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Abstract. To address the problem that the dusty image dataset is
small and difficult to collect, this paper presents a synthetic method
for generating dusty image based on a classical optical model. The pro-
posed method first learns the physical process of generating dusty image
according to the classical optical model. Then, the transmission map is
estimated and combined with the presupposed dust storm color map as
inputs for obtaining a synthetic dusty image. Finally, considering the
impact of image scene depth on the synthesis of dusty image, the pro-
posed method selects an appropriate value of input parameter to obtain
final synthetic dusty image. Experimental results on an image dataset
captured in clear weather show that the synthetic dusty images obtained
by the proposed method can be used as a good substitute for real dusty
images.

Keywords: Dusty image synthesis · Optical model · Dedusting

1 Introduction

With the development of computer vision and digital image technology, monitor-
ing system can capture clear scenes with more details. For example, car monitor-
ing system can capture the accurate plate numbers and the basic information of
other cars in clear weather, which can be considered as valid evidences of viola-
tions. However, a dusty weather not only affects the visibility of scene for people,
but also the function of computer vision system which is responsible for outdoor
monitoring tasks. A majority of existing algorithms focus on image defogging.
Despite the fact that dust storm is one of the critical factors which may degrade
the performance of outdoor monitoring devices, little attention has been paid to
image dedusting, which has resulted in major difficulty in many post-processing
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works. Therefore, image dedusting research still has great application prospects
in the field of image processing.

The availability of large labeled datasets can advance the research of com-
puter vision. However, it is not yet feasible to annotate such datasets for every
new research subject. Thus, focus has been put on learning synthetic data in
recent years. Furthermore, synthetic image dataset becomes a good substitute for
real dataset in many related experiments. For instance, Jeong et al. [1] adopted
a fog synthesis method based on depth information and temporal filtering for
road environment. Sakaridis et al. [2] presented a fog synthesis method to obtain
a fog simulation image dataset which automatically inherits its true and clear
semantic annotations. Besides, for detection of road object in rainy weather,
Jeong’s method [3] proposes a rainy image synthetic algorithm. And Iizuka
et al. [4] tested their proposed image editing system with fog synthesis. Exactly,
because of the fact that dusty image data is too small and difficult to collect in
reality, the further development of this field has been seriously hindered.

Scattering of particles in atmosphere is the main cause of dust storm.
Harald’s method [5] finds that lower visibility of foggy images is caused by
absorption and scattering of global light by particles in atmosphere. And
McCartney et al. [6] explained that the scattering of particles leads to atten-
uated transmission of light between object and camera, and then adds a layer
of atmospherically scattered light. For the problem of lower visibility of foggy
image, Nayar et al. [7] explained the imaging process of foggy images with a
mathematical model. The atmospheric scattering model provides a powerful
basis to develop many algorithms focusing on defogging and even related image
processing works, and advances research in this field. Motivated by the success
of convolutional neural network (CNN) in feature extraction [8], Ren et al. [9]
proposed an image enhancement method based on CNN.

Since similar physical generation process of dust storm and fog, we utilized
a standard optical model [10] used in image defogging field to synthesize dusty
images. The optical model has been used to model the impact of dust storm on
a clear image [9,11,12], and its definition is,

I(x) = J(x)t(x) + L(1 − t(x)), (1)

where I(x) denotes the observed dusty image at pixel x, J(x) is a clear raw
image, L is atmospheric light, and transmission map t(x) is defined as:

t(x) = e(−βl(x)), (2)

where β denotes scattering coefficient of atmosphere, which controls the thickness
of dust storm. The larger values of β mean thicker dust storm. As an example,
Fig. 1 shows different thickness of dusty scene corresponding to different β.
And l(x) is the distance between object and camera. Equation (1) provides a
significance basis for simulating dust storm on images with clear-weather.

The main contributions of the paper are: 1) we learn the dusty image model
according to classic foggy model, and evaluate the transmission map accurately;
2) we propose a new synthetic method based on classic optical model for dusty
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(a) clear image (b) =0.05

(d) =0.2(c) =0.1

Fig. 1. Synthetic dusty images with different values of β.

images from a clear dataset; 3) we make subjective evaluation and comparison
between synthesized dusty images and real dusty scenes, and the final experi-
mental results show that the dusty images synthesized by our approach can be
a substitute for real datasets in image dedusting tasks; 4) we extend the dusty
image dataset for advancing related post-processing work to some extent.

2 The Proposed Method

Motivated by the classical optical model [10], this paper proposed an image
dust storm synthetic method. The required inputs of the proposed synthetic
method include an evaluation of the transmission matrix t(x) at each pixel, a
hypothetical dust storm color map C, and a clear-weather raw image J(x) for
dust storm synthesis. Since the J(x) is simple and easy to be satisfied, we will
dedicate to estimate the image transmission t, and selection of dust storm color
map C.

Estimation of Transmission: To estimate a transmission map t for the pro-
posed synthetic method, the necessary inputs are:

• an original color image J took in clear-weather as the left image of stereo
pair;

• a right image Q for stereo pair;
• the camera focal length f , and two camera baseline b;
• a dense, raw disparity D with the same resolution as the clear image J ;
• a set M composed of the pixels without the value of D.

For these required inputs, we can use a stereo camera and standard matching
algorithm [13] to acquire them easily.
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Before using image depth as input for the calculation of transmission map
t, we can improve the quality of depth by using an accurate structure served
in color images of stereo pair. Based on this main idea, the main works of our
synthetic method can be summarized into five steps:

step1 Calculation of a raw depth map d in meters. According to the principle of
stereo image imaging, we use the disparity D in combination with focal length
f and the baseline values b of cameras to obtain d by Eq. (3) directly. Those
pixels missing disparity D values are also missing depth values in d.

d(x) =
b ∗ f

D(x)
. (3)

step2 Estimation of refined depth map d
′
. A segmentation-based depth filling

method [2] based on the stereoscopic inpainting method [14] be used in this step.
Specifically, we use a superpixel segmentation of the clear image J to guide the
denoising and completion of d at the superpixel level, and make an assumption
that each individual superpixel corresponding to a plane in the 3D scene.

Firstly, we check photo-consistency between J and Q, all pixels in J whose
color deviation (measured in RGB color space) is greater ε = 12/255 from the
corresponding pixel in Q are considered invalid in image depth, and are added
to set M .

Secondly, we implement SLIC [15] to segment clear image J into superpixels.
̂K denotes the expected number of superpixels and m is the related range domain
scale parameter, respectively (set ̂K = 2048 and m = 10). The final output
number of superpixels of SLIC is represented as K. According to the number of
invalid or missing depth pixels in a superpixel, all superpixels are classify into
reliable and unreliable. A surperpixel T is regarded as a reliable superpixel if
and only if the following condition [14] is satisfied:

Trel =

{

1, card(T\M) ≥ max{P, λcard(T )}
0, otherwise

(4)

where card(·) denotes the number of pixels in a set, T\M is the set difference
between T and M , setting P = 20 and λ = 0.6.

In order to fit a depth plane for each superpixel, we run RANSAC (Random
Sample Consensus) on its pixels with valid depth value, and account for differ-
ences in the range of depth values between distinct superpixels by an adaptive
inlier threshold defined as:

θ = 0.01median
x∈T\M

{d(x)}, (5)

where d(x) denotes the estimated depth of superpixel x. By using adaptive
RANSAC, the maximum number of iterations is set to 2000, and the bound
of probability p = 0.99 for obtaining a pure sample.
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We then use a greedy algorithm [9] to match unreliable superpixels to reliable
ones pairwise, and assign the fitted depth plane of reliable superpixel to its
matched unreliable superpixel. Different from the method [14], we apply a novel
objective function [2] for matching of superpixel pair (s, t), which is defined as:

E(s, t) = ||Cs + Ct||2 + α||xs + xt||2. (6)

The first term on right-hand side of Eq. (6) is used to describe the simi-
larity between two superpixels in color space, Cs denotes the average CIELAB
color of the superpixel s. More specifically, the method [2] penalized the squared
Euclidean distance of the average colors of two superpixels in CIELAB color
space for increasing perceptual uniformity while another method [14] designs its
cost of range domain by using cosine similarity of average colors of superpixels:

Ecls(s, t) = 1 − Cs

||Cs|| · Ct

||Ct|| . (7)

where Ecls(s, t) is the color similarity between the two superpixels, Cs and Ct

are the average color vectors of superpixels s and t, respectively. In some cases,
Eq. (7) exists a problem that it may assign zero matching penalty to dissimilar
colors. For example, in the RGB color space, the pair of colors (δ, δ, δ) and
(1 − δ, 1 − δ, 1 − δ), where δ is a small positive constant is assigned zero match
cost, even though the former color is very dark grey and the latter is very light
grey.

The second term on right-hand side of Eq. (6) calculates the squared
Euclidean distance between two centroid xs and xt of superpixel pair (s, t) in
spatial space, which be used to denote the similarity of two superpixels. Due to
the Eq. (7) gives zero matching penalty to adjacent superpixel and unit cost to
non-adjacent superpixel, a superpixel s will mismatch a far superpixel t as long
as the range domain of superpixel pair is minimum and has a different appear-
ance with all adjacent superpixels of s. On the contrary, the method [2] handled
well for the problem that existed in [14], i.e. other superpixels with less similar
appearance yet smaller distance to s will be the first choice if t has a large spatial
cost to matching s.

The parameter α > 0 in Eq. (6) is used to balance the importance between
spatial space and color space. Let α = m2/S2, where S =

√

N/K, N is the
total number of pixels in the image, m and K are the same as for SLIC [15].
The matching target of Eq. (6) is similar to the distance defined in SLIC. In this
paper, we use this distance to measure the similarity of superpixel pair.

After all superpixels have been assigned a depth plane, we use these planes
to complete the missing depth values of pixels belonging to set M . Besides, the
depth values of those pixels, which do not belong to M but constitute large-
margin outliers with their corresponding plane (deviation larger than ̂θ = 50
m) are replaced with the values imputed by the plane, and finally results in a
denoising and complete depth map d

′
.

step3 Computation of scene distance l(x) from camera. Each pixel value in
the depth map d

′
represents the distance between a point in the scene and the
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(a) RGB(210,175,90) (b) RGB(220,175,90) (c) RGB(230,175,90) (d) RGB(240,175,90) (e) RGB(250,175,90)

Fig. 2. Different hypothetical dust storm color maps and their corresponding synthetic
dusty images. (Color figure online)

camera. Therefore, we use the coordinates of principal point that takes the center
point of the image as the coordinate origin, and the focal length of camera to
calculate the distance l(x) of scene from camera at each pixel x based on d

′
(x).

step4 Calculation of initial transmission map ̂t. We can substitute l(x) into Eq.
(2) to obtain an initial transmission map ̂t.

step5 Guided filter of ̂t using J as guidance to compute the final transmission
t(x). In order to smooth transmission t(x) while preserving boundaries of clear
image J , a guided filtering [16] is used for the post-process of the initial transmis-
sion ̂t. We set the radius of guided filter window to r = 20, and regularization
parameter to μ = 10−3 (the same values as the haze removal experiments of
[16]). The results in a final transmission map t(x).

Selection of Dust Storm Color Map: As Fig. 2 shows, we further compare
various possible dust storm colors and select the final hypothetical dust storm
color map C for our dusty image synthetic method. According to our observation
on a large number of real dusty images, the dust storm color is generally pale
orange, and the red in RGB color space has the main impact on pale orange.
Therefore, we respectively fixed the green and blue color values at 175 and 90,
and changed the red color value within the possible color range of dust storm to
obtain different dust storm color maps. The second row of the Fig. 2 gives the
corresponding synthetic results of different hypothetical dust storm color maps.
Considering the color of most real dusty scenes, we selects the RGB value of
(230, 175, 90) as the input dust storm color map.

Considering the impact of the proposed method on synthetic image depth, a
parameter λ is introduced based on Eq. (1). Therefore, the equation transformed
into the following expression:

I(x) = J(x)(1 − λ(1 − t(x))) + λC(1 − t(x)), (8)

where I(x) is the target synthetic dusty image, J(x) is the original clear image,
and C denotes the hypothetical dust storm color of the proposed method, λ is
a parameter. As shown in Fig. 3, it is a whole flow chart of the proposed dusty
image synthetic method.



Image Dust Storm Synthetic Method Based on Optical Model 221

Fig. 3. The flow chart of the proposed dusty image synthetic method.
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3 Experimental Results

3.1 Evaluation of Dusty Image Synthesis

To validate effectiveness of the proposed image dust storm synthetic method,
five typical images are chosen as testing samples. Five images have the following
characteristics: (1) they are from different image scenes. In detail, the first image
is captured in a road scene, the second image is captured in wall scene, the third
image is capture in city scene, the fourth image is captured in street scene, and
the fifth image contain close shot details. (2) They are color image. Therefore,
they can be used to observe dusty image synthesis on image details. (3) The
third and fourth images have not sky region, and the former two images have
large sky regions, which can be used to observe color distortion in sky regions.
(4) The second image contains sharp shadows, and the other images have not
sharp shadows, which can obtain more realistic image dusty synthetic results.

(a)  real dusty image (b) synthetic dusty image

Fig. 4. Comparison of real dusty images and the synthetic dusty images obtained by
the proposed method.

As far as we know, there are few or even no existing image dust storm syn-
thesis algorithms to validate superiority of the proposed dusty image synthetic
method. Therefore, image dusty storm synthetic results were qualitatively eval-
uated. As Fig. 4 shows, we compare dusty images obtained by the proposed
method with real dusty images downloaded randomly from the internet. From
Fig. 4, we can observe that image dust storm synthetic results obtained by the
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proposed method eliminate color distortion in sky regions, and make image detail
visible. As compared with the real-world dusty scenes, the synthetic dusty images
obtained by the proposed method can be a substitute for real dusty images in
many dedusting related post-processing tasks.

3.2 Parameter Discussion

We further discuss the influence of parameter λ on the results of dust storm
synthesis in this section, and find an ideal value of λ for the proposed dusty
image synthetic method to improve the visual results of synthetic dusty images.

During the specific synthetic experiment, we first use different values of the
parameter λ (0.4, 0.6, 0.8 and 1.0) for obtaining dusty images with different
qualities. Figure 5 shows dust storm synthetic results from clear images, the
columns from left to right are the original images and the synthetic dusty images
obtained by the proposed method with λ = 0.4, λ = 0.6, λ = 0.8, and λ = 1.0.

According to Eq. (8) and Fig. 5, we can intuitively find that the higher the
value of λ is, the larger the weight of the hand-right term of Eq. (8), thus resulting
in thicker dust storm on the synthetic image. On the contrary, higher weight of
the hand-left term of Eq. (8) indicates lower dusty thickness in synthetic dusty
image. Therefore, we draw a hypothetical conclusion that the damage to the
original image depth by the synthetic dusty image increases with the increase of
λ value.

(a) original (b) =0.4 (c) =0.6 (d) =0.8 (e) =1.0

Fig. 5. The visual synthetic dusty images with different λ values obtained by the
proposed method.

And then, in order to obtain more reliable value of λ for higher quality of
simulation results, we use an existing depth estimation method [17] to obtain
the depth maps of original image and its different synthetic results of differ-
ent values of λ. An example of the corresponding depth maps is illustrated in
Fig. 6.



224 J. Huang et al.

(a) original (b) =0.4 (c) =0.6 (d) =0.8 (e) =1.0

Fig. 6. The scene depth estimation maps of original images and corresponding synthetic
dusty images with different λ values.

Image depths were quantitatively evaluated. Four commonly used indexes
(including the Root Mean Squared Error (RMSE), Log Root Mean Squared
Error (RMSE log), Square Relative Error (Sq Rel), and Absolute Relative Error
(Abs Rel)) are adopted as the evaluation criteria for comparison of depth map,
where the smaller the values of all these indexes are, the less is the depth map
of the original image damaged by the proposed dusty image synthetic method.

Table 1. Average absolute difference of scene depth between original image and syn-
thetic dusty images with different λ values.

λ RMSE RMSE log Abs Rel Sq Rel

0.4 4.731 0.147 0.023 0.077

0.6 6.509 0.188 0.056 0.121

0.8 9.591 0.228 0.120 0.168

1.0 11.881 0.255 0.224 0.236

Finally, by using the four evaluation indexes mentioned above, we quanti-
tatively compare original clear image with four different depth maps of dusty
images obtained by the proposed method, and the results are shown in Table 1.
It can be found from the data in Table 1, as we set the parameter value higher,
the four indexes become larger as well, which means that the synthetic dusty
image obtained with the high-value parameter will cause more serious damage to
the original image depth map. To sum up, we validate the previous assumption
that the dusty images with higher quality and similarity to the dusty scenes in
real world can be obtained when we set the input parameter λ = 0.4.
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4 Conclusion

In this paper, we proposed a novel method for generating synthetic dusty images
to alleviate the difficulty of collecting dusty images in image dedusting task
needing a lot of dusty images. Specifically, the proposed method constructed a
mathematical model of dusty image generation according to the classical opti-
cal model, and estimated the transmission map of original clear image for the
generation of final synthetic dusty images. We qualitatively compared the syn-
thetic dusty images obtained by the proposed method and real dusty images.
Experimental results on a series of original images captured in clear weather
demonstrate that the synthetic dusty images obtained by the proposed method
can be used as a good substitute for real dusty images. In the future, we will try
to improve the proposed synthetic method, and use deep learning based image
dedusting methods to verify the effectiveness of synthetic data for improving
image dedusting effect.
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