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Abstract. Generative adversarial networks (GANs) have become pop-
ular and powerful models for solving a wide range of image process-
ing problems. We introduce a novel component based on image quality
measures in the objective function of GANs for solving image deblur-
ring problems. Such additional constraints can regularise the training
and improve the performance. Experimental results demonstrate marked
improvements on generated or restored image quality both quantitatively
and visually. Boosted model performances are observed and testified on
three test sets with four image quality measures. It shows that image
quality measures are additional flexible, effective and efficient loss com-
ponents to be adopted in the objective function of GANs.

Keywords: Generative adversarial networks · Image deblurring ·
Image quality measures

1 Introduction

Recently, deep neural networks with adversarial learning have become a prevalent
technique in generative image modelling and have made remarkable advances.
In topics such as image super-resolution, in-painting, synthesis, and image-to-
image translation, there are already numerous adversarial learning based meth-
ods demonstrating the prominent effectiveness of GANs in generating realistic,
plausible and conceptually convincing images [8,14,21,25–27,29].

In this paper we address image enhancement problems such as blind single
image deblurring by casting them as a special case for image-to-image transla-
tion, under the adversarial learning framework. A straightforward way for realis-
ing quality improvement in image restoration is to involve image quality measure
as constraints for training GANs. As it is known, the objective function of GANs
defines gradient scale and direction for network optimization. Adversarial loss in
GANs, an indispensable component, is the foundation that encourages the gen-
eration of images to be as realistic as possible. However, details and textures in
the generated images are unable to be fully recovered and they are critical for the
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human visual system to perceive image quality. Thus, image quality measures
that compensate the overlooked perceptual features in images are necessary to
take a part in guiding gradient optimization during the training.

An image quality based loss is proposed and added to the objective function
of GANs. There are three common quality measures that can be adopted. We
investigate their effects on generated/restored image quality, compared with the
baseline model without any quality loss. The rest of this paper is structured
as follows. Section 2 describes related work. Section 3 introduces the proposed
method, followed by experimental settings, results and discussion in Sect. 4.
Section 5 concludes the findings and suggests possible future work.

2 Related Work

2.1 Generative Adversarial Networks

GAN consists of a generative model and a discriminative model. These two
models are trained simultaneously by the means of adversarial learning, a pro-
cess that can significantly contribute to improving the generation performance.
Adversarial learning encourages competition between the generator and the dis-
criminator. The generator is trained to generate better fake samples to fool the
discriminator until they are indistinguishable from real samples.

For a standard GAN (a.k.a the vanilla GAN) proposed by Goodfellow et al.
[6], the generator G receives noise as the input and generates fake samples from
model distribution pg, the discriminator D classifies whether the input data is
real. There are a great number of variants of GAN proposed afterwards, such as
conditional GAN (cGAN) [17], least squares GAN (LSGAN) [16], Wasserstein
GAN (WGAN) [1], and Wasserstein GAN with gradient penalty (WGAN-GP)
[7].

2.2 Image Deblurring

Image deblurring has been a perennial and challenging problem in image pro-
cessing and its aim is to recover clean and sharp images from degraded observa-
tions. Recovery process often utilises image statistics and prior knowledge of the
imaging system and degradation process, and adopts a deconvolution algorithm
to estimate latent images. However, prior knowledge of degradation models is
generally unavailable in practical situations - the case is categorized as blind
image deblurring (BID). Most conventional BID algorithms make estimations
according to image statistics and heuristics. Fergus et al. [5] proposed a spatial
domain prior of a uniform camera blur kernel and camera rotation. Li et al. [24]
created a maximum-a-posterior (MAP) based framework and adopted iterative
approach for motion deblurring. Recent approaches have turned to deep learn-
ing for improved performances. Xu et al. [23] adapted convolutional kernels in
convolutional neural networks (CNNs) to blur kernels. Schuler et al. [20] built
stacked CNNs that pack feature extraction, kernel estimation and image estima-
tion modules. Chakrabarti [3] proposed to predict complex Fourier coefficients
of motion kernels by using neural networks.



162 J. Su and H. Yin

2.3 Image Quality Measures

Image quality assessment (IQA) is a critical and necessary step to provide quan-
titative objective measures of visual quality for image processing tasks. IQA
methods have been an important and active research topic. Here we focus on
four commonly used IQA methods: PSNR, SSIM, FSIM and GMSD.

Peak signal-to-noise ratio (PSNR) is a simple signal fidelity measure that
calculates the ratio between the maximum possible pixel value in the image and
the mean squared error (MSE) between distorted and reference images.

Structural similarity index measure (SSIM) considers image quality degra-
dation as perceived change of structural information in image. Since structural
information is independent of illumination and contrast [22], SSIM index is a lin-
ear combination of these three relatively independent terms, luminance l(x, y),
contrast c(x, y) and structure comparison function s(x, y). Besides, the measure
is based on local patches of two aligned images because luminance and contrast
vary across the entire image. To avoid blocking effect in the resulting SSIM index
map, 11 × 11 circular-symmetric Gaussian weighing function is applied before
computation. Patch based SSIM index is defined as in Eq. 1, while for the entire
image, it is common to use mean SSIM (MSSIM) as the evaluation metric for
the overall image quality (Eq. 2).

SSIM(x, y) = l(x, y) · c(x, y) · s(x, y)

=
(2μxμy + c1)(2σxy + c2)

(μ2
x + μ2

y + c1)(σ2
x + σ2

y + c2)
(1)

MSSIM(X,Y ) =
1
M

M∑

m=1

SSIM(xm, ym) (2)

where x and y are two local windows from two aligned images X and Y . μx is
the mean of x, μy is the mean of y, σ2

x is the variance of x, σ2
y is the variance of

y, σxy is the covariance of x and y, constants c1 and c2 are conventionally set to
0.0001 and 0.0009 to stabilize the division. M is the total number of windows.

Feature similarity index measure (FSIM) is based on similarity of salient
low-level visual features, i.e. the phase congruency (PC). High PC means the
existence of highly informative features, where the Fourier waves at different
frequencies have congruent phases [28]. To compensate the contrast information
that the primary feature PC is invariant to, gradient magnitude is added as the
secondary feature for computing FSIM index.

First, PC map computation of an image is conducted by generalizing the
method proposed in [12] from 1-D signal to 2-D grayscale image, by the means
of applying the spreading function of Gaussian. 2-D log-Gabor filter extracts
a quadrature pair of even-symmetric filter response and odd-symmetric filer
response [en,θj

(a), on,θj
(a)] at pixel a on scale n in the image. Transfer function

is formulated as follows,

G(ω, θj) = exp(− (log( ω
ω0

))2

2σ2
r

) · exp(− (θ − θj)2

2σ2
θ

) (3)
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where ω represents the frequency, θj = jπ
J (j = {0, 1, . . . , J − 1}) represents the

orientation angle of the filer, J is the number of orientations. ω0 is the filter
center frequency, σr is the filter bandwidth, σθ is the filter angular bandwidth.
And the PC at pixel a is defined as,

PC(a) =

∑
j Eθj

(a)
ε +

∑
n

∑
j An,θj

(a)
(4)

Eθj
(a) =

√
Fθj

(a)2 + Hθj
(a)2 (5)

Fθj
(a) =

∑

n

en,θj
(a), Hθj

(a) =
∑

n

on,θj
(a) (6)

An,θj
(a) =

√
en,θj

(a)2 + on,θj
(a)2 (7)

where Eθj
(a) is the local energy function along orientation θ.

Gradient magnitude (GM) computation follows the traditional definition that
computes partial derivatives Gh(a) and Gv(a) along horizontal and vertical direc-
tions using gradient operators. GM is defined as G(a) =

√
Gh(a)2 + Gv(a)2.

For calculating FSIM index between X and Y , PC and GM similarity mea-
sure between these two images are computed as follows,

SPC(a) =
2PCX(a) · PCY (a) + T1

PC2
X(a) + PC2

Y (a) + T1
(8)

SG(a) =
2GX(a) · GY (a) + T2

G2
X(a) + G2

Y (a) + T2
(9)

SL(a) = SPC(a) · SG(a) (10)

where T1 and T2 are positive constants depending on dynamic range of PC and
GM values respectively. Based on similarity measure SL(a), the FSIM index is
defined as,

FSIM(X,Y ) =
∑Ω

a SL(a) · PCm(a)
∑Ω

a PCm(a)
(11)

where PCm(a) = max(PCX(a), PCY (a)) is to balance the importance between
similarity between X and Y , Ω is the entire spatial domain of image. Introduced
in [28], FSIMc is for colour images by incorporating chormatic information.

Gradient magnitude standard deviation (GMSD) mainly utilizes feature
properties in image gradient domain to derive quality measure. GMSD metric
calculates the standard deviation of gradient magnitude. Prewitt filter is com-
monly adopted as the gradient operator. Similar to FSIM index, GM similarity
measure is firstly computed using Eq. 9. The difference is the Eq. 12. So the
smaller GMSD the higher image perceptual quality.

GMSD(X,Y ) =

√
1
N

∑

a∈Ω

(SG(a) − mean(G(a)))2 (12)

where N is the total number of pixels in image, mean(G(a)) = 1
N

∑
a∈Ω SG(a).
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3 The Proposed Method

We propose modified GAN models that are able to blindly restore sharp latent
images with better quality from single blurred images. Quality improvement of
restored images is realized by adding a quality loss into the training objective
function. We compare three image quality measure based losses, which are based
on SSIM, FSIM and MSE. We apply these quality losses to two types of GAN
models, LSGAN and WGAN-GP, respectively.

3.1 Loss Function

For simplicity, we first define variables and terms as follows. Batch size is m,
input blurred image samples {I

(i)
B }m

i=1, restored image samples {I
(i)
R }m

i=1, and
original sharp image samples {I

(i)
S }m

i=1. The adversarial loss Lad, content loss
LX, quality loss LQ are as follows.

Adversarial Loss. For LSGAN,

G : Lad =
1
m

m∑

i=1

1
2

(D(G(I(i)B )) − 1)2 (13)

D : Lad =
1
m

m∑

i=1

1
2

[(D(I(i)S ) − 1)2 + D(G(I(i)B ))2] (14)

For WGAN-GP,

Lad =
1
m

m∑

i=1

D(I(i)S ) − D(G(I(i)B )) + λ [(‖∇x̃D(x̃)‖ − 1)2] (15)

Content Loss. LX is a L2 loss based on the difference between the VGG-19
feature maps of generated image and sharp image. As proposed in [9], the VGG19
network is pretrained on ImageNet [4]. LX is formulated as,

LX =
1

Wj,kHj,k

Wj,k∑

x=1

Hj,k∑

y=1

(φj,k(I(i)S )x,y − φj,k(G(I(i)B ))x,y)2 (16)

where φj,k is the feature map of the k-th convolution before j-th maxpooling
layer in the VGG19 network. Wj,k and Hj,k are the dimensions of feature maps.

Quality Loss. Based on SSIM and FSIM, quality loss functions are defined as
in Eqs. 17 and 18. In addition we experiment a MSE based quality loss (Eq. 19)
that computes between I

(i)
R and I

(i)
S and name this quality loss as Pixel Loss.

SSIMLoss : LQ = 1 − SSIM(I(i)R , I
(i)
S ) (17)

FSIMLoss : LQ = 1 − FSIM(I(i)R , I
(i)
S ) (18)

PixelLoss : LQ = MSE(I(i)R , I
(i)
S ) (19)
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Combining the adversarial loss Lad, content loss LX and image quality loss LQ,
the overall loss function is formulated as,

L = Lad + 100LX + LQ (20)

3.2 Network Architecture

We adopted the network architecture proposed in [13]. The generator has two
strided convolution blocks, nine residual blocks, two transposed convolution
blocks. The residual block was formed by one convolution layer, an instance
normalization layer and ReLU activation. Dropout regularization with rate of
50% was adopted. Besides, global skip connection learned a residual image, which
was added with the output image to constitute the final restored image IR. The
discriminator was a 70× 70 PatchGAN [8], containing four convolutional layers,
each followed by BatchNorm and LeakyReLU with α = 0.2 except for the first
layer.

4 Experiments

4.1 Datasets

The training dataset was sampled from the train set of the Microsoft Com-
mon Object in COntext (MS COCO) dataset [15], which contains over 330,000
images covering 91 common object categories in natural context. We adopted the
method in [2] to synthesize motion blur kernels. Kernel size was set as 31 × 31,
motion parameters followed the default setting in the original paper. In total,
we generated 250 kernels to randomly blur MS COCO dataset images. We ran-
domly selected 6000 images from the MS COCO train set for training and 1000
from the test set for evaluation. Besides, trained models were tested on two other
datasets, the GoPro dataset [18] and the Kohler dataset [11].

GoPro dataset has 3214 pairs of realistic blurry images and their sharp ver-
sion at 1280 × 720 resolution. Images are 240 fps video sequences captured by
GoPro Hero 4 camera in various daily or natural scenes. Blurry images are
averaged from a varying number of consecutive frames, in order to synthesize
motion blur of varying degrees. This is a common benchmark for image motion
deblurring. We randomly select 1000 pairs for evaluation.

Kohler dataset contains four original images, 48 blurred images that are
generated by applying 12 approximations of human camera shakes on original
images respectively. The dataset is also considered as a benchmark for evaluation
of blind deblurring algorithms.
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4.2 Implementation

We performed experiments using PyTorch [19] on a Nvidia Titan V GPU. All
images were scaled to 640 × 360 and randomly cropped to patches of size
256× 256. Networks were optimized using the Adam solver [10]. Initial learning
rate was 10−4 for both generator and critic. For LSGAN models, learning rate
remained unchanged for the first 150 epochs and linearly decayed to zero for the
rest 150 epochs, and it took around 6 days to finish the training. For WGAN-GP
models, learning rate was maintained for 50 epochs and then linearly decreased
to zero for another 50 epochs. Training took around 3 days to converge.

4.3 Results and Analysis

We name the model without quality loss as the baseline model. Evaluation met-
rics include PSNR, SSIM, FSIM and GMSD. Quantitative performances are
given in Tables 1, 2 and 3. Examples of resulting images are shown in Figs. 1, 2
and 3.

MS COCO Dataset. From Table 1, we can observe that WGAN-GP model
with SSIM loss function has the best performance on all four measures. The
WGAN-GP model with FSIM loss function has a comparable performance with
subtle differences in values. But significant improvements from the baseline
model that does not include quality losses demonstrate the usefulness of SSIM
or FSIM loss. From the examples shown in Fig. 1, restored images by SSIM loss
and FSIM loss contain more details visually and also have better quantitative
evaluation results than their counterparts.

Table 1. Model performance evaluation measures averaged on 1000 images of MS
COCO dataset.

Measures Baseline With SSIM Loss With FSIM Loss With Pixel Loss

LSGAN WGAN-GP LSGAN WGAN-GP LSGAN WGAN-GP LSGAN WGAN-GP

PSNR(dB) 18.14 19.57 17.50 20.16 19.91 19.98 16.50 19.52

SSIM 0.7447 0.8032 0.7513 0.8218 0.8175 0.8196 0.7412 0.8022

FSIM 0.8178 0.8207 0.8170 0.8217 0.8208 0.8216 0.8172 0.8205

GMSD 0.1460 0.1419 0.1438 0.1391 0.1404 0.1393 0.1439 0.1413

GoPro Dataset. We can find similar performances on MS COCO dataset,
although the training was solely based on synthetic blurred images from MS
COCO dataset. Still WGAN-GP is the model that gives better performance. In
terms of PSNR and SSIM metrics, performance of WGAN-GP model with SSIM
loss function is ranked the first. And FSIM loss function encourages the model
to produce better results with regard to FSIM and GMSD metrics.
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Fig. 1. Results generated by WGAN-GP model with various loss functions on MS
COCO dataset.

Table 2. Model performance evaluation measure averaged on 1000 images of GoPro
dataset.

Baseline With SSIM Loss With FSIM Loss With Pixel Loss

Measures LSGAN WGAN-GP LSGAN WGAN-GP LSGAN WGAN-GP LSGAN WGAN-GP

PSNR(dB) 18.58 20.01 19.06 20.99 20.42 20.86 19.06 20.17

SSIM 0.8017 0.8446 0.8047 0.8650 0.8557 0.8627 0.8160 0.8480

FSIM 0.8266 0.8379 0.8188 0.8379 0.8337 0.8386 0.8263 0.8379

GMSD 0.1181 0.1029 0.1195 0.0988 0.0962 0.0990 0.1117 0.0991

Fig. 2. Results generated by WGAN-GP model with different loss functions on GoPro
dataset.
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Table 3. Model performance evaluation measure averaged on 48 images of Kohler
dataset.

Baseline With SSIM Loss With FSIM Loss With Pixel Loss

Measures LSGAN WGAN-GP LSGAN WGAN-GP LSGAN WGAN-GP LSGAN WGAN-GP

PSNR(dB) 15.94 17.81 16.50 18.19 18.37 17.79 13.18 17.73

SSIM 0.6042 0.6775 0.5689 0.6818 0.6908 0.6886 0.5444 0.6810

FSIM 0.7562 0.7565 0.7607 0.7559 0.7555 0.7539 0.7512 0.7564

GMSD 0.1984 0.2040 0.1971 0.2055 0.2048 0.2044 0.2002 0.2031

Kohler Dataset. Compared to results of above two datasets, results given in
Table 3 are generally low. Considering images from Kohler dataset are approx-
imations of human camera shake, models trained by synthetic blurred images
have limited generalization on tackling such real blurry images. But SSIM and
FSIM loss still demonstrate their effectiveness in improving image quality as
shown in Table 3 and Fig. 3, although the example in Fig. 3 is a challenging one
to restore.

Fig. 3. Results generated by WGAN-GP model with different loss functions on Kohler
dataset.

As one can observe from Tables 1, 2 and 3, quantitative results show that
image quality measure based loss functions are effective components for GANs to
further improve generated image quality. Among the three loss functions, models
trained with the SSIM loss and the FSIM loss have comparable performances
and generate the best results, compared to the baseline model and model trained
with the pixel loss. Experimentation on three different datasets in two different
types of GAN model demonstrates effectiveness of inclusion of such quality loss
functions.
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For visual comparison, models with the SSIM or FSIM loss function restore
images with better texture details and edges. However, if we carefully observe
the details in generated image patches, we can find that with the SSIM loss
function, the patches have window artifacts while models with FSIM loss produce
smoother details when zoomed in. It is because the SSIM loss is computed by
basing on local windows of images while the FSIM loss is computed pixel by pixel.
And in the result images generated by models trained with pixel loss function,
details are still blurred, illustrating that L2 loss in the spatial domain has little
contribution to image quality improvement. In general, compared to FSIM loss,
SSIM loss has the advantage of computation efficiency and performance stability
in various quantitative evaluation metrics and visual quality.

It is also noted that WGAN-GP generates better results than LSGAN and
converges faster. But training WGAN-GP model is more difficult; during the
experimentation, model training diverges more often than LSGAN. Parameter
tuning becomes a crucial step in experiment setting for training WGAN-GP,
and it is very time-consuming to find a feasible model structure and network
parameters.

5 Conclusion

In this paper, we tackled the problem of image deblurring with the framework
of adversarial learning models. Losses based on image quality measures were
proposed as additional components in the training objective function of the
GAN models. Experimental results on various benchmark datasets have demon-
strated the effectiveness of adding such image quality losses and their potential
in improving quality of generated images.

For future work, training data could include more diverse datasets to improve
generalization ability of the network. So far the weightings of these various losses
in the overall objective function have not been fine-tuned; further experiments
could be conducted on further improving the performance by fine-tuning these
parameters. Besides, considering flexibility and adaptability of these image qual-
ity losses, applications for solving other image enhancement and restoration tasks
would also be worth investigating in the future.
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