
83, Corrected Publication 2021

Chapter 5
Pedagogical Tasks Toward Extending 
Mathematical Knowledge: Notes 
on the Work of Teacher Educators

Rina Zazkis and Ofer Marmur

5.1  �Introduction

The work of mathematics teacher educators is multifaceted and relies on extensive 
knowledge in various related areas. This includes knowledge in mathematics, peda-
gogy, didactics, school curriculum, assessment methods, education research litera-
ture, research methodologies, and different theories of learning and teaching 
(Jaworski, 2008).

Our focus in this chapter is on teacher educators’ work in professional develop-
ment courses for secondary school mathematics teachers. On the one hand, our 
explicit goal in these courses is to extend the teachers’ mathematical knowledge. On 
the other hand, as mathematics teacher educators, we are expected by teachers to 
address pedagogical issues associated with the teaching of mathematics. Consequently, 
to balance existing expectations of teachers with our goal of extending and strength-
ening their mathematical knowledge, we must engage the teachers in a delicate inter-
play between mathematics and pedagogy. We design tasks of pedagogical nature, 
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which are additionally aimed at extending the teachers’ understanding of the underly-
ing mathematics (e.g. Biza, Nardi, & Zachariades, 2007, 2018; Peng, 2007).

In order to advance teachers’ mathematics, it is essential to first gain insight into 
the mathematical knowledge they possess, as teaching mathematics undoubtedly 
relies on prior knowledge of learners. School teachers usually have a relatively good 
grasp of their students’ knowledge based on their prior work with the students and 
the curriculum sequence they follow. Teacher educators do not have such a privi-
lege. This is particularly evident in postbaccalaureate teacher education pro-
grammes, to which students come from various undergraduate experiences, often 
educated in different decades and different countries. How is it possible to get a 
sense of where a group is in terms of their mathematical maturity and sophistica-
tion? How can a teacher educator be able to “scan” the group’s knowledge of a 
mathematical topic in order to plan for, or adjust, subsequent instruction?

We address these questions by providing two illustrative examples: the first 
attends to the concept of a function, and the second deals with the concept of 
irrational exponents. In each case, we:

	(a)	 Describe a task of a pedagogical nature that provides teacher educators with a 
window into strengths and weaknesses in teachers’ knowledge of a particular 
mathematical topic.

	(b)	 Provide a brief overview of the main themes that emerged from teachers’ 
responses to the task, and exemplify several responses that informed our design 
of follow-up instructional activities.

	(c)	 Illustrate the follow-up instructional engagements.

In the following section, we present the idea of script-writing, which served as the 
guiding principle for the design of our pedagogical tasks. We then discuss the usage-
goal framework (Liljedahl, Chernoff, & Zazkis, 2007) that we employ to illustrate 
the symbiosis of mathematics and pedagogy in our approach. Subsequently we 
introduce the two examples as described above.

5.2 � Script-Writing in Mathematics Education

Script-writing is a valuable pedagogical strategy and an innovative research tool 
that was adopted and developed in the context of mathematics teacher education. 
While script-writing is novel in mathematics education research, its roots trace to 
the Socratic dialogue and to the style of Lakatos’ (1976) evocative Proofs and 
Refutations in which a fictional interaction between a teacher and students 
investigates mathematical claims.

Initially, script-writing was introduced in mathematics teacher education as a 
lesson play, a task in which participants script interaction between an imaginary 
teacher-character and student-character(s) (Zazkis, Liljedahl, & Sinclair, 2009; 
Zazkis, Sinclair, & Liljedahl, 2013). Juxtaposed to a classical lesson plan describing 
merely content and activities, the lesson play reveals how a teaching-learning 
interaction unfolds. In later research, the idea of a lesson play was extended to an 
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activity of writing an imaginary dialogue that is not necessarily restricted to a 
lesson, referred to as script-writing. When used in teacher education, script-writing 
is a tool related to “approximations of practice” (Grossman, Hammerness, & 
McDonald, 2009), which “include opportunities to rehearse and enact discrete 
components of complex practice in settings of reduced complexity” (p. 283), and is 
advocated as an essential part of teacher preparation.

Script-writing is used as both an instructional tool for the advancement of peda-
gogy and mathematics and a research tool for data collection. It has been imple-
mented in recent research (e.g. Brown, 2018; Koichu & Zazkis, 2013; Zazkis & 
Kontorovich, 2016; Zazkis & Zazkis, 2014) where participants had to identify prob-
lematic issues in the presented topics and subsequently clarify these by designing a 
scripted dialogue. The affordances of script-writing were detailed for script-writers 
(students, prospective teachers, and teachers), teacher educators, and researchers. In 
particular, for teachers, writing a script is an opportunity to examine a personal 
response to a situation, explore erroneous or incomplete approaches of a student, 
revisit and possibly enhance personal understanding of the mathematics involved, 
and enrich the repertoire of potential responses to be used in future real teaching. 
For teacher educators, the scripts provide a lens on planned pedagogical approaches 
that can be consequently highlighted and discussed in working with teachers. For 
researchers, the scripts form a rich data source that can be examined from various 
perspectives and provide a lens for examining images of teaching and insights into 
the script-writers’ understanding of mathematics (e.g. Zazkis et al., 2013).

In this chapter, we highlight an additional use and benefit of script-writing tasks: 
they provide teacher educators with insight into the mathematical knowledge of 
their students, which can subsequently be used for planning follow-up instructional 
activities aimed at extending and strengthening this knowledge.

5.3 � The Usage-Goal Framework

As mathematics educators, we draw on our knowledge of mathematics and peda-
gogy to design tasks aimed at advancing both the mathematical and pedagogical 
understanding of the teachers we teach. However, the interweaving of mathematics 
and pedagogy in professional development courses might create a complex 
educational setting in which the mathematical and pedagogical ideas become 
entangled and, consequently, harder to be discerned. The usage-goal framework 
suggested by Liljedahl et al. (2007) illustrates a way of examining the use of tasks 
in teacher education while attending to both mathematical and pedagogical 
perspectives. More specifically, the framework is organised in four cells of a 2 × 2 
array (presented in Fig. 5.1), where the content of the cells should be read as “the 
use of x to promote understanding of Y”, x and Y being either mathematics or 
pedagogy (e.g. mP is read as “the use of mathematics (m) to promote understanding 
of Pedagogy (P)”). The suggested array, according to Liljedahl et al. (2007), serves 
to disaggregate “our knowledge of mathematics and use of pedagogy [as teacher 

5  Pedagogical Tasks Toward Extending Mathematical Knowledge: Notes on the Work…



86

U
SA

G
E

GOALS
Mathematics (M) Pedagogy (P)

mathematics (m) mM mP

pedagogy (p) pM pP

Fig. 5.1  Goals and usage grid

educators] from the mathematical and pedagogical understandings we wish to instill 
within our students [teachers or prospective teachers]” (p. 240).

As we demonstrate in what follows, our scripting tasks are situated within the 
lower row of the grid (pM and pP). In short, these tasks present a prompt for a 
beginning of a dialogue between imaginary students and their teacher and ask the 
participating teachers to continue the dialogue in a way they find fit. These prompts 
typically attend to a problematic issue, a potential error or misconception, or an 
unexpected student question. This requires the participants to consider both the 
pedagogical issues of how to explain the topic and the mathematical knowledge 
involved. Accordingly, the scripting tasks utilise a pedagogical perspective to 
promote both pedagogy and mathematics.

The follow-up classroom activities in a teacher education course, however, are 
predominantly situated within the upper row of the grid (mM and mP). These 
activities utilise those mathematical themes that require further attention and 
deepening of understanding according to the tasks. Accordingly, the mathematics 
involved is used as a basis for the promotion of related mathematical knowledge, as 
well as pedagogical considerations specific to the topic.

5.4 � Context for the Examples

The two examples described below took place in the context of a professional devel-
opment course for practicing secondary school mathematics teachers. In both cases, 
the course participants were given a scripting task in the form of a prompt that was 
the beginning of a dialogue between a teacher and students and were asked to con-
tinue it according to their mathematical and pedagogical understanding (Part A). In 
addition to writing a script that extends the dialogue, the participants were also 
asked to explain their choice of the presented instructional approach (Part B). 
Furthermore, they were asked to explain their personal understanding of the 
mathematics involved in the task and note whether their potential explanation to a 
“mathematically sophisticated colleague” differed from what they chose to include 
in the scripted conversation with students (Part C).
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5.5 � Example 1: Functions, Not Just Linear

The concept of a function is fundamental in mathematics, and it has been repeatedly 
regarded in the education literature as a central concept in the school curriculum 
(e.g. Ayalon, Watson, & Lerman, 2017; Dreyfus & Eisenberg, 1983; Hitt, 1998; Paz 
& Leron, 2009). Rather recently, Dubinsky and Wilson (2013) have conducted a 
longitudinal literature review, covering over 50 years of research on student learning 
of this concept. However, the examination of the vast amount of mathematics edu-
cation literature related to the understanding of functions reveals that there has been 
relatively little research performed specifically in relation to teachers’ and prospec-
tive teachers’ understanding of the concept. The following example provides a 
glimpse into this issue.

5.5.1 � The Scripting Task: Functions

Figure 5.2 presents a prompt for a scripting task alongside a particular table of val-
ues. In this task, the participants were invited to explore an imaginary student ques-
tion, whether there are functions other than y = 3x that satisfy the same table of 
values. The task was designed to address several known misconceptions regarding 
the function concept (elaborated below), which are attributed in the literature to 
either secondary school students, undergraduate students, or prospective teachers. 
Accordingly, the pedagogical task could promote either mathematical growth, in 
case the teachers’ existing understanding of the function concept was challenged 
(pM), or pedagogical growth, in case the teachers decided to address possible stu-
dent mistakes that might arise (pP), or both.

The above task addresses two issues described in mathematics education 
research. Firstly, the task attends to the phenomenon of linear functions as “over-
powering” prototypical examples, both for undergraduate students (e.g. Dreyfus & 

Teacher: Consider the following table of 
values. What function can this de-
scribe?

Alex: y = 3x
Teacher: And why do you say so?
Alex: Because you see numbers on the 

right are 3 times numbers on the 
left

Jamie: I agree with Alex, but is this the 
only way?

Teacher:

x y
1 3
2 6
3 9
4 12
5
6

Fig. 5.2  A prompt for the table of values scripting task
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Eisenberg, 1983) and secondary school students (e.g. Markovits, Eylon, & 
Bruckheimer, 1986; Schwarz & Hershkowitz, 1999). For example, Markovits et al. 
(1986) reported that half of the participating ninth-grade students in their study 
claimed that there is only one given function that passes through two given points 
and that this function is a straight line. In the current presented task, the table of 
values contains four points that satisfy the line y = 3x, which in comparison to the 
case presented by Markovits et al., where there were only two given points, further 
“strengthens” the idea of the line as the only available option. Secondly, the task 
addresses the issue of teachers’ potential lack of understanding of the arbitrary 
nature of how a function may be defined (e.g. Even, 1990). More specifically, 
Thomas (2003) reported on teachers’ need for an algebraic formula to describe a 
function that has a tabular representation, as is the case with the current “table of 
values” task.

Through Jamie’s question in the task, “but is this the only way?”, we expected 
the consideration of various suitable functions that constitute an example space 
(Watson & Mason, 2005) applicable to the task, which in turn could shed light on 
the teachers’ understanding of the function concept.

5.5.2 � Snapshots from the Scripts: Functions

Our analysis identified the main themes that emerged from the scripts and examined 
the structure of the exhibited example spaces of functions that were given by the 
participants. We distinguished between examples used in Part A, which could have 
been purposefully restricted in the scripts based on pedagogical and instructional 
considerations, and the examples mentioned in Part B or Part C, which pointed to 
the participants’ own understanding of the task. In the context of the current chapter, 
however, we do not provide a detailed analysis of participants’ responses. Rather, 
we highlight several themes that emerged, which served as a motivation for devel-
oping follow-up instructional activities.

5.5.2.1  On the Notion of Function

The following excerpt from Taylor’s1 script exemplifies several features evident in 
the participants’ perception of the function concept:

Teacher: 	 Excellent question Jamie, what’s your instinct, are there other ways?
Jamie: 	 Well I don’t know, I guess there could be, but how could we tell?
Teacher: 	 Why don’t we start by plotting these points. And by we I mean you.

[Students plot the points]

Teacher: 	 Good, so how would it look if we used Alex’s function?

1 All participant names are pseudonyms.
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Jamie: 	 It would have a straight line through all the points.
Teacher: 	 Yes, but how else can we connect these points?
Jamie: 	 I suppose we could do a zig zag line.
Teacher: 	� Sure, that would work. But we want this to be a function, so what rule do 

we need to follow?
Jamie: 	 The vertical line test.
Teacher: 	 Which is the easy way of remembering what?
Jamie: 	 Each output can only have 1 input.
Teacher: 	 Correct, so how can we connect these points then?
Jamie: 	 Any way we want as long as we don’t break the vertical line test.

In this excerpt, the teacher’s request to plot the points explicitly leads to the consid-
eration of a graphical representation. The question “but how else can we connect 
these points?” leads students to explore alternative options to the straight line. 
However, all examples in the script explicitly or implicitly regarded the domain as 
the set of all real numbers.

In Taylor’s script, we note the reference to the “vertical line test” as an implicit 
working definition of a function. We further note that the teacher-character agrees 
with a student’s incorrect definition, “Each output can only have 1 input”. This 
could be either a misconception or lack of attention on the part of the script-writer.

The features of this script – infinite and unbounded domain, continuous function 
(“connected points”), vertical line test, and lack of a correct definition – were typi-
cal in this group of participants. This led us to design an activity that focused on 
different definitions of a function and a historical evolution of the contemporary 
definition.

5.5.2.2  Polynomial Expressions

While some script-writers expressed difficulty in considering examples other than 
the linear function, a possibility to fit a polynomial function to the given table of 
values was featured in several scripts. This is illustrated in the following excerpt 
from Logan’s script:

Teacher:	� Well in all of these cases we have assumed something subtle. If we filled 
the table of values what would we get for the remaining y entries?

Alex: 	 15 and 18
Teacher: 	 Does it have to be those values? What if I put 16 and 23?
Jamie: 	 … Can you do that?
Teacher: 	� Why not? The points could be modeling anything! There is nothing there 

that says it has to be a line.
Jamie: 	 Can we find an equation for that though?
Teacher: 	� Certainly, but I need to talk about degrees of freedom. In our table of 

values we could make up 6 values of y and therefore we have 6 degrees of 
freedom. Simple enough?

Jamie: 	 Mhmm.
Teacher: 	� So we need to find a polynomial with at least 6 degrees of freedom to 

describe it, that is a polynomial with at least 6 terms.
Alex: 		  So a 5th order polynomial?

5  Pedagogical Tasks Toward Extending Mathematical Knowledge: Notes on the Work…



90

Teacher: 	� Exactly Alex, we could find a polynomial of the form y = ax5 + bx4 + cx3 
+ dx2 + ex + f that fits the table of values.

Jamie: 	� But how can we ever assume that any patterns we see in a table of values 
continues?

Teacher: 	� An excellent question, short answer is we don’t. When we make these 
equations we are assuming that the trend we observe will continue. When 
making this assumption we need to look for reasons to explain the trend 
and then ask if we expect those factors to stay the same. Maybe the data 
was showing the population of a species but at x = 5 more food is intro-
duced or a predator is removed and the species can grow at a faster rate.

While general solutions are usually considered in mathematics as more valuable 
than specific ones, Zazkis and Leikin (2007) noted that often general examples 
point to an individual’s inability to generate a specific one. In this case, the pre-
sented example of a polynomial function points to Logan’s awareness of a possibil-
ity of a polynomial function, while it may also indicate Logan’s difficulty in 
producing an explicit formula for the polynomial.

While Logan noted the existence of a polynomial function, Corey provided such 
a function “out of the blue” and left it for the students to verify that it is consistent 
with the entries in the table of values.

Jamie: 	� It’s kind of obvious that it’s y = 3x. What are we learning here?
Alex: 		  I� guess it’s making us think outside the box a little, but yeah, our other 

answers are kind of lousy.

		  […]

Teacher: 	� Then let me give you an extension. Check out this function 
y = x4 − 10x3 + 35x2 − 47x + 24

Alex: 		  Where did you get that from?
Teacher: 	 You tell me.
Jamie: 	 Ug. This works doesn’t it? That is so annoying! How did you get this?

		  […]

Alex: 		  But it’s not a line!
Jamie: 	� Who cares? It’s a function. And I guess it takes going to the power of four 

to hit all four points.
Teacher: 	� I’ll leave you to it. Figure out how to derive that equation! I didn’t just 

pull it out of thin air.

In his commentary in Part C, Corey added that the polynomial was generated by a 
computer program, using matrices to solve systems of linear equations. He felt, 
however, that this material was inappropriate for his students. Corey wrote: “[t]he 
level of math needed to determine the final function is beyond what I consider high 
school level math. After being given the function the answer can be easily revealed, 
but it still is not easy”.

We agree with Corey that generating polynomials from a manipulation of matri-
ces may be beyond high school student capabilities. However, the scripts of Corey 
and Logan informed a follow-up instructional activity aimed at extending the teach-
ers’ knowledge of mathematics. In the next section, we present and discuss an 
instructional exploration on how such polynomials can be found and how this 
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approach could be utilised to extend teachers’ connections between tertiary and 
school mathematics.

5.5.3 � Follow-Up Activities: Functions

In the current section, we present two follow-up activities that were designed in 
response to the participants’ scripts: (1) classifying different definitions of functions 
for the deepening of the conceptual understanding of the function concept and (2) 
seeking to “create” a polynomial function that fits the original table of values. The 
rationale behind the activities, their mathematical details, and the resulting class-
room events are elaborated below.

5.5.3.1  Function Definition

The scripts revealed that the participants mostly considered functions as continuous, 
written as a single formula, defined on an infinite and unbounded domain, and con-
tinue the given pattern. More specifically, the examples that the teachers used lacked 
any referral to the arbitrary nature of functions, that is, that there is no need for 
regularity or a representative expression for the correspondence, nor are there rules 
for what the sets of the domain and codomain must be (Even, 1990; Steele, Hillen, 
& Smith, 2013). As explained by Even (1990), and in line with the scripts, the rejec-
tion of the arbitrary characteristic of functions may be the result of “a prototypical 
judgement whether an instance is a function, combined with a limited concept 
image” (p. 528). Accordingly, we decided to initiate a follow-up classroom activity 
that “goes back to the basics” and focuses on the function definition.

Initially, the participants were asked to provide a definition of a function in writ-
ing. While “function” is a familiar and frequently used term both in school mathe-
matics and in undergraduate studies, only one half of the participating teachers 
succeeded in providing an accurate definition. The other half provided definitions 
that either did not allude to the necessity of a unique corresponding value to each 
value in the domain or, to the contrary, required different image values for different 
domain values (i.e. defined an injective function instead of a function).

After providing a personal definition, the participants were given a list of 17 defi-
nitions and were asked to classify them according to criteria of their choice. The 
classification itself was a subordinate goal (Hewitt, 1996) in order to invoke a thor-
ough consideration of the details and features of each definition. Out of the given 
definitions, 11 definitions were taken from different textbooks and web-based 
sources, and the remaining 6 “definitions” were in fact incorrect, chosen to highlight 
frequent misconceptions (such as the aforementioned confusion between the defini-
tion of a “function” and an “injective function”).

As a group, the participants succeeded in rejecting the incorrect or incomplete 
definitions. The subsequent conversation focused on two chosen clusters of 
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definitions. The first cluster included set-based definitions, exemplified by Definition 
S below (based on Usiskin, Peressini, Marchisotto, & Stanley, 2003, p. 70), in which 
the sets consisting the domain and codomain were explicitly addressed:

Definition S: The Cartesian product of two sets A and B, denoted A × B, is the set of all 
ordered pairs (a, b) such that a ∈ A and b ∈ B. For any sets A and B, a function f from A to 
B, f : A → B, is a subset f of the Cartesian product A × B such that every a ∈ A appears once 
and only once as a first element of an ordered pair (a, b) in f.

This continued into a discussion on the arbitrary choice of the two sets. More spe-
cifically, an important realisation that did not appear in any of the scripts was that 
the table of values in Fig.  5.2 already provides a function without any need for 
domain expansion: the set of ordered pairs S = {(1,3), (2,6), (3,9), (4,12)} given in 
the table determines a function with domain {1,2,3,4} and codomain {3,6,9,12}.

The second cluster consisted of the following two definitions, H1 and H2, where 
the reader may recognise their historical significance:

Definition H1: A function of a variable quantity is an analytic expression composed in any 
manner from that variable quantity and numbers or constant quantities.

Definition H2: y is a a function of a variable x, defined on an interval a < x < b, if for every 
value of the variable x in this interval there corresponds a definite value of the variable y. 
Also, it is irrelevant in what way this correspondence is established.

Definition H1 belongs to Euler and dates to the year 1748 (see Euler, 1988, for a 
translated version of his original book Introductio in Analysin Infinitorum). As 
explained by Kleiner (1993), this early version of a definition of a function refers to 
a single analytic expression with an unrestricted domain (and corresponds to what 
we nowadays call “elementary functions”). Definition H2 belongs to Dirichlet from 
the 1820s and is considered as the basis of the current contemporary definition of a 
function (Kleiner, 1993). While this definition does not yet permit arbitrary sets as 
domain and codomain, it is nonetheless freed from the requirement of an analytic 
expression or a corresponding curve to define a function (e.g. the famous Dirichlet 
function, which is defined separately for rational and irrational numbers).

In addition to the meta-mathematical dimension of exposing the teachers to the 
developing nature of mathematical definitions (e.g. Kjeldsen & Blomhøj, 2012; 
Kjeldsen & Petersen, 2014), these historical definitions were discussed in order to 
highlight the arbitrary nature of the correspondence defining a particular function. 
In this regard, Euler’s eighteenth-century definition was presented to illustrate the 
participants’ own possible misconception of the function definition. As articulated 
by Even (1990), “[w]e cannot accept a situation where secondary teachers at the end 
of the 20th century have a limited concept of function, similar to the one from the 
18th century” (p.  530). Juxtaposed with Euler’s definition, the difference that 
emerged when alluding to Dirichlet’s definition was that “it is irrelevant in what 
way this correspondence is established” (Definition H2). This led the class to the 
additional realisation that the function defined by the set of ordered pairs T = {(1, 

3), (2, 6), (3, 9), (4, 12), (7.5, π), (− 2, 103.54)} is another possible solution to the 
task, in which not only are the domain and codomain sets arbitrarily chosen, but so 
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is the correspondence itself. The latter example helped the participants realise that 
there are infinitely many arbitrary functions that fit the original table of values pre-
sented in Fig. 5.2.

While a set-based definition of a function is usually beyond school mathematics, 
we believe that exposure to this contemporary convention in disciplinary mathemat-
ics adds an important dimension to teachers’ mathematical knowledge (mM, in the 
usage-goal terminology). Furthermore, we suggest that the engagement with a 
mathematical task that explores different function definitions may additionally 
affect teachers’ future pedagogical approaches (mP). Even while attending to func-
tions prescribed by the school curriculum, the raised awareness to the topic would 
(hopefully) result in teachers introducing students to rigorous definitions and high-
lighting the arbitrary nature of the function concept.

5.5.3.2  Fitting Polynomials

As became evident from the scripts, some teachers considered the option of polyno-
mials when dealing with the mathematical aspects of the task yet struggled to come 
up with concrete formulas for these. Accordingly, an additional classroom activity 
focused on generating a nonlinear polynomial function consistent with the 
originally given table of values (see Fig. 5.2). Corey shared with the class his poly-
nomial function y = x4 − 10x3 + 35x2 − 47x + 24 for verification. While it is easily 
confirmed, both numerically and graphically (see Fig. 5.3), that this function indeed 
conforms to the table of values in Fig. 5.2, questions arose as to how this function 
could be generated.

To address this question, instead of producing a function that intersects the line 
y = 3x at exactly four different points, the teachers were asked to create a function 
that intersects the line y = 0 (the x-axis) at exactly four distinct points. While the 
teachers easily generated a function that has zeros at 1, 2, 3, and 4 – f(x) = (x − 1)
(x − 2)(x − 3)(x − 4) – it was nonetheless a conceptual leap to combine it with the 
function g(x) = 3x suggested by the table of values to generate a polynomial func-
tion h(x) = f(x) + g(x) (see Fig. 5.4). However, this initial example naturally led to 
additional examples of the form hk(x) = kf(x) + g(x). Of note, for k = 1, h(x) is sim-
plified to x4 − 10x3 + 35 x2 − 47x + 24, which is the function that a computer pro-
gram generated for Corey.

The creation of the above algebraic examples was accompanied with computer-
generated graphs, providing yet additional visual evidence that the points from the 
table of values satisfied the generated functions (see Fig. 5.4). While, mathemati-
cally, such a confirmation was unnecessary, we suggest that this satisfied an aes-
thetic dimension of the teachers’ mathematical experience, using various values for k.

Another polynomial function, s(x), that appeared in Eric’s script was presented 
for classroom consideration, with the (undeclared) goal of making connections 
between tertiary and secondary school mathematics:
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Fig. 5.3  A polynomial that passes through the points (1, 3), (2.6), (3, 9), and (4, 12)

Fig. 5.4  Generating the polynomial h(x) as the sum of f(x) and g(x)
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++ −( ) −( ) −( )2 1 2 3x x x 	

It was presented as a student’s example, and the teachers were asked to consider the 
correctness of the example. Having examined the function and focusing on the fac-
tors in each component, the participants expressed a belief that “it should work”. 
However, a close examination of the graph of s(x) (see Fig. 5.5) revealed that one of 
the required points was in fact not on the graph.

In order to “fit” the point (1, 3) to the graph, the participants suggested replacing 

−







1

3
 with −








1

2
, suspecting that Eric’s function was not copied properly. At that 

point, different participants expressed appreciation for Eric’s idea of easily produc-
ing a suitable polynomial by “controlling” the values of the function at x=1, 2, 3, 
and 4. However, graphing the “corrected” function q(x)

 

q x x x x x x x

x x x

( ) = − −( ) −( ) −( ) + −( ) −( ) −( )

− −( ) −( ) −( )

1

2
2 3 4 3 1 3 4

9

2
1 2 4

++ −( ) −( ) −( )2 1 2 3x x x
	

led to an unexpected result. The participants realised that q(x) can be simplified to 
3x and presents, as the participants referred to it, a “linear function in disguise”.

Fig. 5.5  Eric’s function
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This realisation led to a follow-up question of whether (and, if so, how) it is pos-
sible to generate a polynomial function of the third degree that corresponds to the 
table of values in Fig.  5.2. After some consideration, Logan suggested that this 
would be impossible, as “third degree functions go up-down-up” (this was accom-
panied with a wave hand gesture), so they would not reach the fourth point on the 
line. While this was a reasonable explanation, a more rigorous one was sought in 
inviting the participants to consider possible zeros of a cubic function. This led to 
recalling the fundamental theorem of algebra and to acknowledging that the exis-
tence of three complex roots means that there are at most three real roots for any 
cubic function. Therefore, in analogy with the previous discussion, cubic functions 
can be generated to pass through any three points on the same line, but not four.

The above discussion of Eric’s example from his script clearly demonstrates how 
participants’ scripts can be utilised in the work of a teacher educator. In this case, a 
pedagogical task of considering the correctness of a student’s solution was used 
toward the goal of extending the teachers’ mathematics. The activity guided the 
teachers toward an explicit connection between undergraduate and secondary school 
mathematics, a goal considered by many researchers as highly valuable (e.g. 
Wasserman, 2016; Watson & Harel, 2013). Furthermore, it demonstrated the utility 
of advanced mathematical knowledge as a tool to instantly recognise student mis-
takes (mP): in this case, through the realisation that there is no need to check for 
calculation errors, as there could be no cubic function that intersects a line in four 
different points.

5.6 � Example 2: Irrational Exponents, Not Just 
with a Calculator

The idea of irrational exponents lies at the juxtaposition of two mathematical con-
cepts: irrational numbers and exponentiation. Both these concepts have been recog-
nised in the literature as conceptually challenging for secondary school students and 
teachers alike (e.g. Confrey & Smith, 1995; Davis, 2009; Fischbein, Jehiam, & 
Cohen, 1995; Kidron, 2018; Sirotic & Zazkis, 2007a; Weber, 2002). However, we 
have not found any research that focuses on the combination of the two – that is, 
learners’ understanding of irrational exponents. The following case presents a step 
toward this goal.

5.6.1 � The Scripting Task: Irrational Exponents

Figure 5.6 presents a prompt for a scripting task on the topic of irrational exponents. 
In the task, the teachers were encouraged to consider the mathematical meaning of 
irrational exponents, as well as how this concept could be explained to a group of 
secondary school students.
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Fig. 5.6  A prompt for the irrational exponents scripting task

The task was designed to expand the teachers’ mathematical knowledge of irra-
tional exponents and strengthen their knowledge of rational exponents. We sus-
pected that while the meaning of rational exponents would be familiar to them, this 
might not be the case for irrational exponents. This assumption was based on the 
following two considerations: (a) secondary mathematics textbooks typically intro-
duce the idea of exponentiation as “repeated multiplication” and obtain the graphs 
of exponential functions without raising the issue of continuity or irrational expo-
nents (Confrey, 1991; Davis, 2009; Davis, 2014); (b) previous research has pointed 
toward prospective secondary school teachers’ reliance on calculators, rather than 
conceptual understanding, when dealing with irrational numbers (e.g. Zazkis & 
Sirotic, 2010) – a tendency we suspected to be even stronger in the case of two 

“irrationality layers” (i.e. the irrational number 4 2  that contains an irrational expo-

nent 2). Accordingly, the formulation of the task encouraged the teachers to first 
make sense of irrational exponents, whether independently and/or by utilising exter-
nal mathematical sources, and subsequently consider how to present the underlying 
ideas to students.

5.6.2 � Snapshots from the Scripts: Irrational Exponents

Most of the script-writers presented the idea of irrational exponents to a group of 
imaginary students in an adequate manner. This included the creation of a sequence 

an that converges to 2 and subsequently considering the sequence 4an to approxi-

mate 4 2  (we note that the terminology used in the scripts differed from the one 
presented here; some of the related nuances are elaborated below). Nonetheless, 
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responses to Part C of the task revealed that the notion of irrational exponents was 
new to the teachers. Most of the teachers explicitly admitted they had never consid-
ered the meaning of irrational exponents before and were pleased with the opportu-
nity to do so, as exemplified by the following excerpt by one of the teachers:

I have taught Powers and Exponents to students through grade 8 to 10 a number of times so 
far, but strangely enough, the question such as ‘what if the exponents are irrational num-
bers’ has never crossed my mind, nor was ever asked by any of my students. […] As such, 
I sincerely appreciated this assignment for it guided me, or better yet, intrigued me to spend 
almost ridiculous amount of hours to think about the issues linked to this topic.

In the following sections, we focus on two prominent themes that emerged in the 
scripts, which led to follow-up instructional activities aimed at addressing the teach-
ers’ conceptions and difficulties related to the topic.

5.6.2.1 Irrationals Can Only Be Approximated 

We acknowledged in the scripts a certain conceptual difficulty regarding the teach-
ers’ perception of irrational numbers. More specifically, most of the teachers 
claimed, both in the script and Part C of the task (referring to their personal mathe-

matical understanding), that the value of 4 2  can be approximated only and that an 
accurate value either does not exist or cannot be described. Consider, for example, 
the following excerpt from Eden’s script:

Teacher: So things are much easier with an integer or a fraction in the exponent. 	�

How about a decimal in the exponent, such as 41.2?
Robin: That is easy. We can re-write 1.2 as a fraction, then we have a fractional 		�

exponent.

Teacher:	 Excellent! So what makes 2 different? Why is it difficult to interpret it?

Robin:		 I� guess if we could write 2 as a decimal, then turn it into a fraction, then 
we would be able to work with it. But its decimal expansion is infi-
nitely long…

Chris:		�  And there is no repeating pattern. I guess what makes 2 different is that 
it is an irrational number!

Teacher:	� Exactly. We would not be able to find an exact answer. Now, if I draw a 

number line and ask you to put 4 2  on it, where would you put it?

Chris:		�  Since we can have a decimal in the exponent, and 2 is about 1.4, we can 
say that 4 2  is about 41.4 which is about 6.96. So close to 7?

Robin:		� If we use a more accurate approximation of 2, we can get a more accu-

rate approximation of 4 2 , right? If we use 2 ≈ 1.414, we have 7.101.
Teacher: Excellent! As you use better approximation using 4  1.4, then 41.41, then 41.414 

which you can all make sense of as fractional exponents, or rational expo-

nents, your estimated value is getting closer and closer to the real 
value of 4 2 .

 4 6 9644041 4. .»  
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	 4 7 0616231 41. .» 	

	 4 7 1008911 414. .» 	

	 4 7 1028601 4142. .» 	

And so on… So our best attempt to interpret an irrational exponent is to 
write it as adding a sequence of rational exponents.

While the above script correctly describes the process of approximating 4 2 , which 
is at the basis of how to define irrational exponents, it nonetheless treats irrational 
numbers as numbers that can only be approximated. This is exemplified by the 
teacher-character’s claim “we would not be able to find an exact answer” in regard 

to 2 and having solely a “best attempt to interpret an irrational exponent” in regard 

to 4 2 . This approach was further supported by Eden’s answer to Part C in which she 
claimed: “there are no exact answers, just approximations”. Similar claims were 
found in the tasks of the other participants, such as the following assertion by Leslie 
in Part C: “this discussion leads the student that the value of the irrational power … 
cannot be stated ‘definitively’. We can only give the bounds of the region where we 
would find the value”. Accordingly, one of the goals of the follow-up activity was to 
demonstrate that irrational numbers could be perceived not only as approximations 
but also as exact values on the number line.

5.6.2.2  Attempting to Make Sense of Irrational Exponents with the Use 
of Graphs

One prominent method the teachers used to cope with the issue of “what 4 2  really 
means” was by providing additional explanations that used graphical representa-

tions, mostly of y = 4x or y x= 2. As is illustrated by the following excerpt from 
Leslie’s script:

Robin:		� I had lots of decimals in the answer when I used decimals instead 2. It 

is interesting that your calculator can answer 4 2 ; it doesn’t give an error. 
That means 4 2  exists; now we need to figure out what it means.

Jo:		�  When you were playing with decimal values, were you doing things like 
calculating 41.4142?

Robin:		� Yes, I started with 41.41, and kept increasing the number of decimal places 
that I used.

Jo:		�  You realise that you were just using the ideas from today’s class? 

1 41 141 100. /= , which means you were finding the 100th root of 4 to 

the exponent 141, or 4 4
141

100 141100=  .

You know 2 is irrational, its decimal form will go on forever and you 

can’t write it as a fraction. So, we can’t understand 4 2  using roots. We 
are going to need another way of explaining irrational exponents.
[…]

5  Pedagogical Tasks Toward Extending Mathematical Knowledge: Notes on the Work…



100

Fig. 5.7  The graphs shown in Leslie’s script

Mel:		  Do you folks need some help? (Jo recaps the discussion so far.)
(peer		  What an interesting idea!
tutor)		�  Let’s pull up Desmos and look at a graph of the powers of four. Maybe 

that will help.
(Mel enters first table: whole number exponents.)
Robin:		 You should include negative exponents (Mel adds another table)
Jo:		�  What about exponents that are decimals or fractions? (Mel adds 

another table)

[see Fig. 5.7]

Robin:		 The graph is sort of a line, with a weird bit at the bottom.
Mel:		  We can find the equation for this graph; what do you think it is?
Jo:		  Our “y” values are all 4 to the power of something, y = 4x?
Mel:		  Let’s see what that looks like.

[see Fig. 5.7]

Robin:		� All the points fit on the graph, you found the equation, Jo! We haven’t 
seen graphs like that before, what is it?

Mel:		�  It is the graph of an exponential function. We are just learning about this 
function in Pre-Calculus 12.

The need for additional ways to approach the topic is understandable when consid-
ering that this topic was new to the teachers (as they expressed themselves). 
However, the presented graphical approach and implied continuity avoid the issue 
of attending to an explicit definition of irrational exponents. Accordingly, in the 
follow-up activity, we wished to respond to the teachers’ need for a graphical 
approach to address the idea of irrational exponents.

5.6.3 � Follow-Up Activities: Irrational Exponents

In the current section, we focus on two follow-up activities that were designed to 
address the participants’ tasks: (1) finding the exact location of irrational numbers 
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on the number line and (2) graphing functions of the form y x m n
m

n= ∈( ),   to 
deepen the learners’ understanding of both rational and irrational exponents.

5.6.3.1  Finding Irrational Numbers on the Number Line

This activity was designed as a response to claims found in the scripts that irrational 
numbers can only be approximated. By demonstrating that 2 and other irrational 
numbers can in fact be placed in an accurate manner on the number line, we hoped 
to challenge the participants’ aforementioned view. Sirotic and Zazkis (2007b) 
claimed that by placing irrational numbers on the number line, learners’ under-
standing of irrational numbers can be improved in two ways. Firstly, it strengthens 
the distinction between an irrational number and its rational approximation; and 
secondly, it shifts learners’ attention away from the conceptually challenging never-
ending limit process associated with the decimal representation. As Sirotic and 
Zazkis (2007b) stated, “the geometric representation of irrational number may well 
turn out to be a very powerful and indispensable teaching tool for encapsulating a 
process into an object, especially in the case where the learner is on the verge of the 
reification stage in the development of the concept of irrationality” (p. 488).

At the onset of the activity, a number line was drawn on the board, and the par-
ticipants were asked to place 2 on it. It took a few minutes of thought until one of 
the participants found and shared a solution: build an equilateral right-angle triangle 
of sides equal to one on the number line (where one of the sides rests on the number 

Fig. 5.8  Placing 2  on 
the number line
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Fig. 5.9  Roots of natural 
numbers via successive 
triangles

line), and rotate the hypotenuse of length 2 until it is contained in the number line 
(see Fig. 5.8). This solution evoked enthusiastic and surprised responses in class and 
was received with clapping of hands. It is interesting to note that even though the 
solution based on the Pythagorean theorem was simple and clearly in the teachers’ 
repertoire of knowledge, they did not immediately think of connecting this to the 
location of irrational numbers on the line.

Subsequent to finding 2, the participants were asked to find 3 5, , etc. on the 
number line. For 3, the immediate suggestions were to build a right-angle triangle 
in which one side equals 2 (as already found in the previous step) and the other 
equals 1. This leads to a hypotenuse of length 3, which again can be rotated until 
it sits on the number line. Similar logic was subsequently applied to find the location 
of other radicals, each step utilising the previous as a side in an appropriate right-
angle triangle. One of the participants suggested that this could be visually done in 
a “manifold” of successive right-angle triangles (see Fig. 5.9). The general conclu-
sion that in mathematics we do not always have to work with approximation of 
irrational numbers only was followed by exploratory participant questions, such as 
“how do we find π accurately?” and “what is the difference between transcendental 
and algebraic numbers and is there a relation between these properties and whether 
the number can be placed on the line?”

These questions demonstrate that while the original task regarded irrational 
exponents, responding to issues that arise may actively engage the participants and 
raise their interest in the topic. In this sense, the mathematical activity managed to 
promote the teachers’ mathematical understanding and trigger their mathematical 
curiosity (mM). Furthermore, we suggest that the mathematical awareness of differ-
ent representations for irrational numbers, as well as the distinction between irratio-
nal numbers and their approximations, may in turn raise the teachers’ pedagogical 
attention to this issue when they discuss the topic with their students (mP).
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5.6.3.2  Graphing Rational Exponents

As explained earlier, the scripts revealed a need for graphical ways to approach the 
issue of irrational exponents, manifested by using the graphs of y = 4x and y x= 2 to 
explain what irrational exponents are. In the follow-up activity, we chose to focus 

on the latter, that is, on a possible method of how the graph of y x= 2 could be cre-
ated. More specifically, we planned to use a sequence of graphs of rational expo-

nents (in the form of y x
m

n= , where m, n ∈ ℕ) that (pointwise) converge to a graph 

of an irrational exponent (in this case, y x= 2). The focus on y x= 2 (over y = 4x) 
was decided based on two learning affordances this option entailed. Firstly, this 
enabled us to emphasise the same approach to irrational exponents that the script-
writers had already presented in their tasks (i.e. a sequence of rational exponents 
that converges to an irrational exponent), only this time via a graphical, rather than 

numerical, representation. Secondly, the focus on y x= 2 was additionally planned 
to be used as a subordinate goal (Hewitt, 1996) in order to deepen the teachers’ 
understanding of rational exponents and explore properties of their graphs.

In the classroom discussion, we invited the teachers to first consider graphs of 

rational exponents that are “close” to 2 and utilise computer software (Desmos) to 
do so. The teachers began with the estimation 1 4 2 1 5. .< <  and accordingly 
graphed the functions f(x) = x1.4 and g(x) = x1.5. Figure 5.10 shows the resulting 
graphs. While the teachers correctly predicted that the graph of y x= 2 is located “in 
between” the graphs of f(x) = x1.4 and g(x) = x1.5, seeing these graphs seemed to have 
evoked reactions of puzzlement and surprise in class, and some responses of 
“What???” and “Wow!” were heard. The revelation that was surprising to the par-
ticipants was that one of the functions was drawn for all x ∈ ℝ, whereas the other 
function only for all x > 0.

Fig. 5.10  Surprising behaviours in graphs of rational exponents
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Fig. 5.11  The six different “shapes” of functions of the form y x
m

n=

Intrigued by the graphs, several participants asked to graph the functions of 
h(x) = x1.3 and z(x) = x1.6 as well (see Fig. 5.10). While h(x) seemed similar to g(x), 
the graph of z(x), which according to the participants looked like a parabola, trig-
gered additional surprise which invoked the need for a systematic investigation.
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The participants subsequently worked in small groups on exploring the behav-
iour of the graphs, as well as other properties of the functions. Topics and conclu-
sions that came up in the group activity and the following whole classroom 
discussion included the domain of the function as related to the evenness/oddness of 
the denominator, the convexity/concavity as related to the exponent being smaller or 

larger than 1, and functions that were each other’s inverses (such as y x x= =1 4
7

5.  and 

y x=
5

7) and the graphic implication of reflection around y = x. In particular, the par-

ticipants identified six possible shapes of a graph of the form y x
m

n=  and were able 
to predict the shape based on the given values of m and n (see Fig. 5.11). We note 
the participants’ enthusiasm that portrayed itself in embodied gestures illustrating 

the different “shapes” of functions of the form y x
m

n= .
Subsequently, the discussion returned to irrational exponents and the underlying 

reason to define the domain of y x= 2 as {x| x > 0} as a common/joint domain to all 

approximating functions. Additionally, graphs of the form y x
m

n=  were plotted, 

where 
m

n
 became “closer and closer” to 2, and were compared to the actual plot-

ting of the graph of y x= 2.
The mathematical activity regarding graphs of rational exponents served to 

advance the teachers’ mathematical knowledge of both rational and irrational expo-
nents (mM). This included observations made regarding properties of the functions, 
their geometric shapes, and reasoning behind their domain. Additionally, it raised 
the teachers’ awareness to the possible limitations of using graphing computer soft-
ware as a classroom pedagogical tool (mP). Whereas in the scripts the teachers used 
computer-generated graphs to explain irrational exponents, in the follow-up discus-
sion, they became aware that these software tools cannot be designed without a 
pre-existing definition of irrational exponents. Such a pedagogical awareness of 
teachers is especially crucial when considering the strong technological dependence 
of their students.

5.7 � Conclusion

The chapter provides a window into the work of mathematics teacher educators, 
which involves challenges in bringing together mathematics and pedagogy. In order 
to deal with this challenge, we utilised the usage-goal framework (Liljedahl et al., 
2007), which highlights the interplay between mathematics and pedagogy involved 
in the tasks designed by teacher educators and accordingly can serve as a useful tool 
in the planning and refining of these tasks.

The usage-goal framework was originally illustrated by Liljedahl et al. (2007) 
through an account of an iterative process, where the same task went through a 
series of changes and adaptations, based on reflections on its implementation with 

5  Pedagogical Tasks Toward Extending Mathematical Knowledge: Notes on the Work…



106

different groups of teachers. The activities presented in this chapter, however, 
demonstrate a modified approach on how the usage-goal framework can be used in 
the work of teacher educators.

In our case, it served as a guide for a two-step instructional method, where the 
same group of teachers engaged with different tasks built upon each other, the 
design of which was informed by the usage-goal framework. In the first step, we 
made usage of scripting tasks – pedagogical tasks with the goal of promoting and 
revealing teachers’ understanding of Mathematics and Pedagogy (pM and pP). The 
rationale was based on previous research, which illustrated that scripts generated by 
teachers provide a lens – for researchers and teacher educators alike – to examine 
teachers’ mathematical knowledge and instructional choices. Extending this 
observation, we demonstrated that scripts can serve as a springboard for follow-up 
classroom activities aimed at strengthening teachers’ mathematical knowledge. 
That is, we then made usage of mathematics in order to further promote the goal of 
Mathematics (mM), in particular by making connections between disciplinary and 
school mathematics. However, we believe these activities indirectly supported the 
goal of Pedagogy as well (mP), as the teachers’ extended mathematical understand-
ing of the related issues may well inform their future pedagogical approaches.

We suggest that this idea of role alternation of mathematics/pedagogy between 
usage and goal is an effective instructional method for mathematics teacher 
educators, since it both acknowledges the gradual and continual process of 
knowledge construction by learners (in this case, through a series of activities with 
a common theme) and responds to the needs of the particular group of teachers the 
teacher educator encounters (in this case, by planning the follow-up activities in 
accord with themes that emerge from the teachers themselves).

As a concluding note, we noticed that our pedagogical engagement in designing 
and implementing the instructional activities described above contributed to our 
personal and more nuanced understanding of the corresponding mathematical ideas. 
We relate this observation to Leikin and Zazkis’ (2010) notion of teachers learning 
through teaching, which includes teachers “making connections between different 
components of previous knowledge, achieving deeper awareness of what concepts 
entail, and enriching their personal repertoire of problems and solutions” (p. 8). In 
this regard, our experience described in this chapter shows that the notion of learning 
through teaching applies not only to mathematics teachers but also to mathematics 
teacher educators.
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