
Framework Optimization for Face Recognition

Chao Chen1 , Xin Wang1(B) , and Yong-Xin He2

1 Jiangsu Vocational Institute of Architectural Technology, Xuzhou, China
920658920@qq.com, 54520081@qq.com

2 China University of Mining and Technology, Xuzhou, China
719788101@qq.com

Abstract. In recent times, with the increasing interest in face recognition for
smart homes. However, most of these studies are focused on the individual mod-
ules of such a system, and there is an evident lack of research on a face recognition
system framework that can integrate and manage the entire face recognition sys-
tem. Therefore, in this study, we propose a framework that enables the user to
effectively develop an face recognition system in different data volume applica-
tions. This paper designs an edge computing architecture and a cloud architecture.
The edge computing architecture is designedwith a Centralized-Edge and Peer-to-
Peer Edge. At the same time, the face screening, face disguise, training timing and
dynamic adjustment of training samples in face recognition are analyzed to give
a feasible solution. In particular, the face screening rules are designed to reduce
unnecessary training and repeated training. This paper has important application
value for the intelligentization of the Internet of Things.

Keywords: Raspberry Pi · DNN · Face recognition · Framework · OpenCV

1 Introduction

Face recognition is one of the research hotspots in computer vision, image processing and
neural networks in recent years. It is widely used in the fields of public safety, verifica-
tion systems and human-computer interaction [5]. The development of face recognition
has mainly gone through three stages: based on structural features, based on statisti-
cal features, based on big data and complex models [19]. From the earliest methods of
geometric features and template matching to a scheme based on artificial features and
classifiers, face recognition technology has begun to enter the automatic machine recog-
nition stage. In recent years, with the continuous development of deep learning technol-
ogy, face recognition technology has also begun to transform from traditional machine
learning methods to deep neural networks. However, the calculation of neural networks
often involves a large number of matrix operations, which puts high requirements on
the computing power of hardware devices [16, 18]. The emergence of powerful GPU
hardware devices has greatly reduced the model calculation time, which has promoted
the widespread application of face recognition technology. At present, researchers have
trained complex deep neural network models with tens or even hundreds of millions of
undetermined parameters, and constantly refresh the highest record of face recognition

© Springer Nature Switzerland AG 2020
X. Chen et al. (Eds.): ML4CS 2020, LNCS 12488, pp. 74–85, 2020.
https://doi.org/10.1007/978-3-030-62463-7_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62463-7_8&domain=pdf
http://orcid.org/0000-0002-2798-0868
http://orcid.org/0000-0003-2001-8139
http://orcid.org/0000-0002-3014-0798
https://doi.org/10.1007/978-3-030-62463-7_8


Framework Optimization for Face Recognition 75

accuracy. The DeepFace [14] released by Facebook, the DeepID [6–8] series researched
by the Chinese University of Hong Kong, and the FaceNet [12] released by Google have
reached or surpassed human recognition capabilities.

The breakthrough progress of artificial intelligence has prompted facial recognition
technology to integrate into people’s lives, which not only promotes the construction of
smart cities, but also improves the efficiency of social operations. However, the deploy-
ment of most face recognition systems relies on cloud computing resources. With the
rapid growth of the number of connected devices, in order to meet the fast and accu-
rate identification effect, high requirements are placed on the network bandwidth and
computing processing capabilities of the centralized physical data center that reflects
the “cloud” [11]. In addition, the openness of the network environment and the sensi-
tivity of identity data lead to the risk of privacy leakage in practical applications of face
recognition technology [17]. The cloud-based method transmits sensitive data of a large
number of users to the cloud. If attacked, it is likely to cause user privacy to leak. There-
fore, in terms of protecting users’ private data, there is a certain degree of insecurity
in cloud-based deployment [3]. As a supplement to cloud computing, in recent years,
edge computing has attracted great interest from researchers. Unlike cloud computing,
edge computing provides end-to-end services. Data can be processed directly on the
edge device without being transferred to the cloud, so it shows excellent performance
in reducing communication delay and reducing bandwidth load. Considering the supe-
riority of edge computing, some face recognition systems based on edge computing
have been proposed. He et al. [2] proposed a lightweight and fast face detector (LFFD)
for edge devices. Prentice et al. [9] developed a set of Raspberry Pi-based end-to-end
smart office applications. The developed solution can monitor various environmental
conditions and can use facial recognition to identify users.

At present, although face recognition technology has achieved some important
results, there is still a lot of work to be done to design and implement a practical
face authentication system. For the research based on Raspberry Pi face recognition
at home and abroad, most of them focus on the Raspberry Pi [1, 10] software and hard-
ware optimization and face recognition algorithm optimization, applied to specific smart
home scenarios, and the multi-Raspberry pi collaboration constitutes a whole architec-
ture research. It remains to be seen, and it has important research value for architecture
optimization. This paper studies the face recognition in smart family as the application
scenario. For the sake of family privacy protection, this paper studies the face training
on the local Raspberry Pi, and uses the Raspberry Pi as the terminal and recognition for
collecting face images. Through its continuous training, the end can make it possible to
identify familymembers in almost any dress, hairstyle and face occlusion. By comparing
several face recognition system architectures designed in this paper, the face recognition
performance is continuously optimized.

This paper mainly studies the following two aspects:

1. In the Raspberry Pi collection terminal, how to choose a suitable screening image
method to reduce unnecessary repetitive training.

2. Tomeet the needs of different data volumes, design non-cloud architecture and cloud
architecture for face recognition, and study and design many details.



76 C. Chen et al.

2 Raspberry Pi System Configuration

First, we will embody the scene. In the Raspberry Pi terminal, the face image and the
person’s identity are matched one by one through RFID. If the face reaches the training
condition, the next step of training is performed; if not, only the door opening operation
is performed. In the Raspberry Pi, the basic configuration is shown below (see Fig. 1):

Camera
Module

Ultrasonic
Sensor

ZigBee

Power Supply

Relay Control

Door Lock

GPRS/wifi

SMS alert

RFID
Module

Fig. 1. Raspberry Pi configuration

2.1 Hardware Section

The Camera Module functions to capture a face image.
The role of RFID is to make the face image and the identity of the person correspond.
The Ultrasonic Sensor detects the distance of the person. When the distance is less

than the preset distance, the command is sent to allow the camera to continuously capture
6 face images.

After we collect the image of the character, we send the image to the Raspberry Pi for
processing. We will first screen it. The screening rules will be further explained below.
If the training conditions are met, the model will be retrained.

In this architecture, the control module and communication module use the ZigBee
platform. This technology is energy efficient, self-configuring, low cost, and provides
high precision transmission. After we confirm the identity and determine that we can
perform the operation such as opening the door, the Raspberry Pi sends a command to
the relay through ZigBee, allowing the relay to control the corresponding hardware to
perform the opening operation.



Framework Optimization for Face Recognition 77

A whitelist is a collection of information about all legally identifiable people, and a
blacklist is opposed to it. If the face image detection result is not in the white list but the
RFID information is in the white list, or the existence of face disguise, the Raspberry Pi
will not perform the action such as opening the door. At the same time, the Raspberry Pi
sends a warning message to the administrator via GPRS or wifi, including the warning
time and place.

2.2 Software Part

Face Recognition Algorithm. We installed the OpenCV platform in the Raspberry Pi
and implemented the face recognition using the DNN algorithm. There are many plat-
forms for implementing DNN, such as Caffe, TensorFlow, OpenCV, Caffe, etc. We refer
to the article by Delia Velasco-Montero [15], who is based on Accuracy, Throughput,
and Power Consumption.), FoM (Figure of Merit) and other aspects of the assessment.
Define a variable FoM with the following formula:

FoM = Accuracy · Throughput
Power

(1)

The experimental results show that OpenCV and SqueezeNet are the best performing
components; for high throughput, OpenCV and TensorFlow are the best choices; for low
energy budgets, OpenCV and Caffe2 are the most suitable tools. In summary, we see that
OpenCV has a good performance in performance, throughput and power consumption,
so this article decided to using OpenCV platform in the Raspberry Pi.

Face Screening Algorithm. When the system size and the amount of data are small,
the old data and the new data can be trained together each time new face images needs
training. However, as the scale of the system expands, more and more face images need
to be newly identified. If the old and new data are still trained together, the training cost
will be greatly improved and the training efficiency will be lower. Improve, remove some
unnecessary training face images, and filter the face images. Face screening is considered
in two aspects. One is to screen out face images such as unclear and blacklists to avoid
wasting training time and resources; The second is to screen out the necessary training
faces and not to train those faces that have been accurately identified.

Screening the face image that needs to be trained according to the preset face recog-
nition accuracy threshold. For example, when the recognition rate is less than 50%,
the image is discarded; when the recognition rate is greater than 90%, the image is not
trained, but is stored; when identifying the image was trained at a rate between 50% and
90%. The specific flow chart is as follows (see Fig. 2):

In this paper, the threshold is used as the screening rule. In practical applications,
when collecting human faces, we can require the examiner not to bring decorations such
as hats and glasses. The increase of these rules can greatly reduce unnecessary face
collection and training.



78 C. Chen et al.

Raspberry pis collectIng face 
images

The ultrasonic sensor detects the 
object within the set distance

Recognition
rate<50%?

Stop training and 
discard pictures

Recognition
rate>90%?

Stop training and 
store pictures into 

backup

Training

Yes

Yes

No

No

Is RFID in the 
whitelist?

Send an alert

No

Yes

Fig. 2. Face image screening flow chart.

To Prevent Face Deception. There are many ways to prevent face deception. In the
method proposed by Piyush Devikar et al., a temperature sensor based detection method
is proposed because the surface temperature of the mask is close to the ambient tem-
perature and is not as high as the real surface. At ambient temperature. The system
takes images from a camera connected to the Raspberry Pi and then detects the faces
in the image by OpenCV. The face temperature captured by the camera is obtained by
an infrared temperature sensor. If a face is detected in the image and its temperature is
greater than the threshold (skin) temperature, the face is true, otherwise it is false. This
method can already block the fake face, face photo and the like formed by the high-end
silicone mask.

In order to further prevent the occurrence of fraud, this article is supplemented by
blink detection. We use the blink detection method of Tereza Soukupova and Jan Cech
[13], using haar features to locate faces, and shape predictor 68 face landmarks.dat to
mark face structures with 68 points to monitor human eyes, As shown in Fig. 3. The
change in the distance between the upper and lower eyelids determines whether or not
the eye is blinking. The principle is as shown below (see Fig. 4):



Framework Optimization for Face Recognition 79

Fig. 3. Mark face structures with 68 points to monitor human eyes.

Fig. 4. Human eye mark.

As you can see in the image above, one eye will mark six points and define a variable
EAR using the following formula:

EAR = ‖P2 − P6‖ + ‖P3 − P5‖
2‖P1 − P4‖ (2)

The person blinks once for about 0.2–0.4 s, and when it detects that the EAR is
less than 0.3, it is considered to be blinking. For face recognition, we need to label it,
including the name, identity and age, as shown below (see Fig. 5):



80 C. Chen et al.

Fig. 5. Face recognition effect.

As you can see, the recognition result Name is chenchao, the accuracy rate is 64.33%,
the identity is administrator, and the age is 27.

3 Edge Computing Architecture Design

First, we design the edge computing architecture [4]. The face recognition and model
training are all performed on the edge. The edge can be the Raspberry Pi or the NVIDIA
TX2. Keeping the data locally saves user privacy to a large extent.

Use SQLite Studio to store information in any particular sequence. This article is
used to store training data, trained models, whitelists and other information, and can be
displayed during the detection process. For any new user registration, you need to add
his/her information to this database.

In the edge computing architecture, there are two design approaches, one is a
Centralized-Edge and the other is a Peer-to-Peer Edge. Centralized-Edge we use one or
several Raspberry Pi as a training server. All the face images that need to be trained are
sent to this training server. After training, the model is synchronized to each Raspberry
Pi. In the Peer-to-Peer Edge, eachRaspberry Pi is an independent training terminal. If any
Raspberry Pi is trained and the model is updated, the latest models will be synchronized
to other Raspberry Pis.

The first one adopts a Centralized-Edge, as shown in the following figure (see Fig. 6):



Framework Optimization for Face Recognition 81

Training Server

RPi1

model

Face images

RPi2

RPi3

Fig. 6. Centralized architecture.

One or more Raspberry Pis are used as training servers, and each other Raspberry Pi
is used as a face collection terminal. The collected faces are filtered and submitted to the
Raspberry Pi server for training. After the trained, the model is distributed to each tree.
Raspberry pi terminal. When the server has multiple Raspberry Pis, face recognition is
performed by means of loop recognition.

Suppose now that the server consists of three Raspberry Pis. After receiving the
identification request, it first asks if RPi1 can be identified. If it cannot be sent to RPi2,
if RPi2 can’t identify it, it will send it to RPi3. If RPi3 can recognize it, it will return
recognition result. As a result, if it is not identifiable, training is performed at RPi3.
At the same time, if the three Raspberry Pis can recognize different face sets different
from each other, and exchange training data that cannot be recognized for training, the
advantage of this is that on the one hand, the server performance can be improved, and
on the other hand, the server side can be guaranteed. After a problem occurs in any
Raspberry Pi, it doesn’t affect the normal operation of the system.

The second adopts the Peer-to-Peer Edge. When any Raspberry Pi collects the face,
it first filters and sends the filtered photos to the edge for training and updating themodel.
The structure is as follows (see Fig. 7):



82 C. Chen et al.

Edge Compu�ng

Fig. 7. Edge computing structure.

In the Raspberry Pi training, due to the limitations of its hardware performance, it
can’t meet the training work of a large sample. Therefore, on the Raspberry Pi training
server. We can add NVIDIA TX2 or Intel Movidius Neural Computing Stick to the
Raspberry Pi to improve computing performance.

4 Cloud Architecture Design

The architecture of the previous section is suitable for application scenarios where the
model is small and the training data is small. As the amount of data continues to increase,
the architecture of the previous section is clearly unable tomeet the needs of big data pro-
cessing. This chapter designs the cloud architecture and puts the training of preprocessing
and model into the cloud.

The following Table 1 is a raspberry pi information table that records the id of the
raspberry pi, the ip address of the Raspberry Pi, the version of the Raspberry Pi model,
and the number of photos that need to be trained and the time the request was sent.

Table 1. Raspberry pi information.

ID Time Raspberry Pi ID Number of images Raspberry Pi address

1 2018-12-10-12:10:10 3203001 5 120.109.0.111

2 2018-12-10-13:20:10 3203002 6 120.109.0.112

Here is the cloud architecture diagram (see Fig. 8):



Framework Optimization for Face Recognition 83

Hadoop

1 Image collection
2 Image preprocessing

Apache NiFi

Raspberry 
Pi Data

Recogniti
on Data

Apache Kafka
1 real time topic
2 not real-time topic

Face recognition training 
server

model training

Fig. 8. Face recognition in cloud architecture.

Apache NiFi is a web project, we can use nifi to do a lot of pre-processing work, to
reduce the computing burden of the cloud server. Specific to this article, we can add time
and other attributes to the Raspberry Pi data, perform some pre-processing operations
before the image training, for some data that needs to be stored, you can send it to
Hadoop for storage.

Apache Kafka will be used as a messaging service because it provides high through-
put, reliable delivery, and horizontal scalability. Kafka classifies messages according
to Topic when they are saved. The sender becomes the Producer and the message
receiver becomes the Consumer. In addition, the Kafka cluster consists of multiple
Kafka instances, and each instance becomes a broker. Specific to this article, we can
divide the data processed by nifi into two parts that need to be processed in time and not
processed in time according to the training timing, and sent to different consumers for
processing.

The cloud training host is responsible for training the data sent by Kafka. We can use
cluster-based organization or only set up a high-performance training host. For priority
training of data that needs timely training, meet the needs of real-time identification, and
complete the training. Then send the model to the corresponding Raspberry Pi and let
Hadoop store it.

Hadoop implements a distributed file system, referred to as HDFS. The core design
of Hadoop’s framework is HDFS and MapReduce. HDFS provides storage for massive
amounts of data, while MapReduce provides calculations for massive amounts of data.
This article is mainly used to store data such as Raspberry Pi and some trained models.

We can see that all parts of the cloud work together. First, nifi preprocesses the
data sent from the Raspberry Pi, including image preprocessing, image categorization,
and basic information storage. After that, nifi sends the pre-processed data to Kafka.
Kafka further classifies it according to Topic, then passes the data to storm and spark for
model training and recognition, and finally passes some model information to Hadoop
for storage.

As time increases, the training data will become larger and larger. In order to main-
tain the efficiency of system training, on the one hand, we can increase the hardware



84 C. Chen et al.

configuration and improve the computing speed. On the other hand, we can reduce the
training amount by reasonablely reducing the training data.We can set a threshold.When
the number of training photos of a certain precision exceeds this threshold, we randomly
delete the extra photos so that the training samples of a certain precision remain the
same.

For the training time of cloud data, we are divided into two situations: one is that for
thefirst time the systemneeds to be able to identify, the systemstarts training immediately
after the data comes in; the other is the data that does not need timely training, such as
the training accuracy is located at [50, 90] Photo, we arrange non-working hours for
training.

5 Conclusions

In this study, we proposed a face recognition system framework. We designs an edge
computing architecture and a cloud architecture. For each part of the architecture, such
as face recognition, face screening, prevention of face disguise, and the design and
connection of various components in the cloud architecture, solutions are given. The
experimental results indicate that the proposed framework is effective and easy-to-use.

In the future, a face recognition system framework that ismore useful can be expected
if it can provide a guide that will help developer-s correct their own errors, or if it can
correct errors automatically. In addition, for the face screening rule, the determination
of the threshold needs further to be improved. We need further experimentation to find
the most appropriate threshold. It can let us further improve efficiency and accuracy.

References

1. Gunawan, T.S., Gani,M.H.H., Rahman, F.D.A.,Kartiwi,M.:Development of face recognition
on raspberry pi for security enhancement of smart home system. Indonesian J. Electr. Eng.
Informatics (IJEEI) 5(4), 317–325 (2017)

2. He, Y., Xu, D., Wu, L., Jian, M., Xiang, S., Pan, C.: LFFD: a light and fast face detector for
edge devices. arXiv preprint arXiv:1904.10633 (2019)

3. Li, J., Kuang, X., Lin, S., Ma, X., Tang, Y.: Privacy preservation for machine learning training
and classification based on homomorphic encryption schemes. Inf. Sci. 526, 166–179 (2020)

4. Marjanovic, M., Antonic, A., Zarko, I.P.: Edge computing architecture for mobile crowdsens-
ing. IEEE Access 6, 10662–10674 (2018)

5. Masi, I., Wu, Y., Hassner, T., Natarajan, P.: Deep face recognition: a survey. In: 2018 31st
SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pp. 471–478. IEEE
(2018)

6. Ouyang, W., et al.: Deepid-net: multi-stage and deformable deep convolutional neural
networks for object detection. arXiv preprint arXiv:1409.3505 (2014)

7. Ouyang, W., et al.: DeepID-Net: deformable deep convolutional neural networks for object
detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 2403–2412 (2015)

8. Ouyang, W., et al.: DeepID-Net: object detection with deformable part based convolutional
neural networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(7), 1320–1334 (2016)

http://arxiv.org/abs/1904.10633
http://arxiv.org/abs/1409.3505


Framework Optimization for Face Recognition 85

9. Prentice, C., Karakonstantis, G.: Smart office system with face detection at the edge. In: 2018
IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing,
Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People
and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), pp. 88–
93. IEEE (2018)

10. Sajjad, M., et al.: Raspberry pi assisted face recognition framework for enhanced law
enforcement services in smart cities. Future Gener. Comput. Syst. 108, 995–1007 (2017)

11. Satyanarayanan, M.: The emergence of edge computing. Computer 50(1), 30–39 (2017)
12. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition

and clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 815–823 (2015)

13. Soukupova, T., Cech, J.: Eye blink detection using facial landmarks. In: 21st Computer Vision
Winter Workshop, Rimske Toplice, Slovenia (2016)

14. Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: DeepFace: closing the gap to human level
performance in face verification. In: Proceedings of the IEEEConference onComputer Vision
and Pattern Recognition, pp. 1701–1708 (2014)

15. Velasco-Montero, D., Fernandez-Berni, J., Carmona-Galan, R., RodrıguezVazquez, A.: Per-
formance analysis of real-time DNN inference on raspberry pi. In: Real-Time Image and
VideoProcessing 2018, vol. 10670, p. 106700F. International Society forOptics andPhotonics
(2018)

16. Wang, X., Kuang, X., Li, J., Li, J., Chen, X., Liu, Z.: Oblivious transfer for privacy preserving
in VANET’s feature matching. IEEE Trans. Intell. Transp. Syst. (2020)

17. Wang,X., Li, J., Kuang,X., Tan,Y.A., Li, J.: The security ofmachine learning in an adversarial
setting: a survey. J. Parallel Distrib. Comput. 130, 12–23 (2019)

18. Wang, X., Li, J., Li, J., Yan, H.:Multilevel similaritymodel for high-resolution remote sensing
image registration. Inf. Sci. 505, 294–305 (2019)

19. Yang, J., et al.: Neural aggregation network for video face recognition. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 4362–4371 (2017)


	Framework Optimization for Face Recognition
	1 Introduction
	2 Raspberry Pi System Configuration
	2.1 Hardware Section
	2.2 Software Part

	3 Edge Computing Architecture Design
	4 Cloud Architecture Design
	5 Conclusions
	References




