Theorem 6. Let γ0 : S1 → R2 be a C7,α -regular immersed curve. Then there exists
a maximal T ∈ (0,∞] such that the constrained curve diffusion flow system (6) is
uniquely solvable with γ of degree C4,1,α (

S1× [0,T )
)
.
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Hankel transforms and weak dispersion

Federico Cacciafesta and Luca Fanelli

Abstract This survey is concerned with a general strategy, based on Hankel trans-
forms and special functions decompositions, to prove weak dispersive estimates for
a class of PDE’s. Inspired by [2], we show how to adapt the method to some scal-
ing critical dispersive models, as the Dirac-Coulomb equation and the fractional
Schrödinger and Dirac equation in Aharonov-Bohm field.

1 Introduction

Let a ∈ R and let us consider the Hamiltonians

H0 :=−Δ , Ha :=−Δ +
a
|x|2 ,

on L2(Rn), with n ≥ 2. It is well known that, under the condition

a ≥− (n−2)2

4
, (1)

the Hamiltonian Ha can be realized as the Friedrichs’ extension of the symmetric
semi-bounded operator −Δ + a/|x|2, acting on the natural domain induced by the
quadratic form

q[u] :=
∫

Rn
|∇u(x)|2 dx+a

∫

Rn

|u(x)|2
|x|2 dx.
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In particular, by the Spectral Theorem we can define the Schrödinger flow eitHa on
the domain of Ha, for any a satisfying (1). For a �= 0, in dimension n ≥ 3, we can
consider Ha as a critical linear perturbation of H0, due to the Hardy’s inequality

∫

Rn

|u(x)|2
|x|2 dx ≤ 4

(n−2)2

∫

Rn
|∇u(x)|2 dx (n ≥ 3).

In addition, the Schrödinger equation

∂tu(t, ·) =−iHau(t, ·) (2)

is invariant under the scaling

uλ (t,x) := u
( t

λ 2 ,
x
λ

)
.

In the recent years, a new interest has been devoted to the study of the dispersive
properties of flows as eitHa , once it was realized that the somehow vintage business
of special functions and Hankel transforms could play a role in the analysis of crit-
ical and scaling invariant models (see e.g. [2, 3, 6, 7, 10, 11, 12, 14, 17, 20]). In
this topic, we will point our attention on dispersive models which usually arise in
Quantum Mechanics and always enjoy the above mentioned property of criticality.
The inspiration, and main motivation of the project, comes form the papers [2, 3],
of which we now briefly review the main results. Let us first recall the spherical
harmonics decomposition of L2(R2), which is a peculiar feature of the 2D-space.
Given the complete orthonormal set {φm}m∈Z on L2(S1) , with φm = φm(θ) = eimθ√

2π
,

θ ∈ [0,2π), one has the canonical isomorphism

L2(R2)∼=
⊕

m∈Z
L2(R+,rdr)⊗ [φm] (3)

where we are denoting with [φm] the one dimensional space spanned by φm and with
‖ f‖2

L2
rdr

=
∫ ∞

0 | f (r)|2rdr. We denote by L2
≥d(R2)

, the subspace of L2 consisting of all

functions that are orthogonal to all spherical harmonics of degree less than d. In [2],
the authors managed to prove the following family of estimates

‖|x|−1/2−2α(H1/4−α
a )eitHa f‖L2

t L2
x
≤C‖ f‖L2(Rn) (4)

where we are denoting with
Ha =−Δ +

a
|x|2

for n ≥ 2, α ∈ (0, 1
4 +

1
2 μd), with μd =

√
(λ (n)+d)2 +a, d ≥ 0, λ (n) = n−2

2 , and
f ∈ L2

≥d(Rn). The strategy developed in [2] can be roughly summarized in the fol-
lowing steps.

1. Use spherical harmonics decomposition to reduce the equation to a radial prob-
lem;
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2. Use Hankel transform to ”diagonalize” the reduced problem and to define frac-
tional powers of the operator −Δ + a

|x|2 ;
3. Prove the smoothing estimate on a fixed spherical space using Hankel transform

properties and the explicit integral representation of the fractional powers;
4. Sum back: use triangle inequality and L2-orthogonality of spherical harmonics

to obtain the desired estimate for the original dynamics. To conclude, it will be
crucial to show that the constant obtained in step (3) is a bounded function of the
spherical parameter.

In [2, 3], as an appliction of of (4), the authors proved that the usual Strichartz
estimates hold for the flow eitHa , when a satisfies (1). More precisely,

∥∥eitHa f
∥∥

Lp
t Lq

x
≤C‖ f‖L2 , (5)

for some C > 0 independent on f , provided (1) and

2
p
=

n
2
− n

q
, p ≥ 2, (p,q,n) �= (2,+∞,2).

At that time, it was a striking result, since it was completely unclear whether
Strichartz estimates would have been true for critical perturbations of the free
Hamiltonian. Moreover, it is known that the inverse-square potential represents a
threshold, among homogeneous perturbations, for the validity of Strichartz esti-
mates (see [13, 16]). In addition, it is now known that the usual time decay estimate

sup
x∈Rn

∣∣eitHa f (x)
∣∣≤C|t|− n

2 ‖ f‖1

fails, in general, as soon as a < 0 (see [10, 11, 12]), which possibly gives strength to
the averaging property of Strichartz estimates. To complete the state of the art, for
the critical value a =−(n−2)2/4, in the recent papers [21, 25] the authors proved
the validity of Strichartz estimates for the Schrödinger and wave equations, provided
the admissible couple is not endpoint.

To prove (5) by (4) is a quite simple application of a T T � argument, mixing free
Strichartz estimates and (4) when α = 1

4 , d = 0, which is

‖|x|−1eitHa f‖L2
t L2

x
≤C‖ f‖L2(Rn). (6)

It is important to notice that α = 1
4 is in the range of estimate (4), for d = 0, thanks

to (1), which implies μd > 0 (see [2, 3] for details).
The aim of this survey is to describe under which extent we can hope to general-

ize estimates (4) to other dispersive models and which is the quantitative role played
by the number a, interpreted as the bottom of the spectrum of the angular compo-
nent of Ha. In the following, we will restrict our attention on fractional Schrödinger
equations in Aharonov-Bohm fields and Dirac equations, both in Coulomb and
Aharonov-Bohm fields.
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2 Fractional Schrödinger in Aharonov-Bohm field

An interesting 2D-example of scaling critical, first order perturbation of the Laplace
operator is given by the so called Aharonov-Bohm field: such a field is given by

AB : R2 \{(0,0)}→ R2, AB(x) =
(
− x2

|x|2 ,
x1

|x|2
)
, x = (x1,x2) (1)

so that we can define for each α ∈ R the Hamiltonian

Hα =

(
−i∇+α

(
− x2

|x|2 ,
x1

|x|2
))2

(2)

which is self-adjoint. By the Spectral Theorem we can thus define fractional powers
of the hamiltonian Hα , and thus we can in particular consider for a> 0 the following
Cauchy problems {

∂tu = iHa/2
α u

u(0, ·) = f (·) ∈ L2(R2)
(3)

which we will refer to as fractional Schrödinger equation with Aharonov-Bohm
field. We note that the cases a = 1 and a = 2 correspond, respectively, to the
Schrödinger and wave flows.

The main result in this case is given by the following Theorem, that is proved in
[6].

Theorem 1 ([6]). Let a > 0, α ∈ R and

0 < ε <
1
4
+

1
2

dist(α,Z).

Then for every f ∈ L2 the following estimate holds

‖|x|− 1
2−2ε H

a−1
4 −ε eitHa/2

f‖L2
t L2

x
≤C‖ f‖L2 (4)

with a constant C depending on α and ε .
In addition, in the endpoint case ε = 0 the following local estimate holds

sup
R>0

R−1/2‖eitHa/2
f‖L2

t L2
|x|<R

≤C‖H
1−a

4 f‖L2
x
. (5)

Remark 1. It is worth noticing that (4) fails for α ∈ Z and ε = 1
4 . Indeed, the di-

mension d = 2 is critical with respect to estimate (4), with ε = 1
4 , due to the fact

that the weight |x|−1 is too singular at the origin. Nevertheless, the presence of the
field AB, as it is well known, improves the angular ellipticity of H, if α /∈ Z, and
this usually permits to obtain better estimates than in the free case, as (4) shows.
Roughly speaking, the higher the spherical frequency is, the better is the dispersive
phenomenon we are measuring. The improvement arises since the introduction of
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the external potential is cutting the 0-frequency from the spectrum of the spherical
operator.

Remark 2. Notice that estimates above can be extended, by following the argument
in [8], to deal with the Klein-Gordon flow eit

√
Ha+1. Also, as an immediate corol-

lary of the result above, it is possible to prove weighted Strichartz estimates for the
dynamics (3) (simply by interpolating estimate (4) with the 2D Sobolev inequality)

2.1 The massless Dirac-Coulomb equation

The Cauchy problem for the 3D massless Dirac equation with a Coulomb potential
reads as ⎧

⎨
⎩

i∂tu+Du+
ν
|x|u = 0, u(t,x) : Rt ×R3

x → C4

u(0,x) = f (x)
(6)

where we recall that the massless Dirac operator D is defined in terms of the Pauli
matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(7)

as

D =−i
3

∑
k=1

αk∂k =−i(α ·∇)

where the 4×4 Dirac matrices are given by

αk =

(
0 σk
σk 0

)
, k = 1,2,3. (8)

The charge ν is assumed to be in the interval (−1,1), as the operator Dν = D + ν
|x|

needs to be self-adjoint (see [9]).
The adaptation of the machinery to this setting is a bit more tricky, and requires

to deal with some additional technical difficulties, which are mainly due to the rich
algebraic structure of the Dirac operator, that are essentially the following:

• The Dirac operator does not preserve radiality, meaning that the standard spher-
ical harmonics decomposition does not represent a ”good” setting, which is in-
stead given by the so called partial wave decomposition, that we now briefly
introduce. First of all, we use spherical coordinates to write

L2(R3,C4)∼= L2((0,∞),r2dr)⊗L2(S2,C4)

with S2 being the unit sphere. Then, we have the orthogonal decomposition on
S2:
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L2(S2,C4)∼=
⊕

k∈Z\{0}

|k|⊕

m=−|k|+1

hm,k

where the spaces hm,k := CΦ+
m,k +CΦ−

m,k with

Φ+
m,k =

(
φ+

m,k
0

)
, Φ+

m,k =

(
0

φ−
m,k

)

and the functions φ±
m,k can be explicitly written in terms of standard spherical

harmonics as

φ±
m,k =

1√|2k±1|

( √|k∓ (m−1)|Y m−1
|k|−H(∓k)

∓sgn(k)
√|k±m)|Y m

|k|−H(∓k)

)

and H is the Heaviside function. The action of the Dirac-Coulomb operator
leaves invariant these subspaces and this decomposition it is represented by the
radial matrix

Dν ,k =

( ν
r − d

dr +
1+k

r
d
dr − 1−k

r
ν
r

)
. (9)

We mention the fact that a similar decomposition holds in any dimension n ≥ 2.
The standard reference for this and related problem is the book [24]

Remark 3. We have to stress the fact that the decomposition introduced in [24]
(see in particular Subsection 4.6.5) is slightly different, as it also relies on the
isomorphism u → rũ. This has the effect of rather ”simplifying” the expression
of the action of the radial Dirac operator given in (9) and, of course, affects the
presence of a weight in the radial scalar product. This same approach is used also
e.g. in [4]. Also, we stress the fact that our index m is shifted by 1/2 with respect
to the one in [24], in order to avoid half integers.

• The construction of the analogous of the Hankel transform is a more delicate
problem: roughly speaking, we will need to define a two-dimensional operator
which projects onto the positive and negative part of the continuous spectrum of
the Dirac Coulomb operator (we recall that these generalized eigenfunctions are
explicit and well known, see e.g. [19]). If we thus define, for a fixed admissible
couple m,k, the ”relativistic Hankel transform” to be

H ±
m,kΦ(r) = 〈Ψ±E

m,k (r),Φ(r)〉L2(r2dr)

we obtain the properties we need, simply relying on the self-adjointess of the
operator Dν ,k with respect to the L2(r2dr) scalar product

H ±
m,kDν ,k =±EH ±

m,k. (10)

With this, we mean that the transform H ±
m,k ”diagonalizes” the equation.
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• By relying on property (10) we can define fractional powers of the restricted
Dirac-Coulomb operator. As a last (and technical) step then we will have to show
that these fractional powers admit an integral kernel which can be explicitly writ-
ten by solving suitably weighted interaction integrals of generalized eigenstates;
this will allow to prove the estimate on a fixed partial wave subspace with a suit-
able constant depending on the spherical parameters which, again, will need to
be bounded in order to allow the application of triangle inequality to sum back
in the partial wave decomposition.

The following result is proved in [7] (we mention the fact that a similar result
holds in 2D as well).

Theorem 2 ([7]). Let K be a positive integer, and set

h≥K =
⊕

|k|≥K

|k|⊕

m=−|k|+1

hm,k.

Then for any
1/2 < ε <

√
K2 −ν2 +1/2

and any f ∈ L2((0,∞),r2dr)⊗h≥K there exists a constant C =C(ν ,ε,K) such that
the following estimate holds

‖|x|−ε |Dν |1/2−ε eit(D+ ν
|x| ) f‖L2

t L2
x
≤C‖ f‖L2

x
. (11)

Remark 4. We need to point out a typo in formula (2.7) in [7]: in the definition of the
space H 3

≥k3
the sum in j is in the range j ≥ |k3|−1/2. Also, we stress the fact that

we are here providing a rather different (and somehow simplified) representation of
the partial wave subspaces, and therefore of the spaces h≥K , with respect to [7]: in
particular, we are here neglecting the sum in j ∈ 1

2N, that is ”englobed” in the one
in k (which is an integer) and, as mentioned, we have ”shifted” the index m by 1/2.

Remark 5. The analogous of estimate (5) seems to be more complicated to be proved
in this contest. This is ultimately due to the much more complicated structure of the
Hankel transform, which involves confluent hypergeometric functions: indeed, the
key step is represented by the proof of a bound, uniform in R and l, of the form

1
R

∫ R

0
χl(r)2rn−1dr <C

for the radial components of the generalized eigenstates. This is well known in the
case of Bessel functions (see [23]) but seems to be more complicated to be obtained
in the Dirac-Coulomb case.

Remark 6. The restriction to the massless case is crucial in our result, as our strategy
deeply relies on the scaling invariant structure of the equation, therefore leaving
open the question whether the same result (or at least similar) holds in presence
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of a mass. The application of the strategy presented in [8] to pass from the wave
to the Klein-Gordon equation is not indeed completely straightforward, as here we
are not simply ”shifting” but we are ”opening a gap” as, we recall, the spectrum
of the free Dirac operator is unbounded both from above and below. Still, it seems
to be possible to make things work in this contest, and this will be the object of
future investigations. In any case, it is well known (see e.g. [19]) that the massive
Dirac-Coulomb operator has eigevalues in the gap: therefore, in order to be able to
obtain any kind of dispersive estimates, it will be necessary to project out of the
point spectrum.

2.2 The massless Dirac equation in Aharonov-Bohm field

The two results above can be somehow merged to deal with the massless Dirac
equation in Aharonov-Bohm field; in this case, the Hamiltonian reads as DA =
i
(
σ1(∂x +A1)+σ2(∂y +A2)

)
, where the σ matrices are defined as in (7) and the

magnetic field A(x) is given by (1). In this case we claim that the following result
holds (for simplicity we restrict to the case α ∈ (0,1) without losing in generality).

Theorem 3. [5] Let α ∈ (0,1) and A(x) given by (1). Then for any

1/2 < ε < 1+ |l +α|. (12)

and any f ∈ L2((0,∞),rdr)⊗H≥l there exists a constant C = c(α,ε, l) such that
the following estimate holds

∥∥∥Ω−εD
1/2−ε
A eitDA f

∥∥∥
L2

t L2
x
≤ c‖ f‖L2

x
. (13)

In addition, in the endpoint case γ = 1/2 the following estimate holds

sup
R>0

R−1/2‖eitDA f‖L2
t L2

|x|≤R
� ‖ f‖L2

x
, (14)

Remark 7. Notice that the range (12) is better than the one in the free case, as soon
as α /∈ Z. This fact can be interpreted as a diamagnetic behavior of this model,
which is quite surprising for Dirac-type equations. Indeed, an original conjecture
about universal paramagnetism in [18] was later disproved in [1]. The above model
seems to go in the same direction of the example in [1], with the difference that it is
critically singular at the origin.

Remark 8. It is important to notice that the local smoothing estimates obtained for
the three models above do not allow to recover, following the perturbation argu-
ments in [2, 3], the full set of Strichartz estimates for the corresponding flows. To
make the argument work we would indeed need, for al the three models, an estimate
of the form

‖|x|−1/2u‖L2
t L2

x
≤C‖ f‖L2

x
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with u being a solution of any of the models above with initial condition f . But this,
as it is seen, is exactly at the endpoint (and just outside) of our admissible ranges;
in fact, we seem to have no hope to prove such an estimate even imposing further
restrictions (say, radial initial data) as it does fail even for the free wave equation
(see e.g. [22]). The loss of (fractional) derivatives in our local smoothing seems
on the other hand to suggest that some ”weak” (namely, with loss of derivatives)
Strichartz estimates should hold in this setting.
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A priori bounds for the kinetic DNLS

Nobu Kishimoto and Yoshio Tsutsumi

Abstract In this note, we consider the kinetic derivative nonlinear Schrödinger
equation (KDNLS), which arises as a model of propagation of a plasma taking the
effect of the resonant interaction between the wave modulation and the ions into
account. In contrast to the standard derivative NLS equation, KDNLS does not con-
serve the mass and the energy. Nevertheless, the dissipative structure of KDNLS
enables us to show an a priori bound in the energy space and a lower bound of
the L2 norm for its solution, as we see in this note. Combined with the local well-
posedness result, which we plan to show in a forthcoming paper, these bounds will
give a global existence result in the energy space for small initial data.

1 Introduction

We consider the kinetic derivative NLS equation (KDNLS):

∂tu = ∂x

[
iux +α|u|2u+βH (|u|2)u

]
, α,β ∈ R, β < 0, (1)

where the spatial domain is either R or T = R/2πZ. We write F to denote the
Fourier transform and use the notation: ux := ∂xu, H := F−1

[− isgn(ξ )
]
F ,

D := (−∂ 2
x )

1/2 = F−1|ξ |F = ∂xH . The negative constant β represents the ra-
tio of plasma pressure to magnetic pressure, which can be positive, negative or zero
according to each physical situation. Equation (1) takes the resonant interaction be-
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tween the wave modulation and the ions into account, while it is ignored in the
derivative NLS, i.e., in the case of β = 0. The word “kinetic” implies that the col-
lective motion of ions in a plasma is modeled by the Vlasov equation and not by the
fluid equation. If Maxwell’s equations and the Euler equations are taken as a model
system, then we have DNLS, i.e., (1) with β = 0. If Maxwell’s equations and the
Vlasov equation are taken as a model system, then we have KDNLS (1) (see Dysthe
and Pécseli [1] and Mjølhus and Wyller [3, 4].

Due to the presence of the Hilbert transform, the mass and the energy corre-
sponding to the standard DNLS (β = 0 in (1)) are not conserved under the flow
when β < 0. However, the nonlinear term β∂x(H (|u|2)u) has dissipative structure
when β < 0. The aim of this note is to derive an a priori bound in the energy space
H1 by using this structure. The main result reads as follows:

Theorem 1. Let u be a smooth solution to (1) on [0,T ]×Z, where Z is either R or
T. Then, it holds that

‖u(t)‖2
L2 + |β |

∫ t

0
‖D1/2(|u(τ)|2)‖2

L2 dτ = ‖u(0)‖2
L2 , t ∈ [0,T ].

Moreover, there exist C∗,C > 0 depending only on α,β (and bounded when β → 0)
such that if ‖u(0)‖L2 ≤C−1∗ , then

‖u(t)‖2
H1 +

|β |
4

∫ t

0
‖D1/2∂x(|u(τ)|2)‖2

L2 dτ ≤ 4‖u(0)‖2
H1 eC‖u(0)‖2

L2 ,

‖u(t)‖2
L2 ≥ ‖u(0)‖2

L2 exp
[
−C‖u(0)‖H1 eC‖u(0)‖2

L2 |β |1/2t1/2
]
, t ∈ [0,T ].

The proof of the theorem is based on the differential equalities (see Corollary 2)
for the mass ‖u(t)‖2

L2 and the energy functional

E[u] :=
∫ {

|ux|2 − 3
2

(
α|u|2 +βH (|u|2)

)
Im(uux)+

1
2

α2|u|6
}

dx.

In a forthcoming paper [2], we will consider the case Z = T and construct local-
in-time solutions to the associated Cauchy problem for small initial data in Sobolev
space Hs(T) with s > 1/2. More precisely, we will prove the following result:

Theorem 2. We assume α = 0 and β < 0. Let s ≥ s0 > 1/2, then there exist η =
η(s0,s) > 0 and T > 0 such that for any u0 ∈ Hs(T) with ‖u0‖Hs0 ≤ |β |1/2η , the
Cauchy problem of (1) with u|t=0 = u0 has a unique solution u∈C([0,T ];Hs(T)) on
(0,T )×T, which belongs to certain auxiliary spaces. Furthermore, the map u0 �→ u
is continuous.

The H1 a priori bound in Theorem 1 and a standard approximation argument then
show:

Corollary 1. Let α = 0 and β < 0. There exists η > 0 such that if u0 ∈ H1(T)
satisfies ‖u0‖H1 ≤ |β |1/2η , then the solution u ∈C([0,T ];H1(T)) of (1) on (0,T )×
T with u|t=0 = u0 constructed in Theorem 2 can be extended to a global-in-time H1

solution which is bounded and continuous in t.
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2 Energy conservation

In this section, we give a proof of Theorem 1. The next two lemmas follow from a
direct calculation, so we omit their proofs.

Lemma 1. Let u be a smooth solution to (1). Then, it holds that

∂t(|u|2) = ∂x

[
−2Im(uux)+

3
2

α|u|4 +β |u|2H (|u|2)
]
+β |u|2D(|u|2),

∂t Im(uux) = ∂x

[1
2

∂ 2
x (|u|2)−2|ux|2 +

(
α|u|2 +βH (|u|2)

)
Im(uux)

]

+2Im(uux)∂x

(
α|u|2 +βH (|u|2)

)
.

Lemma 2. Let u be a smooth solution to (1). Then, it holds that

∂t

∫
|ux|2 dx = −3

∫ (
α|u|2 +βH (|u|2))∂x(|ux|2)dx+β

∥∥D1/2∂x(|u|2)
∥∥2

L2 ,

∂t

∫
|u|2 Im(uux)dx

=−2
∫

|u|2∂x(|ux|2)dx+
∫ [

2α∂x(|u|4)+4β |u|2D[|u|2]
]

Im(uux)dx,

∂t

∫
H (|u|2) Im(uux)dx

=−2
∫

H (|u|2)∂x(|ux|2)dx−2
∥∥D1/2 Im(uux)

∥∥2
L2 +

1
2

∥∥D1/2∂x(|u|2)
∥∥2

L2

+α
∫ {3

2
D(|u|4)−|u|2D(|u|2)+2H (|u|2)∂x(|u|2)

}
Im(uux)dx

+β
∫ {

D[|u|2H (|u|2)]+H
(|u|2D(|u|2))+H (|u|2)D(|u|2)

}
Im(uux)dx,

and that

∂t

∫
|u|6 dx = 6

∫
∂x(|u|4) Im(uux)dx+2β

∫
|u|6D(|u|2)dx.

From these lemmas, we immediately obtain the following:

Corollary 2. Let u be a smooth solution to (1). Then, we have

∂t

∫
|u|2 dt = β

∥∥D1/2(|u|2)‖2
L2

and
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∂tE[u] =
1
4

β
∥∥D1/2∂x(|u|2)

∥∥2
L2 +3β

∥∥D1/2 Im(uux)
∥∥2

L2 +α2β
∫

|u|6D(|u|2)dx

− 3
2

αβ
∫ {3

2
D(|u|4)+2∂x

[|u|2H (|u|2)]+ |u|2D(|u|2)
}

Im(uux)dx

− 3
2

β 2
∫ {

D[|u|2H (|u|2)]+ 1
2

∂x
[(

H (|u|2))2]
+H

[|u|2D(|u|2)]
}

× Im(uux)dx.

We prepare some more lemmas:

Lemma 3. There exists C0 > 0 depending only on α,β (and bounded as β → 0)
such that

‖u‖L2 ≤C−1
0 =⇒ 2−1‖u‖2

H1 ≤ E[u]+‖u‖2
L2 ≤ 2‖u‖2

H1 .

Proof. This follows from the Gagliardo-Nirenberg inequality:

‖u‖6
L6(Z) �

⎧
⎨
⎩
‖u‖4

L2‖ux‖2
L2 (Z = R),

‖u‖6
L2 +‖u‖4

L2‖ux‖2
L2 (Z = T). 
�

Lemma 4. The following estimates hold:

‖D1/2(|u|2)‖2
L2 � ‖u‖2

L2‖D1/2∂ (|u|2)‖L2 , (2)

‖F−1[|F (|u|2)|]‖L∞‖D1/2(|u|2)‖L2 � ‖u‖2
L2‖D1/2∂ (|u|2)‖L2 , (3)

‖u‖L∞‖F−1[|FD1/2(|u|2)|]‖L∞ � ‖u‖L2‖D1/2∂ (|u|2)‖L2 . (4)

Proof. We first derive (2). In the non-periodic case, by interpolation we have

‖|u|2‖L2 � ‖|u|2‖1/2
L∞ ‖|u|2‖1/2

L1 � ‖∂ (|u|2)‖1/4
L2 ‖|u|2‖1/4

L2 ‖u‖L2

� ‖D1/2∂ (|u|2)‖1/6
L2 ‖|u|2‖1/3

L2 ‖u‖L2 ,

which implies
‖|u|2‖L2 � ‖D1/2∂ (|u|2)‖1/4

L2 ‖u‖3/2
L2 .

Using this, we have

‖D1/2(|u|2)‖2
L2 � ‖D1/2∂ (|u|2)‖2/3

L2 ‖|u|2‖4/3
L2 � ‖D1/2∂ (|u|2)‖L2‖u‖2

L2 .

The above argument also works in the periodic case if |u|2 is replaced with |u|2 −
1

2π
∫ 2π

0 |u|2 dx. Since we estimate D1/2(|u|2), the same result (2) holds in the periodic
case.

In what follows, χ = 0 if Z =R and χ = 1 if Z =T. By interpolation inequalities,
we have

800



A priori bounds for the kinetic DNLS

‖u‖2
L∞ = ‖|u|2‖L∞ � χ‖|u|2‖L2 +‖∂ (|u|2)‖1/2

L2 ‖|u|2‖1/2
L2

� χ‖u‖L∞‖u‖L2 +‖D1/2∂ (|u|2)‖1/3
L2 ‖|u|2‖2/3

L2

� χ‖u‖L∞‖u‖L2 +‖u‖2/3
L∞ ‖D1/2∂ (|u|2)‖1/3

L2 ‖u‖2/3
L2 ,

which implies that

‖u‖2
L∞ � χ‖u‖2

L2 +‖D1/2∂ (|u|2)‖1/2
L2 ‖u‖L2 . (5)

The above argument also shows that

‖F−1[|F (|u|2)|]‖L∞ � χ‖u‖2
L2 +‖D1/2∂ (|u|2)‖1/2

L2 ‖u‖L2 . (6)

If Z = R, (3) is obtained from (2) and (6). If Z = T, it suffices to combine (2), (6)
with the trivial estimate ‖D1/2(|u|2)‖L2 ≤ ‖D1/2∂ (|u|2)‖L2 .

The same argument for (3) but using (5) instead of (6) shows

‖u‖2
L∞‖D1/2(|u|2)‖L2 � ‖u‖2

L2‖D1/2∂ (|u|2)‖L2 .

Using this and interpolation, we see

‖u‖L∞‖F−1[|FD1/2(|u|2)|]‖L∞ � ‖u‖L∞‖D1/2(|u|2)‖1/2
L2 ‖D1/2∂ (|u|2)‖1/2

L2

� ‖u‖L2‖D1/2∂ (|u|2)‖L2 ,

which shows (4). 
�
Proof (Proof of Theorem 1). The L2 equality follows from the first equality in Corol-
lary 2, so we focus on the H1 a priori estimate and the exponential L2 lower bound.

From (3), the integrals
∫

D(|u|4) Im(uux)dx,
∫

∂x
[|u|2H (|u|2)] Im(uux)dx,

∫
D[|u|2H (|u|2)] Im(uux)dx,

∫
∂x
[(

H (|u|2))2] Im(uux)dx

are bounded by

‖F−1[|F (|u|2)|]‖L∞‖D1/2(|u|2)‖L2‖D1/2 Im(uux)‖L2

� ‖u‖2
L2‖D1/2∂ (|u|2)‖L2‖D1/2 Im(uux)‖L2

� ‖u‖2
L2‖D1/2∂ (|u|2)‖2

L2 +‖u‖2
L2‖D1/2 Im(uux)‖2

L2 .

To estimate the integrals
∫

|u|2D(|u|2) Im(uux)dx,
∫

H
[|u|2D(|u|2)] Im(uux)dx,
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we denote the frequency variables for |u|2, D(|u|2), and Im(uux) by k1,k2, and k3,
respectively. Note that k1 +k2 +k3 = 0. If |k3|� |k2|, we can move half a derivative
onto Im(uux) and argue as before. If |k1| ∼ |k2|  |k3|, we apply (4) to estimate
these integrals as

‖F−1[|FD1/2(|u|2)|]‖L∞‖D1/2(|u|2)‖L2‖u‖L∞‖ux‖L2

� ‖u‖L2‖D1/2∂ (|u|2)‖L2‖D1/2(|u|2)‖L2‖ux‖L2

� ‖u‖2
L2‖D1/2∂ (|u|2)‖2

L2 +‖D1/2(|u|2)‖2
L2‖ux‖2

L2 .

Finally, using (3) we have
∣∣∣
∫

|u|6D(|u|2)dx
∣∣∣� ‖F−1[|F (|u|2)|]‖2

L∞‖D1/2(|u|2)‖2
L2

� ‖u‖4
L2‖D1/2∂ (|u|2)‖2

L2 .

Combining these estimates and Corollary 2, we verify that

∂tE[u(t)]≤−|β |
4

∥∥D1/2∂x(|u|2)
∥∥2

L2 −3|β |∥∥D1/2 Im(uux)
∥∥2

L2

+C(|α|+ |β |)|β |‖D1/2(|u|2)‖2
L2‖ux‖2

L2

+C(α2 + |α|+ |β |)(‖u‖2
L2 +‖u‖4

L2

)

×|β |
(∥∥D1/2∂x(|u|2)

∥∥2
L2 +

∥∥D1/2 Im(uux)
∥∥2

L2

)
.

Hence, there exist C1,C2 > 0 depending only on α,β (bounded as β → 0) such that
if ‖u‖L2 ≤C−1

1 , then

∂tE[u] ≤ − |β |
8

∥∥D1/2∂x(|u|2)
∥∥2

L2 +C2|β |‖D1/2(|u|2)‖2
L2‖ux‖2

L2

This inequality and Lemma 3, together with the L2 equality, imply that if ‖u(0)‖L2 ≤
min{C−1

0 ,C−1
1 },

∂t

(
E[u(t)]+‖u(t)‖2

L2

)
≤−|β |

8

∥∥D1/2∂x(|u(t)|2)
∥∥2

L2

+2C2|β |‖D1/2(|u(t)|2)‖2
L2

(
E[u(t)]+‖u(t)‖2

L2

)

By the Gronwall inequality, we obtain the desired H1 a priori bound:
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‖u(t)‖2
H1 +

|β |
4

∫ t

0

∥∥D1/2∂x(|u(τ)|2)
∥∥2

L2 dτ

≤ 2
(

E[u(t)]+‖u(t)‖2
L2 +

|β |
8

∫ t

0

∥∥D1/2∂x(|u(τ)|2)
∥∥2

L2 dτ
)

≤ 2
(

E[u(0)]+‖u(0)‖2
L2

)
exp

[
2C2|β |

∫ t

0
‖D1/2(|u(τ)|2)‖2

L2 dτ
]

≤ 4‖u(0)‖2
H1 exp

[
2C2‖u(0)‖2

L2

]
.

For the lower bound of ‖u(t)‖2
L2 , we first note that u(0) = 0 implies u(t)≡ 0 by

the L2 equality. We thus assume u(0) �= 0, and consider the differential inequality
for ‖u(t)‖−2

L2 . By Corollary 2 and the estimate (2), we see

∂t‖u(t)‖−2
L2 = |β |‖u(t)‖−4

L2

∥∥D1/2(|u(t)|2)∥∥2
L2

≤C|β |‖u(t)‖−2
L2

∥∥D1/2∂x(|u(t)|2)
∥∥

L2 ,

as long as ‖u(t)‖L2 > 0. Applying the H1 a priori estimate shown above, we have

‖u(t)‖−2
L2 ≤ ‖u(0)‖−2

L2 exp
[
C|β |

∫ t

0

∥∥D1/2∂x(|u(τ)|2)
∥∥

L2 dτ
]

≤ ‖u(0)‖−2
L2 exp

[
C|β |1/2t1/2

(
|β |

∫ t

0

∥∥D1/2∂x(|u(τ)|2)
∥∥2

L2 dτ
)1/2]

≤ ‖u(0)‖−2
L2 exp

[
4C‖u(0)‖H1 eC2‖u(0)‖2

L2 |β |1/2t1/2
]
.

This completes the proof of Theorem 1. 
�
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