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Abstract. 3D charge-trap based SSDs have become an emerging storage
solution in recent years. One-shot-programming in 3D charge-trap based
SSDs could deliver a maximized system I/O throughput at the cost of
degraded Quality-of-Service performance. This paper proposes RLOSP, a
reinforcement learning based approach to improve the QoS performance
for 3D charge-trap based SSDs. By learning the I/O patterns of the work-
load environments as well as the device internal status, the proposed
approach could properly choose requests in the device queue, and allo-
cate physical addresses for these requests during one-shot-programming.
In this manner, the storage device could deliver an improved QoS per-
formance. Experimental results reveal that the proposed approach could
reduce the worst-case latency at the 99.9th percentile by 37.5–59.2%,
with an optimal system I/O throughput.

Keywords: 3D charge-trap based SSD · One-shot-programming ·
Reinforcement learning · I/O throughput · QoS performance

1 Introduction

With the rapid development of high-density NAND flash technology, 3-
dimensional (3D) SSDs have been employed as the prevalent storage solution
in the market. There are two mainstream 3D SSD technologies, floating-gate
(FG) technology and charge-trap (CT) technology [21]. CT-based technology
has been deemed as a pre-dominant candidate since it eliminates the cell-to-cell
interference [21]. Thus, multiple pages in a word line could be programmed
simultaneously, which is called one-shot-programming (OSP), e.g., 3 pages for
TLC-based SSDs. This technique can maximize the system I/O throughput, thus
improving the user experience significantly.
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While OSP technique is recommended for superior system I/O throughput,
this study identifies that OSP could significantly degrade the quality-of-service
(QoS) performance. QoS demands all I/O latency to be constrained within a
specific range [20]. Although SSDs provide a faster accessing speed comparing
with HDDs, they suffer from large I/O performance variation and long worst-case
latency owing to various reasons, e.g., garbage collection, read/write interference,
process variation [6,20]. The enlarged I/O performance variation and prolonged
worst-case latency could violate the QoS demand and impact the user experience.
As all programmed pages share one completion time, OSP could spread one
prolonged worst-case latency to the latency of all programmed pages. Moreover,
as the storage device is oblivious to the process information of I/O requests, I/O
from different processes might be programmed simultaneously. The prolonged
worst-case I/O latency could be spread to different processes by OSP. As a result,
OSP could significantly enlarge the I/O performance variation, thus incurring
unpredictable I/O latency. Among these I/Os, some might have to experience
long worst-case latency, thus violating the QoS demand and impacting the user
experience.

Prior works fail to address the QoS performance incurred by OSP on CT-
based SSDs. Some works propose to improve the system I/O performance by
enhanced internal parallelism [15,21], which does not consider the QoS per-
formance. There are also works proposed to improve the QoS performance by
revised garbage collection [2,4,14], or mitigate the impaired storage lifetime
incurred by process variation [1,5,17]. In addition, there are ways to optimize
HDFS I/O performance in deep learning cloud computing platforms [25] or
reduce system I/O latency by offloading computing power at the edge [24]. Since
these works do not take account of the unique feature of OSP technique, there
still exists a demanding need to enhance the efficacy when leveraging the OSP
operations on 3D SSDs.

In this paper, a reinforcement learning based approach, RLOSP, is proposed.
Through learning the I/O patterns and the device internal status, RLOSP prop-
erly decides which requests in the device queue to be programmed with OSP and
the target physical addresses of these requests at each time. The considered I/O
patterns consist of process ID and host I/O information of requests in the device
queue, and the considered device status include the busy/free status of each flash
chip and the space utilization of each plane. In this manner, the storage device
could deliver reduced worst-case latency and improved QoS performance. Exper-
imental results show that RLOSP could reduce the standard deviation of I/O
latency by 51.8%, the worst-case I/O latency at the 99.9th percentile by 37.5–
59.2%, meanwhile delivering an optimal system I/O throughput (1.3% lower)
comparing with existing approach. To the best of the author’s knowledge, this
is the first work proposed to improve the QoS performance of the 3D CT-based
SSDs by OSP optimization.

In summary, this paper makes the following contributions:

– Identified that OSP in 3D CT-based SSDs could degrade the QoS performance
of the storage device;
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– Proposed RLOSP, a reinforcement learning assisted technique to make pro-
gramming decisions adaptive to various I/O patterns and device internal sta-
tus;

– Evaluated the proposed approach and verified that the proposed approach
manages to effectively improve the QoS performance of the storage devices.

The remainder of this paper is as follows. Section 2 reviews related back-
ground and prior works. Section 3 states the problem of OSP technique in 3D
CT-based SSDs. Section 4 presents the proposed RL assisted OSP approach.
Section 5 evaluates the proposed approach and analyzes the experiment results.
Finally, Sect. 6 concludes this paper.

2 Related Work

3D flash storage technology has attracted much attentions during past years. Liu
et al. [15] propose to enhance the device internal parallelism by implementing
the block-level parallelism and partial page accessing in the storage hardware
architecture. Wu et al. [21] propose a distance-aware round robin page allocation
scheme for improving the utilization of internal parallelism and thus improving
the read performance. There are also works proposed to mitigate the detrimental
effects of garbage collection activities [2,4,14], or mitigate the retention error and
degraded system performance incurred by the process variation [1,3,6]. However,
few of these works target on the degraded QoS performance incurred by the OSP
in 3D CT-based SSDs.

There are also works proposed to improve the QoS performance of SSDs.
Some works propose to decrease the I/O performance variation and reduce the
worst-case latency by garbage collection oriented optimizations [11,19,22,23].
Gugnani et al. [8] propose a set of strategies for providing QoS performance
guarantee with NVMe SSDs on virtual environment. Wu et al. [20] propose a
reinforcement learning-assisted I/O merging technique for improved QoS perfor-
mance on SSDs. However, few considers the QoS violation incurred by OSP in
3D CT-based SSDs.

3 Motivation

To study the advantage and disadvantage of One-Shot-Programming (OSP) on
system performance of CT-based SSDs, experiments are evaluated with SSD-
sim [9]. The simulator is configured to simulate a new TLC SSD and a TLC
SSD device aged by 70%. The experimental results are compared with a device
without OSP. The configuration of the simulator is described in Sect. 5.

Figure 1 shows the system throughput and I/O performance variation results.
By writing three sub-requests into three consecutive pages, OSP can benefit sys-
tem throughput significantly, as shown in Fig. 1(a). On average, system through-
put is improved by 25.1% for a new device with OSP compared with a new device
without OSP. For SRC1 2, the improvement of system throughput is 56.3%.
However, the benefit of OSP on system throughput decreases as the aging sta-
tus of the device increases. For a device aged by 70%, system throughput is
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improved by OSP by only 14.1% compared with a device without OSP. The
reason is three-fold. First, the enlarged programming page number caused by
OSP could incur garbage collection and block I/O requests, especially for aged
devices with less physical space [10,12]. Then, the I/O requests grouped by OSP
operation increases the possibility of read/write interference [13,18]. Finally,
the grouped I/O requests may spread the prolonged latency of all blocked I/O
requests, which degrades system performance further.

Fig. 1. Comparison Results of 3D SSD with and without One-Shot-Programming
(OSP). New-Without-OSP means a new SSD without OSP, New-With-OSP means
a new SSD with OSP, Aged-Without-OSP and Aged-With-OSP mean a SSD with and
without OSP with 70% physical space used respectively.

The blocked I/O requests may experience a long I/O latency, which incurs
enlarged I/O performance variation [20]. As shown in Fig. 1(b), the standard
deviation of I/O latency for a SSD with OSP is 55.3% larger than a device with-
out OSP on average for a new device, while the value is 58.9% for a device aged by
70%. This enlarged I/O performance variation makes I/O latency unpredictable,
while several I/O may experience a worst-case latency. The unpredictable and
extremely long I/O latency could affect user experience and violates the quality-
of-service (QoS) requirement.

Figure 2 shows the comparison results of worst-case latency of example traces
between SSDs with and without OSP operation. At the 99.9% percentage, the
worst-case latency for a device with OSP is 45.4% for HM 0 and 61.8% for
PRN 0 higher than a device without OSP for a new device. On average among
all 8 adopted traces, the worst-case latency is prolonged by OSP by 44.2–67.8%,
55.3% on average at the 99.9% percentage for a new device. For a device aged by
70%, the worst-case latency is prolonged by OSP by 26.6–80.3%, 56.1% on aver-
age at the 99.9% percentage. Experimental results verified that OSP operation
significantly prolongs worst-case latency and degrades QoS performance.

In summary, OSP in 3D charge-trap based SSD could improve system I/O
throughput at the cost of prolonged worst-case latency and degraded QoS per-
formance. The key observation here is that there is a need to propose a new
approach to mitigate the worst-case latency while delivering a maximum I/O
throughput during the adoption of OSP.
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Fig. 2. Worst-case Latency of Example Traces. The horizontal axis is I/O latency in
millisecond, the vertical axis is the cumulative distribution of I/O latency.

4 Methodology

This work proposes RLOSP, a reinforcement learning based approach to mit-
igate the worst-case latency issue incurred by one-shot-programming in CT-
based SSDs. RLOSP learns from the I/O pattern and the storage internal sta-
tus, and make OSP decisions accordingly. To avoid the worst-case I/O latency
from spreading to different host I/Os and processes, the process ID (PID) and
host I/O information of requests in the device queue is considered. The PID of
requests is considered to avoid the worst-case I/O latency from spreading to var-
ious processes. Although current storage device is oblivious to this information,
it is convenient to acquire this information from the host side with open-channel
SSD technology [16] with trivial overhead. The host I/O information is con-
sidered to avoid the worst-case I/O latency from spreading to different host
I/Os. To record the PID and host I/O information of each request in the device
queue, a FIFO-list is maintained which is synchronized with the maintenance
of all requests in the device queue. The considered storage internal status con-
sists of busy/free status of flash chips and the space utilization of each plane.
Requests programmed to the busy chips by OSP could be blocked until the
chips are free, thus incurring a long I/O latency. Moreover, programming I/O
requests to the planes with high space utilization might incur garbage collection,
which could significantly degrade the I/O latency. The enlarged number of pro-
grammed pages in OSP increases the possibility of triggering garbage collection.
Therefore, the busy/idle status of flash chips and the space utilization of each
plane are considered in RLOSP.

Figure 3 describes the architecture of RLOSP. When a new request is inserted
to the device queue (RQ1), the device controller splits this request into several
one-page transactions. Then, the agent in RLOSP collects the PID and host I/O
information of requests in queue from the storage device controller, as well as
the busy/idle status of each flash chip and the space utilization of each plane
2©. Accordingly, the agent identifies the current state Si. After that, the agent
refers to the ε − Greedy policy to decide to perform exploration or exploitation
3©. An action Ai is selected according to the current state in the Q-table 4©,
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Fig. 3. Architecture of the proposed framework. CHP is the flash chips, CH is the
device channel. RQ is the request in device queue.

which chooses requests in queue to be programmed with OSP (RQ3, RQ4 and
RQ5, assume all are one-page requests) and assigns physical addresses for these
requests. These requests are then programmed to the assigned addresses in the
target flash chip (CHP3) with OSP 5©. After the latency of the programmed
requests is perceived by the storage device controller, the agent acquires the
latency from the storage device controller 6© and calculates the reward Ri of
the action Ai. Finally, the Q-value Qi is calculated and updated into the corre-
sponding state-action entry in the Q-table 7©.

4.1 Model Construct

State Space. The state space definition should provide sufficient information
of the environment, so that the agent could fully learn from the environment
and make OSP decisions accordingly. In RLOSP, the state definition considers
storage internal status, including busy/idle status of each flash chip and the
space utilization of each plane. In this manner, the OSP node could be assigned
to a free chip and a plane with low space utilization, so as to boost the OSP
node and improve the QoS performance. The space utilization of each plane is
classified in to several regions (3 by default) in state definition.

The number of the state is illustrated as Eq. 1 shown.

Sn = 2CHP × SOP (1)

In which CHP is the number of flash chips. 2CHP is the number of busy/idle
status of all flash chips. P is the number of planes in the back-end storage device.
SOP means the space utilization region distribution of all planes.
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Action Space. The action space is defined by choosing requests in the device
queue to be programmed by OSP and assigning physical addresses for these
requests. There are two rules in action selection. Firstly, transactions from the
same host I/O are programmed with highest priority in the same OSP node to
avoid the worst-case latency from spreading to different host I/O. Then, trans-
actions with the same PID are programmed with moderate priority in the same
OSP node to avoid the worst-case latency from spreading to various processes.
Finally, transactions with different PID are programmed with lowest priority in
the same OSP node. In this manner, the action is defined by choosing A transac-
tions from I/O requests in the device queue, and assigning physical address for
these transactions. A is the number of transactions programmed by OSP each
time.

Reward. The reward in RL is defined to represent the correctness of the last
action. In RLOSP, improper OSP operations could incur long worst-case latency
thus violating the QoS demand and impacting the user experience. The reward is
defined by the I/O latency of the transactions programmed by last OSP action.

Figure 4 describes the reward definition in RLOSP. The I/O latency of each
OSP operation is classified into three regions, as shown in the figure. For OSP
actions with low latency, a bonus is assigned as the reward. For actions with
medium latency, the reward is none. A minus reward is assigned for actions with
long latency.

Fig. 4. Reward definition.

4.2 Algorithm

Algorithm 1 shows the algorithm of RLOSP. Four groups of elements are input
in RLOSP, including the PID of each request in the queue G(PID1, .., P IDn),
the host I/O information of each request in the device queue G(HI1, ..,HIn),
busy/idle status of each chip G(S1, .., SCHP ) and the space utilization of each
plane G(SO1, .., SOP ). n is the number of requests in queue, P is the number
of planes in the flash storage and CHP is the number of flash chips. When
the device controller prepares for an OSP operation, the agent picks an action
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Algorithm 1. RL-Based OSP Approach
Require:

G(PID1, .., P IDn), G(HI1, .., HIn),
G(S1, .., SCHP ), G(SO1, .., SOP )

Ensure: At

if Data/Eviction then
St = state identify(G(PID1, .., P IDn),
G(HI1, .., HIn), G(S1, .., SCHP ), G(SO1, .., SOP ));
At = ε − Greedy(St);
Perform OSP ;
Acquire I/O latency;
Reward = Cal Reward(TLat);
Q(s, a) = Q(s, a) + γ ∗ Reward;

end if

referring to ε − Greedy, which means deciding which requests in queue will be
programmed with OSP and which physical address will be assigned for these
requests. After that, the I/O latency of the last OSP operation is perceived and
the Q-value Q(s, a) is calculated and updated to the corresponding state-action
(s, a) entry in the Q-table.

Figure 5 describes a walk-through example of the comparison between the
current OSP technique and RLOSP. In the current OSP technique, the device
controller simply selects three requests in the tail of the device queue (RQ3, RQ4
and RQ5) to perform OSP operation. As the storage controller is oblivious to
the busy/idle status of each flash chip and the space utilization of each plane
in physical address allocation, the selected requests might been issued to busy
chips (CHP3) or planes with high utilization, thus incurring garbage collection.
In this case, RQ3, RQ4 and RQ5 could be blocked thus incurring a long worst-
case latency. When these requests are from different processes (PID1, PID2 and
PID3), the long worst-case latency could be spread to different processes, thus
blocking the latency of all involved processes and impacting the user experience
significantly. As shown in the figure, the wait time of PID1, PID2 and PID3
blocks the latency of all processes, the latency of PID1 is prolonged to T5, and
the latency of PID2 and PID3 are prolonged to T4.

4.3 Walk-Through Example

For RLOSP, the agent considers the process ID and host I/O information of
requests in queue, as well as the busy/idle status of each flash chip and space
utilization of each plane in physical address allocation. The device controller
firstly selects RQ1, RQ2 and RQ3 to serve, which are all from the same process
(PID1). Then, an idle chip (CHP1) and plane with low space utilization will
be assigned for these requests. Finally, other requests in queue (RQ4, RQ5) will
be served simultaneously with OSP operation. In this manner, the wait time
of PID1 process is eliminated, which could significantly reduce the worst-case
latency of all processes and improve the QoS performance for SSDs. As shown
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Fig. 5. Walk-through example of the comparison between the current OSP technique
and RLOSP.

in the figure, the latency of PID1 for RLOSP is reduced into T1, the latency of
PID2 and PID3 for RLOSP is reduced into T2.

5 Results and Analysis

5.1 Experiment Environment

Experimental Setup. In this work, experiments are conducted with a trace-
driven simulator SSDsim [20] to verify the proposed approach. The simulator is
configured as a new 3D SSD device and a 3D SSD device aged by 70% respec-
tively. OSP operation is implemented in the simulator. The access latency is
configured following a SAMSUNG NAND-Flash product [7]. The configuration
of the simulator is described in Table 1.

Table 1. Configuration of SSDsim.

Channel number 2 Chip per channel 2

Die per chip 1 Plane per die 1

Block per plane 2048 Page per block 576

Page capacity 4 KB Over provisioning ratio 10%

Garbage collection scheme Greedy Page read latency 90 us

Page write latency 900 us Block erase 10 ms

Workload Environment. In the experiments, MSRC traces [20] are adopted,
which are published by Microsoft Cambridge collected from production servers.
The characteristics of the adopted traces are shown in Table 2. The size distri-
bution of the adopted traces shows the diversity among all traces collected from
various workload environments. Interval denotes the average arrival time interval
between each two consecutive I/O requests. Write ratio means the percentage of
write I/O requests in all I/O requests.
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Table 2. Characteristics of I/O traces.

Trace Size distribution Write ratio Interval (ms)

4 KB 8–16 KB >16 KB

HM 0 11.1% 1.1% 87.8% 5.2% 1.45

PRN 0 72.2% 11.1% 16.7% 85.7% 2.14

RSRCH 0 69.6% 23.6% 6.8% 91.8% 1.63

RSRCH 1 5.3% 1.6% 93.1% 2.1% 1.60

SRC1 2 43.8% 3.0% 53.2% 12.7% 1.40

SRC2 2 74.5% 16.2% 9.3% 79.4% 1.56

STG 0 70.0% 20.0% 10.0% 50.0% 0.09

WDEV 0 70.0% 20.0% 10.0% 50.0% 0.09

5.2 Experimental Results

In the experiments, the evaluation results of RLOSP is compared with the per-
formance of the current OSP technique in CT-based 3D SSDs. In addition, the
performance of SSDs without OSP is also evaluated to show the advantage and
disadvantage of OSP technique, and show the optimizing efficiency of RLOSP
further.

System I/O Throughput. Figure 6(a) compares the system I/O throughput
of RLOSP with existing approaches. OSP technique could significantly improve
the system I/O throughput, while RLOSP could maintain the benefit brought
by OSP. Compared with the performance of the current OSP technique, RLOSP
reduces the system I/O throughput by only 1.3% on average on a new device.
For a device aged by 70%, RLOSP reduces the system I/O throughput by 2.0%
on average compared with the current OSP technique. Oriented at OSP opti-
mization, RLOSP chooses proper requests to program with OSP in the device
queue instead of canceling the OSP operation. Therefore, RLOSP could improve
the QoS performance of the storage device without influencing the benefit gained
by OSP technique.

I/O Performance Variation. The current OSP technique could enlarge the
I/O performance variation, and part I/O might have to experience long worst-
case latency thus degrading the QoS performance of the storage device. This issue
is successfully mitigated by RLOSP. Figure 6(b) compares the standard deviation
of I/O latency of RLOSP with existing approaches. On average, RLOSP could
decrease the I/O performance variation by 51.8% compared with the current
OSP technique on a new device. On a device aged by 70%, RLOSP could decrease
the standard deviation of 56.2%. For HM 0 trace in the aged device, the I/O
performance variation is decreased by RLOSP by 73.4%. RLOSP considers PID
and host I/O information of requests in the device queue, thus avoiding the
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Fig. 6. Evaluation results of various approaches.

worst-case I/O latency from spreading to multiple I/O requests and different
processes. In addition, the consideration of busy/idle status of flash chips and
space utilization of planes in RLOSP could prevent the I/O requests from being
blocked by busy chips or garbage collection. In this manner, RLOSP manages
to eliminate the detrimental effects of OSP technique on QoS performance.

Worst-Case I/O Latency. Figure 7 describes the worst-case I/O latency of
various approaches at the tail 1% percentile. OSP technique could significantly
prolong the worst-case I/O latency, thus degrading the QoS performance of the
device. For a new device, the worst-case latency is prolonged by OSP 26.0–
54.7%, 35.0% on average at the 99% percentile, prolonged by 44.2–67.8%, 55.3%
on average at the 99.9% percentile compared with a device without OSP. For a
device aged by 70%, the worst-case latency is prolonged by OSP by 19.5–82.5%,
47.2% on average at the 99% percentile, by 26.6–80.3%, 56.1% on average at the
99.9% percentile. This detrimental effects of OSP technique is successfully elim-
inated by the proposed RLOSP approach. Among all adopted traces, RLOSP
reduces the worst-case latency on a new device by 22.4–48.6%, 30.2% on average
at the 99% percentile, by 37.5–59.2%, 46.7% on average at the 99.9% percentile
compared with a device with OSP technique. For a device aged by 70%, RLOSP
reduces the worst-case latency by 11.7–77.0%, 42.5% on average at the 99% per-
centile, by 23.5–78.7%, 52.0% on average at the 99.9% percentile compared with
a device with OSP technique. By considering the I/O patterns and the storage
internal status, RLOSP manages to choose the proper requests in the device
queue and allocate right physical addresses for these requests, thus boosting the
worst-case I/O latency significantly.

In summary, the proposed RLOSP approach could eliminate the detrimental
effects of the OSP technique on the QoS performance, while maintaining the
benefits gained by OSP on system I/O throughput. In this manner, the 3D
CT-based SSDs could deliver an optimal system throughput with significantly
improved QoS performance as well as the user experience.

Overhead Analysis. RLOSP incurs trivial overheads. First, the computation
overhead of RLOSP is trivial. The storage system acquires an action at the cost
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Fig. 7. Evaluation results of the worst-case I/O latency. The horizontal axis is I/O
latency in millisecond, the vertical axis is the cumulative distribution of I/O latency.

of a table traversing operation, whose computation overhead is negligible. More-
over, the memory overhead of RLOSP is trivial. The major memory overhead
of RLOSP is incurred by the maintenance of the Q-table. According to Eq. 1,
there are 1296 states. In RLOSP, the action is allocating a plane for selected
requests in the device queue. There are 4 actions in the experiments in this
work. Therefore, the Q-table is a 1296 × 4 vector, which takes around 10 KB
memory overhead. This memory overhead is trivial over current SSDs with a
DRAM larger than 1 GB.

6 Conclusion

This paper proposes RLOSP, a reinforcement learning assisted approach for the
optimization of the OSP technique on 3D CT-based SSDs. First, evaluation
results reveal that OSP could maximize the system I/O throughput at the cost
of degraded QoS performance. Then, RLOSP considers the I/O patterns and the
storage internal status in each OSP operation. In this manner, RLOSP manages
to eliminate the detrimental effects of OSP while keeping the benefits of OSP
on system I/O performance. We expect that this work could help the designers
in 3D SSDs oriented optimizations.
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