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Abstract. Client-side SPARQL query processing enables evaluating
queries over RDF datasets published on the Web without producing
high loads on the data providers’ servers. Triple Pattern Fragment (TPF)
servers provide means to publish highly available RDF data on the Web
and clients to evaluate SPARQL queries over them have been proposed.
For clients to devise efficient query plans that minimize both the number
of requests submitted to the server as well as the overall execution time,
it is key to accurately estimate join cardinalities to appropriately place
physical join operators. However, collecting accurate and fine-grained
statistics from remote sources is a challenging task, and clients typically
rely on the metadata provided by the TPF server. Addressing this short-
coming, we propose CROP, a cost- and robust-based query optimizer to
devise efficient plans combining both cost and robustness of query plans.
The idea of robustness is determining the impact of join cardinality esti-
mation errors on the cost of a query plan and to avoid plans where this
impact is very high. In our experimental study, we show that our concept
of robustness complements the cost model and improves the efficiency
of query plans. Additionally, we show that our approach outperforms
existing TPF clients in terms of overall runtime and number of requests.

1 Introduction

Different means to publish RDF and Linked Data on the web have been pro-
posed ranging from data dumps with no support to directly query the data to
SPARQL endpoints which allow for executing complex SPARQL queries over
the data [17]. Motivated by the low availability and high server-side cost of
SPARQL endpoints, Triple Pattern Fragments (TPFs) have been proposed as a
lightweight triple pattern-based query interface [17]. The goal is to increase the
availability of data by reducing server-side costs and shifting the cost for evalu-
ating large queries to the client. Given a triple pattern, the TPF server returns
all matching triples split into pages as well as additional metadata on the esti-
mated number of total matching triples and the page size. Evaluating SPARQL
queries over datasets published via TPF server requires a specific client with
query processing capabilities. A key challenge of such clients is devising efficient
query plans able to minimize both the overall query execution time as well as
the number of requests submitted to the TPF server. Different clients implement
c© Springer Nature Switzerland AG 2020
J. Z. Pan et al. (Eds.): ISWC 2020, LNCS 12506, pp. 238–257, 2020.
https://doi.org/10.1007/978-3-030-62419-4_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62419-4_14&domain=pdf
http://orcid.org/0000-0001-9668-8935
http://orcid.org/0000-0002-1209-2868
https://doi.org/10.1007/978-3-030-62419-4_14


Cost- and Robustness-Based Query Optimization for Linked Data Fragments 239

heuristics based on the provided metadata to devise efficient query plans over
TPF servers [1,16,17]. However, a major drawback of the heuristics implemented
by those clients is the fact that they fail to adapt to different classes of queries
which can lead to long runtimes and produce large numbers of requests. This
can be attributed to the following reasons. First, they follow a greedy planning
strategy and do not explore and compare alternative query plans. Second, they
only rely on basic cardinality estimation functions to estimate the cost of query
plans and to place physical join operators. To overcome these limitations, a more
flexible way of query planning in TPF clients can be realized by implementing
both a cost model to estimate the cost of query plans and a query planner that
explores alternative plans.

To this end, we propose a new cost model incorporating both the cost at
the client (execution time) as well as the cost induced at the server (number
of requests) to devise efficient query plans. Our cost model relies on a basic
estimation function to estimate the number of intermediate results and join
cardinalities of sub-queries based on the TPF metadata. Due to the limited
statistics, we additionally propose the concept of robustness for query plans
to avoid query plans which are very susceptive to errors in the estimations.
Therefore, the robustness of a query plan is determined by the ratio of its best-
case cost and its average-case cost. A higher ratio indicates that the best-case cost
deviates less from the average case cost and the plan is considered more robust.
Finally, we present a query plan optimizer that combines both the cost model
and the concept of robustness to select the most appropriate query plan which
ideally minimizes the overall evaluation runtime and the number of requests
submitted to the TPF server. In summary, our contributions are

– a cost model for executing query plans over TPF servers,
– the concept of robustness for SPARQL query plans,
– a query plan optimizer using iterative dynamic programming to explore alter-

native query plans with the goal to obtain both cheap and robust query plans,
and

– an implementation of the approach evaluated in an extensive experimental
study.

The remainder of this paper is structured as follows. First, we present a moti-
vating example in Sect. 2. In Sect. 3, we present our approach and evaluate it
in Sect. 4 by analyzing the results of our experimental study. Next, we discuss
related work in Sect. 5. Finally, we summarize our work in Sect. 6 and point to
future work.

2 Motivating Example

Consider the query from Listing 1.1 to obtain persons with “Stanford University”
as their alma mater, the title of their thesis, and their doctoral advisor using the
TPF for the English version of DBpedia1 with a page size of 100. The estimated
1 http://fragments.dbpedia.org/2014/en.

http://fragments.dbpedia.org/2014/en
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triples per triple pattern provided as metadata from the TPF server are indicated
in Listing 1.1.

Listing 1.1. Query to get persons with “Stanford University” as their alma mater, the
title of their thesis and their doctoral advisor. Prefixes are used as in http://prefix.cc/.

0 SELECT ∗ WHERE {
1 ?u rdfs : label ‘‘ Stanford University ’ ’@en . # Count: 2
2 ?s dbo:almaMater ?u . # Count: 86088
3 ?s dbp: thesisTitle ?t . # Count: 1187
4 ?s dbo:doctoralAdvisor ?d . } # Count: 4885

Fig. 1. Three alternative query plans for the SPARQL query from Listing 1.1. Indicated
on the edges are the number of requests to be performed according to the corresponding
join operators: nested loop join (NLJ) and symmetric hash join (SHJ).

We now want to investigate the query plans produced by the recent TPF
clients Comunica and nLDE. When executing the query using comunica-sparql2,
the client produces 813 requests to obtain the 29 results of the query. The heuris-
tics first sorts the triple patterns according to the number of triples they match.
They are then placed in ascending order in the query plan with Nested Loop
Joins (NLJs) as the physical operators [16]. The corresponding physical plan
is shown in Fig. 1a, where the number of requests is indicated on the edges.
First, 4 requests are performed to obtain the statistics on the triple patterns,
and thereafter, the plan is executed with 809 requests. Executing the query using
nLDE3 results in a total of 75 requests. First, 4 requests are performed to receive
the triple patterns’ statistics. Next, by placing two Symmetric Hash Join (SHJ)
instead of NLJs only, the number of requests for executing the plan is reduced
to a total of 71. In the heuristic of the nLDE query planner, the number of
results produced by a join, i.e., the join cardinality estimations, are computed
as the sum of the incoming cardinalities of the join. Based on these estimations
the planner places either an NLJ or an SHJ [1]. The corresponding query plan
is shown in Fig. 1b. Taking a closer look at the query, we observe that neither

2 https://github.com/comunica/comunica/tree/master/packages/actor-init-sparql.
3 https://github.com/maribelacosta/nlde.

http://prefix.cc/
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comunica-sparql nor nLDE find the query plan which minimizes the number of
requests to be performed. The optimal plan is shown in Fig. 1c and it requires a
total of 69 requests only. This is achieved by placing an NLJ at first and third
join operator, and an SHJ at the second join operator. This example emphasizes
the challenge for heuristics to devise efficient query plans based on only the count
statistic provided by the TPF servers. In this example, the subject-object join of
triple patterns 1 and 2 yields 756 results. This can be difficult to estimate relying
on the TPF metadata alone. On the one hand, an optimistic heuristic assuming
low join cardinalities (for example the minimum) can lead to sub-optimal query
plans as the query plan in Fig. 1a shows. On the other hand this also true for
more conservative cardinality estimation models that assume the higher join car-
dinalities, for example the sum, which may lead to overestimating cardinalities
and too conservative query plans.

The motivating example illustrates the challenge of query planning in the
absence of fine-grained statistics in client-side SPARQL query evaluation over
remote data sources such as TPF servers. In such scenarios, query plans should
ideally consider not only the estimated cost of the query plans but also its
robustness with respect to errors in the join cardinality estimations. Therefore,
we investigate how query planning for TPFs can be improved by considering
not only the cost of a given query plan but also its robustness. Furthermore, we
investigate for which class of queries the concept of robustness is most beneficial
and whether such queries can be identified by our robustness metric.

3 Our Approach

We propose CROP, a Cost- and Robustness-based query plan Optimizer to devise
efficient plans for SPARQL queries over Triple Pattern Fragment (TPF) servers.
The key components of our approach are: (Sect. 3.1) a cost model to estimate
the cost of executing a query plan over a TPF server, (Sect. 3.2) the concept of
plan robustness to assess how robust plans are with respect to join cardinality
estimation errors, and (Sect. 3.3) a query plan optimizer combining both cost
and robustness to obtain efficient query plans.

3.1 Cost Model

We present a cost model for estimating the cost of query plans for conjunctive
SPARQL queries, i.e. Basic Graph Patterns (BGPs). Given a query plan P for
a conjunctive query Q = {tp1, . . . , tpn} with |Q| = n triple patterns, the cost of
P is computed as

Cost(P ) :=

{
0 if P is a leaf tpi

Cost(P1 �� P2) + Cost(P1) + Cost(P2) if P = P1 �� P2.
(1)

where Cost(P1 �� P2) is the cost of joining sub-plans P1 and P2 using the physical
join operator ��. Note that the cost for a leaf is 0 as its cost is accounted for
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as part of the join cost Cost(Pi �� Pj). In our model, the cost of joining two
sub-plans is comprised of two aspects: (i) request cost, the cost for submitting
HTTP requests to the TPF server if necessary; and (ii) processing cost, the cost
for processing the results on the client side. Hence, the cost of joining sub-plans
P1 and P2 using the join operator �� is given by:

Cost(P1 �� P2) := Proc(P1 �� P2) + Req(P1 �� P2) (2)

where Proc are the processing cost and Req the request cost. Note that both
components depend on the physical join operator. First, we distinguish the pro-
cessing cost joining sub-plans P1 and P2 using the physical operator Symmetric
Hash Join (��SHJ) and Nested Loop Join (��NLJ ) as

Proc(P1 �� P2) :=

{
φSHJ · card(P1 �� P2), if ��= ��SHJ

φNLJ · (card(P1 �� P2) + card(P2)), if ��= ��NLJ

(3)

Note the first parameter of the cost model φ ∈ [0,∞) allows for weighting
the local processing cost with respect to the request cost. For instance, φ = 1
indicates that processing a single tuple locally is equally expensive as one HTTP
request. The impact of processing cost and request cost on the query execution
time depends on the scenario in which the TPF server and client are deployed. In
a local scenario, where network latency and the load on the TPF server are low,
the impact of the processing cost on the execution time might be higher than
in a scenario with high network latency, where the time for submitting requests
has a larger share on the execution time. Furthermore, including card(P2) in
the processing cost for the NLJ allows the optimizer to estimate the cost of
alternative plans more accurately. For instance, if we assume the minimum as
the estimation function and do not consider the cardinality of the inner relation,
a plan (A ��NLJ B) could be chosen over (A ��NLJ C) even if B has a higher
cost than C.

The expected number of requests to be performed for joining two sub-plans
depends on the physical operator and the estimated number of results produced
by the sub-plans. Therefore, we introduce the request cost function for two com-
mon physical join operators. In the following, we denote |Pi| as the number of
triples in sub-plan Pi.

Nested Loop Join. The cost of a Nested Loop Join (NLJ) combines the cost
induced by the requests for obtaining the tuples of the outer plan P1 and then
probing the instantiations in the inner plan P2. Therefore, the request costs are
computed as

Req(P1 ��NLJ P2) := �|P1| = 1� ·
⌈

card(P1)
p

⌉

+ d(P1, P2) · max
{

card(P1),
⌈

card(P1 �� P2)
p

⌉}
,

(4)
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4where p is the page size of the TPF server, and d(P1, P2) computes a discounting
factor. In this work, we restrict the inner plan in the NLJs to be triple patterns
only, i.e. |P2| = 1, as it allows for more accurate request cost estimations. The
first summand calculates the number of requests for obtaining solution mappings
for P1. In case P1 is a triple pattern, the number of requests is given the car-
dinality of P1 divided by the page size. The second summand is the estimated
number of requests to be performed on the inner plan multiplied by a discount
factor. The minimum number of requests that need to be performed is given by
the cardinality for P1, i.e. one request per binding. However, in the case the join
produces more results per binding than the page size, such that paginating is
required to obtain all solutions for one binding in the inner relation, we need to
consider this in the maximum as well. The discounting factor is computed using
the parameter δ ∈ [0,∞) and the maximum height of the sub-plans as

d(P1, P2) := (max{1, δ · height(P1), δ · height(P2)})−1.

The rationale for including a discount factor for the requests on the inner plan of
the NLJ is twofold. First, since the join variables are bound by the terms obtained
from the outer plan, the number of variables in the triple pattern is reduced and
as the empirical study by Heling et al. [10] indicates, this also leads to a reduction
in response times of the TPF server. Second, for star-shaped queries, typically
the number of results reduces with an increasing number of join operations and,
therefore, the higher an NLJ is placed in the query plan, the more likely it is
that it needs to perform fewer requests in the inner plan than the estimated
cardinality of the outer relation suggests. The discount factor d(P1, P2) allows
for considering these aspects and its parameter δ ∈ [0,∞) allows for setting
the magnitude of the discount factor. With δ = 0, there is no discount and
with increasing δ, placing NLJs higher in the query plan becomes increasingly
cheaper.

Symmetric Hash Join. The request cost is computed based on the number of
requests that need to be performed if either or both sub-plans are triple patterns.

Req(P1 ��SHJ P2) := �|P1| = 1� ·
⌈

card(P1)
p

⌉
+ �|P2| = 1� ·

⌈
card(P2)

p

⌉
. (5)

Note that the request cost can be computed accurately as it only depends on the
metadata provided by the TPF server, with card(Pi) = count(Pi) if |Pi| = 1.

Cardinality Estimation. The previous formulas for computing the cost rely
on the expected number of intermediate results produced by the join operators,
which is determined by recursively applying a join cardinality estimation func-
tion. Given two sub-plans P1 and P2, we estimate the cardinality as the minimum
of the sub-plans’ cardinalities:

card(P1 �� P2) := min(card(P1), card(P2)), (6)
4 �·� denote Iverson brackets that evaluate to 1 if its logical proposition is true and to

0 otherwise.
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where the cardinality for a single triple pattern is obtain from the metadata
provided by the TPF server card(Pi) = count(Pi),∀ |Pi| = 1. In our cost model,
we choose the minimum as the cardinality estimation function since it showed
good results in our preliminary analysis. Next, we will show how the concept
of robustness helps to avoid choosing the cheapest plan merely based on these
optimistic cardinality estimations.

3.2 Robust Query Plans

Accurate join cardinality estimations aid to find a suitable join order and to
properly place physical operators in the query plan to minimize the number of
requests. However, estimating the cardinalities is challenging, especially when
only basic statistics about the data are available. To address this challenge,
we propose the concept of robustness for SPARQL query plans to determine
how strongly the cost of a plan is impacted when using alternative cardinality
estimations. The core idea is comparing the best-case cost of a query plan to
the average-case cost. To obtain the average-case cost, the cost of the query
plan is computed using different cardinality estimation functions for joining sub-
plans. The results are several cost values for the query plan under different
circumstances which can be aggregated to an averaged cost value. Consequently,
a robust query plan is a query plan in which the best-case cost only slightly
differs from the average-case cost.

Example 1. Let us revisit the query from the motivating example. For the sake
of simplicity, we only consider the sub-plan P = ((tp1 �� tp2) �� tp3) and request
cost with δ = 0. Let us consider the alternative query plans P1 = ((tp1 ��NLJ

tp2) ��NLJ tp3) and P2 = ((tp1 ��NLJ tp2) ��SHJ tp3). For comparing the
robustness of P1 and P2, we not only use the cardinality estimation of the cost
model (the minimum, cf. Eq. 6) but compute the cost using different cardinality
estimation functions, for example using the maximum and mean as alternatives.
The resulting cost values allow for deriving the average-case cost and thus the
robustness of P1 and P2. Depending on the cardinality estimation function, we
obtain the following cost for the query plans P1 and P2:

Cardinality Estimation Function
minimum mean maximum

Cost(P1) 5 43,477.45 86,950.88
Cost(P2) 15 444.45 874.88

Query plan P1 yield the lowest best-case cost. However, we observe that the cost
for query plan P2 is not as strongly impacted by different estimation functions.
Hence, its average-case cost does not deviate as strongly from its best-case cost
in comparison to P1. As a result, query plan P2 is considered a more robust
query plan.

Definition 1 (Query Plan Robustness). Let P be a physical query plan for
query Q, Cost∗(P ) the best-case and Cost(P ) the average-case cost for P . The
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query plan robustness for P is defined as

Robustness(P ) :=
Cost∗(P )
Cost(P )

.

Namely, the robustness of a plan is the ratio between the cost in the best-case
Cost∗ and the cost in the average-case Cost. A higher ratio indicates a more
robust query plan since its expected average-case cost are not as strongly affected
by changes in the cardinality estimations with respect to its best-case cost. Next,
we extend the definition of our Cost function to formalize the average-case cost
of a query plan. Let O = {o1, . . . , on−1} be the set of binary join operators for
plan P (|P | = n) for a conjunctive query Q, and E = [e1, . . . , en−1] a vector
of estimation functions with ei the cardinality estimation function applied at
join operator oi. A cardinality estimation function ei : N

2
0 → N0 maps the

cardinalities of a join operators’ sub-plans a = card(P1) and b = card(P2) to
an estimated join cardinality value. We then denote the cost for a query plan P
computed using the cardinality estimation function given by E as CostE(P ).

Definition 2 (Best-case Cost). The best-case cost for a query plan P is
defined as

Cost∗(P ) := CostE(P ),with ei = f, ∀ei ∈ E , and f : (a, b) �→ min{a, b}.

In other words, at every join operator in the query plan, we use the minimum
cardinality of the sub-plans to estimate the join cardinality. This is identical to
the estimations used in our cost model. The computation of the average-case
cost requires applying different combinations of such estimation functions at the
join operators.

Definition 3 (Average-case Cost) Let F = {f1, . . . , fm} be a set of m esti-
mation functions with f : N2

0 → N0, ∀f ∈ F . The average-case cost for a query
plan P is defined as the median of its cost when applying all potential combina-
tions of estimation functions E ∈ Fn−1 for the operators of the query plan:

Cost(P ) := median{CostE(P ) | ∀E ∈ Fn−1}.

We empirically tested different sets of estimation functions in F and found
that the following produce suitable results for the average-case cost: F =
{f1, f2, f3, f4} with

f1 : (a, b) �→ min{a, b}, f2 : (a, b) �→ max{a, b},
f3 : (a, b) �→ a + b, f4 : (a, b) �→ max{a/b, b/a}.

Furthermore, we observed that for subject-object (s-o) and object-object (o-o)
joins the cardinalities were more frequently misestimated in the original cost
model, while for all other types of joins, such as star-shaped groups, it provided
adequate estimations. Therefore, we only consider alternative cardinality esti-
mation function ei for a join operator oi, if the join performed at oi is either of
type s-o or o-o.
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3.3 Query Plan Optimizer

The idea of robust query plans yields two major questions: (i) when should a
more robust plan be chosen over the cheapest plan, and (ii) which alternative
plan should be chosen instead? To this end, we propose a query plan optimizer
combining cost and robustness to devise efficient query plans. Its parameters
define when a robust plan is chosen and which alternative plan is chosen instead.
The main steps of the query plan optimizer are:

1. Obtain a selection of query plans based on Iterative Dynamic Programming
(IDP).

2. Assess the robustness of the cheapest plan.
3. If the cheapest plan is not robust enough, find an alternative more robust

query plan.

The process is detailed in Algorithm 1. The inputs are a SPARQL Query Q,
block size k ∈ [2,∞), the number of top t ∈ N cheapest plans, the robustness
threshold ρ ∈ [0, 1] and the cost threshold γ ∈ [0, 1]. The first step is to obtain a
selection of alternative query plans using IDP. We adapted the original “IDP1−
standard− bestP lan” algorithm presented by Kossmann and Stocker [11] in the
following way. Identical to the original algorithm, we only consider select-project-
join queries, i.e. BGP queries, and each triple pattern tpi ∈ Q is considered a
relation in the algorithm. Given a subset of triple patterns S ⊂ Q, the original
algorithm considers the single optimal plan for S according to the cost model
in optP lan(S) by applying the pruneP lans function to the potential candidate
plans. However, as we do want to obtain alternative plans, we keep the top t
cheapest plans for S in optP lan(S) for |S| > 2. When joining two triple patterns
(|S| = 2), we always chose the physical join operator with the lowest cost for
the following reasons: We expect accurate cost estimations for joining two triple
patterns as the join estimation error impact is low and it reduces the number of
plans to be evaluated in the IDP.

Example 2. Consider the query for the motivating example and S1 = {tp1, tp2}.
According to the cost model, the cheapest plan is optP lan(S1) = {(tp1 ��NLJ

tp2)}. However, for |S| > 2 we need to place at least two join operators where the
cost of at least one join operator relies on the estimated cardinality of the other.
Therefore, we need to keep alternative plans in case a robust alternative plan
is required. For instance with S2 = {tp1, tp2, tp3}, the optimal plan according
to the cost model is P1 = ((tp1 ��NLJ tp2) ��NLJ tp3), however as it turns
out, the true optimal plan for S is P2 = ((tp1 ��NLJ tp2) ��SHJ tp3). As a
result, the algorithm cannot prune all but one plan such that it can choose an
alternative robust plan if necessary. Combining the latter observations, we can
set optP lan(S2) = {P1, P2}.

Given the set of t candidate query plans P from IDP , the overall cheapest plan
P ∗ is determined (Line 2). If the cheapest plan P ∗ is considered robust enough
according to the robustness threshold ρ, it becomes the final plan and is returned
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Algorithm 1: CROP Query Plan Optimizer
Input: BGP query Q, block size k, top t, robustness threshold ρ, cost threshold

γ
1 P = IDP(Q, k, t)
2 P ∗ = arg minP∈P Cost(P )
3 if Robustness(P ∗) < ρ and |P| > 1 then
4 R = {R | R ∈ P ∧ Robustness(R) ≥ ρ}
5 if R == ∅ then
6 R = P \ {P ∗}
7 R∗ = arg minR∈R Cost(R)

8 if Cost(P∗)
Cost(R∗)

> γ then

9 P ∗ = R∗

10

11 return P ∗

(Line 10). However, if the plan is not robust enough with respect to ρ and there
are alternative plans to chose from (Line 3), the query plan optimizer tries to
obtain a more robust alternative plan. First, the planner selects all plans which
are above the robustness threshold as R. If no such plans exist, it will consider
all alternative plans except the cheapest plan. If the ratio of best-case cost of
the cheapest plan P ∗ to the best-case cost of the alternative plan R∗ is higher
than the cost threshold γ, the alternative plan R∗ is selected as the final plan
P ∗. For instance, for ρ = 0.1 and γ = 0.2, a robust plan is chosen over the
cheapest plan if (i) for the cheapest plan P ∗, Cost(P ∗) is 10 times higher than
Cost∗(P ∗) and (ii) for alternative robust plan R∗, Cost∗(R∗) is no more than 5
times (1/γ) higher than Cost∗(P ∗). Hence, smaller robustness threshold values
lead to selecting alternative plans when the cheapest plan is less robust, and
smaller cost threshold values lead to less restriction on the alternative robust
plan with respect to its cost. The combination of both parameters allows for
exploring alternative robust plans (ρ) but does not require to chose them at
any cost (γ) and therefore limit the performance degradation risk [19]. Next, we
investigate the time complexity of the proposed optimizer.

Theorem 1. With the number top plans t and the set of estimation functions
F constant, the time complexity of the query plan optimizer is in the order of

Case 1: O(2n), for 2 ≤ k < n,
Case 2: O(3n), for k = n.

Proof. The time complexity of the query plan optimizer is given by the IDP
algorithm and computing the average-case cost in the robustness computation.
Kossmann and Stocker [11] provide the proofs for the former. For the latter,
given |F | = m different estimation functions and the top t query plans, the
upper bound for the number of alternative cardinality estimations per query
plan is t · m · 2n−1. As t and m are considered constants, the time complexity of
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the robustness computation is in the order of O(2n). Combining these complexity
results, we have:

Case 1: For k < n, the time complexity of computing the robustness exceeds the
time complexity of IDP, which is O(n2), for k = 2 and O(nk), for 2 < k < n.
As a result, the time complexity is in the order of O(2n).

Case 2: For k = n, the time complexity of IDP exceeds the time complexity of
the robustness computation and therefore, we have that the time complexity
of the query plan optimizer is in the order of O(3n).

4 Experimental Evaluation

We empirically evaluate the query plan optimizer with the proposed cost model
and the concept of robust query plans. First, we study how the parameters of the
cost model and the IDP algorithm impact on the efficiency of the query plans.
Thereafter, we study different robustness and cost thresholds in the query plan
optimizer to find a good combination of both. Finally, we compare our implemen-
tation with the found parameters to state of the art TPF clients: comunica-sparql
(See footnote 2) (referred to as Comunica) and nLDE (See footnote 3).

Datasets and Queries. We use the datasets used in previous evaluations:
DBpedia 2014 (nLDE) and WatDiv [3] (Comunica). For DBpedia, we choose a
total of 35 queries including Q1-Q10 from the nLDE Benchmark 1 and all from
Benchmark 2. For WatDiv, we generated a dataset with scale factor = 100 and
the corresponding default queries with query-count = 5 resulting in a total of 88
distinct queries.5 The resulting 123 queries are used for our experimental study.
In addition, to showcase the benefits of including the robustness in the query
plan optimizer on a variety of datasets, we designed an additional benchmark
with 10 queries for 3 datasets (DBpedia 2014, GeoNames 20126, DBLP 2017
(See footnote 6)) that include either a s-o and or an o-o join and 3–4 triple
patterns.7

Implementation. CROP is implemented based on the nLDE source code (See
footnote 3). We additionally implemented our cost model, robustness computa-
tion and the query plan optimizer.8 No routing adaptivity features, i.e. routing
policies, are used in our implementation. The engine was implemented in Python
2.7.13 and we used the Server.js v2.2.39 to deploy the TPF server with HDT
backend for all datasets. Experiments were executed on a Debian Jessie 64 bit
machine with CPU: 2x Intel(R) Xeon(R) CPU E5-2670 2.60 GHz (16 physical
cores), and 256 GB RAM. The timeout was set to 900 s. After a warm-up run,
the queries were executed three times in all experiments.
5 Complex queries do not contain placeholders, leading to one distinct query in C1,
C2, and C3.

6 http://www.rdfhdt.org/datasets/.
7 https://github.com/Lars-H/crop analysis.
8 https://github.com/Lars-H/crop.
9 https://github.com/LinkedDataFragments/Server.js.

http://www.rdfhdt.org/datasets/
https://github.com/Lars-H/crop_analysis
https://github.com/Lars-H/crop
https://github.com/LinkedDataFragments/Server.js
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Evaluation Metrics. The following metrics are computed: (i) Runtime:
Elapsed time spent by a query engine to complete the evaluation of a query.
For our implementation, we measure both the optimization time to obtain the
query plan and the execution time to execute the plan separately. (ii) Number
of Requests: Total number of requests submitted to the server during the query
execution. (iii) Number of Answers: Total number of answers produced during
query execution. If not stated otherwise, we report mean values for all three
runs. All raw results are provided in the supplemental material.

Fig. 2. Experimental results for the parameters of the cost model and IDP.

4.1 Experimental Results

Cost Model and IDP Parameters. First, we investigate how the parameters
of the cost model impact runtime and the number of requests. In the optimizer,
we disable robust plan selection (ρ = 0.00), set the default block size to k = 3,
and select the top t = 5 plans. We focus on the parameter δ which we set to δ ∈
{0, 1, 2, 3, 4, 5, 6, 7}. We do not investigate different processing cost parameters
and set φNLJ = φSHJ = 0.001, as they are more relevant when considering
different deployment scenarios, where network delays have a stronger impact on
the cost. Figure 2a shows the mean runtime, the mean number of requests per
run, and the Pearson Correlation Coefficient (PCC) between the cost and the
number of requests. The latter provides an indication of how well the estimated
cost of a query plan reflects the actual number of requests to be performed. The
best runtime results are observed for δ = 4, even though the number requests are
about 8% higher than for δ = 1. Furthermore, the highest positive correlation
between the estimated cost and the number of requests of a plan are observed
for δ ∈ {3, 4} with PCC = 0.52. The worst runtime results are observed for
δ = 0, which is equal to no height discount at all. This shows that the parameter
allows for adjusting the cost model such that the estimated cost better reflects
the number of requests resulting in more efficient query plans. Based on the
findings, we set δ = 4 in the following experiments.
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Table 1. Mean runtime (r), mean number of requests (Req.) and the number of robust
plans (|R∗|) selected by the query plan optimizer. Indicate in bold are best overall
runtime and minimum number of requests.

ρ = 0.05 ρ = 0.10 ρ = 0.15 ρ = 0.20 ρ = 0.25

γ r Req. |R∗| r Req. |R∗| r Req. |R∗| r Req. |R∗| r Req. |R∗|
0.1 556.86 64,167 16 534.16 82,657 17 2048 99,015 28 2094 103,709 31 2784 124,070 38

0.3 552.44 64,157 16 533.7 82,629 17 930 105,337 10 937 105,537 10 940 105,728 11

0.5 957.0 86,640 6 911.71 90,932 6 910 91,175 9 908 91,388 9 911 91,511 9

0.7 950.98 86,634 6 909.64 90,962 6 910 91,161 8 913 91,173 5 909 91,298 5

0.9 947.87 86,627 6 915.23 90,934 6 909 90,937 7 907 90,939 4 910 90,986 2

Next, we focus on the parameter of the IDP algorithm and investigate how the
block size impacts on both the efficiency of the query plans and the optimization
time to obtain these plans. We set t = 5 and keep δ = 4 as suggested by the
previous experiment. We study k ∈ {2, 3, 4, 5, 6}. The median runtimes r̃ for all
queries per k are shown in Fig. 2b. Note that k = min{k, |Q|} and, therefore, we
show the results separately for small queries (|Q| < 6) and larger queries (|Q| ≥
6). Indicated in blue is the proportion of the optimization time. The results
show that for small queries the median runtime, as well as the optimization time
proportion, is similar for all k. However, for larger queries, the median runtimes
increase with k. Interestingly, this increase is due to an increased proportion
of optimization time spent on obtaining ideally better plans. At the same time
the execution time (lower part of the bars) is similar (k = 4) or slightly lower
(k ∈ {5, 6}). The box plots for the number of requests for the query plans per
k are shown in Fig. 2c. The results show that the median number of requests
is minimal for k = 4 and the 25 − 75% quantile is most compact for k = 4 as
well. Moreover, the most extreme outliers are observed with k = 5 and k = 6.
Based on these observations to avoid disproportionate optimization times but
still explore the space of possible plans sufficiently, we set k in a dynamic fashion
with: k = 4 if |Q| < 6 and k = 2 otherwise.

Robustness and Cost Threshold. After determining appropriate parameters
for the cost model and IDP, we investigate the parameters that impact the
decision when an alternative robust plan should be chosen over the cheapest

Fig. 3. Results for the 10 queries of the custom benchmark.
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plan. The robustness threshold ρ determines when an alternative plan should
be considered, while the cost threshold γ limits the alternative plans to those
which are not considered too expensive. We tested all 25 combinations of ρ ∈
{0.05, 0.10, 0.15, 0.20, 0.25} and γ ∈ {0.1, 0.3, 0.5, 0.7, 0.9} and run all queries for
each combination three times. The averaged results of the total runtimes and
the number of requests per run for all 25 parameter configurations are listed in
Table 1. Also included is the number of queries for which an alternative robust
query plan was selected over the cheapest plan as |R∗|. Lowest runtime and
number of requests are indicated in bold. The parameters configuration ρ = 0.10,
γ = 0.3 yield the best runtime results while the lowest number of requests are
performed with the configuration ρ = 0.05, γ = 0.3. Taking a closer look at
the two configurations, we find that the runtime is only about 3.5% higher for
ρ = 0.05, γ = 0.3, but the number of requests is about 22% lower. Moreover,
when comparing the values for ρ = 0.05 to ρ = 0.10 for all cost threshold values,
we find that the runtimes and the total number of requests for ρ = 0.05 (388,227)
is substantially lower than for ρ = 0.10 (438,116) while the total runtime is just
slightly higher for ρ = 0.05 (3965.16 s) than for ρ = 0.1 (3804.43 s). Following
these findings, we set the cost threshold to γ = 0.3 and the robustness threshold
ρ = 0.05 in the following experiments. The results in Table 1 show that for the
parameter configuration ρ = 0.05, γ = 0.3, for 16 out of 123 queries the robust
alternative query plan R∗ is chosen over the cheapest plan. And 15 out of the
16 queries stem from the WatDiv L2, L5, and S7 queries. To show that other
classes of queries for which the more efficient alternative robust query plan can
be identified using our approach, we investigate the experimental results for our
benchmark with 10 queries over the three datasets DBpedia (DBP), GeoNames
(GN), DBLP (DBLP). We keep the same parameters that we obtained from the
previous experimental evaluation on the other benchmarks. In Fig. 3, the results
of always choosing the cheapest query plans (ρ = 0.00) and the results when
enabling robust query plans to be chosen with ρ = 0.05 and γ = 0.3 are shown.
It can be observed that in 8 queries (DBLP1-3, DBP1-3, GN2-3) robustness allows
for obtaining more efficient query plans. For these queries, the runtime and total
number of requests are lower and at the same time, the robust alternative query
plans produce the same number of answers or even more. Even though the
runtime of the robust query plan for query GN3 reaches the timeout, it produces
more answers with fewer requests during the time. The results show that our
approach devises efficient query plans even for queries where the cost model
produces high cardinality estimation errors. The low robustness of the cheapest
plans drives our optimizer to choose more robust plans which reduce the query
execution times as well as the number of requests.

Comparison to the State of the Art. Given the parameters determined
by the previous experiments, we want to compare the performance of the pro-
posed approach to existing TPF clients, namely nLDE and Comunica. Analo-
gously to the previous experiments, we run the 123 queries from both the nLDE
Benchmark and WatDiv with all three engines. In Fig. 4a the mean runtimes for
all three clients are shown for the WatDiv queries. The results show that our



252 L. Heling and M. Acosta

Fig. 4. Experimental results: comparison to state-of-the-art clients.

proposed approach has a similar performance to the existing engines nLDE and
Comunica. Only for the complex query C2 our approach yields the highest aver-
age runtime, while for 6 query types (C1, C3, F1, F3, F5, L5) it outperforms the
other engines. The results for all queries are summarized in Fig. 4b. Regarding
the runtime, our approach yields the lowest overall runtime (

∑
r) while Comu-

nica has the second-highest and nLDE the highest overall runtime. Taking a
closer look, we find that nLDE reaches the timeout (900 s) for queries Q5 and
Q8 in the nLDE Benchmark 1, explaining the highest overall runtime. In con-
trast, nLDE has the lowest the median runtime r̃. Our approach produces the
highest number of answers while Comunica only produces a few answers less.
The fewest answers are produced by nLDE, likely due to the queries where the
timeout is reached. Next, we consider the mean ratio of answers and requests
per query (Ans./Req.) as a measure of productivity. It can be observed that our
approach on average produces the most answers per request, followed by nLDE
and then Comunica with the fewest answers per request. Increasing this produc-
tivity can have two key benefits: (i) it reduces query runtimes at the client, and
(ii) reduces the load on the TPF server. Finally, we additionally investigated the
diefficiency [2] to evaluate the continuous efficiency of the clients. The highest
dief@t (where t is set to the maximum execution time across all engines per
query) is observed in 39% of all queries for CROP, 54% of all queries for nLDE
and 7% of all queries for Comunica. The results suggest that even though the
overall runtimes for CROP are the lowest, nLDE is outperforming the approach
with respect to its continuous behavior of producing answers. Additional results
for queries Q11-Q20 of the nLDE Benchmark 1 are provided as part of our sup-
plemental material online (See footnote 7). For those queries, we observe that
all engines time out more often, yet CROP outperforms nLDE and Comunica in
the remaining queries.

Concluding our findings, the results show that the proposed approach is
competitive with existing TPF clients and on average produces more efficient
query plans minimizing both the runtime and the number of requests to be
performed. Nonetheless, it must be pointed out that in contrast to heuristics,
the proposed cost model and query optimizer rely on parameters that need to
be chosen appropriately. On one side, this allows for adapting these parameters
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to the specifics of different types of datasets to be queried. On the other side, it
might require preliminary testing to optimize the parameter settings.

5 Related Work

We start by discussing cost model-based decentralized SPARQL query processing
approaches and approaches for querying different Linked Data Fragments (LDF).
An overview of these approaches with their main features is presented in Table 2.

The first group of approaches [7,8,13–15] consists of engines that evaluate
queries over federations of SPARQL endpoints. These approaches rely on statis-
tics to perform query decomposition, source selection, and estimate the interme-
diate results of sub-queries which is the basis for their cost model. The contents
and granularity of these statistics vary across the approaches. While the specific
computation of cost, supported physical join operators and sub-query cardinality
estimations differ for all these approaches, their commonality is factoring in the
cost of transferring the result tuples. SPLENDID [8], SemaGrow [7] and Odyssey
[13] rely on Dynamic Programming (DP) while DARQ [14] implements Iterative
Dynamic Programming (IDP) and CostFed [15] implements a greedy heuristic
to find an efficient plan. However, all of the aforementioned approaches rely on
dataset statistics for accurate cardinality estimations and they do not consider
the concept of robust query plans with respect to errors in the estimations.

With the advent of Triple Pattern Fragments (TPFs), different approaches
for decentralized SPARQL query processing over this Web interface have been
introduced. The TPF Client proposed by Verborgh et al. [17] evaluates con-
junctive SPARQL queries (BGPs) over TPF server. The TPF Client intertwines
query planning and evaluation based on the metadata provided by the TPF
server to minimize the number of requests: the triple pattern with the smallest
estimated number of matches is evaluated and the resulting solution mappings
are used to instantiate variables in the remaining triple patterns. This procedure
is executed continuously until all triple patterns have been evaluated. Comunica
[16] is a meta query engine supporting SPARQL query evaluation over hetero-
geneous interfaces including TPF servers. The authors propose and evaluate
two heuristic-based configurations of the engine. The sort configuration sorts all
triple patterns according to the metadata and joins them in that order, while the
smallest configuration does not sort the entire BGP, but starts by selecting the
triple pattern with the smallest estimated count on each evaluation call. The net-
work of Linked Data Eddies (nLDE) [1] is a client for adaptive SPARQL query
processing over TPF servers. The query optimizer in nLDE builds star-shaped
groups (SSG) and joins the triple patterns by ascending number of estimated
matches. The optimizer places physical operators to minimize the expected num-
ber of requests that need to be performed. Furthermore, nLDE realizes adap-
tivity by adjusting the routing of result tuples according to changing runtime
conditions and data transfer rates based. Different from the existing clients, our
query plan optimizer relies on a cost model, the concept of robust query plans,
and IDP to generate alternative, potentially efficient plans.
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Table 2. Overview and features of decentralized SPARQL query processing approaches
over different Linked Data Fragment (LDF) interfaces.

Query Planner

Approach Federation LDF Cost Robustness Statistics Strategy

DARQ [14] ✓ Sparql ✓ ✗ Service descriptions IDP

SPLENDID [8] ✓ Sparql ✓ ✗ VOID descriptions DP

SemaGrow [7] ✓ Sparql ✓ ✗ TP-based statistics DP

Odyssey [13] ✓ Sparql ✓ ✗ Characteristic sets DP

CostFed [15] ✓ Sparql ✓ ✗ Data summaries Heuristic

TPF Client [17] ✓ Tpf ✗ ✗ TPF metadata Heuristic

nLDE [1] ✗ Tpf ✓ ✗ TPF metadata Heuristic

Comunica [16] ✓ Tpf, Sparql ✗ ✗ TPF metadata Heuristic

brTPF Client [9] ✗ brTpf ✗ ✗ TPF metadata Heuristic

SaGe [12] ✗ SaGe-Server ✗ ✗ – Heuristic

smart-KG [4] ✗ Smart-kg ✗ ✗ TPF metadata Heuristic

CROP ✗ Tpf ✓ ✓ TPF metadata IDP

Other LDF interfaces include brTPF, smart-KG, and SaGe. Hartig et al.
[9] propose bindings-restricted Triple Pattern Fragments (brTPF), an extension
of the TPF interface that allows for evaluating a given triple pattern with a
sequence of bindings to enable bind-join strategies. To this end, the authors
propose a heuristic-based client that builds left-deep query plans which aims to
reduce the number of requests and data transferred. Smart-KG [4] is a hybrid
shipping approach proposed to balance the load between client and server when
evaluating SPARQL queries over remote sources. The smart-KG server extends
the TPF interface by providing access to compressed partitions of the graph.
The smart-KG client determines which subqueries are evaluated locally over the
partitions and which triple pattern requests should be evaluated at the server.
SaGe [12] is a SPARQL query engine that supports Web preemption by com-
bining a preemptable server and a corresponding client. The server supports the
fragment of full SPARQL which can be evaluated in a preemptable fashion. As a
result, the evaluation of BGPs is carried out at the server using a heuristic-based
query planner. Our client focuses on the TPF interface and can be adapted to
support additional LDF interfaces. For instance, by extending the cost model
with bind joins to support brTPF or implementing our concept of robustness as
part of the query planner in the smart-KG client or the SaGe server.

In the realm of relational databases, various approaches addressing uncer-
tainty in statistics and parameters of cost models have been suggested. In their
survey, Yin et al. [19] classify robust query optimization methods with respect to
estimation errors, which can lead to sub-optimal plans as the error propagates
through the plan. One class of strategies they present are Robust Plan Selection
approaches in which not the “optimal” plan but rather a “robust” plan that is
less sensitive to estimation errors are chosen. For instance, robust approaches
may use a probability density function for cardinality estimations instead of
single-point values [5]. Other approaches define cardinality estimation intervals
where the size of the intervals indicate the uncertainty of the optimizer [6]. In
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a recent paper, Wolf et al. [18] propose robustness metrics for query plans and
the core idea is considering the cost for a query plan as a function of the cardi-
nality and selectivity estimations at all edges in the plan. Similar to our work,
the authors propose computing the k-cheapest plans and selecting the estimated
most robust plan. These works rely on fine-grained statistics to assess the selec-
tivity of joins, however, in a decentralized scenario, it is not possible to obtain
such detailed dataset information. Therefore, we propose a robust plan selection
approach and introduce a new concept of robustness for SPARQL query plans
based on the TPF metadata.

6 Conclusion and Future Work

We have proposed CROP, a novel cost model-based robust query plan optimizer
to devise efficient query plans. CROP implements a cost-model and incorporates
the concept of robustness for query plans with respect to cardinality estimations
errors. Our proposed concept of robust query plans is based on comparing the
best-case to the average-case cost of query plans and could be combined with
other existing cost models as well. Combining these concepts, CROP uses iter-
ative dynamic programming (IDP) to determine alternative plans and decides
when a more robust query plan should be chosen over the cheapest query plan.
In our experimental study, we investigated how the parameters of the cost model
and IDP impact the efficiency of the query plans. Thereafter, we studied differ-
ent combinations of the robustness and the cost thresholds in the query plan
optimizer. The parameters allow for finding a good balance between choosing
alternative robust plans over the cheapest plan but not at any cost. Therefore,
our concept of robustness complements the cost model in helping to find better
query plans. Finally, we compared our approach to existing TPF clients. The
results show that our approach is competitive with these clients regarding run-
time performance. Moreover, the query plans of our query plan optimizer require
fewer requests to produce the same number of results and, thus, reduce the load
on the TPF server. Future work can focus on alternative strategies to IDP for
exploring the space of plans more efficiently and extending the optimizer to apply
the concept of robustness in federated querying. Our robust query planning app-
roach may be implemented in Linked Data Fragment clients such as Comunica
or smart-KG and the cost model may be further extended to include bind joins
supported by brTPF. Besides, Linked Data Fragment interfaces, such as SaGe
(HDT) may also benefit from including the notion of query plan robustness.
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