®

Check for
updates

Cross-Project Software Defect Prediction Based
on Feature Selection and Transfer Learning

Tianwei Lei! ®, Jingfeng Xue', and Weijie Han'-?

1 School of Computer Science and Technology, Beijing Institute of Technology, Beijing
100081, China
absherryl123@163.com
2 School of Space Information, Space Engineering University, Beijing 101416, China

Abstract. Cross-project software defect prediction solves the problem that tradi-
tional defect prediction can’t get enough data, but how to apply the model learned
from the data of different mechanisms to the target data set is a new problem.
At the same time, there is the problem that information redundancy in the train-
ing process leads to low accuracy. Based on the difference of projects, this paper
uses MIC to filter features to solve the problem of information redundancy. At
the same time, combined with the TrAdaboost algorithm, which is based on the
idea of aggravating multiple classification error samples, this paper proposes a
cross-project software prediction method based on feature selection and migra-
tion learning. Experimental results show that the algorithm proposed in this paper
has better experimental results on AUC and F1.

Keywords: Transfer learning - TrAdaboost - MIC - Cross-project software
defect prediction

1 Introduction

With the rapid development of information technology in recent decades, the scale of
software is becoming larger and larger, and the software vulnerabilities are becoming
hidden, which makes the assurance of the software’s quality more difficult to achieve
[1].

Software defect prediction can discover the defects in software before the appli-
cation is put into production, to reduce the cost of subsequent manual testing and the
development cycle [2]. It is difficult for many organizations to obtain enough historical
versions to build data sets for defect prediction in practical, and it will lead the problem
of cold start is encountered in the initial prediction. A possible solution to this problem
is to use the data of other projects to build a model to predict the software defects of
the target project, that is, cross-project software defect prediction [3]. But there are also
some problems will also lead the low training accuracy in the cross-project software
defect prediction, such as information redundancy, class imbalance [4].

© Springer Nature Switzerland AG 2020
X. Chen et al. (Eds.): ML4CS 2020, LNCS 12488, pp. 363-371, 2020.
https://doi.org/10.1007/978-3-030-62463-7_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62463-7_33&domain=pdf
https://doi.org/10.1007/978-3-030-62463-7_33

364 T. Lei et al.

This paper propose a cross-project software defect prediction method based on
feature selection and transfer learning. The main contributions of this paper are as
follows:

1. This paper proposes a method of cross-project software defect prediction based on
the combination of feature selection and transfer learning and the experiments show
that the defect prediction is effective.

2. MICs method is used to solve the problems of data redundancy and feature dimension
explosion;

3. After feature selection, the MuTrAdaboost algorithm is proposed to increase the
TrAdaboost algorithm. MuTrAdaboost enhances the weight of instances which is
like the target project data, and the final model is formed by multiple training.

The experimental results show that the MuTrAdaboost algorithm is better than the
TrAdaboost algorithm in AUC and F1.

2 Related Works

Cross-project software defect prediction [5], as mentioned above, is mainly to build a
defect prediction model for the target project by using the data sets already collected by
other projects, so as to predict and analyze the data of the target project. And it is mainly
based on traditional software defect prediction technology, aiming at finding similarities
between different factors and using potential links to propose a reasonable and efficient
prediction model.

Inrecent years, the transfer learning method in the field of machine learning provides
a good idea for the prediction of cross project [6]. Transfer learning [7] is a machine
learning method which uses the existing knowledge to solve the problems in the related
fields.

Project variation is the first problem to be solved in the direction of cross project
defect prediction [8]. He [9] have carried out the corresponding research from the per-
spective of the disaster problem of the feature dimension of data sets. Amasaki [10] try
to use unsupervised learning to remove the irrelevant features and instances from the
target project to improve the accuracy.

In the field of transfer learning, Dai et al. [11] proposed the TrAdaboost method,
which applies the idea of AdaBoost to transfer learning to improve the instance weight
of target classification task and reduce the instance weight of target classification task.
TraAdaboost method is one of the classical research of transfer learning, and there
are also some research works in the field of software defect prediction based on this
algorithm. Chen [12] uses data preprocessing and TrAdaboost to predict defects from
the perspective of reducing the weight of negative instances in the source project. Shen
[13] considers the way of multiple projects migrating one target project, proposes two
improved prediction algorithms based on TrAdaboost, and constructs the final prediction
model by inheritance learning.

Cross-Project Software Defect Prediction

3 Framework of the Approach

The approach of this paper is illustrated as Fig. 1.

Source Domian
Data

Target Domian
Data

<
l

A

Common Features

Feature Filter

A

MuTrAdaboost

Input Data

A

Final Prediction
Result

Fig. 1. The framework of the proposed approach

365

1. Firstly, the data from different project are divided into two domains, source domains
and target domain. Our goal is to use the data in source domain to build prediction
model to predict the fault in source data. The common features in both source data
domain and target data domain are reserved for the next step.

2. The method MIC is used to filter the features. We do the MIC calculation between
features of target dataset and source dataset and choose the features which have

higher MIC results.

3. We build the prediction model with MuTradaboost which is an improved TrAdaboost
algorithm. After the building process, the part of target data is inputted into model
as test data to get final prediction result.

4 Key Technologies

4.1 Feature Selection Based on Maximum-Information-Coefficient MIC

Before the formal establishment of the model, it is necessary to filter the features in the
training project, exclude the feature vectors that are too different from the features of the
target project, and select the feature vectors that are highly correlated with the features
in the training project as the basis for model construction.

366 T. Lei et al.

In our experiment, we use the maximum information coefficient (MIC) to calculate
the correlation between two vectors. It is a method proposed by David et al. [14] to
express the dependence between two groups of variables.

The MIC calculation is done between the same features in source dataset and target
dataset, and the features is sorted by their MIC result by descending order. We select the
required number of features to build the model in training.

4.2 MuTrAdaboost, Cross-Project Defect Prediction Based on Improved
TrAdaboost

After filtering the appropriate features of the source project, we proposed a improved
TrAdaboost algorithm MuTrAdaboost to build the data model and predict the defects. In
our method, we still adopt the basic idea of TrAdaboost: to strengthen the weight of the
samples that are misclassified in a certain training, and hope that they can be correctly
classified in the next iteration.

The core of our thinking is: while strengthening the weight of the samples that have
been wrongly divided, we give those samples that have been wrongly divided many
times higher weight to quickly adjust the model and update the data. Therefore, the
defect prediction algorithm based on the improved TrAdaboost is as follows:

MuTrAdaboost Algorithm

Input

Dataset from source data field Ty = {T4,, Tq,, --» TdNS}
Sample target dataset T

The unlabeled data set S

Base learning algorithm Learner

Maximum number of iterations N

Error limits €

Algorithm
1: Initialize the weight factor § = 1,err= zeros(1...n + m) and the weight vec-
tor wt = (wl,..., wiin)

, i=1..n

R
R S| =

—,i=n+1l.n4+m
m

2: For each instance t = 1...N do
t

3: Normalize the weight vector pt = % ;
i=1 i

4: Use the p* as the weight data to train the base learning algorithm learner ,
return the hypothesis h;
5: Calculate the error rate &; of hy on T,

t
!
& = Zﬁnﬂm [he(x;) — c(x)]

Cross-Project Software Defect Prediction 367

6: Update the weight factor §; = 18—;, and the error rate &; must be less than
—ct

0.5, otherwise set &, = 0.5
7: For each instance j = 1...n+m do
&: Calculate the err[j]:

o (err[jl+1, [he(x;) —c(x)| = €
err[j] = .
0 ={eri Ihe () = el < £
9: End for
10: Update the weight vector:
{ a)fﬁtlh‘(x")_c(x")l i=1..n&lh(x;) —clx)| <e
e | @f VT 2 nRlhy () — el 2
l a)fﬁt_lh‘(xi)_c(xi)l i=n+1..n+m&lh(x)—clx)l <e

a)itﬁt_lht(xi)_c(x")l'errs[i] i=n+1..n+m&lh(x;)—clx)|>¢
11: End for

Output
N N
h —
we it [a0z] 8~
4 £2IN /2] £2IN /2]
0, otherwise

5 Experiments

5.1 Dataset

To show the performance of the software defect prediction of cross-project, we select
the open NASA dataset and SOFTLAB dataset as the experimental set and compare the
experimental results. We use NASA dataset as the source dataset and SOFTLAB data
set as the target dataset for prediction. These datasets are available on the PRIMISE
website.

We selected 10 items of NASA dataset, 3 items of SOFTLAB dataset, and their
common features as the initial data feature set. Table 1 shows their details.

5.2 Experimental Indicators

In this paper, AUC (area under ROC) and F-measure are used as evaluation criteria. AUC
refers to the area surrounded by ROC curve and axis A good prediction model should
have a high precision at the same time of high recall. However, the high recall is often
achieved at the cost of low precision, so we introduce the indicator F-measure which is
used to measure the harmonic average of the two.

368 T. Lei et al.

Table 1. Source data and target data

Source data

Project | Examples | %Defective | Description

CM1 327 12.84 Space craft instrument
KC3 194 9.38 Storage management
MC1 | 1988 2.31 Video guidance system
MC2 161 32.30 Video guidance system
MW1 403 7.69 A zero gravity experiment
PC1 1109 6.94 Flight software

PC2 745 2.15 Flight software

PC3 1077 12.44 Flight software

PC4 1287 13.75 Flight software

PC5 1711 27.53 Flight software

Target data

ar3 63 12.70 Embedded controller
ar4 107 18.69 Embedded controller
ar5 36 22.22 Embedded controller

5.3 Experiment Comparison

In order to test the experimental effect of this paper, we designed three comparative
experiment: separate TrAdaboost experiment; separate MuTrAdaboost experiment for
the data; and use mic for feature selection first, and MuTrAdaboost experiment for the
selected samples.

We select all NASA data sets as the data of the source data, and select one SOFTLAB
data set for the target data at a time, and randomly select 10% of the target data as the
test data for the experiment. Table 2 shows the comparison of experimental indicators
of three algorithms on multi-source data sources. In TrAdaboost and MuTrAdaboost
experiments, we used all the common features of each data set and the target data set in
the source data domain. In feature filtering, we selected some features according to the
order of MIC value. We can see that the use of MuTrAdaboost algorithm can significantly
improve the AUC index of the experiment compared with TrAdaboost algorithm. In
addition to dataset ar5, the F-measure index can also be improved to some extent. The
third column of Table 2 shows that the index selected by adjusting the proportion of using
features is the best after using the MIC algorithm for feature filtering and MuTrAdaboost
algorithm. We can see that the use of MIC algorithm can improve the AUC index AUC
and F-measure after the method have been improved to some extent. The defect rate of
ar3 project is only 12.3%, which leads to the poor performance of the three algorithms.

Cross-Project Software Defect Prediction 369

Table 2. Comparison of multi-source data experiments

Metric TraAdaboost | MuTraAdaboost | Mic +
MuTraAdaboost

ar3

AUC 0.571 0.667 0.733
F-measure |0.275 0.333 0.375
ard

AUC 0.545 0.745 0.812
F-measure | 0.325 0.364 0.453
ar5

AUC 0.577 0.793 0.833
F-measure | 0.375 0.372 0.449

Table 3 shows the data of AUC and F1 indexes with different proportion of charac-
teristic number filtered by MIC value in each data set. It can be seen that ar3, ar4 and
ar5 data sets have the best data results when selecting 70%, 80% and 70% of the number
of features, respectively. Figures 2, 3 and 4 show the change of AUC and F1 indexes
of target data sets ar3, ar4 and ar5 with the increase of feature proportion of filtering,
where abscissa is the proportion of feature quantity selected after feature filtering to total
feature quantity, while ordinate is the value range of AUC and F1.

From the experimental comparison of multi-source data, it can be seen that the
introduction of MuTrAdaBoost can improve the accuracy of the experiment, while the
use of MIC to filter features rather than select all features for the experiment can also
improve the effect of the experiment to a certain extent, and at the same time, the speed

Table 3. Experimental results of feature selection scale of target domain dataset

0.10 0.20 030 0.40 0.50 0.60 0.70 0.80 0.90 1.00

ar3
AUC | 0.21 1 0.28 | 0.34 | 0.40 | 0.50 | 0.53 | 0.57 | 0.56 | 0.57 | 0.53
F1 0.07 10.10|0.15|0.18 1 0.24 | 0.26 | 0.28 | 0.27 | 0.27 | 0.27
ard
AUC | 0.21 |0.36 | 0.44 | 0.54 1 0.63 | 0.69 | 0.730.75|0.74 | 0.74
F1 0.060.10|0.18 1 0.250.28 | 0.31 1 0.34 | 0.36 | 0.36 | 0.36
ars
AUC | 0.27 10.30{0.420.52 1 0.66 | 0.77 | 0.83 1 0.82|0.83 | 0.81
F1 0.05/0.13/0.20 1 0.27 | 0.34|0.38 1 0.41 | 0.41 | 0.41 | 0.41

370 T. Lei et al.

ar3

m----B--- B ---m---n

0.10 =" —e— AUC
 -=-FI
01 02 03 04 05 06 07 08 09 1.0

Fig. 2. AUC and F1 change chart of ar3 value with feature proportion

080
0.70
0.60
050

ar4

040
030
020
0.10

0.00 —
01 02 03 04 05 06 07 08 09 1

Fig. 3. AUC and F1 change chart of ar4 value with feature proportion

090
080
0.70
0.60
0.50
040
030

0.20 F B e
T ——AUC
010 | _ .- .
000 1 1 1 1 1 1 1 1 --.._I
01 02 03 04 05 06 07 08 09 1

ars

Fig. 4. AUC and F1 change chart of ar5 value with feature proportion

of the experiment has been improved due to the reduction of redundant features involved
in the calculation.

In summary, from AUC and F1 experimental indicators, the experimental effect of
MuTrAdaboost using all features is better than that of traditional TrAdaboost algorithm
using all features, which shows that our idea of multiple weighting of wrong samples is

Cross-Project Software Defect Prediction 371

more effective than that of TrAdaboost algorithm, which only weights the samples that
are wrongly divided each time. The MuTrAdaboost algorithm filtered by MIC features is
better than that using all features. This shows that the idea of feature selection is correct,
and the use of feature vector MIC value as the basis of feature selection is also effective.

6 Conclusion

In this paper, we propose a cross-project software defect prediction method based on the
combination of feature selection and transfer learning. And the experiments show that
the method we supposed is better than that of traditional TrAdaboost algorithm.

The next research direction is to explore the experimental effect of the algorithm on
larger datasets, and to carry out more comparative experiments for more indicators to
explore the improvement direction of the updated algorithm.

Acknowledgement. This work was supported by the National Key Research and Development
Program of China under Grant 2016QY06X1205.

References

1. Pizzi, N.J.: A fuzzy classifier approach to estimating software quality. Inf. Sci. 241, 1-11
(2013)
2. Nam, J., et al.: Heterogeneous defect prediction. IEEE Trans. Softw. Eng. 44, 874-896 (2017)
3. Xia, X., et al.: HYDRA: massively compositional model for cross-project defect prediction.
IEEE Trans. Softw. Eng. 42, 977-998 (2016)
4. He, Z., et al.: An investigation on the feasibility of cross-project defect prediction. Autom.
Softw. Eng. 19(2), 167-199 (2012)
5. Hall, T., et al.: A systematic literature review on fault prediction performance in software
engineering. IEEE Trans. Softw. Eng. 38, 1276-1304 (2012)
6. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10),
1345-1359 (2010)
7. Zhuang, F., et al.: Survey on transfer learning. J. Softw. 26(1), 26-39 (2015). (in Chinese)
8. Chen, X, et al.: A survey on cross-project software defect prediction methods. Chin. J.
Comput. 041(001), 254-274 (2018). (in Chinese)
9. He, P, et al.: An empirical study on software defect prediction with a simplified metric set.
Info. Softw. Technol. 59(mar), 170-190 (2015)
10. Amasaki, S., Kawata, K., Yokogawa, T.: Improving cross-project defect prediction methods
with data simplification. In: Software Engineering Advanced Applications IEEE (2015)
11. Dai, W., Yang, Q., Xue, G., et al.: Boosting for transfer learning. In: Proceedings of the
24th International Conference on Machine Learning, Corvallis, USA, 20—24 June 2007,
pp- 93-200. ACM, New York (2007)
12. Chen, L., et al.: Negative samples reduction in cross-company software defects prediction.
Inf. Softw. Technol. 62, 67-77 (2015)
13. Fagui, M., et al.: Cross-project software defect prediction based on instance transfer. J. Front.
Comput. Sci. Technol. 10, 43-55 (2016)
14. Reshef, D.N., et al.: Detecting novel associations in large data sets. Science 334(6062), 1518-
1524 (2011)

	Cross-Project Software Defect Prediction Based on Feature Selection and Transfer Learning
	1 Introduction
	2 Related Works
	3 Framework of the Approach
	4 Key Technologies
	4.1 Feature Selection Based on Maximum-Information-Coefficient MIC
	4.2 MuTrAdaboost, Cross-Project Defect Prediction Based on Improved TrAdaboost

	5 Experiments
	5.1 Dataset
	5.2 Experimental Indicators
	5.3 Experiment Comparison

	6 Conclusion
	References

