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Abstract. Scientifically, the identification of salt ore has definite practical signif-
icance for the exploitation of oil and gas. Traditionally, this is achieved by picking
the salt boundaries with manual vision, which may introduce serious systematic
bias. Nowadays, with the technological progress of machine vision used in image
analysis, human effort has been replaced by machine capacity in salt mine recog-
nition. Especially, with the in-depth application of deep learning technology in the
field of machine vision, salt mine recognition using image analysis is revolution-
izing with more acceptable efficiency and accuracy. To this end, with exploratory
data analysis to mine the characteristics and data processing to increase the size of
the image data for further enhancing the generalization capability of the designed
model, a deep convolutional neural network based image segmentation model
is investigated to achieve salt mine recognition in this paper. Concretely, a U-
Net model integrated modified ResNet34 is first designed as a basic recognition
model, and many attempts then are conducted to further optimizing the model
according to the data characteristics, including adding auxiliary function, hyper-
column, scSE and depth supervision scheme. In addition, multiple loss functions
are also attempted to be adapted to further improving the model generalization
capacity. The numerical analysis and evaluation finally show the efficiency of the
investigations on loss value and recognition accuracy.

Keywords: Deep learning · Convolutional neural network · Image
segmentation · Salt mine recognition

1 Introduction

Science and practice show that large deposits of oil and gas also tend to form large
deposits of salt beneath the earth’s surface. Therefore, we can use the search for salt
mines to explore the locations of oil and gas. In general, determining and segmenting
the locations of large salt mines are to regionally segment the instance of salt mine and
take the rest as foreground, which can be achieved by analyzing seismic images through
very professional manual vision, which are subjective and inefficient. Fortunately, with
the technological progress of machine vision used in image analysis, machine capacity

© Springer Nature Switzerland AG 2020
X. Chen et al. (Eds.): ML4CS 2020, LNCS 12488, pp. 1–10, 2020.
https://doi.org/10.1007/978-3-030-62463-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62463-7_1&domain=pdf
http://orcid.org/0000-0003-1175-5380
http://orcid.org/0000-0003-4895-2011
http://orcid.org/0000-0002-4214-1923
https://doi.org/10.1007/978-3-030-62463-7_1


2 M. Tao et al.

has gradually replacinghumaneffort in saltmine recognition,which could provide higher
efficiency and accuracy. Nowadays, due to offering a convincing alternative by learning
the problem specific features on their own, the in-depth development of deep learning
technology in thefield of image analysis has further promoting the application ofmachine
vision in various applications, e.g., medical image segmentation, salt mine recognition,
etc. In particular, as a frequently used deep learning framework, convolutional neural
networks (CNN) is usually used for achieving image segmentation [1].

For accurate medical image segmentation used in diagnosis, surgical planning and
many other applications, Wang et al. [2] proposed a deep learning-based interactive seg-
mentation method to improve the results obtained by an automatic CNN and to reduce
user interactions during refinement for higher accuracy. With the facilitated gradient
flow and implicit deep supervision during training achieved by DenseNet, Dolz et al.
[3] proposed HyperDenseNet as a 3-D fully CNN that extended the definition of dense
connectivity to multi-modal segmentation problems. In [4], the great potential of apply-
ing CNN for salt-related interpretations was also demonstrated. Concretely, the benefits
of CNN-based classification are demonstrated by using U-Net network structure, along
with the residual learning framework ResNet, to delineate salt body with high precision.

To this end, a method of deep convolutional neural network based image segmen-
tation is proposed for achieve salt mine recognition in this paper. Concretely, a U-Net
model integrated modified ResNet34 is first designed as a basic recognition model, and
many attempts then are conducted to further optimizing the model according to the data
characteristics, and multiple loss functions are also attempted to be adapted to further
improving the model generalization capacity.

The rest of this paper is organized as follows. In Sect. 2, exploratory data analysis
and processing are conducted to mine the data characteristics and to increase the size of
the image data for further enhancing the generalization capability of the designedmodel.
In Sect. 3, a U-Net model integrated modified ResNet34 is designed and many attempts
are conducted to further optimizing the model according to the data characteristics.
In Sect. 4, multiple loss functions are attempted to be adapted in the salt mine image
segmentation model to further improve the model generalization capability. In Sect. 5,
numerical analyses are conducted to evaluate the efficiency of achieved proposals in this
work. In Sect. 6, this paper is summarized and concluded.

2 Exploratory Data Analysis and Processing

The imagedata source for saltmine recognition is seismic images collected by the seismic
reflection. In this work, the image data source is provided by GS Salt Identification
Challenge conducted in Kaggle, where, the train.zip is the training set containing 4000
sample images and the corresponding masks, the test.zip contains 18000 testing sample
images, the train.csv contains the sample images’ IDs and the labels of salt in the training
set, and the depth.csv contains the depth of the sample images. To better understand the
data and mine the characteristics of the data, which may play a certain role in the
optimization of the designed salt mine recognition model, salt mine coverage rate of
samples in the training set (that is, the proportion of salt mine image pixels in the whole
sample image) was analyzed.
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As shown in Fig. 1(a), most of the coverage ratios of pixels in salt mine are between
0.0 and 0.1, however, there are 1,562 sample images without salt, which indicates that
the data categories in the training set were unbalanced. The unbalance of data categories
will cause the designed recognition model to prefer fitting the image data with more
categories and ignore the image data with fewer categories, which adversely influences
the prediction ability of the designed model. The depth distribution of the salt mine
location, that is the imaged depth in the sample images are also analyzed in Fig. 1(b),
which indicates that the depth distribution in the training set is basically the same as
that in the testing set, and the generalization ability of the designed model could be
guaranteed.

(a) (b)

Fig. 1. (a) Analysis of salt mine coverage rate of samples in the training set, and (b) the depth
distribution of the salt mine location.

Since the original size of the sample image is 101*101, while the size of the com-
monly used input image in CNN training is 128*128 or 256*256, the bilinear interpola-
tion mode of resize contained in OpenCV is used to adjust the image size. In addition, to
make the characteristic values between different dimensions have some comparability
in values, and make the network in the designed recognition model has a better learning
capability for faster achieving the local optimal, normalization is executed on the pixel
values of the sample images.

As the above exploratory data analysis, the unbalance of data categories in the training
set will make the designed recognition model be easy to be overfitting on the training set,
which adversely influences the prediction ability of the designed model. Therefore, to
increase the size of the image data to further enhance the generalization capability of the
designed model, the method of data augmentation, e.g., mirror flip, rotation, translation
and other basic image operations, is employed to perform adjustments on sample images
to obtain new image data [5].

3 Model Design and Optimization

In this work, since all the images in the employed data set are grey-scale images, U-Net
[6], as one of the representative image segmentation model with a great advantage on
segmenting gray-scale images, is used for designing a salt mine recognition model. A U-
Net model consists of an Encoder and a Decoder. To further reduce the overfitting degree
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and ensure the generalization capability of the designed model, ResNet34-pretrained
is used as the Encoder while removing the first MaxPooling down-sampling layer of
ResNet34 to obtain a larger prediction feature map. The modified ResNet34 is shown
in Fig. 2. Based on the designed U-Net enabled basic model, the following attempts are
conducted to further optimizing the model according to the data characteristics.
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Fig. 2. The modified ResNet34.

Generally, the semantic information of the feature map in the last layer of CNN
network is more sensitive to the information of object categories, therefore, many object
classification networks always add a full connection layer to the last layer of CNN net-
work for classification and prediction. However, the semantic information of the last
layer is very insensitive to these information, e.g., object attitude, background light,
object joints and position, etc. Additionally, the features of the last layer are relatively
rough in space, which affects the accurate object location. Hence, for fine-grained analy-
sis tasks, such as the image segmentation in this work, direct using the last layer of CNN
is often not an optimal choice. Making full use of the feature maps in the shallow layers
of CNN network could be an efficient alternative. To this end, as shown in Fig. 3, the
hyper-column design is added to the U-Net model to optimize the designed recognition
model [7]. Concretely, the feature maps in the upper-sampling layers of multiple stages
in Decoder are bilinear interpolated to the same size and then combined in series as the
final prediction features for fine-grained target location and object segmentation.

Predict

Encoder/Decoder blocks

Hyper-column

Fig. 3. U-Net model added the hyper-column.

Since the sample images in the employed data set contain images with salt and
images without salt, if all the sample images can be classified into images with salt and
images without salt in advance, and the segmentation operation could be only executed
on the images with salt to improve the recognition efficiency. To this end, an extraction
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operation of a binary task branch is executed for the features at the last down-sampling
stage in U-Net model [8]. The training principle of the auxiliary segmentation model is
shown in Fig. 4, where the weight of the loss function value of the binary classification
task is set to 0.05, which is relatively small because it will bring regularization and
reduce the degree of overfitting.

Global pooling

Segment_loss

Loss=Segment_loss+0.05*Binary_loss

Binary_loss Hyper-column

Encoder/Decoder blocks

Fig. 4. U-Net model added the binary auxiliary function.

Subsequently, we consider the adjustment and optimization from the network learn-
ing to the feature map, and give more weight to the important features while reducing
the weight for the unimportant features. In this work, comprehensive considering the
advantages of both Spatial Squeeze and Channel Excitation (cSE) and Channel Squeeze
and Spatial excitation (sSE) proven in the previous proposals, a combination named
scSE is added to the U-Net model to optimize the designed recognition mode [9]. cSE is
responsible for the feature reactivation in the channel dimension, while sSE is respon-
sible for the feature reactivation in the spatial dimension, which can comprehensively
control the importance of features. As shown in Fig. 5, the locations of the added scSE
modules are behind the feature maps of the down-sampling or upper-sampling at each
stage to monitor the importance of the features.

Encoder/Decoder blocks

scSE blocks

Hyper-column

Fig. 5. U-Net model added scSE modules.

Finally, to further enhance the generalization capability of the recognition model and
reduce the test error, a depth supervision scheme is added in the U-Net model shown
in Fig. 6, where a partition loss function calculation is executed for the feature maps at
each upper-layer sampling stage of Decoder and a weighted sum is obtained by multiple
loss values [10]. This design considers not only the down-layer characteristics, but also
the deep-layer characteristics, which could improve the performance of the model by
learning more accurate edge position of the target object in terms of the features in
multiple layers.



6 M. Tao et al.
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Fig. 6. U-Net model added the depth supervision scheme.

4 Loss Function Design and Optimization

To further improve the generalization capability of the designed recognition model,
multiple loss functions are attempted to be adapted in the salt mine image segmentation
model.

For ordinary target binary tasks, it is possible to use binary cross entropy (BCE)
loss function [11, 12]. In every gradient return, BCE has the same attention to each
image category without weight discrimination, so it is very susceptible to the influence
of category imbalance. In the every gradient return, the logarithmic loss function has the
same attention to each category without weight discrimination, so it is very susceptible
to the influence of category imbalance. The exploratory data analysis indicates that the
data categories in the training set were unbalanced. Therefore, to overcome this problem,
the label generated by the designed image segmentation model is almost a mask that
does not contain any location of salt mine. In addition, weighted cross-entropy (WCE)
loss function alleviates the problems caused by unbalanced sample categories to some
extent, but its disadvantage is that the weights of difficult samples need to be adjusted
artificially, which increases the adjustment cost and difficulty [13].

Although WCE needs to artificially adjust the weights of difficult samples, setting
a large weight for loss of a difficult sample is necessary to make the model pay more
attention to these types of samples. Focal loss function proposed to solve the problem of
the serious imbalance between positive and negative samples could make the network
model to actively learn these difficult samples [14].

Dice loss function is derived frombinary classification by introducing dice coefficient
which is essentially an overlap measure of two samples overlap, or similarity of two
contour areas [15]. If the value of dice coefficient is increasing while using Dice in the
designed image segmentation model, the overlap between the predicted target location
and the real target location is increasing as well.

For intersection over union (IOU) acting as a measure of the accuracy of an object
in a given set of data, BCE cannot directly optimize the IOU, while Dice Loss can
indirectly optimize the IOU. Therefore, under the premise of using BCE, combining
Dice as multi loss could achieve multi-angle supervised model training. In addition,
since BCE cannot directly optimize the IOU, some researches attempt to avoid using
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BCE in the image segmentation model. As a representative method, Lovasz-Softmax
Loss function (Lovasz for short) could directly optimize the IOU [16]. In this work,
Lovasz is also used in the designed image segmentation model to directly optimize the
IOU while effectively reducing loss.

5 Numerical Analysis and Evaluation

In this section, the following numerical analyses are conducted to evaluate the efficiency
of achieved proposals in this work.

With theU-Netmodel andBCE+Dice loss function, the differences in the loss value
and accuracy of model training under different data augmentation methods are shown in
Fig. 7. From the comparisons,we can clearly see that these data augmentation operations,
e.g., padding and horizontal mirror flip, could yield higher benefits, while rotate and
direct resize would reduce returns, and a conclusion could be obtained that some data
augmentation operations destroy the spatial structure information of the original image
and increase the model learning difficulty.

(a)  Train_Loss                                     (b) Valid_Loss

(c)  Train_IOU                                     (d) Valid_IOU

Fig. 7. Differences in the loss value and accuracy of model training under different data
augmentation methods.

With the salt mint recognitionmodel designed based on theU-Net,many attempts are
conducted to further optimizing themodel. The differences in the loss value and accuracy
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of different model optimization strategies are shown in Fig. 8. From the comparisons,
we can clearly see that the segmentation of small objects and the positioning of object
boundaries could be improved by adding hyper-column and scSE modules into the U-
Net model, and the overfitting degree of the model on the training set can be effectively
reduced by adding auxiliary functions and depth supervision scheme. In addition, the
combination of hyper-column and scSE could achieve a greater improvement in model
accuracy than that separately adding hyper-column or scSE module.

(a)  Train_Loss                                     (b) Valid_Loss

(c)  Train_IOU                                     (d) Valid_IOU

Fig. 8. Differences in the loss value and accuracy of different model optimizations.

In the designed salt mine image segmentation model, multiple loss functions are
adapted to further improve the model generalization capability. With U-Net model and
padding/horizontal mirror flip enabled data augmentation, the differences in the loss
value and accuracy of using different loss functions are shown in Fig. 9. From the
comparisons, we can clearly see that BCE is simple and fast to be calculated, but it
is easily affected by the imbalance sample category. Lovasz can directly achieve the
optimization from the model indicators with high returns but slow efficiency.
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(a)  Train_Loss                                     (b) Valid_Loss

(c)  Train_IOU                                     (d) Valid_IOU

Fig. 9. Differences in the loss value and accuracy of using different loss functions.

6 Conclusion

In this paper, with the in-depth application of deep learning in image segmentation for
salt mine recognition, a deep convolutional neural network based image segmentation
model is investigated. With exploratory data analysis to mine the characteristics and
data processing to increase the size of the image data, a basic recognition model is
first designed based on U-Net model integrated modified ResNet34, and many model
optimizationmethods then are used to further optimizing themodel according to the data
characteristics. Additionally, to further improving the model generalization capacity,
multiple loss functions are investigated as well. Finally, numerical analyses are shown
to evaluate the efficiencies on loss value and recognition accuracy.
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