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Abstract. Mobile Crowdsensing (MCS) has become a new paradigm of col-
lecting and merging a large number of sensory data by using rich sensor-
equipped mobile terminals. Existing studies focusing on multi-task allocation
with the objective of maximizing the social utility may result in the problem of
unbalanced allocation due to the limited resources of workers, which may
damage the social fairness, and requesters who suffer unfairness will choose to
leave the system, thereby destroying the long-term stability of the system. To
address this issue, we introduce max-min fairness into the design of a novel
fairness-aware incentive mechanism for MCS. We first formalize the max-min
fairness-aware multi-task allocation problem by using the sensing time threshold
of tasks as a constraint. By modeling the max-min fairness-aware multi-task
allocation problem as a Stackelberg game consisting of multi-leader and multi-
follower, we next compute the unique Stackelberg equilibrium at which the
utilities of both requesters and workers are maximized. Then, we design a
greedy algorithm to achieve max-min fairness while meeting the sensing time
threshold required by the task. Finally, simulation results further demonstrate the
impact of intrinsic parameters on social utility and price of fairness, as well as
the feasibility and effectiveness of our proposed max-min fairness-aware
incentive mechanism.
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1 Introduction

With the rapid development of sensor technology, wireless communication, and the
market of handheld mobile terminal, mobile terminals have integrated rich built-in
sensors including accelerometers, gyroscopes, contact image sensors, cameras,
microphones, and global positioning systems (GPS), have become an interface for
mobile users to obtain important information such as the surrounding environment,
which has catalyzed and evolved mobile crowdsensing (MCS) [1]. MCS uses handheld
mobile terminals carried by ubiquitous mobile users to collect and merge sensory data
[2, 3], a series of research results have been achieved in the fields of communication
(WiFi-Scout [4]), environmental monitoring (Third-Eye [5],Creekwatch [6]), traffic
conditions (Vtrack [7], ContriSense: Bus [8]), and health caring (HealthAware [9]).

The success of MCS often depends on the active participation of a large number of
workers and high quality of sensory data contributed by them. However, collecting
sensory data often consumes a high cost in terms of resource consumption and even
exposes workers to potential privacy risks, which greatly inhibits the enthusiasm of
workers [10]. Meanwhile, with the development of MCS, tasks continue to emerge, and
worker resources are relatively limited and it is difficult to grow simultaneously. In the
multi-task allocation for the purpose of maximizing social utility, strategic workers will
give priority to tasks with high rewards in the worker-centric model, while the platform
will give priority to assigning highly capable and reliable workers to tasks with high
value in the requester-centric model. The unbalanced allocation of heterogeneous
worker resources will widen the gap in utility between requesters, and thus leading to
unfair resource allocation. Requesters who suffer unfairness will choose to leave the
system, thereby destroying the long-term stability of the system. Therefore, considering
social fairness from the perspective of requesters’ utility distribution is an important
issue to be solved urgently for multi-task allocation in MCS.

In the literature, many efforts with social fairness have been devoted to incen-
tivizing users in MCS. Huang et al. [11] focused on the crowdsensing task assignment
problem with multiple data consumers, and proposed an auction mechanism which can
achieve max-min fairness and the essential economic properties, such as truthfulness,
individual rationality and budget balance. Li et al. [12] designed the framework for
publishing tasks based on decoy effect mechanism on the platform side, and the payoff
allocation based on fairness preference mechanism for the user side, respectively,
which can increase the utility of the platform and the users. However, in addition to
classic fairness concepts, most of the existing literatures combine the system model to
define the special fairness concept. By considering the effects of malicious competition
behavior and the “free-riding” phenomenon, Zhu et al. [13] proposed incentive
mechanism based on an auction combining the concepts of reverse auctions and
Vickrey auctions, which can effectively improve fairness of the bidding and the quality
of the sensory data. Tao et al. [14] used Jain’s fairness index to evaluate the fairness of
tasks, which measures whether tasks receive a fair share of system resources. And the
maximum value 1 of Jain’s fairness index is achieved when all tasks receive the same
number of data samples. Sooksatra et al. [15] considered multi-dimensional fairness
while selecting winning providers, and designed a fairness-aware auction mechanism to
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incentive users to stay in the system in a long run. Unfortunately, the above literature
lacks indicators such as price of fairness to measure social fairness and social utility are
usually based on empirical models without accurate mathematical models to formulate
and quantify the fairness, and some fairness concepts are difficult to apply directly to
the general MCS system. In contrast, we initiate the study of strategy-proof and
fairness-aware incentive mechanism for multi-task allocation in MCS for the first time,
and show that our mechanism maintains max-min fairness at a low cost.

Our main contributions are summarized as follows:

• We introduce the concept of max-min fairness, and formalize the max-min fairness-
aware multi-task allocation problem by taking into account the sensing time
threshold of tasks.

• We model the multi-task allocation as a Stackelberg game consisting of multi-
requester and multi-worker, and then transform the max-min fairness-aware multi-
task allocation problem into the max-min fairness-aware incentive mechanism
design problem.

• We show how to compute the unique Stackelberg equilibrium, consisting of a
unique Nash equilibrium for the sensing plan game and a unique Nash equilibrium
for the reward declaration game, at which the utilities of both requesters and
workers are maximized.

• We design a greedy algorithm to achieve max-min fairness while meeting the
sensing time threshold required by the task. Simulation results further demonstrate
how intrinsic parameters impact on the social utility, and the price of fairness.

In the rest of this article, we first introduce the preliminaries and formulate the
problem in Sect. 2, and develop a max-min fairness-aware incentive mechanism as
well as the design details of our mechanism in Sect. 3. Section 4 evaluates the per-
formance, and conclusions are drawn in Sect. 5.

2 Preliminaries and Problem Formulation

2.1 System Model

Multi-task allocation is a MCS framework consisting of a platform, a set W ¼
w1; . . .;wi; . . .;wnf g of workers, and a set R ¼ r1; . . .; rj; . . .; rm

� �
of requesters.

Taking into account the practical factors (e.g., time, location, effort, etc.), without loss
of generality, a worker (or requester) is usually assumed to be able to participate in (or
publicize) only one task. It is easy to find that this paper is not limited to this
assumption, when a worker (or requester) chooses to participate in (or publicize)
multiple tasks, we simply treat her as multiple workers (or requesters). As illustrated in
Fig. 1, a typical transaction of multi-task allocation in MCS can be described as fol-
lows: First, each requester rj posts a task sj with its budget Bj, unit value jj, and sensing
time threshold Vj, which are sent to the platform (step 1). The platform collects and
publishes the set T ¼ s1; . . .; sj; . . .; sm

� �
, B ¼ B1; . . .;Bj; . . .;Bm

� �
as well as K ¼

j1; . . .; jj; . . .; jm
� �

of tasks (step 2). After reading the description of tasks, each
worker wi submits a set Ci of tasks that she is interested and her unit cost ci to the
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platform (step 3). After collecting the workers’ unit cost set C ¼ c1; . . .; ci; . . .; cnf g, the
tasks’ unit value set K and sensing time threshold set V , the platform will decide each
task is allocated to which users, and the winning workers set for each task sj is denoted
as Sj (step 4). Then each worker wi 2 Sj determines her sensing time tij, uploads the
sensory data to the platform and gets the payment from the platform as her reward (step
6). Conveniently, Table 1 lists frequently used notions in this paper.

Each rational and selfish worker will not participate in a task unless there exists a
sufficient payment to compensate for her cost. Given the budget Bj and the winning
workers set Sj for task sj, as well as the unit cost ci, the worker wi is only interested in
maximizing her own utility by making her optimal sensing time tij.

Definition 1 (Worker’s Utility). A worker w0
is utility uwi is defined as

uwi ¼ pij Bj; Tj
� �

� citij; if wi 2 Sj and tij 6¼ 0
0; otherwise

�
ð1Þ

Where citij is the total cost of wi performing the task sj, t�ij is the sensing time
strategy profile for a set Sj excluding wi, and thus the set of sensing time strategy
profile of all workers in Sj can be written as Tj ¼ tij; t�ij

� �
. The reward received by

worker wi is proportional to her sensing time tij, pij Bj; Tj
� �

based on the task s0js budget
Bj and the sensing time strategy profile Tj is defined as

pij Bj; Tj
� �

¼ Bj �
tijP

x:wx2Sj
txj

ð2Þ

Substituting (2) into (1), a worker w0
is utility uwi can be rewritten as

.

.

.

.

.

.

1.Task request  2.Task set

platform

Task reward  & Unit value 
& Sensing time threshold 

3.Bids

4.Task allocation

Incentive 
Mechanism

5.Sensing time

6.Result feedback

Interested Task set & 
Unit cost

6.Payment

Fig. 1. Framework of multi-task allocation in mobile crowdsensing
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uwi ¼
Bj � tijP

x:wx2Sj
txj
� citij; if wi 2 Sj and tij 6¼ 0

0; otherwise

(
ð3Þ

At the requester side, a requester rj will receive a service benefit as long as there
exists a non-empty set Sj of workers participating in her publicized task sj, and the total
sensing time is not lower than the threshold Vj. The service benefit bj jj; Tj

� �
based on

the task s0js unit value jj and the sensing time strategy profile Tj is defined as

bj jj; Tj
� �

¼ jj
P

x:wx2Sj

txj

 !h

; if Sj 6¼ £ and
P

x:wx2Sj

txj �Vj

0; otherwise

8><
>: ð4Þ

Definition 2 (Requester’s Utility). A requester r0js utility urj is defined as

urj ¼ jj
P

x:wx2Sj

txj

 !h

�Bj; if Sj 6¼ £ and
P

x:wx2Sj

txj �Vj

�Bj; otherwise

8><
>: ð5Þ

where the range of h 2 0; 1ð Þ makes urj a strictly concave function in
P

x:wx2Sj
txj, which

reflects the common phenomenon of diminishing marginal utility in economics.

2.2 Max-Min Fairness-Aware Multi-task Allocation Problem

We consider the multi-task allocation in MCS as a general resource allocation problem
assigning different quantities of the given workers to different tasks. Formally, such a
problem is given for a set of m tasks T ¼ s1; . . .; sj; . . .; sm

� �
, and defined by the set of

all feasible solution X, i.e., allocations and m utility functions uj : X ! Rþ for each

Table 1. Summary of notations in this paper.

Variable Description

rj;R jth requesters, R ¼ r1; . . .; rj; . . .; rm
� �

sj; T jth task, T ¼ s1; . . .; sj; . . .; sm
� �

jj;K Unit value of sj, K ¼ j1; . . .; jj; . . .; jm
� �

Bj;B Budget of sj, B ¼ B1; . . .;Bj; . . .;Bm
� �

Vj;V Sensing time threshold of sj;V ¼ V1; . . .;Vj; . . .;Vm
� �

wi;W ith worker, W ¼ w1; . . .;wi; . . .;wnf g
Ci;C Interested task set of wi, C ¼ C1; . . .;Ci; . . .;Cnf g
ci; C Cost of wi, C ¼ c1; . . .; ci; . . .; cnf g
Sj Winning worker set of sj
tij, t�ij Sensing time of wi when she participated in sj, sensing time profile for sj

excluding wi
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requester rj: Note that, v1 and v2 will be regarded as equivalent if
uj v1ð Þ ¼ uj v2ð Þ; 8j : rj 2 R.

Definition 3 (Max-Min Fairness). A solution vMM is max-min fairness if the requester
obtaining the lowest utility, still receives the highest possible utility.

vMM ¼ arg max
v2X

min
j¼1;...;m

uj vð Þ ð6Þ

Given the definition of max-min fairness, we now study the multi-task allocation
problem, that is, the platform, as a decision maker, allocates which workers to which
task in a balanced way under the constraint of sensing time threshold to balance the
utilities of requesters, such a problem can formulated as follows:

Definition 4 (MMFMTA). The max-min fairness-aware multi-task allocation problem
can be formulated as follows:

vMM ¼ arg max
v2X

min
j¼1;...;m

uj vð Þ
s:t:

P
x:wx2Sj

txj �Vj; 8j : rj 2 R

8><
>: ð7Þ

3 Max-Min Fairness-Aware Incentive Mechanism

We model the interaction between requesters and workers as a two-stage Stackelberg
game consisting of multi-requester and multi-worker. In the first stage, a requester rj’s
strategy is her budget Bj. After the platform allocates the winning worker set Sj to the
task sj, in the second stage, a worker wi choose her optimal strategy, i.e., sensing time tij.

Given Eq. (5), the utility maximization problem for each requester rj can be for-
mulated as:

urj , max
Bj

jj
P

x:wx2Sj

txj

 !h

�Bj

s:t:Bj � 0; 8j : rj 2 R

8><
>: ð8Þ

Given Eq. (3), the utility maximization problem for each worker wi can be for-
mulated as:

uwi , max
tij

Bj � tijP
x:wx2Sj

txj
� citij

s:t:tij � 0; 8i; j : wi 2 Sj

(
ð9Þ

Aiming at the max-min fairness-aware multi-task allocation problem (7), we design a
fair incentive mechanism based on Stackelberg game, which includes the sensing time
game, the reward declaration game, and the max-min fairness-aware multi-task allo-
cation algorithm. The Nash equilibria in the sensing time game and the reward dec-
laration game are defined as follows.
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Definition 5. A set of strategies T� ¼ t�1; . . .; t
�
n

� �
is a NE of the sensing time game, if

the following condition is satisfied

uwi t�i ; t
�
�i

� �
� uwi ti; t

�
�i

� �
; 8i : wi 2 W ð10Þ

Definition 6. A set of strategies B� ¼ B�
1; . . .;B

�
m

� �
is a NE of the reward declaration

game, if the following condition is satisfied

urj B�
j

� �
� urj Bj

� �
; 8j : rj 2 R ð11Þ

For the proposed multi-requester multi-worker Stackelberg game, Eq. (10) and
Eq. (11) together form a Stackelberg equilibrium, which is defined as follows.

Definition 7. Let T� ¼ t�1; . . .; t
�
n

� �
be a NE of the sensing time game, and B� ¼

B�
1; . . .;B

�
m

� �
be a NE of the reward declaration game, the point T�;B�ð Þ is an

equilibrium for the Stackelberg game if for any T ;Bð Þ that T 6¼ T� and B 6¼ B�, the
following conditions are satisfied:

uwi B�; t�ij; t
�
�ij

� �
� uwi B�; tij; t��ij

� �
; 8i : wi 2 W

urj B�
j ; T

�
� �

� urj Bj; T�� �
; 8j : rj 2 R

8<
: ð12Þ

At the Stackelberg equilibrium, neither the requesters nor the workers have
incentive to deviate, and thus the fairness-aware multi-task allocation problem can be
transformed to the fairness-aware incentive mechanism design problem:

Definition 8 (MMFIM). The max-min fairness-aware incentive mechanism design
problem can be formulated as follows

vMM ¼ argmax
v2X

min
j¼1;...;m

uj vð Þ

s:t:

P
x:wx2Sj

txj �Vj; 8j : rj 2 R

uwi ¼ max
tij � 0

uwi ; 8i : wi 2 W
urj ¼ max

Bj � 0
urj ; 8j : rj 2 R

8>>><
>>>:

8>>>>>><
>>>>>>:

ð13Þ

3.1 NE in the Sensing Time Game

Given the set of winning workers Sj for task sj allocated by the platform, we focus on
determining whether there exists a NE in the sensing time game, and whether the NE is
unique. If the answers to the above two questions are affirmative, then how to calculate
the unique NE is very necessary. In order to address these issues, we first introduce the
concept of optimal sensing time strategy for the workers.

Definition 9 (Optimal Sensing Time Strategy). Given Bj, Sj and t�ij, a worker w0
is

optimal sensing time strategy �tij maximizes uwi �tij; t�ij
� �

over all �tij � 0.
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According to Definition 5, each worker will choose her optimal sensing time
strategy in a NE, and hence we can obtain the value of �tij, as shown in Lemma 1.

Lemma 1. Given a task sj with the corresponding budget Bj and the set of winning
workers Sj, the optimal sensing time strategy for worker wi 2 W is

�tij ¼

�; if l ¼ 1
0; if i� z

Bj Sjj j�1ð Þ
P

x:wx2Sj
cx�ci Sjj j�1ð Þ

h i
P

x:wx2Sj
cx

� �2 ; otherwise

8>>>><
>>>>:

ð14Þ

where the workers in Sj are sorted by the unit cost such that c1 � c2 � � � � � cl,

z ¼ max x : 2� x� l; cx �
Px

y¼1
cy

x�1

� 	
and � is a sufficiently small positive number,

which is approximately 0 here.

Proof: For the special case of Sj



 

 ¼ 1, the single worker wi can enjoy the total reward
Bj by contributing a small sensing time, denoted as �tij ¼ �.

For the other cases, we know that tij 2 0; Bj

ci

h i
as uwi � 0 according to Eq. (3). The

first-order and second-order derivatives of uwi with respect to tij are shown as follows

@uwi
@tij

¼
Bj

P
x:wx2Sj

txj�tij

� �
P

x:wx2Sj
txj

� �2 � ci

@2uwi
@2tij

¼
�2Bj

P
x:wx2Sjn wif g txjP

x:wx2Sj
txj

� �3

8>>>>>><
>>>>>>:

ð15Þ

Algorithm 1: 

for do
if then

for do

else
break;

foreach do
if then

else 

return 
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Given any Bj [ 0, we know that @2uwi
@2tij

\0, which implies that uwi is a strictly con-

cave function in tij, and thus the optimal sensing time �tij is unique if it exists. Let
@uwi
@tij

¼ 0, we obtain

Bj

X
x:wx2Sj

txj � tij

0
@

1
A ¼ ci

X
x:wx2Sj

txj

0
@

1
A

2

ð16Þ

Denote Sþ
j ¼ fwi 2 Sj : tij [ 0g. By summing up Eq. (16) over all workers in

Sþ
j , we have

X
x:wx2Sþ

j

txj ¼
Bj Sþ

j




 


� 1
� �
P

x:wx2Sþ
j
cx

ð17Þ

Since tij ¼ 0 for wx 2 SjnSþ
j , we know that

P
x:wx2Sþ

j

txj ¼
P

y:wy2Sj

tyj. By substituting

Eq. (17) into Eq. (16), we have

tij ¼
Bj Sþ

j




 


� 1
� � P

x:wx2Sþ
j
cx � ci Sþ

j




 


� 1
� �h i

P
x:wx2Sþ

j
cx

� �2 ð18Þ

Algorithm 2: 
Input
Output

for do
if then

if

break;
else

return 

172 S. Yang et al.



Next, we determine the set Sþ
j . Any worker wi 2 Sj with ci\

P
x:wx2Sþ

j
cx

Sþ
jj j�1

has

tij [ 0, such a worker belongs to Sþ
j . Furthermore, it can be seen that tij is a mono-

tonically decreasing function on variable ci. Therefore, a worker with smaller cost has
more incentive to devote more time. And hence Sþ

j consists of a consecutive set of

workers, namely Sþ
j ¼ w1; . . .;wsf g for some s 2 2; l½ �. Notice that if cx �

Px

y¼1
cy

x�1 then

cxþ 1 �
Pxþ 1

y¼1
cy

x . Thus s must be the last index x satisfying

cx �
Px

y¼1 cy
x� 1

ð19Þ

Then the lemma follows.
By substituting Eq. (14) into Eq. (9), the maximum utility uwi of a worker wi is

uwi ¼

Bj; if l ¼ 1
0; if i� z

Bj � 1� ci z�1ð ÞP
x:wx2Sj

cx

" #2
; otherwise

8>>><
>>>:

ð20Þ

As a result, the output of Algorithm 1 is the unique NE of the sensing time game.

3.2 NE in the Reward Declaration Game

Given the set of winning workers Sj for task sj and the NE T� in the sensing time game,
rational and self-interested requesters will strategically declare the budget Bj to max-
imize her own utility. We now introduce the concept of optimal reward declaration
strategy for the requesters.

Definition 10 (Optimal Reward Declaration Strategy). Given Sj and T�
j , a requester

r0js optimal reward declaration strategy �Bj maximizes urj over all �Bj � 0.
According to Definition 6, each strategic requester will choose her optimal reward

declaration strategy in a NE, and hence we can obtain the value of �Bj; 8j : rj 2 R.

Lemma 3. Given T�
j , the optimal reward declaration strategy �Bj of requester

rj 2 R is

�Bj ¼ max
Bj � 0

jj
X

x:wx2Sj

txj

0
@

1
A

h

�Bj ð21Þ
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Proof: This proof can be directly obtained by substituting T�
j into Eq. (8), and is

omitted here.
As a result, the output of Algorithm 2 is the unique NE of the reward declaration

game.

3.3 Max-Min Fairness-Aware Multi-task Allocation Algorithm

In this section, we design a greedy max-min fairness-aware multi-task allocation two-
stage algorithm, i.e., allocate a set of winning workers Sj for each task sj that satisfies
the sensing time threshold Vj, as shown in Algorithm 3. In the first stage, the platform
allocates workers to tasks in sequence to meet the sensing time threshold. In the second
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stage, the platform gives priority to allocating workers to the requester with the lowest
utility to maintain the max-min fairness.

Firstly, the platform reorders elements in C so that c1 � c2 � . . .� cn, and initializes
Sj ¼ £; 8j : rj 2 R. Similarly, reorder elements in K so that j1 � j2. . .� jz. In the
first stage (lines 6-20), the platform judges whether the sensing time threshold Vj of
task sj is satisfied according to the order of K, and then judges the next task. Otherwise,
it is judged whether the unit cost ci of the worker wi meets the condition for joining the
set of winning workers Sj, and update the set Sj, the sum of sensing time

P
x:wx2Sj

txj and

the requester r0js utility urj . Otherwise, delete sj from the task set T , update Sj ¼ £ and
urj ¼ 0. When the sensing time threshold of all tasks are satisfied, the algorithm runs in
the second stage (lines 21–25). The platform will find the requester with minimum
utility value rjmin and allocate the following workers to the task sj min until the set W is
empty.

4 Performance Evaluation

4.1 Simulation Setup

In this section, we provide numerical results to evaluate the performance of the max-
min fairness-aware incentive mechanism, and verify the impact of intrinsic parameters
on social utility and price of fairness (PoF). Throughout our experiments, we assume
that the value of jj; 8j 2 1;m½ � is subject to a Gaussian distribution jj 	N l1; r

2
1

� �
(here, we fix l1 ¼ 100). Similarly, we assume that the value of Vj;8j 2 1;m½ � and the
value of Ci; 8i 2 1; n½ � are subject to a Gaussian distribution Vj 	N l2; r

2
2

� �
and

Ci 	N l3; r
2
3

� �
respectively (here, we fix l2 ¼ 3 and l3 ¼ 5).

4.2 Social Utility

Figure 2 illustrates how the social utility U ,
P

j:rj2R urj is impacted by intrinsic

parameters: (a) m; (b) n; (c) r21; (d) r
2
2; (e) r

2
3. The social utility under the proposed

max-min fairness-aware incentive mechanism is denoted as UF , and the social optimum
without considering fairness is denoted as U.

First, the max-min fairness-aware multi-task allocation algorithm sacrifices some
utilities of requesters, which leads to no matter how the intrinsic parameters change, UF

is lower than U.
In Fig. 2(a), we fixed n ¼ 150 and r21 ¼ r22 ¼ r23 ¼ 5, as the number of requesters

increases, workers have more freedom of choice and avoid fierce competition, thus
increasing the social optimum U. Similarly, in Fig. 2(b) we fixed m ¼ 10 and
r21 ¼ r22 ¼ r23 ¼ 5, as the number of workers increases, more workers can contribute
more sensing time and bring greater service benefit, which increases the social opti-
mum U. While in Fig. 2(a) and Fig. 2(b), as the number of requesters or workers
increases, the social utility UF has fluctuated. This is because the interested task set Ci
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of wi is randomly generated based on the task set T , which leads to the difference and
randomness of the winning workers set Sj allocated to the task.

In Fig. 2(c), we fixed m ¼ 10, n ¼ 150 and r22 ¼ r23 ¼ 5, it can be found that as r21
increases, that is, as the unit value of tasks become more diverse, the social utility UF

and social optimum U all have fluctuated and the gap between UF and U is obvious.
This is because workers will be assigned to high-value tasks preferentially without
considering fairness, while some workers may be assigned to tasks with low value,
which increases the gap between U and UF .

Fig. 2. The impact of intrinsic parameters against social utility: (a) m; (b) n; (c) r21; (d) r
2
2;

(e) r23:
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A similar phenomenon can be found in Fig. 2(d) and Fig. 2(e), as r22 and r23
increase respectively, UF and U all have fluctuated, and it is easy to find that the gap
between UF and U in Fig. 2(d) is more significant than Fig. 2(e). In Fig. 2(d), as r22
increases, i.e., the sensing time threshold of tasks become more diverse, some tasks
with higher value cannot meet the sensing time threshold, which will cause a relatively
large loss of service benefit, and thus UF is far less than U. Whereas, in Fig. 2(e), as r23
increases, thus as the cost of workers become more diverse, workers with high cost
have more opportunities to be assigned to tasks with lower value, which avoids bidding

Fig. 3. The impact of intrinsic parameters against PoF: (a) m; (b) n; (c) r21; (d) r
2
2; (e) r

2
3:
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failures caused by too many workers competing for the same task and increases the
number of winning workers, and thus UF is close to U.

4.3 Price of Fairness

In order to measure the loss of social utility UF compared to the social optimum U, we
study the price of fairness in this section. Price of fairness is defined as PoF ¼ U�UF

U , it
is easy to find that the range of PoF is 0; 1½ �. Similarly, from Fig. 2, we demonstrate
how intrinsic parameters (a) m; (b) n; (c) r21; (d) r

2
2; (e) r

2
3 impact on PoF. When the

gap between UF and U is small, the value of PoF will be small, otherwise, the value of
PoF will be large. As shown in Fig. 3(a), when the number of requesters m ranges from
16 to 20, the gap between UF and U is small, and thus the value of PoF is small.
However, when m ranges from 26 to 30, the gap between UF and U becomes more
significant and thus the value of PoF becomes larger. Figure 3(b), Fig. 3(c), Fig. 3(d)
and Fig. 3(e) are consistent with the situation in Fig. 3(a), and the reasons are similar.

5 Conclusion

In this paper, we modeled the interaction between requesters and workers as a
Stackelberg game consisting of multi-requester and multi-worker and developed a max-
min fairness-aware incentive mechanism to address the dilemma that tasks are con-
stantly emerging and worker resources are relatively limited in MCS. Under the pro-
posed multi-task allocation algorithm, the distribution of requesters’ utility satisfies
max-min fairness, which incentives users to keep sustainability in MCS effectively.
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