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Abstract. Compared with traditional machine learning models, deep neural
networks perform better, especially in image classification tasks. However, they
are vulnerable to adversarial examples. Adding small perturbations on examples
causes a good-performance model to misclassify the crafted examples, without
category differences in the human eyes, and fools deep models successfully.
There are two requirements for generating adversarial examples: the attack
success rate and image fidelity metrics. Generally, the magnitudes of pertur-
bation are increased to ensure the adversarial examples’ high attack success rate;
however, the adversarial examples obtained have poor concealment. To alleviate
the tradeoff between the attack success rate and image fidelity, we propose a
method named AdvJND, adding visual model coefficients, just noticeable dif-
ference, in the constraint of a distortion function when generating adversarial
examples. In fact, the visual subjective feeling of the human eyes is added as a
priori information, which decides the distribution of perturbations, to improve
the image quality of adversarial examples. We tested our method on the Fash-
ionMNIST, CIFAR10, and MiniImageNet datasets. Our adversarial examples
keep high image quality under slightly decreasing attack success rate. Since our
AdvJND algorithm yield gradient distributions that are similar to those of the
original inputs, the crafted noise can be hidden in the original inputs, improving
the attack concealment significantly.

Keywords: Adversarial attack � Just noticeable difference � Attack
concealment

1 Introduction

Deep neural networks (DNNs) are effective for completing many important but difficult
tasks like computer vision [1–4], nature language processing [5–8], etc., and can
achieve state-of-the-art performances in these tasks. Furthermore, they have approa-
ched human levels of performance in some specific tasks. Thus, we can assume that
artificial intelligence is moving toward human intelligence step by step. However,
Szegedy made an intriguing discovery that DNNs are vulnerable to adversarial
examples [9], and he first proposed the concept of adversarial examples in image
classification. A good-performance DNN model misclassifies inputs modified by
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adding small, imperceptible perturbations, which is hard to distinguish for humans.
And adversarial examples are used to attack such applications like face recognition [10,
11], autonomous driving car [12, 13] and malware detection [14]. Obviously, adver-
sarial examples are blind spots of deep models. The problem of generating adversarial
examples can be regarded as an optimization problem, in which the target perturbations
are minimized when the predicted label is not equal to the true label. The mathematical
formula is decribed as follows:

min D x; x þ rð Þ
s:t: f xþ rð Þ 6¼ f xð Þ: ð1Þ

Let x be the input to the model, r the perturbation, D(x, x + r) the distortion
function between adversarial examples and their original inputs, and f(x) the predicted
label of the model. As shown in formula (1), there are two requirements for generating
adversarial examples. One is to generate a misclassified example to attack successfully,
and the other is to generate the smallest possible distortion value. These requirements
ensure that the adversarial examples are similar to the original inputs and that high
image fidelity is guaranteed. Because of the security threat of DNNs, adversarial
examples have garnered significant attention among researchers, especially in the
security critical applications. Classic methods for generating adversarial examples on
deep learning have been established. Based on the adversarial setting criteria to sort,
white-box attack represents to directly acquire all information, like training datasets,
model architecture and so on. However, black-box attack means to get information by
querying model indirectly. And the proposed methods usually use the Lp norm (L0, L2,
L∞), to classify the adversarial examples, which is used for constraining the pertur-
bations. That is, in the definition of the distortion function D(x, x + r), the Lp norm is
used as a distance metric to measure the similarity between the adversarial examples
and the original inputs. Typically, Jiawei Su et al. [15] proposed the one pixel attack
method with the L0 norm constraint, which changes by only one or several pixels [16,
17] in a picture but results in a significant changes compared with the original image of
the poor attack concealment with obvious altered traces. Additionally, a lower attack
success rate is resulted. Szegedy et al. proposed a method to generate adversarial
examples with box-constrained L-BFGS [9] via back-propagation to obtain gradient
information. Moosavi-Dezfooli et al. proposed a method to search the minimum per-
turbations to a classified boundary, named DeepFool [18], with the high images fidelity
and attack success rates. Both of them take the L2 norm constraint, which interferes the
entire picture. Adversarial examples which satisfy the L2 norm constraint are similar to
the original inputs [18, 19]. However, it is time consuming to generate adversarial
examples, which is inefficient. Goodfellow et al. proposed the fast gradient sign method
(FGSM) [20] with the L∞ norm constraint, which fastly generates adversarial examples
by maximizing the loss function, with low image fidelity and attack success rate.
Furthermore, Kurakin Alexey et al. proposed an iterative fast gradient sign method (I-
FGSM) [21] to improve FGSM. We herein mainly discuss the L∞ norm constraint,
restraining the maximum distance difference between the adversarial example and the
original input. Generally, perturbations are increased to ensure the adversarial
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examples’ high attack success rate; however, the adversarial examples obtained in this
manner exhibit poor concealment. To alleviate the tradeoff between the attack success
rate and image fidelity, we propose a method that adds visual model coefficients in the
L∞ norm constraint. Because the L∞ norm constraint is an objective metric, the dis-
tribution of perturbation is disordered and some noisy pixels are sensitive to the human
eyes. Sid Ahmed Fezza et al. [22] thought the Lp norm did not correlate with human
judgement and were not suitable as a distance metric. Adil Kaan Akan et al. [23]
defined the machine’s just noticeable difference with regularization terms, other than
just noticeable difference of human visual perception. And they generated just
noticeable difference adversarial examples, which attacked successfully just right.
Different from that, we take the visual model coefficients into consideration, and think
it can be added in the constraint to improve the images quality and guarantee high
image fidelity. In fact, the visual subjective feeling of the human eyes is added as a
priori information in the constraint to control the distribution of perturbations. In our
study, we integrate the just noticeable difference (JND) coefficients into the L∞ norm
constraint of the distortion function to complete above mentioned task.

JND coefficients are critical values at which a difference can be detected. Addi-
tionally, they reflect that the human eyes can recognize the threshold of an image
change. In general, the JND model is applied in image encoding. There exists
redundancy in images, which without de-redundancy would be transported with lower
efficiency. And JND could determine the amount of tolerated distortions to guarantee
the quality of the images. Image encoding with JND coefficients can improve coding
efficiency significantly [24–26], called perceptual coding. In this study, we used the
JND model of the image domain to hide noise. As shown in Fig. 1, after adding
Gaussian noise with a variance of 0.01 in the original input, the image is significantly
interfered. When we constrain the noise with JND coefficients to control the distri-
bution of noise, a human visual system (HVS) cannot distinguish the difference
between the original input and the JND image, which proves the noise concealment
ability of JND coefficients.

JND coefficients can hide Gaussian noise because a region with large JND coef-
ficients is a region with complex image textures. Additionally, it is difficult for our

Fig. 1. JND coefficients hide Gaussian noise. Left column: the original image. Middle column:
the Gaussian noise image. Right column: the JND image.
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HVS to notice these changes in these regions, which are also called visual blind spots
of the human eyes. The larger the JND coefficients, the higher are the thresholds, the
greater is the redundancy, the smaller is the sensitivity of the human eyes, and the more
noise can be embedded. Therefore, perturbations in regions with large JND coefficients
are less likely to be detected. We integrate JND coefficients into the existing adversarial
attack methods. Namely, we add JND coefficients to the norm constraint and define this
method as AdvJND. The primarily contributions of this study are as follows:

• We suggest a method to integrate JND coefficients for generating adversarial
examples. We add the visual subjective feeling of the human eyes as a priori
information in the constraint to decide the distribution of perturbations and generate
adversarial examples with gradients distribution similar to that of the original
inputs. Hence, the crafted noise can be hidden in the original inputs, thus improving
the attack concealment significantly.

• We demonstrate that generating adversarial examples with our algorithm costs less
time than algorithms with the L2 norm constraint like DeepFool, when the image
quality and the attack success rate of their methods are approximate. Such fact
proves that our AdvJND algorithm is more efficient.

In Sect. 2, we provide the implementation algorithm of AdvJND. The effects of
AdvJND are shown in Sect. 3. In Sect. 4, we draw the conclusions.

2 Methodology

In our AdvJND algorithm, we should get some information in advance, like the original
image’s JND coefficients and the original perturbations from the target model’s gra-
dients. Hence, we compute the JND coefficients in Sect. 2.1, and adopt FGSM and I-
FGSM methods to yield the original perturbations in Sect. 2.2. In Sect. 2.3, we
introduce the complete AdvJND algorithm.

2.1 JND Coefficients

The JND coefficients are based on the representation of visual redundancy in psy-
chology and physiology. The receiver of image information is the HVS. A JND spatial
model in the image domain primarily includes two factors: luminance masking and
texture masking. On one hand, according to the Weber’s law, the luminance contrast of
perception in HVS increases with the practical’s luminance. On the other hand, since
the complex texture area and excess noises are both high-frequency information, so that
excess noises could be hided in the texture area easily. To better match the HVS
characteristics, X. K. Yang [27] designed a nonlinear additive model for masking to
give consideration to both luminance adaption and texture. And texture masking is
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determined by the average background luminance and the average luminance differ-
ence around a pixel [28, 29]. The JND coefficient of each pixel is obtained experi-
mentally [27]. The formula is

jnd i; jð Þ ¼ max f1 bg i; jð Þ; mg i; jð Þð Þ; f2 i; jð Þð Þ; ð2Þ

where f1(i, j) is the texture masking function, f2(i, j) is the luminance adaption function,
bg(i, j) and mg(i, j) represent gradient changes of the average background luminance
and neighboring points at point (i, j), respectively.

Due to the visual redundancy in the image, there is a chance to embed noises in it.
Furthermore, it is necessary for us to determine the magnitude of embedding noises to
guarantee imperceptibility. Luckily, JND coefficients is related with HVS’s sensitivity
and helpful to embedding noises without perceptibility, which improves the attack
concealment.

2.2 Adversarial Attack Methods

The paper is based on the white-box adversarial attack setting, instead of Curls & Whey
[30], which concerntrates on improving adversarial image quality under the same query
times in black-box setting.

In this section, we review the related studies of adversarial attack. We primarily
introduce the FGSM and its extended algorithm I-FGSM and obtain the original per-
turbations from them. And our method performs improvements based on the FGSM
and I-FGSM. The reason why we choose I-FGSM as a baseline is that I-FGSM is the
state-of-the-art white-box attack based on L∞ norm constraint.

FGSM. The basic concept of the FGSM [20] is to optimize in the direction of
increasing loss function, i.e., generating adversarial examples in the positive direction
of the gradient. It exhibits two characteristics. One is that it generates adversarial
examples fast, as it only performs one back-propagation without iteration. Another is
that it measures the distance between the adversarial example and the original input
using the L∞. These are the two main reasons for the obvious perturbations.

p ¼ e � sign rxJ h; x; yð Þð Þ ð3Þ

xadv ¼ x þ p; ð4Þ

where e represents the upper limit of perturbation,rxJ �ð Þ represents the gradient value
of the loss function to the original input via back-propagation, p represents the per-
turbation,x represents the original input, and xadv represents the generated adversarial
example.
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I-FGSM. The I-FGSM [21] is the expansion of the FGSM, which computes pertur-
bations iteratively instead of in a one-shot manner. Specifically, a e single value that
changes in the direction of the gradient sign is replaced by a smaller a value; subse-
quently, the upper limit of the perturbation e is used as limiting the constraint.

xadv0 ¼ x ð5Þ

Clipx;e xf g ¼ min 1; x þ e; max x � e; xð Þð Þ ð6Þ

xadvtþ 1 ¼ Clipx;e xadvt þ a � sign rxJ h; x; yð Þð Þ� �
: ð7Þ

The I-FGSM achieves adversarial examples of better image quality than the one-
shot FGSM. Meanwhile it implies more time costs.

2.3 AdvJND Methods

First, we are to calculate the JND coefficients of the original input and then normalize
the processed JND coefficients to the L∞. Specifically, we normalize the original input
pixels to [0,1], and calculate the JND coefficients on each channel independently to
simplify the calculation. Although the JND coefficients can reflect the edge information
to some extent, for a more obvious edge area and a better discrimination, we calculate
the power values of the JND coefficients, which allow large values to become larger,
and small values to become smaller, that is, values representing edge areas are dra-
matically larger than smooth areas. In this paper, we square the image’s JND
coefficients.

jnd2 ¼ jnd � jnd: ð8Þ

On the other hand, after squaring, the obtained JND coefficients are close to the
order of 1e–3. If perturbations added are directly controlled at 1e–3 or similar, it would
be difficult to attack the image successfully although the perturbations obey the image’s
gradient distribution. Thus, we discard the absolute values of the JND coefficients
instead of their relative values, that is, we take JND coefficients to control the distri-
bution of perturbations indirectly.

k ¼ pori
max jnd2ð Þ ð9Þ

k ¼ k � jnd2: ð10Þ

pori represents the original perturbations from the FGSM or I-FGSM method,
represents the scaled value, and k is the JND coefficients’ relative values, which
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provide the critical information of the image texture location. Although the obtained
adversarial examples are similar to the original inputs, their attack success rates are still
lower than original adversarial examples’. In most cases, the large values of k primarily
locate in the regions with complex textures, in which noise can be hided efficiently, and
the small values of k locate in the smooth areas, in which our HVS are sensitive and
easy to notice. Therefore, we decide the final values of k based on the location
information. And our strategy is to reduce the small values of k in multiplies and
calculate the final perturbations as follows.

t ¼ 1; if k � q

t ¼ c; if k\ q

(
ð11Þ

pout ¼ k � t: ð12Þ

We obtained the experience value experimentally. The threshold value q = e/2, the
reduced multiple c = 1/4, and pout represents the final adversarial perturbations. The
AdvJND method is summarized in Algorithm 1.

Algorithm 1 takes the FGSM method as an example to show the complete process
of our AdvJND algorithm to generate adversarial examples. If we implement our
AdvJND algorithm based on the I-FGSM method, take the output xadv as the input x,
and repeat the procedures from step 3 to step 9 until satisfying the minimum condition
or the maximum iterations.

3 Experiments

In this section, experiments on the FashionMNIST [31], CIFAR10 [32], and MiniI-
mageNet datasets (using 1000 images from ILSVR2012 [33] test dataset, 1925 pictures
in total, and the reason why we take the MiniImageNet dataset is that it can not
guarantee the high recognition accuracy in classification tasks with the whole ImageNet
dataset, and in order to show the effectiveness of our attack algorithm, we validate the
MiniImageNet with high accuarcy.) are used to validate our AdvJND method, and
these datasets correspond to network architectures LeNet-5 [34], VGG16 [35], and
Inception_v3 [36], respectively. We demonstrate the advantages of the FGSM-JND and
I-FGSM-JND algorithms over the original attack methods in Sect. 3.1. And the pro-
posed AdvJND algorithm adopts a general approach of the constraint to generate
adversarial examples. In Sect. 3.2, we compare the efficiency between the I-FGSM-
JND and DeepFool algorithms.
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Algorithm 1 AdvJND: restrain JND coefficients to L∞ norm
1 input: an image x superior limit ε. 

2 output: an adversarial example xadv. 

3 Computer JND coefficients of the image x 

( ) ( ) ( )( ) ( )( )21, max , , , , ,jnd i j f bg i j mg i j f i j← . 

4 Calculate the original perturbations pori ( )( ), ,xp sign J x yε θ← ⋅ ∇ .

5 Square JND coefficients 2jnd jnd jnd← × . 

6 Normalize JND coefficients to L∞ norm
( ) 2

2max
orip

k jnd
jnd

← × . 

7 Set thresholds
1,

,
t if k
t if k

ρ
γ ρ

← ≥⎧
⎨ ← <⎩

. 

8 Obtain Perturbations pout outp k t← × . 

9 Get the final adversarial example adv ← + outx x p . 

10 return xadv.

3.1 AdvJND

The core of AdvJND is integrating JND coefficients into the L∞ constraint. More
similar adversarial examples are generated though the attack success rate, slightly
decreasing within an acceptable scope.

FGSM vs. FGSM-JND. The FGSM-JND is obtained by integrating JND coefficients
into the FGSM. As shown in Fig. 2, the perturbations generated by the FGSM are
distributed over the entire image, but the perturbations generated by the FGSM-JND
are distributed over the edge region of the “pants”. The adversarial examples generated
by FGSM are rough and modified obviously, but the adversarial examples generated by
our algorithm are smooth and more similar to the original inputs, since our FGSM-JND
algorithm can effectively control perturbations in such smooth regions with the location

470 Z. Zhang et al.



of small JND coefficients and mainly hide noise in regions with the location of large
JND coefficients to ensure its adversarial capacity.

I-FGSM vs. I-FGSM-JND. The I-FGSM-JND is obtained by integrating JND coef-
ficients into the I-FGSM. In Fig. 3, the I-FGSM generates more obvious perturbations,
especially in the smooth background region. However, the perturbations generated by
the I-FGSM-JND primarily focus on regions of complex texture in the images (e.g., the
“bird” in row 1), which is not sensitive to the HVS, and perturbations in it cannot be
detected easily. And even in smooth regions like the body of the “bird”, our I-FGSM-
JND generates smaller and fewer perturbations in such regions.

From a different perspective, we can explain this phenomenon with the histograms
of oriented gradients (HOG) [37], which is a feature descriptor of an image and reflects
outline and texture information of an image. We herein config the HOG basic settings
with 8 orientations, pixels per cell and cell per block. In Fig. 4, even though the HOG
of the adversarial examples (e.g., still the “bird” in row 1) generated by the I-FGSM-
JND can mainly be perturbed by a small noise texture in the background, the outline of
“bird” can be recognized. By contrast, FGSM-JND’s adversarial examples are covered
with noise but cannot be recognized, that is, all the magnitudes and directions of
textures are messy and even we can’t distinguish the target and background. On the
other hand, the HOG descriptors of the “bird” in row 2 and the “dog” in row 3 are
clearer than that of the “bird” in row 1, especially in the background regions. It is most
likely that the background in row 1 is more complex, where JND coefficients is larger
and we can add more noise. The texture complexity reflects the information of the
edge, which is related with gradient. Thus, the gradients distribution of adversarial
examples generated by the I-FGSM-JND is more similar to those of the image inputs.

Original Methods vs. Improvement Methods. In Fig. 5, we select 10 adversarial
examples randomly and enlarge their local regions (marked by a red box in the same
place) to see more information in detail. For example, in row 8, we enlarge the sky to
observe. The FGSM method generates distinct perturbations and the I-FGSM can
produce more refined perturbations by iterating the FGSM method, which also proves
that it is useful to iterate. To our surprise, integrating JND coefficients into the

Fig. 2. FGSM vs. FGSM-JND on the FashionMNIST dataset.
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Fig. 3. I-FGSM vs. I-FGSM-JND on the MiniImageNet dataset.

Fig. 4. Histograms of oriented gradients generated by the original inputs, I-FGSM, and I-
FGSM-JND in Fig. 3.
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constraint, we can get smaller perturbations than the I-FGSM method. For all images,
we can conclude that our AdvJND algorithm improves the image quality obviously,
especially in smooth regions with simple texture. And I-FGSM-JND algorithm per-
forms best. There is no doubt that it works when we take the JND coefficients as a
priori information to control the distribution of gradients.

As shown in Table 1, the non-attack method means taking the original images as
inputs without epsilon, and the attack success rate, namely (1-recognition accuracy), of
the AdvJND algorithm is lower than or equivalent to that of the original attack method,
which sacrifices a little attack success rates to improve the images fidelity. This is
especially obvious in the FGSM and FGSM-JND. Because the FGSM is a one-step
attack method, its effect on the attack success rate is larger than that on the image
fidelity, which leads the gap of the attack success rate between the FGSM and FGSM-
JND a little large. And by iterating, the attack success rate is higher and the image
fidelity becomes better, meanwhile, the gap of the attack success rate between the I-
FGSM and I-FGSM-JND decreases.

Fig. 5. Ten adversarial examples were generated by the FGSM, FGSM-JND, I-FGSM, and I-
FGSM-JND with epsilon 0.1; their local enlarged images on the MiniImageNet dataset are shown
on the right orderly. (Color figure online)
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On the other hand, the performance of the FashionMNIST dataset, whether the
attack success rate or the gap of the attack success rate between the original attack
algorithm and our AdvJND algorithm, is worse than other datasets. It can be considered
that the improvement effect of our AdvJND algorithm is a little critical about images
because the JND coefficients are related to the the texture complexity of the image.
However, such FashionMNIST dataset prefers simple textures and smooth back-
grounds, and the MiniImageNet dataset includes more practical images in our real life
with more complex textures. We know that the function of the JND coefficients are
small in smooth images and the effects of the JND coefficients are not obvious, which
explains why our AdvJND algorithm performs better on the MiniImageNet and
CIFAR10 datasets than the FashionMNIST dataset.

3.2 I-FGSM-JND vs. DeepFool

The attack success rate of the I-FGSM-JND algorithm is slightly higher than that of
DeepFool, but the average of time consuming for the I-FGSM-JND algorithm to
generate an adversarial example is approximately only half of the DeepFool (in
Table 2). The times are computed using a NVDIA GTX 1080Ti GPU. This is because
DeepFool takes the smallest distance to the nearest classification boundary as the
minimum perturbations. So, it must traverse the classification boundary and obtain the
smallest distance. In case of the situation of 1000 classes, the disadvantage of time-
consuming will be more obvious. Thus, the efficiency of the I-FGSM-JND algorithm is
significantly higher than that of DeepFool, and the I-FGSM-JND is more suitable as a
universal attack method (Fig. 6).

Similar to integrating the JND coefficients in the L∞ norm, the subjective visual
information of the human eyes is used as a priori information to improve the image
quality of the adversarial examples. Furthermore, we can consider to embed the
appropriate visual model coefficients into the L2 norm constraint as a priori information
which can provide a better search strategy or reduce the search space to decrease the
iteration or traversal times to improve the efficiency.

Table 1. Comparison of recognition accuracy between the original attack and AdvJND attack
on the FashionMNIST, CIFAR 10, and MiniImageNet datasets.

Attack
methods

Epsilon FashionMNIST/LeNet5 CIFAR10/Vgg16 MiniImageNet/Inception_v3

Non-
attack

0.0 92.33 83.4 97.82

FGSM 0.2 12.94 9.02 43.64
FGSM-
JND

29.48 9.22 58.49

I-FGSM 5.69 7.51 1.3
I-FGSM-
JND

16.57 7.52 2.44
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Table 2. The efficiency of generating adversarial examples with the I-FGSM and DeepFool.

Method Attack success rate
(%)

Average time of generating an adversarial example
(s)

I-FGSM-
JND

97.45 0.7

DeepFool 96.36 1.41

Fig. 6. I-FGSM-JND vs. DeepFool on the MiniImageNet dataset.

Fig. 7. Adversarial examples generated by the I-FGSM and I-FGSM-JND with epsilon 0.01,
0.08, and 0.2
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4 Conclusions

Large perturbations lead the adversarial examples’ high attack success rate and bad
image fidelity with poor concealment. To alleviate the tradeoff between the attack
success rate and image fidelity, we herein proposed an adversarial attack method using
AdvJND and used JND coefficients to relate the subjective feeling of human eyes and
the image quality evaluation metric. The human eyes are not sensitive to changes in
complex texture regions, which provides a chance for us to embed more noise in these
regions. Our experimental results demonstrated that the HOG descriptors of adversarial
examples generated by the AdvJND algorithm were similar to those of the original
inputs; thus, noise could be hidden effectively in the original inputs. Our approach can
be incorporated into the new proposed L∞ norm-based attack method to build adver-
sarial examples that are similar to the original inputs. In future work, other metrics of
human visual evaluation can be integrated into the L2 norm constraint to improve the
efficiency of generating adversarial examples.

Appendices

Explore the Influence of Epsilon on Image Quality. The epsilon is crucial for
improving the attack success rate. In this section, we present the attack success rate and
image fidelity of AdvJND attacks by changing the epsilon value.

When the epsilon increases from 0.01 to 0.2, the attack success rate improves, too.
Simultaneously, the gap between the I-FGSM and I-FGSM-JND decreases gradually.
When the epsilon is 0.2, the difference in the attack success rate between the I-FGSM
and I-FGSM-JND is less than 0.009. However, in terms of image quality (in Fig. 7),
the adversarial examples generated by the I-FGSM with epsilon 0.01 and those by the
I-FGSM-JND with epsilon 0.2 with higher attack success rate are similar.

Therefore, adversarial examples generated by AdvJND are more similar to the
original inputs when the attack success rates of the original attack and AdvJND attack
are equivalent. In other words, by embedding the a priori information of the human
eyes’ subjective feeling, the algorithm based on AdvJND attack is more effective for
alleviating the tradeoff between the attack success rate and image fidelity and achieves
to generate adversarial examples with more higher image quality.
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