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Abstract. Integrating the idea of collaborations into the energy domain appears
a promising feat, although, relatively contemporary and uncommon. In this
study, we implement a Demand Side Management strategy using the concept of
Collaborative Virtual Power Plant Ecosystem as a digital representation of an
Energy Community. The community uses a sharing platform to share experi-
ence, technical and professional knowledge, facilitating members ambition to
change their energy use behaviours. Members of the community are represented
as software agents. Behaviours in the adopted model are arranged in a frame-
work of tasks and goals for agents to accomplish. Agents join the ecosystem
under deterministic and stochastic conditions. A multi-method modelling
approach is used. This study revealed that through collaboration, agents are able
to accomplish set tasks faster, thus reducing their chances of frustration and
subsequent exit from the ecosystem. This approach helps to influence member´s
behaviour and increases membership fluidity, facilitating community stability
and sustainability.

Keywords: Collaborative Networks � Virtual power pants � Incentivization �
Goal setting � Demand Side Management

1 Introduction

According to the European Commission, buildings are responsible for approximately
40% of the EU’s energy consumption and 36% of the CO2 emissions in Europe [1].
This, therefore, makes buildings the single largest energy consumer in Europe. A claim
by [2] disclosed that developed countries could reduce energy demand by up to 20% in
the short term and by up to 50% of present levels by mid-century through lifestyle and
behavioural changes. These facts therefore reveal the significant role households play
towards GHG emissions globally, and also unveil its potential contribution towards
mitigation. Some published suggestions in this context include: the deployment of
energy-efficient appliances [3], consumer behavioural change [4], and Net Zero Energy
Building [5], amongst many. However, amongst the prevailing options, consumer
behaviour change is said to offer the lowest cost and fastest switching option for
Demand Side Management (DSM) as compared to the others [6].
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In this simulation study, we approach DSM using a collaborative approach. Our
primary objective is to influence ecosystem members to delegate their deferrable loads
such as washing machines, dishwashers and tumble dryers to the ecosystem manager
for collective control. However, we precede this action with some antecedent inter-
ventions in the forms of goals and tasks, to help facilitate the delegation process. The
essence of the intervention is to induce or inculcate some fundamental energy use
behaviours amongst members in the community. This could help to create a sense of
energy conservation awareness within the community before finally introducing del-
egation. Furthermore, we will also consider how collaborations can also enhance the
membership fluidity of the ecosystem. Ensuing from the above our study will be guided
by the following research problems (R-P) and research questions (RQ).

RP-1. Delegation of deferrable loads are action that solely depend on the will-
ingness of consumers to engage in. It is therefore envisaged that by introducing this
action as a direct and standalone activity in a community, the perceived inconvenience
and discomfort may instil anxiety in members, and could make the idea unattractive,
resulting in less patronage. We therefore hypnotise that by introducing a set of ante-
cedent interventions, it may be possible to alter the behaviours of consumers towards
the enhancement of the delegation process. RQ1. How can collaborations and ante-
cedent interventions enhance the behaviour of consumers towards the delegation of
deferrable loads within an energy ecosystem?

RP-2. A common problem associated with communities are issues of instability
caused by low membership fluidity (LMF). A LMF results in a weak, unstable, and
unsustainable community. We further hypnotise that a high membership fluidity could
promote a stranger, stable, and sustainable community. RQ2. How can collaboration
through the sharing of experience and knowledge (technical and professional) enhance
membership fluidity in an energy ecosystem.

We consider two scenarios. Scenarios 1: A non-fluid community membership with
(a) collaborations, and (b) without collaborations. Scenario 2: A fluid community
membership with (a) collaborations, and (b) without collaborations. The selection of
these scenarios was based on [7, 8]. According to [8], the ability to attract and retain
membership enhances the long term survivability of a community. We adopted a
hybrid modelling approach which incorporates a combination of System dynamics,
Discrete event and Agent-based technology, using the Anylogic platform [9].

2 Related Works and Theoretical Framework

The emergence of works conducted in the area of DSM and goal setting are currently
on the rise. Some of these include works such as [10], where personal goal setting as a
way of reducing residential electricity were studied. Another dimension of goal setting
was presented in a multidisciplinary study conducted in [11], where a combination of
interventions including individual and group goals were studied. An experimental
study to compare two groups in terms of their energy conservation behaviour, in
combination with energy feedback was also conducted in [12]. A systematic literature
review of four behavioural interventions towards residential energy conservation was
also conducted in [13].
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This study presents a multidisciplinary and interdisciplinary approach to DSM
using a combination of concepts borrowed from diverse scientific disciplines. Out of
these multiple concepts, a couple has been identified as the core tenet in which this
work is grounded. These concepts are briefly explained below.

i. The CVPP-E concept. This concept derives its source from the merger of prin-
ciples and concepts from the disciplines of Collaborative Networks (CNs) and
Virtual Power Plants (VPP). At the heart of the concept is the idea of collabora-
tions, which is central to the discipline of Collaborative Networks. CNs represents
a rich plethora of knowledge-base and sets of principles that facilitate collabora-
tions in diverse forms as seen in [14–16]. A VPP on the other hand is a virtual
entity involving multiple stakeholders and comprising decentralized multi-site
heterogeneous technologies, formed by aggregating dispatchable and non-
dispatchable distributed energy sources [17]. The synergy of these two concepts
led to a hybrid concept called the Collaborative Virtual Power Plant Ecosystem
(CVPP-E) introduced in [17, 18]. The CVPP-E can be used to represent a
renewable energy community such as in [19]. The CVPP-E depicts a business
ecosystem and a community of practice where members approach energy gener-
ation, consumption, and conservation from a collaborative approach. The gov-
erning structure is polycentric and decentralized with a manager who plays a
coordinating role and promotes collaborative behaviours.

ii. Goal-setting theory. Theory is summarized in [20], It claims that one’s conscious
goals affect their achievements. Specific goals improve a person’s performance
towards the achievement of that goal. Furthermore, it postulates that people with
specific goals often perform better than those with vague or no goals. When a goal
is met or exceeded, satisfaction increases and vice versa. A goal can instil purpose,
challenge, and meaning into what one perceives as a difficult task. Goals can
motivate people to develop strategies that will enable them to perform better. In a
group context, tasks and information sharing may enhance group performance [21].

3 Modelling Framework

In this section, we describe the building blocks, functions, assumptions and parameters
used to develop the model. We propose a sharing platform as the sharing interface for
the ecosystem. Membership fluidity is based solely on interest in pro-environmental
behaviours. Individuals who are willing to voluntarily make some minor adjustments to
their energy use behaviours may join. Members may exit the platform when they
persistently fail to accomplish any single task and become frustrated as a result.

3.1 Modelling of Households

In the developed model, households are modelled as software agents. These agents are
modelled according to scenarios of behaviour change as described in the Transtheo-
retical model (TT-M) [22]. We assume that agents have passed the pre-contemplation,
contemplation and preparation stages of the TT-M and therefore, we focus attention on
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the action and maintenance stages only (Fig. 1). We also model all households as
having the same schematic behaviour. Households in the ecosystem can only share
experiences. We occasionally introduce special agents called technical and professional
agents. The population of these special agents is always 5% of the total agent popu-
lation. Special agents provide only technical and professional knowledge to the com-
munity. They do not undergo the behaviour change process.

3.2 Antecedent Interventions and Delegation of Deferable Loads

A goal is represented by a collection of tasks. The number and types of tasks in a
particular goal may vary per model, depending on the objectives. In this instance, we
have defined three goals. The first two are antecedent intervention goals, modelled to
precede a third and the main goal, which is the delegation of deferrable loads. The
rationale behind the interventions is to subtly induce a sense of energy conservation
and also introduce a wholistic conservation approach in agents. More details as
follows:

Goal 1: Reduce energy waste through prudent energy use practices.
Task 1: Learn the habit of switching off lights in rooms when not in use.
Task 2: Unlearn the habit of overcharging smart devices.
Task 3: Do household chores at night-time.

Goal 2. Adapt basic and low-cost energy-efficient technologies.
Task 1: Use LED/CFL lightbulbs for the household.
Task 2: Use timers for your lighting.

Goal 3. Delegation of deferrable loads.
Task 1: Delegate all deferable loads to CVPP-E manager.

An agent can be said to have accomplished a goal when they complete all tasks
associated with that particularly goal. All goals are not attempted at the same time.
Agents must complete goal 1 before they progress to attempt goal 2 and finally goal 3.
On the contrary, all tasks in a particular goal are attempted at the same time.

3.3 Modelling of Tasks

Let us now analyse in more detail the tasks:

i. Task framework and technical description

Figure 2 shows the framework of a task. Each task is represented by one of these
frameworks. The framework is composed of state charts. A state chart is a visual
construct that enables the modeller to define event and time-driven behaviours. State
charts are usually constituted of different kinds of states and their corresponding

Fig. 1. Sages of change as described by the TT-M model
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transitions. A task framework is composed of 9 simple states, 3 composite states and 15
transitions, labelled as T1 to T15. Out of the 15 transitions, 3 (T1, T10, T11) are
triggered by messages. Another set of 3 (T2, T12, T14) are also triggered as rates.
4 (T4, T13, T15) are triggered by conditions, and finally 6 (T3, T5, T6, T7, T8, T9) are
triggered as timeouts. A task is modelled through a series of four interconnected blocks
namely, task completed block, task processing block, frustrated agent block, and
feedback block. These blocks and their related algorithms are described below.

ii. Functions of the various blocks in a task

a. Task processing block (TPB): This is where the agent begins the execution
of a task. The sequence of operations starts with T12. T12 is a rate transition
and is defined as the number of attempts per task per day (NaT). This is used to
model the number of times an agent attempts a particular task per day. For
instance, the number of times one may attempt to unlearn the habit of turning
off the lights after leaving a room, may occur serval times in a day. On the other
hand, attempting to unlearn the habit of overcharging smart devices could
happen perhaps once, twice or at most three times in a day. These number of
attempts could recur for several days, weeks, or even months until the habit is
finally unlearned. This suggests that NaT for every task may vary depending on
the nature and kind of the task. Nonetheless, we may have to define some
tentative boundaries to represent the possible minimum and maximum number
of attempts per day. In this model, NaT is modelled using a uniform discrete
distribution (X, Y) where X is the minimum number of occurrences per day and
Y is the maximum number of occurrences per day. For instance, considering
goal 1, the following parameters are defined:

Fig. 2. Framework of a task. Fig. 3. Model of a goal with three tasks. (E.g.
goal 1)
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Task1 – (NaT1) = Uniform discrete distribution (0, 10); Task 2 −(NaT2) = Uniform
discrete distribution (0, 3); Task 3 – (NaT3) = Uniform discrete distribution (0, 1).

At every instance of T12, the states indicated as “motivation” and “demotivation”
are activated. These states are used to model the outcome of each attempted task. The
possible outcomes are: (i) Positive experience, resulting in a motivation (through T7),
or (ii) Negative experience, resulting in a demotivation (through T8). T7 and T8 are
random transitions with equal probability of occurrence. This therefore helps to create
equal probability for both motivation and demotivation occurring at every iteration.
The model assigns a weight +K for every motivation and a weight −K for every
demotivation. These two values are aggregated in parallel, and on continuous basis,
until one of them reaches a predefined threshold called the “Decision constant” (Dc).
Since these are stochastic actions, the duration for reaching this threshold could vary
from days to weeks or even months for different tasks and for different agents. For
instance, considering the same task, one agent could reach the threshold in days, others
could achieve it in weeks and for some others, in months. The Dc can be varied. Higher
values make tasks difficult to achieve and lower values, easy to achieve (Fig. 3).

If the aggregated value for motivations is the first to reach the threshold, the model
interprets this event as signifying an agent with sufficiently high motivation to merit the
accomplishment of that particular task. On the contrary, if the aggregated value for
demotivation is the first to reach the threshold then the model interprets this event as
signifying a demotivated agent who has failed to accomplish the said task. The
Decision factor (Df) is the algorithm that is used to monitor these events. The Df and
the Dc work together to decide whether a task has been completed or otherwise.

For example, considering the scenario of unlearning the habit of turning off the
lights after leaving a room. Assuming it took the agent three days to overcome this
habit. On the first day, the agent entered the room 10 times (NaT = 10) and out of the 10
events, the agent remembered to turn off the light on 4 occasion (M1 = 4) but forgot to
turn it off on 6 occasions (D1 = 6). On the second day, the agent entered the room on 12
occasions (NaT = 12) and remembered to turn off the lights on 8 occasions (M2 = 8)
and forgot on 4 occasions (D2 = 4). On the third day, the agent entered the room 8 times
(NaT = 8) and remembered to turn off the light on 8 occasion (M3 = 8) and forgot none
(D3 = 0). Assuming that a weight K = 1 is assigned every time, the agent remembers to
turn off the lights (motivation) and weight –K = −1 is assigned every time the agents
forgot to turn off the lights (demotivation). Then the Df and the Dc will decide based on
the following algorithms:

Dfmotivation ¼ K �M1ð Þþ K �M2ð Þþ K �M3ð Þ½ � þ . . .. . .. . .. . .. . . K �MNð Þ�
Dfdemotivation ¼ �K � D1ð Þþ �K � D2ð Þþ �K � D3ð Þ½ � þ . . .. . .. . .: �K � DNð Þ�

Considering the scenario described above,

Dfmotivation after 3 days ¼ 1 � 4ð Þþ 1 � 8ð Þþ 1 � 8ð Þ�
¼ 4þ 8þ 8 ¼ 20
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Dfdemotivation after 3 days ¼ �1 � 6ð Þþ �1 � 4ð Þþ �1 � 0ð Þ½ �
¼ �6ð Þþ �4ð Þþ 0ð Þ ¼ �10

Assuming we defined a threshold (Dc) of say: X1 = 15 to represent highly motivated
and X2 = −15 to represent highly demotivated, then: When Dfmotivation � X1, the task
is said to be completed, and the model transitions to the task completed block. When
Dfdemotivation � X2, the task has failed and the model transitions to the “frustrated
block. Therefore, considering the scenario above, the condition for Dfmotivation is true
(20 > 15), and the condition for Dfdemotivation is false (−10 ¥ −15). Hence a transition
into the task completed block. Parameters defined for this model are: K = 1, −K = −1,
M and D = Random events, X1 = 10, X2 = −10.

b. Task completed block (TCB): Transition into this block is facilitated by the
DFmotivation and the Dc (X1) and is activated through T4. A task in this state is
considered to be completed. When all other tasks in that particular goal have also
transitioned into their respective TCBs it can be inferred that the related agent has
completed all tasks for that particular goal, therefore the goal has been achieved.
c. Frustrated state block (FSB). Transition into this block is facilitated by the
DFdemotivation) and the Dc (X2) and is activated through T13. Tasks in this state are
time dependent. The time of entry into this block is captured as T1. Agents are
modelled to remain in this state for a limited length of time, denoted as T2. When T2
expires whilst the agent is still in this state, the agent will exit the platform. At the
instance of entering the FSB, the agent broadcasts an open call.

Open calls are modelled to mimic scenarios of agents sharing their problems with
the entire ecosystem. When an open call is broadcasted, all ecosystem members will
receive a copy, however, only agents who have completed similar task, and special
agents can provide feedbacks. After broadcasting an open call, the agent transition
internally into the “awaiting feedback state” through T14. If the agent does not receive
a feedback in the form of a message, before T2 elapses, the task will expire, and the
agent will abandon all other goals related to that tasks and exits the platform. On the
contrary, when the agent receives a feedback before T2 elapses, the model transitions
into the feedback block through T11, where the agent is afforded another opportunity to
either attempt the task again or accomplish the task. This will depend on the kind of
feedback that is received. The condition for exiting is modelled as a uniform discrete
distribution between (T1, T2). Where T1 = time of entry (in days), and T2 is random
between 30 to 60 days from time of entry. Furthermore, open call broadcasts are
modelled as a rate (Rfb) which is a uniform discrete distribution (X, Y) where X = 0, Y =
3 per day.

d. Feedback block. The impact of a feedback on the agent can result in one of two
actions: (1) If the feedback is helpful to the agent, the task will transition through T3
to the task completed block to complete the task; else (2) the agent will transition
through T5 back to the task procession block to repeat the cycle again. T3 or T5 are
modelled as stochastic events with equal probability of occurrence. Which means a
received feedback has equal probability to facilitating task completion or otherwise.
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3.4 Modelling Feedback

Feedbacks is represented by a “variable rate”. This rate can be varied. Rates defined for
this model are in the range rate (0, 10) per day, which means that the rate of feedback
could vary from 0 times per day to 10 times per day. This value could be used to
indicate the rate at which the agents responds to feedback per day.

In Fig. 4, we illustrate the exchange of open calls and feedbacks to represent the
aspects of collaborations in the model. These information items (open call and feed-
backs) are modelled as messages which can be sent from one transition to another.
Transitions T1a, T1b, T1c and T11, are message receiving transitions and are triggered
by the reception of a message(s). On the contrary, transition T2a, T2b, T2c and T14
send out a message(s) anytime they receive a trigger signal. In Fig. 4, these information
exchanges are shown using 4 different agents who are at various stages in their
respective tasks. These are: experienced agent-1 (EA1), task currently in the frustrated
block. Experienced agent-2 (EA2), task currently in task completed block. Experienced
agent 3 (EA3), task currently in task completed block, and a technical agent (TA).

a. Sending open calls. When T14 of EA1 receives a trigger signal, it gets triggered
and, in the process, broadcasts open calls to all agents on the platform. It then
transition from broadcast_ open_call state into awaiting_feedback state.

b. Receiving open calls. TA, EA2 and EA3 will each receive a copy of the open call
broadcasted by EA1. The open call will be received by transitions T1a, T1b and T1c
of TA, EA2 and EA3 respectively. The receipt of the open call message will trigger
these transitions from their respective receive_open_calls state into their various
reply_to_open_call states. In this current state, there is a delay which is modelled as
a random distribution in hours, i.e. random () per hour. This random-delay function
is used to prevents all the agents from triggering their respective T2s at the same
time. The rationale behind this delay is to prevent all the agents from responding to
the open call at the same time. This therefore helps to spread or distribute the
feedbacks over the course of the day.

Fig. 4. Illustration of open calls and feedback.
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c. Responding to open calls (feedback). The delay will elapse at different times for
TA, EA2, EA3 and cause transitions T2a, T2b and T2c to be triggered respectively.
This causes the various tasks to transition from their respective reply_to_open_call
state back into the receive open_call_state. The triggering of T2a, T2b, and T2c
causes three different feedbacks messages to be sent out to the whole community
including the specific agent who sent the open call. Although all agents in the
community will receive copies of the feedbacks, they are of no relevance to agents
who are already in the task completed block, therefore, only agents in the frustrated
block can consume such messages. In this scenario, only EA1 can consume these
feedbacks. The three feedbacks will be received by T11 of EA1, however, out of the
three, only one will be chosen at random to trigger T11, and cause it to transition the
task1 out of the frustrated block.

4 Modelling Outcome and Discussion

In the context of this study, a collaborative community is achieved through a network
of interconnected agents who share diverse kinds of information through a common
sharing platform. It is perceived that the diversity of the shared information is a key
element in this kind of collaborations. Using this approach, agents can share their
various challenges which made specific task difficult or easy for them to accomplish.
Just like real life scenarios, different people will encounter different challenges when
attempting to solve the same problem. Therefore, the approach to solving one problem
may vary from one person to the other. Consequently, creating a platform where it is
possible to share such personal experiences, techniques and skills could help generate a
pool of ideas, techniques, skills and experiences that could help others solve the same
problem, however, from diverse perspectives. This collaborative idea is what the model
under consideration seeks to achieve.

Scenario1. Non-fluid membership with (a) No collaboration, and (b) with collabora-
tion. Figure 5 represents the outcome of the model using a fixed number of agent

Fig. 5. a. Fixed number of agents with no collaboration b. Fixed number of agents with
collaborations
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population consisting of 200 agents in the non-collaboration scenario. It can be seen
that 130 agents exited the community due to the absence of feedbacks to help address
agent’s frustrations. Only 70 out of 200 agents were retained after 365 days repre-
senting a scenario of low membership fluidity. In terms of tasks completed, goal 1,
recorded 180 completed tasks, goal 2 recorded 120 completed tasks and goal 3, 60
tasks. No task pileups were recorded. On the contrary Fig. 5b is the outcome of the
same model, however, with collaboration introduced. It can be seen that 194 out of 200
agents were retained after a period of 356 days. This outcome shows a scenario of high
membership fluidity. Only 6 agents exited the community. In terms of tasks, 552 tasks
were completed in goal 1, 368 tasks were completed in goal 2, and 184 tasks were
completed in goal 3. No task pileups were recorded. By comparing the outcomes of
gaol 3 for both scenarios, it can be inferred that the combination of collaborations and
antecedent interventions significantly enhanced the delegation of deferrable loads.

Scenario 2. Fluid membership (a) No collaboration, and (b) with collaboration.
Figure 6a and 6b shows the outcome of the model with membership fluidity modelled
on a weekly basis. The level of fluidity is modelled as a random function (X, Y) where X
= 0 members per week and Y = 5 members per week. Figure 6a shows the instance of
the model with no collaboration. The outcome shows that, a total of 222 (152 + 70)
agents joined the platform over a period of 365 days, considering there were zero
agents at the start of the model. It can also be observed that a total number of 152
agents out of 222 were retained in the community at the end of the model year.
Furthermore, 70 agents exited the community. This represent a scenario of low
membership fluidity. Figure 6a further revealed that 337 tasks were completed in goal
1, 169 tasks were completed in goal 2 and 78 tasks were completed in goal 3. Fur-
thermore, it can be seen that, at the end of the model run, there was 7 tasks pileups in
goal 1, 32 tasks pileups in goal 2 and 53 tasks pileups in goal 3. By comparing Figs. 6a
with 6b we notice a significant improvement in the model performance. This is because
Fig. 6b represents the scenario with collaborations. In this scenario, we noticed that a
total number of 215 (206 + 9) agents joined the community over the model year. Out
of this number, the community retained 206 agents and lost only 9 agents. This rep-
resent a scenario of high membership fluidity. In terms of tasks management, 511 tasks
were completed in goal 1, 294 tasks were completed in goal 2 and, 139 tasks in goal 3.

Fig. 6. a. Stochastic addition of agent with no collaboration b. Stochastic addition of agent with
collaborations

402 K. O. Adu-Kankam and L. M. Camarinha-Matos



Task pileups in goal 1, was 3, in goal 2 was 1 and 0 in goal 3. A general conclusion can
therefore be drawn that the model performed better under collaborating conditions than
otherwise.

One relevant aspect of the ongoing research on CVPP-E, hinges around Delegation
of Deferrable Loads (DLs) to the ecosystem manager for collective management. The
manager is able to shift the use of these loads to different times of the day to reduce
peak demands on the power grid. DLs can also be shifted strategically to utilize
renewable energy when generation is high, and curtailed their use when generation is
low. These techniques are called “load shifting” and “peak shaving” under DSM.

Although the ultimate goal of the ecosystem is goal 3, which is to influence agents
to delegate their deferable loads, we envisage that by introducing this action as a direct
and standalone activity, the perceived inconvenience and discomfort to agents could
make the idea unattractive, and will result in less patronage. However, we anticipate
that through antecedent interventions such as introduced in goal 1 and goal 2, we may
be able to take the agent through a journey of small changes preceding the major
change. This, we expect, could help to inculcate the necessary discipline and sense of
energy conservation, collaborations and community consciousness in the agents before
they are due to attempt delegation.

5 Conclusion and Future Work

This study has shown how a combination of collaboration and antecedent interventions
could enable some form of behaviour change towards delegation of DLs. It has also
been shown that the process could facilitate the achievements of community goals and
its subsequent contribution to DSM in general. The study has further shown that when
community members are provided with the needed support, in line with community
objectives, in a timely manner, using collaborative techniques, they could contribute
significantly to the achievement of community gaols. Similarly, efforts at influencing
behavioural change could also deliver a promising outcome when implemented within
a collaborative environment where members can share relevant and diverse kinds of
experiences and knowledge which may not freely be available in a non-collaborating
environment. After all, one size does not fit all when it comes to behavioural change
approaches. Furthermore, membership fluidity has also been shown to have a signifi-
cant influence on an ecosystem.

Regarding the ongoing research on CVPP-E and related future works, we intend to
model a scenario where the community is constituted of different categories of
households. We will consider households with single pensioner, households with
multiple pensioners, households with children, households without children and
households with single non-pensioner. This categorization and related energy use data
is inspired by [23]. In each type of household, we will model different task dynamics to
represent the schematic behaviour of each household as they attempt a change in
behaviour. For instance, households with children or households with pensioners could
be modelled in a way such that they may exhibit different behaviours, which could
affect the model outcome significantly. we also intend to advance this study by
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integrating or coupling each household´s energy consumption so that it is possible to
visualize how these behaviours impact on the global community´s energy use.
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