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Abstract. Aiming at insufficient detailed description problem caused by the loss
of edges during a single low-resolution (LR) image’s reconstruction process, a
novel algorithm for super resolution image reconstruction is proposed in this
paper, which is based on fusion of internal structural self-similarity dictionary
and external convolution neural network parameters learning model. Firstly, for
solving training samples too scattered problem, besides external database, an inter-
nal database is constructed to learn a dictionary of the single image’s structural
self-similarity by multi-scale decomposition approach. Secondly, nonlocal regu-
larization constraint is calculated on the priori knowledge, which is obtained from
the internal database of the single LR image. Thirdly, similar block pairs of high
and low-resolution samples in the external database are input into a convolution
neural network for learning the parameters of reconstructing model. After all,
combined parameters learned and the internal dictionary, the single LR image is
reconstructed, and by iterative back-projection algorithm its result is improved.
Experimental results show that, comparedwith state-of-the-art algorithms, such as
Bicubic, K-SVD algorithm and SRCNN algorithm, our method is more effective
and efficient.

Keywords: Super resolution · Structural self-similarity · Convolution natural
network · Nonlocal regularization · Block matching

1 Introduction

Super-resolution image reconstruction refers to the technology of improving low-quality
and low-resolution images to recover high-resolution images, and has important appli-
cations in military, medical, public safety and computer vision. The general way of
super-resolution image reconstruction is to learn from a large number of high-resolution
images to reconstruct high-frequency details of the low-resolution image [1–4]. Perfor-
mances of these algorithms are not so satisfied, for they are likely to be affected by
training data that are too scattering to effectively represent a given image. On the other
hand, structural information of this given image is valuable for itself reconstruction but
little attention has been paid so far [5–7]. Freedman et al. [8] pointed out that there were
many structural self-similar blocks distributed within one single image region, so sev-
eral related studies on local structural self-similarity extraction are also reported [9, 10].
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However, they cannot effectively deal with irregular texture blocks, which are sparsely
or infrequently appeared in a single image. Error matching between image blocks will
bring a lot of fake textures and make it difficult to guarantee the good effect of recon-
struction. In order to solve the problems, this paper proposes a super-resolution image
reconstruction method based on the structural self-similarity of the single image. Simi-
lar structural blocks of the same scale and different scales are extracted from the single
image and used to set up an internal dictionary model. Then the weights of the dictio-
nary are learned by external sample images trained with a convolution neural network.
With these data, a reconstructive model adaptive to the given single image is obtained
and information of the single image is made best use of. Experimental results verify
the effectiveness of our proposed algorithm when compared with other state-of-the-art
approaches.

2 Parameters Learning Model Based on Convolution Neural
Network

In this paper, reconstructing parameters of the single LR image are learned by a Super-
Resolution Convolution Neural Network (SRCNN) [11] framework, which has been
proved to have a great capability in extracting the essential features of data sets. Firstly,
block pairs of Low-Resolution (LR) andHigh-Resolution (HR) images from the external
database arematched to each other to achievematching pairs of image blocks. Then these
blocks are regarded as samples and input into SRCNN, which consists of three layers of
convolution layers, including feature extracting, non-linear mapping and high-resolution
image reconstructing parameters achieving, respectively. The framework of our SRCNN
is shown in Fig. 1, and three convolution layers of SRCNN deep learning algorithms are
expressed as the following equations:

Y1 = max{ 0,W1 · X + B1} (1)

Y2 = max{ 0,W2 · X + B2} (2)

Y3 = max{ 0,W3 · X + B3} (3)

The given 
LR image
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n2 HR
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Fig. 1. Structure of SRCNN framework
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In Eq. (1)–(3), matrix X represents the original single LR image, Yi (i = 1, 2, 3)
represents output of each convolution layer,Wi (i = 1, 2, 3) and Bi (i = 1, 2, 3) represent
the neuron convolution kernel and neuron bias vector, respectively. Symbol ‘·’ represents
a convolution operation, whose result is then processed by the ReLu activation function
max {0, x}. With matching pairs of image blocks, this neural network frame needs to
learn parameters setΦ = {W1,W2,W3, B1, B2, B3}, which are estimated byminimizing
the error loss between the last output of neural network andHR image. Given aHR image
Y and its corresponding LR image X, its loss function could be described by using its
mean square error L (Φ), as shown in Eq. (4).

L(Φ) = 1

n

∑n

i=1
‖F(Xi, Φ)‖2 (4)

Equation (4) can be solved by stochastic gradient descent and back-propagation
algorithm together.

3 Extraction of Self-similarity Feature

3.1 Self-similarity on the Same and Multi-scale Images

Image self-similarity refers to as similar features available among the various regions of
the entire image. Researches [12] had shown that, for a 5 × 5 image block in a natural
image, there were a large number of image blocks in the same scale and different scales
can be found in the image. A statistic shows that more than 90% of image blocks can
find at least 9 similar image blocks in the same scale of itself; more than 80% of image
blocks can find at least 9 similar image blocks of different scales. Based on this image
similarity mechanism, we can extract a lot of redundant information of the image itself
on the same scale and different scales. Frank et al. [13] pointed out that there were two
characteristics in general images: one is that a large number of similar structural regions
appear in the whole image; and the second is that these structural similarities can keep
consistent on multiple scales of the image, as shown in Fig. 2a).

HR
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LR

HR

Ω1LR

Ω1HR
Ω

Ω2LR

a) Similar Blocks with same scale b) Consistency in Different Scales HR 
image

Fig. 2. Similar image blocks with same scale and different scales in a single image
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Since there are so many structure-similar images blocks in the same scale and dif-
ferent scales of a single LR image, we will benefit if we make the best use of these
structural similarities in its reconstruction. The basic scheme of our algorithm is shown
in Fig. 2b), where HR represents a high-resolution image, and LR represents a corre-
sponding low-resolution image thereto. Size of HR image is s times that of LR image.
Suppose ΩHR

1 and ΩHR
2 represent two similar blocks with different scales in HR image,

and size of ΩHR
2 is s times that of ΩHR

1 . The corresponding image blocks of ΩHR
1 and

ΩHR
2 in LR image are ΩLR

1 and ΩLR
2 . In this case, ΩLR

1 and ΩLR
2 in the LR image form

a pair of similar image blocks with different scales. Suppose scaling factor between the
HR and LR images is the same with that between ΩHR

1 and ΩHR
2 , and then size of ΩHR

1
in HR image is exactly the same as ΩLR

2 in LR image. Accordingly, in recovering block
ΩLR

1 to form blockΩHR
1 in HR image,ΩLR

2 could provide helpful additional information
for it.

In this paper, LR and HR similarity block pairs in same scale and different scales
are derived from images of the external and internal database by using a non-local block
matching method. Then, these block pairs are treated as training samples for dictionary
learning to reconstruct the image to be restored.

3.2 Non-local Self-similar Block Matching

Researchers have found that [15, 16], natural images have abundant similarities in regions
of texture, edge and so on. A low resolution (LR) image can restore its missing details
based on this structural high-frequent similarity. It seems that exploiting the similarities
between nonlocal patches distributed in different regions of the image can achieve higher
image reconstruction resolution [14].

This paper presents a regularization constraint item based on non-local block simi-
larity. Suppose Xi represents the ith block of a single LR image X, its similar blocks X l

i
(l = 1, 2, …, L) are firstly searched within X itself, which are then used to estimate Xi

by their linear combination. The main idea of non-local constraint is that central point
Pi of block Xi can be represented by the weighted average of central point Pl

i of block
X l
i (l = 1, 2, …, L), which could be described in Eq. (5).

Pi = 1

L

L∑

l=1

wl
i P

l
i (5)

Suppose that each weight vector wi is a matrix of vectors wl
i , which consists of

weight matrix B. Each Pi is made up of by Pl
i , which consists of dictionary matrix Ψ .

The nonlocal regularization constraint can be expressed as Eq. (6).

α = ‖(I − B)ψα‖22 (6)

In Eq. (6), I is an identitymatrix and α is the 2-norm constraint parameter of nonlocal
regularization.
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4 Structure Self-similarity Extraction

4.1 Low Resolution Degraded Model

LR images are caused by blurring, down-sampling or noise pollution of HR images [17].
The whole degraded process could be approximated as a linear one, as shown in Eq. (7).

X = HSY + n (7)

Where Y and X are reconstructed HR image and the original LR image, respectively.
H represents the down-sampling operation, S is the fuzzy operator, and n is the noise
pollution matrix. In order to accurately estimate the HR image matrix Y, some priori
knowledge or regular constraint items of the image need to be introduced, as shown in
Eq. (8).

Ŷ = argmin
Y

‖X − HSY‖2F + λα (8)

In Eq. (8), Y is the reconstructed HR image, and ||X −HSY ||2F represents error term
in observation, α is the regular constraint item in Eq. (6), λ is the weighted balance
parameter of regular item.

We deformalize the degraded model constrained by the Eq. (6), and on behalf of the
formula (8), the final algorithm is got in Eq. (9).

Ŷ = arg min︸︷︷︸
y

X − HSY 2
F + λα1 + μ(I − B)ψα2

2 (9)

Parameter μ represents the regularization parameters. After all, we use the iterative
back-projection algorithm to further enhance the image reconstruction performance.

4.2 Algorithm in Detail

Firstly, with prior knowledge of the non-local self-similarity in the original LR image,
search the best match blocks of the initial super-resolution image with multi-scale
method, and then take them as an internal dictionary to learn non-local regularization
constraints. Depth learning is generally trained with a large amount of data, but in this
case, a relatively small training set consisting of 91 images [3] is used for training. Best
match blocks in LR and HR images of these training samples are found out and made
up to be a lot of pairs, which would be used to compose of an external dictionary. Both
these two kinds of samples are input to convolution neural network for modeling self-
structure similarity of LR image. After all, with the non-local regularization constraints
learned from internal dictionary, the original LR image is reconstructed. There are four
steps: initial interpolation, non-local blocks matching, neural network model learning
and non-local regularization constraints.

• Initial Interpolation. In this paper, cubic bilinear interpolation algorithm, the com-
monly used algorithm for LR image reconstruction, is selected to build its original
HR image, which is later used for LR image’s self-similarity extraction.
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• Non-local blocks matching. The original HR image is partitioned point-by-point into
blocks, which are then matched with each other to obtain structure similar blocks.
There are two categories of similar image blocks, which are the ones with the same
scale and the other ones with different scales. In the case of the same scale blocks set,
suppose represents the ith one, we match it across the whole blocks set with the same
size to search its closest similar couple block. The difference between the searched
block and the current block x̂i is calculated as Eq. (10).

eli =
∥∥∥
(
x̂li − x̂i

)∥∥∥
2

2
(10)

• Neural networkmodel training.Convolution neural networkmodel has a strong feature
learning ability; therefore, we use SRCNN algorithm with a three-layer structure for
dictionary training. Finally, corresponding networkmodel parametersΦ are obtained.

• Non-local Regularization Constraints. Based on the obtained parameters of convo-
lution neural network model, combined with nonlocal regularization and dictionary
data, this section builds a reconstructed image according to Eq. (9).

4.3 Algorithm Enhancement

We use the iterative back-projection algorithm to enhance our reconstructed image,
which is based on a down-sampling image degradation model with sub-pixel displace-
ment [18] Firstly, multi-frames of LR image are sampled in sequence and registered, and
then errors between the LR image simulation and its observation results are iteratively
back-projected to the HR image. Suppose that there are K sequential observation LR
images, described as f k (m1, m2) with resolution M1 × M2. Size of the estimated HR
image f (n1, n2) is enlarged by s times, which means resolution of the estimated HR
image N1 × N2 = (sM1) × sM2). Using the Iterative Back-Project (IBP) method to
estimate the HR image can be described as Eq. (11).

f̂ n+1(n1, n2) = f̂ n(n1, n2) +
∑

m1,m2

(
gk (m1, m2) − ĝnk ((m1, m2))

) × hBP(m1, m2; n1, n2)

(11)

In Eq. (11), ĝnk represents the kth simulation result of LR image in the nth iteration,
generated by the actual displacement information of LR images. hBP(m1, m2; n1, n2) is
the back-projection kernel, which determines how error affects the HR image construc-
tion during each iteration. We use a down-sampling rate of s = 3, and the displacement
of sub-pixel (x, y) are (0, 0), …, (1, 3), respectively. We get 8 LR observation images
and corresponding simulation images, and calculate errors between these two kinds of
images. At last, we obtain the HR image according to the Eq. (11).

4.4 Algorithm Implementation

The proposed self-similar similarity convolution neural network algorithm is divided
into two processes, training and reconstruction, respectively.

In order to clarify the algorithm in this paper more clearly, the algorithm flow chart
is shown in Fig. 3.
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Fig. 3. Algorithm flow chart

4.5 Non-local Regularization Constraints Example

In this process, non-local regularization constraints of the single LR image are obtained
by its structure self-similarity blocks’ representation. According to Eq. (6), non-
constraints are iteratively calculated byweighted averagematrixmade up by each block’s
similar representation, and a dictionary, which is consisted of by similar blocks’ central
points. A simple example of this process is shown in Fig. 4a). Four clustering results
of structure blocks are also shown in Fig. 4b), which represent non-local regularization
constraints of the example image.

a) Original LR image b) Four structure blocks clustering results

Fig. 4. An example of non-local regularization constraints

5 Experimental Results and Analysis

5.1 Experimental Setup

In order to verify the validity of our proposed method, three international public SR
databases are used, which are Set5, Set14 and Urban100, and three-layer convolution
neural network is used to for model learning. The first layer has 9 × 9 size and 64
convolution kernels and neurons, the second layer has 1 × 1 and 32, and the third layer
has 5× 5 and 1. In the experiment, Bicubic interpolation, K-SVD and convolution neural
networks are selected as contrast analysis approaches to compare with the performance
of our proposed method, based on indicator of Peak Signal to Noise Ratio (PSNR).
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5.2 Experimental Setup

In order to evaluate the quality of image reconstruction, we compare the performance
of these methods on PSNR. Taking three images in database Set14 as an example, the
reconstructed results with four approaches are shown in Fig. 5 under the condition of
magnification of 3 times. From them, local information restored by ours is clearer and
more delicate, and global reconstructed images are more approaching to the original
images.

a) Original image b) Bi-interpolation  c) K-SVD d) SRCNN e) ours 

Fig. 5. Three reconstructed results from Set14 with up scaling factor 3

PSNR of each approach is shown in Table 1, 2 and 3. Bicubic interpolation method
takes the lowest place, only 22.101 db and the best contrast algorithm can reach
40.642 db, while our proposed method can reach the highest 42.204 db.

Table 1. PSNR comparison of four sr methods with up-scaling factor as 2

Image
name

Four SR methods

Bicubic K-SVD[19] SRCNN [11] Our
method

Zebra 30.63 31.73 33.29 34.94

Baby 37.07 38.25 38.30 39.42

Butterfly 27.43 30.65 32.20 33.33

Woman 32.14 34.49 34.94 36.05

Head 34.86 35.59 35.64 36.86

Bird 36.81 39.93 40.64 42.20

[] is the method’s reference Number
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Table 2. PSNR comparison of four SR methods with up-scaling factor as 3

Image
name

Four SR methods

Bicubic K-SVD [19] SRCNN [11] Our
method

Zebra 26.63 26.92 28.87 29.94

Baby 33.91 35.08 35.01 36.22

Butterfly 24.04 25.94 27.58 28.84

Woman 28.56 30.37 30.92 32.55

Head 32.88 33.56 33.55 35.86

Bird 32.58 34.57 34.91 36.20

[] is the method’s reference Number

Table 3. PSNR comparison of four SR methods with up-scaling factor as 4

Image
name

Four SR methods

Bicubic K-SVD [19]* SRCNN [11]* Our
method

Zebra 24.08 24.92 25.97 27.03

Baby 31.78 33.06 32.98 34.21

Butterfly 22.10 23.57 25.07 26.24

Woman 26.46 27.89 28.21 30.42

Head 31.59 32.21 32.19 34.06

bird 30.18 31.71 31.98 33.27

[] is the method’s reference Number

Ourmethod has an average declining rate 9.17% inPSNR, higher than othermethods.

6 Conclusions

The proposed algorithm considers the reconstruction of a single super-resolution of
image based on self-structure similarity within the image. The algorithm derives self-
similarity of the training samples through the scale decomposition of the image, and
makes full use of the structural self-similarity of the input image to solve the problem
that training samples are too scattered for representing the LR image. The intrinsic
structure self-similarity of the image is obtained through the nonlocal regularization
constraint. Finally, the iterative back-projection algorithm is used to further optimize the
reconstructive effect. Compared with state-of-the-art algorithms such as Bicubic, KSVD
and SRCNN, the proposed algorithm can achieve better reconstructive performance.
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