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Abstract. In this work, we demonstrate the connection between the
solutions of approximate vector variational inequalities and approximate
efficient solutions of corresponding nonsmooth vector optimization prob-
lems via generalized approximate invex functions. The underlying varia-
tional inequalities are stated under the Clarke’s generalized Jacobian.

1 Introduction

Various significant applications in engineering and economics can only be stated
as a multiobjective optimization problem [1]. Nowadays, the connection of these
problems to vector variational inequalities is well-established for differentiable
convex functions [2]. In particular, results in this direction were developed under
various assumptions of generalized convexity [3–7] and nonsmooth invexity [8–
11]. On the other hand, relationships between a vector variational inequality and
a nonsmooth vector optimization problem (NVOP) were established under the
generalized approximate convexity assumption [12–14].

This paper is devoted to the case of NVOP involving generalized approxi-
mate invex multiobjective functions, which we have introduced in [15]. Our aim
is to use approximate vector variational inequalities (AVVIs) of Stampacchia and
Minty type in terms of Clarke’s generalized Jacobian to characterize approximate
efficient solutions. It is worth mentioning that, as generalized approximate invex-
ity is an extension of generalized approximate convexity, the results obtained in
our work are improvements and generalizations of the main results in [14].

The paper is organized as follows: in Sect. 2, we give some preliminary def-
initions, notation, and auxiliary results. In Sect. 3, we introduce the concept of
approximate efficiency for NVOPs, and derive their relationships to AVVIs using
the assumption of approximate invex functions. In Sect. 4, we give an example
to illustrate our main results. Finally, we conclude our paper in Sect. 5.
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2 Preliminaries

Let R
n be the n-dimensional Euclidean spaces, S ⊆ R

n be a given nonempty
set and C ⊆ R

m be a solid pointed convex cone. We use the following partial
ordering relations:

u ≥C v ⇔ u − v ∈ C;

u >C v ⇔ u − v ∈ intC.

Definition 1 ([16]). Let F : S → R
m be a vector-valued function. F is locally

Lipschitz if for each w ∈ S there is k > 0 and ρ > 0 such that, for all u, v ∈
B(w; ρ)

‖F (u) − F (v)‖ ≤ k‖u − v‖.

Throughout this paper, we let F := (F1, ..., Fm) : S → R
m be a locally lipschitz

function, θ : S × S → R
n be a mapping and τ >C 0 be a vector.

Definition 2 ([16]). The Clarke’s generalized Jacobian of F at u ∈ S is given
by

∂F (u) = conv{ lim
i→+∞

JF (u(i)) : u(i) → u, u(i) ∈ D},

where conv denotes the convex hull, JF (u(i)) indicates the Jacobian of F at u(i),
and D is the differentiability set of F .

We note that the Clarke’s generalized Jacobian is not equal to the cartesian
product of the components’ Clarke subdifferentials. Nevertheless, one has

∂F (u) ⊆ ∂F1(u) × ... × ∂Fm(u).

Note also that ∂(−F )(u) = −∂F (u).
We recall some definitions given in [15] which are a generalization of the

concepts of generalized approximate convexity provided in [12,14,17].

Definition 3. F is called approximate (θ, τ)−invex (A(θ, τ)I) at w ∈ S, if there
is ρ > 0 satisfying

F (u)−F (v) ≥C Avθ(u, v)− τ‖θ(u, v)‖, for each u, v ∈ B(w, ρ), Av ∈ ∂F (v).

If F is A(θ, τ)I at each w ∈ S, we say that F is A(θ, τ)I on S.

Taking θ(u, v) = u − v, approximate invexity reduces to approximate convexity
[18]. The counter-example given in [15, Example 2.2] shows that approximate
invexity is still more general.

Definition 4. • F is approximate pseudo (θ, τ)−invex of type 1 (AP(θ, τ)I-1)
at w ∈ S if there is ρ > 0 such that, whenever u, v ∈ B(w, ρ) and if

F (u) − F (v) <C −τ‖θ(u, v)‖,

then
Avθ(u, v) <C 0 for each Av ∈ ∂F (v).
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• F is approximate pseudo (θ, τ)−invex of type 2 (AP(θ, τ)I-2) at w ∈ S if
there is ρ > 0 such that, whenever u, v ∈ B(w, ρ) and if

F (u) − F (v) <C 0,

then
Avθ(u, v) + τ‖θ(u, v)‖ <C 0 for all Av ∈ ∂F (v).

Proposition 1. If F is AP(θ, τ)I-2 at w ∈ S, then F is AP(θ, τ)I-1 at w.

Proof. Assume that there is ρ > 0 satisfying for each u, v ∈ B(w, ρ)

F (u) − F (v) <C −τ‖θ(u, v)‖,

then
F (u) − F (v) <C 0.

Since F is AP(θ, τ)I-2 at w, then there is ρ > 0, ρ < ρ, satisfying for each
u, v ∈ B(w, ρ)

Avθ(u, v) + τ‖θ(u, v)‖ <C 0 for each Av ∈ ∂F (v),

which further implies that

Avθ(u, v) <C 0 for each Av ∈ ∂F (v).

Hence F is AP(θ, τ)I-1 at w ∈ S.

Definition 5. • F is approximate quasi (θ, τ)−invex of type 1 (AQ(θ, τ)I-1)
at w ∈ S if there is ρ > 0 such that for each u, v ∈ B(w, ρ)

Avθ(u, v) − τ‖θ(u, v)‖ >C 0, for some Av ∈ ∂F (v),

implies
F (u) >C F (v).

• F is approximate quasi (θ, τ)−invex of type 2 (AQ(θ, τ)I-2) at w ∈ S if there
is ρ > 0 such that, for each u, v ∈ B(w, ρ)

Avθ(u, v) >C 0, for some Av ∈ ∂F (v),

implies
F (u) − F (v) >C τ‖θ(u, v)‖.

The next proposition can be easily proven.

Proposition 2. If F is AQ(θ, τ)I-2 at v ∈ S, then F is AQ(θ, τ)I-1 at v.

Remark 1. • A(θ, τ)I ⇒
[

AP(θ, τ)I-1 and AQ(θ, τ)I-1
]
.
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• There is no relation between AP(θ, τ)I-2 and AQ(θ, τ)I-2 and A(θ, τ)I (for
examples, see [14]).

Now, we consider the following NVOP:

(NV OP ) min F (u) := (F1(u), · · ·, Fm(u)) subject to u ∈ S,

where each Fi : S → R are real-valued functions for any i ∈ {1, · · ·,m}.

Definition 6. Let ζ ∈ S.

(i) ζ is an efficient solution of (NVOP) iff there is no vector u ∈ S such that

F (u) ≤C F (ζ).

(ii) ζ is an τ -approximate efficient solution (τ -AES) of (NVOP) iff there is no
ρ > 0 such that, for each u ∈ B(ζ; ρ) \ {ζ}

F (u) − F (ζ) ≤C −τ‖θ(u, ζ)‖.

3 Relationships Between NVOP and AVVI

Consider the following AVVI of Stampacchia and Minty type in terms of Clarke
subdifferentials as follows:

(ASVVI). To find ζ ∈ S such that, there is no ρ > 0 satisfying for each
u ∈ B(ζ, ρ) and Aζ ∈ ∂F (ζ)

Aζθ(u, ζ) ≤C −τ‖θ(u, ζ)‖.

(AMVVI). To find ζ ∈ S such that, there is no ρ > 0 satisfying for each
u ∈ B(ζ, ρ) and Au ∈ ∂F (u)

Auθ(u, ζ) ≤C −τ‖θ(u, ζ)‖.

The following theorems describe relations between AVVI and NVOP.

Theorem 1. Let F be A(θ, τ)I at ζ ∈ S. If ζ solves (ASVVI) w.r.t. τ , then ζ
is a 2τ -AES of (NVOP).

Proof. Assume ζ fails to be a 2τ -AES of (NVOP). It means that there is ρ > 0
satisfying for each u ∈ B(ζ, ρ)

F (u) − F (ζ) ≤C −2τ‖θ(u, ζ)‖. (1)

As F is A(θ, τ)I at ζ, it follows that there is ρ̃ > 0, satisfying

F (u) − F (ζ) ≥C Aζθ(u, ζ) − τ‖θ(u, ζ)‖ ∀ u ∈ B(ζ, ρ̃), Aζ ∈ ∂F (ζ).
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By using (1) and the definition of approximate (θ, τ)− invexity, and by taking
ρ := min(ρ, ρ̃), we obtain

Aζθ(u, ζ) − τ‖θ(u, ζ)‖ ≤C −2τ‖θ(u, ζ)‖.

Hence
Aζθ(u, ζ) ≤C −τ‖θ(u, ζ)‖.

This means ζ does not solve (ASVVI) w.r.t τ .

Theorem 2. Let −F be A(θ, τ)I at ζ ∈ S. If ζ ∈ S is a τ -AES for (NVOP),
then ζ solves (ASVVI) w.r.t 2τ .

Proof. Assume ζ fails to be a solution of (ASVVI) w.r.t 2τ . It means that there
is ρ > 0 such that, for each u ∈ B(ζ, ρ), Aζ ∈ ∂F (ζ), we have

Aζθ(u, ζ) ≤C −2τ‖θ(u, ζ)‖.

Then

−Aζθ(u, ζ) ≥C 2τ‖θ(u, ζ)‖. (2)

By ∂(−F )(ζ) = −∂F (ζ) we deduce that −Aζ ∈ ∂(−F )(ζ).
As −F is A(θ, τ)I at ζ, it yields that there is ρ̃ > 0 satisfying

(−F )(u) − (−F )(ζ) ≥C −Aζθ(u, ζ) − τ‖θ(u, ζ)‖ ∀u ∈ B(ζ, ρ̃).

By using (2) and by taking ρ := min(ρ, ρ̃), we obtain

−F (u)+F (ζ)+τ‖θ(u, ζ)‖ ≥C −Aζθ(u, ζ) ≥C 2τ‖θ(u, ζ)‖ ∀u ∈ B(ζ, ρ)\{ζ},

which implies
F (u) − F (ζ) ≤C −τ‖θ(u, ζ)‖.

Therefore ζ cannot be a τ -AES of (NVOP).

Theorem 3. Let F be A(θ, τ)I at ζ ∈ S and θ(u, ζ)+θ(ζ, u) = 0 for any u ∈ S.
If ζ solves (AMVVI) w.r.t τ , then ζ is a 2τ -AES of (NVOP).

Proof. Assume ζ fails to be a 2τ -AES of (NVOP). It means that there is ρ > 0
satisfying for each u ∈ B(ζ, ρ)

F (u) − F (ζ) ≤C −2τ‖θ(u, ζ)‖. (3)

As −F is A(θ, τ)I at ζ, it yields that there is ρ̃ > 0 satisfying

(−F )(ζ)− (−F )(u) ≥C Avθ(ζ, u)− τ‖θ(ζ, u)‖ ∀u ∈ B(ζ, ρ̃), Av ∈ ∂(−F )(u),

then
F (u) − F (ζ) ≥C Avθ(ζ, u) − τ‖θ(ζ, u)‖.
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By using (3) and by taking ρ := min(ρ, ρ̃), we obtain

Avθ(ζ, u) − τ‖θ(ζ, u)‖ ≤C −2τ‖θ(u, ζ)‖ ∀u ∈ B(ζ, ρ) \ {ζ}.

From ∂(−F )(u) = −∂F (u), there is Au = −Av ∈ ∂F (u). Consequently, using
θ(u, ζ) + θ(ζ, u) = 0 together with the above inequality, we deduce

Auθ(u, ζ) ≤C −τ‖θ(u, ζ)‖.

This means ζ does not solve (AMVVI) w.r.t τ .

Theorem 4. Let −F be A(θ, τ)I at ζ ∈ S and θ(u, ζ)+θ(ζ, u) = 0 for all u ∈ S.
If ζ ∈ S is a τ -AES for (NVOP), then ζ solves (AMVVI) w.r.t 2τ .

Proof. Assume ζ fails to be a solution of (AMVVI) w.r.t 2τ . Thus, there is ρ > 0
satisfying for any u ∈ B(ζ, ρ), Au ∈ ∂F (u)

Auθ(u, ζ) ≤C −2τ‖θ(u, ζ)‖. (4)

As F is A(θ, τ)I at ζ, it yields that there is ρ̃ > 0, such that

F (ζ) − F (u) ≥C Auθ(ζ, u) − τ‖θ(ζ, u)‖ ∀u ∈ B(ζ, ρ̃), Au ∈ ∂F (u).

Since θ(ζ, u) = −θ(u, ζ), then

F (u) − F (ζ) − τ‖θ(u, ζ)‖ ≤C Auθ(ζ, u).

By using (3) and by taking ρ := min(ρ, ρ̃), we obtain

F (u) − F (ζ) ≤C −τ‖θ(u, ζ)‖.

We conclude that ζ cannot be a τ -AES of (NVOP).

Theorem 5. Let F be AP(θ, τ)I-2 at ζ ∈ S. If ζ solves (ASVVI) w.r.t. τ , then
ζ is a τ -AES of (NVOP).

Proof. Assume ζ fails to be a τ -AES of (NVOP). It means that there is ρ > 0
satisfying for all u ∈ B(ζ, ρ)

F (u) − F (ζ) ≤C −τ‖θ(u, ζ)‖ <C 0. (5)

As F is AP(θ, τ)I-2 at ζ, it yields that there is ρ̃ > 0, such that, whenever
u ∈ B(ζ, ρ̃)

F (u) − F (ζ) <C 0 ⇒ Aζθ(u, ζ) <C −τ‖θ(u, ζ)‖, ∀Aζ ∈ ∂F (ζ).

By using (5) and the definition of approximate quasi (θ, τ)−invexity type 2, and
by taking ρ := min(ρ, ρ̃), we obtain

Aζθ(u, ζ) ≤C −τ‖θ(u, ζ)‖.

This means ζ does not solve (ASVVI) w.r.t. τ .



Approximate Efficient Solutions of Nonsmooth Vector Optimization 97

Theorem 6. Let −F be AQ(θ, τ)I-2 at ζ ∈ S. If ζ is a τ -AES of (NVOP), then
ζ solves (ASVVI) w.r.t. τ .

Proof. Assume ζ fails to be a solution of (ASVVI) w.r.t. τ , then, there is ρ > 0
satisfying for each Aζ ∈ ∂F (ζ) and u ∈ B(ζ, ρ)

Aζθ(u, ζ) ≤C −τ‖θ(u, ζ)‖.

Then

−Aζθ(u, ζ) ≥C τ‖θ(u, ζ)‖ >C 0. (6)

As ∂(−F )(ζ) = −∂F (ζ) it yields that −Aζ ∈ ∂(−F )(ζ).
Since −F is AQ(θ, τ)I-2 at ζ, it follows that there is ρ̃ > 0 such that, whenever
u ∈ B(ζ, ρ̃)

−Aζθ(u, ζ) >C 0 ⇒ −F (u) − (−F (ζ)) >C τ‖θ(u, ζ)‖.

By using (6) and the definition of approximate pseudo (θ, τ)−invexity type 2,
and by taking ρ := min(ρ, ρ̃), we get

F (u) − F (ζ) ≤C −τ‖θ(u, ζ)‖.

Consequently ζ cannot be a τ -AES of (NVOP).

The following corollary can be deduced from Theorems 5 and 6.

Corollary 1. Let F be AP(θ, τ)I-2 at ζ ∈ S and −F be AQ(θ, τ)I-2 at ζ. ζ is
a τ -AES of (NVOP) if and only if ζ solves (ASVVI) w.r.t. τ .

Theorem 7. Let F be AQ(θ, τ)I-2 at ζ and θ(u, ζ) + θ(ζ, u) = 0, ∀u ∈ S. If ζ
is a τ -AES of (NVOP), then ζ solves (AMVVI) w.r.t. τ .

Proof. Assume ζ fails to be a solution of(AMVVI) w.r.t. τ . Then, there is ρ > 0
satisfying for each Au ∈ ∂F (u) and u ∈ B(ζ, ρ)

Auθ(u, ζ) ≤C −τ‖θ(u, ζ)‖.

From θ(u, ζ) + θ(ζ, u) = 0, we obtain

Auθ(ζ, u) ≥C τ‖θ(ζ, u)‖ >C 0. (7)

As F is AQ(θ, τ)I-2 at ζ, it yields that, there is ρ̃ > 0 such that, whenever
u ∈ B(ζ, ρ̃)

Auθ(ζ, u) >C 0 ⇒ F (ζ) − F (u) >C τ‖θ(ζ, u)‖.

By using (7) and the definition of approximate quasi (θ, τ)−invexity type 2, and
by taking ρ := min(ρ, ρ̃), we deduce

F (u) − F (ζ) ≤C −τ‖θ(u, ζ)‖.

This means that ζ is not a τ -AES of (NVOP).
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Theorem 8. Let −F be AP(θ, τ)I-2 at ζ and θ(u, ζ) + θ(ζ, u) = 0, ∀u ∈ S. If
ζ ∈ S solves (AMVVI) w.r.t. τ , then ζ is a τ -AES of (NVOP).

Proof. Assume ζ fails to be a τ -AES of (NVOP). It means that there is ρ > 0
satisfying for any u ∈ B(ζ, ρ)

F (u) − F (ζ) ≤C −τ‖θ(u, ζ)‖.

Thus

−F (ζ) − (−F )(u) ≤C −τ‖θ(u, ζ)‖ <C 0. (8)

As −F is AP(θ, τ)I-2 at ζ, it yields that there is ρ̃ > 0, such that, whenever
u ∈ B(ζ, ρ̃)

−F (ζ) − (−F )(u) <C 0 ⇒ Avθ(u, ζ) <C −τ‖θ(u, ζ)‖, ∀Av ∈ ∂(−F )(u).

By using (8) and the definition of approximate pseudo (θ, τ)−invexity type 2,
and by taking ρ := min(ρ, ρ̃), we obtain

Avθ(u, ζ) ≤C −τ‖θ(u, ζ)‖, ∀Av ∈ ∂(−F )(u), u ∈ B(ζ, ρ).

Using ∂(−F )(u) = −∂F (u), there is Au = −Av ∈ ∂F (u), then we have

−Auθ(ζ, u) ≤C −τ‖θ(u, ζ)‖.

Since θ(u, ζ) + θ(ζ, u) = 0, therefore,

Auθ(u, ζ) ≤C −τ‖θ(u, ζ)‖.

This means ζ does not solve (AMVVI) w.r.t. τ .

The following corollary can be deduced from Theorems 7 and 8.

Corollary 2. Let F be AQ(θ, τ)I-2 at ζ ∈ S and −F be AP(θ, τ)I-2 at ζ and
θ(u, ζ) + θ(ζ, u) = 0, ∀u ∈ S. ζ is a τ -AES of (NVOP) if and only if ζ solves
(AMVVI) w.r.t. τ .

4 Example

Consider the following NVOP as an example to illustrate the obtained results.

min
u∈S

F (u) =

{
u2 + 3u, u ≥ 0
−u2 + 4u, u < 0,

where S = R, C = R
+ and θ(u, v) = (u − v)3 for each u, v ∈ S.
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The Clarke subdifferential of F at u ∈ S is defined by

∂F (u) =

⎧⎨
⎩

2u + 3, u > 0;
[3, 4] , u = 0;
−2u + 4, u < 0.

For 1 < τ < 2 , there is ρ = 1
2 > 0 such that, for each u, v ∈ B(ζ, ρ), ζ = 0,

Av ∈ ∂F (v), we have

F (u) − F (v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(u − v)(u + v + 3) > 0, if v > 0, u > 0, u − v > 0;
(u − v)(u + v + 3) < 0, if v > 0, u > 0, u − v < 0;
−u2 + 4u − v2 − 3v < 0, if v > 0, u ≤ 0;
u2 + 3u + v(v − 4) > 0, if v < 0, u ≥ 0;
(u − v)(4 − u − v) > 0, if v < 0, u < 0, u − v > 0;
(u − v)(4 − u − v) < 0, if v < 0, u < 0, u − v < 0;
u2 + 3u > 0, if v = 0, u > 0;
−u2 + 4u < 0, if v = 0, u < 0.

Also,

Avθ(u, v) + τ‖θ(u, v)‖ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(2v + 3 − τ)(u − v)3 < 0, if v > 0, u > 0, u − v < 0;

(2v + 3 − τ)(u − v)3 < 0, if v > 0, u ≤ 0;

(−2v + 4 − τ)(u − v)3 < 0, if v < 0, u < 0, u − v < 0;

ku3 < 0, if v = 0, u < 0,

where k ∈ [3, 4]. Hence, F is AP(θ, τ)I-2 at ζ = 0.
Since for any u > 0, one has

Aζθ(u, ζ) + τ‖θ(u, ζ)‖ = ku3 + τu3 > 0, k ∈ [2, 3].

Hence, there is no ρ > 0 satisfying for each u ∈ B(ζ, ρ) and Aζ ∈ ∂F (ζ)

Aζθ(u, ζ) ≤C −τ‖θ(u, ζ)‖.

Thus, ζ = 0 solves (ASVVI) w.r.t. τ .
Finally, as F is AP(θ, τ)I-2 at ζ = 0, then, from Theorem 5, ζ = 0 should be

a τ -AES of (NVOP). Indeed, for all u > 0 we have

F (u) − F (ζ) + τ‖θ(u, ζ)‖ = u2 + 3u + τu3 > 0.

Hence, there is no ρ > 0 such that, for each u ∈ B(ζ; ρ) \ {ζ}
F (u) − F (ζ) ≤C −τ‖θ(u, ζ)‖.

Therefore, ζ = 0 is a τ -AES of (NVOP).

Remark 2. In the above example, the function −F is AQ(θ, τ)I-2 at ζ = 0 and
θ(u, ζ) + θ(ζ, u) = 0, ∀u ∈ S. We can easily show that it verifies the conditions
of Theorem 6.
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5 Conclusions

We have shown the relationships between AVVI in terms of Clarke’s generalized
Jacobian and NVOP using the concepts of approximate efficiency and generalized
approximate invexity. Our work improves that of Gupta and Mishra [14] with
respect to two aspects:

• If the generalized approximate invexity assumption is replaced by general-
ized approximate convexity assumption, then the proof arguments remain
the same. Consequently, our theorems are more general since the concept of
invexity includes that of convexity as a special case.

• In addition to necessary conditions of approximate efficient solutions of
NVOP, we have also provided sufficient conditions using the generalized
approximate invexity of −F .

Acknowledgments. The authors are most grateful to Dr. Lhoussain Elfadil for con-
tinued help throughout the preparation of this paper.
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