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Abstract. The optimal control problems play an important role inmodern control
theory. This paper focuses on the optimal problem for group flockingmovement of
multi-agent systems (MAS). Two new cost functions are proposedwith distributed
optimal cooperative control. By using modern control theory and algebraic graph
theory, optimal control of group consensus trajectory for dynamicMAS is studied.
Moreover, a properly chosen value of the optimal scaling factor is presented,
where the optimal cost functions for group consensus of MAS can be achieved
by choosing the appropriate scaling factor. Numerical simulations are provided to
illustrate the effectiveness of the theoretical results.
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1 Introduction

1.1 A Subsection Sample

In the distributed automatic control fields, cooperative control of multi-agent systems
(MAS) is currently a critical research topic. It has many applications for cooperative
control of MAS, including driverless cars, unmanned aerial vehicles and unmanned
submarine detectors. These applications of distributed MAS provide the convenience of
social life and promote the development of scientific research.

Consensus is an important issue in the cooperative control of MAS, which means
the agents achieve the agreement of the position, velocity or phase by designing a com-
munication protocol. In early research, centralized control of MAS is explored with the
system structural features. Compared with centralized control of MAS, distributed con-
trol of MAS has its unique advantages. Examples of the advantages include lower cost,
faster response speed and more flexible structure. Distributed MAS have been studied
extensively in the recent research works. For distributed cooperative control ofMAS, the
consensus control algorithms in different settings are studied in [1–5]. The consensus of
linear MAS in different backgrounds is studied in [6–13].
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As a class of special condition in consensus control problem, the competition mech-
anism is introduced into MAS, group consensus control on the competition and cooper-
ation mechanism has been proposed and studied in recent years [14–19]. In [14], group
consensus for the first-orderMASwith nonlinear input constraints is investigated. Group
consensus of MAS with switching topologies and communication delays are addressed
in [15–17]. In [18], the dynamics group consensus problem of heterogeneous multi-
agent systems with time delays is investigated, in which agents’ dynamics are modeled
by single integrators and double integrators. To achieve group consensus, a novel group
consensus protocol is proposed for MAS with a time-varying estimator of the uncer-
tain parameters in [19]. Based on the different requirement, group consensus of MAS
with cooperative relationship and the competition mechanism are studied in practical
applications.

In the process of the cooperative control of the dynamic MAS, how to reduce the
cost and energy has become more and more important. The optimal control problem
of cooperative control of MAS has attracted more and more the attention. Optimality
issues in consensus algorithms have been studied in [20, 21], where the global optimal
consensus problem forMASwith bounded controls is studied. Instead of studying global
optimal algorithms, the optimal consensus control laws for agent-based models are
discussed in [22]. The optimal consensus problem of continuous-time MAS with a
common state set constraint is reported in [23]. In [24], the optimal control of a multi-
agent consensus problem in an obstacle-laden environment is investigated. The optimal
coordination control for nonlinear MAS based on event-triggered adaptive dynamic
programming method is concerned in [25].

In this paper, the distributed optimal group consensus control of dynamic MAS is
investigated. The contribution of this paper is the optimal cost function for the optimal
control problem is proposed with distributed communication protocol. Based on graph
theory and optimal control method, the group consensus algorithm of dynamic MAS
with leaders and without leaders are discussed. Based on the optimal scaling factor in
group control algorithm, the optimal group motion can be achieved for the distributed
MAS.

The remainder of this paper is organized as follows. In Sect. 2, the graph theory
and definitions are introduced. A new optimal cost function is proposed, and group
consensus control algorithm of dynamic MAS is obtained in Sect. 3. Based on the
proper value of the optimal scaling factor in optimal group control protocol, the optimal
group consensus is analyzed in Sect. 3. Numerical simulations are used to verify the
optimal group consensus algorithms of MAS with leaders and leaderless in Sect. 4. A
short conclusion is given in Sect. 5.

2 Graph Theory and Definitions

Let G = (V , ω, Λ) be a networked topology of order n + m with the set of nodes V =
{ν1, ν2, . . . , νn+m}, set of edges ω ⊆ ν × ν, and the symmetrical weighted adjacency
matrix Λ = [

aij
] ∈ R(n+m)×(n+m) with real adjacency elements aij. An edges of G is

denoted by eij = (
νi, νj

)
, which starts from i and ends on j. The adjacency elements

associated with the edges of the graph are nonzero, i.e., eij ∈ ω if and only if aij �= 0. For
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all nodes i, it is assumed that aii = 0. There are two ways to describe the communication
link between two nodes. If there is a communication link between νi and νj, the sending
and receiving of information can be represented by νi → νj and νj → νi respectively.
In the set of neighbors of node νi is denoted by Ni = {

νj
∣∣νj ∈ V : eij ∈ ω

}
. The set of

a node subset neighbors ς ⊂ V is defined by Nς = {
νj
∣∣νj ∈ V , νi ∈ ς : eij ∈ ω

}
. The

Laplacian matrix L(G) = [
lij
]
(n+m)×(n+m)

of networked topology G is defined by

lij =
{

−aij, j �= i∑n+m
k=1, k �=i aik , j = i

The in-degree and out-degree of node i are defined as

Degin(i) =
∑n+m

j=1
aij, Degout(i) =

∑n+m

j=1
aji

D = diag
{∑n+m

j=1 a1j, · · · , ∑n+m
j=1 an+m, j

}
is defined as degree matrix. The Laplacian

matrix satisfies L = D − Λ.

Definition 1. A networked topology G1 = {V1, ω1, A1} is said to be a sub-network of
a networked topology G = {V , ω, A}, if V1 ⊆ V and ω1 ⊆ ω. Furthermore, if V1 ⊂ V
and ω1 = {(

vi, vj
) : i, j ∈ V1, eij ∈ ω

}
, the graph G1 is a proper sub-graph of G.

We suppose a group G = {V , ω, Λ} can be partitioned into two bipartite graphs
G1 = {V1, ω1, Λ1} and G2 = {V2, ω2, Λ2} with V1 ∪ V2 = V and V1 ∩ V2 = ∅.
Without loss of generality, a network graph G with n+m (n, m > 1) agents indexed by
1, 2, . . . , n + m is consisted with nodes 1, 2, . . . , n in sub-graph G1 and nodes n + 1,
n + 2, . . . , n + m in sub-graph G2.

Consider a second-order multi-agent system, the i th agent with double-integrator
given by

ẋi(t) = vi(t)
v̇i(t) = ui(t)

(1)

where xi(t) ∈ R, vi(t) ∈ R and ui(t) ∈ R are the position, velocity and control input of
the i th agent, respectively.

Assumption 1. There is a balance of effect between two sub-graph:
∑n+m

j=n+1 aij = 0,
∀i = G1;

∑n
j=1 aij = 0, ∀i = G2.

Remark 1. The weighting factor aij in the networked topology could be negative,
which provides the competition relationships between two sub-graph and more complex
dynamic behavior of agents.

Definition 2. The multi-agent system described by (1) is considered. The protocol uij
is said to achieve asymptotically a group consensus problem if for any initial state
x(0) ∈ Rn, the states of agents satisfy
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(I) lim
t→∞

∥∥xi(t) − xj(t)
∥∥ = 0, ∀i, j ∈ G1, lim

t→∞
∥∥vi(t) − vj(t)

∥∥ = 0, ∀i, j ∈ G1

(II) lim
t→∞

∥∥xi(t) − xj(t)
∥∥ = 0, ∀i, j ∈ G2, lim

t→∞
∥∥vi(t) − vj(t)

∥∥ = 0, ∀i, j ∈ G2

Assumption 2. There may be two agents in the undirected graph G as leaders. Each
leader is a globally reachable node in each sub-graph (G1 or G2).

Remark 2. In this paper, the MAS with leaders and without leaders are considered.
The symmetric Laplacian matrix can be derived from the networked topology G in two
conditions. Both of them can get the same theoretical result.

3 Optimal Group Consensus of MAS

In this section, we propose a cost function for the second-order MAS. From the LQR
perspective, an optimal control algorithm is derived, which guarantees the MAS to
achieve group flocking movement.

The dynamic multi-agent system (1) can be rewritten as follows

(
ẋi(t)
v̇i(t)

)
= A

(
xi(t)
vi(t)

)
+ Bui(t) i = {1, 2, . . . , n + m} (2)

where A =
(
0 1
0 0

)
, B =

(
0
1

)
are the systemmatrix and input matrix. It is assumed that

distributed dynamic systems are composed of two sub-graphswithn+m agents randomly
connection, where the networked topology can be represented by G1 = {1, 2, . . . , n}
and G2 = {n + 1, n + 2, . . . , n + m}.

The dynamics of the leader is

ẋ0k(t) = v0k(t),
v̇0k(t) = 0,

k = 1, 2 (3)

where x0k is the position of the leader, v0k is the velocity of the leader.

Remark 3. The leader of the dynamic MAS has the velocity with the acceleration zero,
which means that if other agents receive information from the leader, they will adjust
their speed under the control algorithm (10), eventually catch up with the speed and
position of the leader.

The group consensus cost function for dynamic second-order system (2) is proposed
as

Jf =
n∑

i=1

∞∫

0

⎧
⎨

⎩

i−1∑

j=1

aij
[
xj(t) − xi(t)

]2 +
i−1∑

j=1

aij
[
vj(t) − vi(t)

]2 + ru2i (t)

⎫
⎬

⎭
dt (4)

where aij ∈ R is the element of weight adjacency matrix of structure graph G, and r is
the given constant, r > 0.
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The dynamic system (2) can be written as

Ẋ (t) = ÃX (t) + B̃U (t) (5)

where X (t) = [x1(t), . . . , xn+m(t), v1(t), . . . , vn+m(t)]T, U (t) = [u1(t), . . . ,
un+m(t)]T, Ã = A ⊗ In+m, B̃ = B ⊗ In+m.

Thus, the optimization problem for system (5) as

min
ai, j

Ja =
∫ ∞

0
[X T(t)QX (t) + UT(t)RU (t)]dt, (6)

subject to : Ẋ (t) = ÃX (t) + B̃U (t) , U (t) = U ∗(t) (7)

whereQ =
[
Q1 0
0 Q3

]
=
[

β2H 2 0
0 β2H 2 − 2βH

]
is a positive definite matrix, R = In+m

is an identity matrix, the parameter β is an optimal scaling factor. H is the positive
definition symmetric Laplacian matrix associated with the structure of MAS.

Remark 4. According to the definition of the performance indicator function,Q should
be a positive definite matrix, that is Q > 0. Therefore, the optimal scaling factor β

should be ensured that the matrix β2H 2 − 2βH is a positive definite matrix.

Theorem 1. For dynamic multi-agent systems (5) with Assumption 1 and Assumption
2. By solving the optimal control problem (6), the optimal group consensus control can
be obtained

U ∗(t) = −β
(
H H

)
X (t) (8)

where H is the symmetric Laplacian matrix and β > 2
/

λmin corresponds to the
minimum eigenvalue of matrix H .

Proof. Since the matrix Ã and B̃ is controllable matrix in Eq. (2), the dynamic MAS (5)

with the system matrix
(
Ã, B̃

)
is controllable, which implies that there exists a matrix

P satisfying the algebraic Riccati equation

ÃTP + PÃ − PB̃R−1B̃TP + Q = 0n×n (9)

Let P=
(
P1 P2

PT
2 P3

)
, R = In+m, the Riccati Eq. (8) can be written as

⎧
⎨

⎩

P2R−1PT
2 = Q1

P2R−1P3 = P1

P3R−1P3 − P2 − PT
2 = 0

(10)
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It follows that P =
(

β2H 2 βH
βH βH

)
. Then, we can obtain the optimal consensus

control U ∗(t) = −β
(
H H

)
X (t), where H is the symmetric Laplacian matrix.

For dynamic multi-agent systems (5) with Assumption 1 and Assumption 2, the
optimal group consensus control (7) can be written as

ui(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β

{[
∑

j∈N1i

aij
(
xj − xi

)+ bi(x01 − xi)

]

+ ∑

j∈N2i

aij
(
xj − xi

)
}

+β

{[
∑

j∈N1i

aij
(
vj − vi

)+ bi(v01 − vi)

]

+ ∑

j∈N2i

aij
(
vj − vi

)
}

, ∀i ∈ G1

β

{
∑

j∈N1i

aij
(
xj − xi

)+
[
∑

j∈N2i

aij
(
xj − xi

)+ bi(x02 − xi)

]}

+β

{
∑

j∈N1i

aij
(
vj − xi

)+
[
∑

j∈N2i

aij
(
vj − vi

)+ bi(v02 − vi)

]}

, ∀i ∈ G2

(11)

where aij is the element of the adjacency matrix of MAS, ∀i, j ∈ G1 or ∀i, j ∈ G2. The
set N1i = {

νj ∈ V1 : (νi, νj
) ∈ ω

}
and N2i = {

νj ∈ V2 : (νi, νj
) ∈ ω

}
is neighbor set of

agent i. If followers i can receive information from the leader x0k , then bi > 0, otherwise

bi = 0. Note that H = L(G) + B =
[
L(G1) + B1 �

�T L(G2) + B2

]
is positive definition

symmetric matrix, � = −

⎡

⎢⎢
⎢
⎣

a1, n+1 a1, n+2 · · · a1, n+m

a2, n+1 a2, n+2 · · · a1, n+m
...

...
. . .

...

an, n+1 an, n+2 · · · an, n+m

⎤

⎥⎥
⎥
⎦
, B1 = diag{bi, i = 1, . . . , n},

B2 = diag{bi, i = n + 1, . . . , n + m}. With the Assumption 1 and Assumption 2, the
matrix H is positive definite.

Remark 5. In the optimal group consensus control protocol (11) of dynamic MAS, the
weight value bi may be zero, which means that there is the leaderless condition of the
dynamicMAS, or agents do not receive information from the leader. If there is a globally
reachable node in subgroups, MAS with the cooperative and competitive relationship
between the two subgroups will achieve the group flocking motion without leaders.

Theorem 2. Considering the formation of dynamic MAS (2), the networked topology
is composed of n+m agents with undirected graph. If Assumption 1 and Assumption 2
are established for the dynamic MAS (2) with the optimal group consensus control (11),
the optimal group consensus can be achieved for MAS.

Proof. Let x̄i(t) = xi(t) − x0k(t), v̄i(t) = vi(t) − v0k(t). The dynamic system (2) with
the optimal control algorithm (11) be written as

˙̄x = v̄
˙̄v = (−βHx̄) + (−βHv̄)

(12)
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where x̄ = [
x̄1, x̄2, . . . , x̄n+m

]T, v̄ = [
v̄1, v̄2, . . . , v̄n+m

]T. Let z = Hx̄, w = Hv̄. We
definite the Lyapunov function

V = V1 + V2, (13)

where V1 = v̄THv̄, V2 = zTβz. The derivative of the Lyapunov function along the
solution trajectory of the system (2) is

V̇1 = 2v̄TH ˙̄v
= 2wT · [(−βz) + (−βw)]

= −2wTβz − 2wTβw (14)

V̇2 = 2wTβz (15)

It can be obtain that

V̇ = V̇1 + V̇2 = −2wTβw ≤ 0. (16)

Note that the equilibrium states of the dynamic system satisfy ˙̄x = 0, ˙̄v = 0. We can
obtain that v̄ = 0 and ui(t) = 0, that is −βHx̄ = 0. We can obtain the equilibrium states
of the dynamic system satisfy x̄ = 0 and v̄ = 0 from the positive definite matrix H .

When V̇ ≡ 0, there exists w = −Hv̄ = 0 such that v̄ = 0 and ˙̄v = 0. And then it
has x̄ = 0, v̄ = 0. Therefore, when V̇ = 0, there exists only the equilibrium point in this
solution set. According to the principle of Lasalle’s invariant set, the dynamic MAS (2)
are asymptotically stable at the equilibrium point. The optimal group consensus of the
dynamic MAS (2) with the optimal control algorithm (11) will be achieved.

4 Numerical Examples

In this section, simulations of MAS with leaders/leaderless are given to illustrate the
theoretical results of this paper.

4.1 The Simulation of MAS with Leaders

It is assumed that the networked topology of MAS with leaders is shown in Fig. 1. Two
sub-graph composed of followers 1–3 and 4–7. Agents L1 and L2 are the corresponding
leaders in two sub-graph. Lines and numbers indicate that the information transfer and
associated weigh.

Based on the networked topology of Fig. 1, we can get its Laplacian matrix, and then
we can obtain the eigenvalue of Laplacian matrix of Fig. 1.

We choose the initial states and the initial speeds of agents are x(0) =
[5, 8, 6, 12, 4, 2, 5]T, v(0) = [4, 7, 5, 11, 3, 1, 4]T. Considering leaders in two sub-
graph with the initial state and the initial speed x01 = 5, v01 = 4 and x02 = 6, v02 = 5,
respectively. The simulation results of the system motion are shown in Fig. 2.
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Fig. 1. Multi-agent system with leaders

Fig. 2. Motion trajectory of MAS with leaders, β = 18

It has been revealed that the motion trajectories of each agent finally converge to
two equilibrium states with the optimal control algorithm (11). The followers track the
trajectory of leaders into two subgroups, and the two equilibrium states are the initial
states of the two leaders (x01 = 5, x02 = 6).

Comparing Fig. 3 and Fig. 4, we can see that when β = 0.8 in Fig. 3, the convergence
time t required for the MAS to reach the equilibrium state is longer. Therefore, it is
concluded that the optimal scaling factor β has an effect on the convergence speed of
the MAS. The larger the optimal scaling factor β, the faster the convergence speed.
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Fig. 3. Motion trajectory of MAS with leaders, β = 0.8

Fig. 4. Multi-agent system with leaderless

4.2 The Simulation of MAS with Leaderless

Nowwe assume the networked topology graph ofMASwith leaderless is shown in Fig. 4.
In the topology graph, the agents 1-7 are all substantive agents. There is information
transfer between each agent.

The initial value of agents and the parameter are same with Subsect. 4.1. The optimal
control algorithm (11) is applied in simulation, then the motion trajectory of MAS
without leaderless is shown in Fig. 5. It can be seen that the agents move into two
subgroups and the movement consensus of MAS with leaderless is realized.

Comparing Fig. 5 and Fig. 6, we can see that when β = 0.8 in Fig. 6, the convergence
time t required for the MAS to reach the equilibrium state is longer. Therefore, it is
concluded that the relationship between optimal scaling factor β and the convergence
speed of the multi-agent system is proportional.
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Fig. 5. Motion trajectory of MAS with leaderless β = 33

Fig. 6. Motion trajectory of MAS with leaderless

5 Conclusions

In the paper, the problem for optimal group consensus control of second-order MAS
with/without leaders has been investigated. The group consensus cost function for
dynamic system and the optimal consensus algorithm are proposed. By applying the
LQR method, the symmetric Laplacian matrix associated with the undirected graph is
derived. In addition, the optimal scaling factor for optimal control problem is studied.
Based on algebraic graph theory and modern control theory, group flocking motions of
second-order MAS are studied. Numerical examples are given to validate the theoretical
results. One future research work will focus on the optimality issues for group consensus
algorithms of high-order dynamic MAS.
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