
Learning Materials in Biosciences

Melanie Kappelmann-Fenzl   Editor

Next Generation 
Sequencing and 
Data Analysis



Learning Materials in Biosciences



Learning Materials in Biosciences textbooks compactly and concisely discuss a specific
biological, biomedical, biochemical, bioengineering or cell biologic topic. The textbooks in
this series are based on lectures for upper-level undergraduates, master’s and graduate
students, presented and written by authoritative figures in the field at leading universities
around the globe.

The titles are organized to guide the reader to a deeper understanding of the concepts
covered.

Each textbook provides readers with fundamental insights into the subject and prepares
them to independently pursue further thinking and research on the topic. Colored figures,
step-by-step protocols and take-home messages offer an accessible approach to learning
and understanding.

In addition to being designed to benefit students, Learning Materials textbooks represent
a valuable tool for lecturers and teachers, helping them to prepare their own respective
coursework.

More information about this series at http://www.springer.com/series/15430

http://www.springer.com/series/15430


Melanie Kappelmann-Fenzl
Editor

Next Generation Sequencing
and Data Analysis



Editor
Melanie Kappelmann-Fenzl
Faculty of Applied Informatics
Deggendorf Institute of Technology
Deggendorf, Germany

ISSN 2509-6125 ISSN 2509-6133 (electronic)
Learning Materials in Biosciences
ISBN 978-3-030-62489-7 ISBN 978-3-030-62490-3 (eBook)
https://doi.org/10.1007/978-3-030-62490-3

# Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter
developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a
warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that
may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-62490-3


Preface

The intention to write this textbook came from the fact that when I started to deal with NGS
data analysis, I felt like I was abandoned in a jungle. A jungle of databases, scripts in
different programming languages, packages, software tools, repositories, etc. What you
need from all these components for what purpose of NGS analysis, I had to painstakingly
learn from numerous tutorials, publications (and there are plenty of them), books and by
attending courses. I also had to find a lot of information on specific problem solutions in
bioinformatics forums such as Biostars (https://www.biostars.org/). A basic initial structure
regarding the “right” approach to get solid results from the NGS data on a defined problem
would have been more than desirable. This textbook is intended to facilitate these
circumstances and introduce NGS technology, its application and the analysis of the data
obtained. However, it should be kept in mind that this textbook does not cover all
possibilities of NGS data analysis, but rather provides a theoretical understanding, based
on a few practical examples, to give a basic orientation in dealing with biological sequences
and their computer-based analysis.

Computational biology has developed rapidly over the last decades and continues to do
so. Bioinformatics not only deals with NGS data, but also with molecular structures,
enzymatic activity, medical and pharmacological statistics, to name just a few topics.
Nevertheless, the analysis of biological sequences has become a very important part in
bioinformatics, both in the natural sciences and in medicine. In order to enable you to
handle NGS data professionally and to be able to answer specific research questions about
your sequencing data without having to give your data into other hands and to invest a lot
of money for it, this textbook is meant to be a practical guide. In addition, the experimental
procedure (library preparation) required prior to the actual sequencing as well as the most
common sequencing technologies currently available on the market is also illustrated.

Protocols should be viewed as guidelines, not as rules that guarantee success. It is still
necessary to think by yourself—NGS data analysts need to recognize the complexity of
living organisms, respond dynamically to variations, and understand when methods and
protocols are not suited to a data set. Therefore, a detailed documentation of all analysis
steps carried out with a note of the reason why the respective step was taken is absolutely

v

https://www.biostars.org/


essential. Moreover, you should really be familiar with the theoretical background of the
performed working steps, the programs will not tell you that your settings will lead to
incorrect results. Thus, being a data analyst is much more than just appending commands in
a terminal.

Deggendorf, Germany Melanie Kappelmann-Fenzl
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Legend: How to Read this Textbook

How to Read this Book
Additive and supporting scripts regarding NGS data analysis can be viewed at https://github.
com/mkappelmann or https://github.com/grimmlab/BookChapter-RNA-Seq-Analyses. As
the field of bioinformatic data analysis is rapidly evolving, you will also find the latest
changes to the scripts described in the text book.

https://github.com/mkappelmann
https://github.com/mkappelmann
https://github.com/grimmlab/BookChapter-RNA-Seq-Analyses
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What You Will Learn in This Chapter
The content of the following chapter briefly describes the basics of biological genetic
information and their function in living organisms. You will gain principle knowl-
edge on DNA and RNA and understand the differences of analyzing these by
sequencing templates. Next generation sequencing technologies can be used to
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sequence DNA or RNA, respectively, answering the research or clinical question you
have. Different sequencing approaches thus lead to different readouts.

1.1 Introduction

Why do some people become seriously ill, others remain healthy throughout their lives?
Why does a disease progress so differently in different people? Why does a drug work
optimally in one patient and not in others? The answer to these questions lies in the
complex individuality of each person and a medicine that does justice to it—personalized
medicine. To examine the healthy as well as the sick person in the finest detail and to
calculate the results with a lot of computer capacity to a meaningful image helps to
understand and to treat more precisely also particularly complex illnesses, such as psychi-
atric disorders, cardiovascular diseases, inflammatory diseases, or also cancer. Our genetic
pattern, but also differences in our diet, environment, or lifestyle have an effect on our state
of health. How do the individual factors contribute to a disease and how can they be
influenced? It is obvious that in the case of complex diseases one cannot just consider
individual factors. Only investigations of the exact interplay and the chronological
sequence enable a deeper understanding of the health and illness of the human body.
Today, the power of computers with enormous computing capacity is used to determine
complex relationships of different influences from detailed measurements on humans, to
create mechanistic models being then tested in the laboratory for their accuracy. In this
process, different levels of data are examined, ranging from single clinical observations to
complicated molecular data sets. The approach known as “systems medicine” uses the
quantities of data by relating them intelligently, designing predictive models and thus
helping to develop innovative therapeutic and preventive procedures [1–5].

1.2 Biological Sequences

In general, you can say that living organisms consist of cells, which share common features
but also differ in function and morphology. Anyway, almost every eukaryotic cell type
carries a nucleus harboring our genetic make-up—the DNA. The DNA stores all the
information, which is essential for producing, e.g., a human being, similar to an instruction
manual. To make the information written in the DNA usable, parts of the DNA are
transcribed into another kind of biological information—the RNA. The parts of the
DNA, which are transcribed into RNA, are called coding regions or genes. Thus, the
RNA transports the information of the DNA out of the nucleus (this RNA is, therefore,
called “messenger RNA” (mRNA)). A significant portion of the RNA is then used as
information being translated into another biological molecule—a protein. Proteins are
composed of amino acids and fulfill almost all structural, regulatory, and signal transducing
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functions in the body. RNAs and thus proteins are, therefore, essential mediators of what is
written in our instruction manual DNA. Which parts of the DNA are transcribed into RNA
and finally translated into proteins vary between the different cell types, depending on the
cell’s differentiation status. Thus, for example, a brain cell (neuron) shows a different gene
expression pattern than a liver cell (hepatocyte) (the gene expression pattern is thereby also
the reason to be a neuron and hepatocyte, respectively). Which genes are expressed in cells
is highly regulated by multiple complex molecular mechanisms affecting either the DNA,
RNA, or protein level [6, 7]. The different possible sequencing structures, their origin, and
NGS applications are depicted in Fig. 1.4.

1.2.1 DNA

DNA stands for Deoxyribonucleic acid and is a macromolecule (composed of smaller
molecules). The backbone of the DNA consists of alternating molecules: deoxyribose and
phosphate, complemented by the important nucleobases A (Adenine), C (Cytosine), G
(Guanine), and T (Thymine) bound to the deoxyribose. Thus, the genetic code is written by
those four letters. The DNA molecule is double-stranded, orientated antiparallel, and
3-dimensionally organized as a helix.

The nucleotides are held together by intermolecular hydrogen bonds between the two
strands, whereby A only pairs with T and G only pairs with C (complementary base
pairing). Consequently, if you know the sequence of one strand, you automatically know
the sequence of the other one (Fig. 1.1). The directionality of the DNA is determined by the
polarity of the molecules and is given in 5’ to 3’ direction (Fig. 1.1). Thus, a DNA sequence
TGCCA may need to be considered:

• in reverse, ACCGT
• as a complement, ACGGT
• as a reverse complement, TGGCA

The two strands are labeled arbitrary:

• positive/negative; +/�
• positive/negative

5´ A C T G A C C G A A 3´

| | | | | | | | | |

3´ T G A C T G G C T T 5´

Fig. 1.1 Schematic illustration of DNA

1 Next Generation Sequencing (NGS): What Can Be Sequenced? 3



• forward/reverse
• top/bottom
• Watson/Crick
• leading/lagging, etc.

It should be noted that the different possible labels of the DNA strands should not be
confused with the directionality sense and antisense. The antisense strand is transcribed
into RNA not the sense strand, resulting in an RNA having the sequence of the sense strand
and being the reverse complement of the antisense strand (Fig. 1.2). However, the sequence
may come from the forward or reverse strand.

The main purpose of the DNA or genome is to make the functioning of a living
organism possible. Therefore, the DNA carries genes (coding regions) containing the
instruction for making proteins or other molecules like non-coding, but functional or
regulatory, RNAs. But protein production is a little more complex: the coding regions on
the DNA are composed of a so-called intron–exon structure, whereby only the exons are
essential for the coding transcript and for possible protein production. Hence, the introns
have to be removed (splicing) in the transcribed RNA. This fact enables to produce a
variety of proteins out of one gene by a mechanism called alternative splicing (Fig. 1.2).
The “official” definition of a gene is [8]:

A region (or regions) that includes all of the sequence elements necessary to encode a
functional transcript. A gene may include regulatory regions, transcribed regions and other
functional sequence regions.

Thus, talking about genes means, in most cases, talking about genomics. The human
genome consists of three billion base pairs (3Gb), in comparison the genome of a fruit fly

Fig. 1.2 Simplified representation of gene transcription resulting in three different mRNA transcripts
via alternative splicing, which are then translated into three different proteins
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consists of 120 million base pairs (120 Mb). Due to the huge amount of data, it is common
to refer to genome sizes in terms of kilo-bases (thousands), mega-bases (millions), and
giga-bases (billions). But there is absolutely no relation between genome size and com-
plexity or intelligence of an organism.

1.2.1.1 RNA
As already mentioned above, the DNA is written in a four-letter code (T/A/C/G) partially
containing genes. In eukaryotic cell systems, the DNA never leaves the nucleus, thus a
structure called RNA is created, a transcript of the DNA, carrying the genetic information
out of the nucleus, e.g., to guarantee translation into functional proteins. The RNA code is
similar to the genetic one; however, RNA is single stranded, the nucleotide T is replaced by
a U (Uracil) and after transcription from DNA to RNA, we do not longer talk about
genomics, but transcriptomics. Several different kinds of RNA exist (Table 1.1). One
RNA, the kind of RNA molecule harboring the coding information of the DNA (genes)
to produce proteins (mRNA), is processed in eukaryotes: After leaving the nucleus the
intronic structures are removed and the molecules are ready for translation. Due to the fact
that these RNA molecules carry genetic information out of the nucleus they are called
messenger RNAs (Fig. 1.2). Splicing events (removal of introns) can be attributed to the
splice signals GT and AG (Fig. 1.3), but the presence of these dinucleotides does not mean
that splicing is mandatory (alternative splicing; see Fig. 1.2).

Table 1.1 Types of RNA molecules

Abbreviation Name Function

mRNA Messenger
RNA

coding for protein; ~5% of total RNA

rRNA Ribosomal
RNA

Central structure of ribosomes; catalyzes the formation of
peptide bonds during protein synthesis; ~80% of total RNA

tRNA Transfer RNA Adapters between mRNA code and amino acids during proteins
synthesis inside of ribosomes; ~15% of total RNA

snRNA Small nuclear
RNA

Essential for RNA splicing

snoRNA Small
nucleolar
RNA

Guides for RNA modification and processing

miRNA Micro RNA Blocking the translation of distinct mRNAs

siRNA Small
interfering
RNA

Mediates degradation of distinct mRNAs and closing of gene
loci leading to decreased gene expression

1 Next Generation Sequencing (NGS): What Can Be Sequenced? 5



1.2.2 Protein

Once the genetic code is transcribed into an RNA molecule and the intronic regions are
removed, the mRNA can be translated into a functional protein. The molecular process
from a mRNA to a protein is called translation. Proteins consist of amino acids and are, as
well as DNA and some RNAs, formed 3-dimensionally. There are generally 20 different
amino acids, which can be used to build proteins. An amino acid (AA) chain with less than
40 AAs is called a polypeptide. There are 64 possible permutations of three-letter
sequences that can be made from the four nucleotides. Sixty-one codons represent amino
acids, and three are stop signals. Although each codon is specific for only one amino acid
(or one stop signal), a single amino acid may be coded for by more than one codon. This
characteristic of the genetic code is described as degenerate or redundant. The genetic
codons are illustrated in Table 1.2, representing all nucleotide triplets and their associated
amino acid(s), START or STOP signals, respectively. Just like DNA and RNA, a protein
can also be described by its sequence, however, the 3-dimensional structure based on the
biochemical properties of the amino acids and the milieu, in which proteins are folding, are
much more essential for those building blocks of life.

To keep complex things simple, the way our genes (DNA) are converted to a
transportable messenger system (mRNA) to a functional protein is illustrated in
Fig. 1.4 [9].

The above-mentioned molecular structures can be analyzed in detail by the Next
Generation Sequencing (NGS) technology, enabling a genome wide insight into the
organization and functionality of the genome and all other molecules resulting therefrom
[10]. These will be explained in the following chapters.

1.2.3 Other Important Features of the Genome

Before we can go into detail in terms of sequencing technologies and application, we have
to mention some other important features of the genome and its associated molecules. As
you already know, the human genome consists of ~3 billion base pairs and is harbored in
almost every single cell within the human organism (~1014 cells). Actually, that is quite a
lot. However, only roughly 1.5% of the whole genome is coding for proteins. What about
the rest? Ninety-eight percent of the human genome useless? Obviously not. The ENCODE
(Encyclopedia of DNA Elements) project has found that 78% of non-coding DNA serve a
defined purpose [11]. Well, think about all the different tasks of all the different cell types
making up a human being. Not every single cell has to be able to do everything—they are

Fig. 1.3 Splice signals usually occur as the first and last dinucleotides of an intron
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specialized. Thus, different cell types need different genes in the whole genome to fulfill
their job within the body or to build certain structures. Consequently, the human genome
has a kind of switch on/off mechanism. Genes, which are needed are transcribed and those,
which are not needed are not. To regulate this, on the one hand, regulatory sequences can
be found in the genome, like silencer, enhancer, promoter regions. On the other hand,
epigenetic mechanism can influence gene expression and thus protein production.

Fig. 1.4 From DNA to RNA to Proteins. Cellular structures for sequencing applications. (source:
# Melanie Kappelmann-Fenzl)
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In fact, there are various regulatory mechanisms, which precisely control gene expres-
sion. In the following we just want to mention the most common once:

• Promoter: Is a genomic region, where the transcription machinery can bind to transcribe
the following gene into an RNA molecule. Often, promoter regions can be associated
with a high CG content.

• Terminator: Is a genomic region, where the transcription process, and thus the gene
transcript, ends.

• Silencer: A genomic pattern that decreases the frequency of transcription and thus the
expression of the regulated gene.

• Enhancer: A genomic pattern that increases the frequency of transcription and thus the
expression of the regulated gene.

Silencer as well as enhancer DNA can be far from the gene in a linear way; however,
it is spatially close to the promoter and gene. This is managed by folding of the DNA.

• CpG islands: Genomic regions, which are enriched by Cs followed by a G (CpG,
p stands for the phosphate in the DNA backbone). Cytosines in CpG islands can be
methylated, which is an epigenetic regulatory mechanism of gene expression. In most
cases DNA methylation is associated to the inactivation of the corresponding genes.

• Epigenetics: Includes CpG island DNA methylation as mentioned above, but also
histone modifications influencing transcriptional activity.

• UTRs (untranslated regions): The 5’UTR is located before the start codon and the
3’-UTR is the region between the stop codon and the poly-A-tail of the mRNA.

In addition to the regulatory sequences, there are various other sequence components
making up the human genome [12]. The main components are illustrated in Fig. 1.5.

Basically, NGS applications are performed on DNA and RNA molecules. Sequencing
these molecules enables us to identify DNA and RNA sequences but also to define, e.g.,
DNA–protein interactions or epigenetic DNA modifications. Hence, NGS output data give
a great insight into structural and functional characteristics of cells and tissues. Each NGS
application can give a different result, depending on the specific research question. Rapid
DNA and RNA sequencing is now mainstream and will continue to have an increasing
impact on biology and medicine [13].

Common NGS applications are:

• Expression analysis
The RNA-Seq application enables you to investigate expression variances of RNA

structures of, e.g., different tissues. Moreover, RNA-Seq reads can be used to analyze
differential exon usage, gene fusions or variants like SNPs, indels, mutations, etc. [14].

• DNA–protein interactions
The ChIP-Seq (chromatin-immunoprecipitation) application focuses on investigating

regulatory sequences of the DNA, like transcription factor binding sites or histone
modifications (e.g., acetylation/methylation), which lead to differences in gene
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expression profiles. These regulatory sequences on the DNA are often localized in the
so-called promoter, silencer, or enhancer regions and effect the transcription of nearby
positioned genes [15].

• DNA methylation (methyl-Seq)
Similar to the ChIP-Seq application, the power of NGS gave a boost to the study of

DNA methylation in CpG islands. DNA methylation is an epigenetic modification that
plays an essential role in regulating gene expression and allelic use and, consequently,
influences a wide variety of biological processes and diseases [16].

• Whole genome sequencing
Whole genome sequencing (WGS) is a complete readout of all the information that

makes up all of your DNA. WGS gives you a deep insight into chromosomal alterations,
indels, mutations, etc. [17].

• Whole-exome sequencing
The exome comprises just over 1% of the whole genome and is providing sequence

information for protein-coding regions. This application is widely used to identify
disease-causing mutations [18].

Protein coding genes
2%

introns
26%

miscellaneous
unique sequences

12%

miscellaneous
heterochromatin

8%segmental
duplications

5%

simple sequence
repeats
3%

DNA transposons
3%

LTR
retrotransposons

8%

SINEs
13%

LINEs
20%

Fig. 1.5 Main components of the human genome. About 1.5% of the genome consists of ~20.000
protein-coding sequences interspersed by the non-coding introns (~26%). The largest fraction
(40–50%) consists of the transposable elements, including long interspersed nuclear elements
(LINEs), and short interspersed nuclear elements (SINEs). Most transposable elements are genomic
remains that are currently defunct (modified according to Lander et al. 2001)
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• Targeted sequencing
Targeted sequencing allows to focus on specific genes or regions of interest and thus

enables sequencing at much higher coverage levels. There are a variety of targeted
sequencing panels available, however, it is also possible to generate custom probe sets
[19]. Targeted sequencing is mainly used in molecular diagnostics utilizing the so-called
tumor panels (specific to the respective tumor entity).

• De novo sequencing
This method refers to sequence a novel genome, if there is no reference genome

available for alignment [20, 21].

This list represents only a small subset of the possible NGS applications. A detailed
exposition of the DNA, RNA, and epigenetic sequencing methods can be found under the
following links:

• DNA Sequencing Methods Collection:
– https://emea.illumina.com/content/dam/illumina-marketing/documents/products/

research_reviews/dna-sequencing-methods-review-web.pdf
– https://www.thermofisher.com/de/de/home/life-science/sequencing/dna-sequencing/

whole-genome-sequencing/whole-genome-sequencing-ion-torrent-next-generation-
sequencing.html

– https://www.pacb.com/applications/whole-genome-sequencing/
– https://nanoporetech.com/applications/whole-genome-sequencing

• RNA Sequencing Methods Collection:
– https://emea.illumina.com/content/dam/illumina-marketing/documents/products/

research_reviews/rna-sequencing-methods-review-web.pdf
– https://www.thermofisher.com/de/de/home/life-science/sequencing/rna-sequencing/

transcriptome-sequencing/transcriptome-sequencing-ion-torrent-next-generation-
sequencing.html

– https://www.pacb.com/applications/rna-sequencing/
– https://nanoporetech.com/applications/rna-sequencing

• Methylation Sequencing:
– https://emea.illumina.com/techniques/sequencing/methylation-sequencing.html
– https://www.thermofisher.com/de/de/home/life-science/sequencing/epigenetic-

sequencing/methylation-analysis.html
– https://www.pacb.com/applications/epigenetics/
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Take Home Message
• The flow of genetic information within a biological system can be shortly

described by “DNA makes RNA and RNA makes Protein.”
• The duplication of DNA during the cell cycle and thus cell division is known as

DNA-replication.
• The molecular process, in which a particular segment of DNA is converted into

RNA, is called transcription.
• The molecular process, in which the genetic code in mRNA is read to make a

protein, is called translation.
• Sequence information of the different “Omics” levels provide deep insights into

molecular mechanisms of living organisms.
• Each NGS application results in a different readout, depending on the specific

research question.
• The commonly used NGS applications are RNA-Seq, ChIP-Seq, methyl-Seq,

WGS, WES, targeted sequencing, and de novo sequencing.

Further Reading
• Clancy S, Brown W. Translation: DNA to mRNA to Protein. Nature Education. 2008;1

(1):101.
• Brown TA. Genomes. 2nd ed. Oxford: Wiley-Liss; 2002. Available from: https://www.

ncbi.nlm.nih.gov/books/NBK21128/.
• Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Molecular Biology of the

Cell. 7th ed. New York: Garland Science; 2002.

Review Questions

Review Question 1
Original DNA Sequence: 5’-ATGTGGAACCGCTGCTGA-3’
Mutated DNA Sequence: 5’-ATGCTGGAACCGCTGCTGA-3’

a) What’s the mRNA sequence?
b) What will be the amino acid sequence?
c) Will there likely be effects?
d) What kind of mutation is this?

Review Question 2
All cells in a multicellular organism have normally developed from a single cell and

share the same genome, but can nevertheless be wildly different in their shape and
function. What in the eukaryotic genome is responsible for this cell-type diversity?
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Review Question 3
Indicate if each of the following descriptions matches RNA (R) or DNA (D). Your

answer would be a five-letter string composed of letters R and D only.

• It is mainly found as a long, double-stranded molecule.
• It contains the sugar ribose.
• It normally contains the bases thymine, cytosine, adenine, and guanine.
• It can normally adopt distinctive folded shapes.
• It can be used as the template for protein synthesis.

Review Question 4
Imagine a segment of DNA (within a gene) encoding a certain amount of information

in its nucleotide sequence. When this segment is fully transcribed into mRNA and then
translated into protein, in general, . . .

A. the protein sequence would carry more information compared to the DNA and
mRNA sequences, because its alphabet has 20 letters.

B. the protein sequence would carry less information compared to the DNA and mRNA
sequences, because several codons can correspond to one amino acid.

C. the amount of information in the mRNA sequence is lower, because the mRNA has
been transcribed using only one of the DNA strands as the template.

D. the amount of information in the mRNA sequence is higher, because several mRNA
molecules can be transcribed from one DNA molecule.

Answers to Review Questions

Answers to Question 1

a) What is the mRNA sequence?

5’-AUGUGGAACCGCUGCUGA-3’
5’-AUGCUGGAACCGCUGCUGA-3’

b) What will be the amino acid sequence?

NH3
+ - Met- Trp- Asn- Arg- Cys- Stop

NH3
+ - Met- Leu- Glu- Pro- Leu- Leu- COO-

c) Will there likely be effects?

Yes

1 Next Generation Sequencing (NGS): What Can Be Sequenced? 13



d) What kind of mutation is this?

Insertion, frame-shift

Answer to Question 2
Genes encoding regulatory proteins, regulatory sequences that control the expression

of genes, genes coding for molecules involved in receiving cellular signals and genes
that code for molecules involved in sending cellular signals to other cells.

Answer to Question 3
DRDRR.

Answer to Question 4
B.

Acknowledgements We are grateful to Dr. Ines Böhme (Institute of Biochemistry (Emil-Fischer
Center), Friedrich–Alexander (University Erlangen–Nürnberg, Erlangen, Germany) for critically
reading this text and correcting our mistakes.

References

1. Wakai T, Prasoon P, Hirose Y, Shimada Y, Ichikawa H, Nagahashi M. Next-generation sequenc-
ing-based clinical sequencing: toward precision medicine in solid tumors. Int J Clin Oncol.
2019;24(2):115–22.

2. Morganti S, Tarantino P, Ferraro E, D’Amico P, Duso BA, Curigliano G. Next Generation
Sequencing (NGS): a revolutionary technology in pharmacogenomics and personalized medicine
in cancer. Adv Exp Med Biol. 2019;1168:9–30.

3. Morganti S, Tarantino P, Ferraro E, D'Amico P, Viale G, Trapani D, et al. Complexity of genome
sequencing and reporting: Next generation sequencing (NGS) technologies and implementation
of precision medicine in real life. Crit Rev Oncol Hematol. 2019;133:171–82.

4. Morash M, Mitchell H, Beltran H, Elemento O, Pathak J. The role of next-generation sequencing
in precision medicine: a review of outcomes in oncology. J Pers Med. 2018;8(3):30.

5. Gulilat M, Lamb T, Teft WA, Wang J, Dron JS, Robinson JF, et al. Targeted next generation
sequencing as a tool for precision medicine. BMC Med Genomics. 2019;12(1):81.

6. Manzoni C, Kia DA, Vandrovcova J, Hardy J, Wood NW, Lewis PA, et al. Genome,
transcriptome and proteome: the rise of omics data and their integration in biomedical sciences.
Brief Bioinform. 2018;19(2):286–302.

7. Kettman JR, Frey JR, Lefkovits I. Proteome, transcriptome and genome: top down or bottom up
analysis? Biomol Eng. 2001;18(5):207–12.

8. Sleator RD. The genetic code. Rewritten, revised, repurposed. Artif DNA PNA XNA. 2014;5(2):
e29408.

9. Koonin EV, Novozhilov AS. Origin and evolution of the genetic code: the universal enigma.
IUBMB Life. 2009;61(2):99–111.

10. Hershey JW, Sonenberg N, Mathews MB. Principles of translational control: an overview. Cold
Spring Harbor PerspectBiol. 2012;4(12):a011528.

14 A. Bosserhoff and M. Kappelmann-Fenzl



11. Pennisi E. Genomics. ENCODE project writes eulogy for junk DNA. Science. 2012;337
(6099):1159, 61.

12. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial sequencing and
analysis of the human genome. Nature. 2001;409(6822):860–921.

13. McCombie WR, McPherson JD, Mardis ER. Next-Generation Sequencing Technologies. Cold
Spring Harb Perspect Med. 2019;9(11):a036798.

14. Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, McPherson A, et al. A survey
of best practices for RNA-seq data analysis. Genome Biol. 2016;17:13.

15. Yan H, Tian S, Slager SL, Sun Z. ChIP-seq in studying epigenetic mechanisms of disease and
promoting precision medicine: progresses and future directions. Epigenomics. 2016;8
(9):1239–58.

16. Barros-Silva D, Marques CJ, Henrique R, Jeronimo C. Profiling DNAmethylation based on next-
generation sequencing approaches: new insights and clinical applications. Genes (Basel). 2018;9
(9):429.

17. Lappalainen T, Scott AJ, Brandt M, Hall IM. Genomic analysis in the age of human genome
sequencing. Cell. 2019;177(1):70–84.

18. Petersen BS, Fredrich B, Hoeppner MP, Ellinghaus D, Franke A. Opportunities and challenges of
whole-genome and -exome sequencing. BMC Genet. 2017;18(1):14.

19. Jennings LJ, Arcila ME, Corless C, Kamel-Reid S, Lubin IM, Pfeifer J, et al. Guidelines for
validation of next-generation sequencing-based oncology panels: a joint consensus recommenda-
tion of the association for molecular pathology and college of American Pathologists. J Mol
Diagn. 2017;19(3):341–65.

20. Dubchak I, Poliakov A, Kislyuk A, Brudno M. Multiple whole-genome alignments without a
reference organism. Genome Res. 2009;19(4):682–9.

21. de Lannoy C, de Ridder D, Risse J. The long reads ahead: de novo genome assembly using the
MinION. F1000Res. 2017;6:1083.

1 Next Generation Sequencing (NGS): What Can Be Sequenced? 15



Opportunities and Perspectives of NGS
Applications in Cancer Research 2
Christian Molina-Aguilar, Martha Estefanía Vázquez-Cruz,
Rebeca Olvera-León, and Carla Daniela Robles-Espinoza

Contents

2.1 Introduction: Using Genomic Data to Understand Cancer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 Driver Mutations and Their Biological Mechanisms of Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Oncogenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.2 Tumor Suppressors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.3 Gene Fusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Sequencing in Cancer Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4 Genome Sequences Can Reveal Cancer Origins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5 Genome and Transcriptome Sequences Are Useful for Elucidating Cancer Biology . . . . . . . 25

2.5.1 Sequencing of In Vitro and In Vivo Tumor Models Identifies Fundamental
Biological Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5.2 Single-Cell DNA and RNA Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.5.3 Exploring Intra-Tumor Heterogeneity Through Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.6 Sequencing in Cancer Treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.7 International Collaborative Efforts in Cancer Sequencing and Mutation Classification . . . . 30

2.7.1 The Cancer Genome Atlas (TCGA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.7.2 International Cancer Genome Consortium (ICGC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

C. Molina-Aguilar · M. E. Vázquez-Cruz · R. Olvera-León
Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional
Autónoma de México, Santiago de Querétaro, México

C. D. Robles-Espinoza (*)
Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional
Autónoma de México, Santiago de Querétaro, México

Experimental Cancer Genetics, Wellcome Sanger Institute, Cambridge, UK
e-mail: drobles@liigh.unam.mx

# Springer Nature Switzerland AG 2021
M. Kappelmann-Fenzl (ed.), Next Generation Sequencing and Data Analysis, Learning
Materials in Biosciences, https://doi.org/10.1007/978-3-030-62490-3_2

17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62490-3_2&domain=pdf
mailto:drobles@liigh.unam.mx
https://doi.org/10.1007/978-3-030-62490-3_2#DOI


2.7.3 Pan-Cancer Analysis of Whole Genomes (PCAWG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.7.4 Catalog of Somatic Mutations in Cancer (COSMIC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.7.5 ClinVar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.8 Opportunities, Challenges, and Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

What You Will Learn in This Chapter
In this chapter, we will discuss NGS applications in cancer research, starting with a
brief section on tumor driver genes and their mutational patterns, and then exploring
how DNA and RNA sequencing can aid cancer diagnosis, shed light on causal
agents, elucidate the biological mechanisms that participate in tumor evolution and
contribute to the design of effective therapies. The technological advances that have
allowed sequencing to be fast, efficient, and cost-effective have also created technical
challenges, which mainly comprise the combining, categorization, comparison, and
storage of large amounts of information, followed by the need for efficient analysis
methodologies to extract meaningful biological information. Considering this, we
will also briefly review the existing international collaborative efforts that aim to use
genome and transcriptome sequencing to deepen our understanding of cancer, and
will give our vision of the opportunities that this type of research offers for cancer
prevention and monitoring, the challenges it still has to overcome, and perspectives
for the future.

2.1 Introduction: Using Genomic Data to Understand Cancer

Cancer is a complex group of diseases that arise when mutations accumulate in cells, leading
to uncontrolled cell growth, abnormal morphology, and the ability to invade surrounding
tissues [1]. Therefore, it is now generally accepted that cancer is a disease of the genome.
Mutations that contribute to the acquisition of these characteristics are referred to as driver
mutations, whereas those that “hitchhike” with these are known as passenger mutations.
These alterations can be caused by exogenous agents, such as exposure to environmental
carcinogens like ultraviolet radiation, or endogenous factors, such as defects in DNA repair
genes (Fig. 2.1). When mutations occur during the lifetime of a cell these are known as
somatic mutations (as opposed to genetic variants, which are those present from birth).

As cancer represents the second main cause of death worldwide [2], research efforts are
focusing heavily on improving early detection, elucidating the main biological mechanisms
behind tumor types and identifying potential therapeutic targets. Research in all of these
areas has been boosted by whole-genome and -exome sequencing of matched tumor/
normal tissue, whose analysis allows researchers to identify mutations that fuel cancer
growth and that are potentially targetable. These advances have meant that clinicians and
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scientists around the world can now exploit NGS technologies and take advantage of the
increasingly growing amount of sequencing information to interpret their findings. This in
turn has brought us closer to precision and personalized medicine, where treatments are
tailored to a particular tumor from an individual patient, potentially improving efficacy and
minimizing side effects.

2.2 Driver Mutations and Their Biological Mechanisms of Action

The first genes influencing cancer development were discovered almost 40 years ago, and
since then, more than 550 cancer driver genes have been described [1], most identified
through modern sequencing technologies. Different types and patterns of mutations affect
these genes, which are also specific to tumor stage and cancer type.

2.2.1 Oncogenes

Oncogenes are defined as those genes that have gained activity, which confers a selective
advantage to the carrier cell, through the acquisition of somatic mutations. Their
non-mutated counterparts are usually referred to as proto-oncogenes. Somatic gain-of-
function mutations were described in the first oncogene, RAS, almost 40 years ago, which
were shown to render the protein constitutively active and lead to continuous mitogenic
signal transduction [3]. As expected, in general gain-of-function alterations tend to affect
particular amino acids within a protein that usually lead it to be “locked in” in an active
conformation by increasing its mitogenic signal transduction capabilities or by reducing its
sensitivity to inhibitors.

Fig. 2.1 The accumulation of mutations throughout the lifetime of a cell. These DNA lesions, caused
by both exogenous and endogenous agents can lead to cancer
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Review Question 1

If you were studying the mutations in an oncogene identified by sequencing in a large
number of tumors, what patterns of mutations would you expect to see?

To date, more than 280 genes with oncogenic activity have been described, some of
which are specific to a particular cancer type. Some notable ones include HER2 and ESR1
in breast cancer, BRAF and NRAS in melanoma, EGFR, ROS1, ALK, and RET in lung
cancer, KRAS, BRAF, and PIK3CA in lung and colorectal cancer, and KIT in acute myeloid
leukemia [4]. These genes are usually affected by missense mutations, which change a
single amino acid in the protein sequence, or by gene amplifications or transcriptional
overexpression. Also, typically mutations in these genes are acquired somatically, as (with
a few exceptions such as RET) germline activation of these may not be compatible with life.

2.2.2 Tumor Suppressors

Tumor suppressor genes are so named because when they become inactive through the
acquisition of somatic mutations, tumor growth is accelerated. As can be expected, their
functions typically involve cell cycle control, regulation of apoptosis, and DNA break
repair, among others. Since inactivating mutations were found in the first discovered tumor
suppressor gene, RB1, in 1986, more than 270 genes have been identified to contribute to
cancer development when they are inactivated in different cancer types [1].

Review Question 2

If you were studying the mutations in a tumor suppressor gene identified in a large
sequencing study, what patterns of mutations would you expect to see?

The most commonly mutated gene in human cancer, TP53, is a tumor suppressor, which
regulates transcription to control cell growth arrest and apoptosis, and, therefore, the
majority of cancer-derived missense mutations affect its DNA binding domain and usually
are associated with advanced stages of cancer [5]. Examples of other important genes in
this category are CDKN2A and NF1 in melanoma, BRCA1 and BRCA2 in breast cancer,
and ATM in certain leukemias [1, 4]. These genes are typically affected by stop-gain,
frameshift-inducing or splice site mutations, by deletions that can span a few amino acids
or the whole gene, or by gene silencing via transcriptional downregulation. Many of the
genes that are cancer-predisposing in individuals are tumor suppressors, with inactivation
of the remaining allele occurring later in life.

2.2.3 Gene Fusions

Gene fusions are another category of cancer-promoting genomic alterations that arise
through structural rearrangements that combine two genes in a novel transcript, usually
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gaining a new function. One of the first cancer-promoting genetic alterations discovered
was the BCR–ABL gene fusion, also referred to as the Philadelphia chromosome, in
leukemia cells in 1959. Since then, more than 300 genes have been classified as
participating in driver fusion events by either gaining oncogenic potential or by modifying
their partner’s function [1].

Review Question 3

When analyzing cancer RNA-Seq data, how would you identify gene fusions?

2.3 Sequencing in Cancer Diagnosis

Knowing the genes that are involved in cancer development, coupled with the ability to
cost-effectively perform gene sequencing and bioinformatic analyses, is a powerful tool to
screen patients at risk and aid genetic counseling.

At the moment, genetic tests can be requested by individuals from cancer-prone families
to learn whether they are also at a higher risk for developing the disease. If the family
carries a known mutation in a cancer gene, it can be identified through gene panels, which
usually sequence a small number of known genes by hybridization followed by high-
throughput sequencing (targeted sequencing) or by PCR followed by capillary sequencing.
In the event that the gene panel testing returns with a negative result, the family may enter a
research protocol where whole-exome or genome sequencing will be performed to attempt
to identify novel cancer genes. These projects are usually research-focused (i.e., no
information is returned to the patient) and can increase their statistical detection power
by aggregating a large number of families. However, bioinformatic analysis is key and both
of these methodologies suffer from the identification of a large number of variants of
uncertain significance (VUS).

VUS represent a challenge for bioinformaticians, medical professionals, and patients
alike because their relationship to disease risk is unknown and therefore clinically
unactionable. In order to alleviate this issue, the American College of Medical Genetics
and Genomics (ACMG) published in 2000, and revised in 2007 and 2015 [6], a series of
recommendations to classify variants into five categories based on population frequencies,
computational predictions, functional data, and familial disease/variant co-segregation
observations.

Variant classification:

• pathogenic
• likely pathogenic
• uncertain significance
• likely benign
• benign
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However, as of 2019, nearly half of the half million variants in ClinVar remain in the
VUS category [6]. Therefore, deep bioinformatic analyses are urgently needed to assess the
increasingly large number of variants and attempt to prioritize those that may be important
for disease risk and progression.

Another exciting application of high-throughput sequencing to cancer diagnosis is the
analysis of liquid biopsies. Liquid biopsies refer to the non-invasive sampling of body
fluids such as blood, urine, saliva, and cerebrospinal fluids, among others. The early
detection of cancer in this way is theoretically possible because tumors shed cells and
DNA (referred to as “circulating tumor cells,” CTCs, and “circulating tumor DNA,”
ctDNA, respectively) into the bloodstream by apoptosis or necrosis. Several specialized
techniques, such as antibody capture, depletion of white and red blood cells, and size
exclusion have been applied to the detection of CTCs; cell-free DNA (cfDNA) in the blood,
of which ctDNA represents between <0.1 and 10%, can be analyzed for common driver
mutations [7]. This technology offers great potential, as for example, several studies have
shown that RAS- or TP53-cancer associated mutations can be discovered in sputum or
plasma several months before lung adenocarcinoma or bladder cancer diagnosis, respec-
tively [5], and the size of cfDNA fragments may indicate a tumoral origin. Still, great
challenges need to be overcome for this technique to be deployed for the screening of an
asymptomatic population: First, the amount of ctDNA is so low that even though
specialized techniques have been developed for its analysis, such as digital PCR, droplet
digital PCR, and BEAM, these still suffer from low multiplexing capacity where only a few
mutations can be assessed. Second, high-throughput sequencing technologies, while able
to assess a large number of loci, do not have the required sensitivity to confidently detect
these mutations [7]. These complications would increase the number of false-positive
diagnoses, and though the technique is developing quickly, it is still at an early stage.
Liquid biopsies have presently better value for prognostic assessments and disease moni-
toring, which we will discuss in Sect. 2.6.

2.4 Genome Sequences Can Reveal Cancer Origins

As mentioned in the introduction, mutations in the genome of a cancer cell can be caused
by exogenous factors, such as exposure to carcinogenic agents like ultraviolet radiation or
cigarette smoke, or endogenous processes such as defects in the DNA damage repair
machinery. As these mutagenic agents have very diverse modes of action (e.g., bulky
DNA adducts bind covalently to DNA bases, ionizing radiation is able to induce DNA
breaks by disrupting chemical bonds, alkylating agents can add alkyl groups to guanine
bases, etc.) we can expect that the patterns of mutations these leave in the genome are also
quite different. For example, UV radiation preferentially causes C>T transitions at
dipyrimidine sites, and exposure to benzo-[α]-pyrene results mainly in C>A mutations
[8]. Therefore, the set of all mutations in a genome can be considered as an archeological
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record, which we can explore to learn about the mutational processes that a tumor has been
exposed to (Fig. 2.2) [8].

Review Question 4

Which cancer types do you expect to have the highest and the lowest numbers of
mutations, and why?

Recently, computational methodologies have been developed to extract all these muta-
tional signatures from any given mutation catalog C, which is a matrix that has samples as
columns and mutation classes as rows. The latter are the six possible mutation types (C:G
> A:T, C:G>G:C, C:G>T:A, T:A>A:T, T:A>C:G, and T:A>G:C) taken into their
trinucleotide contexts (i.e., the base before and after each mutation), thus yielding
6 � 4 � 4 ¼ 96 different mutation classes (Fig. 2.2). These algorithms try to optimally
solve C� SE, where S is the signature matrix (with mutation classes as rows and signatures
as columns) and E is the exposure matrix (with samples as columns and signatures as rows)
[9]. This way, we can learn which samples have which signatures with which “intensity”
(the exposure).

Mutational signature analysis has been tremendously useful in recent years to elucidate
the mechanism of action of several carcinogens (Fig. 2.3). For example, this type of
analysis revealed in 2013 the types of mutations induced by aristolochic acid, a substance
present in plants traditionally used for medicinal purposes, which are dominated by A>T
transversions by formation of aristolactam-DNA adducts [10]. Another example is the
discovery of the extent to which APOBEC enzymes play a role in cancer and associated
cell line models by their strong activity as cytidine deaminases [11]. However, this exciting
field is in constant evolution and several distinct bioinformatic methodologies have been
published for the extraction of mutational signatures from cancer genomes. The original
method, a de novo extraction algorithm based on non-negative matrix factorization
(NNMF), was published by Alexandrov and collaborators and applied to 7042 distinct
tumors from 30 different types of cancer, being able to identify 21 mutational signatures
[8]. Since then, other methods, both de novo and approaches fitting C to a matrix of known
signatures, have been published with varying results. Researchers doing this type of
analysis can run into problems such as ambiguous signature assignment, the fact that
some localized mutational processes may not be taken into account, and the algorithms’
assumption that all samples being analyzed have a similar mutational profile [9]. A recent
study has suggested that a combination of de novo and fitting approaches may reduce false
positives while still allowing the discovery of novel signatures [9]. Generally, as is the case
with any bioinformatic tool, researchers must be cautious about their results and should
perform a manual curation where possible, making use of prior biological knowledge and
making sure results make sense.

Mutational signature analysis has recently been expanded to include multiple-base
mutations and small indels. To date, nearly 24,000 cancer genomes and exomes have
been analyzed, with 49 single-base substitution (SBS), 11 doublet-base substitutions, four
clustered base substitutions, and 17 indel mutational signatures discovered [8].
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2.5 Genome and Transcriptome Sequences Are Useful
for Elucidating Cancer Biology

Genome and transcriptome sequencing have allowed researchers to gain unprecedented
resolution into the cellular processes that lead to cell transformation and the consequences
of carrying particular mutations. Traditionally, scientists have relied on “bulk” sequencing,
which means that they sequence the genomes or transcriptomes of a bulk of cells from the
tumor and therefore the experiment readout can be interpreted as an average of the tumor
mutations or gene expression patterns. One of the earliest large cancer sequencing projects,
The Cancer Genome Atlas (TCGA, discussed below in Sect. 2.7), bulk-sequenced exomes
and transcriptomes from large numbers and types of cancer and allowed the identification
of further genomic drivers, the classification of several types of cancer in genomic
subtypes, and the discovery of dysregulated processes leading to cell growth and metastasis
[12]. However, many fundamental discoveries in cancer genomics have come from the
study of in vitro and in vivo models of the disease.

2.5.1 Sequencing of In Vitro and In Vivo Tumor Models Identifies
Fundamental Biological Properties

The first available models for studying cancer cell biology were cell lines, an in vitro
strategy fueled in 1951 with the isolation and culture of biopsy cells taken from cervical
cancer patient Henrietta Lacks (who did not consent to the experiment) [13]. After these
cells (termed HeLa, after the patient’s name) proved invaluable for, e.g., developing the

Fig. 2.3 Computational analysis of tumor mutational burden can elucidate the contribution of
mutational processes. The genome sequence of tumors can be analyzed by sophisticated algorithms
to extract mutational signatures (in this case, the two shown at the right), which then can be compared
with known catalogs to assign a potential etiological process (in this case, UV radiation may be
causing the first signature, whereas the second one may be caused by damage to the DNA repair
machinery). These processes then have been operational during the lifetime of the tumor and have
contributed to its growth
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polio vaccine and defining the effects of X-ray radiation on human cells [14], researchers
realized their value and set out to derive cell lines from lung, breast, ovarian, colon,
prostate, skin, renal, CNS, and other tissues [15]. There are now more than 1,300 cancer
cell lines [15], which are still routinely used by scientists around the world. Sequencing of
these has revealed the extent to which cell lines resemble the human tumor, aiding model
selection, and has described the mutational signatures present in human tumors as well as
their dynamics [11]. However, recent criticism has focused on the fact that the majority of
these cell lines are derived from European-descent populations, which may mean that
disease dynamics in other genetic ancestries may not be well-modeled by these cells [15].

Another in vitro model recently developed are 3D organoids [16]. Organoids are
“artificially grown masses of cells or tissue that resemble an organ” [17], and have been
found to faithfully reproduce the original tumors. Particularly, in an early effort to generate
a “living biobank” of organoids from colorectal cancer (CRC) patients, exome sequencing
found that organoids have a similar mutation bias (CpG > T transitions) to that of earlier,
large-scale CRC sequencing efforts, as well as having a similar frequency of hypermutated
tumors and maintaining common driver mutations [18]. RNA analysis of the same
organoids identified differential expression of cancer-associated genes such as PROX1
and PTCH1, as well as having similar expression profiles to other CRC tumors. Follow-up
studies on lung, esophagus, pancreas, and other tissues have shown similar results [16],
which demonstrates the power of this system to model cancer evolution. These have been
used successfully to investigate the link between infectious agents and cancer [16], and to
describe the mutational signatures in healthy stem cells that lead to malignant transforma-
tion [19]. Nevertheless, these are still not fully reproducible, showing a great deal of
variation, limiting their current applicability [16].

In vivomodels have also been used to explore cancer biology in the context of a full host
organism. Particularly, patient-derived xenografts (PDXs) have emerged as a faithful
preclinical model to recapitulate tumor histology, genome, transcriptome, and heterogene-
ity, as well as drug response. These are models in which fresh tumor tissue is directly
transplanted into immunocompromised rats or mice either subcutaneously or orthotopically
[20]. Whole-exome sequencing of PDX models has been used to identify targetable
genomic alterations, and their transcriptomic characterization at the single-cell level has
identified subpopulations of cells that provide drug resistance in melanoma [20]. Large
repositories, such as the one in The Jackson Laboratory, which comprises 455 PDX models
from more than 30 primary sites, are being genomically and transcriptomically
characterized to maximize their utility for translational studies [21]. Even though their
utility in preclinical research has been extensively recognized, PDX model generation
requires high technical skills and can have low success rates, and can take several months
to establish [20], which represent important limitations. Additionally, as the host animals
are immunodeficient, a different model would need to be chosen for the study of tumor–
immune cell interactions, a very important contributor to tumor dynamics.
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2.5.2 Single-Cell DNA and RNA Sequencing

More recently, advances in fields such as microfluidics and nanotechnology have resulted
in a number of methodologies for assessing genome sequence, messenger RNA levels,
protein abundance, and chromatin accessibility at the single-cell level [22]. For the cancer
field, these exciting developments have meant that the cell subpopulations conforming
tumors have become apparent, analyses have revealed rare cell subtypes, and they have
also helped pinpoint which ones of these are able to re-establish growth after
treatment [22].

One of the most exciting observations stemming from these types of analyses is the
discovery that many of the mutations in a tumor are subclonal, therefore, meaning that
different sections within the same tumor may have different genomic alterations [22]—
therefore adding to the notion that a single biopsy may not be enough to identify all tumor
drivers. As another example of the power of these studies, researchers based at the Broad
Institute of MIT and Harvard identified, in melanoma tumors, a cellular program associated
with immune evasion and T-cell exclusion that is present from before therapy, and that is
able to predict responses to this type of treatment in an independent cohort of patients
[23]. But perhaps the most striking discovery has been the identification of non-genetic
mechanisms underlying the emergence of drug treatment resistance, which we will discuss
in detail in Sect. 2.6.

Although the number of methodologies published for single-cell DNA and RNA
analysis has been growing steadily over the last few years, the field still has numerous
challenges to overcome: The development of methods to efficiently and non-disruptively
isolate single cells from the tissue of origin, the amplification of that individual cell’s
biological material for downstream processing, and the subsequent analysis of that material
to identify the variation of interest as well as taking into account the potential errors and
biases [24]. However, these methodologies are set to become standard in the near future, as
large consortia such as The Human Cell Atlas are already undertaking a number of studies
to fulfill their aim of defining all human cell types at the molecular and morphological
levels by sequencing at least 10 billion single cells from healthy tissues [25]. It is not
difficult to envision, thus, that the technological advances stemming from this and related
projects may be exploited in a large follow-up project to TCGA where the focus will be
characterizing individual cells, the abundances of cell states in distinct tumors, and the
identification of therapy-resistant subclones.

2.5.3 Exploring Intra-Tumor Heterogeneity Through Sequencing

It has also been recognized that tumors are highly heterogeneous masses of distinct cell
types, clonal and subclonal genomic mutations as well as a mixture of distinct transcrip-
tional cell states [26]. Bulk DNA and RNA sequencing can be exploited to investigate this
heterogeneity by specialized bioinformatics analyses. One early study using bulk genome
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sequencing analyzed 21 breast tumors and concluded, via the study of mutations that are
present in only a small fraction of the sequencing reads, that all samples had more subclonal
than clonal mutations and authors were able to reconstruct phylogenetic trees for some of
the tumors [27]. Since then, many other studies have been published where similar analyses
have informed our understanding of tumor evolution, selection dynamics, and mutation
cooperation [26]. This approach demonstrates the power of careful analysis of sequencing
reads and reveals the amount of information that can be inferred from these experiments.

Bulk transcriptome sequencing can also be examined beyond the differential expression
analyses that are typically done with such data. A number of different methodologies have
been developed to perform “cell type deconvolution,” a methodology used to infer the
proportions of different cell types in a tissue sample using computational approaches based
on specific marker genes or expression signatures. Deconvolution methods quantitatively
estimate the fractions of individual cell types in a heterocellular tissue (such as the tumor
microenvironment) by considering the bulk transcriptome as the “convolution” of cell-
specific signatures [28]. One of the most popular method is CIBERSORT [28], which is
able to estimate the immune cell fraction component of a tumor biopsy. This algorithm has
been used to identify immune infiltration signatures in distinct cancer types and their
relationship to survival patterns and other clinical characteristics [29]. Other similar
methods are MuSiC, deconvSeq, and SCDC [30]. The choice of method would depend
on the type of tissue being studied and the biological question being addressed.

Of course, the exploration of intra-tumor heterogeneity has been spectacularly boosted
by the development of single-cell sequencing technologies. Recent studies exploiting this
technology have been able to show that inter-tumor heterogeneity in cancer cells is much
larger than intra-tumor heterogeneity, whereas this is not the case for non-malignant cells,
and to dissect patterns of heterogeneity (such as cell cycle stage and hypoxia response)
from context-specific programs that determine tumor progression and drug response
[31]. These advances would have been impossible without the ability to discern cell
types and cell states within a tumor and have greatly informed our understanding of
tumor dynamics.

2.6 Sequencing in Cancer Treatment

Perhaps the area in which tumor sequencing has had a more tangible impact has been in
precision and personalized treatment design. Whole-genome and -exome sequencing of
large groups of tumors has made it possible to identify genomic and transcriptomic
subtypes in neoplasia from tissues such as breast, skin, and bladder, among others
[32]. These genomic subtypes are associated with different clinical presentations and
molecular characteristics, and can be targeted with different treatments. For example, in
melanoma, four genomic subtypes have been identified: Tumors that have BRAF mutated,
almost always at the V600 residue, which present at a younger age and can be targeted with
BRAF inhibitors such as vemurafenib, those that have a RAS gene mutated, characterized
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by hyperactivation of the MAPK pathway and can perhaps be targeted with BET andMEK
inhibitors, those with loss of the tumor suppressor NF1, which have a higher mutational
burden and present at an older age, and those without mutations in any of these driver genes
[33]. In colon cancer, different genomic subtypes can be recognized with chromosomal
unstable tumors having defects in chromosome segregation, telomere stability, and DNA
damage response and hypermutated tumors usually having a defective DNA mismatch
repair system [34]. The latter respond well to immune checkpoint inhibitors, especially if
they have a high mutational burden, and, therefore, having a hypermutator phenotype is
also a biomarker that can help stratify patients for treatment choice.

Transcriptomic characterization of tumors has also been of great use to identify subtypes
within a cancer type that can be treated specifically to boost therapy efficacy. For example,
breast cancer has been classified into subtypes according to gene expression: Luminal A,
luminal B, ERBB2-overexpressing, normal-like, and basal-like [35]. This classification
takes into account expression of the estrogen receptor (ER+), the progesterone receptor (PR
+), and ERBB2 amplification [35]. Luminal tumors are likely to respond to endocrine
therapy, while those with ERBB2 amplification can be targeted with trastuzumab and
chemotherapy. Treatment of triple-negative breast cancers is more challenging, but
PARP inhibitors and immunotherapy are beginning to be tested in the clinic [36]. Mela-
noma tumors have also been classified into expression subtypes with potential therapeutic
implications [37]. Therefore, the sequencing of both tumor DNA and RNA can inform
about the biology of cancer and help identify potential therapeutic targets.

As briefly mentioned above, the most useful aspects of tumor sequencing are the
identification of therapeutical targets and the discovery of tumor biomarkers. Apart from
classical such biomarkers like the presence of established driver mutations, another one that
has emerged as an important predictor of response to immunotherapy is tumor mutational
burden (TMB), as some authors suggest that higher TMB predicts favorable outcome to
PD-1/PD-L1 blockade across diverse tumors [38]. Tumors with high TMB are more likely
to respond to this type of treatment because the number of “neoepitopes” is higher, this is,
the amount of novel peptides that arise from tumor-specific mutations and can be
recognized by the immune system [36]. Chromosomal instability, which can also be
detected by sequencing, may also impact therapeutic response.

An exciting development fueled by the ability to identify neoepitopes by next-
generation sequencing is adoptive T-cell therapy. In this form of treatment, tumor/normal
sample pairs are sequenced in order to identify novel mutations that may be targetable by
the immune system [39]. After these are validated by RNA expression analysis and mass
spectrometry, and are deemed good ligands for HLA molecules by bioinformatic analyses,
then they are co-cultured with tumor-infiltrating lymphocytes (TILs) resected from a tumor
biopsy from the same patient [40]. This methodology then allows the selective expansion
of TILs with a specific reactivity to the target tumor, and can then be introduced back into
the patient.

Another topic that has gained traction in recent years due to the advent of single-cell
transcriptome sequencing is the realization that drug resistance in cancer can be generated
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by both genetic and non-genetic mechanisms. Genetic resistance appears when mutations
emerge that allow the cell to grow even in the presence of drug. Examples of this are
resistance to BRAF inhibitors by amplification of BRAF or mutations of NRAS in melanoma
[41], and hormone therapy resistance in breast cancer by mutation of the ER [42].
However, non-genetic mechanisms can also mediate resistance to targeted therapy. In a
recent study, Rambow and colleagues elegantly demonstrated that BRAF and MEK inhibi-
tion in a PDXmodel of melanoma resulted in the establishment of minimal residual disease
(MRD), whose mutational profile was not significantly different to that of the tumor before
treatment [22]. Furthermore, cells in MRD could be classified in four transcriptional states,
one of which, characterized by having a neural crest stem cell transcriptional program, went
on to establish tumor growth despite continuous treatment. This subpopulation could be
further targeted by a retinoid X receptor inhibitor, delaying the onset of resistance, and
demonstrating the power of these kinds of analyses to identify potential targets beyond the
findings from bulk genome and transcriptome sequencing.

Liquid biopsies are also useful for the monitoring of cancer evolution and progression,
as they can inform in real time how the tumor is responding to therapy and whether novel
mutations have been acquired that may provide resistance. The tumor mutational landscape
changes over time due to evolutionary and therapeutic selective pressure [26], thus, almost
all tumors acquire resistance to systemic treatment as a result of tumor heterogeneity, clonal
evolution, and selection. For example, in a study of 640 patients, Bettegowda and
colleagues found ctDNA fragments at relatively high concentrations in the circulation of
most patients with metastatic cancer and at lower fraction of patients with localized
cancers, as well as identifying mutations in ctDNA that conferred resistance to EGFR
blockade in colorectal cancer patients [43]. These and other similar results illustrate the
potential of this technology to aid in monitoring tumor evolution and therapy treatment.

2.7 International Collaborative Efforts in Cancer Sequencing
and Mutation Classification

In order to exploit the power of next-generation sequencing technologies in cancer
diagnosis, monitoring, and treatment, international collaborative consortia have been
formed to collect and sequence DNA and RNA of thousands of cancer tissues from
different countries and research institutions around the world.

2.7.1 The Cancer Genome Atlas (TCGA)

TCGA was launched in 2005 as an effort to generate sequencing data from a large
collection of tumors, as well as to analyze and interpret their molecular profiles to provide
a comprehensive overview of the underlying biology and potential therapeutic targets
[12]. Other secondary aims of this project are to release data freely to the scientific
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community, to train expert individuals, and to develop specialized computational tools and
infrastructure that may be useful to other large-scale projects. As such, many secondary
analyses have allowed deep exploration of these data beyond the primary reports released
by TCGA Network. In 2018, TCGA published the Pan-Cancer Atlas, a number of coordi-
nated papers reporting on the analysis of over 11,000 tumors from 33 cancer type
[44]. Data access website: https://portal.gdc.cancer.gov/.

2.7.2 International Cancer Genome Consortium (ICGC)

ICGC is a voluntary, international initiative launched in 2007 to coordinate the analysis of
tumor genomes from 25 primary untreated tumors from 50 cancer types from around the
world [45]. In 2019, its portal contained data aggregated from more than 20,000
contributors, including TCGA, and had information on about 77 million somatic mutations
[46]. ICGC has numerous initiatives, including PCAWG (reviewed below), The ICGC for
Medicine Initiative (ICGCmed), and ICGC for Accelerating Research in Genomic Oncol-
ogy (ICGC-ARGO). Website: https://icgc.org/.

2.7.3 Pan-Cancer Analysis of Whole Genomes (PCAWG)

PCAWG is an initiative from ICGC that aims to study more than 2,600 cancer whole
genomes from 39 distinct tumor types, aiming to be a follow-up analysis to those
performed on coding sequences [47]. The PCAWG Network’s first publications, published
in 2020, focus on cataloging non-coding driver mutations, tumor evolutionary history,
identifying structural variation, mutational signatures analysis and inferring interactions
between somatic and germline variation [47]. ICGC has made data on somatic calls,
including SNPs, indels, structural and copy number variants, available for use by any
researcher. Website: https://dcc.icgc.org/pcawg.

2.7.4 Catalog of Somatic Mutations in Cancer (COSMIC)

COSMIC was launched in 2004 as a database of information on somatic mutations in
human cancer [48]. It has steadily grown over the years and in its latest release to this date
(in September 2019) it had information on every human gene, and on nearly nine million
coding mutations from more than 1.4 million samples [48]. Data in COSMIC is manually
curated by experts constantly reviewing the literature, as well as from systematic screens
released with these publications. It is widely used for exploring available information on
frequency and potential pathogenic consequences of somatic mutations. Website: https://
cancer.sanger.ac.uk/cosmic.

2 Opportunities and Perspectives of NGS Applications in Cancer Research 31

https://portal.gdc.cancer.gov/
https://icgc.org/
https://dcc.icgc.org/pcawg
https://cancer.sanger.ac.uk/cosmic
https://cancer.sanger.ac.uk/cosmic


2.7.5 ClinVar

ClinVar was released in 2013 as a freely available resource that catalogs genome variation
of clinical importance, incorporating information on the genomic variants, the submitter,
the associated phenotype, the clinical interpretation, and the supporting evidence [49]. Ter-
minology for variant interpretation follows the recommendations by the ACMG (reviewed
above). All data have been made available for use by researchers in multiple formats, and,
therefore, has become a valuable database for aggregating and consulting medically
important genome variation. Website: http://www.ncbi.nlm.nih.gov/clinvar/.

2.8 Opportunities, Challenges, and Perspectives

There is no doubt that genomics is already playing a large role in cancer diagnosis and
treatment, but it may become even more important in the near future. An ideal scenario to
treat a patient with cancer would be to have all possible information at hand before
treatment choice, which includes whole genome sequencing. In fact, the United Kingdom
through its National Health System is already setting up plans to whole-genome sequence
every child with cancer as well as sequencing a large part of their patient and healthy
population through the 100,000 Genomes Project [50] and the UK Biobank [51]. Similarly,
the United States under the Obama administration announced the Precision Medicine
Initiative in 2015, funding the National Health Institutes to form a cohort of a million
volunteers to provide genomic data and medical records, among others [52]. These
programs illustrate that policy-makers recognize the power that this technology can bring
to the clinic and are working already to make it a reality. People also recognize the benefits
that knowing their genome sequence can bring them, evidenced by the fact that the number
of humans around the world estimated to have been sequenced has dramatically increased
from one in 2003 to over 1.5 million in 2018 [53].

The promise of precision and personalized genomic medicine is exciting and potentially
life-changing, and it has already revolutionized the fields of rare disease diagnosis by
identifying causal mutations in a quarter of patients with a potential genetic condition [53]
and non-invasive prenatal testing by allowing rapid assessment of fetal chromosomal
aneuploidies [54]. The cancer field is no exception. As we have discussed throughout
this Chapter, genomic approaches have greatly advanced diagnosis via genetic testing for
at-risk families, disease monitoring via solid and liquid biopsy analysis and treatment
through the identification of therapeutic targets, and the development of immune therapies.
However, there are many challenges still to overcome in this field: To begin with, we only
know the consequences of a very small number of genetic alterations, out of all possible
aberrations, that may occur in a tumor. This means that even if we develop the technology
to detect them with high accuracy, we still may not know whether they play an important
role in disease development or are just passengers. To alleviate this, scientists are continu-
ously working on identifying the characteristics of cancer drivers and testing potential
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therapeutics. Then, we also have the issue of balancing the sensitivity and the specificity of
these technologies if we plan to routinely use them to screen an asymptomatic population
for early signs of cancer and perform tumor monitoring, which are the goals of the liquid
biopsy revolution. Continuous efforts in protocol improvement and algorithm development
should bring us closer to making this a reality.

Of course, the implementation of a “genomic medicine for all” approach also carries
ethical issues that need to be carefully considered. For example, every whole-genome
sequencing of a cancer patient may also identify secondary findings unrelated to the disease
of interest, for example, a genetic variant that increases risk to Alzheimer’s disease in a
breast cancer patient. Discussions are still on-going as to whether to report these findings to
the patients. Another potential area of consideration is privacy and security of the patient’s
genetic information and its implications to the patient’s relatives, as well as the definition of
“informed consent” [55].

Finally, we must not forget that even though genomics is set to revolutionize our
knowledge of cancer biology and the clinical care of cancer patients, it can still tell us
only part of the story. Other fields, such as immunohistochemistry, histopathology, radia-
tion oncology, imaging procedures in radiology, and molecular biology are equally neces-
sary if we want to have a holistic view of the chain of events necessary for cancer
development as well as to provide the best care to patients. There is no doubt that an
interdisciplinary approach will help researchers and clinicians deliver on the promise of
precision medicine.

Take Home Message
• Genes are drivers if their somatic mutation aids cancer growth. These can be

classified into oncogenes (genes whose activation leads to tumor development),
tumor suppressors (genes whose inactivation supports neoplastic transformation),
and gene fusions (a product of two genes that gains a novel ability). These genes
carry different mutation patterns.

• Sequencing has aided cancer diagnosis by facilitating gene panel testing and
whole-exome/genome sequencing.

• Mutational signatures are patterns of mutations that can be extracted via compu-
tational analysis of large cohorts of tumors, and which can be informative about
the processes that gave rise to a tumor.

• Bulk genome sequencing of large numbers of tumors has allowed the identifica-
tion of mutational drivers, the classification of tumors in genomic subtypes, and
revealed dysregulated processes critical for tumor growth.

• Single-cell DNA and RNA sequencing of cancers can reveal their biological
complexity at an unprecedented level, examples include the amount of intra-
tumor heterogeneity and drug resistance mechanisms.

(continued)

2 Opportunities and Perspectives of NGS Applications in Cancer Research 33



• Genome sequencing is becoming paramount in cancer treatment, allowing the
identification of druggable targets and biomarkers for immunotherapy response
and aiding the development of novel treatment strategies.

Answer to Question 1

Oncogenes are characterized by a hotspot pattern of mutations, in which alterations tend
to cluster in a few amino acids that render the protein constitutively active. Therefore,
the pattern would resemble skyscrapers. For example, the RAS oncogene typically
harbors mutations in amino acids 12, 13, and 61 (Fig. 2.4) in human cancers, whereas
BRAF is recurrently mutated at amino acid 600.
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A11
Q22

A59

G60

Q61

K117
A146

C

1 K-RAS 150 600
Amino acid position

major protein
domains
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Switch I region
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N

Fig. 2.4 Hotspots in the major protein domains of KRAS protein structure. Although the protein
KRAS is made of 600 amino acids, the hotspots reported to date concentrate in the 150 immediately
adjacent to the N-terminal end. In red, GTP-binding domains, in green, the switch I region, and in
blue the switch II region. Shown are the 10 most commonly mutated amino acids in the protein, which
are usually found closer to the N-terminal region. Data comprise a set of 24,592 tumor samples (from
more than 30 different tumor types). G12 was mutated in 2175 samples, G13 in 264 samples, and Q61
in 190 samples. Data obtained in December 2019 from the Cancer Hotspot resource (Memorial Sloan
Kettering Cancer Center, http://www.cancerhotspots.org/#/home)
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Answer to Question 2

Tumor suppressors are characterized by an evenly distributed pattern of inactivating
mutations, so their mutational pattern would more or less look flat. However, the key
here is that a large fraction of mutations tending to be stop-gain, frameshift-inducing, or
to affect splice sites. For example, p16 (one of the proteins encoded by the CDKN2A
gene) consists of 156 amino acids, of which 19 have been found to be affected by
somatic mutations scattered throughout the protein (Fig. 2.5).

It is important to highlight that eight of the mutations (black boxes in Fig. 2.5) induce
a change of single residue causing the formation of non-functional truncated proteins.

Answer to Question 3

Fusion events can be discovered through the analysis of “split reads,” which are those
that map to two different genes in the human reference genome. If a fusion event is
consistently observed in different samples, this becomes a candidate to be a cancer
driver.

Answer to Question 4

Typically, the types of cancer with the highest numbers of mutations are those with a
strong environmental component, such as melanoma (UV light exposure) or lung cancer
(cigarette smoke) because individuals can be highly exposed to these mutagens for long
periods of time. The types of cancer with the lowest numbers of mutations are those that
appear in childhood, such as hepatoblastoma and pilocytic astrocytoma, due to a lower
exposure to mutagens and/or endogenous mutations.
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What You Will Learn in This Chapter
After finishing this chapter, you will have a basic overview of the individual
experimental work steps regarding the NGS library preparation workflow, the con-
nection between the scientific or clinical question and the choice of the
corresponding library preparation. For this purpose, the technical and molecular
biological relevance of the individual work steps is briefly described.
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3.1 Introduction

Library preparation involves generating a collection of DNA/cDNA fragments for
sequencing. NGS libraries are typically prepared by fragmenting a DNA or RNA sample
and ligating specialized adapters to both fragments ends. In this textbook we will focus on
the Illumina® Library Preparation workflow for short-read sequencing (https://emea.
illumina.com/techniques/sequencing/ngs-library-prep.html). As already mentioned, a wide
variety of NGS methods exists, and for almost every method a comprehensive sequencing
library preparation solution. The principle is almost similar for all library preparation
workflows [1, 2]. Further information on library preparation for long-read [3] or single-
cell sequencing [4–6] can be found on the websites of the corresponding providers:

Single-cell sequencing

• Illumina (https://emea.illumina.com/techniques/sequencing/rna-sequencing/ultra-low-
input-single-cell-rna-seq.html)

• 10xGenomics (https://support.10xgenomics.com/single-cell-gene-expression/
automated-library-prep)

• Qiagen (https://www.qiagen.com/de/products/discovery-and-translational-research/
next-generation-sequencing/library-preparation/qiaseq-fx-single-cell-dna-library-kit/
#orderinginformation)

• And many others

Long-read sequencing:

• Illumina (https://emea.illumina.com/science/technology/next-generation-sequencing/
long-read-sequencing.html)

• PacificBioscience (https://www.pacb.com/products-and-services/consumables/tem
plate-preparation-multiplexing-kits/)

• Oxford Nanopore (https://nanoporetech.com/products/kits)
• And many others

3.2 Library Preparation Workflow

The core steps in preparing RNA or DNA for NGS are:

• Fragmenting and/or sizing the target sequences to a desired length.
• Converting target to double-stranded DNA (in terms of RNA-Seq).
• Attaching oligonucleotide adapters to the ends of target fragments.
• Quantifying the final library product for sequencing.

40 M. Kappelmann-Fenzl

https://emea.illumina.com/techniques/sequencing/ngs-library-prep.html
https://emea.illumina.com/techniques/sequencing/ngs-library-prep.html
https://emea.illumina.com/techniques/sequencing/rna-sequencing/ultra-low-input-single-cell-rna-seq.html
https://emea.illumina.com/techniques/sequencing/rna-sequencing/ultra-low-input-single-cell-rna-seq.html
https://support.10xgenomics.com/single-cell-gene-expression/automated-library-prep
https://support.10xgenomics.com/single-cell-gene-expression/automated-library-prep
https://www.qiagen.com/de/products/discovery-and-translational-research/next-generation-sequencing/library-preparation/qiaseq-fx-single-cell-dna-library-kit/#orderinginformation
https://www.qiagen.com/de/products/discovery-and-translational-research/next-generation-sequencing/library-preparation/qiaseq-fx-single-cell-dna-library-kit/#orderinginformation
https://www.qiagen.com/de/products/discovery-and-translational-research/next-generation-sequencing/library-preparation/qiaseq-fx-single-cell-dna-library-kit/#orderinginformation
https://emea.illumina.com/science/technology/next-generation-sequencing/long-read-sequencing.html
https://emea.illumina.com/science/technology/next-generation-sequencing/long-read-sequencing.html
https://www.pacb.com/products-and-services/consumables/template-preparation-multiplexing-kits/
https://www.pacb.com/products-and-services/consumables/template-preparation-multiplexing-kits/
https://nanoporetech.com/products/kits


The preparation of a high-quality sequencing library plays an important role in Next-
Generation Sequencing (NGS). The first major step in preparing nucleic acids for NGS is
fragmentation. The most common and effective fragmentation methods can be subdivided
into three classes:

1. Physical fragmentation (are acoustic shearing, sonication, and hydrodynamic shear).
2. Enzymatic fragmentation (DNase I or other restriction endonuclease, non-specific

nuclease, Transposase).
3. Chemical fragmentation (heat and divalent metal cation). This method is used to break

up long RNA fragments, whereas the length of your RNA can be adjusted by
modulating the incubation time.

But also, a PCR amplification of genetic loci of interest can be chosen. Each NGS
approach has its own specific protocol. Available NGS sample preparation kits are:
Illumina, New England BioLabs, KAPA Biosystems, Swift Bioscience, Enzymatics,
BIOO, etc. The principle workflow after fragmentation can be briefly described by the
following working steps, which are also illustrated in a simplified way in Fig. 3.1 (the
numbering of each working step is analog to the numbering in Fig. 3.1):

1. Quantification and profile your isolated DNA or RNA samples. This is one of the most
important steps after sample preparation. For sequencing the samples have to be of a
very good quality, the concentration must be determined, and the fragmentation effi-
ciency must be checked (target size for short-read sequencing is commonly 200bp–
800bp) before you can go any further.

2. Perform End Repair and size selection via AMPure XP Beads (Beckman Coulter
Genomics [7]). This process converts the overhangs resulting from fragmentation into
blunt ends and serves for size selection. End Repair is not performed during RNA-Seq
library preparation.

3. In Terms of RNA-Seq Library Preparation [8].
Depletion of rRNA and fragmentation or polyA-capture or another procedure for
isolating the RNA type of interest (depending on your research question and library
preparation kit you use: https://emea.illumina.com/products/by-type/sequencing-kits/
library-prep-kits.html) is necessary.

4. The RNA fragments obtained must then be transcribed into cDNA for sequencing by
synthesis of the first cDNA strand followed by synthesis of the second cDNA strand.

5. Adenylate 3’-Ends of DNA/cDNA.
A single “A” nucleotide is added to the 3’ ends of the blunt fragments to prevent them

from ligating to one another during the adapter ligation reaction. A corresponding single
“T” nucleotide on the 3’ end of the adapter provides a complementary overhang for
ligating the adapter to the fragment.

6. Adapter Ligation and Size Selection via AMPure XP Beads of DNA/cDNA
Adapter ligation is a crucial step within the NGS library preparation. Adapters are

design with a single “T” nucleotide on the 3’ end to recognize the “A” nucleotide
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overhang (see Step 5) of each DNA/cDNA fragment. One part of the adapter sequence is
complementary to the oligos covering the sequencing flow-cell and thus guarantees
binding and another part is complementary to the later added sequencing primer and

Fig. 3.1 NGS Library preparation workflow for DNA or RNA samples, respectively (source:
# Melanie Kappelmann-Fenzl)
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thus guarantees sequencing of the fragments. You can also ligate multiple indexing
adapters allowing to load more than one sample onto a flow-cell. This short index
enables you to distinguish between all the loaded samples carrying different indexing
adapters. Adapters have a defined length of ~60 bp, hence ~120 bp long fragments can
easily be identified as adapter dimers without any DNA/cDNA insert.

7. Purify Ligation Products (e.g., Pippin™ size selection; https://sagescience.com/
products/pippin-prep/).

This process purifies the products of the ligation reaction on a gel and removes
unligated adapters, as well as any adapters that might have ligated to one another.

8. Enrich DNA/cDNA Fragments and size selection via AMPure XP Beads.
This process uses PCR to selectively enrich those DNA/cDNA fragments that have

adapter molecules on both ends and to amplify the amount of DNA/cDNA in the library.
Additionally, it serves for size selection.

9. Validate Library and normalize and pool libraries.
This procedure is performed for quality control analysis on your sample library and

for quantification. Therefore, a Agilent Technologies Bioanalyzer or TapeStation
(https://www.agilent.com/en/product/automated-electrophoresis) and a Qubit 4 Fluo-
rometer (https://www.thermofisher.com/de/de/home/industrial/spectroscopy-elemen
tal-isotope-analysis/molecular-spectroscopy/fluorometers/qubit/qubit-fluorometer.
html) are used.

This process describes how to prepare DNA/cDNA templates for cluster generation.
Indexed DNA/cDNA libraries are normalized to 10nM, and then pooled in equal
volumes.

Example library preparation protocols for RNA-Seq or ChIP-Seq, respectively, can be
found in the Appendix section (Sect. 13.1).

Take Home Message
• Different research or clinical questions require different library preparation

workflows.
• DNA sequencing approaches require proper fragmentation before library

preparation.
• RNA molecules are not directly sequenced due to their chemical instability and

the difficulty of processing and amplifying single-stranded nucleic acids. Thus,
RNA has to be converted into cDNA (reverse transcription) for sequencing
purpose.

• Quality and quantity determinations are essential within all library preparation
workflows.
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Review Questions

Review Question 1
Why should a final library have a median insert size of ~250–300 bp to support long

paired end 2 � 150 read lengths?

Review Question 2
Which different read-outs can be obtained by different RNA-Seq Library Preparation

methods?

Review Question 3
A crucial factor leading to misrepresentation of data is the bias prevalent in almost all

steps of NGS sample preparation. Discuss a few possible solutions to this kind of bias!

Review Question 4
Graphically illustrate the structure of adapter-lying DNA/cDNA fragments and label

the individual sequence sections of the adapters!

Answers to Review Questions

Answer to Question 1: Otherwise the percentage of adapter contaminated reads
increases;

Answer to Question 2:

Objective Principles of approach

Gene expression Target poly(A) mRNAs (enrich or selectively amplify)

Alternative
splicing

Target exon/intron boundaries by either long-read sequencing (>300 bp)
or paired end sequencing (�2 � 75) and rRNA depletion

miRNA (or small
RNAs)

Target short reads (miRNAs: 18–23 bp) using size selection purification.
piRNAs, snoRNAs, tRNAs are all <100 bps

Answer to Question 3: Bias during amplification of AT- and GC-rich regions: PCR-
free amplification could yield better read distribution and coverage compared to PCR
methods, but would require large quantities of starting DNA material.

PCR bias during library preparation for RNA-Seq can be introduced by the additional
steps to convert RNA to cDNA. KAPA HiFi DNA polymerase can be used for the
amplification step to reduce this kind of bias.
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Answer to Question 4:

Acknowledgements We are grateful to Dr. Ines Böhme (Institute of Biochemistry (Emil-Fischer
Center), Friedrich–Alexander University Erlangen–Nürnberg, Erlangen, Germany) for reviewing this
chapter and Alexander Oliver Matthies (Institute of Biochemistry (Emil-Fischer Center), Friedrich–
Alexander University Erlangen–Nürnberg, Erlangen, Germany) for critically reading this text.

References

1. van Dijk EL, Jaszczyszyn Y, Thermes C. Library preparation methods for next-generation
sequencing: tone down the bias. Exp Cell Res. 2014;322(1):12–20.

2. Head SR, Komori HK, LaMere SA, Whisenant T, Van Nieuwerburgh F, Salomon DR, et al.
Library construction for next-generation sequencing: overviews and challenges. Biotechniques.
2014;56(2):61–4, 6, 8, passim.

3. Sakamoto Y, Sereewattanawoot S, Suzuki A. A new era of long-read sequencing for cancer
genomics. J Hum Genet. 2020;65(1):3–10.

4. Trombetta JJ, Gennert D, Lu D, Satija R, Shalek AK, Regev A. Preparation of Single-Cell
RNA-Seq Libraries for Next Generation Sequencing. Curr Protoc Mol Biol. 2014;107:4–22. 1-17.

5. Jemt A, Salmen F, Lundmark A, Mollbrink A, Fernandez Navarro J, Stahl PL, et al. An automated
approach to prepare tissue-derived spatially barcoded RNA-sequencing libraries. Sci Rep.
2016;6:37137.

6. Jemt A, Salmen F, Lundmark A, Mollbrink A, Navarro JF, Stahl PL, et al. Corrigendum: an
automated approach to prepare tissue-derived spatially barcoded RNA-sequencing libraries. Sci
Rep. 2017;7:41109.

7. Greenwald WW, Li H, Benaglio P, Jakubosky D, Matsui H, Schmitt A, et al. Subtle changes in
chromatin loop contact propensity are associated with differential gene regulation and expression.
Nat Commun. 2019;10(1):1054.

8. Podnar J, Deiderick H, Huerta G, Hunicke-Smith S. Next-Generation Sequencing RNA-Seq
Library Construction. Curr Protoc Mol Biol. 2014;106:4–21. 1-19.

3 Library Construction for NGS 45



NGS Technologies 4
Marius Eisele and Melanie Kappelmann-Fenzl

Contents

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2 Illumina . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3 Ion Torrent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.4 Pacific Bioscience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.5 Oxford Nanopore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.6 NGS Technologies: An Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

What You Will Learn in This Chapter
There are a number of different companies that have developed and improved the
NGS technology immensely in the last 10 years. In this chapter an overview of the
most common technologies and their basic properties shall be given. Furthermore, it
will be shown which technologies can be used for specific scientific or clinical
questions and how they differ in their chemistry and output.
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4.1 Introduction

Since the completion of the human genome project in 2003, amazing progress has been
made in sequencing technologies [1]. The cost per megabase decreased and the number and
diversity of sequenced genomes increased dramatically. Some approaches maximize the
number of bases sequenced in the least amount of time (short-read sequencing), generating
big data enabling a better understanding of complex phenotypes and disease. Alternatively,
other approaches now aim to sequence longer contiguous pieces of DNA (long-read
sequencing), which are essential for resolving structurally complex regions. These and
other strategies are providing researchers and clinicians a variety of tools to investigate
genomes, exomes, transcriptomes, epigenomes in greater depth, leading to an enhanced
understanding of how biological sequence variants lead to phenotypic alterations and thus
the development of various disease patterns [2].

The yearly updates of the Travis Glenn’s Field Guide to Next Generation DNA
Sequencer [3] are a good summary of the state of instrumentation (http://www.
molecularecologist.com/next-gen-fieldguide-2016/).

4.2 Illumina

The Illumina sequencing technologies support a wide range of genetic analysis research
applications, such as:

• Whole-Genome Sequencing: A comprehensive method for analyzing entire genomes.
• Genotyping: Studying variation in genetic sequences.
• Gene Expression and Transcriptome Profiling: Analyzing which genes and transcripts

are expressed in a given sample.
• Epigenetics: Studying heritable changes in gene regulation that occur without a change

in the DNA sequence.

Therefore, Illumina developed the Sequencing by Synthesis (SBS) Technology and
BeadArray Microarray Technology. In this textbook we will focus on SBS.

The NGS massively parallel sequencing technology has revolutionized the biological
sciences. With its ultra-high throughput, scalability, and speed, NGS enables researchers to
perform a wide variety of applications and study biological systems at a level never before
possible.

Today’s complex genomic research questions demand a depth of information beyond
the capacity of traditional DNA sequencing technologies. NGS has filled that gap and

48 M. Eisele and M. Kappelmann-Fenzl

http://www.molecularecologist.com/next-gen-fieldguide-2016/
http://www.molecularecologist.com/next-gen-fieldguide-2016/


becomes an everyday research tool to address these questions [4]. Illumina NGS workflows
include the following basic steps:

• Library Preparation (see Chap. 3)
Libraries for NGS applications can be generated for diverse methods. Which library

preparation workflow to choose depends on your scientific or clinical question and its
relation to the genome, transcriptome, or epigenome of any organism. An overview of
the different Illumina Library Preparation Kits can be found at https://www.illumina.
com/products/by-type/sequencing-kits/library-prep-kits.html (see Chap. 3).

• Cluster Generation
Sequencing templates are immobilized on a flow cell surface designed to present the

DNA in a manner that facilitates access to enzymes while ensuring high stability of
surface-bound template and low non-specific binding of fluorescently labeled
nucleotides. Solid-phase amplification creates up to 1000 identical copies of each single
template molecule in close proximity.

• Sequencing
Illumina sequencing technology is also known as sequencing by synthesis (SBS)

technology. Four fluorescently labeled nucleotides are used to sequence the tens of
millions of clusters on the flow cell surface in parallel. During each sequencing cycle, a
single labeled deoxynucleoside triphosphate (dNTP) is added to the nucleic acid chain
and the nucleotide label serves as a reversible terminator for polymerization. After
removing the fluorescence label of previously attached dNTP another labeled dNTP is
added during a new sequencing cycle. Base calls are made directly from signal intensity
measurements during each cycle.

• Data Analysis
The NextSeq 550/2000, NextSeq 2000, and NovaSeq 6000 Sequencing Systems

generate raw data files in binary base call (BCL) format, requiring conversion to
FASTQ format for use with user-developed or third-party data analysis tools. Illumina
offers bcl2fastq Conversion Software to convert BCL files. bcl2fastq is an included,
standalone conversion software that demultiplexes data and converts BCL files to
standard FASTQ files, which are the starting format for data analysis.

As already described in Chap. 3, the library, which was prepared by random fragmenta-
tion of the DNA or cDNA (in terms of RNA-Seq) sample, followed by 50 and 30 adapter
ligation, PCR amplification, and gel purification (see Fig. 4.1a and Chap. 3). For cluster
generation, the library is loaded onto a flow cell where fragments are captured on a lawn of
surface-bound oligos complementary to the library adapters. Each fragment is then
amplified into distinct, clonal clusters through bridge amplification. When cluster genera-
tion is complete, the templates are ready for sequencing (Fig. 4.1b). The sequencing by
synthesis (SBS) technology uses a proprietary reversible terminator-based method that
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detects single bases as they are incorporated into DNA template strands. As all four
reversible terminator-bound dNTPs are present as single, separate molecules during each
sequencing cycle, natural competition minimizes incorporation bias and greatly reduces
raw error rates. The result is highly accurate base-by-base sequencing that virtually
eliminates sequence context-specific errors, even within repetitive sequence regions and
homopolymers (see Fig. 4.1c). During data analysis and alignment, the newly identified

Fig. 4.1 Next Generation Sequencing Chemistry Overview—Illumina NGS includes four steps: (a)
library preparation, (b) cluster generation, (c) sequencing, and (d) alignment and data analysis.
(source: www.illumina.com)
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sequence reads are aligned to a reference genome. Following alignment, many variations of
analysis are possible, such as single nucleotide polymorphism (SNP) or insertion-deletion
(indel) identification, read counting for RNA methods, phylogenetic or metagenomic
analysis, and more. A graphical overview of the NGS chemistry is depicted in Fig. 4.1.

4.3 Ion Torrent

Unlike Illumina Ion Torrent semiconductor sequencing from Thermo Fisher Scientific does
not make use of optical signals. Instead, they exploit the fact that addition of a dNTP to a
DNA polymer releases an H+ ion.

As in other kinds of NGS, the input DNA or RNA is fragmented to approximately
200bp, adapters are added, and one molecule is placed onto a bead. The molecules are
amplified on the bead by emulsion PCR resulting in millions of different beads with
millions of different fragments. These beads than flow across the semiconductor chip
depositing each bead into a single well. Next the slide is flooded with a single species of
dNTP (one NTP at a time), along with buffers and polymerase. The pH is detected, as each
H+ ion released will decrease the pH. The changes in pH allow to determine if that base,
and how many thereof, was added to the sequence read. The dNTPs are washed away and
the process is repeated cycling through the different dNTP species. The pH change (if any)
is utilized to determine how many bases (if any) were added with each cycle.

If a nucleotide, for example, a C, is added to a DNA template and is then incorporated
into a strand of DNA, a hydrogen ion will be released. The charge from that ion will change
the pH of the solution in the well, which can be detected by a specific ion sensor. This
process happens simultaneously in millions of wells, that is why this technology is often
described as massively parallel sequencing.

The Ion Torrent NGS instruments Genexus, Ion GeneStudio S5, ION PGM Dx, Ion
Chef, and Ion OneTouch2 are essentially the world’s smallest solid-state pH meters, calling
the base, going directly from chemical information to digital information.

4.4 Pacific Bioscience

Single-molecule, real-time (SMRT) sequencing developed by Pacific BioSciences
(PacBio) offers longer read lengths than the second-generation sequencing (SGS)
technologies, making it well-suited for unsolved problems in genome, transcriptome, and
epigenetics research [5].

Introducing the PacBio Sequel II system powered by SMRT sequencing technology the
first step is to isolate DNA or RNA from any sample type. Next a SMRTbell library is
created by ligating hairpin adapters to double stranded DNA creating a circular template.
Primer and polymerase are added to the library that is placed on the instrument for
sequencing. The smart cell contains millions of small, tiny wells called zero-mode
waveguides (ZMWs). A single molecule of DNA is immobilized in a ZMW sequencing
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unit, which provides the smallest available volume for light detection and as the polymer-
ase incorporates fluorescently labeled deoxyribonucleoside triphosphates (dNTPs) light is
emitted. The order of their enzymatic incorporation into a growing DNA strand is detected
via ZMW nanostructure arrays, which allow the simultaneous detection of thousands of
single-molecule sequencing reactions. The replication processes in all ZMWs of a SMRT
cell are recorded by a “movie” of light pulses, and the pulses corresponding to each ZMW
can be interpreted to be a sequence of bases. With this approach nucleotide incorporation is
measured in real time. With the Sequel II system you can optimize your results with two
sequencing modes. You can use the circular consensus sequencing (CCS) mode to produce
highly accurate long reads, known as HiFi reads (Fig. 4.2), or use the continuous long-read
sequencing (CLR) mode to generate the longest possible reads (Fig. 4.3). The average read
length from the PacBio instrument is approximately 2 kb, and some reads may be over
20 kb. Longer reads are especially useful for de novo assemblies of novel genomes as they
can span many more repeats and bases.

4.5 Oxford Nanopore

In essence, Oxford Nanopore is a real-time, high-throughput technology and is specialized
on long-read and single-molecule sequencing. Oxford Nanopore technology consists of
millions of nanoscale pores spanned across an impermeable thin membrane, allowing
massively parallel sequencing. The membrane separates two chambers, both contain an
electrolyte and a single connection to each other via a single nanopore. The applied voltage

Fig. 4.2 Using the circular consensus sequencing (CCS) mode for HiFi READ production to provide
base-level resolution with >99% single-molecule read accuracy for the detection of all variant types
from single nucleotide to structural variants (source: modified according to https://www.pacb.com)
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by two electrodes generates an ion flow from one chamber, through the pore and into the
other chamber.

This way, ions and charged biomolecules like the nucleic acid molecules with their
negative charge can be driven through the pore. The ions act as a motor, allowing the
molecules to be passed through the channel. Consequently, structural features, such as the
bases or the epigenetic modification of the sequences, can be identified by tracing the ionic
current, which is partially blocked by the molecule. Compared to other sequencing
technologies, Oxford Nanopore with its fascinating simple biophysical approach has
resulted in overwhelming academic, industrial, and national interest (Fig. 4.4, [6]).

Historically, the pioneer technology giving rise to the Oxford Nanopore was invented by
Wallace H. Coulter in the late 1940s. Coulter’s technology was using essentially the same
basic chemo-physical principle as Oxford Nanopore, but was used for counting and sizing
blood cells. An automated version of Coulter’s counters is still used in hospitals today.
However, the true reincarnation of the Coulter’s counters was in the 1990s, when the pore
was not of millimeter but of nanometer dimensions, allowing the analysis of ions and
biomolecules instead of whole cells [7].

Properties that an analyte should have: Every analyte molecule consists of multiple ions
that allow it to pass the pore. Furthermore, the pore has to be wide enough (i.e., around
2 nm) and must permit the transport of ions. Ultimately, the flow of ions across the pore
should be able to report on subtle differences between the analytes.

There are two types of pores that are currently being used: protein and solid-state
channels.

Examples of protein channels are toxin α-hemolysin, which is secreted by Staphylococ-
cus aureus, and MspA from Mycobacterium smegmatis. A promising approach for solid-
state channels is the use of TEM (Transmission electron microscopy), combined with a

Fig. 4.3 Using the continuous long-read (CLR) sequencing mode for sequence read lengths in the
tens of kilobases to enable high-quality assembly of even the most complex genomes. With SMRT
sequencing you can expect half the data in reads >50 kb and the longest reads up to 175 kb (source:
modified according to https://www.pacb.com)
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single-layer graphene membrane, however, up to this point (2020) the protein channels are
superior to the solid-state channels [8].

As mentioned earlier, biomolecules that pass through the pore generate the signal by
partially blocking the flow of ions, which can then be translated into the sequence and
epigenetic modifications. Nevertheless, ions lining up at the membrane, together with the
counterions on the opposite site of the membrane, also contribute to the signal, generating
noise. These noise fluctuations increase with bandwidths, which limits the time resolution
in experiments. Apart from shorter measurement times, a common way to compensate the
noise is achieved by using analog or digital low-pass filters. Still, the generation of noise,
introducing error-prone data, might be the biggest struggle Oxford Nanopore Technology
has yet to overcome.

Big advantages of this sequencing technology compared to others on the market are its
portability and price tag. Oxford Nanopores’ smallest device, the MinION is controlled and
powered by an USB cable and is just slightly bigger than a regular USB stick. Depending
on the experiment (DNA or RNA), Oxford Nanopore devices do not need an amplification
step (PCR) prior to the sequencing. Theoretically, the only limitation in sequencing length
is the time and therefore the induced noise. So far, the maximum of usable read length is
around 100 kilobases [9]. However, longer reads result in less accurate data [10].

4.6 NGS Technologies: An Overview

A more detailed overview of the major NGS platforms and their general properties [10] are
listed in the Table in the Appendix section (Table 13.1: Major NGS platforms and their
general properties.)

Fig. 4.4 Graphic representation
of DNA sequencing using a
MinION. A processive enzyme
(green) ratchets DNA into the
pore (blue), causing a change in
ionic current (ions are shown as
black dots) that is determined by
the 6-mer in the central channel
(purple box). The current is
recorded over time (black trace,
bottom right). (modified
according to Muller et al. [6])
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Take Home Message
• The term NGS is used to summarize second- and third-generation sequencing

methods.
• Basically, a distinction can be made between first-generation sequencing (Sanger

sequencing), second-generation sequencing (massively parallel sequencing), and
third-generation sequencing (single-molecule sequencing).

• With regard to sequencing technologies, one also differentiates between short-
and long-read sequencing.

• The different NGS technologies entail different preprocessing and analysis steps
and are applied depending on the scientific or clinical question to the
resulting data.

• Each NGS technology can be characterized by its input template, read length,
error rate, sequencing scheme, visualization method, sequencing principle, and
amount of data output.

Further Reading
• See Table 4.1: Sequencing technologies of some companies and their products.

Table 4.1 Sequencing technologies of some companies and their products

Products Technology
Further
Information

Illumina iSeq 100, MiniSeq, MiSeq,
NextSeq 550, NextSeq
2000, NovaSeq 6000

SBS, short-read https://emea.
illumina.com/

10xGenomics Chromium Controller Linked reads https://www.
10xgenomics.
com/

Thermo
Fisher

Ion GeneStudio S5 series
Ion PGM Dx System

SBS, short-read https://www.
thermofisher.
com/

Pacific
Bioscience

PacBio Sequel Systems Long-read sequencing (Up to
160Gb), Single-Molecule, Real-
Time (SMRT) sequencing

https://www.
pacb.com/

Qiagen GeneReaderPlatform End-to-end NGS workflow,
clinical testing

https://www.
qiagen.com/

Oxford
Nanopore

MinION (Up to 30Gb)
GridION X5 (Up to
150Gb)
PromethION (Up to 9,600
Gb)

Long-read (Up to 2Mb), real-
time nanopore sequencing

https://
nanoporetech.
com/
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Review Questions

1. Which of the following statements regarding the quantity of template for a sequenc-
ing reaction is correct?
A. Excess template reduces the length of a read.
B. Too little template will result in very little readable sequences.
C. Excess template reduces the quality of a read.
D. All of the above.

2. What will heterozygous single nucleotide substitution look like on your
chromatogram?
A. Two peaks of equal height at the same position.
B. One peak twice the height of those around it.
C. Two peaks in the same position, one twice the height of the other.
D. Three peaks of equal height at the same position.

3. Which of the following is important for preparing templates for Next Generation
Sequencing?
A. Isolating DNA from tissue.
B. Breaking DNA up into smaller fragments.
C. Checking the quality and quantity of the fragment library.
D. All of the above.

4. Which of the below sequencing techniques require DNA amplification during the
library preparation step (is considered a 2nd generation sequencing technique)?
A. PacBio AND Oxford Nanopore.
B. Illumina AND Ion Torrent.
C. Illumina AND Oxford Nanopore.
D. PacBio AND Ion Torrent.

5. Which of the below sequencing techniques use(s) fluorescently labeled nucleotides
for identifying the nucleotide sequence of the template DNA strand?
A. Illumina AND PacBio.
B. Illumina AND Oxford Nanopore.
C. PacBio AND Ion Torrent.
D. Only Illumina.
E. All sequencing methods use fluorescently labeled nucleotides for identifying the

nucleotide sequence of the template DNA strand.
6. The below figures illustrate five cycles of Illumina sequencing. The colored spots

represent the clusters on the flow cell. What is the sequence of the DNA template
(cluster) in the top, left corner according to the figure?
A: Yellow
C: Red
G: Blue
T: Green
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7. What is the main enzyme component of Sanger sequencing?
8. Which of the following best describes three cyclic steps in PCR, in the correct order?

A. Denaturing DNA to make it single stranded, primer annealing, synthesis of a new
DNA strand.

B. Primer annealing, denaturing DNA to make it single stranded, synthesis of a new
DNA strand.

C. Synthesis of a new DNA strand, primer annealing, denaturing DNA to make it
single stranded.

9. Which of the following “omes” relates to the DNA sequence of expressable genes?
A. Genome.
B. Exome.
C. Proteome.
D. Metabolome.

10. Targeted sequencing:
A. Allows to focus on specific areas of interest and thus enables sequencing at

much higher coverage levels.
B. Is a sequencing method used within molecular diagnostics.
C. Is equivalent to sequencing tumor panels.
D. This method refers to sequence a novel genome.

11. Library preparation involves generating a collection of DNA fragments for
sequencing. NGS libraries are typically prepared by fragmenting a DNA or RNA
sample and ligating specialized adapters to both fragments ends. Bring the follow-
ing working steps in terms of library preparation in the right order:
A. Perform End Repair and size selection via AMPure XP Beads.
B. Quantification and profile samples.
C. Purify Ligation Products.
D. Validate Library.
E. Adenylate 3’-Ends.
F. Normalize and pool libraries.
G. Enrich DNA Fragments and size selection via AMPure XP Beads.
H. Adapter Ligation and size selection via AMPure XP Beads.

12. Indicate whether each of the following descriptions better applies to Illumina®

sequencing (I), Ion Torrent™ sequencing (T), or both sequencing technologies (B).
– It uses fluorescently labeled nucleotides.
– It uses PCR-generated copies of DNA.
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– It is a second-generation sequencing technology and employs a cyclic wash-and-
measure paradigm.

– It relies on the fidelity of DNA polymerase for its accuracy.
– pH change indicates how many bases were added.

Answers to Review Questions

1D; 2A; 3D; 4B; 5A; 6 GAGAC; 7 Polymerase; 8A; 9B; 10A, B, C; 11 BAEHCGDF;
12 IBBBT;
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What You Will Learn in This Chapter
This chapter describes the minimum hardware and software requirements to analyze
Next-Generation Sequencing data. There are various solutions to set up a compatible
computer environment. Here, the basic installation steps are clearly presented and the
fields of application of some important bioinformatic tools are described.
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5.1 Introduction

Many NGS data analysis programs are written in Java, Perl, C++ or Python. Simply
running these programs does not require programming knowledge, however, it is indeed
helpful. Within the framework of this textbook bioinformatic details are not covered.
Anyway, to be able to perform NGS data analysis familiarity with R is important. For
those of you who are not familiar with R, it is highly recommended to take advantage of
some freely available web resources (e.g. https://www.bioconductor.org/help/course-
materials/2012/SeattleMay2012/).

5.2 Computer Setup for NGS Data Analysis

Next-generation sequencing analysis is a computationally demanding process. Your aver-
age laptop is probably not up to the challenge. Any Linux/Unix-based operating system
will work well, with large servers in mind. Typically, analysis algorithms will be
distributed by researchers in one of the three ways:

• Standalone program to run in a Linux/Unix environment (most common).
• Webserver where you upload data to be analyzed (i.e. Galaxy).
• R software package/library for the R computing environment.

In theory, any computer with enough RAM, hard drive space, and CPU power can be
used for analysis. In general, you will need:

• 16 Gb of RAM Minimum (better to have 96+ Gb).
• 500 Gb of disk space (better to have 10+ Tb of space).
• Fast CPU (better to have at least 8 cores, more the better).
• External storage.

Depending on the type of analysis you want to perform, the required RAM, hard drive
space, and CPU power may vary and for some analyses a conventional laptop is fully
sufficient. If you own a computer or lab server with the aforementioned properties, you can
start over setting up your computer environment. The command line analysis tools that we
demonstrate in this book run on the Linux/Unix operating system. For practicing NGS data
analysis, we will use several software tools in various formats:

• Binary executable code that can be run directly on the target computer.
• Source code that needs to be compiled to create a binary program.
• Programs that require the presence of another programming language like Java, Python,

or Perl.
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Setting up your computer takes a little while and can be a bit tedious, but you only need
to do this once.

5.3 Installation

If you are working with MacOS, you need to change the shell to Bash and install XCode
(App Store) with the Command Line tools package which includes GNU compilers and
many other standard Linux/Unix development tools.

Next, you have to initialize the terminal.

Set up your .bash_profile, by adding the following to the .bash_profile file and .
bashrc file.
.bash_profile:

5 Computer Setup 61



.bashrc file:

We will set up a computer environment using Bioconda (a channel for the Conda
package manager specializing in bioinformatics software; https://bioconda.github.io/).

Hint: Installation steps via command line tool are finished by reopening a new terminal
window!

Open a Terminal and execute the following commands:
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It is also possible to create a “bioinformatic environment” within Bioconda, where all
software tools used for your analysis are “stored,” but you do not have to! For more details
read: https://uoa-eresearch.github.io/eresearch-cookbook/recipe/2014/11/20/conda/.

Due to the fact that we are using our computer only for bioinformatic purposes, we just
add all software tools into the bin folder of miniconda3 and add the path to our .bashrc.

Some other helpful commands:

A list of all available Bioconda software tools can be found at https://bioconda.github.
io/conda-recipe_index.html.

If you want to install some new tools via run

in the terminal.
The following table (Table 5.1) contains the most important and helpful tools to perform

NGS data analysis.
The most time saving and easiest way to download the bioinformatic packages via

Conda is to create a .txt file with all the package names.

Another important tool for Variant discovery based on NGS data is the Genome
Analysis Toolkit. The latest download release can be found here (https://github.com/
broadinstitute/gatk/releases/download/4.1.8.0/gatk-4.1.8.0.zip).
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Table 5.1 Bioinformatics related packages for Linux and Mac OS provided by Bioconda

Bioconda
software
tool Short description Further information

bamtools [1] C++ API & command-line toolkit for
working with BAM data

https://github.com/pezmaster31/
bamtools

bbmap BBMap is a short-read aligner, as well as
various other bioinformatic tools

https://sourceforge.net/projects/
bbmap

BCFtools
[2, 3]

BCFtools is a set of utilities that manipulate
variant calls in the Variant Call Format
(VCF)

https://github.com/samtools/
bcftools

BEDTools
[4, 5]

A powerful toolset for genome arithmetic http://bedtools.readthedocs.org/

bioawk BWK awk modified for biological data https://github.com/lh3/bioawk

blast BLAST+ is a new suite of BLAST tools that
utilizes the NCBI C++ Toolkit

http://blast.ncbi.nlm.nih.gov

bowtie2 [6] Fast and sensitive read alignment
Mapping MCiP/ChIP-Seq data

http://bowtie-bio.sourceforge.net/
bowtie2/index.shtml

bwa [7, 8] The BWA read mapper https://github.com/lh3/bwa

cutadapt Trim adapters from high-throughput
sequencing reads

https://cutadapt.readthedocs.io/

datamash GNUDatamash is a command-line program
which performs basic numeric, textual and
statistical operations on input textual data
files

http://www.gnu.org/software/
datamash

Emboss [9] The European Molecular Biology Open
Software Suite

http://emboss.open-bio.org/

entrez-direct Entrez Direct (EDirect) is an advanced
method for accessing the NCBI’s set of
interconnected databases (publication,
sequence, structure, gene, variation,
expression, etc.) from a Linux/Unix
terminal window

ftp://ftp.ncbi.nlm.nih.gov/entrez/
entrezdirect/versions/13.3.
20200128/README

fastqc A quality control tool for high-throughput
sequence data

http://www.bioinformatics.
babraham.ac.uk/projects/fastqc/

freebayes Bayesian haplotype-based polymorphism
discovery and genotyping

https://github.com/ekg/freebayes

control-freec Copy number and genotype annotation
from whole genome and whole exome
sequencing data

https://github.com/BoevaLab/
FREEC

hisat2 [10] Graph-based alignment of next-generation
sequencing reads to a population of
genomes

https://ccb.jhu.edu/software/hisat2/
index.shtml

htslib C library for high-throughput sequencing
data formats

https://github.com/samtools/htslib

(continued)
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Table 5.1 (continued)

Bioconda
software
tool Short description Further information

minimap2 Experimental tool to find approximate
mapping positions between long sequences

https://github.com/lh3/minimap

perl The Perl programming language interpreter http://www.perl.org/

perl-net-
ssleay

Perl extension for using OpenSSL http://metacpan.org/pod/Net::
SSLeay

picard Java tools for working with NGS data in the
BAM format

http://broadinstitute.github.io/
picard/

readseq Read & reformat biosequences, Java
command-line version

http://iubio.bio.indiana.edu/soft/
molbio/readseq/java/

samtools
[11]

Tools for dealing with SAM, BAM and
CRAM files

https://github.com/samtools/
samtools

seqkit Cross-platform and ultrafast toolkit for
FASTA/Q file manipulation

https://github.com/shenwei356/
seqkit

seqtk Seqtk is a fast and lightweight tool for
processing sequences in the FASTA or
FASTQ format

https://github.com/lh3/seqtk

snpeff Genetic variant annotation and effect
prediction toolbox

http://snpeff.sourceforge.net/

sra-tools Retrieve raw data from NCBI-SRA;
download data files directly

https://github.com/ncbi/sra-tools

Star Mapping RNA-Seq data. Splice aware https://github.com/alexdobin/
STAR

subread High-performance read alignment,
quantification, and mutation discovery

http://subread.sourceforge.net/

trimmomatic A flexible read trimming tool for Illumina
NGS data

http://www.usadellab.org/cms/?
page¼trimmomatic

vt A tool set for manipulating and generating
VCF files

https://genome.sph.umich.edu/
wiki/Vt

wget Free utility for non-interactive download of
files from the Web

https://www.gnu.org/software/
wget/manual/wget.html

Other essential/ helpful software tools

R and
RStudio

Statistical analysis program https://www.rstudio.com/

Homer [12] Basic ChIP Seq analysis: finding peaks/
regions; genome annotation of peaks;
functional annotation; Motif finding, etc.

http://homer.ucsd.edu/homer/

GSEA
[13, 14]

Gene Set Enrichment Analysis http://software.broadinstitute.org/
gsea/index.jsp

GREAT Function prediction of cis-regulatory
regions

http://great.stanford.edu/public/
html/index.php

(continued)
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Once you have downloaded and unzipped the package (named gatk-[version]), you will
find four files inside the resulting directory:

gatk

gatk-package-[version]-local.jar

gatk-package-[version]-spark.jar

README.md

Then export the PATH where you store the GATK package to .bashrc.

where /path/to/gatk is the path to the location

of the gatk executable. Note that the jars must remain in the same directory as gatk for it
to work.

Check if it works:

Next, you have to install R (e.g. https://packages.othr.de/cran/) and RStudio (https://
www.rstudio.com/) and set up the local R library path. If you want to use another location
rather than the default location, for example, ~/local/R_libs/ you need to create the
directory first:

Open R or RStudio and install the package lattice from the console by defining the path
to the newly created R_libs folder.

Table 5.1 (continued)

Bioconda
software
tool Short description Further information

GATK Genome Analysis Toolkit for Variant
Discovery in High-Throughput Sequencing
Data

https://gatk.broadinstitute.org/hc/
en-us

IgV [15–17] Visualization of sequencing reads https://software.broadinstitute.org/
software/igv/

Text Editor Supports working with tab-delimited data
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It is a bit of burden having to type the long string of library path every time. To avoid
doing that, you can create a file .Renviron in your home directory, and add the following
content to the file:

Whenever R is started, the directory ~/R_libs/ is added to the list of places to look for R

packages. To see the directories where R searches for libraries type .

After installation of R and definition of your R_libs folder you can install Bioconductor
(https://www.bioconductor.org/install/).

After installation of BiocManager you can search through all available packages

by typing , and install one or more packages by

.

Next, it is highly recommended to set up an organized file structure. Therefore, the
usage of short and descriptive folder- and filenames should be used (see Chap. 6).
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Take Home Message
• NGS data analyses are computationally intensive.
• Bioconda is a channel for the Conda package manager specializing in bioinfor-

matics software.
• To run other NGS data analysis tools not installed via conda set the path to the

executable files in your *.bashrc.

Further Reading The Biostar Handbook: 2nd Edition.
https://www.biostarhandbook.com/.
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What You Will Learn in This Chapter
This chapter will introduce you in the Linux/Unix file system and how to navigate
your computer environment and file system tree from the terminal. Moreover, you
will become familiar with basic Linux/Unix commands and their purpose and how to
manipulate certain files.
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6.1 Introduction

Most computer users today are familiar with the graphical user interphase (GUI), however,
it has been said that “graphical user interfaces make easy tasks easy, while the command
line interfaces (CLI) make difficult tasks possible.” That is reason enough to spend more
time with the CLI, as we often have to deal with more difficult issues within NGS data
analysis.

When we speak of the command line interface, we actually are referring to the shell,
which is a program that takes keyboard commands and passes them to the operating system
to carry out. Most Linux distributions supply a shell program from the GNU Project called
Bash (bourne-again shell), which is a replacement for sh (the original Unix shell program).
Bioinformatics is a lot about manipulating text files, thus the usage of the command line
interpreter (CLI) or shell is an essential tool. CLI or shell is a program that parses and
executes commands from the user in the terminal. A common command line interpreter
is Bash.

6.2 The Linux/Unix File System

The purpose of this chapter is to introduce you to how files and directories are handled in
Linux/Unix and how to navigate and manipulate your file system from the command line
tool (terminal). If you are opening your terminal (Unix: Applications! Utilities! double-
click Terminal; Linux: Strg + Alt + T or search in Applications/Accessories ! Terminal),
you are placed in your “home” directory, which is than your “present working directory”
(pwd). In your home or another present working directory, you can create files and
subdirectories. The commands that you issue in the terminal at the Unix prompt ($) relate
to the files and folders and resources available from your present working directory.
Understanding the Linux/Unix file system also enables you to use and refer to resources
outside of your current working directory. The Linux/Unix file system is depicted in
Fig. 6.1.

All files are organized in a tree-like structure starting at the root folder /.
Purpose of each of directory:

• usr/bin: Most commands and executable files.
• /dev: Device entries for disks, printers, pseudo-terminals, etc.
• /etc: Critical startup and configuration files.
• /sbin: Commands needed for minimal system operability.
• /home: Default home directories for users.
• /var: System specific data and configuration files.
• /tmp: Temporary files that may disappear between reboots.
• /opt: Optional software packages (not consistently used).
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6.3 The Command Line Tool

NGS analyses are performed in most cases using the terminal (Fig. 6.2). The command line
interpreter Bash will translate and execute commands entered after the prompt ($). A basic
overview of essential Unix/Linux commands that will allow you to navigate a file system
and move, copy, edit files is provided in the Command line Bootcamp (http://korflab.
ucdavis.edu/bootcamp.html) by Keith Bradnam. A beginner level Linux/Unix expertise is
sufficient to get started and to perform the majority of analyses that we cover in this book.

The basic Linux/Unix commands, their meaning and description are depicted in
Table 6.1. Each command is composed of three parts:

• The command.
• Options/ flags.
• Arguments.

/

usr

bin

dev etc sbin home

usr

var tmp opt

Fig. 6.1 Linux/Unix file system

Fig. 6.2 The terminal using the CLI Bash
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Table 6.1 Basic Linux/Unix commands

Help on any Linux/Unix command

man [command] Type man rm to read the manual for the rm command

[command] -h Give short description of command

List a directory

ls [path] It is ok to combine attributes, eg ls -laF gets a long listing
of all files with types

ls [path_1] [path_2] List both [path_1] and [path_2]

ls -l [path] Long listing, with date, size and permissions

ls -a [path] Show all files, including important .dot files that do not
otherwise show

ls -F [path] Show type of each file. “/”¼ directory, “*”¼ executable

ls -R [path] Recursive listing, with all subdirs

ls [path] | more Show listing one screen at a time

Change to directory

cd [dirname] There must be a space between

cd ~ Go back to home directory, useful if you are lost

cd .. Go back one directory

Make a new directory

mkdir [dirname]

Remove a directory

rmdir [dirname] Only works if [dirname] is empty

rm -r [dirname] Remove all files and subdirs. Careful!

Print working directory

pwd Show where you are as full path. Useful if you are lost or
exploring

Copy a file or directory

cp [file1] [file2]

cp -r [dir1] [dir2] Recursive, copy directory and all subdirs

cat[newfile]>>[oldfile] Append newfile to end of oldfile

Move (or rename) a file

mv [oldfile] [newfile] Moving a file and renaming it are the same thing

mv[oldname][newname]

Delete a file

rm [filespec] ? and * wildcards work like DOS should. “?” is any
character; “*” is any string of characters

ls[filespec]rm [filespec] Good strategy: first list a group to make sure it is what is
you think......then delete it all at once

View a text file

more [filename] View file one screen at a time

less [filename] Like more, with extra features

head [filename] Command writes the first ten lines of a file to the screen

(continued)
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Table 6.1 (continued)

Help on any Linux/Unix command

tail [filename] Command writes the last ten lines of a file to the screen

cat [filename] View file, but it scrolls

cat [filename] | more View file one screen at a time

gzcat or zcat [filename] View a gziped file

open[filename/URL name/foldername] To open a file, folder or URL

Edit a text file

gedit [filename] Basic text editor

sort [filename] Sort line of text file

nano [filename] Editing small text files

“Control + X” Exits nano program

Create a text file

cat > [filename] Enter your text (multiple lines with enter are ok) and
press control-d to save

gedit [filename] Create some text and save it

touch [filename] Creating empty files

Compare two files

diff [file1] [file2] Show the differences

sdiff [file1] [file2] Show files side by side

Other text commands

grep ‘[pattern]’ [file] Find regular expression in file

spell [file] Display misspelled words

wc [file] Count words in file

wc -l [file] Count the number of lines in a file

Make an Alias

alias [name]¼‘[command]’ Put the command in ‘single quotes’. More useful in your
.bashrc file

Wildcards and Shortcuts

* Match any string of characters, e.g. page* gets page1,
page10, and page.txt

? Match any single character, e.g. page? gets page1 and
page2, but not page10

[...] Match any characters in a range, e.g. page[1-3] gets
page1, page2, and page3

~ Short for your home directory, e.g. cd ~ will take you
home, and rm -r ~ will destroy it

. The current directory

.. One directory up the tree, eg ls ..

Pipes and Redirection (You pipe a command to another command, and
redirect it to a file.)

[command] > [file] Redirect output to a file, e.g. ls > list.txt writes directory
to file

(continued)
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Table 6.1 (continued)

Help on any Linux/Unix command

[command] >> [file] Append output to an existing file, e.g. cat update >>
archive adds update to end of archive

[command] < [file] Get input from a file, eg sort < file.txt

[command] < [file1] > [file2] Get input from file1, and write to file2, eg sort < old.txt
> new.txt sorts old.txt and saves as new.txt

[command] | [command] Pipe one command to another, e.g. ls | more gets
directory and sends it to more to show it one page at a
time

System info

date Show date and time

df Check system disk capacity

du Check your disk usage and show bytes in each directory

du -h Check your disk usage in a human readable format

printenv Show all environmental variables

uptime Find out system load

w Who is online and what are they doing?

top Real time processor and memory usage

Others

clear Clear the terminal window

gzip or gunzip GNU zip or unzip a file

sudo Execute commands with administrative privileges

“Press up” To retrieve previous commands

“Press down” To go back

“/” Is “root”

“~” Is “HomeDir”

“|” Pipe command to chain programs together

“Press TAB key” Autocompletion of commands, files and directory names

q Exit

top Displays active processes. Press q to quit

Changing access rights

chmod Changing a file mode

u User

g Group

o Other

a all

r read

w write (and delete)

x execute (and access directory)

+ add permission

� take away permission
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Note that multiple flags can be set at once, e.g. instead of the long version

.

Executing commands from the terminal also needs certain filenames. Spaces within
filenames are not accepted, as well as special characters and you always should use the
specific file extension:

Good filenames: project.txt my_big_program.c fred_dave.doc

Bad filenames: project my big program.c fred & dave.doc

Take Home Message
• The command line is a powerful tool to navigate your file system, to explore and

manipulate certain files.
• Commands have various additional options, which are documented for each kind

of command (help or man).
• Different commands can be linked by building pipes via “|”.
• Many NGS data analysis and text processing tasks can be achieved via a combi-

nation of simple UNIX programs piped together (“command line scripts”).

Further Reading Mark G. Sobell. 2009. Practical Guide to Linux Commands, Editors,
and Shell Programming, (2nd. ed.). Prentice Hall PTR, USA.

William E. Shotts. 2019. The Linux command line: a complete introduction, (2nd ed.).
No Starch Press, USA.

The Biostar Handbook: 2nd Edition.
https://www.biostarhandbook.com/.

Review Questions

1. What are the main options for getting help about a particular command?
2. What are the options/ arguments in the call “ls -l –t”? What does it do?
3. Which options of the ls command can be used to list files sorted by their size? What

additional option can be used to control that it works?
4. How can you search for a certain command in your shell History?
5. How can you combine different commands?

6 Introduction to Command Line (Linux/Unix) 77

https://www.biostarhandbook.com/


Answers to Review Questions

Answer to Question 1: --h or -h parameter of most programs; use the manual command
man; use the info command -a more extensive documentation or Google it.

Answer to Question 2: List long listing format, sort by modification time.pt

Answer to Question 3: ls -l -S -s. 4. Ctrl R. 5. “Piping” |.

Acknowledgements We are grateful to Dr. Philipp Torkler (Senior Bioinformatics Scientist,
Exosome Diagnostics a Bio-Techne brand, Munich, Germany) for critically reading this text. We
thank for correcting our mistakes and suggesting relevant improvements to the original manuscript.
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What You Will Learn in This Chapter
Next-generation sequencing experiments produce millions of short reads per sample
and the processing of those raw reads and their conversion into other file formats lead
to additional information on the obtained data. Various file formats are in use in order
to store and manipulate this information. This chapter presents an overview of the file
formats FASTQ, FASTA, SAM/BAM, GFF/GTF, BED, and VCF that are com-
monly used in analysis of next-generation sequencing data. Moreover, the structure
and function of the different file formats are reviewed. This chapter explains how
different file formats can be interpreted and what information can be gained from
their analysis.

7.1 Introduction

Analyzing NGS data means to handle really big data. Thus, one of the most important
things is to store all these “big data” in appropriate data formats to make them manageable.
The different data formats store in many cases the same type "of information, but not all
data formats are suitable for all bioinformatic tools. Always keep in mind that bioinformatic
software tools do not transform data into answers, they transform data into other data
formats. The answers result from investigating, understanding, and interpreting the various
data formats.

7.2 File Formats

7.2.1 Basic Notations

• Fragment: The molecule to be sequenced.
• Read: One sequenced part of a biological fragment (mate I or mate II).
• Mate I: The sequence of the 5’end of a paired-end sequencing approach.
• Mate II: The sequence of the 3’end of a paired-end sequencing approach.
• Sequencing depth: The number of all the sequences, reads, or bases represented in a

single sequencing experiment divided by the target region.
• Sequencing Coverage:

The theoretical redundancy of coverage (c) is described as LN/G, where L is the read
length, N is the number of reads, and G is the haploid genome length [1].

Sequencing coverage can be calculated in different ways depending on reference
points (whole genome, one locus, or one position in the genome):

1. One locus: # of bases mapping to the locus/size of locus.
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2. One position: # of reads overlapping with one position.
3. Whole genome: # of sequenced bases/size of genome.

The necessary sequencing coverage strongly depends on the performed sequencing method
(WGS, WES, RNA-Seq, ChIP-Seq), the reference genome size, and gene expression
patterns. Recommendations of sequencing coverage regarding the sequencing method
are listed in Table 7.1 (“Sequencing Coverage”. illumina.com. Illumina education.
Retrieved 2017-10-02.).

Review Question 1

What coverage of a human genome will one get with one lane of HiSeq3000 in paired-
end Sequencing mode (2x75), if 300M clusters were bound (human genome size: 3.2
GB)?

7.2.2 FASTA

FASTA format is a text-based format for representing either nucleotide sequences or
peptide sequences, in which nucleotides or amino acids are represented using a single-
letter code. The simplicity of FASTA format makes it easy to manipulate and parse using
text-processing tools and scripting languages like R, Python, Ruby, and Perl. A sequence in
FASTA format begins with a single-line description, followed by lines of sequence data.
The so-called defline starts with a “>” symbol and can thus be distinguished from the
sequence data. A more detailed description of the FASTA format and its purpose within
BLAST search can be found on the NCBI website https://blast.ncbi.nlm.nih.gov/Blast.cgi?
CMD¼Web&PAGE_TYPE¼BlastDocs&DOC_TYPE¼BlastHelp.

FASTA format example:

Table 7.1 Sequencing
coverage recommendations for
some common sequencing
methods

Sequencing method Recommended coverage

Whole genome sequencing ~30� to 50� (for human)

Whole-exome sequencing ~100�
RNA sequencing ~20–50 Mio. reads/sample

ChIP-Seq ~100�

7 NGS Data 81

http://illumina.com
https://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Web&PAGE_TYPE=BlastDocs&DOC_TYPE=BlastHelp
https://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Web&PAGE_TYPE=BlastDocs&DOC_TYPE=BlastHelp
https://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Web&PAGE_TYPE=BlastDocs&DOC_TYPE=BlastHelp
https://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Web&PAGE_TYPE=BlastDocs&DOC_TYPE=BlastHelp
https://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Web&PAGE_TYPE=BlastDocs&DOC_TYPE=BlastHelp


7.2.3 FASTQ

Once you have sequenced your samples of interest you get back your sequencing data in a
certain format storing the reads information. Each sequencing read (i.e., paired-end) is
structured as depicted in Fig. 7.1. All reads and their information are stored in a file format
called FASTQ.

Sequencing facilities often store the read information in *.fastq or unaligned *.bam files.
The latter can be transformed in a *.fastq file via BEDTools:

The FASTQ format is a text-based standard format for storing both, a DNA sequence
and its corresponding quality scores from NGS. There are four lines per sequencing read.

FASTQ format example:

 The first line starts with '@', followed by the label.

 The second line represents the sequence of the read.

 The third line starts with '+‘, serving as a separator.

 The fourth line contains the Q scores (quality values for sequence in line 2)
represented as ASCII characters

Fig. 7.1 Sequencing read (ends of DNA fragment for mate pairs)
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HWI-K00288_BSF_0436 Instrument name/ID

4 Flowcell lane

1101 Tile number within the flowcell lane

10003 “x”-coordinate of the cluster within the tile

10669 “y”-coordinate of the cluster within the tile

The Phred Score represents the probability that the corresponding base call is incorrect
[2].

The ASCII table and an example for Phred Score calculation are depicted in Fig. 7.2.
Qualities are based on the Phred scale and are encoded: Q ¼ �10*log10(Perr).
The formula for getting Phred quality from encoded quality is: Q ¼ ascii(char) �33.

Review Question 2

Determine the Phred-Scores for the following quality values in a FASTQ file format:
#4¼DBDDDHFHFFHIGHIII.

7.2.4 SAM

SAM stands for Sequence Alignment/Map format. As the name suggests, you get this file
format after mapping the fastq files to a reference genome. It is a TAB-delimited text format

Fig. 7.2 ASCII table and Phred Score calculation
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consisting of a header section, which is optional but strongly encouraged to include, and an
alignment section. The header lines start with “@,” while alignment lines do not.

Each alignment line has 11 mandatory fields for essential alignment information such as
mapping position, and also has variable number of optional fields for flexible or aligner
specific information [3] (Fig. 7.3, Table 7.2).

In the alignment section of a SAM file, CIGAR (Concise Idiosyncratic Gapped Align-
ment Report) is one of the 11 mandatory fields of each alignment line. The CIGAR string is
a sequence of base lengths and associated operations. CIGAR string is used to indicate
whether there is a match or mismatch between the bases of read and the reference sequence.
It is quite useful for detecting insertions or deletions (Indels). The CIGAR string is read
based and there are two different versions. In the following example POS5 indicates the
starting position of read alignment to the reference.

Example:

RefPos:       1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Reference: C C A T A C T G A A C T G A C T A

Read: A C T A G A A T G G C T

POS: 5: Indicating the starting position of read alignment on the reference.

Version 1
The CIGAR string of this version does not distinguish between a match and a mismatch

(see Position 14 in the example above). Consequently, to calculate the number of errors for
an alignment, the CIGAR string and the MD-TAG (Optional field) are mandatory.

Note: AMD-TAG String encodes mismatched and deleted bases and is reference-based.
The MD-TAG string MD : Z: 7^C5 means from the leftmost reference base in the

Fig. 7.3 SAM format specification of a 50 bp single-end sequencing approach
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alignment, there are 7 matches followed by a deletion from the reference, whereas the
deleted base is C and the last 5 bases are matches.

Example CIGAR: 3M1I3M1D5M

3M 3 matches/mismatches
1I 1 insertion
3M 3 matches/mismatches
1D 1 deletion
5M 5 matches/mismatches

Version 2 (new Version)

Table 7.2 Description of TAGs in the SAM file format depicted in Fig. 7.3

@HD The header line; VN: Format version; SO: Sorting order of alignments.

@SQ Reference sequence dictionary.

@RG Read group information.

@PG Program ID: Program record identifier; VN: Program version; CL: Command 

line

QNAME Query template name. Used to group/identify alignments that are together, like 

paired alignments or a read that appears in multiple alignments.

FLAG Bitwise Flag. Bitwise set of information describing the alignment by answering 

multiple questions. Decoding of the bitwise flag can be performed here: 

http://broadinstitute.github.io/picard/explain-flags.html 

RNAME Reference sequence name (e.g. Chromosome name).

POS Leftmost position of where this alignment maps to the reference.

For SAM, the reference starts at 1, so this value is 1-based.

[For BAM the reference starts at 0, so this value is 0-based.] 

MAPQ Mapping quality.

CIGAR String indicating alignment information that allows the storing of clipped.

Old Version: 

RNEXT The reference sequence name of the next alignment in this group.

PNEXT Leftmost position of where the next alignment in this group maps to the 

reference.

TLEN Length of this group from the leftmost position to the rightmost position.

SEQ The query sequence for this alignment.

1

2

3

4

5

6

7

8

9

10

11 QUAL Query quality for this alignment (one for each base in the query sequence).

Optional field Additional optional information is also contained within the alignment in in 

TAG:TYPE:VALUE format.
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Here the CIGAR string does distinguish between matches and mismatches, thus the
MD-TAG is not mandatory. In general, a CIGAR string is made up of <integer> and <op>,
where <op> is an operation specified as a single character (Table 7.3).

Example CIGAR: 3¼1I3¼1D2¼1X2¼

7.2.5 BAM

A BAM file (*.bam) is the compressed binary version of a SAM file. BAM files are binary
files, which mean they cannot be opened like text files; they are compressed and can be
sorted and/or indexed.

They consist of a header section and an alignment section. The header contains
information about the entire file, such as sample name and length. Alignments contain
the name, sequence, and quality of a read. Alignment information and custom tags can also
be found in the alignment section.

The following table shows the information for each read or read pair depicted in the
alignment section:

RG Read group, which indicates the number of reads for a specific sample

BC Barcode tag, indicating the read-associated demultiplexed sample ID

SM Single-end alignment quality

AS Paired-end alignment quality

NM Edit distance tag, recording the Levenshtein distance between read and reference

XN Amplicon name tag, recording the amplicon tile ID associated with the read

BAM files can also have a companion file, called an index file. This file has the same
name, suffixed with *.bai. The BAI file acts like an external table of contents, and allows
programs to jump directly to specific parts of the BAM file without reading through all of
the sequences. Without the corresponding BAM file, your BAI file is useless, since it does
not actually contain any sequence data.

Table 7.3 CIGAR string for error calculation (optional field: NM:i:<#>)

<#> Operator CIGAR string description (<#> means number of)

<#>¼ <#> of matches

<#>X <#> of mismatches

<#>D <#>Deletions (gap in the sequencing read)

<#>I <#>Insertions (gap in the reference sequence)

<#>N <#> skipped region (gap in the sequencing read)

S Soft clipping (clipped sequences present in SEQ)

H Hard clipping (clipped sequences not present in SEQ)
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Thus, if you want to visualize your BAM file, in the IGV Browser [4–6], for example,
you need the corresponding BAI file to do so. Another possibility to visualize your BAM
alignment file is to upload your files to the bam.iobio online tool (https://bam.iobio.io/).

To convert a SAM file format into a BAM file format you can use samtools and then sort
your obtained BAM file by coordinates. Often these steps are already included in your
mapping job, if not, you can easily run the following commands on your SAM file to do so:

7.2.6 GFF/GTF

GFF stands for General Feature Format and GTF for Gene Transfer Format. Both are
annotation files. An annotation can be thought of as a label applied to a region of a
molecule. The GFF/GTF formats are 9 column tab-delimited formats. Every single line
represents a region on the annotated sequence and these regions are called features.
Features can be functional elements (e.g., genes), genetic polymorphisms (e.g., SNPs,
INDELs, or structural variants), or any other annotations. Each feature should have a type
associated. Examples of some possible types are: SNPs, introns, ORFs, UTRs, etc. In the
GFF format both the start and the end of the features are 1-based.

The GTF format is identical to the second version of GFF format. In terms of the 3rd
version GFF format the first eight GTF fields are the same, but the layout of the 9th (last)
column of the GTF is different. The feature field is the same as GFF, with the exception that
it also includes the following optional values: 5’UTR, 3’UTR, inter, inter_CNS, and
intron_CNS. The group field has been expanded into a list of attributes. Each attribute
consists of a type/value pair. Attributes must end in a semi-colon, and be separated from
any following attribute by exactly one space.

The attribute list must begin with the two mandatory attributes:

• gene_id value—A globally unique identifier for the genomic source of the sequence.
• transcript_id value—A globally unique identifier for the predicted transcript.

TAB-separated standard GTF columns are:
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Column
# Content Values/Format

1 Chromosome name chr
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,
X,Y,M] or GRC accession a

2 Annotation source [ENSEMBL,HAVANA]

3 Feature type [gene,transcript,exon,CDS,UTR,start_codon,stop_codon,
Selenocysteine]

4 Genomic start location Integer-value (1-based)

5 Genomic end location Integer-value

6 Score (not used) .

7 Genomic strand [+,�]

8 Genomic phase (for
CDS features)

[0,1,2,.]

9 Additional information
as key-value pairs

see https://www.gencodegenes.org/pages/data_format.
html

GTF/GFF files, as well as FASTA files can be downloaded from databases like
GENCODE (https://www.gencodegenes.org/), ENSEMBL (https://www.ensembl.org/
downloads.html), UCSC (http://hgdownload.cse.ucsc.edu/downloads.html), etc. You
need those file formats for generation of a genome index together with the corresponding
FASTA file of the genome as it is described earlier in this Chapter in Sect. 7.2.2.

A more detailed description about GFF/GTF file formats can be found on https://www.
ensembl.org/info/website/upload/gff.html and many other websites, which make these
available for download.

Review Question 3

Why do we have to download *.fa and *.gtf/*.gff of a certain genome of interest?

7.2.7 BED

The BED format provides a simpler way of representing the features in a molecule. Each
line represents a feature in a molecule and it has only three required fields: name (of
chromosome or scaffold), start, and end. The BED format uses 0-based coordinates for the
starts and 1-based for the ends. Headers are allowed. Those lines should be preceded by #
and they will be ignored.

The first three columns in a BED file are required, additional columns are optional [7, 8].
If you display the first lines of a BED file in the terminal, it looks like this:
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For further information about BED files see /https://www.ensembl.org/info/website/
upload/bed.html/.

The GFF/GTF/BED formats are the so-called interval formats that retain only the
coordinate positions for a region in a genome. A genome interval sequencing data format
can describe more or less all genetic structures, alterations, variants, etc.:

• Genes: exons, introns, UTRs, promoters
• Conservation
• Genetic variation
• Transposons
• Origins of replication
• TF binding sites
• CpG islands
• Segmental duplications
• Sequence alignments
• Chromatin annotations
• Gene expression data
• And many more

Due to the fact, that we are handling intervals, many complex analyses can be reduced to
genome arithmetic. Sounds complicated, but actually all you need are some basic mathe-
matical operations like addition, subtraction, multiplication, and division. Therefore, some
very clever bioinformaticians developed a tool for genome “calculations”—BEDTools
(https://bedtools.readthedocs.io/en/latest/). With this tool you can easily answer the fol-
lowing questions by comparing two or more BED/BAM/VCF/GFF files (Fig. 7.4):

• Which gene is the closest to a ChIP-seq peak?
• Is my latest discovery novel?
• Is there strand bias in my data?
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• How many genes does this mutation affect?
• Where did I fail to collect sequence coverage?
• Is my favorite feature significantly correlated with some other feature?

To ensure a safe handling with the program the following tutorial is recommended:
http://quinlanlab.org/tutorials/bedtools/bedtools.html.

7.2.8 BedGraph

The BedGraph (*.bg) format is based on the BED format with a few differences and allows
display of continuous-valued data in track format. This display type is useful for probability
scores and transcriptome data. The data are preceded by a track definition line, which adds
a number of options for controlling the default display of this track. The fourth column of
this file format provides information about regions of the genome with sufficient read
coverage [9]. Thus, after converting this format into a bigWig (a binary indexed version) it
is suitable for visualizing sequencing data in the UCSC Genome Browser (https://genome.
ucsc.edu/).

Fig. 7.4 BEDTools commands and their results by comparing to different samples
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7.2.9 VCF

The VCF (Variant Call Format) contains information about genetic variants found at
specific positions in a reference genome. The VCF header includes the VCF file format
version and the variant caller version. The header lists the annotations used in the
remainder of the file. The VCF header includes the reference genome file and BAM file.
The last line in the header contains the column headings for the data lines (Fig. 7.5) [10].

VCF File Data Lines—Each data line contains information about a single variant. VCF
Tools is a program designed for working with VCF files and can be used to perform the
following operations on VCF files:

• Filter out specific variants.
• Compare files.
• Summarize variants.
• Convert to different file types.
• Validate and merge files.
• Create intersections and subsets of variants.

For example:
Each data line contains an information about a certain position in the genome. The

example above shows:

1. A SNP (G!A) with a quality of 29.
2. A possible SNP (T!A) that has been filtered out because its quality is below 10.
3. A site at which two alternate alleles are called.
4. A site that is called monomorphic reference (i.e., with no alternate alleles).
5. A microsatellite with two alternative alleles, one a deletion of 2 bases (TC), and the

other an insertion of one base (T).

Fig. 7.5 The general structure of VCF format (modified according to https://samtools.github.io/hts-
specs/VCFv4.2.pdf)
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You can have a look at a generated VCF and source file (i.e. *.bam) in the IGV Browser
[4–6]. You can find further information on VCF files in Chap. 10 and at https://samtools.
github.io/hts-specs/VCFv4.2.pdf.

7.2.10 SRA (Sequence Read Archive)

The Sequence Read Archive (SRA) is a bioinformatics database from NCBI (National
Center for Biotechnology Information) that provides a public repository for sequencing
data, generated by high-throughput sequencing. The SRA-toolkit (https://github.com/ncbi/
sra-tools) is needed to download the data [11].

The following command can be used to download an SRA file of a paired-end
sequencing experiment and to store mate I in *_I.fastq and mate II in *_II.fastq. The –

gzip option is used to minimize the size of the two fastq files.

In terms of a single-end sequencing experiment you would type:

Review Question 4

Find the sample with the accession SRR10257831 from the Sequence Read Archive and
find out the following information:

• Which species?
• Genome or transcriptome?
• What sequencing platform was used?
• What read length?
• Was it a single-end or paired-end sequencing approach?

7.3 Quality Check and Preprocessing of NGS Data

7.3.1 Quality Check via FastQC

FASTQ files (see Sect. 7.2.3) are the “raw data files” of any sequencing application, that
means they are “untouched.” Thus, this file format is used for Quality Check of sequencing
reads. The Quality Check procedure is commonly done with the FastQC tool written by
Simon Andrews of Babraham Bioinformatics (https://www.bioinformatics.babraham.ac.
uk/projects/fastqc/). FastQC and other similar tools are useful for assessing the overall
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quality of a sequencing run and are widely used in NGS data production environments as
an initial QC checkpoint [12]. This tool provides a modular set of analyses which you can
use to give a quick impression of whether your data has any problems of which you should
be aware before doing any further analysis.

The main features of FastQC are:

• Import of data from *.bam, *.sam, or *.fastq files (any variant).
• Providing a quick overview to tell you in which areas there may be problems. In a

perfect world your FastQC report would look like this:

Basic Statistics
Per base sequence quality
Per tile sequence quality
Per sequence quality scores
Per base sequence content
Per sequence GC content
Per base N content
Sequence Length Distribution
Sequence Duplication Levels
Overrepresented sequences
Adapter Content

But unfortunately, we do not live in a perfect world and therefore it will rarely happen
that you receive such a report. FastQC reports include summary graphs and tables to
quickly assess your data.

You can run the FastQC program from the terminal

.
On the top of the obtained FastQC HTML report a summary of the modules which were

run, and a quick evaluation of whether the results of the module seem entirely normal
(green tick), slightly abnormal (orange triangle), or very unusual (red cross) is shown.

In detail you will get graphs of all the modules mentioned above, which give you the
information of your input data quality:

7.3.1.1 The Basic Statistics Module
This module represents simple information about input FASTQ file: its name, type of
quality score encoding, total number of reads, read length, and GC content. Including:
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• Filename: The original filename of the file which was analyzed.
• File type: Says whether the file appeared to contain actual base calls or colorspace data

which had to be converted to base calls.
• Encoding: Says which ASCII encoding of quality values was found in this file.
• Total Sequences: A count of the total number of sequences processed. There are two

values reported, actual and estimated.
• Filtered Sequences: If running in Casava mode sequences flagged to be filtered will be

removed from all analyses. The number of such sequences removed will be reported
here. The total sequences count above will not include these filtered sequences and will
the number of sequences actually used for the rest of the analysis.

• Sequence Length: Provides the length of the shortest and longest sequence (long-read
sequencing) in the set. If all sequences are the same length, only one value is reported
(short-read sequencing).

• %GC: The overall %GC of all bases in all sequences.

7.3.1.2 Per Base Sequence Quality
This box-and-whisker plot shows the range of quality values (Phred-Scores; see Sect.
7.2.3) across all bases at each position in the FASTQ file.

The central red line is the median value, the yellow box represents the inter-quartile
range (25–75%), the upper and lower whiskers represent the 10% and 90% points, and the
blue line represents the mean quality.

On the x-axis the bases 1–10 are reported individually, then the bases are summarized in
bins. The number of base positions binned together depends on the length of the read, thus
shorter reads will have smaller windows and longer reads larger windows. The y-axis
depicts the Phred-Scores.

Often you will see a decreasing quality with increasing base position (Figs. 7.6 and 7.7).
This effect lies in the sequencing by synthesis technology of Illumina and is called phasing.
During each sequencing cycle chemicals that include variants for all four nucleotides are
washed over the flow cell. The nucleotides have a terminator cap so that only 1 base gets
incorporated. After the detection of the fluorescence signal the terminator cap is removed
and the next cycle can start. Accordingly, a synchronous sequencing of DNA fragments in
each cluster by expressing specific fluorescence signals is guaranteed (see Sect. 4.2). The
main reason for the decreasing sequence quality is that the blocker of a nucleotide is not
correctly removed after signal detection (phasing) and thus lead to light pollution during
signal detection. This error occurs more often over time and thus with an increasing read
length.

7.3.1.3 Per Tile Sequence Quality
The Per tile Sequence Quality Graph graph only appears in your FastQC report if you are
using an Illumina library. The original sequence identifiers are retained encoding the
flowcell tile from which each read came (Fig. 7.8). Reasons for seeing errors on this plot
could be transient problems such as bubbles going through the flow cell, or there could be
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more permanent problems such as smudges on the flowcell or debris inside the flow cell
lane.

7.3.1.4 Per Sequence Quality Scores
This plot illustrates the total number of reads versus the mean sequence quality score over
each full-length read and allows to see if a subset of your sequences has an universally poor
quality (Fig. 7.9). For further data analysis steps only a small percentage of the total
sequences should show a low quality (Fig. 7.10).

Fig. 7.8 Per Tile Sequence Quality. Schematic representation of a tile (left) and FastQC output
(right). (source: https://www.bioinformatics.babraham.ac.uk)
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Fig. 7.9 Bad per sequence quality score. (source: https://rtsf.natsci.msu.edu/)
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7.3.1.5 Per Base Sequence Content
The plots below represent the percent of bases called for each of the four nucleotides (A/T/
G/C) at each position across all reads in the FASTQ file. Again, the x-axis is not uniform as
described for Per base sequence quality (see Sect. 7.3.1.2). In a random sequencing library,
you would expect that there would be almost no difference between the different bases of a
sequence run, so the lines in this plot should run parallel to each other. If strong biases are
detected which change in different bases this can usually be associated with a contamina-
tion of your library with overrepresented sequences, like clonal reads or adapters. Note that
in DNA-Seq libraries the proportion of each base remains relatively constant over the
length of a read (Fig. 7.11); however, most RNA-Seq libraries show a not uniform
distribution of bases for the first 10–15 nucleotides. This is normal and expected (Fig.
7.12).

7.3.1.6 Per Base GC Content
The per base GC content plots the GC content of each base position in a file. In a random
library the line in this plot should run horizontally. A consistent bias across all bases
indicates that the original library was sequence biased or indicates a systematic problem
during the sequencing run. A GC bias changing in different bases rather indicates a
contamination with overrepresented sequences.
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Fig. 7.10 Good per sequence quality score. (source: https://rtsf.natsci.msu.edu/)
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7.3.1.7 Per Sequence GC content
This plot illustrates the number of reads versus the GC content per read in percent. In terms
of DNA sequencing all reads should form a normal distribution and the peak should be
positioned at the mean GC content for the sequenced organism. In RNA sequencing
approaches there may be a greater or lesser distribution of mean GC content among
transcripts as it is depicted in Fig. 7.13. A shifted normal distribution indicates some
systematic bias independent of base position.

7.3.1.8 Per Base N Content
This plot depicts the percentage of bases at each position or bin in a read with no base call
(“N”). If the curve of the graph rises at any position noticeably above zero indicates a
problem during the sequencing run. The report depicted in Fig. 7.14 the sequencing
instrument was unable to call a base for round about 20% of the reads at position 29. In
most cases a low proportion of Ns appear near the end of a sequence.

7.3.1.9 Sequence Length Distribution
In terms of short-read sequencing fragments of uniform length should be generated,
depending on your sequencing settings (50 bp, 75 bp, 100 bp, 150 bp). However, this
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Fig. 7.13 Per sequence GC content of RNA library. (source: https://rtsf.natsci.msu.edu)
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length can of course change after trimming sequences from the end due to poor quality base
calls or adapter contamination (see Sect. 7.3.2). If you performed long-read sequencing,
you will obtain a distribution of various read lengths, which means some reads are shorter,
most reads have an enriched size distribution, and some are longer.

7.3.1.10 Sequence Duplication Levels
There are two sources of duplicate reads: PCR duplication due to biased PCR enrichment
or really overrepresented sequences such as very abundant transcripts in an RNA-Seq
library. PCR duplicates misrepresent the true proportion of sequences in your starting
material, whereas really overrepresented sequences do faithfully represent your input.
Thus, in DNA-Seq nearly 100% of your reads should be unique (Fig. 7.15), in RNA-Seq
duplicate reads of highly abundant transcripts will be observed, however the duplication is
normal in this case (Fig. 7.16).
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Fig. 7.14 Per base N content. (source: https://rtsf.natsci.msu.edu)
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7.3.1.11 Overrepresented Sequences
In a random library it is expected that most sequences occur only once in the final set. This
module lists all sequences which appear more often than expected. Finding that a certain
sequence is overrepresented either means that it is highly biologically relevant, or that the
library is contaminated. For each detected overrepresented sequence, the program looks for
matches in a database of common contaminants and will report the best hit it finds. Often
adapter sequences are detected as overrepresented reads. This can occur if you use a long-
read length and some of the library inserts are shorter than the read length resulting in read-
through to the adapter at the 3’ end of the read. How to remove adapter sequences is
described in Sect. 7.3.2.

7.3.2 Preprocessing of NGS Data-Adapter Clipping

If you detected an adapter contamination in your FastQC output file, it is highly
recommended to remove the adapter sequences from your sequences in the fastq file.
Therefore, the package cutadapt can be used, which we have already installed by
miniconda3. First you have to find the correct adapter sequence from the “Illumina
Costumer Sequence Letter” (https://support.illumina.com/content/dam/illumina-support/
documents/documentation/chemistry_documentation/experiment-design/illumina-adapter-
sequences-1000000002694-11.pdf).

The basic usage of cutadapt is:

For paired-end reads:

Moreover, you can also perform quality trimming with sequences depicting a bad phred

score. This can be done with the additional option to trim low-quality bases

from 5’ and/or 3’ ends of each read before adapter removal. Applied to both reads if data is
paired. If one value is given, only the 3’ end is trimmed. If two comma-separated cutoffs
are given, the 5’ end is trimmed with the first cutoff, the 3’ end with the second.

Find some more options in terms of the command cutadapt by .

Another tool for adapter trimming or removal of low-quality bases is .
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Take Home Message
• The different sequence related formats include different information about the

sequence.
• SRA is the file format in which all NCBI SRA content is provided.
• NGS sequence text files should be stored compressed to save up hard drive space.
• Quality Check of your raw reads is an essential step before further analysis.
• If any adapter contamination or low-quality bases at the end of your obtained

sequencing reads are detected by the Quality Check tool, they should be removed.

Further Reading

• Sequence Read Archive Submissions Staff. Using the SRA Toolkit to convert *.sra files
into other formats. In: SRA Knowledge Base [Internet]. Bethesda (MD): National
Center for Biotechnology Information (US); 2011-. Available from: https://www.ncbi.
nlm.nih.gov/books/NBK158900/

Answers to Review Questions:

Answer to Question 1: whole genome: [# of sequenced bases] / [size of genome]
300M x 2 x 100ð Þ

3:2 GB ¼ 45 x 109

3:2 x 109
¼ 14.0625 (coverage)

Answer to Question 2: Homo sapiens, transcriptome, Illumina HiSeq2500, 51,
paired-end.

Answer to Question 3: 2 19 28 35 66 35 35 35 39 37 39 37 37 39 40 38 39 40 40 40

Answer to Question 4: To create a reference index to be able to perform sequence
alignment.
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What You Will Learn in This Chapter
This chapter describes the relevance of the reference genome for the analysis of Next
Generation Sequencing (NGS) data and how the respective reference genome can be
created. You will learn which databases provide the files for the creation of a
Reference Genome Index and which criteria you have to consider when choosing
the database and the respective files. Depending on the chosen alignment tool to be
used for further analyses, a Reference Genome Index must also be created with the
same tool. The corresponding code is shown in detail using the alignment software
tools STAR and Bowtie2.
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8.1 Introduction

Depending on the samples sequenced (human, mouse, etc.) you need to generate a Genome
Index of your reference genome before you are able to align your sequencing reads.
Therefore, usually the comprehensive gene annotation on the primary assembly
(chromosomes and scaffolds) sequence regions (PRI; .gtf file) and the nucleotide sequence
(PRI, FASTA file) of the genome release of interest (e.g., GRCh38) are downloaded.
Genome sequence and annotation files can be downloaded from various freely accessible
databases as listed below:

• GENCODE: https://www.gencodegenes.org
• UCSC Genome Browser: https://hgdownload.soe.ucsc.edu/downloads.html
• Ensembl: https://www.ensembl.org/info/data/ftp/index.html
• NCBI RefSeq: https://www.ncbi.nlm.nih.gov/refseq/

Once the Genome sequence and annotation files have been downloaded, a Genome
Index should be created. Each Genome Index has to be created by the software tool you are
using for sequence alignment. In this chapter, we focus on the STAR and Bowtie2 alignment
tools.

8.2 Generate Genome Index via STAR

A key limitation with STAR [1] is its requirement for large memory space. STAR requires at
least 30 GB to align to the human or mouse genomes. In order to generate the Genome
Index with STAR; first, create a directory for the index (e.g., GenomeIndices/Star/
GRCh38_index). Then, copy the genome FASTA and Gene Transfer Format (GTF) files
into this directory.

Example:
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Description of parameters:
--runMode genomeGenerate
--runThreadN Number of Threads
--genomeDir /path/to/genomeDir
--genomeFastaFiles /path/to/genome/fasta1 /path/to/genome/fasta2 ... 
--sjdbGTFfile /path/to/annotations.gtf
--sjdbOverhang Read Length -1

For a more detailed explanation of the different options of STAR to build a Genome
Index read the STAR Manual on GitHub:

https://github.com/alexdobin/STAR/blob/master/doc/STARmanual.pdf, or type

in the terminal. After generating the Genome Index some more files with information about
exonic gene sizes or chromosome sizes can be created using Bioconductor packages in R or
the command line tool.

The detailed process on how to create these additional files is depicted below.
Create exonic gene sizes in R [2]

Extract geneID and gene symbol and gene_type from gtf annotation file
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Create the chromosome-size (command line):

All the generated files should be stored in the GenomeIndices/Star/directory, or the
name you have chosen.

8.3 Generate Genome Index via Bowtie2

Bowtie2 can also be used to generate Genome Index files (do not confuse Bowtie2 indexing
with Bowtie indexing as they are different). A more detailed description of Bowtie and
Bowtie2 can be found in Chap. 9. First, download FASTA files for the unmasked genome
(i.e., hg38.fa.gz from http://hgdownload.cse.ucsc.edu/downloads.html) of interest if you
have not already. Do NOT use masked sequences.

From the directory containing the genome.fa file, run the command.

The default options usually work well for most genomes. For example, for hg38:

This command will create 6 files with a *.bt2 file extension in your Bowtie2 index
directory. These will then be used by Bowtie2 to map your sequencing data to the reference
genome.

Take Home Message
• Generating a genome index is a time-consuming process, but you only need to do

this once per reference genome.
• Organism and version of a reference genome are very important when mapping

sequencing reads.
• To create an index of a reference genome you need the nucleotide sequence

(FASTA) and the corresponding annotation file (GTF/GFF).
• The most common databases for reference genome download are: GENCODE,

UCSC, Ensembl, and NCBI.
• Each Reference Genome Index must be created by the same software tool you

want to use for alignment.
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What You Will Learn in This Chapter
The purposes of the alignment process are to measure distances/similarities between
strings and thus to locate origins of Next Generation Sequencing (NGS) reads in a
reference genome. Alignment algorithms like BLAST that can be used to search for
the location of a single or a small number of sequences in a certain genome are not
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suitable to align millions of NGS reads. This led to the development of advanced
algorithms that can meet this task, allow distinguishing polymorphisms from
mutations and sequencing errors from true sequence deviations. For a basic under-
standing, the differences between global and local alignment and the underlying
algorithms are described in a simplified way in this chapter, as well as the main
difference between BLAST and NGS alignment is described in a simplified way in
this chapter. Moreover, different alignment tools and their basic usage are presented,
which enables the reader to perform and understand alignment processes of sequenc-
ing reads to any genome using the respective commands.

9.1 Introduction

Sequence Alignment is a crucial step of the downstream analysis of NGS data, where
millions of sequenced DNA fragments (reads) have to be aligned with a selected reference
sequence within a reasonable time. However, the problem here is to find the correct
position in the reference genome from where the read originates. Due to the repetitive
regions of the genome and the limited length of the reads ranging from 50 to 150 bp, it often
happens that shorter reads can map at several locations in the genome. On the other hand, a
certain degree of flexibility for differences to the reference genome must be allowed during
alignment in order to identify point mutations and other genetic changes.

Due to the massive amount of data generated during NGS analyses, all alignment
algorithms use additional data structures (indices) that allow fast access and matching of
sequence data. These indices are generated either over all generated reads or over the entire
reference genome, depending on the used algorithm. Algorithms from computer science like
hash tables or methods from data compression like suffix arrays are popularly implemented in
the alignment tools. With the help of these algorithms, it is possible, for example, to compare
over 100 GB of sequence data from NGS analyses with the human reference genome in just a
few hours. With the help of high parallelization of computing capacity (CPUs), it is possible
to reduce this time significantly. Thus, even large amounts of sequencing data from whole-
exome or whole-genome sequencing can be efficiently processed.

9.2 Alignment Definition

The next step is the alignment of your sequencing reads to a reference genome or
transcriptome. The main problem you have to keep in mind is that the human genome is
really big and it is complex too. Sequencers are able to produce billions of reads per run and
are prone to errors. Thus, an accurate alignment is a time-consuming process.
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Sequence databases like GenBank (http://www.ncbi.nlm.nih.gov/genbank/) grew rapidly
in the 1980s, and thus performing a full dynamic programming comparison of any query
sequence to every known sequence soon became computationally very costly. Consequently,
the alignment of a query sequence against a database motivated the development of a
heuristic algorithm [1], which was implemented in the FASTA program suite [2]. The
basic principle of this algorithm is to exclude large parts of the database from the expensive
dynamic programming comparison by quickly identifying candidate sequences that share
short sections (k-tuples) of very similar sequence with the query. FASTA was then followed
by the BLAST program [3], with additional speed advantages and a new feature, which
estimates the statistical likelihood that each matching sequence had been found by chance.
BLAST is still one of the most used search program for biological sequence databases [4].
With the introduction of ultra-high-throughput sequencing technologies in 2007, other
alignment challenges emerged. This chapter describes these efforts and the current state of
the art in NGS alignment algorithms. Computational biologists have developed more than 70
read mapping to date [5]. A full list of sequence alignment software tools can be found at
https://en.wikipedia.org/wiki/List_of_sequence_alignment_software#Short-Read_
Sequence_Alignment. Actually, describing all of these tools is beyond the scope of this
chapter, however main algorithmic strategies of these tools are depicted below.

Sequence alignment (Fig. 9.1) is widely used in molecular biology to find similar DNA,
RNA, or protein sequences. These algorithms generally fall into two categories: global
(Needleman–Wunsch), which aligns the entire sequence, and local (Smith–Waterman),
which only look for highly similar subsequences.

9.2.1 Global Alignment (Needleman–Wunsch Algorithm)

Statistically the space for possible solutions is huge; however, we are interested in optimal
alignments with minimal errors like indels or mismatches. The so-called unit edit distance
(edist) is the number of mismatches, insertions, and deletions in an optimal sequence
alignment. The main aim is to minimize the edist by tabulating partial solutions in a (m

Fig. 9.1 Alignment definition. Sequence alignment is a way of arranging the sequences of DNA,
RNA, or protein to identify regions of similarity. The basic principle is comparable to a puzzle (left).
An optimal alignment means, an alignment with minimal errors like deletions, insertions, or
mismatches—no error is defined as a match (right)

9 Alignment 113

http://www.ncbi.nlm.nih.gov/genbank/
https://en.wikipedia.org/wiki/List_of_sequence_alignment_software#Short-Read_Sequence_Alignment
https://en.wikipedia.org/wiki/List_of_sequence_alignment_software#Short-Read_Sequence_Alignment


+1) x (n+1) matrix. Under the assumption that both input sequences a and b stem from the
same origin, a global alignment tries to identify matching parts and the changes needed to
transfer one sequence into the other. The changes are scored and an optimal set of changes
is identified, which defines an alignment. The dynamic programming approach tabularizes
optimal subsolutions in matrix E, where an entry E (i,j) represents the best score for
aligning the prefixes a1..i with b1..j (Fig. 9.2).

Scoring Matrix using Needleman–Wunsch algorithm [6] and the corresponding
traceback Matrix lead to the identification of the best alignment. One possible alignment
result of our example and the related traceback are illustrated in Fig. 9.3.

Fig. 9.2 Needleman–Wunsch. Optimization of distance (left) and optimization of similarity (right)

Fig. 9.3 Needleman–Wunsch Algorithm and the resulting Scoring Matrix (E). Matches are defined
as 0, Mismatches and Gaps as 1/�1. The edist is marked in red [4]. A possible traceback is depicted
by blue arrows and the corresponding alignment at the bottom right. Diagonal jumps within the
scoring Matrix can be interpreted as Matches or Mismatches, Top or Down jumps as Deletions, and
Left or Right jumps as Insertions
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9.2.2 Local Alignment (Smith–Waterman Algorithm)

Local alignment performed by the Smith–Waterman algorithm [7] aims to determine
similarities between two nucleic acid or protein sequences. The main difference to the
global alignment is that negative scoring matrix cells are set to zero (Fig. 9.5).

For a better understanding of local/sub-regions alignment imagine you have a little Toy
genome (16 bp): CATGGTCATTGGTTCC.

Local alignment is a hash-based algorithm with two major approaches: hashing the
reference and the Burrows–Wheeler transform [8, 9]. The first step is to hash/index the
genome (forward strand only) resulting in a hash/k-mer index of your Toy genome:

k¼3 K-mer/Hash Positions

CAT 1,7

ATG 2

TGG 3,10

GGT 4,11

GTC 5

TCA 6

ATT 8

TTG 9

GTT 12

TTC 13

TCC 14

Now, you want to align a Toy sequencing read (TGGTCA) to this indexed Toy genome.
The k-mer index can be used to quickly find candidate alignment locations in the reference
genome. For example, the k-mer TGG is assigned to Positions 3 and 10 and the k-mer TCA
to position 6. Thus, Burrows–Wheeler transform is just another way of doing exact matches
on hashes and check against genome and calculate a score.

This approach tries to identify the most similar subsequences that maximize the scoring
of their matching parts and the changes needed to transfer one subsequence into the other.
The dynamic programming approach tabularizes optimal subsolutions in matrix E (Fig.
9.4), where an entry Ei,j represents the maximal similarity score for any local alignment of
the (sub)prefixes ax..i with by..j, where x,y>0 are so far unknown and have to be identified
via traceback (Fig. 9.5). Note: consecutive gap (Indels) scoring is done linearly.

Alignment to a reference genome can be performed with single- or paired-end sequenc-
ing reads, depending on your experiment and library preparation. Paired-end sequencing is
recommended for RNA-Seq experiments.

Furthermore, we differ between two types of aligners:

• Splice unaware
• Splice aware
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Splice-unaware aligners are able to align continuous reads to a reference genome, but
are not aware of exon/intron junctions. Hence, in RNA-sequencing, splice-unaware
aligners are no proper tool to analyze the expression of known genes, or align reads to
the transcriptome. Splice-aware aligners map reads over exon/intron junctions and are

Fig. 9.4 Smith–Waterman. Optimization of similarity

Fig. 9.5 Smith–Waterman Algorithm and the resulting Scoring Matrix (E). Matches are defined as 2,
Mismatches and Gaps as �1. The traceback is depicted by blue arrows and the corresponding
alignment at the bottom right. Diagonal jumps within the scoring Matrix can be interpreted as
Matches or Mismatches, Top or Down jumps as Deletions, and Left or Right jumps as Insertions

Table 9.1 Splice-aware and splice-unaware alignment tools

Alignment tool Splice-aware Link

STAR Yes https://github.com/alexdobin/STAR

Bowtie No http://bowtie-bio.sourceforge.net/index.shtml

Bowtie2 Yes http://bowtie-bio.sourceforge.net/bowtie2/index.shtml

TopHat/TopHat2 Yes http://ccb.jhu.edu/software/tophat/index.shtml

BWA-MEM Yes http://bio-bwa.sourceforge.net/

BWA-SW No

BWA-backtrack No

Hisat2 Yes https://ccb.jhu.edu/software/hisat2/manual.shtml

Segemehl Yes https://www.bioinf.uni-leipzig.de/Software/segemehl/
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therefore used for discovering new splice forms, along with the analysis of gene expression
levels (Table 9.1).

In this context the most common alignment tools are explained in the following section.

9.2.3 Alignment Tools

9.2.3.1 STAR
Spliced Transcripts Alignment to a Reference (STAR) is a standalone software that uses
sequential maximum mappable seed search followed by seed clustering and stitching to
align RNA-Seq reads. It is able to detect canonical junctions, non-canonical splices, and
chimeric transcripts.

The main advantages of STAR are its high speed, exactness, and efficiency. STAR is
implemented as a standalone C++ code and is freely available on GitHub (https://github.
com/alexdobin/STAR/releases) [10].

In terms of mapping multiple samples, you can parallelize your mapping command.
First, create a .txt file containing your file names:

You can use the generated SampleNames.txt file to combine the commands for mapping
and sorting and run it on various samples:

Example- Mapping command via STAR (RNA-Seq, paired-end):

The mapping job can be checked in the Log.progress.out file in the run directory. This
file is updated every minute and shows the number of reads that have been processed, and
various mapping statistics. This is useful for initial quality control during the mapping job.

Log.final.out contains the summary mapping statistics of the run.
In the next step, the bedgraph files are sorted and converted to bigwig

files (bedGraphToBigWig).
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Example:

9.2.3.2 Bowtie
Bowtie is an ultrafast and memory-efficient short read alignment tool to large reference
genomes indexed with a Burrows–Wheeler index. It is typically used for aligning DNA
sequences as it is a splice-unaware tool. Because of this feature this tool is often used in
microbiome alignment (http://bowtie-bio.sourceforge.net/index.shtml) [11, 12].

9.2.3.3 Bowtie2
Bowtie2, as well as Bowtie, is an ultrafast and memory-efficient tool, but more suitable for
aligning sequencing reads of about 50 up to 100s or 1,000s of characters to relatively long
reference sequences (e.g., mammalian genomes) indexed with an Ferragina–Manzini (Fm)
index. Bowtie2 supports gapped, local, and paired-end alignment modes (https://github.
com/BenLangmead/bowtie2) [13].
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9.2.3.4 TopHat/TopHat2
TopHat aligns RNA-Seq reads to genomes by first using the short-read aligner Bowtie, and
then by mapping to a reference genome to discover RNA splice sites de novo. RNA-Seq
reads are mapped against the whole reference genome, and those reads that do not map are
set aside. TopHat is often paired with the software Cufflinks for a full analysis of
sequencing data (https://github.com/dnanexus/tophat_cufflinks_RNA-Seq/tree/master/
tophat2) [14].

A detailed description of the usage of TopHat can be found in the TopHat manual
(http://ccb.jhu.edu/software/tophat/manual.shtml).

9.2.3.5 Burrow–Wheeler Aligner (BWA)
BWA is a splice-unaware software package for mapping low-divergent sequences against a
large reference genome, such as the human genome. It consists of three algorithms: BWA-
backtrack, BWA-SW, and BWA-MEM. The first algorithm is designed for Illumina
sequence reads up to 100bp. BWA-MEM and BWA-SW share similar features such as
long-read support and split alignment, but BWA-MEM (maximal exact matches), which is
the latest, is generally recommended for high-quality queries as it is faster and more
accurate (https://github.com/lh3/bwa) [8, 9]. The splice-unaware alignment algorithms
are recommended for species like bacteria.

A detailed description of the usage of BWA can be found in the BWA manual (http://
bio-bwa.sourceforge.net/bwa.shtml).
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9.2.3.6 HISAT2
HISAT (and its newer version HISAT2) is the next generation of spliced aligner from the
same group that has developed TopHat. HISAT uses an indexing scheme based on the
Burrows–Wheeler transform and the Ferragina–Manzini (Fm) index, employing two types
of indices for alignment: a whole-genome Fm index to anchor each alignment and
numerous local Fm indexes for very rapid extensions of these alignments (https://github.
com/DaehwanKimLab/hisat) [15].

HISAT most interesting features include its high speed and its low memory requirement.
HISAT is an open-source software freely available. A detailed description of the usage of
HISAT can be found in the HISAT manual (https://ccb.jhu.edu/software/hisat2/manual.
shtml).

Take Home Message
• Sequence alignment is the process of comparing and detecting distances/

similarities between biological sequences.
• Dynamic programming technique can be applied to global alignments by using

methods such as global and local alignment algorithms.
• The value that measures the degree of sequence similarity is called the alignment

score.

(continued)
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• Sequence alignment includes calculating the so-called edit distance, which gen-
erally corresponds to the minimal number of substitutions, insertions, and
deletions needed to turn one sequence into another.

• The choice of a sequencing read alignment tool depends on your goals and the
specific case.

Review Questions

1. Assume you are performing a mapping with STAR. After the process, where do you
find the information how many reads have mapped only at one position of the
reference genome?

2. Which of the following does not describe local alignment?
A. A local alignment aligns a substring of the query sequence to a substring of the

target sequence.
B. A local alignment is defined by maximizing the alignment score, so that deleting a

column from either end would reduce the score, and adding further columns at
either end would also reduce the score.

C. Local alignments have terminal gap.
D. The substrings to be examined may be all of one or both sequences; if all of both

are included, then the local alignment is also global.
3. Which of the following does not describe BLAST?

A. It stands for Basic Local Alignment Search Tool.
B. It uses word matching like FASTA.
C. It is one of the tools of the NCBI.
D. Even if no words are similar, there is an alignment to be considered.

4. Which of the following does not describe dynamic programming?
A. The approach compares every pair of characters in the two sequences and

generates an alignment, which is the best or optimal.
B. Global alignment algorithm is based on this method.
C. Local alignment algorithm is based on this method.
D. The method can be useful in aligning protein sequences to protein sequences

only.
5. Which of the following is not a disadvantage of Needleman–Wunsch algorithm?

A. This method is comparatively slow.
B. There is a need of intensive memory.
C. This cannot be applied on genome sized sequences.
D. This method can be applied to even large sized sequences.

6. Alignment algorithms, both global and local, are fundamentally similar and only
differ in the optimization strategy used in aligning similar residues.
A. True.
B. False.
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7. The function of the scoring matrix is to conduct one-to-one comparisons between all
components in two sequences and record the optimal alignment results.
A. True.
B. False.

Answers to Review Questions

1. Log.final.out in the output directory of alignment file (.bam); 2. C; 3. D; 4. D; 5. D; 6.
A; 7. A
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What You Will Learn in This Chapter
In this chapter, we will discuss an overview of the bioinformatic process for the
identification of genetic variants and de novo mutations in data recovered from NGS
applications. We will pinpoint critical steps, describe the theoretical basis of different
variant calling algorithms, describe data formats, and review the different filtering
criteria that can be undertaken to obtain a set of high-confidence mutations. We will
also go over crucial issues to take into account when analyzing NGS data, such as
tissue source or the choice of sequencing machine. We also discuss different
methodologies for analyzing these variants depending on study context, considering
population-wide and family-focused analyses. Finally, we also do an overview of
available software for variant filtering and genetic data visualization.

10.1 Introduction: Quick Recap of a Sequencing Experiment Design

As we have seen throughout this book, NGS applications give researchers an all-access
pass to the building information of all biological organisms. After establishing the
biological question to be pursued and once the organism of interest has been sequenced,
the first step is to align this information against a reference genome (see Chap. 8). This
reference genome should be one that is as biologically close as it can be to the subject of
interest—if there is no reference genome or the one available is not reliable, then a possible
option is to attempt to build one (See Box: Genome assembly). After read mapping
and alignment, and quality control, one or several variant callers will need to be run to
identify the variants present in the query sequence. Finally, depending on the original aim,
different post-processing and filtering steps may also need to be deployed to extract
meaningful information out of the experiment.

10.2 How Are Novel Genetic Variants Identified?

The correct identification of variants depends on having accurately performed base calling,
and read mapping and alignment previously. “Base calling” refers to the determination of
the identity of a nucleotide from the fluorescence intensity information outputted by the
sequencing instrument. Read mapping is the process of determining where a read originates
from, using the reference genome, and read alignment is the process of finding the exact
differences between the sequences. These topics have already been reviewed throughout this
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book (Chaps. 4, 8 and 9). Base calling and read alignment results rely on the sequencing
instrument and algorithm used; therefore, it is important to state the confidence we have on
the assignment of each base. This is expressed by standard Phred quality scores [1].

QPhred ¼ �10 log 10 P errorð Þ

This measurement is an intuitive number that tells us the probability of the base call or
the alignment being wrong, and the higher Q is, the more confidence we have that there has
not been an error. For example, if Q ¼ 20, then that means there is a 1 in 100 chance of the
call or alignment being wrong, whereas if it is 30 then there is a 1 in 1000 chance of a
mistake. Subsequently, steps such as duplicate read marking and base call quality score
recalibration can be performed (See Chap. 7, Sect. 7.2.3).

Review Question 1

What would be the value of Q for a variant that has a 1 in 3000 chance of being wrong?

After the previous steps have taken place, and an alignment file has been produced
(usually in the BAM and CRAM file formats), the next step is to identify differences
between the reference genome and the genome that has been sequenced. To this effect,
there are different strategies that a researcher can use depending on their experiment, for
example, for germline analyses they might use algorithms that assume that the organism of
interest is diploid (or another, fixed ploidy) and for cancer genomes they may need to use
more flexible programs due to the presence of polyploidy and aneuploidy. In this Chapter,
we will focus on the former analyses, but the reader is referred to the publications on
somatic variant callers in the “Further Reading” section below if they want to learn more.

When identifying variants, and particularly if a researcher is performing whole exome or
genome sequencing, the main objective is to determine the genotype of the sample under
study at each position of the genome. For each variant position there will be a reference (R)
and an alternate (A) allele, the former refers to the sequence present in the reference
genome. Therefore, it follows that in the case of diploid organisms, there will be three
different possible genotypes: RR (homozygous reference), RA (heterozygous), and AA
(homozygous alternative).

10.2.1 Naive Variant Calling

A naive approach to determining these genotypes from a pile of sequencing reads mapped
to a site in the genome may be to count the number of reads with the reference and alternate
alleles and to establish hard genotype thresholds; for example, if more than 75% of reads
are R, then the genotype is called as RR; if these are less than 25%, then the genotype is
called as AA; and anything in between is deemed RA. However, even if careful steps are
taken to ensure that only high-quality bases and reads are counted in the calculation, this
method is still prone to under-calling variants in low-coverage data, as the counts from
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these reads will likely not reach the set threshold, relevant information can be ignored due
to hard quality filters, and also it would not give any measure of confidence [2] (Fig. 10.1).
Even though this type of method was used in early algorithms, it has been dropped in favor
of other algorithms that are able to deal with errors and low-coverage data better.

10.2.2 Bayesian Variant Calling

The sequencing of two mixed molecules of DNA is a probabilistic event, as well as the
occurrence of errors in previous steps of this process, and therefore, a more informative
approach would include information about the prior probability of a variant occurring at
that site and the amount of information supporting each of the potential genotypes. To
address this need, most currently used variant callers implement a Bayesian probabilistic
approach at their core in order to assign genotypes [3]. Examples of the most commonly
used algorithms using this method are GATK HaplotypeCaller [4] and
bcftools mpileup (Formerly known as Samtools mpileup) [5].

This probabilistic approach uses the widely known Bayes’ Theorem, which, in this
context, is able to express the posterior probability of a genotype given the sequencing data

Fig. 10.1 Naive variant calling. In this method, reads are aligned to the reference sequence (green)
and a threshold of the proportion of reads supporting each allele for calling genotypes is established
(top). Then, at each position, the proportion of reads supporting the alternative allele is calculated and,
based on the dosage of the alternative allele, a genotype is established. Yellow: a position where a
variant is present but the proportion of alternative alleles does not reach the threshold (1/6< 0.25). In
light blue, positions where a variant has been called. This figure is based on one drawn by Petr
Danecek for a teaching presentation
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as the product of a prior genotype probability and the genotype likelihood, divided by a
constant:

P GjDð Þ ¼ P DjGð Þ P Gð Þ
P Dð Þ

where

• P(G|D) is the posterior probability of the genotype given the sequencing data
• P(D|G) is the genotype likelihood
• P(G) is the prior genotype probability
• P(D) is a factor to normalize the sum of all posterior probabilities to 1, it is constant

throughout all possible genotypes

As this is the most commonly used method for variant calling, has been for a number of
years and is unlikely to change, special attention should be given to it to understand its basics.
For deciding what the genotype is at a particular site in an individual, a variant calling
algorithm would calculate the posterior probability P(G|D) for each possible genotype, and
pick the genotype with the highest one. As the sum of all posterior genotype probabilities
must be equal to 1, the number of different possible genotypes that the algorithm (referred to
as “genotype partitioning”) considers is crucial. Different algorithms will calculate these
differently, for example, some algorithms may only consider three genotype classes: homo-
zygous reference, heterozygous reference, and all others, whereas others may consider all
possible genotypes [6]. The choice of algorithm would depend on the original biological
question: For example, if tumors are being analyzed, which can be aneuploid or polyploid, an
algorithm that only considers three possible genotypes may be inadequate.

The prior genotype probability, P(G), can be calculated taking into account the results
of previous sequencing projects. For example, if a researcher is sequencing humans, the
prior probability of a genotype being found at a particular site could depend on previously
reported allele frequencies at that site as well as the Hardy–Weinberg Equilibrium
principle [2]. Information from linkage disequilibrium calculations can also be
incorporated. Otherwise, if no information is available, then the prior probability of a
variant occurring at a site may be set as a constant for all loci. Algorithms also differ in the
way they calculate these priors, and the information they take into account. The denomi-
nator of the equation, P(D), remains constant throughout all genotypes being considered
and serves to normalize all posterior probabilities so they sum up to 1. Therefore, it is
equal to the sum of all numerators, P(D) ¼ Σ P(D|Gi) P(Gi), where Gi is the ith genotype
being considered.

The last part of the equation is the genotype likelihood, P(D|G). This can be interpreted
as the probability of obtaining the sequencing reads we have given a particular genotype. It
can be calculated from the quality scores associated with each read at the site being
considered, and then multiplying these across all existing reads, assuming all reads are
independent [2]. For example, in what is perhaps the most commonly used variant calling
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algorithm, GATK HaplotypeCaller [4], a number of steps are followed to determine
genotype likelihoods: First, regions of the genome where there is evidence of a variant
are defined (“SNP calling”), then the sequencing reads are used to identify the most likely
genotypes supported by these data, and each read is re-aligned to all these most likely
haplotypes in order to obtain the likelihoods per haplotype and per variant given the read
data. These are then input into Bayes’ formula to identify the most likely genotype for a
sample [4].

10.2.3 Heuristic Variant Calling

Other methods that do not rely on naive or Bayesian approaches have been developed;
these methods rely on heuristic quantities to call a variant site, such as a minimum coverage
and alignment quality thresholds, and stringent cut-offs like a minimum number of reads
supporting a variant allele. If performing somatic variant calling, a statistical test such as a
Fisher’s exact comparing the number of reference and alternate alleles in the tumor and
normal samples is then performed in order to determine the genotype at a site [7].
Parameters used for variant calling can be tuned, and generally this method will work
well with high-coverage sequencing data, but may not achieve an optimal equilibrium
between high specificity and high sensitivity at low to medium sequencing depths, or when
searching for low-frequency variants in a population [8].

The following GATK commands depict an example workflow for calling variants in
NGS data. The installation instruction is covered in Chap. 5.

First you can check all available GATK tools by typing . If not already done,

you also have to install all required software packages (http://gatkforums.broadinstitute.
org/gatk/discussion/7098/howto-install-software-for-gatk-workshops) for GATK analyses
workflows. Moreover, be sure to set the PATH in your .bashrc to your GATK executable
PATH.

The GATK (v4) uses two files to access and safety check access to the reference files: a .
dict dictionary of the contig names and sizes and a .fai fasta index file to allow efficient
random access to the reference bases. You have to generate these files in order to be able to
use a Fasta file as reference.
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Next, we use a GATK tool called SplitNCigarReads developed specially for RNAseq,
which splits reads into exon segments (getting rid of Ns but maintaining grouping infor-
mation) and hard-clip any sequences overhanging into the intronic regions.

In this example we will use Mutect2 to perform variant calling, which identifies somatic
SNVs and indels via local assembly of haplotypes.

For a more detailed description see https://github.com/gatk-workflows/gatk4-jupyter-
notebook-tutorials/blob/master/notebooks/Day3-Somatic/1-somatic-mutect2-tutorial.
ipynb.

10.2.4 Other Factors to Take into Account When Performing Variant
Calling

As we have seen, errors can be introduced at every step of the variant calling process. On
top of errors brought in during the base calling and read mapping and alignment steps, other
factors that can influence data quality are the preparation and storage of samples prior to
analysis. For example, it is known that samples stored as formalin-fixed paraffin embedded
(FFPE) tissue will have a higher bias toward C>T mutations due to deamination events
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triggered by a long fixation time [9]. Although these events are detectable only at a small
fraction of the reads aligning to a particular site, they can become important when
analyzing a pool of genomes sequenced at low frequency or when studying tumor samples
that could have subclonal mutations—furthermore confounded by the tendency of some of
these tumor types toward having more real C>T mutations [10]. Another example comes
from the observation that DNA oxidation can happen during the shearing step most NGS
protocols have implemented, and that this results in artifactual C>A mutations [11].
Ancient DNA and ctDNA can also suffer from these problems [12, 13]. Therefore, a
researcher needs to consider their sample origin and preparation protocol and undertake
post-processing filtering steps accordingly.

10.2.5 How to Choose an Appropriate Algorithm for Variant Calling?

In addition to considering the variant calling method (e.g., naive, probabilistic, or heuristic)
that an algorithm implements, a researcher also needs to consider the types of genetic
variants that they are interested in analyzing, perhaps having to run several programs at the
same time to obtain a comprehensive picture of the genetic variation in their samples.

Genetic variants are usually classified into several groups according to their
characteristics (Fig. 10.2):

Fig. 10.2 Classes of genetic variants. Genetic variants ranging from a single base change, to the
insertion or deletion of several bases can occur in a genome. Structural variants are more complex and
encompass larger sections of a genome: At the top, a reference sequence, in the second row, a large
deletion (blue region), in the third row, a large insertion (red section), in the fourth row, an inversion,
and in the fifth row, a duplication. This figure is based on one drawn by Petr Danecek for a teaching
presentation
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• SNVs (single nucleotide variants), also known as single base substitutions, are the
simplest type of variation as they only involve the change of one base for another in a
DNA sequence. These can be subcategorized into transitions (Ti) and transversions
(Tv); the former are changes between two purines or between two pyrimidines, whereas
the latter involve a change from a purine to a pyrimidine or vice versa. An example of a
transition would be a G>A variant. If the SNV is common in a population (usually with
an allele frequency > 1%), then it is referred to as a SNP (single nucleotide polymor-
phism). A common post-calling analysis involves looking at the Ti/Tv ratio, which can
vary between 2 and 3 depending on the genomic region under analysis [14]. If this ratio
is far from the expected, it may indicate a large proportion of false positive calls.

• MNVs (multi-nucleotide variants), which are sequence variants that involve the consec-
utive change of two or more bases. An example would be one of the types of mutations
caused by UV irradiation, CC>TT. Similarly to SNVs, there are some MNVs that are
found at higher frequencies in the population, which are referred to as MNPs [15].

• Indels (portmanteau of insertions and deletions), which involve the gain or loss of one
or more bases in a sequence. Usually, what is referred to as indel tends to be only a few
bases in length. An example of a deletion would be CTGGT> C and an insertion would
be represented as T > TGGAT.

• Structural variants, which are genomic variations that involve larger segments of the
genome. These can involve inversions, which is when a certain sequence in the genome
gets reversed end to end, and copy number variants including amplifications, when a
fraction of genome gets duplicated one or more times, and larger deletions, when large
segments of the genome get lost. There is not a strict rule defining the number of base
pairs that make the difference between an indel and a structural variant, but usually, a
gain or loss of DNA would be called a structural variant if it involved more than one
kilobase of sequence.

Most variant callers identify SNVs, but there are only some variant callers that will
report indels or structural variation [3]. This is because usually the algorithms underlying
the detection of these types of variants tend to be quite different: SNV, MNV, and short
indel detection comprise the comparison of a pile of sequencing reads and their alignments
to the reference genome (as has been discussed throughout Chap. 9), whereas larger indels
and structural variant calling require calculating a distribution of insert sizes and detecting
those read pairs that fall outside it, as well as the direction of alignment of both mate pairs
[16].

It is also important to consider the type of sequencing that was used for the experiment.
For example, whole genome sequencing and whole exome sequencing have different
amounts of coverage, depth, and sequencing uniformity. Some variant callers such as
MuTect2 and Strelka2 show better performance in sequencing with higher average
sequencing depth and lower coverage [17].
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10.3 Working with Variants

Variant calling usually outputs VCF files (See Sect. 7.2 File Formats) [18]. To recap, VCF
files are plain text files that contain genotype information about all samples in a sequencing
project. A VCF file is arranged like a matrix, with chromosome positions in rows and
variant and sample information in columns. The sample information contains the genotype
called by the algorithm along with a wealth of information such as (depending on the
algorithm) genotype likelihoods and sequencing depth supporting each possible allele,
among others. For each variant position, the file also contains information outputted by the
variant caller such as the reference and alternate alleles, the Phred-based variant quality
score, whether overlapping variants in other sequencing or genotype projects have been
found, etc. Crucially, this file also contains a column called “FILTER,” where information
about whether further quality filters have been applied to the calls and which ones. We will
review here some of the most common filters that researchers should consider applying to
their data once it has already been called.

Review Question 2

How do you think a researcher can deal with the uncertainty about false negatives, i.e.
sites where a variant has not been called? How can they be sure there is no variation
there and it is not, let us say, a lack of sequence coverage?

10.4 Applying Post-variant Calling Filters

So far, we have seen a number of steps where a researcher must be careful to increase both
the sensitivity and specificity of their set of calls in order to have an accurate view of the
amount and types of sequencing variation present in their samples. However, there are also
a number of post-calling filtering steps that should be applied in the majority of cases in
order to further minimize the amount of false positive calls. Here we will review the main
such filters, but the reader is referred to [18] if they wish to delve deeper into this topic.

Strand Bias Filter . Sometimes a phenomenon, referred to as strand bias, can be observed
where one base is called only in reads in one direction, whereas it is absent in the reads in
the other direction. This is evidently an error introduced during the preceding steps, and can
be detected through a strand bias filter. This filter applies a Fisher’s exact test comparing
the number of forward and reverse reads with reference and alternate alleles, and if the P-
value is sufficiently small as determined through a pre-chosen threshold, then the variant is
deemed an artifact.

Variant Distance and End-Distance Bias Filters These filters were primarily developed
to deal with RNA sequencing data when aligned to a reference genome [19]. Therefore, if a
variant is mostly or only supported by differences in the last bases of each read, the call may
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be a false positive resulting from a portion of a read coming from a mRNA being aligned to
an intron adjacent to a splice junction. For end-distance bias, a t-test is performed in order
to determine whether the variants occur at a fixed distance from read ends, whereas for the
variant distance bias tests whether or not variant bases occur at random positions in the
aligned reads [19].

Indel and SNP Gap Filters These filters are designed to flag variants that are too close to
an indel or each other, respectively, as these may stem from alignment artifacts and
therefore be false positives. A value of 5 for these filters would mean that SNPs that are
five or fewer bp from an indel call would be discarded. The same would apply to clusters of
SNPs that are 5 or fewer bases apart from each other.

Review Question 3

Can you think of other possible filters that would need to be applied to the data post-
variant calling to reduce the number of false positive calls?

These and other post-variant calling filters can be applied to a VCF file. Programs such
as bcftools [5] or GATK VariantFiltration [4] can be used for this purpose, and their
parameters can be tweaked to suit the researcher’s needs. Typically, after these are run, the
“FILTER” field in the VCF will be annotated as “PASS” if the variant has passed all
specified filters, or will have specified the filters that it has failed. Usually, the subsequent
analyses would be carried out only with those variants that passed all filters.

Now that we have seen the factors that researchers take into account when performing
an NGS study, we will next discuss the types of analyses they can follow to identify de
novo DNA variants or those that are likely to increase the risk of a disease.

10.5 De novo Genetic Variants: Population-Level Studies and
Analyses Using Pedigree Information

De novo mutations are crucial to the evolution of species and play an important role in
disease. De novo genetic variants are defined as those somatically arising during the
formation of gametes (oocytes, sperm) or that occur postzygotically. Only the mutations
present in germ cells can be transmitted to the next generation. Usually, when searching for
de novo variants in children (usually affected by developmental disorders), researchers
study trios, i.e. both parents and the child. The task is simplified because at 1.0� 1.10�8 to
1.8� 1.10�8 per nucleotide mutation rate, only a few de novomutations are expected in the
germline of the child (a range of 44–88 according to [20]). If more than one variant fulfills
these criteria, bioinformatic methodologies such as examination of the extent of conserva-
tion throughout evolution, consequence prediction, and gene prioritization are then used to
pinpoint the most likely gene variants underlying the phenotype. Functional studies such as
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cell growth experiments or luciferase assays can then be performed to demonstrate the
biological consequences of the variant.

This type of filtering methodology has been extensively applied by projects such as the
Deciphering Developmental Disorders (DDD) study [21]. This Consortium applied
microarray and exome sequencing technologies to 1,133 trios (affected children and their
parents) and was able to increase by 10% the number of children that could be diagnosed,
as well as identifying 12 novel causative genes [22]. It may also be useful for the detection
of causal genetic variation for neurodevelopmental disorders [23]. However, while
tremendously useful in the cases where the three sequences are available, and where the
variant is present in the child and not the parents, this strategy is not that useful in those
cases where the causal variant may also be present in the parents or where it has a lower
penetrance.

Another definition of a “de novo” variant may be one that has never before been seen in
a population, which is identified through comparisons against population variation
databases such as gnomAD [15] and dbSNP [24]. Sometimes, researchers assume that a
rare variant, because it is rare (and perhaps because it falls in a biologically relevant gene)
then it must underlie their phenotype of interest. However, this is nearly always not true:
Depending on ancestry, estimates are that humans can carry up to 20,000 “singletons” (this
is, genetic variants only observed once in a dataset) [25] and can carry more than 50 genetic
variants that have been classified as disease-causing [15]. This point has been beautifully
illustrated by Goldstein and colleagues [26]: They analyzed sequencing data from a control
sample and reported finding genetic variants falling in highly conserved regions from
protein-coding genes, that have a low allelic frequency in population databases, that have a
strong predicted effect on protein function and in genes that can be connected to specific
phenotypes in disease databases. However, even if fulfilling all these criteria, these variants
clearly do not have a phenotype. They call the tendency of these kind of variants to be
assumed as causal as “the narrative potential,” which is unfortunately common in the
literature [27]. Therefore, in the next section we will summarize the aspects that need to be
taken into account in order to confidently assign a genetic variant as causative for a
phenotype.

10.6 Filtering Genetic Variants to Identify Those Associated to
Phenotypes

Given the huge number of genetic variants usually identified in NGS studies (12,000 in
exomes, ~5 million in genomes) [28], filtering and post-processing to pinpoint candidates
may be the most labor-intensive tasks out of the whole analysis pipeline. Depending on the
researcher’s biological question, they may need to tune these parameters to better answer it.
For example, if they are searching for rare variation in pedigrees that may predispose to a
disease, they may want to set quite permissive quality thresholds so as to not lose any
potential candidates, but making sure that any potential variants are confirmed through re-
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sequencing by another orthogonal methodology such as capillary sequencing. If, on the
other hand, they are analyzing a large cohort of individuals in order to describe patterns of
variation, then they will need to be much stricter quality filters.

10.6.1 Variant Annotation

Variant annotation can help researchers filter and prioritize functionally important variants
for further study. Several tools for functional annotation have been developed; some of
them are based on public databases and are limited to known variants, while others have
been developed for the annotation of novel SNPs.

Functional prediction of variants can be done through different approaches, from
sequence-based analysis to structural impact on proteins. Predicted effects of identified
variants can be assessed through tools such as Ensembl-VEP [29] and SnpEff [30]. On top
of the predicted consequences on protein function (e.g., whether a variant is missense, stop-
gain, frameshift-inducing, etc.), these tools can also perform annotations at the level of
allele frequency against public databases such as 1000 Genomes and GnomAD, whether
the variant has been seen before either in populations or somatically in cancer (dbSNP and
COSMIC annotations), whether it falls in an evolutionarily conserved site (GERP and
PolyPhen-2 scores), and whether it has been found to have clinical relevance (ClinVar
annotations), among others. Genomic region-based annotations can also be performed,
referring to genomic elements other than genes, such as predicted transcription factor
binding sites, predicted microRNA target sites, and predicted stable RNA secondary
structures [31]. All these annotations can aid a researcher to focus on those variants
predicted to be associated to their phenotype of interest.

However, these steps to identify variant candidates are only part of the story. As we
mentioned above, even if the variants are real and seem to have an effect on gene function,
this alone is not enough evidence to link the variant causally to a phenotype [32].
Researchers should be wary of any potential positive associations and should consider
alternate hypotheses before reporting their identified variants as causal (or they may be
publicly challenged, see, for example, [33, 34]).

10.6.2 Evaluating the Evidence Linking Variants Causally to Phenotypes

After these essential filtering and annotation steps have been performed, a researcher then
needs to assess the amount of evidence supporting the potential causality of a genetic
variant. The first line of evidence needs to be statistical: Assuming a candidate variant
exists, the first question would be, how likely would it be to obtain an equivalent result by
chance if any other gene were to be considered? For example, a 2007 study by Chiu and
collaborators assumed that two novel missense genetic variants in the CARD3 gene were
causal of familial hypertrophic cardiomyopathy [35]. They assumed causality based on
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four criteria: If the variant had been seen in other cardiomyopathy patients, if it was absent
from 200 alleles from controls, if it was conserved among species and isoforms and if it co-
segregated with the disease in affected families. However, the chance of all these criteria
being fulfilled by chance alone if any other genes had been considered is high—as a study
subsequently found by assessing a larger gene panel and calculating the expected number
of variants in the gene [34]. Additionally, both positive and negative evidence for the
hypothesis should be carefully evaluated, for example, in the same cardiomyopathy study
some of the “potentially causal” variants predicted by bioinformatics algorithms did not co-
segregate with the phenotype [34]. The increasing availability of sequencing data in large
cohorts such as gnomAD should help establishing causality as more accurate allele
frequencies are reported per population [15]. This is an important point—allele frequencies
should be matched by ancestry as closely as possible, as it is known that they can vary
greatly among different populations [25].

Another important set of criteria, highlighted by MacArthur et al [32], argues that when
analyzing potentially monogenic diseases, genes that have previously been confidently
linked to similar phenotypes should be analyzed as the first potential candidates before
proceeding to explore novel genes, and that if a researcher does proceed to analyzing
further genes, then multiple independent carrier individuals must present with similar
clinical phenotypes. Additionally, it is desirable that the distribution of variants in a suitable
control population is examined, for example, if a researcher has identified a novel stop-
gained variant in a candidate gene, how many other stop-gained variants are found in
population-level variation catalogues?

Finally, statistical evidence and multiple computational approaches may strongly sug-
gest that a variant is disease-causing. However, whenever possible, researchers should
perform functional studies that indicate this is the case, whether by using tissue derived
from patients themselves, cell lines, or model organisms. The comprehensive view
provided by statistical, computational, and functional studies then may be enough for a
researcher to report a potential causal variant. In doing so, it is recommended that all
available evidence is detailed, clear and uncertain associations are reported and that all
genetic data is released whenever possible [32].

10.6.3 Variant Filtering and Visualization Programs

Finally, visual representation of genomic data can be highly useful for the interpretation of
results [28]. Visualization tools can help users browse mapped experimental data along
with annotations, visualize structural variants, and compare sequences. These programs can
be available as stand-alone tools or as web applications, and vary in the amount of
bioinformatics knowledge necessary to operate them. Here we will review some of the
most popular and that we consider useful, but there are many others suited for different
purposes and with a range of functionalities.
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• Integrative Genomics Viewer (IGV) [36] A very popular, highly interactive tool that is
able to process large amounts of sequencing data in different formats and display read
alignments, read- and variant-level annotations, and information from other databases.
Website: http://software.broadinstitute.org/software/igv/

• Galaxy [37] Another highly popular, web-based platform that allows researchers to
perform reproducible analyses through a graphical interphase. Users can load files in the
FASTA, BAM, and VCF formats, among others, and perform data analysis and variant
filtering in an intuitive way. Website: https://usegalaxy.org/

• VCF/Plotein [38] This web-based, interactive tool allows researchers to load files in the
VCF format and interactively visualize and filter variants in protein-coding genes. It
incorporates annotations from other external databases.

Website: https://vcfplotein.liigh.unam.mx/

Take Home Message
• There are a number of different methods for performing variant calling, these can

be naive, probabilistic, and heuristic. Probabilistic methods are the most widely
used and implement a form of Bayes’ Theorem. However, algorithm choice will
depend on the researcher’s study design.

• Sample storage and preparation methods may introduce errors that increase false
positive calls and therefore should be considered when designing an analysis
pipeline.

• Post-variant calling filters that analyze the distribution of variants across all
sequencing reads will usually need to be applied to data in order to reduce false
positive calls.

• True de novo genetic variants can be identified by analyzing trios with an affected
child, in other scenarios a number of annotations and filtering steps need to be
applied to identify candidate variants.

• For a researcher to ascribe phenotype causality to a genetic variant, the result of
gene- and variant-level annotations are not enough; a number of further statistical,
bioinformatic, and functional considerations need to be taken into account.

• Variant filtering and visualization tools can aid a researcher to perform the above
mentioned steps in an easy and intuitive way.

Answers to Review Questions

Answer to Question 1: Q ¼ 34.77.

Answer to Question 2: The logical option is for the researcher to go back and analyze,
through tools such as Samtools depth, whether indeed there is enough coverage at every
assessed site, and to mark it as “no call” otherwise. A novel VCF format, called gVCF
and outputted by GATK, can now give reference call confidence scores.
Answer to Review Question 3: There are a number of filters already implemented in
variant filtering tools, some of these are a threshold for Phred-scaled variant quality,
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minimum depth, whether the variant is in a low-complexity region (i.e., a highly
repetitive region that may increase alignment errors), and more.

Box: Genome Assembly
If there is no reference genome available for our species of interest, it may be worth
trying to create one from scratch. To do this, DNA fragments of the targeted species
are sequenced in high quantity, resulting in sequenced reads that theoretically cover
the entire genome. Reads are aligned and merged based on their overlapping
nucleotides, assembling long DNA sequences. When the order of bases is known
to a high-confidence level, this genomic sequence will be named a “contig.”Multiple
contigs can be assembled together to form a scaffold based on paired read informa-
tion. A scaffold is a portion of the genome sequences composed of contigs but which
might contain gaps in between them.

There are various tools to close gaps between scaffolds. Scaffolds can then be
joined together to form a chromosome. Despite how easy this may sound, genome
assembly has its difficulties and it can vary between one organism to another (for
example, an uneven representation of the genome due to sequencing sensitivity to
GC bias, which can cause gaps between scaffolds) [39].

Further Reading
The GATK blog: https://software.broadinstitute.org/gatk/documentation/article.php?id=
4148

• Goldstein DB, Allen A, Keebler J, Margulies EH, Petrou S, Petrovski S, et al. Sequenc-
ing studies in human genetics: design and interpretation. Nat Rev Genet. 2013 Jul;14
(7):460–70.

• Deciphering Developmental Disorders Study. Large-scale discovery of novel genetic
causes of developmental disorders. Nature. 2015 Mar 12;519(7542):223–8.

• MacArthur DG, Manolio TA, Dimmock DP, Rehm HL, Shendure J, Abecasis GR, et al.
Guidelines for investigating causality of sequence variants in human disease. Nature.
2014 Apr 24;508(7497):469–76.

Somatic variant callers
Mutect2. (Bayesian) Cibulskis, Kristian, Michael S. Lawrence, Scott L. Carter, Andrey

Sivachenko, David Jaffe, Carrie Sougnez, Stacey Gabriel, Matthew Meyerson, Eric S.
Lander, and Gad Getz. “Sensitive Detection of Somatic Point Mutations in Impure and
Heterogeneous Cancer Samples.” Nature Biotechnology. 2013;31(3):213–19.

GATK HaplotypeCaller (Bayesian). McKenna, Aaron, Matthew Hanna, Eric Banks,
Andrey Sivachenko, Kristian Cibulskis, Andrew Kernytsky, Kiran Garimella, et al. “The
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Genome Analysis Toolkit: AMapReduce Framework for Analyzing next-Generation DNA
Sequencing Data.” Genome Research. 2010;20(9):1297–1303.

Varscan2. (Heuristic). Koboldt, Daniel C., Qunyuan Zhang, David E. Larson, Dong
Shen, Michael D. McLellan, Ling Lin, Christopher A. Miller, Elaine R. Mardis, Li Ding,
and Richard K. Wilson. “VarScan 2: Somatic Mutation and Copy Number Alteration
Discovery in Cancer by Exome Sequencing.” Genome Research. 2012;22(3):568–76.

10.7 A Practical Example Workflow

A workflow chart for a typical variant calling analysis is shown in Fig. 10.3.

1. Preprocessing
• Check that the base calling and read alignment are accurate using the standard Phred

quality sore.
• Know the expected ploidy in your experiment.
• Know the type of variants you want to identify.
• Know your sequencing platform.
• Calculate the sequencing depth.
• Check the coverage ratio between X and Y chromosome to determine sample sex

concordance.
• Identify duplicated or related samples.
• Apply a filter on low-complexity regions according to your research interest.
• Select the appropriate variant caller.

Fig. 10.3 Workflow-Chart for identification of genetic variants and de novo mutations

10 Identification of Genetic Variants and de novo Mutations Based on NGS 139



2. Once the VCF file is generated:
• Apply per-sample filters that can relate to your cohort, some examples are:

After all these metrics are calculated, we suggest you graph each of them to easily
identify outliers and define a threshold for further filtering. These metrics should also be
calculated per variant site and filters should be applied under that dimension.

• Apply per-site filters that can relate to your variant calling method, for example, check
the strand bias (identified by performing a Fisher test) “FS” and/or the strand OR “SOR”
values.

3. To identify de novo variants
Annotate your VCF file with the previously known information for each variant using

tools like Ensembl-VEP [29] or SnpEff [30].

Check for the allele frequency of your variants in the population that your samples came
from in the different available data bases, is it significantly different from the allele
frequency you observed in your experiment? How can you explain this?

4. Link your candidate variants to a phenotype
Follow the advice by MacArthur et al 2014 [32] for identifying causality of genetic

variants, in particular, identify whether your result is statistically significant or whether
it may have arisen by chance. Perform functional experiments that can explain the
mechanism by which your variant affects the phenotype in the specific context of the
background your samples carry. Search for literature that support your findings.
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What You Will Learn in This Chapter
In this chapter, we introduce the concept of RNA-Seq analyses. First, we start to
provide an overview of a typical RNA-Seq experiment that includes extraction of
sample RNA, enrichment, and cDNA library preparation. Next, we review tools for
quality control and data pre-processing followed by a standard workflow to perform
RNA-Seq analyses. For this purpose, we discuss two common RNA-Seq strategies,
that is a reference-based alignment and a de novo assembly approach. We learn how
to do basic downstream analyses of RNA-Seq data, including quantification of
expressed genes, differential gene expression (DE) between different groups as
well as functional gene analysis. Eventually, we provide a best-practice example
for a reference-based RNA-Seq analysis from beginning to end, including all neces-
sary tools and steps on GitHub: https://github.com/grimmlab/BookChapter-RNA-
Seq-Analyses.

11.1 Introduction

The central dogma of molecular biology integrates the flow of information encoded in
DNA via transcription into RNA molecules that eventually translates into proteins inside a
cell (Fig. 11.1, also see Chap. 1, Section 0). Any alteration, e.g. due to genetic, lifestyle, or
environmental factors, might change the phenotype of an organism [1]. These alterations, e.
g. copy number variations or mutational modifications of RNA molecules, affect the
regulation of biological activities within individual cells [2, 3]. The entirety of all coding
and non-coding RNAs derived from a cell at a certain point in time is referred to as the
transcriptome [4]. Apparently, any change in the transcriptome culminates into functional
alterations at both cellular and organismic level. Therefore, quantifying transcriptome
variations and/or gene expression profiling remains crucial for understanding phenotypic
alterations associated with disease and development [5, 6].

In the past, quantitative polymerase chain reaction (qPCR) was used as the tool of
choice for quantifying transcripts and for performing gene expression analyses. Although
qPCR remains a cheap and accurate technique for analyzing small sets of genes or groups
of genes, it fails to scale to genome-wide level [7]. The introduction of DNA helped to scale
transcriptomic studies to a genome-wide level due to their ability to accurately analyze
thousands of transcripts at low cost [8, 9]. However, requirements of a priori knowledge of
genome sequence, cross-hybridization errors, presence of artifacts, and the inability to
analyze alternate splicing and non-coding RNAs limit the usage of microarrays [10, 11].
Currently, next-generation sequencing (NGS) has revolutionized the transcriptomic analy-
sis landscape due to higher coverage, detection of low abundance and novel transcripts,
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dynamic changes in messenger RNA (mRNA) expression levels, analysis of genetic
variants, splice variants, and protein isoforms [6]. Moreover, NGS based RNA sequencing,
referred to RNA-Seq, could also be used for analyzing non-coding RNAs, microRNA
(miRNA), small interfering RNA (siRNA), and other small RNA classes [11].

During the past decade the basic RNA-Seq protocol for analyzing different types and
qualities of samples has continuously been modified and a variety of optimized protocols
have been released [12, 13]. A basic workflow summarizing the major steps of a standard
RNA-Seq analysis is shown in Figure 11.1. As already described in Chap. 3 the first step
involves the isolation and purification of total RNA from a sample as well as the enrich-
ment of target RNA. In this step, poly(A) capture is commonly utilized to selectively isolate
polyadenylated mRNA molecules. Further, depletion of highly abundant ribosomal
(rRNA) and transfer RNAs (tRNA) helps in mRNA enrichment (see Table 1.1). In the
second step, chemical or enzymatic fragmentation of mRNA molecules into appropriate
sizes (e.g., 300–500 bp for Illumina sequencing) followed by complementary DNA
(cDNA) synthesis is performed. Next, adapter ligation to the 3’ and 5’ ends of the cDNA
is done followed by the creation of a cDNA library. The third step is the actual sequencing
step using a modern NGS technology that generates millions of sequencing reads. Reads
are then quality checked, trimmed, and genome or transcriptome mapping is performed.
Finally, a study specific downstream analysis of data is conducted to investigate and
analyze differentially expressed genes and to perform an isoform identification or genome
annotation [14]. In the following sections we will describe the main steps of a standard and
best-practice RNA-Seq analysis.

11.2 RNA Quality

Extraction of high-quality RNA is a key step in any RNA-Seq analysis. Several RNA
extraction and purification methods (RNA purification involves cell lysis, RNAse inhibi-
tion, DNA removal, and isolation of RNA) and commercial kits are available that show
considerable variability in quality and yield of RNA [15, 16]. In general, variabilities in
these steps together with other physical factors, such as the nature of the sample, its stability
and organism determine the quality of the isolated RNA [17]. Therefore, the determination
of RNA integrity numbers (RIN) via Agilent Bioanalyzer or TapeStation systems is a
critical first step in obtaining meaningful gene expression data. The RIN score relies on the
amount of 18S and 28S to assess in vitro RNA degradation and thus RNA quality. It is
highly recommended to use only RNA for RNA-Seq library preparation with a RIN score
between 6 and 10, the higher the better. In terms of lower RIN scores ask an experienced
scientist what to do.
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11.3 RNA-Seq Library Preparation

The basic steps in RNA-Seq library preparation include efficient ribosomal RNA (rRNA)
removal from samples followed by cDNA synthesis for producing directional RNA-Seq
libraries [18, 19]. Few of the widely used RNA-Seq library preparation kits include Illumina
TruSeq (https://www.illumina.com/products/by-type/sequencing-kits/library-prep-kits/
truseq-rna-v2.html), Bioo Scientific NEXTFlex (http://shop.biooscientific.com/nextflex-
small-rna-seq-kit-v3/), and New England Biolabs NEB Next Ultra (https://www.neb.com/
products/e7370-nebnext-ultra-dna-library-prep-kit-for-illumina#Product%20Information).
In general, after removal of rRNA fractions, the remaining RNA is fragmented and reverse
transcribed using random primers with 5’-tagging sequences. Next, the 5’-tagged cDNA are
re-tagged at their 3’ ends by a terminal-tagging process to produce double-tagged, single-
stranded cDNA. In addition, Illumina adaptor sequences are added using limited-cycle PCR
that ultimately results in a directional, amplified library. Finally, the amplified RNA-Seq
library is purified and is further utilized for cluster generation and sequencing.

11.4 Choice of Sequencing Platform

Several NGS platforms (see Chap. 4) have been successfully implemented for RNA-Seq
analysis in the past few years. Currently the three most widely used NGS platforms for
RNA-Seq are the Illumina HiSeq, Ion Torrent, and SOLiD systems [20]. Although the
nucleotide detection methodology varies for each platform, they follow similar library
preparation steps. Either sequencing platform generates between 10 and 100 million reads,
with typical read lengths of 300–500 bp. However, more recent sequencing technologies,
such as Pacific Biosciences (PacBio) and Oxford Nanopore Technologies (MinION) can
sequence full-length transcripts on a transcriptome-wide scale and can produce long reads
ranging between 700 and 2000 bp [21]. Moreover, single-cell RNA-Seq (scRNA-Seq) has
emerged recently as a new tool for precisely performing transcriptomic analysis at the level
of individual cells [22]. Different RNA-Seq experiments require different read lengths and
sequencing depths. Importantly, data generated by different RNA-Seq platforms vary and
might affect the results and interpretations. Thus, the choice of the sequencing platform is
crucial and highly depends on the study design and the objectives. An overview of platform
specific differences is summarized in Table 11.1 and Chap. 4.

11.5 Quality Check (QC) and Sequence Pre-processing

After the sequencing experiment, a quality check (QC) of raw reads is required to filter out
poor-quality reads resulting from errors in library preparation, sequencing errors, PCR artifacts,
untrimmed adapter sequences, and presence of contaminating sequences [24]. Presence of low-
quality reads often affect the downstream processing and interpretation of obtained results.
Several tools, including FastQC [25], htSeqTools [26], and SAMStat [27], to assess the quality
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of raw sequencing reads. FastQC is a commonly used tool providing various analyses and
quality assessments about the overall quality of the raw sequencing to identify low-quality
reads (see Sect. 7.3.1). QC is followed by a pre-processing step that involves removal of low-
quality bases, adapter sequences, and other contaminating sequences. Cutadapt [28] and
Trimmomatic [29] are two popular tools utilized for filtering (removing adapter and/or other
contaminating sequences) based on parameters that could be easily customized by the user.

Figure 11.2 summarizes all necessary steps schematically. In addition, we provide a
detailed practical example for a reference-based RNA-Seq analysis on GitHub: https://
github.com/grimmlab/BookChapter-RNA-Seq-Analyses. For this example, data from the
Sequence Read Archive (SRA) [30] are used. Fastq files are downloaded and an initial
quality assessment is done using FastQC:

Description of parameters:

SRR5858229_1.fasta.gz is the input example file for quality assessment

-o is path to output directory, e.g reads_QA_stats

Next, reads with low-quality have to be filtered and adapters have to be removed.
Optimal parameters for filtering are derived from the FastQC quality report (see Chap. 7,
Sect. 7.3.1). The tool Cutadapt can be used as follows:

Table 11.1 Technical specifications of common sequencing platforms used for RNA-Seq
experiments. Adapted from Quail A et al. 2012 [23]

Platform
Run
time

Raw error rate
(%)

Read
length

Paired
reads

Insert
size

Sample
required

Illumina MiSeq 27 h 0.8 �150 b Yes �700 b 50–1000 ng

Illumina GAIIx 10 days 0.76 �150 b Yes �700 b 50–1000 ng

Illumina HiSeq
2000

11 days 0.26 �150 b Yes �700 b 50–1000 ng

Ion Torrent
PGM

2 h 1.71 ~200 b Yes �250 b 100–
1000 ng

PacBio RS 2 h 12.86 ~1500 b No �10 kb ~1 μg

148 R. Bharti and D. G. Grimm

https://github.com/grimmlab/BookChapter-RNA-Seq-Analyses
https://github.com/grimmlab/BookChapter-RNA-Seq-Analyses


Description of parameters:

-q phred score of 20

--minimum-length the minimum sequence length (35)

-a the adapter sequence for trimming

-o the output file name

Fig. 11.2 A schematic illustration of a typical RNA-Seq experiment. Standard protocols for both
reference-based alignment/mapping and de novo assembly are shown
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11.6 RNA-Seq Analysis

There are two main strategies for RNA-Seq analysis, one that is based on reference-based
alignment and the second that is based on a de novo assembly. In addition, there are hybrid
approaches that combine both strategies [4]. In the following, we will describe details for
both, the reference-based alignment and the de novo assembly.

11.6.1 Reference-Based Alignment

A reference-based alignment is a strategy to align (map) individual reads (based on
sequence similarities) against a chosen reference genome or a transcriptome sequence
[31], as illustrated in Fig. 11.3. One aim of this approach is to quantitate transcript
abundance at a genomic locus [32]. Here, each identified mapping location must indicate
the origin of transcript as well as the total number of reads corresponding to the same
transcript present in the dataset.

Reference-Genome Based Alignment A reference genome sequence is utilized for
aligning the reads. For an accurate mapping it is important to consider that reads might
originate from either cDNA corresponding to spliced transcripts or from non-spliced
transcripts [33, 34]. In the case of spliced transcripts, contiguous read sequences are
separated by intervening splice junction (SJ) boundaries and are split into two fragments
and assigned separately. Thus, there are two main alignment approaches for aligning reads
against a reference genome, that is spliced alignment and unspliced alignment [35, 36]. In
addition, the alignment of reads against a reference genome leads to unaligned regions and
gaps. Apparently, splice-aware aligners are generally suitable for most reference-genome
based alignments. As the information on SJs in the reference genome is crucial, most
aligners also refer to known annotated SJ databases to confirm the presence or absence of
splice sites [37]. In addition, most aligners also perform sequence matching of terminal
nucleotides in aligned reads with donor–acceptor sites of known splicing sites. Currently a
number of splice-aware alignment tools are available, such as BBMap [38], STAR [39],
GMAP [40], and TopHat2 [41]. STAR utilizes a sequential maximum mappable seed search
algorithm that consolidates into seed clustering and stitching steps to generate alignments.
In contrast, TopHat2 incorporates an exhaustive initial step where alignments are scanned
for possible exon–exon junctions, which are eventually utilized in the final step for
generating the final alignment. Importantly, parameters of alignment tools have to be
carefully chosen to gain optimal alignment results.

Reference-Transcriptome Based Alignment This alignment method is mainly utilized
when a well-annotated transcriptome or a set of known transcripts are available. Here,
sequencing reads can be directly aligned in a continuous, error-free manner without
involving computationally intensive steps, due to the availability of splicing information
for reference transcripts [42]. For this purpose, aligners that are not splice-aware or
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ungapped aligners are used, since the alignment process does not essentially incorporate a
range of gaps. However, as the alignment process utilizes a relatively reduced reference
size in the form of selected transcriptomic sequences, it is not particularly useful for
identifying novel exons, their expression patterns or splicing events [43, 44]. This is simply
because all the available isoforms are aligned to the same exon of a gene multiple times,
due to pre-existing splicing information. Bowtie2 [45] and MAQ [46] are the two most
widely used aligners for transcriptome-based alignment/mapping. Bowtie2 utilizes a
Burrows–Wheeler Transform (BWT) based FM index (Full-text index in Minute space)
to perform fast and memory efficient alignments. On the other hand, MAQ identifies
ungapped matches with low mismatch scores and assign them to a threshold-based
mapping algorithm. This generates phred-scaled quality scores for each read alignment
and a final alignment is produced by collating the best scoring matches for every read.

Reference genomes, e.g. for mouse, together with annotations can be downloaded from
GENCODE [47] using the following command:

11.6.1.1 Choice of Reference-Based Alignment Program
The choice of a reference-based aligner for RNA-Seq data depends mainly on the splicing
information or simply the type of organism [48]. For RNA-Seq reads originating from
organisms without introns, that is prokaryotes/archaea, ungapped aligners or aligners that
are not splice-aware are utilized. However, if the reads are aligned to intronic genomes
(eukaryotic), splice-aware aligners like TopHat2 [41], STAR [39], or BBMap [38] are used
that incorporate a three-step alignment procedure. In the first step, sequencing reads are
aligned to a reference genome or transcriptome sequence. Next, overlapping reads present
at each locus are collated into a graph representing all isoforms. In the final step, the graph
is resolved, and all isoforms associated with individual genes are identified [35]. In our
example (see GitHub and Fig. 11.2), we use the commonly used tools TopHat2 and STAR.

TopHat2: As mentioned in Chap. 9, Sect. 9.2.3.4 TopHat2 is a fast and memory
efficient tool that utilizes Bowtie2 for alignment. Genomic annotations are used together
with the available transcriptome information to produce precise spliced alignments. In
addition, TopHat2 allows excluding pseudogene sequences and shows minimum tolerance
to mismatches and non-alignment of low-quality bases. TopHat2 incorporates a multistep
alignment algorithm that consists of an optional transcriptional alignment followed by a
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genomic alignment and finally a spliced alignment based on the available annotations
(Fig. 11.4a). The main steps using TopHat2 are summarized below:

Building Reference Index First, the reference genome of choice is indexed using
Bowtie2. The generated index file and genomic FASTA file are then used for the genomic
alignment of the reads.

Description of parameters:

-f the path to genome Fasta file 

-p to launch a specified number of parallel threads

Read Alignment/Mapping Quality checked reads in FASTQ format or plain FASTA files
are accepted as input for TopHat2. TopHat2 is able to handle either single-end or paired-
end reads and is able to integrate single-end reads into a paired-end alignment. Separate
commands are used for utilizing genome index and transcriptome index files. Note, for an
optimal pair-end alignment it is crucial to keep the same order of reads in the two files.

Availability of genomic annotations in the GTF/GFF file format could be utilized for initial
transcriptome alignment. Transcriptome alignment involves the creation of a transcriptome
index utilizing the genome index and the annotation information from GTF/GFF file.

The alignment using TopHat2 is performed as follows:
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Description of parameters:

-o output directory

-p the number of threads to align reads (default used is 8)

-G the path to the annotation file 

/data/TOPHAT_Genome_Index/GRCm38.p6.genome is the path and prefix name of reference genome file

reads/filtered_reads/SRR5858228_1_trimmed.gz is the path to preprocessed and trimmed reads

Output The alignments are stored in BAM file format. Additionally, a text file is generated
indicating the alignment rate and the number of reads or pairs with multiple alignments.
Further, identified exon junctions, insertions, and deletions are stored in a separate BED
file.

STAR: STAR (Spliced Transcripts Alignment to a Reference) is a fast alignment
algorithm albeit having relatively higher memory requirements [39]. It is based on maxi-
mum mappable length approach that involves splitting individual reads into pieces or seeds
and identifying best segments that can be mapped for each seed (Fig. 11.4b). Next,
segments are stitched together and mapped using the genome sequence as an uncompressed
suffix array including information of splice sites (see Chap. 9, Sect. 9.2.3.1). The main
steps in alignment/mapping using STAR are described below:

Building/Exporting Reference Index STAR provides two options to either create a
custom genome index using suffix arrays or directly utilize available STAR references
indices. To include SJ annotation into the mapping process, a separate splice junction
reference file is required while constructing a customized reference index. Additionally, the
memory requirement for running STAR can be reduced by using a relatively sparser suffix
array that eventually reduces alignment speed. The reference index is created as follows:

Description of parameters:

--runThreadN number of threads

--runMode is set to genomeGenerate, which generates genome files

--genomeDir the path to the output directory name

--genomeFastaFiles the path to the genome fasta file 

--sjdbGTFfile the path to the annotation file 
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Read Alignment/Mapping The mapping process for STAR may either use an already
available SJ annotated genome index or custom index built by the end-user. Following
this, the FASTQ files are specified and the alignment is done based on default or user-
defined parameters. Several user-defined parameters, such as inserting SAM attributes,
identifying mismatches, SJ information, and file compression are available in STAR. The
alignment can be executed as follows:

Description of parameters:

--runMode alignReads is set to map the reads against the reference genome

--runThreadN the number of threads (default is 8)

--genomeDir the path to the genome index directory

--readFilesIn the path to trimmed reads 

--readFilesCommand for gzipped files (*.gz) use zcat

--sjdbGTFfile the path to the annotation file 

--outFileNamePrefix output prefix name with its path

--outSAMtype output sorted by coordinate

Output The alignments are stored in the SAM file format along with several other output
files that include information on alignments, SJs, log files indicating run progress, read
pairs, and mapping statistics.

Review Question 1

What is the difference between a splice aware and splice unaware alignment?

11.6.2 De novo or Reference-Free Assembly

De novo or reference-free assembly is performed if a reference genome is not available
[49]. This involves creation of contigs mainly using an overlap-based collation of sequenc-
ing reads along with several other parameters (Fehler! Verweisquelle konnte nicht
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gefunden werden.). For gene expression analysis, the sequencing reads are mapped on the
assembled transcriptome further leading to annotation and functional analysis [50]. The
biggest advantage of de novo assembly is its non-dependence on a reference genome. It is
advantageous in analyzing data for sequences originating from un-sequenced genomes,
partially annotated, unfinished genome drafts, and new/rare genomes including that of
epidemic/pandemic viruses such as Ebola, Nipah, and Covid-19. In most cases, the RNA-
Seq analysis along with a de novo assembly provides first-hand information on transcripts
and phylogeny. On the contrary, performing a de novo assembly in conjugation with a
reference-based alignment could also help detecting novel transcripts and isoforms [51,
52]. Importantly, identification of novel splicing sites or transcripts via a de novo assembly
does not essentially require alignment information of pre-existing splice sites. Another
important advantage of a de novo assembly is its compatibility to both, short read and long
read sequencing platforms in contrast to a reference-based alignment that prefers the
former.

There are several popular de novo assembly tools available that include Rnnotator [53],
Trans-ABySS [54], and Trinity [55]. Besides, alternative and efficient approaches are
hybrid methods which use both, reference-based alignments and de novo assemblies [52]
((PMID: 29643938) Fehler! Verweisquelle konnte nicht gefunden werden., right).

11.6.2.1 Choice of de novo Assembly Tools
Currently, de Bruijn graphs are the most widely used algorithm for performing a de novo
assembly [56]. Hence, most of the popular de novo or reference-free assembly tools for
RNA-Seq data utilized de Bruijn graphs, including Velvet, Oases, and Trinity. Velvet and
Oases are used simultaneously [57, 58]. Velvet is a genome assembly tool that generates
assembly graphs that are further analyzed by Oases for finding paths in the graphs to
identify transcript isoforms and to generate a draft assembly. Trinity is based on three main
modules that perform an initial assembly and clustering, create individual de Bruijn graphs
for each cluster, and finally extract sequences representing transcript isoforms present at
enlisted gene locus [55]. Next, we describe how to use both Velvet/Oases and Trinity [49].

Velvet and Oases: Velvet is a genome assembler that calculates k-mers of data and
assigns the contigs into a de Bruijn graph. Similarly, Oases performs transcript assemblies
utilizing the output of Velvet. It segments the graphs generated by Velvet into transcript
isoforms linked to each locus. Both tools process single-end reads as default; however,
Velvet supports paired-end reads using a single file containing adjacently located read pair.
The main steps in a de novo assembly using Velvet and Oases are described below:

Creating de Bruijn graph The input data format is defined (FASTA/FASTQ; single end/
paired end) and the data is clustered based on a particular k-mer length (e.g., 20). A hash
table is created which is utilized to generate a de Bruijn graph for the defined k-mer size. In
this step, a hash table is created with defined k-mer size and then graph traversal is done to
create de Bruijn graphs by Velvet as follows:
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Description of parameters:

vdir the name of output directory

25 k-mer size 

-shortPaired paired end reads 

-fastq reads in FASTQ format

Chr18_12.fq input file name

-ins defined insert size (fragment length)

-read_trkg read tracking information for Oases

Contig Generation In the second step, the graph traversal and contig extraction are
performed on the resulting de Bruijn graph. Here, the minimum transcript length and insert
size (for paired-end reads) are pre-defined. Importantly, several different assemblies with
varying k-mer lengths can be also performed simultaneously to obtain an optimal assembly.
In this step, the resulting de Bruijn graphs are extracted into contigs for a defined transcript
length using Oases:

Description of parameters:

vdir the name of input directory containing velvet output

-ins_length defined insert size for paired end reads

-min_trans_lgth minimum transcript length

Output The output is generated as a FASTA file containing all identified transcript
sequences with locus, isoform information, confidence value between 0 and 1, and
transcript length. For each k-mer defined previously, a separate result is generated that
contains the corresponding assembly. In case of multiple assemblies with different k
values, Velvet can process each assembly individually.

Trinity: Trinity is a combination of three independent software modules, that is Inch-
worm, Chrysalis, and Butterfly that are applied sequentially to perform a de novo assembly
of transcriptomes from RNA-Seq data [55]. Trinity initially partitions the RNA-Seq reads
into a number of individual de Bruijn graphs, each representing transcriptional complexity
at particular gene/locus. Next, each of these de Bruijn graphs are separately extracted into
full-length splicing isoform for cataloguing different transcripts obtained from paralogous
genes. The main steps in a de novo assembly using Trinity are described below:
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Contig Generation First Inchworm extracts all overlapping k-mers from the RNA-Seq
reads. Second, each unique k-mer is examined in decreasing order of abundance and
transcript contigs are generated using a greedy extension algorithm based on (k-1)-mer
overlaps. Finally, unique portions of alternatively spliced transcripts are saved for the next
step. Trinity is executed from the command line using a single Perl script “Trinity.pl”:

Description of parameters:

--seqType the input sequence in FASTQ format (can be fa, or fq)

--max_memory the suggested max memory to be use by Trinity in Gb of RAM

# if single reads:

--single single reads, one or more file names, comma-delimited

# if paired reads:

--leftleft reads, one or more file names (separated by commas)

--right right reads, one or more file names (separated by commas)

Creating de Bruijn Graph In the next step, the generated contigs are clustered using
Chrysalis based on regions originating from alternatively spliced transcripts or closely
related gene families. Following this, a de Bruijn graph for each cluster is created and the
reads are partitions among these contig clusters. These contig clusters are termed as
“components” and the partitioning of RNA-Seq reads into ‘components’ helps to process
large sets of reads in parallel.

Output In the final step, Butterfly processes individual de Bruijn graphs in parallel by
tracing RNA-Seq reads through each graph and determining connectivity based on the read
sequence. This results in reconstructed transcript sequences for alternatively spliced
isoforms along with transcripts that correspond to paralogous genes. The final output is a
single FASTA file containing reconstructed transcript sequences.
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11.7 Functional Annotation of de novo Transcripts

Functional annotation of the de novo transcripts involves identifying biological informa-
tion, such as metabolic activity, cellular and physiological functions of predicted genes, or
gene products/proteins [59]. In general, functional annotation can be either performed
using conventional homology search or using a gene ontology (GO-term) based mapping
[60, 61]. In the homology search, closely related protein sequences are initially identified
by using a BLASTp UniProtKB database search [62] and based on protein domains using
the Pfam database [63]. After integrating BLASTp and Pfam outputs, remaining functional
annotation is done using BLASTx and HMMER (http://hmmer.org/). Additionally,
Rnammer [64] and SignalP [65] are used for predicting ribosomal RNA and signal peptide
sequences, respectively.

In the gene ontology-based annotation, GO-terms associated with hits obtained from
Blast results are retrieved and catalogued into biological process ontologies, molecular
function ontologies, or cellular component ontologies. The ontology data provides infor-
mation about the functions and physiological activities of identified gene products. Another
widely used tool, Blast2GO [66] utilizes statistics of GO-term frequencies for analyzing the
enrichment of GO annotations. Additionally, the Kyoto Encyclopedia of Genes and
Genomes (KEGG) [67] pathways are used for predicting interactions between gene
products and related metabolic activities [32].

11.8 Post-alignment/assembly Assessment and Statistics

After alignment and read mapping, an assessment is done to analyze the quality of the
alignment based on information, such as total number of processed reads, % of mapped
reads, or SJs identified with uniquely mapped reads. Before any downstream analysis can
be done, the output files require some post-processing, including file format conversions
(SAM/BAM), sorting, indexing, and merging. There are a variety of tools available for
post-processing, that is SAMtools [68], BAMtools [69], Sambamba [70], and Biobambam
[71]. SAMtools mainly incorporates methods for file conversions from SAM- into BAM-
format or vice versa. This is important because the BAM file format is one of the main file
formats for several downstream tools. Besides, SAMtools is frequently used for sorting and
listing alignments in BAM files, e.g. based on mapping quality and statistics. Many of these
tasks are summarized in our RNA-Seq workflow available on GitHub: https://github.com/
grimmlab/BookChapter-RNA-Seq-Analyses.
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The reference-based alignment statistics can be computed as follows:

Description of parameters:

-i input bam file with its path

-q mapping quality to determine uniquely mapped read

Finally, RSeQC generates a table in the respective mapping folder where unique reads
are considered if their mapping quality is more than 30 [72].

11.9 Visualization of Mapped Reads

The RNA-Seq analysis of diverse datasets is usually automated. However, it still requires
additional and careful interpretations depending on the study design. Apparently, visuali-
zation of read alignments helps to gain novel insights into the structure of the identified
transcripts, exon coverages, abundances, identification of indels and SNPs as well as of
splicing junctions (SJs) [55]. In fact, visualizing aligned or assembled reads in a genomic or
transcriptomic context helps comparing and interpreting the obtained data together with
reference annotations. Currently, several genome browsers provide visualization of
sequencing data, including JBrowse [73], Integrative Genomics Viewer (IGV) [74],
UCSC [75], and the Chipster [76] genome browser. In our RNA-Seq workflow example
we use the IGV browser, as shown in (Fig. 11.2). IGV can handle and visualize genomic as
well as transcriptomic data. It incorporates a data-tiling approach to support large datasets
and a variety of file formats. In this approach, any user-entered genome data is divided into
tiles that represent individual genomic regions.

11.10 Quantification of Gene Expression

Both reference-based alignments and de novo assemblies provide comprehensive informa-
tion about read location and abundance that can be used for quantifying gene expression
[77]. For a typical RNA-Seq experiment, an estimation of the total number of mapped reads
can directly provide information on the number of transcripts. However, it may not be
always true as eukaryotic gene expression involves alternative splicing, which generates
several isoforms from the same gene. Importantly, these isoforms can have overlaps in the
exon sequences and thus affect precise mapping and quantification. Hence, depending on
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the experimental design, gene expression quantification can be done by either counting
reads per genes, transcripts, or exons to obtain error-free estimations [78].

In our RNA-Seq workflow, quantifications are generated from a reference-based RNA-
Seq alignment using the following shell script (see GitHub repository):

Following this, one of the three quantification methods can be chosen as follows:

11.11 Counting Reads Per Genes

The simplest method to quantify gene expression is to count the number of reads that align
to each gene in the RNA-Seq data. Various tools such as HTSeq [79] and BEDTools [80]
are available that can count reads per gene. The workflow on GitHub contains reads per
gene counts for both HTSeq and BEDTools. Note, we will only use HTSeq for the
following explanations.

HTSeq—is a Python-based tool that has several pre-compiled scripts for analyzing NGS
data. The HTSeq-count script takes as input the genomic read alignments in SAM/BAM
format together with genome annotations in GFF/GTF format. The algorithm matches exon
locations listed in GFF/GTF file and counts reads mapped to that location. The output is
generated by clustering the total number of exons for each gene along with information on
number of reads that were left-out. The criterion for left-out or unmapped reads include
alignments at multiple locations, low alignment qualities, ambiguous alignments, and no
alignments or overlaps. This step is implemented in the described RNA-Seq analysis as
follows:
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Output All the outputs are stored in the folder: analysis/quantification/htseq-count.
Finally, all HTSeq output files are combined to created final file
Read_per_features_combined.csv in the same folder which will be used as input for
differential expression analysis.

11.12 Counting Reads Per Transcripts

Quantification of gene expression, by counting reads per transcript, utilizes algorithms that
precisely estimate transcript abundances. Subsequently, sequence overlaps present in
multiple transcript isoforms makes gene assignment tricky in this case. Thus, an expecta-
tion maximization (EM) approach is generally utilized where initially reads are assigned to
different transcripts according to their abundance followed by sequential modification of
the abundances based on assignment probabilities. Several programs are available for
estimating transcript abundances in RNA-Seq data, including Cufflinks [81] and eXpress
[82]. In our RNA-Seq workflow (on GitHub), we used Cufflinks, which is explained in
more detail in the section below.

Cufflinks utilizes a batch EM algorithm, where genomic alignments are accepted in
BAM format and annotations in GTF file. A likelihood function accounts for sequence-
specific biases and utilizes the abundance information to identify unique transcripts. A
continuous re-estimation of abundances is done based on omission of sequence biases in
each cycle. The count data output contains information on transcripts and genes as FPKM-
tracking files with FPKM (Fragments Per Kilobase Million) values and associated confi-
dence intervals. This is implemented in the described RNA-Seq workflow as follows:
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Description of parameters:

-G path to the annotation file 

-b path to the genome fasta file 

-p number threads

-o name of the output directory

11.13 Counting Reads Per Exons

In general, a single exon can appear multiple times in a GTF file, due to exon sequence
overlaps associated with transcript isoforms. Thus, abundance estimation for exons
involves cataloguing a set of nonoverlapping exonic regions. For quantifying gene expres-
sion using read counts per exon, the Bioconductor package DEXSeq [83] is mainly used.

DEXSeq modifies the input GTF file into a list of exon counting bins that list single
exons or a part of an exon that overlaps. Alignment is performed in SAM format with data
sorted by read names and/or chromosomal coordinates and a modified GTF file with exon
counting bins is generated. The output count file contains the number of reads for every
exon counting bin. Here, a list of non-counted reads is generated based on the criterion that
includes unaligned reads, low-quality alignments, ambiguous or multiple overlaps.

DEXSeq is implemented in the described RNA-Seq analysis workflow in two steps. The
first step is the preparation of annotations:
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The second step performs the read counting:

Review Question 2

Are there any differences between gene expression quantification methods?

11.14 Normalization and Differential Expression (DE) Analysis

A majority of RNA-Seq experiments are performed to obtain information about transcrip-
tional differences among a set of samples (organisms, tissues, or cells) and conditions or
treatments [84, 85]. Thus, to prevent errors in estimation of expression or transcriptional
differences, normalization remains a critical step for a given RNA-Seq analysis. Normali-
zation helps in rectifying errors in factors that affect preciseness of read mapping including
read length, GC-content, and sequencing depth [86]. However, errors in normalization
might generate large number of false positives that can eventually affect preciseness of
these downstream analyses [87]. In general, RNA-Seq data normalization involves trans-
formation of the read count matrix for obtaining correct comparisons of read counts across
samples. Correct normalization generates correct relationships between normalized read
counts, thus affecting analysis across different conditions/treatment across samples [88].
Although it was not deemed a necessary factor initially, modern RNA-Seq analysis,
including differential expression (DE) analysis, highly depends on data normalization
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[89]. Normalization protocols together with statistical testing might have the largest impact
on the results of an RNA-Seq analysis [90, 91]. In this context, several normalization
methods have been developed based on different assumptions in RNA-Seq experiments
and corresponding gene expression analysis. There are mainly three major normalization
strategies, that is normalization by library size, normalization by distribution, and normali-
zation by controls [92]. In case of normalization by library size, differences in sequencing
depth are removed by simply dividing by the total number of reads generated for each
sample. Similarly, normalization by distribution involves equilibrating expression levels
for non-DE genes, if the technical effects or treatments remain the same for DE and non-DE
genes. Importantly, assumptions made by any normalization method should be always
considered before choosing a preferable method that suits the study design [93]. For
instance, normalization by library size should be chosen when the total mRNA remains
equal or in the same range across different treatments/conditions despite any asymmetry. In
contrast, normalization by distribution is mostly useful if there is symmetry in sample sizes
even if there are differences in total mRNA across samples.

DE analysis involves analyzing significant differences in the quantitative levels of
transcripts or exons among various samples and conditions. Since gene regulatory mechanisms
often collate multiple genes at a time or under a single condition, obtaining statistically
significant information becomes tricky. This is attributed to quantitative differences in sample
size and expression data as a comparatively large RNA-Seq data could be generated for a
limited set of samples [94, 95]. Under this scenario, DE analysis essentially requires multivari-
ate statistical methods that include principle component analysis (PCA), canonical correlation
analysis (CCA), and nonnegative matrix factorization (NMF) [96]. Thus, statistical software
like R and its bioconductor packages find a high utility in performing DE analysis for RNA-
Seq data. There are several tools including Cuffdiff [81] and bioconductor packages such as
DESeq2 [97], edgeR [98], and Limma [99] that are frequently used for DE analysis.

All three packages utilize linear models for a comparative correlation between gene
expression/transcript abundance with the variables listed by the user. Additionally, these
packages need designated design matrix or experimental information containing outcomes
and parameters together with a contrast matrix that describes the comparisons to be
analyzed. The early steps in the DE analysis essentially require creating the input count
table that could be generated as described below.

BAM Files The alignment files in BAM format are converted to SAM files first (HTSeq)
or can be used directly (BEDTools). Both tools produce a count table that could be used for
DE analysis.

Individual Count Files Individual count files generated using HTSeq can be combined
either using UNIX or R commands directly. In addition, DESeq2 has a separate script for
combining the individual files into single count table. In our RNA-Seq pipeline we use a
custom R script (https://github.com/grimmlab/BookChapter-RNA-Seq-Analyses/blob/
master/Rscripts/DE_deseq_genes_bedtools.R). We first perform a rlog transformations
and then a DE analysis using DESeq2:
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Existing Count Table If a pre-existing count table is available, then it can be processed
directly by either package.

Subsequently, the lowly expressed transcripts are removed by independent filtering
before the count-based DE analysis is performed using either of the packages (DESeq2,
edgeR, or Limma).

DESeq2 is a widely used DE analysis package that utilizes negative binomial
generalized linear models for estimating dispersion and fold changes from the distribution
extracted from the count table. It mainly functions based on a data frame containing group
definitions and other information. DESeq2 defines relevant groups and prepares a data
frame based on the available group information. Following this, different models are
utilized for extracting fold changes and distributions. In addition, the count data generated
by DEXSeq and Cufflinks have been used for DE analysis in the proposed RNA-Seq
workflow, either directly or by using customized R-scripts.

DEXSeq

Cufflinks
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Description of parameters: 

-o path to the output folder

-L lists the labels to be used as “conditions”

-FDR cutoff for false discovery rate for the DE analysis

-u path to annotation file

-p is the number threads

BAMLIST is list of all bam file in comma format

Review Question 3

What is differential gene expression?

11.15 Functional Analysis

Another important downstream analysis of RNA-Seq data involves gene set enrichment
analysis using functional annotation of differentially expressed (DE) genes or transcripts.
This simply means identifying association of DE genes/transcripts with molecular function
or with a particular biological process [100]. Functional analysis could be performed in
many ways including clustering analysis and gene ontology methods. Clustering analysis
usually involves identification of shared promoters or other upstream genomic elements for
predicting correlation between gene co-expression and known biological functions [96].
On the other hand, biological ontology method involves annotation of genes to biological
functions using graph structures from the Kyoto Encyclopedia of Genes and Genomes
(KEGG) or gene ontology (GO) terms [101]. There are several tools available for
performing functional analysis such as GO::Term Finder [102], GSEA [103], and
Clusterprofiler [104]. The Gene Set Enrichment Analysis (GSEA) utilizes DE data for
identifying gene sets or groups of genes that share common biological function, chromo-
somal location, or regulation. Similarly, the Clusterprofiler package is implemented for
gene cluster assessment and comparison of biological patterns present in them.

Take Home Message
• Next-generation sequencing (NGS) based transcriptomic analysis provides higher

sequence coverage, detection of low abundance and novel transcripts, dynamic
changes in mRNA expression levels, and precisely catalogues genetic variants,
splice variants, and protein isoforms.

• Several RNA-Seq experimental and analytical protocols are available for
analyzing a wide variety of sample types with variable sample qualities.

(continued)
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• Choice of the RNA extraction and library preparation methods, NGS platform,
quality check, and pre-processing protocols affect the outcomes of RNA-Seq
experiments.

• RNA-Seq data processing highly depends on the presence or absence of a
reference genome that remains the pivotal determinant of the choice of a refer-
ence-based alignment or a de novo assembly for a given dataset.

• We provide a best-practice RNA-Seq analysis workflow on GitHub: https://
github.com/grimmlab/BookChapter-RNA-Seq-Analyses. This workflow is a step-
wise reference-based RNA-Seq analysis example and shall help to get started with
a basic RNA-Seq analysis.

Further Reading

• The Biostar Handbook: 2nd Edition.
https://www.biostarhandbook.com/

• GNU Bash Reference Manual by Chet Ramey, Brian Fox.
https://www.gnu.org/software/bash/manual/bash.pdf

• An Introduction to Statistical Learning with Applications in R by Gareth James, Daniela
Witten, Trevor Hastie, and Robert Tibshirani.

http://faculty.marshall.usc.edu/gareth-james/ISL/
• Python for Bioinformatics by Sebastian Bassi.
• Next-generation transcriptome assembly. Martin JA, Wang Z. Nat Rev Genet. 2011 Sep

7;12(10):671-82.
• RNA-Seq: a revolutionary tool for transcriptomics. Wang Z, Gerstein M, Snyder M. Nat

Rev Genet. 2009 Jan;10(1):57–63.
• Computational and analytical challenges in single-cell transcriptomics. Stegle O,

Teichmann SA, Marioni JC. Nat Rev Genet. 2015 Mar;16(3):133–45.
• Genetic Variation and the De Novo Assembly of Human Genomes, Chaisson MJP,

Wilson RK, Eichler EE, Nat Rev Genet. 2015 Nov; 16(11):627–40.

Answers to Review Questions

Answer to Questions 1: During the read alignment the first crucial step is to determine
the point of origin of the read sequence with respect to the reference genome. For an
accurate mapping it is important to consider that reads might originate from either
cDNA corresponding to spliced transcripts or from non-spliced transcripts. In the case
of spliced transcripts, contiguous read sequences are separated by intervening splice
junction (SJ) boundaries and are split into two fragments and assigned separately. Thus,
there are two main alignment approaches for aligning reads against a reference genome,
that is a spliced unaware and spliced aware alignment. For this purpose, the RNA-Seq
reads are typically mapped to either a genome (splice aware) or a transcriptome (splice
unaware). Most of the splice unaware alignment tools align DNA against DNA and
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would have to introduce a long gap in the mapping of a read to span an intron of varying
length. Thus, splice unaware aligners are commonly used if reads can be directly
mapped against a reference transcriptome or prokaryotic genome. An example of an
ungapped aligner is Bowtie, which is an alignment tool based on Burrows–Wheeler
Transforms (BWT). Note that this strategy will not support the discovery of novel
transcripts. Especially transcriptomes of alternatively spliced organisms, like
eukaryotes, are generally suitable for most reference-genome based alignments. As
the information on SJs in the reference genome is crucial, most aligners also refer to
known annotated SJ databases to confirm the presence or absence of splice sites. Splice-
aware aligner like STAR incorporates a three-step alignment procedure to map the
reads. In the first step, sequencing reads are aligned to a reference genome. Next,
overlapping reads present at each locus are collated into a graph representing all
isoforms. In the final step, the graph is resolved, and all isoforms associated with
individual genes are identified.

Answer to Questions 2: Gene expression quantification can be done by either
counting reads per genes, transcripts, or exons. In the first case, gene expression is
quantified by counting the number of reads that align to each gene in the RNA-Seq data.
In the second case, quantification based on counting reads per transcript involves precise
estimation of transcript abundances followed by an expectation maximization (EM)
approach for abundance-based assignments of reads to different transcripts. In the third
case, gene expression quantification using exons involves identification and indexing
sets of nonoverlapping exonic regions. The choice of the correct quantification depends
on the study design and will have a high impact on the outcome of an experiment.

Answer to Question 3: The aim of differential expression analysis is to identify genes
with difference in expression patterns under different experimental conditions (gene(s)
versus condition(s) and vice versa) for a set of samples.
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What You Will Learn in This Chapter
In this chapter the theoretical background, the experimental requirements, and some
ways to evaluate Chromatin Immunoprecipitation followed by NGS (ChIP-Seq) are
represented and explained using practical examples. You will learn about the main
differences between sequencing DNA regions with certain histone modifications or
transcription factor binding sites. Moreover, we will introduce a software tool
HOMER, which offers a variety of (epigenetic) sequencing data analysis options.
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Herefore, the most important scripts, commands, and options and their purpose are
illustrated in this chapter. After you have worked through this chapter you will
understand the impact of epigenetic sequencing approaches and you will be able to
perform the ChIP-Seq data analysis workflow—from receiving your raw data after
sequencing to motif discovery in your identified ChIP-Seq peaks/regions.

12.1 Introduction

Epigenetic sequencing approaches allow to study heritable or acquired changes in gene
activity caused by mechanisms other than DNA sequence changes. Epigenetic analysis
research can involve studying alterations in DNA methylation, DNA–protein interactions,
chromatin accessibility, histone modifications, and more, on a genome-wide scale. In this
textbook we focus on analyzing ChIP-Seq data based on DNA–protein interaction of
transcription factors or (modified) histones. However, the sequencing data analysis workflow
is, with minor differences, similar for all approaches. The main aim of ChIP-Seq approaches
is to identify genetic regulatory networks (GRNs) to determine transcriptionally active genes
in any cell type of interest. Genes are transcribed by RNA Polymerase II, but binding by
specific transcription factors is required to initialize this process. The following simplified
illustration depicts the phenomenon of gene regulation by a specific regulatory protein
(transcription factor, TF), without which transcription does not occur (Fig. 12.1).

Thus, ChIP-Seq data provide insights into regulation events by identification of tran-
scription factor binding sites, so-called binding motifs, within a promoter sequence or other
regulatory sequences (enhancer/silencer). Moreover, ChIP-Seq data can be used to track
histone modifications across the genome, and narrow in on chromatin structure and
function. Next Generation Sequencing reads from ChIP-Seq experiments can be evaluated
by different software tools in different ways. This textbook describes an open source
software called HOMER [1] and Bioconductor packages in R to analyze ChIP-Seq data.

12.2 DNA Quality and ChIP-Seq Library Preparation

For successful ChIP-Seq approaches, one must generate high-quality ChIP-DNA templates
to obtain the best sequencing outcomes. ChIP-Seq experiments typically begin with the
formaldehyde cross-linking of protein–DNA complexes in cells or tissue. The chromatin is
then extracted and fragmented, either through enzymatic digestion or sonication, and
DNA–protein fragments are immunoprecipitated with target-specific antibodies (the target
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is the respective TF or histone). Generating reliable ChIP-Seq data depends on using
antibodies that have been validated for target specificity and acceptable signal-to-noise
ratios to perform the ChIP experiment (Fig. 12.2) [2].

The amount of ChIP-DNA to use when creating a DNA library is influenced by factors
like the amount of DNA obtained from the actual ChIP, the desired library yield, and the
limits of PCR amplification required to minimize duplicate sequencing reads. A typical
histone ChIP experiment using 10 μg of input chromatin DNA per immunoprecipitation
yields approximately 100–1000 ng of ChIP-DNA. In comparison, a transcription factor or
cofactor ChIP experiment yields approximately 5–25 ng of ChIP-DNA. However, the
conventional single-step cross-linking technique does not preserve all protein–DNA
interactions, especially for transcription factors or for coactivator interactions. Thus, for
these cases it is recommended to perform an additional DNA–protein fixation step using
DSG (Disuccinimidyl glutarate) [3]. Finally, the quality and quantity of ChIP-DNA can
be assessed by either Agilent Bioanalyzer or TapeStation systems (https://www.agilent.
com/cs/library/catalogs/public/Catalog-bioanalyzer-tapestation-systems-sw-consumables-
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Fig. 12.1 Epigenetic modifications effect chromatin structure and thus transcriptional activation.
Histones are proteins around which DNA winds for compaction and gene regulation. DNA methyla-
tion (not shown) and chemical modification of histone tails (acetylation= Ac, or methylation=Mc)
alter the spacing of nucleosomes and change expression of associated genes. Transcription factor
binding in promoter, silencer, or enhancer regions of the DNA also effects gene expression. Active
promoter regions are accessible for common (gray) and specific (TF; blue) transcription factors,
which are then responsible for recruiting Polymerase II (Pol II) to initiate transcription and perform
RNA synthesis starting at the TSS (Transcription Start Site) of an active gene. (# Melanie
Kappelmann-Fenzl)
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5994-0249EN_agilent.pdf) (Fig. 12.3). It is recommended using 50 ng of histone ChIP-DNA
and 5 ng of transcription factor and cofactor ChIP-DNA for library construction [4, 5].

The workflow to then achieve a high-quality ChIP-Seq library (see Chap. 3) is provided
in the Appendix section (Table 13.1).

12.3 Quality Check (QC) and Sequencing Pre-processing

After sequencing your ChIP-Seq libraries you can start over with the bioinformatical data
analysis part. A whole example workflow is illustrated in the Flow-Chart (Fig. 12.4).

Fig. 12.2 A schematic representation of the various steps involved in ChIP of either Histone Marks
or Transcription Factors followed by ChIP-Seq library preparation and sequencing
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As already described in Chap. 7, you first have to transform your ChIP-Seq data
(unaligned .bam) into .fastq file format. First, change your working directory to the folder
where your raw sequencing data are located:

In general, ChIP-Seq is performed by sequencing 50 bp single end, thus the command to
generate .fastq files is:

In a next step, quality control can be performed on the generated *.fastq files by the
FastQC tool (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/):

The output of is an html file and can be opened using any Internet browser. For

a detailed description of FastQC Report see Sect. 7.3.1.

Fig. 12.3 Gel images of the QC steps obtained from the Agilent 2200 TapeStation system for
genomic DNA, purified, sheared DNA, and a NGS library as analyzed on the Genomic DNA, D1000,
and High Sensitivity D1000 ScreenTape, respectively. The gel images show high-quality samples.
(source: modified according to https://www.agilent.com/cs/library/applications/5991-3654EN.pdf)
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After quality check, the sequencing data can be mapped to the reference genome. In
terms of ChIP-Seq data a fast and sensitive alignment tool like Bowtie2 [6] is a suitable
choice (see Sect. 9.2.3.3).

One possible mapping command is:

Description of parameters:
-x Index filename prefix (minus trailing .X.bt2)
-p number of alignment threads to launch
-un will output unaligned reads
-name path/outputfile name w/o extension

Fig. 12.4 A schematic representation of the various steps and tools involved in the described ChIP-
Seq analysis strategy
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This mapping command will output a .sam file (see Sect. 7.2.4) for each .fastq file in the
defined output directory and *.bowtie2.unaligned.fq as well as *.bowtie2.log files (sum-
mary of mapping progress) in the input directory.

Next, we place all relevant information about the experiment into a so-called tag directory,
which is essentially a directory on your computer that contains several files describing your

experiment. Therefore, we use the script of the HOMER software tool,

which creates a platform-independent “tag directory” for later analysis. The input file for
making a “tag directory” is the output file of your mapping process *.sam.

Description of the used GC bias options: 
-genome genome version (e.g. hg38)
-checkGC check sequence bias, requires "-genome"

To save disk space it is recommended to gzip the .sam files:

To create a bedgraph file or bigwig file for visualization using the UCSC Genome or

IGV Browser use and define the output file format.

The program works by approximating the ChIP-fragment density, which is defined as the
total number of overlapping fragments at each position in the genome. A detailed description

of the different command line options for can be found here (http://homer.

ucsd.edu/homer/ngs/ucsc.html). The visualization of the ChIP-Seq data can provide infor-
mation on whether there are specific, defined peaks in the data or regions of continuous
coverage (histone marks), and whether the reads are distributed over all expected
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chromosomes. In addition, you can evaluate whether the pattern matches the experiment by
looking for specific different patterns:

• TFs: enrichment of reads near the TSS and distal regulatory elements.
• H3K4me3—enrichment of reads near TSS.
• H3K4me1/2, H3/H4ac, DNase—enrichment of reads near TSS and distal regulatory

elements.
• H3K36me3—enrichment of reads across gene bodies.
• H3K27me3—enrichment of reads near CpG Islands of inactive genes.
• H3K9me3—enrichment of reads across broad domains and repeat elements.

12.4 Copy Number Variation (CNV) of Input Samples

ChIP-Seq experiments generally show an enrichment of reads in regulatory regions of the
genome. Thus, it is important to also sequence a non-chipped genomic DNA of the same
sample (Input) to control if the ChIP was successful. The Input sample can be further used to
analyze and visualize possible copy number variation (CNV) of the Input sample. This can be
important in terms of deletions or duplications of whole chromosomes or parts of a chromo-
some, which would lead to a false discovery of enriched reads in regions with alterations in
copy numbers in the further analysis workflow. Consequently, no or low peaks (enrichment
of reads) should be detected in the Input samples compared to the chipped once.

Control-FREEC [7] is a tool we have already installed via conda for detection of

CNV and allelic imbalances (LOH) in NGS data (Chap. 7). It automatically computes,
normalizes, segments copy number and beta allele frequency (BAF) profiles. Then it calls
CNV and LOH. For whole genome sequencing data analysis, like our Input sample, the
program can also use mappability data (files created by GEM (https://sourceforge.net/
projects/gemlibrary/files/gem-library/)) [7]. To be able to run Control-FreeC you have to
create a FreeC directory in your GenomeIndices folder with all .fa files of the reference
genome as well as a file with chromosome sizes. Moreover, the mappability file should also
be stored here (or elsewhere, but you should remember where). A detailed description of
the usage of Control-FreeC can be found on the following website: http://boevalab.inf.ethz.
ch/FREEC/tutorial.html. Moreover, the calculation of significance of Control-FreeC
predictions and the visualization of Control-FreeC´s output using R are described. The
required scripts are stored on GitHub (https://github.com/BoevaLab/FREEC).

12.5 Peak/Region Calling

In terms of ChIP-Seq reads, finding peaks/regions is one of the central goals and the same
basic principles apply as for other types of sequencing. In terms of a transcription factor
ChIP-Seq experiment one speaks of identifying “peaks,” in terms of histone modifications
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or methylated DNA of “regions.” Defining peaks/regions means to identify locations in the
genome where we find more sequencing reads than we would expect to find by chance.
There are number of different methods for identifying peaks/regions from ChIP-Seq
experiments. You can use any peak calling algorithm (http://seabass.mpipz.mpg.de/
encode/encodeTools.html) and it is not required that you use HOMER for peak finding to
use the rest of the tools included in HOMER.

First you have to identify the ChIP-Seq peaks/regions and create a so-called position
file. An example code for identifying regions of a histone mark ChIP-Seq experiment is
depicted below.

Consequently, the tags of your previously created tag directory of each sample are
normalized to the Input and defined as a peak by specific option settings. In terms of a
transcription factor ChIP-Seq experiment you would define the setting differently than for
histone marks:
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In the further course of this textbook we will use for both scenarios “peaks” and
“regions” on the name “peaks.”

12.6 Further ChIP-Seq Analysis

After peak identification you can merge different peak files to find common/overlapping
peaks in different samples and visualize the analysis results via Venn diagrams. A Venn
diagram uses overlapping circles or other shapes to illustrate the logical relationships
between two or more sets of items (Fig. 12.5). Often, they serve to graphically organize
things, highlighting how the items are similar and different. To create a Venn diagram, you
can use multiple online tools or R packages.
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Fig. 12.5 Venn diagram of five different samples depicting differences as well as similarities of the
samples. The illustrated diagram was created by using VennDiagram-package in R, which can be
used to create high-resolution and highly-customizable Venn and Euler plots
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An example script to create a Venn diagram with five different samples with the output

file of depicted above can be found here (https://github.com/mkappelmann/

ChIP-Seq-H3K27ac/blob/master/draw.quintuple.venn.R).
Further, you can use BedTools utilities [8, 9], which are a Swiss-army knife of tools for a

wide-range of genomic analysis tasks. For example, BedTools allows one to intersect,
merge, count, and complement genomic intervals from multiple files in widely-used
genomic file formats such as BAM, BED, GFF/GTF, VCF. For further BedTools analysis,

the output peak file has to be converted into a .bed file:

If you are interested in identifying differences between samples rather than identity, you

can use . This command extracts tags near each peak from the tag

directories and counts them, by outputting peaks with significantly different tag densities.
Importantly, annotation of peaks is helpful to associate peaks with nearby genes. The

basic annotation includes the distance to the next transcription start side (TSS), as well as
some other genome annotations like: transcription termination site (TTS), CDS (from
coding sequence) exons, 5’-UTR (untranslated region) exons, 3’-UTR exons, CpG islands,

repeats, introns, and intergenic. The program also enables you to

perform Gene Ontology Analysis, genomic feature association analysis, merge peak files
with gene expression data (RNA-Seq) using the -gene option, calculate ChIP-Seq Tag
densities from different experiments, and find motif occurrences in peaks.
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One more advanced possibility to use the script is to center all

identified peaks /regions relative to the TSS and visualize the results by creating a heatmap:

The heatmap can then be generated in R by using the pheatmap library:
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R will output a plot depicted in Fig. 12.6 [10]. The TSSs are indicated as a bright line
right in the middle of the plot. The identified CHIP-Seq peaks/regions are indicated in
darker blue, showing the distribution of sequenced regions around the TSS of each gene
(one row in the heatmap) of the genome. As defined in the R script more than 15
sequencing reads (tags) are depicted in blue. Centering can also be performed on any
other genome annotation, as well as on defined transcription factor binding sites (TFBS).
The latter is performed to identify potential cofactors of TFs.

Furthermore, TFBSs in cis-regulatory (promoter/enhancer/silencer) elements of the
DNA are intensively studied to identify their effect on gene expression and thus their
biological meaning. Motif discovery in biological sequences can be bioinformatically
defined as the problem of finding short similar sequence elements shared by a set of
nucleotides with a common biological function [11].

For de novo or known motif discovery within the previously identified peaks of your

ChIP-Seq experiment HOMER provides the program. This motif

discovery algorithm uses “zero or one occurrence per sequence” (ZOOPS) scoring coupled
with the hypergeometric enrichment calculations (or binomial) to determine motif enrich-
ment comparing a peak set relative to another one. Many different output files will be
placed in the defined output directory, including html pages showing the results.

findMotifsGenome.pl output files:

• homerMotifs.motifs<#>: Output files from the de novo motif finding, separated by
motif length.

Fig. 12.6 Heatmaps of identified peaks/ regions centered to TSS. The blue coloring is defined by a
tag count of fifteen or more tags of a 100bp length (legend of the ChIP-Seq tag count). These example
heatmaps show the distribution of histone modification (left) and TFBSs sequencing tags (right),
respectively (modified according to Kappelmann-Fenzl et al. 2019).
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• homerMotifs.all.motifs: The concatenated file containing of all homerMotifs.
motifs<#> files.

• motifFindingParameters.txt: Command used to execute findMotifsGenome.pl.
• knownResults.txt : Text file containing statistics about known motif enrichment.
• seq.autonorm.tsv: Autonormalization statistics.
• homerResults.html : Formatted output of de novo motif finding.
• homerResults/directory: Contains files for the homerResults.html webpage.
• knownResults.html: Formatted output of known motif finding.
• knownResults/directory: Contains files for the knownResults.html webpage.

Of course, there are countless other possibilities to further analyze ChIP-Seq data. To
get a detailed description of all possible options of each HOMER software script just type

the “command” of interest in the terminal (e.g., ).

Take Home Message
• Epigenetic sequencing applications provide deep insights into the regulatory

mechanisms of cells and tissue.
• ChIP-Seq can be performed to identify transcription factor binding sites, histone

modifications, or DNA methylation, respectively.
• Different ChIP-Seq applications produce different type of peaks.
• Peak calling is often referred to the identification of enriched DNA regions

compared to “Input” or “Control-IP” samples.
• Sequencing Coverage and Depth can be illustrated by the IGV or UCSC browser.
• The most important readouts of ChIP-Seq data analysis are: genomic feature

association analysis, merge peak files with gene expression data (RNA-Seq),
calculate ChIP-Seq Tag densities from different experiments, find motifs in
peaks, and Gene Ontology Analysis.

Further Reading

• http://homer.ucsd.edu/homer/ngs/index.html
• https://www.bioconductor.org/help/course-materials/2016/CSAMA/lab-5-chipseq/

Epigenetics.html
• Ma W, Wong WH. The analysis of ChIP-Seq data. Methods in enzymology. 2011.

Review Questions

Review Question 1
What can you learn by knowing the DNA binding sites of proteins such as transcrip-

tion factors?
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Review Question 2
What is the primary purpose of chromatin sonication when performing a ChIP

experiment?

Review Question 3
Which of these is important for preparing templates for Next Generation Sequencing?

A. Isolating DNA from tissue.
B. Breaking DNA up into smaller fragments.
C. Checking the quality and quantity of the fragment library.
D. All of the above.

Answers to Review Questions

Answers to Question 1:
A transcription factor recognizes and binds to specific sites in the genome, to recruit

cofactors, and thus to regulate transcription. Thus ChIP allows identification of TF
binding motifs and the direct downstream targets of a specific TF. Consequently,
clustering of transcription-regulatory proteins at specific DNA sites can be assessed.

Answers to Question 2:
Sonication of the chromatin is performed to reduce the size of the DNA fragments.

Without this step, high molecular weight DNAwould be immunoprecipitated, forming a
large complex with the antibody. This would create loss of resolution and false positive
results.

Answers to Question 3:
D
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Appendix

Library Construction for NGS

Example Protocol: TruSeq Stranded Total RNA LT Sample Preparation Kit
(Illumina)

1. Isolate total RNA
• Determine quality and quantity of the isolated RNA.
• RIN 9–10.

2. Preparations.
• Use 1μg of Total RNA to initiate protocol (0.1–1.0μg starting range recommended).
• Thaw frozen rRNA Binding Buffer [1], rRNA Removal Mix [2], rRNA Removal

Beads & Elute Prime Fragment High Mix [7]. Place Resuspension Buffer at 4 �C for
subsequent experiments.

• Prepare 80% Ethanol [4] for AMPure XP bead washes.
• Remove Elution Buffer [6], rRNA Removal Beads [3], and AMPure XP Beads

[5] from 4 �C and bring to RT.
• Rotate beads at 6 rpm.

3. Ribo-Zero Deplete and Fragment RNA (bind rRNA, rRNA removal, RNA clean-up,
Depleted RNA Fragmentation)
• Dilute 1ug of total RNA to 10μl using nuclease free H2O in new 0.5 ml PCR tubes.
• Add 5μl rRNA Binding Buffer to each sample.
• Add 5μl of rRNA removal Mix.
• Store rRNA Binding Buffer and rRNA Removal Mix at �20 �C.
• Gently pipette the entire volume up and down to mix thoroughly.
• Incubate in thermal cycler using the following profile to denature RNA:
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68 �C 5 min Use heated lid at 100 �C

• Remove samples from thermal cycler and incubate 1 min at RT.
• Vortex the warmed rRNA Removal Beads vigorously to completely resuspend the

beads.
• Add 35μl of the rRNA Removal Beads to new 0.5 ml PCR tubes.
• Transfer entire contents of each sample (20μl) into the new tubes containing rRNA

Removal Beads.
• Adjust pipette to 45μl, then with the tip of the pipette at the bottom of the tube, pipette

quickly up and down 20 times to mix thoroughly.
• It is important to pipette up and down quickly to ensure thorough mixing. Insufficient

mixing leads to lower levels of rRNA depletion.
• Prevent solution from foaming.
• Incubate the samples at RT for 1 min.
• Place the samples on the magnetic stand for 1 min. at RT.
• Transfer all supernatant from each sample into a new 0.5 ml PCR tube.
• Return rRNA Removal Beads [3] to 4 �C.
• Place the samples on the magnetic stand for 1 min at RT. (Repeat as necessary until there

are no beads remaining.)
• Vortex the AMPure XP beads [5] until fully dispersed then add 99μl of AMPure XP

beads [5] to each sample containing ribosomal depleted RNA. Pipette up and down
gently 10� to mix.

• Incubate samples at RT for 15 min.
• Store AMPure XP Beads at 4 �C.
• Place the samples on the magnetic stand at RT for 5 min—make sure beads are

completely deposited on side of tubes.
• Remove and discard all of the supernatant from each sample.
• Leave samples on the magnetic stand and wash wells with 200μl freshly prepared 80%

ETOH [4]—DO NOT DISTURB BEADS.
• Incubate samples at RT˚˜ 30 s. Remove ETOH using pipette—DO NOT DISTURB

BEADS.
• Air dry samples on heatblock at 37 �C 2–5 min. (check beads in-between.)
• Briefly centrifuge thawed RT Elution Buffer [6] at 600�g for 5 s.
• Add 11μl Elution Buffer [6] to each sample and gently pipette entire volume 10�s to

mix thoroughly.
• Store Elution Buffer at 4 �C.
• Incubate samples at RT for 2 min.
• Place samples on the magnetic stand for 5 min. at RT.
• Transfer 8.5μl of the supernatant into new 0.5 ml PCR tubes.
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• Add 8.5μl Elute, Prime, Fragment High Mix [7] to each sample and gently pipette up
and down 10� to mix thoroughly.

• Store Elute, Prime, Fragment High Mix at �20 �C.
• Incubate samples in the thermal cycler using the following profile:

94 �C 8 min Use heated lid at 100 �C
4 �C Hold

• Remove the samples when 4 �C is reached and centrifuge briefly.
• Proceed immediately to First Strand Synthesis.

4. Synthesize First Strand cDNA
• Thaw one tube of First Strand Synthesis Act D Mix [8], spin briefly, and place on ice.
• Add 1μl Superscript II [8] to 9μl First Strand Synthesis D Mix (8μl per sample

needed; scale up volume as needed).
• Mix well by finger flicking—DO NOT VORTEX.
• Centrifuge briefly.
• Store First Strand Synthesis Act D Mix at �20 �C immediately after use.
• Add 8μl of Super Script II supplemented First Strand Synthesis Act D Mix to each

sample.
• Gently mix by pipetting up and down 6�.
• Centrifuge briefly.
• Incubate samples in a thermal cycler using the following profile:

25 �C 10 min Use heated lid at 100 �C
42 �C 15 min

70 �C 15 min

4 �C Hold

• When the cycler reaches 4 �C remove samples and proceed immediately to the Second
Strand Synthesis.

5. Synthesize Second Strand cDNA
• Thaw Second Strand Marking Master Mix [9] at RT and warm 4 �C Resuspension

Buffer to RT.
• Warm AMPure XP Beads to RT� 30 min; rotate beads at 6 rpm.
• Initiate thermal cycler: pre-heat to 16 �C.
• Briefly Centrifuge Thawed Second Strand Marking Master Mix [9].
• Add 5μl Resuspension buffer [10] into each sample.
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• Add 20μl of thawed Second Strand Marking Master Mix [9] to each sample. Gently
pipette up and down 6� to mix thoroughly.

• Store Second Strand Marking Master Mix at �20 �C.
• Incubate samples on a pre-heated thermal cycler with closed lid at 16 �C 1 h using the

following profile:

16 �C 1 h Do not use heated lid (program: HEADER)

16 �C Hold

• Remove samples and place at RT to equilibrate.
• Vortex the RT AMPure XP beads until fully dispersed then add 90μl of beads to each

sample containing 50μl of ds cDNA. Pipette up and down gently 10�s to mix.
• Incubate samples at RT 15 min.
• Place samples on the magnetic stand at RT for 5 min—make sure beads are completely

deposited on side of tubes.
• Remove and discard 135μl of the supernatant from each sample.
• Some liquid may remain in the tubes—DO NOT DISTURB BEADS.
• Leave samples on the magnetic stand and wash with 200μl freshly prepared 80%

EtOH—DO NOT DISTURB BEADS.
• Incubate samples at RT 30 s. Remove ETOH using pipette—DO NOT DISTURB

BEADS.
• Repeat 80% ETOH wash.
• Air dry samples on heatblock at 37 �C 2–5 min. (check beads in-between.)
• Add 17.5μl Resuspension Buffer [10] to each sample. Mix up and down 10� to

completely resuspend beads.
• Incubate the samples at RT for 2 min.
• Place samples on the Magnetic Stand at RT˚˜ for 5 min.
• Transfer 15μl of the supernatant containing the ds cDNA to new 0.5 ml tubes.
• Some liquid may remain in the wells—DO NOT DISTURB BEADS.

Time until this point: ~7 h

Samples can be stored at this point at �20 �C for up to 7 days.

6. Adenylate 30 Ends
• Remove one tube of A-Tailing Mix [11] from �20 �C and thaw at RT.
• A-Tailing Mix aliquots (á 50μl) and label tubes. Store at �20 �C.
• Remove samples from �20 �C storage and thaw at RT. Briefly centrifuge samples at

280�g for 1 min.
• Initiate thermal cycler profile: pre-heat to 37 �C.
• Add 2.5μl Resuspension Buffer [10] to each sample.
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• Add 12.5μl of thawed A-Tailing Mix [11] to each sample. Pipette up and down 10�
to mix.

• Incubate samples in the pre-heated thermal cycler with closed lid at 37 �C for 30 min
using the following profile:

37 �C 30 min Use heated lid at 100 �C
70 �C 5 min

4 �C Hold

• Immediately remove the samples from the thermal cycler—Immediately proceed with
Adapter Ligation!

7. Ligate Adapters
• Remove the appropriate RNA Adapter Index tubes (AR001-AR012, depending on

the RNA Adapter Indexes being used) and one tube of Stop Ligase Buffer
[13] from �20 �C and thaw at RT.

• Remove Resuspension Buffer from 4 �C and warm to RT.
• Remove the AMPure XP Beads from 4 �C storage and warm to RT at least 30 min.
• Initiate thermal cycler profile: pre-heat to 30 �C.
• Prepare new 0.5 ml PCR tubes (2�, for Adapter ligation and PCR).
• Briefly centrifuge the thawed RNA Adapter Index tubes and Stop Ligase Mix.
• Add 2.5μl Resuspension Buffer [10] to each sample.
• Remove the DNA Ligase Mix [12] from�20 �C immediately before use and leave in

�20 �C benchtop storage cooler.
• Add 2.5μl of DNA Ligase Mix [12] directly from the�20 �C benchtop storage cooler

to each sample.
• Return �20 � C benchtop storage cooler back to freezer immediately after use.
• Add 2.5μl of the appropriate thawed RNA Adapter Index (AR001-AR012) to each

sample.
• Adjust the pipette to 40μl and gently pipette the entire volume up and down 10� to

mix thoroughly.
• Change gloves after pipetting each adapter and clean pipette.
• Immediately store adapters at �20 �C (sign as used).
• Incubate samples in the pre-heated thermal cycler with closed lid at 30 �C for 10 min

using the following profile:

30 �C 10 min Use heated lid at 100 �C
30 �C Hold
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• Remove samples from the thermal cycler.
• Add 5μl Stop Ligase Buffer [13] to each sample and mix by gently pipetting up and

down 10�.
• Vortex the pre-warmed AMPure XP Beads until fully dispersed.
• Add 42μl of beads to each sample. Gently pipette up and down 10� to mix well.
• Incubate samples at RT 15 min.
• Place samples on the magnetic stand at RT for at least 5 min making sure liquid clears.
• Remove and discard 79.5μl of supernatant from each sample. DO NOT DISTURB

BEADS. Change tips after each removal.
• Leave samples on the magnetic stand while performing the 80% ETOH washing steps.
• Add 200μl freshly prepared 80% EtOH to each sample without disturbing the beads.
• Incubate samples at RT for at least 30 s. Then remove and discard all the supernatant

from each sample without disturbing the beads. Change tips between wells.
• Repeat ETOH wash.
• Air dry samples on heatblock at 37 �C 2–5 min. (check beads in-between.)
• Remove samples from magnetic stand and resuspend the dry pellet in each sample with

52.5μl of Resuspension Buffer. Gently pipette up and down 10�s to mix.
• Incubate samples at RT for 2 min.
• Place samples on the magnetic stand and incubate at least 5 min—make sure liquid

clears.
• Transfer 50μl of clear supernatant from each sample to the corresponding new 0.5 ml

tubes. Some residual liquid may remain in each sample.
• Vortex the AMPure XP beads to disperse and add 50μl of beads into each sample for a

second clean-up. Pipette up and down 10� to mix thoroughly.
• Incubate samples at RT for 15 min.
• Place the samples on the magnetic stand at RT for 5 min making sure the liquid has

cleared.
• Remove and discard 95μl of the supernatant from each sample without disturbing the

beads. Some liquid may remain in each sample. Remember to change tips between
wells.

• Leave samples on the magnetic stand while performing the 80% ETOH washing steps.
• Add 200μl freshly prepared 80% EtOH to each sample without disturbing the beads.
• Incubate samples at RT for at least 30 s, then remove and discard all of the supernatant

from each sample without disturbing beads. Change tips after each removal.
• Repeat ETOH wash.
• Air dry samples on heatblock at 37 �C 2–5 min. (check beads in-between.)
• Remove samples from magnetic stand and resuspend the dry pellet in each sample with

22.5μl of Resuspension Buffer. Gently pipette up and down 10� to mix.
• Incubate samples at RT 2 min.
• Place samples on the magnetic stand at RT for at least 5 min making sure liquid clears.
• Transfer 20μl of clear supernatant from each sample to the corresponding new 0.5 ml

PCR tubes (PCR). Some residual liquid may remain in each sample.
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Samples can be stored at this point at �20 �C for up to 7 days.

8. Enrich DNA Fragments.
• Remove one tube each of PCR Master Mix and PCR Primer Cocktail from �20 �C

and thaw at RT—centrifuge briefly.
• Remove the AMPure XP Beads from 4 �C and warm to RT at least 30 min.
• Remove Resuspension Buffer and samples from �20 �C and thaw to RT. Briefly

centrifuge samples at 280�g for 1 min.
• Prepare new 0.5 ml PCR tubes.
• Aliquot the appropriate volume of each reagent (with 10% excess per tube) into strip

tubes. Cap tubes and keep on ice until needed. Remaining content can be re-store at
�20 �C.

• Add 5μl of thawed PCR Primer Cocktail to each sample.
• Add 25μl of thawed PCR Master Mix to each sample. Pipette up and down 10� to

mix thoroughly.
• Run PCR in the pre-heated thermal cycler with closed lid using the following profile:

1 cycle

98 �C 30 s Use heated lid at 100 �C
15 cycles

98 �C 10 s

60 �C 30 s

72 �C 30 s

1 cycle

72 �C 5 min

4 �C Hold

• Vortex the pre-warmed AMPure Beads until they are completely dispersed.
• Add 50μl of the beads to each sample containing 50μl of PCR amplified library and

pipette up and down 10� to mix thoroughly.
• Incubate the PCR tubes at RT 15 min.
• Transfer samples to the magnetic stand at RT for at least 5 min making sure the liquid

clears.
• Remove and discard 95μl of the supernatant from each sample without disturbing the

beads. Some liquid may remain in the wells. Remember to change tips.
• Leave samples on the magnetic stand while performing the 80% ETOH washing steps.
• Add 200μl of freshly prepared 80% EtOH to each sample without disturbing the beads.
• Incubate the samples at RT at least 30 s, then remove and discard all the supernatant

from each sample without disturbing the beads. Remember to change tips.
• Repeat ETOH wash.
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• Incubate the samples open on the magnetic stand at RT 15 min to dry residual ETOH.
• Remove samples from magnetic stand and resuspend the dry pellet in each sample with

32.5μl of Resuspension Buffer. Gently pipette up and down 10� to mix.
• Incubate samples at RT for 2 min.
• Place the samples on the magnetic stand at RT for at least 5 min making sure liquid

clears.
• Transfer 30μl of clear supernatant from each sample to the corresponding 1.5 mL

non-sticky Sarstedt microcentrifuge tube. Some residual liquid may remain in each
sample.

Amplified libraries can be stored at �20 �C for up to 7 days

9. Validate Library
• Determine the concentration of each amplified library using the Nanodrop.
• Perform QC of the amplified library by running 1μl of each sample on the Agilent

4200 Bioanalyzer using the Agilent DNA 1000 Chip.
• The final product should be a band at approximately 280 bp for a single read library.
• Calculate the nM concentration of each library.

Example Protocol: TruSeq ChIP Library Prep Kit (Illumina)

• Verify the size distribution of each ChIP DNA sample by running a 2μl aliquot on
Agilent High Sensitivity DNA chip using an Agilent Technologies TapeStation.

• Quantify 1μl of each ChIP DNA sample using a Qubit 1� dsDNA HS Assay Kit
(invitrogen: Q33231).

• Illumina recommends normalizing the ChIP DNA samples to a final volume of 50μl at
100–200 pg/μl.

• Remove the AMPure XP beads from storage and let stand for at least 30 min to bring
them to room temperature.

• Pre-heat the thermal cycler to 30 �C.
• Choose the thermal cycler pre-heat lid option and set to 100 �C.
• Freshly prepare 70% ethanol (with sterile Distilled Water (DNase/Rnase Free).
• Remove the A-Tailing Mix from �15 �C to �25 �C storage and thaw at room

temperature.

1. Polish ChIP DNA ends
• Use 50μl ChIP sample.
• For Input samples, dilute 10 ng into 50μl total volume (ddH2O).
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Master mix for blunting DNA

1 x [μl] x [μl]
DNA

Resuspension Buffer [1] 10

End Repair Mix [2] 40

100.00

• 50μl sample
• +50μl master mix
• 100μl ! 30 min @ 30 �C in thermocycler

2. Clean up with AMPure beads
• Vortex the AMPure XP Beads [5] until they are fully dispersed.
• 100μl after polish DNA ends.
• +160μl AMPure XP magnetic beads.
• Gently pipet up and down 10�.
• 5 min at room temperature.
• Place tubes on a magnet holder for 2 min (or until the liquid is clear).
• Discard 127.5μl supernatant.
• Again discard 127.5μl supernatant (not once 255μl because of the suck).
• 2 � 500μl of 70% ethanol for 30 s, wash magnetic beads, discard supernatant.
• Air dry the beads on magnetic stand at RT C for 2–5 min or at 37 �C in a heatblock.
• Elute with 17.5μl Resuspension Buffer, pipette the entire volume up and down

10 times to mix thoroughly.
• 2 min at room temperature.
• ↺ 13,000 rpm, 1 s.
• Place tubes on a magnet holder for 2 min.
• Transfer 15μl in new tube.

3. Perform 30-dA addition

Master mix for A-tailing DNA

1 x [μl] x [μl]
Resuspension Buffer[1] 2.50

A-Tailing Mix[3] 12,5

15

15μl sample
+ 15μl master mix
30μl
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PCR-cycler:

Pre-heated lid 00 �C 37 �C 30 min

70 �C 5 min

4 �C 1

4. Adapter Ligation
• Preparation of adapters (RNA Adapter Indices: AR001–AR016, AR018–AR023,

AR025, AR027):
• (at the moment Adapters of the TruSeq RNA-Seq-Kit).
• Centrifuge the Stop Ligation Buffer and appropriate/desired thawed RNA Adapter

tubes to 600 �g for 5 s.
• Immediately before use, remove the Ligation Mix tube from �20 �C and to �20 �C

immediately after use.
• 30μl sample.
• +2.5μl Resuspension Buffer[1].
• +2.5μl Ligation Mix[4].
• +2.5μl thawed RNA Adapter Index.
• 37.5μl.
• Gently pipette the entire volume up and down 10� to mix thoroughly.
• Centrifuge PCR samples at 280 g for 1 min.
• ! ligate for 10 min at 30 �C (thermal cycler use heated lid at 100 �C?)
• +5μl Stop Ligation Buffer [6]

– 42.5μl.• Gently pipette the entire volume (42,5μl) up and down 10 times.
– +7.5μl H2O
– 50μl.

• Gently pipette the entire volume (50μl) up and down 10 times.

5. Clean up with AMPure beads.
• 50μl after ligation.
• +55μl AMPure XP magnetic beads.
• Gently pipet up and down 10 x.
• 5 min at room temperature.
• Place tubes on a magnet holder for 2 min (or until the liquid is clear).
• Discard supernatant.
• 2 � 500μl of 70% ethanol for 30 s, wash magnetic beads, discard supernatant.
• Air dry the beads on magnetic stand at RT for 2–5 min or at 37 �C in a heatblock.
• Elute with 50 μl H2O, pipette the entire volume up and down 10 times to mix

thoroughly.
• 2 min at room temperature.
• ↺ 13,000 rpm, 1 s.
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• Place tubes on a magnet holder for 2 min (or until the liquid is clear).
• Transfer 50μl in new tube for second clean-up.

6. Clean up with AMPure beads
• 50μl after ligation.
• + 55μl AMPure XP magnetic beads.
• Gently pipet up and down 10�.
• 5 min at room temperature.
• Place tubes on a magnet holder for 2 min (or until the liquid is clear).
• Discard supernatant.
• 2 � 500μl of 70% ethanol for 30 s, wash magnetic beads, discard supernatant.
• Air dry the beads on magnetic stand at RT for 2–5 min or at 37 �C in a heatblock.
• Elute with 20 μl H2O, pipette the entire volume up and down 10 times to mix

thoroughly.
• 2 min at room temperature.
• ↺ 13,000 rpm, 1 s.
• Place tubes on a magnet holder for 2 min (or until the liquid is clear).
• Transfer 20μl in new tube for PCR (0.5 ml PCR tube).

7. Enrich DNA Fragments

Master mix final PCR (ChIP)

1 x [μl] x [μl]
PCR Primer Cocktail[7] 5.00

PCR Primer Master Mix[8] 25.00

30.00

20μl DNA sample
+30μl master mix
50μl.

PCR-cycler:

98 �C 30 s

4� 98 �C 10 s

60 �C 30 s

72 �C 30 s

72 �C 5 min

4 �C 1
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8. Clean up with AMPure beads.
• 50μl after PCR.
• + 90μl AMPure XP magnetic beads.
• Gently pipet up and down 10�.
• 5 min at room temperature.
• Place tubes on a magnet holder for 2 min (or until the liquid is clear).
• Discard supernatant.
• 2 � 500μl of 70% ethanol for 30 s, wash magnetic beads, discard supernatant.
• Air dry the beads on magnetic stand at RT for 2–5 min or at 37 �C in a heatblock.
• Elute with 30μl H2O, pipette the entire volume up and down 10 times to mix

thoroughly.
• 2 min at room temperature.
• ↺ 13,000 rpm, 1 s.
• Place tubes on a magnet holder for 2 min (or until the liquid is clear).
• Transfer 30μl in new tube for Blue Pippin.

9. BLUE PIPPIN (size selection of ChIP Seq Library)

Purify and Size Select the Ligation Products
• Perform the size selection using the Sage BLUE PIPPIN.
• Bring Pippin Prep loading solution to RT.
Prepare DNA Samples for loading
• Initiate the BluePippin instrumentation allowing software to launch.
• Add 10μl of RT loading solution to each sample for a total of 40μl. Mix well and

centrifuge briefly.
Program Protocol
• From main screen select “Protocol” to go to the Protocol Editor Screen. Press “New” to

open a new protocol.
• Select the appropriate cassette type.
• Select a reference lane which will contain the DNA marker.
• NOTE: Verify lane assignment of software display vs cassette lanes.
• Enter - bp target size 275 bp.
• -bp start size 250 bp. NOTE: Cut size may need to be adjusted to target optimal size

distribution of fragmented sample.
• -bp end size 300 bp.
• Enter sample name into the “Sample ID” field.
• Select “Save as” and name protocol to retain for future applications (TruSeq ChIP 250–

300 bp).
• Return to Main Screen.
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Prepare Cassette
• Remove cassette from packaging and wipe off excess moisture. Verify correct cassette

type is used.
• Visually inspect buffer chamber and gel columns. From side view ensure buffer

chamber volume is more than ½ full. Inspect gel column for breakage, bubbles, or
gaps. Any lanes with these defects must be abandoned. Remaining lanes are still
functional.

• Inspect for air gaps in and behind elution wells by tilting cassette to the left (loading well
end). Tap on bench lightly to dislodge.

• Install cassette into tray of Pippin Prep with loading wells to the left.
• Remove sealing tape without tipping the cassette.
• Remove all buffer from elution well and replace with 40μl of electrophoresis buffer.
• Test electrophoretic current continuity:
• Close sliding lid on instrument.
• In the run screen select “Manual Mode” from the “Protocol Name” drop down menu.
• Press “Test” in controller on the Main Screen. Test takes 30 s. Finishing with “Pass” of

“Fail” message.
• If test fails—in the separation lane: lane unusable—no recovery.
• In the elution lane: Verify 40μl of running buffer is present in the elution well and

re-test. If it fails again, lane can be used for reference sample.
• Cover all collection wells with tape to minimize recover volume to ~50μl. Using razor

blade cut tape between elution wells so that.
• individual tape segments can be removed to minimize potential cross contamination.
Sample Loading
• Verify that sample wells are completely full. Top off wells with electrophoresis buffer if

necessary. Total well volume is 70μl.
• Remove 40μl of running buffer from the loading well leaving ~30μl in well.
• Load 40μl of pre-mixed Pippin Prep DNA Marker into the sample lane that has been

assigned for the reference. (Reference lane can be changed as needed.)
• Load 40μl of the supplemented sample into the appropriate lane loading well.
• Close lid.
• Select desired protocol from the “Protocol Name” drop down menu. (i.e.: TruSeq ChIP

250–300 bp.)
• Press “Start.”
Sample Collection
• When complete, remove elution well tape and transfer all samples from sample elution

well to a labeled microcentrifuge tube.
• Determine volume of collected sample. Volume can be from 40–70μl.
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• Clean electrodes of Pippin Prep by installing cleaning cassette filled with H2O and
closing lid for 30 s. Remove Cassette.

10. Sample Clean-Up
• Use the QiagenQIAquick PCR Purification Kit (cat# 28106) for clean-up procedure.

Perform the PCR Purification Protocol.
• Add 5 volumes of PB buffer (with Indicator) to 1 volume of the Pippin Prep elute

(250μl PB + I buffer +50μl Pippin Prep Elute).
• Check the color of the mixture and ensure that it is yellow (similar to the original

color of buffer ERC).
• If color is orange or violet, add 10μl of 3 M sodium acetate pH 5.0 and mix. The

color will return to yellow.
• Place a MinElute column in a 2 ml collection tube.
• Bind DNA by adding the sample to the MinElute column and centrifuging 1 min at

13,000 RPM at RT˚˜.
• Discard the flow-through and place the MinElute column back in the same

collection tube.
• Wash column by adding 750μl of Buffer PE to the MinElute column and centrifuge

1 min at 13,000 RPM at RT˚˜.
• Discard flow-through and place MinElute column back in the same collection tube.
• Centrifuge MinElute column for an additional 1 min to remove any residual wash

buffer PE.
• Place the MinElute Column in a new labeled 1.5 ml microcentrifuge tube.
• Elute DNA by adding 23μl of EB buffer (10 mM Tris-HCl pH 8.5) to the center of

the membrane. Let column stands at RT˚˜ 1 min.
• Centrifuge MinElute column for 1 min at 13,000 RPM.
• Check volume of eluted samples and verify that 20μl + are obtained. Add resuspen-

sion buffer, if needed, to obtain 20μl.

11. Enrich DNA Fragments.

Master mix final PCR (ChIP)

1 x [μl] x [μl]
PCR Primer Cocktail[7] 5.00

PCR Primer Master Mix[8] 25.00

30.00
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20μl sized DNA sample
+ 30μl master mix
50μl.

PCR-cycler:

98 �C 30 s

12� 98 �C 10 s

60 �C 30 s

72 �C 30 s

72 �C 5 min

4 �C 1

12. Clean up with AMPure beads
• 50μl after ligation.
• +55μl AMPure XP magnetic beads.
• Gently pipet up and down 10�.
• 5 min at room temperature.
• Place tubes on a magnet holder for 2 min (or until the liquid is clear).
• Discard supernatant.
• 2 � 500μl of 70% ethanol for 30 s, wash magnetic beads, discard supernatant.
• Air dry the beads on magnetic stand at RT for 2–5 min or at 37 �C in a heatblock.
• Elute with 50 μl H2O, pipette the entire volume up and down 10 times to mix

thoroughly.
• 2 min at room temperature.
• ↺ 13,000 rpm, 1 s.
• Place tubes on a magnet holder for 2 min (or until the liquid is clear).
• Transfer 50μl in new tube for second clean-up.

13. Clean up with AMPure beads.
• 50μl after ligation.
• +55μl AMPure XP magnetic beads.
• Gently pipet up and down 10�.
• 5 min at room temperature.
• Place tubes on a magnet holder for 2 min (or until the liquid is clear).
• Discard supernatant.

2 � 500μl of 70% ethanol for 30 s, wash magnetic beads, discard supernatant.
• Air dry the beads on magnetic stand at RT for 2–5 min or at 37 �C in a heatblock.
• Elute with 16μl EB, pipette the entire volume up and down 10 times to mix

thoroughly.
• 2 min at room temperature.
• ↺ 13,000 rpm, 1 s.
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• Place tubes on a magnet holder for 2 min (or until the liquid is clear).
• Transfer 16μl in new tube.

14. TapeStation (Quality and quantity control)

15. Pool libraries (Qubit).
• store libraries @�20 �C.

NGS Technologies
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Index

A
Adapter ligation, 41
Adoptive T-cell therapy, 29
Alignment

algorithms, 112
BLAST program, 113
computer science, 112
FASTA program suite, 113
global alignment, 114, 115
local alignment, 115, 116
Needleman–Wunsch alignment, 114
reference genome/transcriptome, 112
sequence alignment software tools, 113
sequence databases, 113

Alignment tools
Bowtie2, 118
BWA, 119
HISAT, 120
HISAT2, 120
STAR, 117
TopHat aligns RNA-Seq reads, 119

American College of Medical Genetics and
Genomics (ACMG), 21

Amino acid (AA), 6
Antibodies, 179
Aplice-aware alignment tools, 150
Aristolactam-DNA adducts, 23

B
BAM file, 86, 87
Base calling, 124, 129, 139
Bash (bourne-again shell), 72
Bayesian variant calling, 126–128
BeadArray Microarray Technology, 48
BED format, 88, 89

BedGraph (*.bg) format, 90
BedTools, 187
BEDTools commands, 90
BET and MEK inhibitors, 29
Beta allele frequency (BAF), 184
Big data, 48
Binary base call (BCL), 49
Binding motifs, 178
BiocManager, 67
Bioconda, 62–64, 68
Bioconductor, 67
Bioinformatics, 72
Biological ontology method, 168
Biological sequence variants, 48
Biological sequences

DNA (see Deoxyribonucleic acid (DNA))
genome, 6
protein, 6

BLAST program, 113
Bowtie, 118
Bowtie2, 118
Bowtie2 alignment tools, 108
BRAF inhibitors, 28, 30
Breast cancer, 29
Bulk genome sequencing, 33
Bulk transcriptome sequencing, 28
Burrow–Wheeler Aligner (BWA), 119

C
Cancer

cause of death, 18
DNA binding domain, 20
genome disease, 18
mutations, 18
research, 18

# Springer Nature Switzerland AG 2021
M. Kappelmann-Fenzl (ed.), Next Generation Sequencing and Data Analysis, Learning
Materials in Biosciences, https://doi.org/10.1007/978-3-030-62490-3
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Cancer (cont.)
types, 20

Cancer diagnosis
bioinformatic analysis, 21
ctDNA, 22
gene sequencing, 21
genetic tests, 21
high-throughput sequencing, 21
liquid biopsies, 22
loci, 22
RAS-/TP53-cancer associated mutations, 22
tumors shed cells and DNA, 22
VUS, 21

Cancer sequencing and mutation classification
ClinVar, 32
COSMIC, 31
ICGC, 31
PCAWG, 31
TCGA, 30, 31

Cancer treatment, sequencing
BET and MEK inhibitors, 29
BRAF inhibitors, 28
challenges, 32
ctDNA mutations identification, 30
ERBB2 amplification, 29
gene panel testing, 33
genetic resistance, 30
genomic subtypes, 28
liquid biopsies, 30
opportunities and perspectives, 32
PARP inhibitors, 29
precision and personalized design, 28
RNA expression analysis, 29
T-cell therapy, 29
therapeutical targets, 29
TILs, 29
TMB, 29
transcriptomic characterization, 29
tumor mutational landscape, 30

Cancer-associated genes, 26
Candidate variant, 135
Carcinogenic agents, 22
Catalog of Somatic Mutations in Cancer

(COSMIC), 31
Cataloging non-coding driver mutations, 31
cDNA library, 145
Cell-free DNA (cfDNA), 22
Cell type deconvolution, 28
Chemotherapy, 29
ChIP-DNA, 179
ChIP-fragment density, 183
ChIP-Seq data analysis

annotatePeaks.pl program, 188
BedTools, 187

CNV, input sample, 184
DNA–protein interaction, 178
DNA quality, 178–180
GRNs, 178
heatmaps, 188, 189
histone modifications, 178
motif discovery, 189
peaks/regions, 184–186, 189
QC, 180–184
R packages, 186
RNA Polymerase II, 178
R script, 189
sequencing pre-process, 180–184
TFBS, 178, 189
TSS, 187, 189
venn diagram, 186, 187
workflow, 178

Chromatin, 178
Chromatin-immunoprecipitation (ChIP-Seq), 9
Chronological sequence, 2
CIBERSORT, 28
CIGAR (Concise Idiosyncratic Gapped Alignment

Report), 84–86
Circular consensus sequencing (CCS), 52
Circulating tumor cells (CTCs), 22
Circulating tumor DNA (ctDNA), 22
ClinVar, 32
Clustering analysis, 168
Clusterprofiler package, 168
Colorectal cancer (CRC), 26
Command line analysis tools, 60
Command line interfaces (CLI)

Bash, 72
GUI, 72
shell, 72

Command line interpreter Bash, 73
Command line tool, 73

file system manipulation, 72
Command Line tools package, 61
Complementary DNA (cDNA), 145, 146
Complex illnesses, 2
Computer setup

CPU power, 60
hard drive space, 60
Linux/Unix-based operating system, 60
RAM, 60
software tools, 60

Computer setup installation
.bash_profile, 61
Bioconda, 62, 63
descriptive folder- and filenames, 67
GATK package, 66
Genome Analysis Toolkit, 63
GNU compilers, 61
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RStudio, 66
terminal, 61

Conda, 63
Continuous long-read (CLR), 52, 53
Control-FREEC (7), 184
Copy number variation (CNV), 184
Counting reads per exons, 164
CpG islands, 9, 10
Cufflinks, 163
Cutadapt, 148

D
de Bruijn graphs, 157
De novo assembly

advantage, 157
contigs creation, 156
de Bruijn graphs, 157
gene expression analysis, 157
hybrid methods, 157
reference-based alignment, 157
RNA-Seq analysis, 157
tools, 157
Trinity, 157

contig generation, 159
de Bruijn graphs, 158, 159
output, 159

Velvet/Oases
Bruijn graph creation, 157
contig generation, 158
genome assembler, 157
output, 158

De novo genetic variants, 11, 12, 133, 134
Deconvolution methods, 28
Degenerate/redundant, 6
Deoxynucleoside triphosphate (dNTP), 49, 51, 52
Deoxyribonucleic acid (DNA)

alternating molecules, 3
biological information, 2
directionality, 3
gene transcription, 4
genetic code, 3, 5
labeled arbitrary, 3
protein production, 4
purpose, 4
RNA (see Ribonucleic acid (RNA))
sequence TGCCA, 3
transcription, 3

DESeq2, 166, 167
DEXSeq, 164
Differential expression (DE) analysis

BAM Files, 166
Cufflinks, 167
DESeq2, 167

individual count files, 166
linear models, 166
multivariate statistical methods, 166
pre-existing count table, 167
quantitative levels, transcripts/exons, 166

Disease-causing, 134, 136
DNA amplification, 56
DNA breaks, 22
DNA methylation, 179
DNA methylation (methyl-Seq), 10
DNA mismatch repair system, 29
DNA sequencing approaches, 43
DNA sequencing methods collection, 11
DNA/cDNA fragments, 42, 43
Driver mutations, 18

cancer driver genes, 19
gene fusions, 20
oncogenes, 19, 20
tumor suppressor, 20

E
Encyclopedia of DNA Elements (ENCODE), 6
End-distance bias filters, 133
Epigenetic modifications, 179
Epigenetic sequencing approaches, 178
Epigenetics, 9
Expectation maximization (EM) approach, 163

F
FASTA format

BLAST search, 81
scripting languages, 81
text-based format, 81
text-processing tools, 81

FASTA program suite, 113
FASTQ, 153
FASTQ format

ASCII table, 83
Phred Score, 83
Quality Check (see Quality Check via FastQC

program)
sequencing read, 82
text-based standard format, 82

FastQC, 148
Fetal chromosomal aneuploidies, 32
File formats

BAM file, 86, 87
BED format, 88, 89
BedGraph (*.bg) format, 90
FASTA format, 81
FASTQ, 82
fragment, 80
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File formats (cont.)
GFF/GTF/BED formats, 89
GTF/GFF file, 87, 88
mate I, 80
mate II, 80
read, 80
SAM (see SAM (Sequence Alignment/Map)

format)
sequencing coverage, 80, 81
sequencing depth, 80
SRA file, 92
VCF file format, 91, 92

Fragmentation methods, 41
Fragments Per Kilobase Million (FPKM), 163
Functional analysis, 168
Functional annotation, de novo transcripts, 160

G
Gain-of-function alterations, 19
Galaxy, 137
GATK package, 66
GenBank, 113
Gene, 4, 33
Gene expression analysis, 157
Gene expression quantification

counting reads per exons, 164
counting reads per genes, 162, 163
counting reads per transcripts, 163
de novo assemblies, 161
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Spliced Transcripts Alignment to a Reference
(STAR) (cont.)
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