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Existence Results for Impulsive Partial
Functional Fractional Differential Equation

with State Dependent Delay

Nadjet Abada1(B), Helima Chahdane1, and Hadda Hammouche2

1 Laboratoire MAD, Ecole Normale Superieure Assia Djebar,
Universite constantine 3, El Khroub, Algerie

n65abada@yahoo.fr, helimachahdane@yahoo.com
2 Laboratoire LMSA, Universite Ghardaia, Bounoura, Algerie

h.hammouche@yahoo.fr

Abstract. In this paper, we study the existence of mild solutions of impulsive
fractional semilinear differential equation with state dependent delay of order
0 < α < 1. We shall rely on fixed point theorem for the sum of completely con-
tinuous and contraction operators due to Burton and Kirk. An example is given
to illustrate the theory.

1 Introduction

Fractional calculus is a generalization of classical differentiation and integration to an
arbitrary real order. Fractional calculus is the most well known and valuable branch
of mathematics which gives a good framework for biological and physical phenom-
ena, mathematical modeling of engineering, etc. Numerous writings have showed that
fractional-order differential equation could provide more methods to deal with complex
problem in statistical physics and environmental issues; see the monographs of Abbas
et al. [ABN12,ABN15], A. Kilbas et al. [KST06], Podlubny [P93] and Zhou [Z14] and
the references therein. On the other hand, the theory of impulsive differential equations
has undergone rapid development over the years and played a very important role in
modern applied mathematical models of real processes rising in phenomena studied in
physics, chemistry, engineering, etc.

Recently, the study of fractional differential equations with impulses has been stud-
ied by many authors ( see [BHN06,HAM10,LCX12,WFZ11]).

Modivated by work [HGBA13], in this paper, we study the existence of mild solu-
tions for fractional semilinear differential equation of the equation of the form

cDα
tk y(t)−Ay(t) = f (t,yρ(t,yt )), t ∈ Jk := (tk, tk+1],k = 0,1, ..m, (1)

Δy |y=yk= Ik(ytk) k = 1, ....,m, (2)

y(t) = φ(t), t ∈ (−∞,0]. (3)

where cDα
tk is caputo fractional derivative of order 0< α < 1, A : D(A) ⊂ E → E is the

bounded linear operator of an α - resolvent family Sα(t) : t ≥ 0 defined on a Banach
c© Springer Nature Switzerland AG 2021
Z. Hammouch et al. (Eds.): SM2A 2019, LNNS 168, pp. 1–22, 2021.
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space E, f : J ×D → E is a given function, D = {ψ : (−∞,0] → E,ψ is continuous
every where except for a finite number of points s at which ψ (s−) ,ψ (s+) exist and
ψ (s−) = ψ (s)}, φ ∈ D,(0< r < ∞), Ik : E → E , (k = 0,1, ....,m+ 1),0 = t0 < t1 <
..... < tm < tm+1 = b , Δy|y=yk = y(t+k )− y(t−k ), where y(t+k ) = limh→0+ y(tk + h) and
y(t−k ) = limh→0+ y(tk−h) represent the right and left limits of y(t) at t = tk, respectively.
We denote by yt the element of D defined by yt(θ) = y(t+ θ), θ ∈ (−∞,0]. Here yt
represents the history up to the present time t of the state y(.). We assume that the
histories yt belongs to some abstract phase D , to specified later, and φ ∈ D . This paper
is organized as follow, in Sect. 2 we introduce some preliminaries that will be used
in the sequel, in Sect. 3 we give definition to the mild solution of problem 1–3 result
inspired by works [HGBA13,HL20], also the proof of our main results is given. Finally,
an example is included in Sect. 4.

2 Preliminaries

In this Section, we state some notations, definitions and properties which be used
throughout this paper.

Let E be a Banach space endowed with the norm ‖.‖, and L(E) represents the
Banach space of all bounded linear operators from E into E and the corresponding
norm ‖.‖L(E).

C(J,E) is the Banach space of all continuous functions from J to E with the norm

‖u‖C(J,E) = sup{|u(t)| : t ∈ J},

L1[J,E] is the Banach space of measurable functions u : J −→ E which are Bochner
integrable normed by

‖u‖L1 =
∫ b

0
|u(t)|dt.

Definition 1. A familly (Sα(t))t>0 ⊂ l(E) of bounded linear operators in E is called an
α- resolvent operator function generating by A if the following conditions hold:

a) (Sα(t))t>0 is strong continuous on R+ and Sα(0) = I;
b) Sα(t)D(A) ⊂ D(A) and ASα(t)x= Sα(t)Ax for all x ∈ D(A) and t > 0;
c) For all x ∈ E, Iα

t Sα(t)x ∈ D(A) and

Sα(t)x= x+AIα
t Sα(t)x, t > 0;

d) x ∈ D(A) and Ax= y if and only if

Sα(t)x= x+AIα
t Sα(t)x, t > 0;
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e) A is closed and densely defined

The generator A of (Sα(t))t>0 is defined by:

D(A) := {x ∈ E : lim
t→0+

Sα(t)x− x
ψα+1(t)

exists},

and

Ax= lim
t→0+

Sα(t)x− x
ψα+1(t)

, x ∈ D(A),

where ψα(t) = tα−1

Γ (α) for t > 0 and ψα(t) = 0 for t ≤ 0 and ψα(t) −→ δ (t) as α −→ 0,
where the function delta is defined by:

δa : D(Ω) −→ R; φ → φ(a),

and
D(Ω) = {φ ∈C∞(Ω) : suppφ ⊂ Ω is compact}.

Definition 2. An α-ROF (Sα(t))t≥0 is called analytic, if the function Sα() : R+ −→
l(X) admits analytic extension to a sector Σ(0,θ0) for some 0 < θ0 ≤ π

2 . An analytic
α-ROF (Sα) is said to be of analyticity type (ω0,θ0) if for each θ < θ0 and ω > ω0

there exists M1 = M1(ω,θ) such that ||Sα(z)|| ≤ M1eωRez for z ∈ Σ(0,θ) where Rez
denotes the real part of z and Σ(ω,θ) := {λ ∈C : |arg(λ −ω)| < θ , ω,θ ∈ R}
Definition 3. An α-ROF(Sα(t))t≥0 is called compact for t > 0 if for every t > 0, Sα(t)
is a compact operator.

Theorem 1. Let A generate a compact analytic semigroup T (t)t≥0 then for any α it
also generates a compact analytic resolvent family (Sα(t))t≥0.

Lemma 1. Assume that α-ROF(Sα(t))t≥0 is compact for t > 0 and analytic of type
(ω0,θ0). Then the following assertions hold:

1. limh �−→0 ‖Sα(t+h)−Sα(t)‖ = 0, for t > 0.
2. limh �−→0+ ‖Sα(t+h)−Sα(h)Sα(t)‖ = 0, for t > 0.

Definition 4. An α-ROF(Sα(t))t≥0 is said to be exponentially bounded if there exist
constants M ≥ 1, ω ≥ 0 such that

‖Sα(t)‖ ≤ Meωt f or t ≥ 0.

in this case we write A ∈Cα(M,ω).

Definition 5. The fractional integral operator Iα of order α > 0 of a continuous func-
tion f (t) is defined by

Iα
t f (t) :=

1
Γ (α)

∫ t

0
(t− s)α−1 f (s)ds,

Observe that Iα
t f (t) = f (t) ∗ ψα(t), where ψα(t) = tα−1

Γ (α) for t > 0 and ψα(t) = 0 for

t ≤ 0 and ψα(t) −→ δ (t) as α −→ 0.
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Definition 6. The α-Riemann-Liouville fractional-order derivative of the function f , is
defined by

Dα
a f (t) =

1
Γ (n−α)

dn

dtn

∫ t

a
(t− s)n−α−1 f (s)ds.

where n= [α]+1 and [α] denotes the integer part of α .

Definition 7 [P93]. For a function f defined on the interval [a,b], the Caputo fractional
order derivative of order α of f , is defined by

(ca+D
α
t f )(t) =

1
Γ (n−α)

∫ t

0
(t− s)n−α−1 f (n)(s)ds,

Where n= [α]+1.
Therefore, for 0 < α < 1, n = [α] + 1 = 1 and for a = 0, the Caputo’s fractional

derivative for t ∈ [0,b] is given by

(c0D
α
t f )(t) =

1
Γ (1−α)

∫ t

0
(t− s)−α f

′
(s)ds.

In this paper, we will employ an axiomatic definition for the phase space D which is
similar to those introduced by Hale and Kato [HK78]. Specifically, D will be a lin-
ear space of functions mapping ]− ∞,b] into E endowed with a semi-norm ‖.‖D, and
satisfies the following axioms:

(A1) There exist a positive constant H and functions K(·), M(·) : R+ → R+ with K
continuous and M locally bounded, such that for any b > 0, if x : (−∞,b] → E,
x ∈ D, and x(·) is continuous on [0,b], then for every t ∈ [0,b] the following
conditions hold:

(i) xt is in D;
(ii) |x(t)| ≤ H‖xt‖D;
(iii) ‖xt‖D ≤ K(t)sup{|x(s)| : 0 ≤ s ≤ t}+M(t)‖x0‖D, and H,K and M are inde-

pendent of x(·).
Denote

Kb = sup{K(t) : t ∈ J} and Mb = sup{M(t) : t ∈ J}.
(A2) The space D is complete.

Example 1. Let h(.) : (−∞,−r] → R be a positive Lebesgue integrable function and
D :=PCr×L2(h;E),r≥ 0, be the space formed of all classes of functions ϕ : (−∞,0]→
E such that ϕ|[−r,0] ∈ PC([−r,0],E), ϕ(.) is Lebesgue-measurable on (−∞,−r] and
h|ϕ|p is Lebesgue integrable on (−∞,−r]. the semi-norm in ‖.‖D is defined by

‖ϕ‖D = sup
θ∈[−r,0]

‖ϕ(θ)‖+
(∫ −r

−∞
h(θ)‖ϕ(θ)‖pdθ

)1/p

, (4)

Assume that h(.) satisfies conditions (g–6) and (g–7) in the terminology of
[HMN91]. proceeding as in the proof of [[HMN91]. Theorem 1.3.8] it follows that D
is a phase space which verifies the axioms (A1)–(A2) and (A3). Moreover, when r = 0
this space coincides withC0×L2(h,E) and the parameters H = 1;M(t) = γ(−t)1/2 and

K(t) = 1+
(∫ 0

−r h(ξ )dξ
)1/2

, for t ≥ 0 (see [HMN91]).
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Definition 8. A map f : [0,b]×D → E is said to be carathéodory if

1. the function t �→ f (t,y) is measurable for each y ∈ D ;
2. the function t �→ f (t,y) is continuous for almost all t ∈ Jk := (tk, tk+1],k = 0,1, ..m.

In order to define the mild solution 1–3, we consider the following space

PC(J,E) = {y : [0,b] −→ E : y is continous at t �= tk,y(t−k ) = y(tk),

and y(t+k ) exists, f or all k = 1, ...,m}
which is a Banach space with the norm

‖y‖ = max{‖yk‖∞;k = 1,2, ..,m},

and
Db = {y :]−∞,b] −→ E : y|]−∞,0] ∈ D and y|J ∈ PC(J,E)}.

Let ‖.‖b be the semi norm in Db defined by

‖y‖b = ‖y0‖Db + sup{|y(s)| : 0 ≤ s ≤ b}, y ∈ Db.

Let us introduce the definition of Caputo’s derivative in each interval (tk, tk+1],k =
0, ...,m,

(cDα
tk f )(t) =

1
Γ (1−α)

∫ t

tk
(t− s)−α f

′
(s)ds.

3 Main Result

Before starting and proving our main result, we give the meaning of mild solution of
our problem 1–3.

Definition 9. A function y ∈ PC((−∞,b],E) is said to be mild solution of our problem
if y(t) = φ(t), for all t ∈ (−∞,0],Δy|y=yk = Ik(yti),k= 1,2, ...,m and such that y satisfies
the following integral equation:

y(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Sα(t)φ(0)+
∫ t
0 Sα(t− s) f (s,yρ(s,ys))ds; i f t ∈ [0, t1],

Sα(t− tk)∏k
i=1 Sα(ti − ti−1)φ(0)

+∑k
i=1

∫ ti
ti−1

Sα(t− tk)∏k−1
j=i Sα(t j+1 − t j)Sα(ti − s) f (s,yρ(s,ys))

+
∫ t
tk
Sα(t− s) f (s,yρ(s,ys))ds

+∑k
i=1 Sα(t− tk)∏k−1

j=i Sα(t j+1 − t j)Ii(yti); i f t ∈ (tk, tk+1] .

Set
R(ρ−) = {ρ(s,ϕ) : (s,ϕ) ∈ J×D ,ρ(s,ϕ) ≤ 0}.

We always assume that ρ : J×D → (−∞,b] is continuous. Additionally, we introduce
the following hypothesis:
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• (Hϕ) The function t → ϕt is continuous from R(ρ−) into D and there exists a
continuous and bounded function Lφ :R(ρ−) → (0,∞) such that

‖φt‖D ≤ Lφ (t)‖φ‖D , for every t ∈ R(ρ−).

Lemma 2 ([HPL06]). If y :]−∞,b] −→ E is a function such that y0 = φ , then

‖yt‖D ≤ (Mb+Lφ )‖φ‖D +Kb sup{|y(s)|;s ∈ [0,max{0, t}]},
where Mb = supt∈J M(t) , Kb = supt∈J K(t) and Lφ = supt∈R (ρ−)L

φ (t).

Our main result in this section is based upon the following fixed point theorem due
to Burton and Kirk [BK98].

Theorem 2 ([BK98]). Let X be a Banach space and A,B : X −→ X be two operators
satisfying:

1. A is a contraction,
2. B is completely continuous,

Then, either;

1. the operator equation y= Ay+By has a solution, or
2. the setϒ = {u ∈ X : λA( uλ )+λB(u) = u,λ ∈ (0,1)} is unbounded.

We introduce the following hypotheses:

(H1) A generate a compact and analytic α-ROF (Sα(t))t≥0 which is exponentially
bounded i.e there exist constants M ≥ 1,ω ≥ 0 such that

‖Sα(t)‖ ≤ Meωt ; t ≥ 0.

(H2) The functions Ik : E −→ E are Lipschitz. LetMk, for k= 1,2,3, ...m, be such that

‖Ik(y)− Ik(x)‖ ≤ Mk‖y− x‖; f or each y,x ∈ E.

(H3) the function f : J×D −→ E is Caratheodory.
(H4) There exists a function p ∈ L1(J,R+) and a continuous nondeceasing function

ψ : [0,+∞[−→ [0,+∞[ such that

| f (t,y)| ≤ p(t)ψ(‖y‖)D,
a.e, t ∈ J, for all y ∈ D, with

∫ ∞

C0

du
ψ(u)

= ∞,

and ∫ ∞

C3

du
ψ(u)

= ∞,
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where
C0 =C, C3 = min(C1,C2),

C = (Mb+Lφ +KbMeωb)‖φ‖D 0
b
,

C1 =
Kb

(
Mk+1eωb|φ(0)|+∑k

i=1M
k−i+1eω(b−ti)(|Ii(0)|+C)

)

1−Kb ∑k
i=1M

k−i+1eω(b−ti)Mi

+
Kb ∑k

i=1M
k−i+2eω(b−tk−1)

∫ ti
ti−1

e−ωs p(s)ψ(μ(s))ds

1−Kb ∑k
i=1M

k−i+1eω(b−ti)Mi
+C ,

C2 =
KbMeωb

(1−Kb ∑k
i=1M

k−i+1eω(b−ti)Mi)
.

Theorem 3. Assume that Hypotheses (Hϕ),(A1),(A2), (H1), (H4) are satisfied with

Kb

k

∑
i=1

Mk−i+1eω(b−ti)Mi < 1,

then the problem (1.1)–(1.3) has at least one mild solution on ]−∞,b].

Proof. Transform the problem (1.1)–(1.3) into a fixed point problem. Consider the oper-
ator N :Db → Db defined by

N(y)(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

φ(t); t ∈ (−∞,0],
Sα (t)φ(0)+

∫ t
0 Sα (t− s) f (s,yρ(s,ys))ds; t ∈ [0, t1],

Sα (t− tk)∏k
i=1 Sα (ti − ti−1)φ(0)

+∑k
i=1

∫ ti
ti−1

Sα (t− tk)∏k−1
j=i Sα (t j+1 − t j)Sα (ti − s) f (s,yρ(s,ys))

+
∫ t
tk Sα (t− s) f (s,yρ(s,ys))ds

+∑k
i=1 Sα (t− tk)∏k−1

j=i Sα (t j+1 − t j)Ii(yti); t ∈ (tk, tk+1] .

Let x(.) :]−∞,b] −→ E, be the function defined by

x(t) =

⎧⎨
⎩

φ(t), i f t ∈]−∞,0],
Sα(t)φ(0), i f t ∈ [0, t1],
0, i f t ∈ (tk, tk+1] .

Then x0 = φ . For each z ∈ Db with z(0) = 0, we denote by z the function defined by

z(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0, i f t ∈]−∞,0],∫ t
0 Sα (t− s) f (s,xρ(s,xs+zs) + zρ(s,xs+zs))+ zρ(s,xs+zs))ds, i f t ∈ [0, t1],
Sα (t− tk)∏k

i=1 Sα (ti − ti−1)φ(0)
+∑k

i=1
∫ ti
ti−1

Sα (t− tk)∏k−1
j=i Sα (t j+1 − t j)Sα (ti − s) f (s,xρ(s,xs+zs) + zρ(s,xs+zs))ds

+
∫ t
tk Sα (t− s) f (s,yρ(s,ys))ds

+∑k
i=1 Sα (t− tk)∏k−1

j=i Sα (t j+1 − t j)Ii(xti + zti), i f t ∈ (tk, tk+1] .

(5)
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If y(.) satisfies (3), we can decompose it as y(t) = x(t) + z(t), 0 ≤ t ≤ b, which
implies yt = zt + xt for every 0 ≤ t ≤ b and the function z(.) satisfies

z∗(t) =
{
0, i f t ∈]−∞,0],
z(t), i f t ∈ [0,b].

where

z(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∫ t
0 Sα(t− s) f (s,xρ(s,xs+zs) + zρ(s,xs+zs))ds, i f t ∈ [0, t1],
Sα(t− tk)∏k

i=1 Sα(ti − ti−1)φ(0)
+∑k

i=1
∫ ti
ti−1

Sα(t− tk)∏k−1
j=i Sα(t j+1 − t j)Sα(ti − s) f (s,xρ(s,xs+zs) + zρ(s,xs+zs))

+
∫ t
tk
Sα(t− s) f (s,xρ(s,xs+zs) + zρ(s,xs+zs))ds

+∑k
i=1 Sα(t− tk)∏k−1

j=i Sα(t j+1 − t j)Ii(xti + zti), i f t ∈ (tk, tk+1] .

Set
D0

b := {z ∈ Db : z0 = 0}.
and let ‖.‖b be the seminorm in D0

b defined by

‖z‖b = ‖z0‖+ sup{|z(t)| : 0 ≤ t ≤ b}
= sup{|z(t)| : 0 ≤ t ≤ b}.

D0
b is Banach space with the norm ‖.‖b .
Transform the problem 1–3 into a fixed point problem. Consider the two operators

A ,B :D0
b −→ D0

b ,

defined by

A z(t) =

⎧⎨
⎩

0, i f t ∈ [0, t1],
Sα(t− tk)∏k

i=1 Sα(ti − ti−1)φ(0)
+∑k

i=1 Sα(t− tk)∏k−1
j=i Sα(t j+1 − t j)Ii(xti + zti), i f t ∈ (tk, tk+1] .

and

Bz(t) =

⎧⎨
⎩

∫ t
0 Sα (t− s) f (s,xρ(s,xs+zs) + zρ(s,xs+zs ))ds, i f t ∈ [0, t1],

∑k
i=1

∫ ti
ti−1

Sα (t− tk)∏k−1
j=i Sα (t j+1 − t j)Sα (ti − s) f (s,xρ(s,xs+zns ) + zρ(s,xs+zns ))

+
∫ t
tk
Sα (t− s) f (s,xρ(s,xs+zs) + zρ(s,xs+zs ))ds, i f t ∈ (tk, tk+1] .

Then the problem of finding the solution of the problem 1–3 is reduced to finding
the solution of operator equation A z(t)+Bz(t) = z(t), t ∈ (−∞,b], we shall that the
operators A and B satisfy all the conditions of theorem 3.

We give the proof into a sequence of steps.

Step 1: B is continuous.

Let (zn)n≥0 be a sequence such that zn −→ z in D0
b . Since f satisfies (H3), we get

f (s,xs+ zns ) → f (s,xs+ zs) as n → ∞.
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Then

1. For t ∈ [0, t1], we have

|B(zn)(t)−B(z)(t)|
= |∫ t

0 Sα (t− s)[ f (s,xρ(s,xs+zns ) + znρ(s,xs+zns )
)− f (s,xρ(s,xs+zs) + zρ(s,xs+zs))]ds

≤ ∫ t
0 ‖Sα (t− s)‖| f (s,xρ(s,xs+zns ) + znρ(s,xs+zns

))− f (s,xρ(s,xs+zs) + zρ(s,xs+zs ))|ds
≤ Meωt ∫ t

0 e
−ωs| f (s,xρ(s,xs+zns ) + znρ(s,xs+zns )

)− f (s,xρ(s,xs+zs) + zρ(s,xs+zs ))|ds −→ 0.

2. For t ∈ (tk, tk+1] ,
|B(zn)(t)−B(z)(t)|

= |∑k
i=1

∫ ti
ti−1

Sα (t− tk)∏k−1
j=i Sα (t j+1 − t j)Sα (ti − s)[ f (s,xρ(s,xs+zns ) + znρ(s,xs+zns )

)

− f (s,xρ(s,xs+zs) + zρ(s,xs+zs))]ds+
∫ t
tk
Sα (t− s)[ f (s,xρ(s,xs+zns ) + znρ(s,xs+zns )

)− f (s,xρ(s,xs+zs) + zρ(s,xs+zs))]|
≤ ∑k

i=1
∫ ti
ti−1

‖Sα (t− tk)‖∏k−1
j=i ‖Sα (t j+1 − t j)‖‖Sα (ti − s)‖× |[ f (s,xρ(s,xs+zns ) + znρ(s,xs+zns )

)

− f (s,xρ(s,xs+zs) + zρ(s,xs+zs))]ds+
∫ t
tk

‖Sα (t− s)‖|[ f (s,xρ(s,xs+zns ) + znρ(s,xs+zns )
)

− f (s,xρ(s,xs+zs) + zρ(s,xs+zs))]|ds
≤ ∑k

i=1
∫ ti
ti−1

Meω(t−tk) ∏k−1
j=i Meω(t j+1−t j)Meω(ti−s)|[ f (s,xρ(s,xs+zns ) + znρ(s,xs+zns )

)

− f (s,xρ(s,xs+zs) + zρ(s,xs+zs))]|ds+
∫ t
tk
Meω(t−s)|[ f (s,xρ(s,xs+zns ) + znρ(s,xs+zns )

)−
f (s,xρ(s,xs+zs) + zρ(s,xs+zs))]|ds

≤ ∑k
i=1

∫ ti
ti−1

Meω(t−tk)[Meω(ti+1−ti) ×Meω(ti+2−ti+1) ×Meω(ti+3−ti+2)

×...×Meω(tk−tk−1)]Meω(ti−ts)|[ f (s,xρ(s,xs+zns ) + znρ(s,xs+zns )
)

− f (s,xρ(s,xs+zs) + zρ(s,xs+zs))]|ds
+

∫ t
tk
Meω(t−s)|[ f (s,xρ(s,xs+zns ) + znρ(s,xs+zns )

)

− f (s,xρ(s,xs+zs) + zρ(s,xs+zs))]|ds
≤ ∑k

i=1
∫ ti
ti−1

Meωt [Mk−1−i+1]Me−ωs|[ f (s,xρ(s,xs+zns ) + znρ(s,xs+zns )
)− f (s,xρ(s,xs+zs) + zρ(s,xs+zs))]|ds

+Meωt ∫ t
tk
e−ωs|[ f (s,xρ(s,xs+zns ) + znρ(s,xs+zns )

)

− f (s,xρ(s,xs+zs) + zρ(s,xs+zs))]|ds
≤ ∑k

i=1M
k−i+2eωt ∫ ti

ti−1
e−ωs|[ f (s,xρ(s,xs+zns ) + znρ(s,xs+zns )

)− f (s,xρ(s,xs+zs) + zρ(s,xs+zs))]|ds
+Meωt ∫ t

tk
e−ωs|[ f (s,xρ(s,xs+zns ) + znρ(s,xs+zns )

)− f (s,xρ(s,xs+zs) + zρ(s,xs+zs))]|ds −→ 0.

We get
‖B(zn)(t)−B(z)(t)‖D 0

b
−→ 0.

as n −→ +∞.
This means thatB is continuous.

Step 2: B maps bounded sets into bounded sets in D0
b .

A linear operator B : D0
b −→ D0

b is bounded if only it maps bounded sets into
bounded sets; i.e it is enough to show that for any q> 0, there exists a positive constant
lk;k = 1,2, ...,m such that for each z ∈ Bq = {z ∈ D0

b : ‖z‖ ≤ q}, we have ‖B(z)‖ ≤ lk.
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Let z ∈ Bq. Then,

|Bz(t)| ≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫ t
0 ‖Sα(t− s)‖| f (s,xρ(s,xs+zs) + zρ(s,xs+zs))|ds, i f t ∈ [0, t1],

∑k
i=1

∫ ti
ti−1

‖Sα(t− tk)‖
×∏k−1

j=i ‖Sα(t j+1 − t j)‖|Sα(ti − s)‖| f (s,xρ(s,xs+zs) + zρ(s,xs+zs))|ds
+

∫ t
tk

‖Sα(t− s)‖| f (s,xρ(s,xs+zs) + zρ(s,xs+zs))|ds, i f t ∈ (tk, tk+1] .

|Bz(t)| ≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫ t
0 ‖Sα (t− s)‖p(s)ψ(‖xρ(s,xs+zs) + zρ(s,xs+zs)‖)ds, i f t ∈ [0, t1],

∑k
i=1

∫ ti
ti−1

‖Sα (t− tk)‖
×∏k−1

j=i ‖Sα (t j+1 − t j)‖|Sα (ti − s)‖|p(s)ψ(‖xρ(s,xs+zs) + zρ(s,xs+zs)‖)ds
+

∫ t
tk ‖Sα (t− s)‖p(s)ψ(‖xρ(s,xs+zs) + zρ(s,xs+zs)‖)ds, i f t ∈ (tk, tk+1] .

Using Lemma 3.1, we get

‖xρ(s,xs+zs) + zρ(s,xs+zs)‖D 0
b

≤ KbMeωt1 |φ(0)|+(Mb+Lφ )‖φ‖D 0
b
+Kb|z(s)|.

Then

‖xρ(s,xs+zs) + zρ(s,xs+zs)‖D 0
b

≤ (Mb+Lφ +KbMeωb)‖φ‖D 0
b
+Kbq= q∗.

Set C = (Mb+Lφ +KbMeωb)‖φ‖D 0
b
. Then we obtain

‖xρ(s,xs+zs) + zρ(s,xs+zs)‖D 0
b

≤ Kb|z(s)|+C.

|Bz(t)| ≤

⎧⎪⎪⎨
⎪⎪⎩

Meωt1ψ(q∗
1)

∫ t
0 e

−ωs p(s)ds, i f t ∈ [0, t1],
∑k
i=1Meω(t−tk)[Meω(ti−1−ti)Meω(ti+2−ti+1)...Meω(tk−1−tk−2)

×Meω(tk−tk−1)]Meωti ×ψ(q∗)
∫ ti
ti−1

p(s)e−ωsds
+Meωtψ(q∗)

∫ t
tk
p(s)e−ωsds, i f t ∈ (tk, tk+1] .

Then

|Bz(t)| ≤
⎧⎨
⎩

Meωt1ψ(q∗))
∫ t
0 e

−ωs p(s)ds, i f t ∈ [0, t1],
∑k
i=1M

k−i+2eω(t−tk)+ti−1−ti+ti+2−ti+1...+tk−1−tk−2+tk−tk−1+ti)
×ψ(q∗)

∫ ti
ti−1

p(s)e−ωsds+Meωtψ(q∗)
∫ t
tk p(s)e

−ωsds, i f t ∈ (tk, tk+1] .

Using characteristic of the exponential function, we get

|Bz(t)| ≤
⎧⎨
⎩

Meωt1ψ(q∗
1)

∫ t
0 e

−ωs p(s)ds, i f t ∈ [0, t1],
∑k
i=1M

k−i+2eω(t−tk−1 ×ψ(q∗
2)

∫ ti
ti−1

p(s)e−ωsds
+Meωtψ(q∗

2)
∫ t
tk
p(s)e−ωsds, i f t ∈ (tk, tk+1] .
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Finally, we obtain

|Bz(t)| ≤
⎧⎨
⎩

Meωt1ψ(q∗
1)

∫ t
0 e

−ωs p(s)ds= l1, i f t ∈ [0, t1],
∑k
i=1M

k−i+2eω(tk+1−tk−1) ×ψ(q∗
2)

∫ ti
ti−1

p(s)e−ωsds
+Meωtk+1ψ(q∗

2)
∫ t
tk
p(s)e−ωsds= lk, k = 2,3, ...,m, i f t ∈ (tk, tk+1] .

|Bz(t)| ≤
⎧⎨
⎩

Meωt1ψ(q∗)
∫ t
0 e

−ωs p(s)ds= l1, i f t ∈ [0, t1],
∑k
i=1M

k−i+2eω(tk+1−tk−1) ×ψ(q∗)
∫ ti
ti−1

p(s)e−ωsds
+Meωtk+1ψ(q∗)

∫ t
tk
p(s)e−ωsds= lk, k = 2,3, ...,m, i f t ∈ (tk, tk+1] .

Step 3: B maps bounded sets into equicontinuous sets of D0
b .

Let τ1,τ2 ∈ J\{t1, t2, ..., tm} with τ1 < τ2, let Bq be a bounded set in D0
b , and let

z ∈ Bq.
• If τ1,τ2 ∈ [0, t1], we have

|Bz(τ2)−Bz(τ1)|

= |
∫ τ2

0
Sα (τ2 − s) f (s,xρ(s,xs+zs) + zρ(s,xs+zs))ds−

∫ τ1

0
Sα (τ1 − s) f (s,xρ(s,xs+zs) + zρ(s,xs+zs))ds|.

Using the linearity of integral operator and hypotheses H4, we get

|Bz(τ2)−Bz(τ1)|
= |

∫ τ1

0
Sα (τ2 − s) f (s,xρ(s,xs+zs) + zρ(s,xs+zs))ds+

∫ τ2

τ1
Sα (τ2 − s) f (s,xρ(s,xs+zs) + zρ(s,xs+zs))ds

−
∫ τ1

0
Sα(τ1 − s) f (s,xρ(s,xs+zs) + zρ(s,xs+zs))ds|

= |
∫ τ1

0
(Sα (τ2 − s)−Sα (τ1 − s)) f (s,zt(s)+ xt(s))ds+

∫ τ2

τ1
Sα (τ2 − s) f (s,xρ(s,xs+zs) + zρ(s,xs+zs))ds|

≤ ∫ τ1
0 ‖Sα(τ2 − s)−Sα(τ1 − s)‖| f (s,xρ(s,xs+zs) + zρ(s,xs+zs))|ds

+
∫ τ2

τ1
‖Sα(τ2 − s)‖| f (s,xρ(s,xs+zs) + zρ(s,xs+zs))|ds

≤ ψ(q∗
1)

∫ τ1

0
‖Sα(τ2 − s)−Sα(τ1 − s)‖p(s)ds+Meωτ2ψ(q∗)

∫ τ2

τ1
e−ωs p(s)ds.

If τ1 = 0, the right-hand side of previous inequality tends to zero as τ2 −→ 0 uni-
formly for z ∈ D0

b .
If 0< τ1 < τ2, for ε > 0 whit ε < τ1 < τ2, we have

|B(z(τ2))−B(z(τ1))| ≤
∫ τ1−ε

0
‖Sα (τ2 − s)−Sα (τ1 − s)‖| f (s,xρ(s,xs+zs) + zρ(s,xs+zs))|ds
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+
∫ τ1

τ1−ε
‖Sα(τ2 − s)−Sα(τ1 − s)‖| f (s,xρ(s,xs+zs) + zρ(s,xs+zs))|ds

+
∫ τ2

τ1
‖Sα(τ2 − s)‖| f (s,xρ(s,xs+zs) + zρ(s,xs+zs))|ds

≤ ψ(q∗
1)

∫ τ1−ε

0
‖Sα(τ2 − s)−Sα(τ1 − s)‖p(s)ds

+ψ(q∗
1)

∫ τ1

τ1−ε
‖Sα(τ2 − s)−Sα(τ1 − s)‖p(s)ds

+Meωτ2ψ(q∗)
∫ τ2

τ1
e−ωs p(s)ds.

From lemma 1, the operator Sα(t) is a uniformly continuous operator for t ∈ [ε, t1].
Combining this and the arbitrariness of ε with the above estimation on |B(z(τ2))−
B(z(τ1))|, we can conclude that

lim[τ1,τ2]−→0|B(z(τ2))−B(z(τ1))| = 0.

Thus the operator B is equicontinous on [0, t1].
• If τ1,τ2 ∈ (tk, tk+1],

|B(z(τ2))−B(z(τ1))|

= ‖
k

∑
i=1

∫ ti

ti−1]

Sα(τ2 − tk)
k−1

∏
j=i

Sα(t j+1 − t j)Sα(ti − s) f (s,xρ(s,xs+zs) + zρ(s,xs+zs))ds

−
k

∑
i=1

∫ ti

ti−1]

Sα(τ1 − tk)
k−1

∏
j=i

Sα(t j+1 − t j)Sα(ti − s) f (s,xρ(s,xs+zs) + zρ(s,xs+zs))ds

+
∫ τ2

tk
Sα (τ2 − s) f (s,xρ(s,xs+zs) + zρ(s,xs+zs))ds−

∫ τ1

tk
Sα (τ1 − s) f (s,xρ(s,xs+zs) + zρ(s,xs+zs))ds‖.

Then
|Bz(τ2)−Bz(τ1)|

≤
k

∑
i=1

∫ ti

ti−1

‖Sα(τ2 − tk)−Sα(τ1 − tk)‖
k−1

∏
j=i

‖Sα(t j+1 − t j)‖

×‖Sα (ti − s)‖| f (s,xρ(s,xs+zs) + zρ(s,xs+zs))|ds+‖
∫ τ1

tk
Sα (τ2 − s) f (s,xρ(s,xs+zs) + zρ(s,xs+zs))ds

+
∫ τ2

τ1
Sα (τ2 − s) f (s,xρ(s,xs+zs) + zρ(s,xs+zs))ds−

∫ τ1

tk
Sα (τ1 − s) f (s,xρ(s,xs+zs) + zρ(s,xs+zs))ds‖.

Which gives

|Bz(τ2)−Bz(τ1)| ≤
k

∑
i=1

∫ ti

ti−1

‖Sα(τ2 − tk)−Sα(τ1 − tk)‖
k−1

∏
j=i

‖Sα(t j+1 − t j)‖
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×‖Sα(ti − s)‖| f (s,xρ(s,xs+zs) + zρ(s,xs+zs))|ds

+
∫ τ1

tk
‖Sα(τ2 − s)−Sα(τ1 − s)‖| f (s,xρ(s,xs+zs) + zρ(s,xs+zs))|ds

+
∫ τ2

τ1
‖Sα(τ2 − s)‖| f (s,xρ(s,xs+zs) + zρ(s,xs+zs))|ds.

Under the hypothesis H4, and lemma, we obtain

|Bz(τ2)−Bz(τ1)| ≤ ∑k
i=1 ψ(q∗

2)
∫ ti
ti−1

‖Sα(τ2 − tk)−Sα(τ1 − tk)‖
∏k−1

j=i ‖Sα(t j+1 − t j)‖×‖Sα(ti − s)‖|p(s)ds
+ψ(q∗)

∫ τ1−ε
tk

‖Sα(τ2 − s)−Sα(τ1 − s)‖p(s)ds
+ψ(q∗)

∫ τ1
τ1−ε ‖Sα(τ2 − s)−Sα(τ1 − s)‖p(s)ds

+Mψ(q∗)eωτ2
∫ τ2

τ1 e
−ωs p(s)ds.

As τ1 −→ τ2 and ε becomes sufficiently small, the right-hand side of the above inequal-
ity tends to zero, since Sα is analytic operator and the compactness of Sα(t) for t > 0
implies the continuity in the uniform operator topology. This proves the equicontinuity
for the case where t �= ti, i= 1, ...,m+1.

Now, it remains to examine equicontinuity at t = tl . We have for z ∈ Bq, for each
t ∈ J.
First, we prove equicontinuity at t = t−l .
Fix δ1 > 0 such that {tk,k �= l}∩ [tl −δ1, tl −δ1] = /0.
For 0< h< δ1, we have

• if l = 1 i.e t1 −h, t1 ∈ [0, t1],

|B(z(t1 −h))−B(z(t1))| ≤ ψ(q∗
1)

∫ t1−h
0 ‖Sα(t1 − s)−Sα(t1 −h− s)‖p(s)ds
+Meωt1ψ(q∗)

∫ t1
t1−h e

−ωs p(s).ds

Which tends to zero as h −→ 0 since Sα(t) is uinformly continuous operator for
t ∈ [0, t1] thus the operator B is equicontinuous at t = t−1 .

• if tl −h, tl ∈ [tk, tk+1].
Then:

|B(z)(tl −h)−B(z)(tl)| ≤ ∑k
i=1 ψ(q∗)

∫ ti
ti−1

‖Sα(tl − tk)−Sα(tl −h− tk)‖
×∏k−1

j=i ‖Sα(t j+1 − t j)‖‖Sα(ti − s)‖p(s)ds
+ψ(q∗)

∫ tl−h
tk

‖Sα(tl − s)−Sα(tl −h− s)‖p(s)ds
+Mψ(q∗)eωtl

∫ tl
tl−h e

−ωs p(s)ds.

The right-hand side of the previous inequality tends to zero as h −→ 0.
So the operator B is equicontinuous at t−l .
Now, define

B̂0(z)(t) =B(z)(t), i f t ∈ [0, t1],
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and

B̂i(z)(t) =
{
B(z)(t), i f t ∈ (ti, ti+1),
B(z)(t+i ), i f t = ti.

Next, we prove equicontinuity at t = t+i .
Fix δ2 > 0 such that {tk,k �= i}∩ [ti −δ2, ti+δ2] = /0.
First, we study the equicontinuity at t = 0+.
If t ∈ [0, t1], we have

B̂0(z)(t) =
{
Bz(t), i f t ∈ [0, t1],
0, i f t = 0.

For 0< h< δ2, we have

|B̂0(z)(h)− B̂0(z)(0)| = |B(z)(h)|
= ‖∫ h

0 Sα(h− s) f (s,xρ(s,xs+zs) + zρ(s,xs+zs))ds‖
≤ ∫ h

0 ‖Sα(h− s)‖| f (s,xρ(s,xs+zs) + zρ(s,xs+zs))|ds
≤ ψ(q∗)eωh ∫ h

0 e
−ωs p(s)ds.

The right-hand side tends to zero as h −→ 0.
Now, we study the equicontinuity at t+1 , t

+
2 , ..., t

+
m (t

+
l ,1 ≤ l ≤ m).

For 0< h< δ2, we have

|B(z)(tl +h)−B(z)(tl)| ≤ ∑k
i=1 ψ(q∗)

∫ ti
ti−1 ‖Sα(h)−Sα(0)‖

×∏k−1
j=i ‖Sα(t j+1 − t j)‖‖Sα(ti − s)‖p(s)ds

+Mψ(q∗)eω(tl+h) ∫ tl+h
tl

e−ωs p(s)ds.

It is clear that the right-hand side tends to zero as h −→ 0.
ThenB is equicontinuous at t+l ,(1 ≤ l ≤ m). The equicontinuity for the cases τ1 <

τ2 ≤ 0 and τ1 ≤ 0≤ τ2 follows from the uniform continuity of φ on the interval ]−∞,0].
As a consequence of steps 1 and 3 toghether with Arzel-Ascoli Theorem it suffices to
show thatBz maps Bq into a precompact set in E i.e.: we show that the set {Bz(t),z ∈
Bq} is precompact in E for every t ∈ [0,b].

Now, let x ∈ Bq and let ε be a positive real number satisfying 0< ε < t ≤ b.
For z ∈ Bq and t ∈ [0, t1].
we have if t = 0 the set {Bz(0);z ∈ Bq} = {0} which is precompact as a finite set.
For 0< ε < t ≤ t1, we have

B(z)(t) =
∫ t
0 Sα (t− s) f (s,xρ(s,xs+zs) + zρ(s,xs+zs))ds

=
∫ t−ε
0 Sα (t− s) f (s,xρ(s,xs+zs) + zρ(s,xs+zs))ds+

∫ t
t−ε Sα (t− s) f (s,xρ(s,xs+zs) + zρ(s,xs+zs))ds.

Set F0 := {Sα(t − θ) f (θ ,xρ(θ ,xθ+zθ ) + zρ(θ ,xθ+zθ ));θ ∈ [0, t − ε],z ∈ Bq}, from the
mean value Theorem for the Bochner integral, we have

∫ t−ε

0
Sα(t− s) f (s,zt(s)+ xt(s))ds ∈ (t− ε)Conv(F0). (6)
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On the other hand, using hypotheses (H1) and (H4), we obtain
∫ t

t−ε
|Sα(t− s) f (s,zt(s)+ xt(s))|ds ≤ Meωtψ(q∗)

∫ t

t−ε
e−ωs p(s)ds.

Let C0
ε the circle who’s diameter d0ε is such that

d0ε ≤ Meωtψ(q∗
1)

∫ t

t−ε
e−ωs p(s)ds. (7)

As a consequence of (6) and (7), we conclude that

Bz(t) ∈ (t− ε)Conv(F0)+C0
ε , ∀0< ε < t ≤ t1. (8)

For tk < ε < t < tk+1 and z ∈ B, we have

Bz(t) =
k

∑
i=1

∫ ti

ti−1

Sα(t− tk)
k−1

∏
j=i

Sα(t j+1 − t j)Sα(ti − s) f (s,zt(s)+ xt(s))ds. (9)

+
∫ t−ε

tk
Sα(t− s) f (s,zt(s)+ xt(s))ds+

∫ t

t−ε
Sα(t− s) f (s,zt(s)+ xt(s))ds.

Set Fk := {Sα(t − θ) f (θ ,zt(θ)+ xt(θ));θ ∈ (tk, tk+1),z ∈ Bq}, from the mean value
theorem for the Bochner integral, we have

∫ t−ε

tk
Sα(t− s) f (s,xρ(s,xs+zs) + zρ(s,xs+zs))ds ∈ (t− tk − ε)Conv(Fk). (10)

From (H1),(H4) we obtain

∑k
i=1

∫ ti
ti−1

Sα(t− tk)∏k−1
j=i Sα(t j+1 − t j)Sα(ti − s) f (s,xρ(s,xs+zs) + zρ(s,xs+zs))ds

+
∫ t−ε
tk

Sα(t− s) f (s,zt(s)+ xt(s))ds

≤ ψ(q∗)∑k
i=1M

k−i+2eω(t−tk−1
∫ ti
ti−1

e−ωs p(s)ds+Mψ(q∗)eωt ∫ t
t−ε e

−ωs p(s)ds.

Let Ck
ε the circle who’s diameter dkε is such that

dkε ≤ ψ(q∗)
k

∑
i=1

Mk−i+2eω(t−tk−1

∫ ti

ti−1

e−ωs p(s)ds+Mψ(q∗)eωt
∫ t

t−ε
e−ωs p(s)ds. (11)

From (9) and (11), it follows that

Bz(t) ∈ (t− tk − ε)Conv(Fk)+Ck
ε , ∀tk < ε < t < tk+1. (12)

From 8 and 12, we conclude that Bz(t) is precompact in E. From Step1– Step 3, we
deduce that B is completey continuous.
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Step 4: A is a contraction.

For t ∈]−∞, t1], we have

|A z1(t)−A z2(t)| = 0.

which implies that A is contraction for all t ∈]− ∞, t1]. It remains to prove that A is a
contraction operator for t ∈ [tk, tk+1], k ≥ 1

|A z1(t)−A z2(t)| = |∑k
i=1 Sα(t− tk)∏k−1

j=i Sα(t j+1 − t j)

×[(Ii(xti + z1ti)− Ii(xti + z2ti)|
≤ ∑k

i=1 ‖Sα(t− tk)‖∏k−1
j=i ‖Sα(t j+1 − t j)‖|[Ii(z1ti)− Ii(z2ti)|

≤ ∑k
i=1Meω(t−tk) ∏k−1

j=i Meω(t j+1−t j)‖|[Ii(z1ti)− Ii(z2ti)|
≤ ∑k

i=1Meω(t−tk)[Meω(ti+1−ti)Meω(ti+2−ti+1)...Meω(tk−1−tk−2)

×Meω(tk−tk−1)]×‖|[Ii(z1ti)− Ii(z2ti)|
≤ ∑k

i=1M
k−i+1eω(t−ti)‖|[Ii(z1ti)− Ii(z2ti)|.

Since t ∈ J := [0,b] and the functions Ik; k = 1,2, ...,m. Lipschitz; Then

|A z1(t)−A z2(t)| ≤
k

∑
i=1

Mk−i+1eω(b−ti)Mi‖z1ti − z2ti‖D .

It fallows that

‖A z1 −A z2‖ ≤ Kb

k

∑
i=1

Mk−i+1eω(b−ti)Mi‖z1 − z2‖D .

Thus the operator A is a contraction, since

Kb

k

∑
i=1

Mk−i+1eω(b−ti)Mi < 1.

Step 5: A priori bounds.

Now it remains to show that the set

ϒ = {z ∈ PC(]−∞,b],E) : z= λB(z)+λA (
z
λ
), for some 0< λ < 1}.

is bounded.
Let z ∈ ϒ be any element, then z= λB(z)+λA ( z

λ ),
for some 0< λ < 1.
First, for each t ∈ [0, t1],

|z(t)| = |λ ∫ t
0 Sα(t− s) f (s,xρ(s,xs+zs) + zρ(s,xs+zs))ds|

≤ Meωt ∫ t
0 e

−ωs| f (s,xρ(s,xs+zs) + zρ(s,xs+zs))|ds
≤ Meωt1

∫ t1
0 e−ωs p(s)ψ(‖xρ(s,xs+zs) + zρ(s,xs+zs)‖)ds

≤ Meωt1
∫ t1
0 e−ωs p(s)ψ(Kb|z(s)|+(Mb+MKbeωt1 +Lφ )‖φ‖)ds.
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On the other hand, for each t ∈ (tk, tk+1], we have

|z(t)| = ‖λ
(

∑k
i=1

∫ ti
ti−1

Sα (t− tk)∏k−1
j=i Sα (t j+1 − t j)Sα (ti − s) f (s,xρ(s,xs+zs) + zρ(s,xs+zs))ds

+
∫ t
tk
Sα (t− s) f (s,xρ(s,xs+zs) + zρ(s,xs+zs)

)
+λ

(
Sα (t− tk)∏k

i=1 Sα (ti − ti−1)φ(0)

+∑k
i=1 Sα (t− tk)∏k−1

j=i Sα (t j+1 − t j)Ii(
zti
λ + xti )

)
‖.

From (H1) , (H2) and since λ < 1, we obtain

|z(t)| ≤ Mk+1eωt |φ(0)|+∑k
i=1M

k−i+1eω(t−ti)|Ii(0)|
+∑k

i=1M
k−i+2eω(t−tk−1)

∫ ti
ti−1

e−ωs p(s)ψ(Kb|z(s)|+C)ds

+Meωt ∫ t
tk
e−ωs p(s)ψ(Kb|z(s)|+C)ds

+∑k
i=1M

k−i+1eω(t−ti)|Ii( ztiλ + xti)− Ii(0)|.
Since Ii are Lipschitz, then

|z(t)| ≤ Mk+1eωt |φ(0)|+∑k
i=1M

k−i+1eω(t−ti)|Ii(0)|
+∑k

i=1M
k−i+2eω(t−tk−1)

∫ ti
ti−1

e−ωs p(s)ψ(Kb|z(s)|+C)ds

+Meωt ∫ t
tk
e−ωs p(s)ψ(Kb|z(s)|+C)ds

+∑k
i=1M

k−i+1eω(t−ti)Mi‖z(t−i )‖
≤ Mk+1eωt |φ(0)|+∑k

i=1M
k−i+1eω(t−ti)|Ii(0)|

+∑k
i=1M

k−i+2eω(t−tk−1)
∫ ti
ti−1

e−ωs p(s)ψ(Kb|z(s)|+C)ds

+Meωt ∫ t
tk
e−ωs p(s)ψ(Kb|z(s)|+C)ds

+∑k
i=1M

k−i+1eω(t−ti)Mi(Kb|z(t)|+C).

Therefore

[1−Kb

k

∑
i=1

Mk−i+1eω(b−ti)Mi]|z(t)| ≤ Mk+1eωt‖φ(0)‖+∑k
i=1M

k−i+1eω(b−ti)|Ii(0)|

+∑k
i=1M

k−i+2eω(t−tk−1 )
∫ ti
ti−1

e−ωs p(s)ψ(Kb|z(s)|+C)ds

+Meωb ∫ t
tk
e−ωs p(s)ψ(Kb|z(s)|+C)ds+C∑k

i=1M
k−i+1eω(b−ti)Mi.

Thus we have

|z(t)| ≤
(
Mk+1eωb|φ(0)|+∑k

i=1M
k−i+1eω(b−ti)(|Ii(0)|+C)

+∑k
i=1M

k−i+2eω(b−tk−1 )
∫ ti
ti−1

e−ωs p(s)ψ(Kb|z(s)|+C)ds
)/(

1−Kb ∑k
i=1M

k−i+1eω(b−ti)Mi

)

+ Meωb

(1−Kb ∑k
i=1M

k−i+1eω(b−ti)Mi)

∫ t
tk
e−ωs p(s)ψ(Kb|z(s)|+C)ds).

We consider the function μ(t) defined by

μ(t) = sup{Kb|z(s)|+C;0 ≤ s ≤ t}, 0 ≤ t ≤ b.
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Let t∗ ∈ [0, t] be such that μ(t) = Kb|z(t∗)|+C. If t∗ ∈ J, by the previous inequality, we
have for t ∈ J.

• if t ∈ [0, t1],

μ(t) ≤ KbMeωb
∫ t

0
e−ωs p(s)ψ(μ(s))ds+C.

• if t ∈ (tk, tk+1] ,

|μ(t)| ≤ Kb

(
Mk+1eωb|φ(0)|+∑k

i=1M
k−i+1eω(b−ti)(|Ii(0)|+C)

+∑k
i=1M

k−i+2eω(b−tk−1)
∫ ti
ti−1

e−ωs p(s)ψ(|μ(s)|)ds
)/(

1−Kb ∑k
i=1M

k−i+1eω(b−ti)Mi

)

+ KbMeωb

(1−Kb ∑k
i=1Mk−i+1eω(b−ti)Mi)

∫ t
tk e

−ωs p(s)ψ(|μ(s)|)ds)+C.

Then

μ(t) ≤C1+C2

∫ t

tk
e−ωs p(s)ψ(μ(s)ds.

Where

C1 =
Kb

(
Mk+1eωb|φ(0)|+∑k

i=1M
k−i+1eω(b−ti)(|Ii(0)|+C)

)

1−Kb ∑k
i=1M

k−i+1eω(b−ti)Mi

+
Kb ∑k

i=1M
k−i+2eω(b−tk−1)

∫ ti
ti−1

e−ωs p(s)ψ(μ(s))ds

1−Kb ∑k
i=1M

k−i+1eω(b−ti)Mi
+C.

C2 =
KbMeωb

(1−Kb ∑k
i=1M

k−i+1eω(b−ti)Mi)
.

It follows that

μ(t) ≤
{
C+KbMeωb ∫ t

0 e
−ωs p(s)ψ(μ(s))ds, i f t ∈ [0, t1]

C1+C2
∫ t
tk
e−ωs p(s)ψ(μ(s))ds, i f t ∈ (tk, tk+1).

Let us take the right-hand side of the above inequality as ϑ(t),

μ(t) ≤ ϑ(t).

and

ϑ(t) :=
{
C+KbMeωb ∫ t

0 e
−ωs p(s)ψ(μ(s))ds, i f t ∈ [0, t1]

C1+C2
∫ t
tk
e−ωs p(s)ψ(μ(s))ds, i f t ∈ (tk, tk+1).

{
ϑ(0) =C,
ϑ(tk) =C1, k = 1,2, ...,m.

And differentiating both sides of the above equality, we obtain

ϑ ′(t) :=
{
KbMeω(b−t)p(t)ψ(μ(t)), i f t ∈ [0, t1],
C2e−ωt p(t)ψ(μ(t)), i f t ∈ (tk, tk+1] .
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Using the non decreasing character of function ψ , i.e

μ(t) ≤ ϑ(t) ⇒ ψ(μ(t)) ≤ ψ(ϑ(t))

We have

ϑ ′(t) ≤
{
KbMeω(b−t)p(t)ψ(ϑ(t)), i f t ∈ [0, t1],
C2e−ωt p(t)ψ(ϑ(t)), i f t ∈ (tk, tk+1] .

It gives

ϑ ′(t)
ψ(ϑ(t))

≤
{
KbMeω(b−t)p(t), i f t ∈ [0, t1],
C2e−ωt p(t), i f t ∈ (tk, tk+1).

• Integrating from 0 to t, if t ∈ [0, t1], we get
∫ t

0

ϑ ′(s)
ψ(ϑ(s))

ds ≤ KbMeωb
∫ t

0
e−ωs p(s)ds.

By change of variable (ϑ(s) = u)(s : 0 −→ t,u :C −→ ϑ(t)):
∫ v(t)

C

du
ψ(u)

≤ Meωb
∫ t

C
e−ωs p(s)ds ≤

∫ ∞

0

du
ψ(u)

.

Hence, there exists a constant η1 such that

μ(t) ≤ ϑ(t) ≤ η1.

• Now, integrating from tk to t if t ∈ (tk, tk+1], we get
∫ t

tk

ϑ ′(s)
ψ(ϑ(s))

ds ≤C2

∫ t

tk
e−ωs p(s)ds.

By change of variable (ϑ(s) = u)(s : tk −→ t,u :C1 −→ ϑ(t)):
∫ v(t)

0

du
ψ(u)

≤C2

∫ t

tk
e−ωs p(s)ds ≤

∫ v(t)

C3

du
ψ(u)

.

Where C3 = min(C,C2). Henc, there existe a constant η2 such that

μ(t) ≤ ϑ(t) ≤ η2, t ∈ (tk, tk+1)

In conclusion, there exists η =min(η1,η2) such that

μ(t) ≤ ϑ(t) ≤ η , f or all t ∈ J.

Now from the definition of μ it follows that, there exist η∗ > 0 such that

‖z‖D 0
b

≤ η∗, ∀z ∈ ϒ .

This shows that the setϒ is bounded.
As a consequence of theorem, we deduce that A +B has a fixed point z∗. Then

y∗(t) = z∗(t)+x(t), t ∈ (−∞,b] is a fixed point of the operator N and hence the problem
have a mild solution on interval (−∞,b] . This completes the proof.
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4 Application

We consider the following impulsive fractional differential equation of the form:

∂ q
t

∂ tq
v(t,x)=

∂ 2

∂x2
v(t,x)+

∫ t

−∞
a1(s−t)v(s−ρ1(t)ρ2(|v(t)|,ξ )ds, x∈ [0,π], t ∈ [0,b]\{t1, ..., tm},

(13)

Δv(ti)(x) =
∫ t

−∞
di(ti − s)v(s,x)ds, x ∈ [0,π], i= 1, ...,m, (14)

v(t,0) = v(t,π) = 0, t ∈ [0,b], (15)

v(t,x) = v0(θ ,x), θ ∈]−∞,0],x ∈ [0,π]. (16)

where 0 < q < 1, di : R → R, i = 1,2, ...,m, and a1 : (−∞,0] → R, ρi : [0,+∞) →
[0,+∞), i= 1,2 are continuous functions.

Set E = L2([0,π]) and let D(A)⊂ E → E be the operator Au= u′′ with the domaine

D(A) = {u ∈ H1
0 (0,π)∩H2(0,π)}.

The operator A is the infinitesimal generator of analytic semi-group S(t).
Set γ > 0. For the phase space, we choose D to defined by:

D = PCγ = {Φ ∈ PC((−∞,0],E) : lim
θ∈(−∞,0]

exp(γθ )Φ(θ) exists in E}.

with norm
‖φ‖γ = sup

θ∈(−∞,0]
exp(γθ )|φ(θ)|, φ ∈ PCγ .

For this space, axioms (A1),(A2) are satisfied. the problem (4.1)–(4.4) takes the abstract
form (1.1)–(1.3) by making the following change of variables.

y(t)(x) = v(t,x), x ∈ [0,π], t ∈ J = [0,1].

φ(θ)(x) = v0(θ ,x), x ∈ [0,π],θ ≤ 0.

f (t,ϕ)(x) =
∫ t

−∞
a1ϕ(s,x)ds.

ρ(t,ϕ) = s−ρ1(t)ρ2(|ϕ(0)|).

Ii(ϕ)(x) =
∫ 0

−∞
di(−θ)ϕ(θ)(x)dθ

Theorem 4. Let ϕ ∈ B such that Hϕ holds, the problem (4.1)–(4.4) has at least one
mild solution.
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5 Conclusion

In this work, we provided the existence of mild solutions and with sufficient conditions
for some differential fractional equations. The main tool of this paper is the fixed point
theory combined with resolvent famillies. To our knowlege, there are few works using
this technique. The obtained results have a contribution to the related literature and
extend the results in [HL20,HGBA13].
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[ABN15] Abbas, S., Benchohra, M.: N’guérékata. Advanced fractional differential and integral
equations. Nova Science Publishers, New York, G.M. (2015)
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1 Introduction

Although most of the efforts on dynamical systems are related to second-order
differential equations, the behavior of some dynamical systems is governed by
nonlinear jerk (third-order) differential equations. Jerk is the rate of accelera-
tion change in physics; that is, the time derivative of acceleration, and as such
the second velocity derivative, or the third time position derivative. The jerk is
significant in some mechanics and acoustics implementations. Many geometric
features of the Jerk vector are founded for plane motion utilizing the aberrancy
features of curves [1]. Nonlinear third-order differential equations, known as non-
linear Jerk equations, including the third temporal displacement derivative, are
of great interest in investigating the structures which exhibit rotating and trans-
lating movements, such as robots or machine tools, where excessive Jerk leads
to accelerated wear of transmissions and bearing elements, noisy operations and
large contouring errors in discontinuities (such as corners) in the machining path
[2]. The jerk equations are the minimal setting for solutions showing chaotic
behaviour. The numerical solutions of the Jerk equation have been worked by
many investigators [3].

Hu et al. [4] have investigated the iteration calculations of periodic solutions
to nonlinear Jerk equations. Liu et al. [5] have obtained the periods and periodic
solutions of nonlinear Jerk equations by an iterative algorithm based on a shape
function method. Rahman et al. [6] have worked on modified harmonic balance
method for the solution of nonlinear Jerk equations.
c© Springer Nature Switzerland AG 2021
Z. Hammouch et al. (Eds.): SM2A 2019, LNNS 168, pp. 23–33, 2021.
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We investigate the Jerk equation by reproducing kernel method in this paper.
Reproducing kernel method (RKM) is very accurate and reliable method. There
are many papers related to the reproducing kernel method in the literature. We
apply this method to a new problem in this work. Akgül [7–9] has worked on
reproducing kernel Hilbert space method based on reproducing kernel functions
for investigating boundary layer flow of a Powell-Eyring non-Newtonian fluid,
new reproducing kernel functions and the solutions of variable-order fractional
differential equations by reproducing kernel method. Akgül et al. [10] have inves-
tigated the numerical solutions of fractional differential equations of Lane-Emden
type by an accurate technique. Aronszajn [11] has studied the theory of reproduc-
ing kernels. Arqub [12–14] has investigated the approximate solutions of DASs
with nonclassical boundary conditions using novel reproducing kernel algorithm,
the reproducing kernel algorithm for handling differential algebraic systems of
ordinary differential equations and the fitted reproducing kernel Hilbert space
method for the solutions of some certain classes of time-fractional partial differ-
ential equations subject to initial and Neumann boundary conditions. Azarnavid
et al. [15] have worked on an iterative reproducing kernel method in Hilbert space
for the multi-point boundary value problems.

In this work, we studied a Jerk equation as:

(1.1) y′′′
= J(y, y′, y′′),

with initial conditions

(1.2) y(0) = 0, y(0) =B, y(0) = 0.

We define the most general function of Jerk as;

(1.3) y′′′
+ αyy′y′′

+ βy′y′′2
+ δy2y′

+ εy3
+ γy′

= 0,

where the parameters α , β , δ , ε and γ are constants.
This paper is organized as follows. In Sect. 2, the RKM is discussed with some

preliminary concept and definition. The solution procedure and approximate
solutions of Eqs. (1.2)–(1.3) are presented in this section. Numerical experiments
are demonstrated in Sect. 3. Conclusion is given in the last section.

2 Reproducing Kernel Method

First of all we will construct the reproducing kernel Hilbert spaces that we need
to solve our problem.

Definition 2.1. The first reproducing kernel Hilbert space that we will use is
M3

2 [0, 1]

M3
2 [0, 1] = {a ∈AC[0, 1] ∶ a′, a′′

∈AC[0, 1], a(3)
∈ L2[0, 1]}.
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We have the inner product and the norm for this space as:

〈a, b〉M3
2
= a(0)b(0) + a′(0)b′(0) + a′′(0)b′′(0) +

∫ 1

0

a′′′(x)b′′′(x)dx, a, b ∈M3
2 [0, 1]

and
‖a‖M3

2
=

√
〈a, a〉M3

2
, a ∈M3

2 [0, 1].

Lemma 2.2. M3
2 [0, 1] is a reproducing kernel Hilbert space. We get the repro-

ducing kernel function Ky by [16]:

Ky(x) =

⎧⎪⎨
⎪⎩

1 + xy + x2y2

4 +

x3y2

12 −
x4y
24 +

x5

120 , x ≤ y,

1 + yx + y2x2

4 +

y3x2

12 −
y4x
24 +

y5

120 , x > y.

Definition 2.3. We construct the reproducing kernel Hilbert space M4
2 [0, 1] as:

M4
2 [0, 1] = {a ∈AC[0, 1] ∶ a′, a′′, a′′′

∈AC[0, 1], a(4) ∈ L2[0, 1], a(0) = a′(0) = a′′(0) = 0}.

We have the inner product and the norm for this special Hilbert space by:

〈a, b〉M4
2
=

3∑
i=0

a(i)(0)b(i)(0) +
∫ 1

0

a(4)(x)b(4)(x)dx, a, b ∈M4
2 [0, 1]

and

‖a‖M4
2
=

√
〈a, a〉M4

2
, a ∈M4

2 [0, 1].

Theorem 2.4. We find the reproducing kernel function for the reproducing ker-
nel Hilbert space M4

2 [0, 1] as:

Ly(x) =

⎧⎪⎨
⎪⎩

hy(x), x ≤ y,

gy(x), x > y.

where,

hy(x) = −
x7

5040
+

x6y

720
−

x5y2

240
+

x4y3

144
+

x3y3

36
,

gy(x) = −
y7

5040
+

y6x

720
−

y5x2

240
+

y4x3

144
+

y3x3

36
.
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Proof. We have

〈b, Ly〉M4
2
=

3∑
i=0

L(i)
y (0)b(i)(0) +

∫ 1

0

L(4)
y (x)b(4)(x)dx,

by Definition 2.3. We obtain

〈b, Ly〉M4
2
= Ly(0)b(0) + L′

y(0)b′(0) + L′′
y(0)b′′(0) + L′′′

y (0)b′′′(0)

+L(4)
y (1)b′′′(1) − L(4)

y (0)b′′′(0) − L(5)
y (1)b′′(1)

+L(5)
y (0)b′′(0) + L(6)

y (1)b′(1) − L(6)
y (0)b′(0)

−

∫ 1

0

L(7)
y (x)b′(x)dx,

by integration by parts. Since b(0) = b′(0) = b′′(0) = 0 we get

〈b, Ly〉M4
2
= L′′′

y (0)b′′′(0) + L(4)
y (1)b′′′(1) − L(4)

y (0)b′′′(0) − L(5)
y (1)b′′(1)

L(6)
y (1)b′(1) −

∫ 1

0

L(7)
y (x)b′(x)dx.

We have

L′′′
y (0) =

y3

6
,

L(4)
y (0) =

y3

6
,

L(4)
y (1) = 0,

L(5)
y (1) = 0,

L(6)
y (1) = 0,

Therefore, we obtain

〈b, Ly〉M4
2
= −

∫ y

0

L(7)
y (x)b′(x)dx −

∫ 1

y

L(7)
y (x)b′(x)dx.

We know

L(7)
y (x) =

⎧⎪⎨
⎪⎩
−1, x < y,

0, x > y.
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Then, we reach

〈b, Ly〉M4
2
=

∫ y

0

b′(x)dx.

Thus, we get

〈b, Ly〉M4
2
= b(y).

This completes the proof. ��
We consider the solutions of the problem (1.3) in the reproducing kernel

Hilbert space M4
2 [0, 1]. We denote the bounded linear operator T ∶M4

2 [0, 1] →
M3

2 [0, 1] as:

(2.1) Tu=u′′′(x)+αxB2u′′(x)+2δxB2u(x)+δx2B2u′(x)+3εx2B2u(x)+Tγu′(x),

we have the following problem.

(2.2) Tu =D(r, u),

with the initial conditions

(2.3) u(0) = u′(0) = u′′(0) = 0,

where

D(r, u) = −αu(x)u′(x)u′′(x) − αBu(x)u′′(x) − αBxu′(x)u′′(x) − αB2xu′′(x)
−βu′(x)u′′(x)2 − βBu′′(x)2 − δu′(x)u(x)2 −Bδu(x)2

−2δBxu′(x)u(x) − δB3x2
− εu(x)3 − 3εBxu(x)2 − εB3x3

− γB.

Lemma 2.5. T is a bounded linear operator.

Proof. We need to prove

‖Tu‖2M3
2 [0,1]

≤A ‖u‖2M4
2 [0,1]

,

where A is a positive constant. We have
(2.4)

‖Tu‖2M3
2 [0,1]

=〈Tu, Tu〉M3
2 [0,1]

= [Tu(0)]2+ [Tu(0)]′2+ [Tu(0)]′′2+
∫ 1

0

[Tu(y)]′′′2 dy.

By reproducing property, we have

u(y) = 〈u(·), Ly(·)〉M4
2 [0,1]
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and
Tu(y) = 〈u(·), TLy(·)〉M4

2 [0,1]
,

(Tu(y))′
= 〈u(·), (TLy(·))′〉M4

2 [0,1]
,

(Tu(y))′′
= 〈u(·), (TLy(·))′′〉M4

2 [0,1]
,

so
|Tu| ≤ ‖u‖M4

2 [0,1]
‖TLy‖M4

2 [0,1]
=A1 ‖u‖M4

2 [0,1]
,

thus
[Tu]2 ≤A2

1 ‖u‖2M4
2 [0,1]

.

Since
(Tu)′(y) = 〈u(·), (TLy)′(·)〉M4

2 [0,1]
,

we get
|(Tu)′| ≤ ‖u‖M4

2 [0,1]
‖(TFy)′‖M4

2 [0,1]
=A2 ‖u‖M4

2 [0,1]
,

so, we have
[Tu]′2 ≤A2

2 ‖u‖2M4
2 [0,1]

,

[Tu]′′2 ≤A2
3 ‖u‖2M4

2 [0,1]
,

[Tu]′′′2 ≤A2
4 ‖u‖2M4

2 [0,1]
,

that is,

‖Tu‖2M3
2 [0,1]

= [Tu(0)]2 + [Tu(0)]′2 + [Tu(0)]′′2 +
∫ 1

0

[(Tu)′′′(y)]2 dy

≤ (A2
1 +A2

2 +A2
3 +A2

4) ‖u‖2M4
2 [0,1]

,

where A =A2
1 +A2

2 +A2
3 +A2

4 is a positive constant. ��
We construct ςi(x)=Kxi

(x) and ψi(x)=T ∗ςi(x), where T ∗ is conjugate oper-

ator of T . The orthonormal system
{

ψ̂i(x)
}∞

i=1
of M4

2 [0, 1] can be acquired by

Gram-Schmidt orthogonalization operation of {ψi(x)}∞
i=1,

(2.5) ψ̂i(x) =
i∑

k=1

βikψk(x), (βii > 0, i = 1, 2, . . .).

Theorem 2.6. Let {xi}∞
i=1 be dense in [0, 1] and ψi(x)= TyLx(y)|y=ui

. Then the
sequence {ψi(x)}∞

i=1 is a complete system in M4
2 [0, 1].
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Proof. We get

ψi(x) = (T ∗ςi)(x) = 〈(T ∗ςi)(y), Lx(y)〉 = 〈(ςi)(y), TyLx(y)〉 = TyLx(y)|y=xi
.

Let 〈u(x), ψi(x)〉 = 0, (i = 1, 2, . . .), which means that,

〈u(x), (T ∗ςi)(x)〉 = 〈Tu(·), ςi(·)〉 = (Tu)(xi) = 0.

{xi}∞
i=1 is dense in [0, 1]. Therefore, (Tu)(x) = 0. u ≡ 0 by T −1. ��

Theorem 2.7. If u(x) is the exact solution of (2.2), then we acquire

(2.6) u(x) =
∞∑
i=1

i∑
k=1

βikD(xk, uk)ψ̂i(x).

where {xi}∞
i=1 is dense in [0, 1].

Proof. We get

u(x) =
∞∑
i=1

〈
u(x), ψ̂i(x)

〉
M4

2 [0,1]
ψ̂i(x)

=

∞∑
i=1

i∑
k=1

βik 〈u(x), ψk(x)〉M4
2 [0,1]

ψ̂i(x)

=

∞∑
i=1

i∑
k=1

βik 〈u(x), T ∗ςk(x)〉M4
2 [0,1]

ψ̂i(x)

=

∞∑
i=1

i∑
k=1

βik 〈Tu(x), ςk(x)〉M3
2 [0,1]

ψ̂i(x)

=

∞∑
i=1

i∑
k=1

βik 〈D(r, u)Kxk
〉M3

2 [0,1]
ψ̂i(x)

=

∞∑
i=1

i∑
k=1

βikD(xk, uk)ψ̂i(x).

by uniqueness of solution of (2.2). This completes the proof. ��
The approximate solution un(x) can be obtained as:

(2.7) un(x) =
n∑
i=1

i∑
k=1

βikD(xk, uk)ψ̂i(x).

3 Numerical Experiments

We apply the RKM for the approximate analytical solution of the Jerk Equation
(1.1)–(1.2).
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Example 3.1. We take into consideration

(3.1) y′′′
= −y′

+ yy′y′′,

with initial conditions y(0) = 0, y′(0) =B, y′′(0) = 0. We have the exact solution as:

(3.2) y(x) =
B

Ω
sin(Ωx) +

B

96Ω3
((−9B2

− 48 + 48Ω2) sin(Ωx) −B2 sin(3Ωx))

where Ω = 1
2

√
B2
+ 4.

Table 1 shows the absolute errors for B = 0.2, 0.3, 0.4 respectively. Table 2
shows the relative errors for B = 0.2, 0.3, 0.4 respectively.

Example 3.2. We investigate

(3.3) y′′′
= −y′

− y′(y′′)2,

with initial conditions y(0) = 0, y′(0) =B, y′′(0) = 0. We get exact solution as:

y(x) =
B

Ω
sin(Ωx) +

B

96Ω3
((−9B2Ω2

− 48 + 48Ω2) sin(Ωx)

+((12B2(Ω)3 − 48Ω + 48(Ω)3)x cos(Ωx) −B2Ω2 sin(3Ωx))

where Ω = 2
√

1
4−B2 .

Table 3 shows the absolute errors for B = 0.2, 0.3, 0.4 respectively. Table 4
shows the relative errors for B = 0.2, 0.3, 0.4 respectively.

Table 1. Absolute Errors for the first example.

x B = 0.2 B = 0.3 B = 0.4

0.125 2.8088 × 10−7 4.2077 × 10−7 5.6041 × 10−7

0.250 0.0000011935 0.0000017943 0.0000024143

0.375 0.0000027482 0.0000041708 0.0000057546

0.500 0.0000049504 0.0000076345 0.0000109688

0.625 0.0000078006 0.0000122943 0.0000185799

0.750 0.0000112879 0.0000182374 0.0000290702

0.875 0.0000153830 0.0000254769 0.0000426444

1.00 0.0000200317 0.0000339035 0.0000590332

1.125 0.0000233859 0.0000405546 0.0000736859

1.250 0.0001115761 0.0000089211 0.0000352990

1.375 0.0001115761 0.0001651283 0.0002024070
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Table 2. Relative Errors for the first example.

x B = 0.2 B = 0.3 B = 0.4

0.125 0.00001126451361 0.00001124981105 0.00001123744895

0.250 0.00002412134243 0.00002417518187 0.00002439700359

0.375 0.00003751627443 0.00003795830294 0.00003928026318

0.500 0.00005163110050 0.00005308586566 0.00005720732970

0.625 0.00006666731728 0.00007005716478 0.00007942052378

0.750 0.00008281647176 0.00008922519004 0.00010670764110

0.875 0.00010024618200 0.00011073531080 0.00013910935150

1.00 0.00011910109620 0.00013449058700 0.00017583060030

1.125 0.00012972006220 0.00015015336190 0.00020497726770

1.250 0.00000985305713 0.00003143790375 0.00009353950721

1.375 0.00056991392360 0.00056376716640 0.00052021705710

Table 3. Absolute Errors for the second example.

x B = 0.2 B = 0.3 B = 0.4

0.125 2.8088 × 10−7 4.2077 × 10−7 5.6041 × 10−7

0.250 0.0000011935 0.0000017943 0.0000024143

0.375 0.0000027482 0.0000041708 0.0000057546

0.500 0.0000049504 0.0000076345 0.0000109688

0.625 0.0000078006 0.0000122943 0.0000185799

0.750 0.0000112879 0.0000182374 0.0000290702

0.875 0.0000153830 0.0000254769 0.0000426444

1.00 0.0000200317 0.0000339035 0.0000590332

1.125 0.0000233859 0.0000405546 0.0000736859

1.250 0.0001115761 0.0000089211 0.0000352990

1.375 0.0001115761 0.0001651283 0.0002024070
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Table 4. Relative Errors for the second example.

x B = 0.2 B = 0.3 B = 0.4

0.125 0.00001126451361 0.00001124981105 0.00001123744895

0.250 0.00002412134243 0.00002417518187 0.00002439700359

0.375 0.00003751627443 0.00003795830294 0.00003928026318

0.500 0.00005163110050 0.00005308586566 0.00005720732970

0.625 0.00006666731728 0.00007005716478 0.00007942052378

0.750 0.00008281647176 0.00008922519004 0.00010670764110

0.875 0.00010024618200 0.00011073531080 0.00013910935150

1.00 0.00011910109620 0.00013449058700 0.00017583060030

1.125 0.00012972006220 0.00015015336190 0.00020497726770

1.250 0.00000985305713 0.00003143790375 0.00009353950721

1.375 0.00056991392360 0.00056376716640 0.00052021705710

4 Conclusions

In this paper, we investigated the nonlinear Jerk equations by the reproducing
kernel method. We constructed very useful reproducing kernel Hilbert spaces
and we found some important reproducing kernel functions in these spaces. We
found a bounded linear operator to get the results for the problems. We obtained
absolute errors and relative errors for some numerical experiments. We proved
the efficiency of the proposed method in the work.
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Abstract. The aim of this work is to get the solutions of the fractional
counterpart of a boundary value problem by implementing the reproduc-
ing kernel Hilbert space method. Convergence of the solution problem
discussed has been shown. The efficiency of the proposed technique is
demonstrated by some tables.

1 Introduction

We consider the following problem [2]:

(1.1)
d2ω

dr2
+

1
r

dω

dr
+Ha2

(1 −
ω

1 − αω
) = 0, 0 ⟨ r ⟨ 1,

where ω(r) is the velocity of the fluid, r is the radial distance from the cylindrical
conduit centre, Ha is the Hartmann electric number and α is the magnitude of
the power of non-linearity. We have the boundary conditions as:

(1.2) ω′(0) = 0, ω(1) = 0.

The existence and uniqueness of a solution to the problem have been investi-
gated in [3]. Mastroberardino [4] has investigated the problem by the homotopy
analysis method. Moghtadaei et al. [5] have applied a spectral method to investi-
gate the problem. Chebyshev spectral collocation method has been used to solve
the problem in [6]. Alomari et al. [7] have investigated fractional version of a
singular boundary value problem.

In this paper, we consider the following problem.

(1.3)
dγω

drγ
+

1
r

dβω

drβ
+Ha2

(1 −
ω

1 − αω
) = 0,

where dγ
/drγ and dβ

/drβ are the fractional derivative operators in the Caputo
sense. γ ∈ (1,2] and β ∈ (0,1] are parameters defining the order of the fractional
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derivative with the property γ − β ≥ 1 and subject to the boundary conditions
(1.2). Abbas et al. [8] have presented some cases that show the fractional models
present better approximate results. Iyiolaa et al. [9] have worked the cancer
tumor model of fractional order which demonstrates better approximate results.

We apply reproducing kernel method (RKM) to get the approximate solu-
tions of Eq. (1.3). Reproducing kernel space is a special Hilbert space. Many
investigators have applied the RKM to many problems [10]. Arqub et al. [11,12]
have investigated some interesting problems by RKM.

This paper is organized as follows. In Sect. 2, RKM is discussed with some
preliminary concepts and definitions. The solution procedure and approximate
solutions of Eqs. (1.2)–(1.3) are presented in this section. Numerical experiments
are demonstrated in Sect. 3. Conclusion is given in the last section.

2 Reproducing Kernel Method

First of all we will construct the reproducing kernel Hilbert spaces that we need
to solve our problem.

Definition 2.1. The first reproducing kernel Hilbert space that we will use is
E1

2 [ 0,1]
E1

2 [ 0,1 ] = {s ∈AC [ 0,1] ∶ s′ ∈L2
[ 0,1]}.

We have the inner product and the norm for this space as:

⟨s, p⟩E1
2
= s(0)p(0) + ∫

1

0
s′(τ)p′(τ)dτ, s, p ∈E1

2 [ 0,1]

and
∥s∥E1

2
=

√

⟨s, s⟩E1
2
, s ∈E1

2 [ 0,1 ] .

Lemma 2.2. E1
2 [ 0,1] is a reproducing kernel Hilbert space. We get the repro-

ducing kernel function Gz by [10]:

Gz(τ) =

⎧
⎪
⎪

⎨

⎪
⎪
⎩

1 + τ, τ ≤ z,

1 + z, τ ⟩ z.

Definition 2.3. We construct the reproducing kernel Hilbert space E3
2 [ 0,1]

as:

E3
2 [ 0,1 ] ={s ∈AC [ 0,1] ∶ s′, s′′ ∈AC [ 0,1], s(3) ∈L2

[ 0,1], s′(0) = 0 = s(1)}.

We have the inner product and the norm for this special Hilbert space by:

⟨s, p⟩E3
2
=

2

∑

i=0

s(i)(0)p(i)(0) + ∫
1

0
s(3)(τ)p(3)(τ)dτ, s, p ∈E3

2 [ 0,1]

and
∥s∥E3

2
=

√

⟨s, s⟩E3
2
, s ∈E3

2 [ 0,1 ] .
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Theorem 2.4. We find the reproducing kernel function for the reproducing ker-
nel Hilbert space E3

2 [ 0,1] as:

Fz(τ) =

⎧
⎪
⎪
⎪
⎪

⎨

⎪
⎪
⎪
⎪
⎩

hz(τ), τ ≤ z,

gz(τ), τ ⟩ z.

Where,

hz(τ) = −
τ5z2

624
+

τ5z4

3744
−

τ5z3

1872
+

5τ4z3

1872
+

5τ4z2

624
−

τ5z5

18720
+

τ4z5

3744

−

5τ4z4

3744
+

5τ3z4

1872
−

5τ3z3

936
−

τ4z

24
−

5τ2z3

312
+

7τ3z2

104
−

τ3z5

1872

−

τ2z5

624
+

5τ2z4

624
+

21τ2z2

104
−

5z2

26
+

τ5

520
+

5z5

156
−

5z3

78
+

5τ4

156

−

z5

156
−

5τ3

78
−

5τ2

26
+

3
13

,

gz(τ) = −
z5τ2

624
+

z5τ4

3744
−

z5τ3

1872
+

5z4τ3

1872
+

5z4τ2

624
−

z5τ5

18720
+

z4τ5

3744

−

5z4τ4

3744
+

5z3τ4

1872
−

5z3τ3

936
−

z4τ

24
−

5z2τ3

312
+

7z3τ2

104
−

z3τ5

1872

−

z2τ5

624
+

5z2τ4

624
+

21z2τ2

104
−

5τ2

26
+

z5

520
+

5τ5

156
−

5τ3

78
+

5z4

156

−

τ5

156
−

5z3

78
−

5z2

26
+

3
13

.

Proof. We have

⟨p,Fz⟩E3
2
=

2

∑

i=0

F (i)z (0)p
(i)
(0) + ∫

1

0
F (3)z (τ)p

(3)
(τ)dτ,

by Definition 2.3. We obtain

⟨p,Fz⟩E3
2
= Fz(0)p(0) + F ′z(0)p

′
(0) + F ′′z (0)p

′′
(0)

+F ′′′z (1)p
′′
(1) − F ′′′z (0)p

′′
(0) − F (4)z (1)p

′
(1)

+F (4)z (0)p
′
(0) + ∫

1

0
F (5)z (τ)p

′
(τ)dτ,
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by integration by parts. Since p′(0) = 0 = p(1), we get

⟨p,Fz⟩E3
2
= Fz(0)p(0) + F ′′z (0)p

′′
(0) + F ′′′z (1)p

′′
(1)

−F ′′′z (0)p
′′
(0) − F (4)z (1)p

′
(1)

+∫

1

0
F (5)z (τ)p

′
(τ)dτ.

We have

Fz(0) = −
z5

156
+

5z4

156
−

5z3

178
−

5z2

26
+

3
13

,

F ′′z (0) =
21z2

52
−

z5

312
+

5z4

312
−

5z3

156
−

5
13

,

F ′′′z (0) =
21z2

52
−

z5

312
+

5z4

312
−

5z3

156
−

5
13

,

F ′′′z (1) = F (4)z (1) = 0,

Therefore, we obtain

⟨p,Fz⟩E3
2
= (−

z5

156
+

5z4

156
−

5z3

178
−

5z2

26
+

3
13
)p(0)

+∫

z

0
F (5)z (τ)p

′
(τ)dτ + ∫

1

z
F (5)z (τ)p

′
(τ)dτ.

We know

F (5)z (τ) =

⎧
⎪
⎪
⎪
⎪

⎨

⎪
⎪
⎪
⎪
⎩

−
z5

156
+

5z4

156
−

5z3

178
−

5z2

26
+

3
13

, τ ⟨ z,

−
z5

156
+

5z4

156
−

5z3

178
−

5z2

26
−

10
13

, τ ⟩ z.

Then, we reach

⟨p,Fz⟩E3
2
= (−

z5

156
+

5z4

156
−

5z3

178
−

5z2

26
+

3
13
)p(0)

+∫

z

0
(−

z5

156
+

5z4

156
−

5z3

178
−

5z2

26
+

3
13
)p′(τ)dτ

+∫

1

z
(−

z5

156
+

5z4

156
−

5z3

178
−

5z2

26
−

10
13
)p′(τ)dτ.
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Thus, we obtain

⟨p,Fz⟩E3
2
= (−

z5

156
+

5z4

156
−

5z3

178
−

5z2

26
+

3
13
)p(0)

+(−

z5

156
+

5z4

156
−

5z3

178
−

5z2

26
+

3
13
)p(z)

−(−

z5

156
+

5z4

156
−

5z3

178
−

5z2

26
+

3
13
)p(0)

+(−

z5

156
+

5z4

156
−

5z3

178
−

5z2

26
−

10
13
)p(1)

−(−

z5

156
+

5z4

156
−

5z3

178
−

5z2

26
−

10
13
)p(z).

Therefore, we obtain

⟨p,Fz⟩E3
2
= p(z).

This completes the proof.
We consider the solutions of the problem (1.3) in the reproducing kernel

Hilbert space E3
2 [ 0,1 ] . We denote the bounded linear operator X ∶ E3

2 [ 0,1] →
E1

2 [ 0,1] as:

(2.1) Xω =
dγω

drγ
+

1
r

dβω

drβ
.

Then, we have the following problem.

(2.2) Xω =D(r,ω),

with the boundary conditions

(2.3) ω′(0) = 0 = ω(1),

where

(2.4) D(r,ω) = −Ha2
(1 −

ω

1 − αω
)

Lemma 2.5. X is a bounded linear operator.

Proof. We need to prove

∥Xω∥
2
E1

2[0,1] ≤K ∥ω∥
2
E3

2[0,1] ,

where K is a positive constant. We have

(2.5) ∥Xω∥
2
E1

2[0,1] = ⟨Xω,Xω⟩E1
2[0,1] = [Xω(0)]2 + ∫

1

0
[Xω′(z)]

2
dz.
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By reproducing property, we have

ω(z) = ⟨ω(⋅), Fz(⋅)⟩E3
2[0,1]

and
Xω(z) = ⟨ω(⋅),XFz(⋅)⟩E3

2[0,1] ,

so
∣Xω∣ ≤ ∥ω∥E3

2[0,1] ∥XFz∥E3
2[0,1] =K1 ∥ω∥E3

2[0,1] ,

thus
[Xω(0)]2 ≤K2

1 ∥ω∥
2
E3

2[0,1] .

Since
(Xω)′(z) = ⟨ω(⋅), (XFz)

′
(⋅)⟩E3

2[0,1] ,

we get
∣(Xω)′∣ ≤ ∥ω∥E3

2[0,1] ∥(XFz)
′
∥E3

2[0,1] =K2 ∥ω∥E3
2[0,1] ,

so, we have
[Xω]

2
≤K2

2 ∥ω∥
2
E3

2[0,1] ,

that is,

∥Xω∥
2
E1

2[0,1] = [Xω(0)]2 + ∫
1

0
[(Xω)′(z)]

2
dz ≤ (K2

1 +K2
2) ∥ω∥

2
E3

2[0,1] ,

where K =K2
1 +K2

2 is a positive constant.
We construct ςi(τ) = Gτi(τ) and ψi(τ) = X∗ςi(τ), where X∗ is conjugate

operator of X. The orthonormal system {̂ψi(τ)}
∞

i=1
of E3

2 [ 0,1] can be acquired
by Gram-Schmidt orthogonalization operation of {ψi(τ)}

∞

i=1,

(2.6) ̂ψi(τ) =
i

∑

k=1

βikψk(τ), (βii ⟩ 0, i = 1,2, . . .).

Theorem 2.6. Let {τi}
∞

i=1 be dense in [0,1] and ψi(τ) = XzFτ(z)∣z=τi . Then
the sequence {ψi(τ)}

∞

i=1 is a complete system in E3
2 [ 0,1].

Proof. We get

ψi(τ) = (X
∗ςi)(τ) = ⟨(X

∗ςi)(z), Fτ(z)⟩ = ⟨(ςi)(z),XzFτ(z)⟩ = XzFτ(z)∣z=τi .

Let ⟨ω(τ), ψi(τ)⟩ = 0, (i = 1,2, . . .), which means that,

⟨ω(τ), (X∗ςi)(τ)⟩ = ⟨Xω(⋅), ςi(⋅)⟩ = (Xω)(τi) = 0.

{τi}
∞

i=1 is dense in [0,1 ] . Therefore, (Xω)(τ) = 0. ω ≡ 0 by X−1.
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Theorem 2.7. If ω(r) is the exact solution of (2.2), then we acquire

(2.7) ω(r) =
∞

∑

i=1

i

∑

k=1

βikD(rk, ωk)
̂ψi(r).

where {ri}
∞

i=1 is dense in [0,1].

Proof. We get

ω(r) =
∞

∑

i=1

⟨ω(r), ̂ψi(r)⟩E3
2[0,1]

̂ψi(r)

=

∞

∑

i=1

i

∑

k=1

βik ⟨ω(r), ψk(r)⟩E3
2[0,1]

̂ψi(r)

=

∞

∑

i=1

i

∑

k=1

βik ⟨ω(r),X
∗ςk(r)⟩E3

2[0,1]
̂ψi(r)

=

∞

∑

i=1

i

∑

k=1

βik ⟨Xω(r), ςk(r)⟩E1
2[0,1]

̂ψi(r)

=

∞

∑

i=1

i

∑

k=1

βik ⟨D(r,ω),Grk
⟩E1

2[0,1]
̂ψi(r)

=

∞

∑

i=1

i

∑

k=1

βikD(rk, ωk)
̂ψi(r).

by uniqueness of solution of (2.2). This completes the proof.

The approximate solution ωn(r) can be obtained as:

(2.8) ωn(r) =
n

∑

i=1

i

∑

k=1

βikD(rk, ωk)
̂ψi(r).

3 Numerical Experiments

In Table 1, we show the solution when γ = 1.9, β = 0.9, α = 0.5 and vary the
Hartmann electric number. In Table 2, we fixed the fractional derivatives as
γ = 1.9, β = 0.9, Ha2

= 1.0 and vary the α. In Table 3, we give the solution with
the fractional derivatives γ = 1.3, β = 0.3, Ha2

= 1.0 and vary the α.
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Table 1. Approximate solutions by reproducing kernel method for γ = 19
10

, β = 9
10

, α= 1
2

and different values of Ha2.

r Ha2
= 1 Ha2

= 2

0.0 0.2299695869 0.3825201644

0.1 0.2266810832 0.3754454339

0.2 0.2180411628 0.3600500656

0.3 0.2062671368 0.3434211029

0.4 0.1900081364 0.3158370163

0.5 0.1697602524 0.2874089253

0.6 0.1451770620 0.2475168041

0.7 0.1161364572 0.2007161568

0.8 0.0824312374 0.1443651864

0.9 0.0438131825 0.0777826865

1.0 −8.95 × 10−10
−3.54 × 10−11

Table 2. Approximate solutions by reproducing kernel method for γ = 19
10

, β = 9
10

,

Ha2
= 1 and different values of α.

r α = 1 α = 2

0.0 0.2259726183 0.2093112589

0.1 0.2226475274 0.2058336031

0.2 0.2141458034 0.1979096087

0.3 0.2029104831 0.1888516297

0.4 0.1870087144 0.1744727611

0.5 0.1673526319 0.1579851722

0.6 0.1433018034 0.1361693674

0.7 0.1147939073 0.1098299577

0.8 0.0815892945 0.0785261212

0.9 0.0434202449 0.0419967019

1.0 −9.79 × 10−10
−3.97 × 10−10
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Table 3. Approximate solutions by reproducing kernel method for γ = 13
10

, β = 3
10

,

Ha2
= 1 and different values of α.

r α = 1 α = 2

0.0 0.4454618088 0.3386406399

0.1 0.4284599310 0.3204729467

0.2 0.3272191714 0.2609343009

0.3 0.2498402621 0.2849602586

0.4 0.2020451400 0.3044655878

0.5 0.1890369644 0.2413493934

0.6 0.2063732634 0.1921955815

0.7 0.1160557551 0.1449551875

0.8 0.0896312152 0.1026976873

0.9 0.0478590068 0.0537369610

1.0 2.77 × 10−6
−8.159 × 10−7

4 Conclusions

In this work, we acquired the solutions of fractional version of a singular bound-
ary value problem occurring in the electrohydrodynamic flow in a circular cylin-
drical conduit based on the reproducing kernel method. We demonstrated our
effective results by some tables. We investigated the effect of the Hartmann elec-
tric number and the fractional order of the problem. We concluded that the
reproducing kernel method can be applied to much more complicated fractional
differential equations.
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Abstract. In the present work, we haired an efficient technique called, q-ho-
motopy analysis transform method (q-HATM) in order to find the solution for
the model of thrombin receptor activation mechanism (TRAM) and examine the
nature of q-HATM solution with distinct fractional order. The considered model
elucidates the TRA mechanism in calcium signalling, and this mechanism plays
a vital role in the human body. We defined fractional derivative defined with
Atangana-Baleanu (AB) operator and the projected scheme is an amalgamation
of Laplace transform with q-homotopy analysis scheme. For the achieved
results, to present the existence and uniqueness we hired the fixed point
hypothesis. To validate and illustrate the effectiveness of the considered scheme,
we examined the projected model with arbitrary order. The behaviour of the
achieved results is captured in terms of plots and also showed the importance of
the parameters offered by the considered solution procedure. The attained results
illuminate, the projected scheme is easy to employ and more effective in order to
analyse the behaviour of fractional order differential systems exemplifying real
word problems associated with science and technology.

Keywords: q-Homotopy analysis method � Laplace transform � Thrombin
receptor activation mechanism � Fixed point theorem � Atangana-Baleanu
derivative

1 Introduction

The human body is mainly the composition of six elements of about 99%, and those are
namely, phosphorus, calcium, nitrogen, hydrogen, carbon and oxygen. In our body, the
most generous mineral is calcium (Ca) and it is about 1.5%. Ca is the most play a vital
rule in muscle contraction and protein regulation and also it’s very essential in the
processes of contractions bones and their protection. Most of the phenomena including
cell death and fertilization are achieved with the help of calcium oscillations. With the
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exploit of the inositol phospholipid cascade by raising the cytosolic calcium levels
produced, most of the pathways of signal transduction are arbitrated [1, 2]. Ca acts as
emissary in information processing. For the analysis of enzyme phospholipase C
(PLC), G protein is playing an important role.

In the present scenario, the study of most of the phenomena related to the human
body like diseases and their behaviour, the essential components of our body and their
functions; magnetize the attention of mathematicians and researchers associated to
mathematics in order to model and analyse as well as predict its essential behaviours. In
connection with this, authors in [3] nurtured the mathematical model in order to
illustrate the mediated activation of human platelets, researchers in [4] analyse the
cytosolic calcium dynamics by the aid of mathematical model and later by the help of
fractional calculus (FC), authors in [5] present their viewpoint in order to understand
the importance of FC while analysing the mathematical model stimulating the above-
cited phenomenon.

The seed of fractional calculus (FC) is planted before 324 years, however lately
become an essential tool for the distinct discipline of science and engineering, and hence
fascinated the attention of authors. It was shortly discovered that fractional calculus is
more appropriate for modelling the phenomena describing nature in a systematic manner
as associated with integer order calculus. The calculus of arbitrary order turned out one
of the most essential tools to describe biological phenomena. The human diseases which
are modelled through derivative having fractional-order help us to incorporate the
information about its present and past states. Diverse pioneering notions and funda-
mentals are prescribed by many senior researchers [6–11]. Recently, due to diverse
applications and favourable properties, the concept of FC is widely hired to investigate
real world problems [12–20]. Particularly, authors in [21] analysed the fractional order
system exemplifying the fish farm model within the frame of new fractional operator and
also the captured some simulating consequences associated to the model using efficient
scheme, authors in [22, 23] investigated the numerical solution for the fractional order
coupled special cases of KdV equations and presented some interesting results with
respect to different fractional order. The epidemic model of childhood disease is anal-
ysed by the authors in [24] within the frame of fractional calculus and they presented the
nature of the corresponding results for distinct arbitrary order. Authors in [19] analyse
the evolution of 2019-nCoV and its dynamic structures with help of nonlocal operator
and presented some numerical surface using efficient scheme.

The activated form of phospholipase C PLCð Þ hydrolyzes the diacylglycerol DAGð Þ,
5-trisphosphate [Ins I; 4; 5ð ÞP3], 5-bisphosphate [PtdIns 4; 5ð ÞP2] to inositol and phos-
phatidylinositol 4. From the endoplasmic reticulum, the 5-trisphosphate is helps to
stimulate the let out of endogenous calcium. The number of activated cell surface
receptor proportional to the rate of generates of the 5-trisphosphate. The thrombin is a
multiprocessing serine protease aids from the endothelial cell to take calcium transient
and it acts as a ligand for the present model. Here, we consider the system of the
equation which described the TRS mechanism. In endothelial cells, this model provides
incite of calcium arbitrated signal transduction. The release of calcium is determined by
the 5-trisphosphate cytosolic level in the calcium homeostasis and the number of active
surface receptors Sð Þ aid to generate the 5-trisphosphate. The receptor-ligand complex
Cð Þ formed due to ligand binding with surface receptors and on cleavage outcomes in
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activated receptors Að Þ. The above-cited phenomenon is illustrated with the aid of the
system of three differential equations and concentration of thrombin eð Þ as follows [4, 5]

dS tð Þ
dt

¼ �deS tð Þþ bC tð Þ
dC tð Þ
dt

¼ deS tð Þ � bþ kð ÞC tð Þ
dA tð Þ
dt

¼ kC tð Þ

; ð1Þ

where d and b respectively symbolise the on and off rate constant of thrombin binding.
Many nonlinear and important models are effectively and methodically examined

with the assist of FC. Many senior pioneers proposed distinct definitions including,
Riemann, Liouville, Caputo and Fabrizio. Soon after the invention of each notion,
many researchers identify some limitations while examining specific problems.
Including physical meaning of the initial conditions, kernel associated to singularity,
non-locality and others associated with complex phenomena. With the assist of Mittag–
Leffler function, Atangana and Baleanu [25] proposed a new fractional-order operator
and overcome all the above-cited consequences which play a vital role while investi-
gating properties of the models.

Authors in [5] presented the simulation for the fractional system with Caputo-
Fabrizio derivative using perturbation iterative scheme, which poses interesting con-
sequences. In the present framework, we consider with AB derivative and which as
follows

ABC
a Da

t S tð Þ ¼ �deS tð Þþ bC tð Þ
ABC
a Da

t C tð Þ ¼ deS tð Þ � bþ kð ÞC tð Þ; 0\a� 1;
ABC
a Da

t A tð Þ ¼ kC tð Þ;
ð2Þ

where a is fractional order of the system.
As much as impartment of modelling real-world problems, finding the solution for

the corresponding system is also vital and difficult. Most of the complex and nonlinear
problems don’t have an analytical solution. In this connection, researchers preferred for
semi-analytical or numerical schemes. One of the efficient and most widely hired
methods to solve nonlinear problems is the homotopy analysis method (HAM) and
which natured by Liao Shijun [26, 27]. This solution procedure overcomes most of the
limitation arise while solving nonlinear problems with dissertation and perturbation.
However, a few limitations have been pointed out by researchers in order to reduce
computational work and time. The presented method is the mixture of LT with q-HAM
and nurtured by Singh et al. [28]. Clearly, q-HATM is an enhanced algorithm of HAM;
it does not require linearization, perturbation or discretization. Recently, many
researchers hired the considered method due to its efficacy and reliability to understand
physical behaviour numerous classes of nonlinear problems [29–34]. The considered
scheme gives more freedom to choose problems associated with distinct initial con-
ditions and it proposed with axillary and homotopy corresponding phenomena [35, 36].
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2 Preliminaries

Here, the basic notions and definitions of FC and LT are presented [25, 37–41].

Definition 1. In Caputo and Riemann-Liouville sense, for a function f 2 H1 a; bð Þ the
fractional Atangana-Baleanu-derivative are presented respectively as follows [25]:

ABC
a Da

t f tð Þð Þ ¼ B a½ �
1� a

Zt

a

f 0 #ð ÞEa a
t � #ð Þa
a� 1

� �
d#: ð3Þ

ABR
a Da

t f tð Þð Þ ¼ B a½ �
1� a

d
dt

Zt

a

f #ð ÞEa a
t � #ð Þa
a� 1

� �
d#; ð4Þ

where B a½ � is a normalization function such that B 0ð Þ ¼ B 1ð Þ ¼ 1.

Definition 2. The AB integral with fractional order is presented [25] as

AB
a Iat f tð Þð Þ ¼ 1� a

B a½ � f tð Þþ a
B a½ �C að Þ

Zt

a

f #ð Þ t � #ð Þa�1d#: ð5Þ

Definition 3. The Laplace transform (LT) Associated to AB operator is defined as

L ABR
0 Da

t f tð Þð Þ� � ¼ B a½ �
1� a

saL f tð Þ½ � � sa�1f 0ð Þ
sa þ a= 1� að Þð Þ : ð6Þ

Theorem 1. The following Lipschitz conditions satisfy respectively for the Riemann-
Liouville and AB derivatives [25]

ABC
a Da

t f1 tð Þ � ABC
a Da

t f2 tð Þ�� ��\K1 f1 xð Þ � f2 xð Þk k; ð7Þ

and

ABR
a Da

t f1 tð Þ � ABR
a Da

t f2 tð Þ�� ��\K2 f1 xð Þ � f2 xð Þk k: ð8Þ

Theorem 2. The fractional differential equation ABC
a Dl

t f tð Þ ¼ s tð Þ has a unique solution
is given by [25]

f tð Þ ¼ 1� a
B a½ � s tð Þþ a

B a½ �C að Þ
Zt

0

s 1ð Þ t � 1ð Þa�1d1: ð9Þ

3 Basic idea of q-HATM

Here, we consider the differential equation of fractional order with respectively linearR
and nonlinear N differential operator form
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ABC
a Da

t v x; tð ÞþRv x; tð ÞþN v x; tð Þ ¼ f x; tð Þ; n� 1\a� n; ð10Þ

with the initial condition

ð11Þ

where ABC
a Da

t v x; tð Þ symbolise the AB derivative of v x; tð Þ; f x; tð Þ denotes the
source term. Using LT, Eq. (10) gives

ð12Þ

By the assist of HAM, N is projected as

ð13Þ

Here, u x; t; qð Þ is the real-valued function. Now, we have

1� nqð ÞL u x; t; qð Þ � v0 x; tð Þ½ � ¼ �hqN u x; t; qð Þ½ �; ð14Þ

where L is signifying LT , q 2 0; 1n
� �

n� 1ð Þ is the embedding parameter and �h 6¼ 0 is an
auxiliary parameter. For q ¼ 0 and q ¼ 1

n, we have

u x; t; 0ð Þ ¼ v0 x; tð Þ;u x; t;
1
n

� �
¼ v x; tð Þ: ð15Þ

Thus, by intensifying q from 0 to 1
n, then u x; t; qð Þ changes from v0 x; tð Þ to v x; tð Þ.

Using Taylor theorem near to q, we defining u x; t; qð Þ in series form and then we get

u x; t; qð Þ ¼ v0 x; tð Þþ
X1
m¼1

vm x; tð Þqm; ð16Þ

where

vm x; tð Þ ¼ 1
m!

@mu x; t; qð Þ
@qm

jq¼0: ð17Þ

For the proper chaise of v0 x; tð Þ; n and �h, the series (14) converges at q ¼ 1
n. By

simplifying Eq. (14), we achieved
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L vm x; tð Þ � kmvm�1 x; tð Þ½ � ¼ �h<m ~vm�1ð Þ; ð18Þ

where the vectors are defined as

~vm ¼ v0 x; tð Þ; v1 x; tð Þ; . . .; vm x; tð Þf g: ð19Þ

On employing inverse LT on Eq. (18), we get

vm x; tð Þ ¼ kmvm�1 x; tð Þþ �hL�1 <m ~vm�1ð Þ½ �; ð20Þ

where

ð21Þ

and

km ¼ 0;m� 1;
n;m[ 1:

	
ð22Þ

In Eq. (21), Hm signifies homotopy polynomial and which is defined as

Hm ¼ 1
m!

@mu x; t; qð Þ
@qm

� �
q¼0

and u x; t; qð Þ ¼ u0 þ qu1 þ q2u2 þ . . .: ð23Þ

By the aid of Eqs. (20) and (21), one can get

ð24Þ

The q-HATM solution is presented as

v x; tð Þ ¼ v0 x; tð Þþ
X1
m¼1

vm x; tð Þ 1
n

� �m

: ð25Þ
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4 Solution for Proposed Model

To demonstrate the efficiency and solution procedure of the projected method, in here
we consider system describing considered a model with arbitrary order. By the assist of
Eq. (2), one can get

ABC
a Da

t S tð Þþ deS tð Þ � bC tð Þ ¼ 0;
ABC
a Da

t C tð Þ � deS tð Þþ bþ kð ÞC tð Þ ¼ 0; 0\a� 1;
ABC
a Da

t A tð Þ � kC tð Þ ¼ 0

ð26Þ

with initial conditions

S 0ð Þ ¼ S0 tð Þ;C 0ð Þ ¼ C0 tð Þ;A 0ð Þ ¼ A0 tð Þ: ð27Þ

Taking LT on Eq. (26) and then using the Eq. (27), we get

L S tð Þ½ � ¼ 1
s
S0 tð Þð Þþ 1

B a½ � 1� aþ a
sa


 �
L deS tð Þ � bC tð Þf g;

L C tð Þ½ � ¼ 1
s

C0 tð Þð Þ � 1
B a½ � 1� aþ a

sa


 �
L deS tð Þ � bþ kð ÞC tð Þf g;

L A tð Þ½ � ¼ 1
s
A0 tð Þð Þ � 1

B a½ � 1� aþ a
sa


 �
L kC tð Þf g:

ð28Þ

Now, we define N as below

N1 u1 t; qð Þ;u2 t; qð Þ;u3 t; qð Þ½ � ¼ L u1 t; qð Þ½ � � 1
s
S0 tð Þð Þ

þ 1
B a½ � 1� aþ a

sa


 �
L deu1 t; qð Þþ bu2 t; qð Þf g;

N2 u1 t; qð Þ;u2 t; qð Þ;u3 t; qð Þ½ � ¼ L u2 t; qð Þ½ � � 1
s
C0 tð Þð Þ

� 1
B a½ � 1� aþ a

sa


 �
L deu1 t; qð Þþ bþ kð Þu2 t; qð Þf g;

N3 u1 t; qð Þ;u2 t; qð Þ;u3 t; qð Þ½ � ¼ L u3 t; qð Þ½ � � 1
s
A0 tð Þð Þ

� 1
B a½ � 1� aþ a

sa


 �
L ku2 t; qð Þf g:

ð29Þ
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The deformation equation of m-th order at H x; tð Þ ¼ 1 is defined as

L Sm tð Þ � kmSm�1 tð Þ½ � ¼ �h<1;m ~Sm�1; ~Cm�1;~Am�1

h i
;

L Cm tð Þ � kmCm�1 tð Þ½ � ¼ �h<2;m ~Sm�1; ~Cm�1;~Am�1

h i
;

L Am tð Þ � kmAm�1 tð Þ½ � ¼ �h<3;m ~Sm�1; ~Cm�1;~Am�1

h i
;

ð30Þ

where

<1;m ~Sm�1; ~Cm�1;~Am�1

h i
¼ L Sm�1 tð Þ½ � � 1� km

n

� �
1
s
S0 tð Þð Þ

	 �

þ 1
B a½ � 1� aþ a

sa


 �
L deSm�1 tð Þ � bCm�1 tð Þf g;

<2;m ~Sm�1; ~Cm�1;~Am�1

h i
¼ L Cm�1 tð Þ½ � þ 1� km

n

� �
1
s

C0 tð Þð Þ
	 �

þ 1
B a½ � 1� aþ a

sa


 �
L deSm�1 tð Þ � bþ kð ÞCm�1 tð Þf g;

<3;m ~Sm�1; ~Cm�1;~Am�1

h i
¼ L Am�1 tð Þ½ � þ 1� km

n

� �
1
s

A0 tð Þð Þ
	 �

� 1
B a½ � 1� aþ a

sa


 �
L kCm�1 tð Þf g:

ð31Þ

Eq. (31) reduces after employing inverse LT , as follows

Sm tð Þ ¼ kmSm�1 tð Þþ �hL�1 <1;m ~Sm�1; ~Cm�1;~Am�1

h in o
;

Cm tð Þ ¼ kmCm�1 tð Þþ �hL�1 <2;m ~Sm�1; ~Cm�1;~Am�1

h in o
;

Am tð Þ ¼ kmAm�1 tð Þþ �hL�1 <3;m ~Sm�1; ~Cm�1;~Am�1

h in o
:

ð32Þ

Using S0 tð Þ ¼ RT ;C0 ¼ 0 and A0 tð Þ ¼ 0 we can obtain the terms of the series solution
with the help of the above system

S tð Þ ¼ S0 tð Þþ
X1
m¼1

Sm tð Þ 1
n

� �m

;

C tð Þ ¼ C0 tð Þþ
X1
m¼1

Cm tð Þ 1
n

� �m

;

A tð Þ ¼ A0 tð Þþ
X1
m¼1

Am tð Þ 1
n

� �m

;

ð33Þ
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5 Existence of Solutions for the Proposed Problem

Here, to present the existence of the solution, we considered the fixed-point theorem.
Now, the system (27) is considered as

ABC
0 Da

t S tð Þ½ � ¼ G1 t; Sð Þ;
ABC
0 Da

t C tð Þ½ � ¼ G2 t;Cð Þ;
ABC
0 Da

t A tð Þ½ � ¼ G3 t;Að Þ:

8<
: ð34Þ

Using the Theorem 2, Eq. (35) is transformed to the Volterra integral equation and
defined as

S tð Þ � S 0ð Þ ¼ 1�að Þ
B að Þ G1 t; Sð Þþ a

B að ÞC að Þ
Rt
0
G1 f; Sð Þ t � fð Þa�1df;

C tð Þ � C 0ð Þ ¼ 1�að Þ
B að Þ G2 t;Cð Þþ a

B að ÞC að Þ
Rt
0
G2 f;Cð Þ t � fð Þa�1df;

A tð Þ � A 0ð Þ ¼ 1�að Þ
B að Þ G3 t;Að Þþ a

B að ÞC að Þ
Rt
0
G3 f;Að Þ t � fð Þa�1df:

8>>>><
>>>>:

ð35Þ

Theorem 3. The kernel G1 satisfies the Lipschitz condition and contraction if
0� de� bk2ð Þ\1 holds.

Proof. We consider the two functions u and u1 to prove the required result, as follows

G1 t; Sð Þ � G1 t; S1ð Þk k ¼ dc S tð Þ � S t1ð Þ½ � � bC tð Þð Þk k
� de� bC tð Þk k S tð Þ � S t1ð Þk k
� de� bk2ð Þ S tð Þ � S t1ð Þk k;

ð36Þ

where k C tð Þ k � k2 be the bounded function. Putting g1 ¼ de� bk2 in Eq. (37), we
have

G1 t; Sð Þ � G1 t; S1ð Þk k� g1 S tð Þ � S t1ð Þk k: ð37Þ

Equation (38) signifies Lipschitz condition for G1. If 0� de� bk2ð Þ\1, then it gives
the contraction. Similarly, we have

G2 t;Cð Þ � G2 t;C1ð Þk k� g2 C tð Þ � C t1ð Þk k;
G3 t;Að Þ � G3 t;A1ð Þk k� g3 A tð Þ � A t1ð Þk k:

	
ð38Þ

Now, we define the recursive form of Eq. (36) as with initial conditions

Sn tð Þ ¼ 1�að Þ
B að Þ G1 t; Sn�1ð Þþ a

B að ÞC að Þ
Rt
0
G1 f; Sn�1ð Þ t � fð Þa�1df;

Cn tð Þ ¼ 1�að Þ
B að Þ G2 t;Cn�1ð Þþ a

B að ÞC að Þ
Rt
0
G2 f;Cn�1ð Þ t � fð Þa�1df;

An tð Þ ¼ 1�að Þ
B að Þ G3 t;An�1ð Þþ a

B að ÞC að Þ
Rt
0
G3 f;An�1ð Þ t � fð Þa�1df;

8>>>><
>>>>:

ð39Þ
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and

S 0ð Þ ¼ S0 tð Þ;C 0ð Þ ¼ C0 tð Þ and A 0ð Þ ¼ A0 tð Þ: ð40Þ

The successive difference between the terms presented as

/1n tð Þ ¼ Sn tð Þ � Sn�1 tð Þ
¼ 1�að Þ

B að Þ G1 t; Sn�1ð Þ � G1 t; Sn�2ð Þð Þþ a
B að ÞC að Þ

Rt
0
G1 f; Sn�1ð Þ t � fð Þa�1df;

/2n tð Þ ¼ Cn tð Þ � Cn�1 tð Þ
¼ 1�að Þ

B að Þ G2 t;Cn�1ð Þ � G2 t;Cn�2ð Þð Þþ a
B að ÞC að Þ

Rt
0
G2 f;Cn�1ð Þ t � fð Þa�1df;

/3n tð Þ ¼ An tð Þ � An�1 tð Þ
¼ 1�að Þ

B að Þ G3 t;An�1ð Þ � G3 t;An�2ð Þð Þþ a
B að ÞC að Þ

Rt
0
G3 f;An�1ð Þ t � fð Þa�1df:

8>>>>>>>>>><
>>>>>>>>>>:

ð41Þ

Notice that

Sn tð Þ ¼ Pn
i¼1

/1i tð Þ;

Cn tð Þ ¼ Pn
i¼1

/2i tð Þ;

An tð Þ ¼ Pn
i¼1

/3i tð Þ:

8>>>>>><
>>>>>>:

ð42Þ

By using Eq. (39) and applying the norm on the first term of Eq. (42), we have

/1n tð Þk k� 1� að Þ
B að Þ g1 /1 n�1ð Þ tð Þ

��� ���þ a
B að ÞC að Þ g1

Zt

0

/1 n�1ð Þ fð Þ
��� ���df: ð43Þ

Similarly, we have

/2n tð Þk k� 1�að Þ
B að Þ g2 /2 n�1ð Þ tð Þ

��� ���þ a
B að ÞC að Þ g2

Rt
0
/2 n�1ð Þ fð Þ

��� ���df;
/3n tð Þk k� 1�að Þ

B að Þ g3 /3 n�1ð Þ tð Þ
��� ���þ a

B að ÞC að Þ g3
Rt
0
/3 n�1ð Þ fð Þ

��� ���df:

8><
>: ð44Þ

Next using the above result, we have following results.

Theorem 4. The solution for Eq. (27) will exist and unique if we have t0 then

1� að Þ
B að Þ gi þ

a
B að ÞC að Þ gi\1;

for i ¼ 1; 2 and 3.

Proof. Let S tð Þ;C tð Þ and A tð Þ be the bounded functions admitting the Lipschitz
condition. Now, we have by Eqs. (43) and (45)
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/1i tð Þk k� Sn 0ð Þk k 1� að Þ
B að Þ g1 þ

a
B að ÞC að Þ g1

� �n
;

/2i tð Þk k� Cn 0ð Þk k 1� að Þ
B að Þ g2 þ

a
B að ÞC að Þ g2

� �n
;

/3i tð Þk k� An 0ð Þk k 1� að Þ
B að Þ g3 þ

a
B að ÞC að Þ g3

� �n
:

ð45Þ

This proves the continuity as well as existence. Now, we consider showing Eq. (46) is
a solution for the system (27)

S tð Þ � S 0ð Þ ¼ Sn tð Þ � K1n tð Þ;
C tð Þ � C 0ð Þ ¼ Cn tð Þ � K2n tð Þ;
A tð Þ � A 0ð Þ ¼ An tð Þ � K3n tð Þ:

ð46Þ

To achieve the required result, we consider

K1n tð Þk k ¼ 1� að Þ
B að Þ G1 t; Sð Þ � G1 t; Sn�1ð Þð Þ

����
þ a

B að ÞC að Þ
Zt

0

t � fð Þl�1 G1 f; Sð Þ � G1 f; Sn�1ð Þð Þdf
�����

� 1� að Þ
B að Þ G1 t; Sð Þ � G1 t; Sn�1ð Þð Þk k

þ a
B að ÞC að Þ

Zt

0

G1 f; Sð Þ � G1 f; Sn�1ð Þð Þk kdf

� 1� að Þ
B að Þ g1 S� Sn�1k kþ a

B að ÞC að Þ g1 S� Sn�1k kt:

ð47Þ

In the same way at t0, we can obtain

K1n tð Þk k� 1� að Þ
B að Þ þ at0

B að ÞC að Þ
� �nþ 1

gnþ 1
1 M: ð48Þ

We can see that form Eq. (49), when n approaches to 1, K1n tð Þk k tends to 0. We can
verify similarly for K2n tð Þk k and K3n tð Þk k.

Now, we present the uniqueness. Suppose S� tð Þ;C� tð Þ and A� tð Þ be the set of other
solutions, then we have

S tð Þ � S� tð Þ ¼ 1� að Þ
B að Þ G1 t; Sð Þ � G1 t; S�ð Þð Þ

þ a
B að ÞC að Þ

Zt

0

G1 f; Sð Þ � G1 f; S�ð Þð Þdf:
ð49Þ
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By employing norm on Eq. (51), we get

S tð Þ � S� tð Þk k ¼ 1� að Þ
B að Þ G1 t; Sð Þ � G1 t; S�ð Þð Þþ a

B að ÞC að Þ
Zt

0

G1 f; Sð Þ � G1 f; S�ð Þð Þdf
�����

�����
� 1� að Þ

B að Þ g1 S tð Þ � S� tð Þk kþ a
B að ÞC að Þ g1t S tð Þ � S� tð Þk k:

ð50Þ

On simplification

S tð Þ � S� tð Þk k 1� 1� að Þ
B að Þ g1 �

a
B að ÞC að Þ g1t

� �
� 0: ð51Þ

From the above condition, it is clear that S tð Þ ¼ S� tð Þ, if

1� 1� að Þ
B að Þ g1 �

a
B að ÞC að Þ g1t

� �
� 0: ð52Þ

Therefore Eq. (52) proves our result.

6 Numerical Results and Discussion

Here, we illustrated the nature of q-HATM solution for different a. The initial condi-
tions for the proposed model is defined as

S 0ð Þ ¼ S0 tð Þ ¼ N;C 0ð Þ ¼ C0 tð Þ ¼ 0;A 0ð Þ ¼ A0 tð Þ ¼ 0:

where N is the total number of receptors and which is 4:4� 104No:=cell. In order to
capture the behaviour, the value of the parameters cited in Eq. (2) are considered as
follows

d ¼ 0:0005M�1s�1; b ¼ 142:8s�1; e ¼ 1unit=mL; k ¼ 0:12s�1:

The nature of results obtained by q-HATM for a considered model with different a is
dissipated in Fig. 1 with different fractional order. To analyse the behaviour of archived
results associated with �h, the �h-curves are plotted for distinct a is captured in Fig. 2.
These help us to adjust and control the convergence region of the obtained results. For
a suitable �h, the obtained results rapidly tend to an analytical solution. Moreover, in the
plots the convergence region is denoted by the horizontal line. The captured figures
show the degree of freedom and more simulating consequences about the hired model
with different arbitrary order and also it signifies the novelty of the fractional operator
employed. Further, from all plots one can observer that the projected solution proce-
dure is and very effective and more accurate to examine the considered nonlinear
problem.
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Fig. 1. Behaviour of the obtained results for að Þ S tð Þ; bð Þ C tð Þ and cð Þ A tð Þ with different a at
n ¼ 1 and �h ¼ �1:
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Fig. 2. ℏ-curves for að Þ S tð Þ; bð Þ C tð Þ and cð Þ A tð Þ with distinct a at t ¼ 0:01 and n ¼ 1.
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7 Conclusion

The q-HATM is employed efficiently in the present framework to find the solution for
the system of equation with arbitrary order and illustrating the model of TRA mech-
anism in calcium signalling. Since, generalized Mittag-Leffler function is hired to
define fractional-order AB integrals and derivatives, these operators help us to capture
more simulating consequences and also it incorporate most essential behaviours of the
models, and hence the current study exemplifies the effeteness of the projected
derivative. Further, for the obtained results we presented the existence and uniqueness
within the frame of fixed point hypothesis. As associated to consequences available in
the literature, the results obtained by the help of projected method are more stimulating.
The graphical representations show the dependence of the considered nonlinear model
on parameters offered by the considered scheme and fractional order, and also it
exemplifies the degree of freedom when we incorporate the fractional operator in the
systems. We can be observed by the present study, the projected model is remarkably
associated with the time instant and time history-based consequences, and which can be
efficiently examined by the help of fractional calculus. Lastly, we can conclude that the
present study can aid the researchers to analyse the nature system corresponded to very
useful and interesting and consequences.
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Abstract. This article focuses on the fluctuations observed in the labor
markets. We divide the total population into three categories: employed,
unemployed and inactive, then we describe the entry-exit flows between
these different categories by two delay differential equations. Our con-
tribution is to compute an indicator for determining the behavior of the
model variables, in a neighborhood of the critical delay. Our findings
show that the model can undergo a Hopf bifurcation and the bifurcated
limit cycles is stable (or unstable), according to the crossing direction of
critical delay.

Keywords: Differential equations · Delay · Periodic solutions · Hopf
bifurcation · Limit cycles · Labor market · Employed persons ·
Unemployed

1 Introduction

The study of economic fluctuations and cycles has attracted much attention in
macroeconomic theory and applied mathematics. On one hand, the resulting
mathematical models have been involved solving many problems related to the
explanation, identification and measurement or estimation of these phenomena,
and on the other hand, the obtained results align well with proposed results
in econometric studies [6,7,10,12,14]. Within this framework, we developed a
mathematical model to study the fluctuations observed empirically in the three
aggregates of labor markets namely, employment, unemployment and inactivity.
The idea is to divide the population into three distinct categories of individuals:
the employed, the unemployed and the inactive and describe the flows between
these different categories by the following system (For more details, see Fig. 1):

{
dL
dt = γU(t) − (s + α + m)L(t),

dU
dt = ρ(1 − L(t−r)+U(t−r)

Nc
)L(t − r) + sL(t) − (m + γ + β)U(t),

(1)

c© Springer Nature Switzerland AG 2021
Z. Hammouch et al. (Eds.): SM2A 2019, LNNS 168, pp. 61–77, 2021.
https://doi.org/10.1007/978-3-030-62299-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62299-2_5&domain=pdf
https://doi.org/10.1007/978-3-030-62299-2_5


62 S. ElFadily et al.

Fig. 1. Labor market flows

with the initial condition:

(L(ξ), U(ξ)) = (ϕ1(ξ), ϕ2(ξ)), ∀ξ ∈ [−r, 0], (2)

where the variable L is the number of the employed population, U is the number
of the unemployed population, γ denotes the employment level, s indicates the
job loss rate, α is the rate of workers who have withdrawn from labor market due
to retirement or disability, β is the rate of unemployed people who are no longer
able to work, m is the mortality rate, ρ is the maximum population growth rate,
Nc is the maximum load capacity, r is the time needed for a new person who has
found a job to contribute to the reproductive process and ϕi ∈ C([−r, 0],R+),
i = 1, 2. Here C([−r, 0],R+) is the Banach space of continuous functions from
the interval [−r, 0] to the set of positive real numbers R

+.
Model (1) is composed of two differential equations which model the inflows-

outflows in the three categories of the total population (category U of the unem-
ployed, category L of the employed and category I of inactive people). On the
one hand, the second equation translates the feeding of category U by people
who have reached working age and who are looking for a job. This flow is indi-
cated by a logistic growth rate ρ. People in this category transform to category
I with a disability rate β, or category L with a recruitment rate γ or exit with
a death rate m. On the other hand, the first equation describes the evolution of
category L by the difference between the newly employed, noted γU and those
leaving this category by job loss, sL, by disability αL or by death, mL.

There have been several attempts in this area. We cite for example the
model of labor force evolution, proposed by Farkas (in 1995 [16]), Only a hand-
ful of studies have been found to examine its dynamics systematically. Papers
[9,15,20] study the local and global stability of labor force evolution model using
linearization technique and Lyapunov method. The resulting numerical results
usually give the local and global stability. In empirical studies, however, the
observed data of the employed and the unemployed have oscillatory behavior.
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In this work, we prove the existence of a Hopf bifurcation point and we also
study the direction and stability of the periodic branches (limit cycles) that
evolve around this point.

The study of the oscillatory behavior of dynamical systems can be done by
fixed point methods [8,17] or by Hopf bifurcation theorem [13,25]. In the latter
case, several researchers have proposed different techniques to investigate the
behavior of dynamical systems in the neighborhoods of the critical delays. The
first is to look for a normal form in a central manifold [5,22,23]. This method
entails a long calculation. The second is the singular perturbation approach. This
technique is preferable for its computational efficiency (multiple-scale analysis
[4,21], Krylov-Bogoliubov-Mitropolsky method [2], Poincaré-Lindstedt method
[1,19], harmonic balance method [3,18] and pseudo-oscillator analysis [27]). In
this work we chose to work with the Kuznetsov method [11,26]. The method
only requires a computation of the first Lyapunov coefficient to determine the
behavior in the neighborhoods of the critical delays.

This work is structured as follows. In Sect. 2, we study the local stability and
the Hopf bifurcation of the nontrivial equilibrium position of the System (1). In
Sect. 3, we first give the essential calculations of the central manifold and the
reduction of our model to a normal form. Then, we use the Kuzentsov method
to determine the direction and stability of the periodic orbit resulting from the
Hopf bifurcation. Numerical simulations are given in Sect. 4 to support the main
aspects of our study. Finally, in Sect. 5, we summarize the main findings, our
conclusion, the gaps we encountered and some perspectives on this study.

2 Hopf Bifurcation Analysis

2.1 Equilibria

In the following, we study the existence of equilibrium points for the system (1).

Proposition 1. If
γρ

m(γ + s + α + α2 + m) + γα + β(s + α)
> 1, then system

(1) admits two equilibria: E0 = (0, 0) and a unique positive equilibrium E∗ =
(L∗, U∗), where

U∗ =
(s + α + m)L∗

γ

and

L∗ =
γNc

γ + s + α + m
(1 − m(γ + s + α + β + m) + γα + β(s + α)

γρ
).

Proof. Suppose (U,L) is an equilibrium point, that is,{
γU − (s + α + m)L = 0,

ρ(1 − L+U
Nc

)L + sL − (γ + β + m)U = 0.
(3)
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It is clear that (0, 0) is a solution of the system (3). This gives that E0 is a trivial
equilibrium of system (1). Moreover, if (U,L) is an equilibrium such that U > 0
and L > 0 then we have{

U = (s+α+m)L
γ ,

ρ(1 − (γ+s+α+m)L
γNc

) − (s+α+m)(γ+β+m)
γ = 0.

(4)

Under the condition γρ
m(γ+s+α+β+m)+γα+β(s+α) > 1, the system of linear equa-

tions (4) has a unique non-trivial solution E∗ = (L∗, U∗), where

U∗ =
(s + α + m)L∗

γ

and

L∗ =
γNc

(γ + s + α + m)
(1 − m(γ + s + α + β + m) + γα + β(s + α)

γρ
).

This completes the proof.

2.2 Local Stability

The Linearized system of Eqs. (1) at the positive equilibrium E∗ is{
dx
dt = −(s + α + m)x + γy,

dy
dt = sx + (m(γ+s+α+β+m)+γα+β(s+α)

γ − ρL∗
Nc

)xr − (γ + β + m)y − ρL∗
Nc

yr.

(5)
For System (5) the characteristic equation is:

λ2 + θ1λ + θ2λe−λr + θ3 + θ4e
−λr = 0, (6)

where
θ1 = γ + s + α + β + 2m, θ2 =

ρL∗
Nc

θ3 = m(γ + s + α + β + m) + γα + β(s + α)

and

θ4 = ρ(γ + s + α + m)
L∗
Nc

− (m(γ + s + α + β + m) + γα + β(s + α)).

Using the Routh-Hurwitz criterion and Kuang’s results [25] for Eq. (6), we prove
the following results:

Proposition 2. If r = 0, then the positive equilibrium E∗ is locally asymptoti-
cally stable.



Stability Analysis of Bifurcated Limit Cycles 65

Proof. When r = 0, the Eq. (6) becomes

λ2 + (γ + s + α + β + 2m +
ρL∗
Nc

)λ + ρ(γ + s + α + m)
L∗
Nc

= 0, (7)

Since γ + s + α + β + 2m + ρL∗
Nc

> 0 and ρ(γ + s + α + m)L∗
Nc

> 0, then, by the
Routh-Hurwitz criterion, all the roots of Eq. (6) have non-negative real parts,
and therefore the positive equilibrium E∗ is locally asymptotically stable.

Let (H1): γρ
m(γ+s+α+β+m) > 3.

Proposition 3. If (H1) is valid.Then there exists r0 > 0 such that,

(i) for 0 ≤ r < r0, E∗ is locally asymptotically stable;
(ii) for r > r0, E∗ is unstable;
(iii) for r = r0, Eq. (5) admits two purely imaginary roots;

where

r0 =
1
ω0

arccos(
−θ1θ2ω

2
0 − θ4(θ3 − ω2

0)
θ2ω2

0 + θ24
),

and

ω0 =

√
1
2
{(θ22 + 2θ3 − θ21) +

√
(θ22 + 2θ3 − θ21)2 + 4(θ23 − θ24)}.

Proof. If γρ
m(γ+s+α+β+m) ≥ 3, then

θ23 − θ24 = Λ1 × Λ2 × Λ3 < 0,

where
Λ1 = [m(γ + s + α + β + m) + γα + β(s + α)]2,

Λ2 =
γρ

m(γ + s + α + β + m) + γα + β(s + α)
− 1

and
Λ3 = 3 − γρ

m(γ + s + α + β + m) + γα + β(s + α)
.

Consequently, Eq. (6) has only one purely imaginary solution,

iω0 = i

√
1
2
{(θ22 + 2θ3 − θ21) +

√
(θ22 + 2θ21)2 + 4(θ23 − θ24)},

with ω0 > 0. By Theorem 2.7 in ([25], p. 77), we conclude that there exists
r0 > 0 which satisfies the three statements (i), (ii) and (iii) of Proposition 3.
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2.3 Local Hopf Bifurcation

From (iii) of Proposition 3, we have proved that Eq. (5) has a pair of purely
imaginary roots ±iω0, ω0 > 0, when the delay crosses the critical value r0. In
the following result we show the birth of the Hopf bifurcation, in a small vicinity
of r0.

Theorem 1. Under hypothesis (H1), the system (1) loses its stability through a
Hopf bifurcation when r = r0, i.e., a limit cycle appears out of the equilibrium
E∗.

Proof. From Proposition 3, the characteristic equation (6) has a pair of imagi-
nary roots ±iω0 at r = r0. It’s easy to show that this root is simple. Thus it
suffices to show that

dRe(λ)
dr

(r0) > 0

(see, for example [13]).
We have:

Sign
dRe(λ)

dr
|r0 = Sign{θ22 + 2θ3 − θ21 − 4(θ23 − θ24)}.

After some calculations, we get:

θ22 + 2θ3 − θ21 − 4(θ23 − θ24) = Γ1 − Γ2(Γ3 − 1)(3 − Γ3), (8)

where

Γ1 =
γ2ρ2(1 − m2) + [γ − (γ + s + α + β + m)2]2

(γ + s + α + β + m)2
,

Γ2 = 4(m(γ + s + α + β + m) + γα + β(s + α))2,

and
Γ3 =

γρ

m(γ + s + α + β + m) + γα + β(s + α)
.

If the hypothesis (H1) is verified, then Γ2(Γ3 − 1)(3 − Γ3) < 0. Moreover, we
have 0 < m < 1. Consequently

dRe(λ)
dr

(r0) > 0.

3 Direction and Stability of the Hopf Bifurcation

In this section, we use Kuznetsov’s method [24] to calculate an indicator of the
direction and stability of the bifurcated branches (limit cycles) from E∗.

By the change of variables: x(t) = L(rt)−L∗, y(t) = U(rt)−L∗ and r = r0+ε,
where ε ∈ R is the bifurcation parameter, the system (1) becomes{

dx
dt = (r0 + ε)[a1x + a2y]

dy
dt = (r0 + ε)[b10x + b01y + b

′
10x1 + b

′
11(y1 + x1y1 + x2

1)]
(9)
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with
x1 := x(t − 1), y1 := y(t − 1),

a1 = −(s + α + m), a2 = γ,

b10 = s, b01 = −(γ + β + m),

b
′
10 = (

m(γ + s + α + β + m) + γα + β(s + α)
γ

− ρL∗
Nc

)

and

b
′
01 = −ρL∗

Nc
, b

′
11 = − ρ

Nc
.

Hence, system (9) is transformed into a functional differential equation in
C := C([−1, 0],R2) as follows,

ẋ(t) = Lε(xt) + fε(xt), (10)

where x = (x, y)T ∈ C, xt ∈ C is defined by xt(θ) = x(t + θ) for any θ ∈ [−1, 0] ,
ε ∈ R is the bifurcation parameter, Lε : C → R

2, is a bounded linear operator
and f : R×C → C is the nonlinear operator. Lε and f are given respectively by:

Lε(ψ) := (r0 + ε) (A1(ψ(0)) + A2(ψ(−1))) (11)

and

fε(ψ) = (r0 + ε)
(

0
b

′
11ψ1(−1)ψ2(−1) + b

′
20ψ

2
1(−1)

)
. (12)

where

A1 =
(−(s + α + m) γ

s −(γ + β + m)

)
, (13)

A2 =
(

0 0
Λ −ρL∗

Nc

)
, (14)

with Λ =
m(γ + s + α + β + m) + γα + β(s + α)

γ
− ρL∗

Nc
.

Using the Riesz’s representation (see [13]), we get

L := Lε(ψ) =
∫ 0

−1

dη(θ, ε)ψ(θ). (15)

where,
η(θ, ε) = (r0 + ε) (A1δ(θ) + A2δ(θ + 1)) (16)

The solution operator of Eq. (10) generates a C0-semigroup with the infinites-
imal generator Aε defined by

Aεψ(θ) =

{
dψ
dθ (θ) for θ ∈ [−1, 0)∫ 0

−1
dη(θ, ε)ψ(θ) for θ = 0

(17)
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We rewrite Eq. (10) as an abstract ordinary differential equation

dxt

dt
= Aε(xt) + Rε(xt), (18)

with the nonlinear term

Rε(xt) =
{

0 for θ ∈ [−1, 0),
fε(xt) for θ = 0.

(19)

We denote by A∗ the adjoint operator of Aε

A∗ψ(s) =

{
−dψ

ds (s), for s ∈ (0, 1]∫ 0

−1
ψT (−s)dη(s), for s = 0,

(20)

where ηT is the transposed matrix of η.
In order to normalize the eigenvectors of operator A and A*, we define the

bilinear form

<ψ, φ> = ψ̄(0)φ(0) −
∫ 0

−1

∫ θ

0

ψ̄(ξ − θ)dη(θ, 0)φ(ξ)dξ,

where φ ∈ C and ψ ∈ C∗ = C([0, 1), (R2∗)).
Assume that L has two eigenvalues on the imaginary axis. Let p(θ) and p∗(s)

are eigenvectors of A0 and A∗ . In order to determine the Poincare normal form
of operator A, we needs to calculate the eigenvector p(θ) and p∗(s) corresponding
to iω0r0 and −iω0r0, respectively, with <p∗, p> = 1 and <p∗, p̄> = 0. Let P be
the generalized eigenspace spanned by p(θ) and p̄(θ) defined as

P = {zp + z̄p̄, z ∈ C} .

Then the orthogonal complement of P in C is

Q = {ψ ∈ C, <p, ψ> = 0, <p̄∗, ψ> = 0} .

Therefore, we get a decomposition of C as follows

C = P ⊕ Q. (21)

A straightforward calculation gives

p(θ) = (p1, 1)T eiθω0r0

and
p∗(s) = κ(p2, 1)T eisω0r0 ,

where p1 = iω0−b01−b
′
01

b10+b
′
10

, and p2 = −(iω0+b01+b01)
a2

.

Using the normalization condition <p∗, p> = 1, we get

κ =
a2(b

′
10 + b10)
Υ

,
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where

Υ = a2(b
′
10 + b10)(1 + b01r0e

iω0r0) + (iω0 + b01 + b
′
01)((iω0 + b01 + b

′
01) − a2b10).

From (21), the state variable xt of Eq. (10) could be decomposed by

xt = Φz + w(z, z̄, θ)
= −zp(θ) − z̄p̄(θ) + w(z, z̄, θ)

(22)

where w(z, z̄, θ) ∈ Q. On the center manifold at r = r0, we define

z(t) =< p∗, xt >,

w(z, z̄, θ) = xt(θ) − Re {z(t)p(θ)} , w(z, z̄) = w(z, z̄, θ).

Then
ż(t) = <p∗, u̇t>

= <p∗,A0xt + R0xt>

= <A∗p∗, xt > + < p∗, R0xt>

(23)

On the invariant manifold, system (1) can be written as

ż(t) = iω0r0z(t) + g(z, z̄) (24)

where
f0(z, z̄) = f(0, w(z, z̄) + Re(z(t)p(θ)) (25)

g(z, z̄) = p∗(0)f0(z, z̄)

= g20
z2

2
+ g11zz̄ + g02

z̄2

2
+ . . .

(26)

and

w(z, z̄) = w20(θ)
z2

2
+ w11(θ)zz̄ + w02(θ)

z̄2

2
+ ...

where z and z̄ are local coordinates for center manifold in the direction of p
and p̄∗.

Thus, from (10) and (24), we have

ẇ = u̇t − pż − p̄ ˙̄z,

which leads to
ẇ = A0w + H(z, z̄, θ), (27)

where

H(z, z̄, θ) = H20(θ)
z2

2
+ H11(θ)

zz̄

2
+ H02(θ)

z̄2

2
+ . . . (28)

By expanding (28) and identifying its coefficients, we get

H20 = −(A0 − 2iω0r0)w20(θ),
H11 = −A0w11(θ),
H02 = −(A0 + 2iω0r0)w02(θ).

(29)
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By
ẋt = w(z, z̄) + zp(θ) + z̄p̄(θ)

and
q(θ) = (1, p1)T eiθω0r0 ,

we get

x1(t) = p1z + p̄1z̄ +
1

2
w20(0)z

2 + w11(0)zz̄ +
1

2
w02(0)z̄

2 + . . .

x1(t− 1) = p1ze
−iθω0r0 + p̄1z̄e

iθω0r0 +
1

2
w20(−1)z2 + w11(−1)zz̄ +

1

2
w02(0)z̄

2 + . . .

x2(t) = z + z̄ +
1

2
w20(0)z

2 + w11(0)zz̄ +
1

2
w02(0)z̄

2 + . . .

x2(t− 1) = ze−iθω0r0 + z̄eiθω0r0 +
1

2
w20(−1)z2 +

1

2
w11(−1)zz̄ +

1

2
w02(−1)z̄2 + . . .

(30)

Comparing with (27), we have the coefficients of (26):

g20 = −2r0κ̄
ρ

Nc
p1(p1 + 1)e2ir0ω0 ,

g02 = −2
ρκ̄r0
Nc

p̄1(p̄1 + 1)e−2ir0ω0 ,

g11 = −ρκ̄r0
Nc

(2p̄1p1 + p̄1 + p1),

g21 = −ρκ̄r0
Nc

(e−iω0r0w111(−1)(2p1 + 1) +
1
2
p̄1e

−iω0r0w220(−1)

+ p1e
iω0r0w211(−1) + (

1
2

+ p̄1)e−iω0r0w120(−1)).

(31)

Next, we calculate w11(θ), w20(θ) and g21.
For θ ∈ [−1, 0), we have

H(z, z̄, θ) = p̄∗(0)f0p(0) − p∗(0)f̄0p̄(0)
= −g(z, z̄)p(θ) − ḡ(z, z̄)p̄(θ)

= −(g20p(θ) + ḡ02p̄(θ))
z2

2
− (g11p(θ) + ḡ11p̄(θ))zz̄ + . . .

(32)

Using formula (27), we find

H20(θ) = −(g20p(θ) + ḡ02p̄(θ)), (33)

H11(θ) = −(g11p(θ) + ḡ11p̄(θ)). (34)

Substituting (34) into (25) and (33) into (25), respectively, we get

ẇ20 = 2ir0ω0w20(θ) + g20p(θ) + ḡ02p̄(θ). (35)

So

w20 =
ig20e

ir0ω0θ

r0ω0
p(0) +

iḡ02e
−ir0ω0θ

3r0ω0
p̄(0) + E1e

2ir0ω0θ, (36)
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w11 =
−ig11e

ir0ω0θ

r0ω0
p(0) +

iḡ11e
−ir0ω0θ

r0ω0
p̄(0) + E2. (37)

In the sequel, we determine E1 and E2.
By (27) and the operator A0, we have

∫ 0

−1

dη(θ)w20(θ) = 2iω0r0w20(0) − H20(0), (38)

∫ 0

−1

dη(θ)w11(θ) = −H11(0). (39)

From (27) and (28), we obtain

H20(θ) = −(g20q(0) + ḡ02p̄(0)) +
ρr0e

2ir0ω0

Nc

(
0

p1(p1 + 1)

)
, (40)

H11(θ) = −(g11q(0) + ḡ11p̄(0)) +
ρr0
Nc

(
0

2p̄1p1 + p̄1 + p1

)
, (41)

substituting (36) and (40) into (38) , and noticing that
(

iω0r0I −
∫ 0

−1

dη(θ)eir0ω0θ

)
p(0) = 0, (42)

(
−iω0r0 −

∫ 0

−1

dη(θ)e−ir0ω0θ

)
p̄(0) = 0, (43)

we get(
2iω0r0 −

∫ 0

−1

dη(θ)e2ir0ω0θ

)
E1 = −ρr0e

2ir0ω0

Nc

(
0

p1(p1 + 1)

)
, (44)

that is

⎛
⎝

a1 − 2ir0ω0 a2

b10e
−2ir0ω0 + b

′
10 b01 + b

′
01e

−2ir0ω0 − 2ir0ω0

⎞
⎠ E1 = −ρr0e

2ir0ω0

Nc

(
0

p1(p1 + 1)

)
,

(45)
where E1 = (E11 , E12)

T , with

E11 =
ρr0a2p1(p1 + 1)e2ir0ω0

Nc((a1 − 2iω0)(b01 + b
′
01e

−2ir0ω0 − 2iω0) − a2(b10 + b
′
10e

−2ir0ω0)
,

and

E12 = −ρr0(a1 − 2iω0)E11

a2Nc
.
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Similarly, substituting (37) and (41) into (39), we get

∫ 0

−1

dη(θ)E2 = −ρr0
Nc

(
0

2p̄1p1 + p̄1 + p1

)
, (46)

that is ⎛
⎝ a1 a2

b10 + b
′
10 b01 + b

′
01

⎞
⎠ E2 = −ρr0

Nc

(
0

2p̄1p1 + p̄1 + p1

)
, (47)

where E2 = (E21 , E22)
T , with

E21 =
ρr0a2p1(p1 + 1)(a1(b01 + b

′
01) − a2(b10 + b

′
10))

Nc
,

and
E22 = −ρr0a1E11

a2Nc
.

To give our main result, we recall the definition of an indicator of direction and
stability of limit cycles.

Definition 1. The first Lyapunov coefficient is given by [24]

l1(r) =
Re(c1)

ωr
+ Re(λ)

Im(c1)
ω2r2

,

where

c1 =
g21
2

+
|g11|2

λ
+

|g02|2
2(2λ − λ̄)

+
g20g11(2λ + λ̄)

2|λ|2 .

For r = r0, we have λ = λ0 = iω0, and consequently, we obtain the following
result.

Theorem 2. [24] Suppose that hypothesis (H1) holds. Then, for λ in neigh-
borhood of λ0, the Eq. (10) is locally topologically equivalent to the following
equation:

ż = (σ + i)z + sign(l1(r0))z | z |2 +O(| z |4), (48)

with σ = Re(λ)
Im(λ) |r0.

Theorem 3. [24] Suppose that hypothesis (H1) holds. Then

(a) if l1(r0) < 0, then a stable limit cycle appears out of the equilibrium E∗, for
r > r0 (supercritical Hopf bifurcation).

(b) if l1(r0) > 0, then an unstable limit cycle appears out of the equilibrium E∗,
for r < r0 (sub-critical Hopf bifurcation).
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Fig. 2. Stable solutions of Model (1) for a delay, r smaller than the critical value, r0:
r = 3.1068 and r0 = 4.1068
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Fig. 3. Periodic solutions have bifurcated from the positive equilibrium of Model (1)
for a delay closer to the critical value, r0 = 4.1068

4 Numerical Simulations

4.1 Qualitative Behavior of Solutions

We consider the following hypothetical numerical parameters:

γ = 0.7, s = 0.01, ρ = 0.4, m = 0.005, α = 0.01, β = 0.03, Nc = 11000000.

The positive equilibrium E∗ = (1.0137 × 107, 3.5561 × 105). The first Lyapunov
coefficient l1(r0) = 1.106447511 × 10−7, then the subcritical Hopf bifurcation
exist and an unstable limit cycle appears out of E ∗ .

According to Fig. 2, Fig. 3 and Fig. 4, we observe three oscillatory regimes on
the labor market: convergent oscillations towards the equilibrium (see, Fig. 2),
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Fig. 4. Unstable solutions of Model (1) for a delay, r greater than the critical value:
r = 5.1068 and r0 = 4.1068
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Fig. 5. The variation curve of the critical delay, r0 as a function of: (a) employment
level, γ, (b) the job loss rate, s and (c) the maximum population growth rate ρ
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(i)

(ii)

(iii)

Fig. 6. The effect of the simultaneous variation of two parameters on the critical delay,
r0: (i) (β, ρ), (ii) (ρ, γ) and (iii) (γ, s)

periodic oscillations (see, Fig. 3) or divergent oscillations (see, Fig. 4). In sum-
mary, the number of the employed persons and the number of the unemployed
oscillate around the labor market equilibrium, under the effect of the delay.

4.2 Effect of Parameters on Critical Delay

In this section, we examine the effect of the parameters on the critical delay.
First, we vary one parameter and find that the critical value is a monotonic
function, see Fig. 5. Next, we vary two parameters simultaneously and find a
similar result, Fig. 6.

5 Conclusion

In this document, we have proposed a delayed labor model. We have studied the
effect of lagging on job market fluctuations. From this analysis, we concluded that
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this time lag can destabilize the Model (1) via the Hopf bifurcation phenomenon.
Using the Kuznetsov method [11], we have also shown that the proposed model
undergo a subcritical Hopf bifurcation and that the bifurcated limit cycles are
unstable, in the vicinity of the critical lag. These results can help to control
the functioning of the labor market by rationalizing the reproduction process.
The difficulties we encountered are essentially related to the non-linearity of
our model and the presence of the temporal deviation. In order to develop our
conclusions, we plan in our next work to study the effect of two delays.
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Abstract. In this paper, we are going to study the existence and unique-
ness solutions of fractional differential equations with fuzzy data, involv-
ing the fuzzy fractional differential operators of the order γ ∈ R+. The
aid method of successive approximation is provided with adequate con-
ditions for the existence and uniqueness solution. Examples are given to
explain the theory obtained.

1 Introduction

Fractional differential equations (FDEs) is a generalization and integration of
ordinary differential equations into arbitrary non-integer orders. This is com-
monly and effectively used to explain many phenomena that occur in specific
scientific fields and engineering. Indeed, many applications can be found in vis-
coelasticity, electrochemistry, power, porous media, electromagnetic, etc. (see
[1–3]). And they got a lot of attention. For the most recent work on the exis-
tence and uniqueness of solutions of initial and boundary value problems for
fractional differential equations, we list [4,5,10,23,24].

Agarwal et al. [6] have taken an initiative to incorporate the idea of a solution
for fuzzy fractional differential equations in order γ > 0 to get a more practical
model than (FDEs). This contribution has inspired other writers to draw some
results about the solution’s existence and uniqueness. (see [8,10,15,16,20–23,25].
In this paper, we will study the fuzzy fractional differential equation

{
Dγy(t) = F (t, y(t)), t ∈ [0, a], γ ∈ R+,
Djy(t)|t=0 = yj(0) , j = 0, 1, 2, . . . , k = [γ], (1)

where F : [0, a] × RF → RF is continuous, we shall consider this equation
with some appropriate initial condition for a given equation yj(0) ∈ RF

(
RF be

the set of fuzzy real numbers [20,21]
)

and Dγ is the fuzzy fractional differential
operator

(
γ be a positive real number with j = [γ]

(
[γ] is the smallest integer

greater than or equal to γ
))

. For earlier works concerning the crisp problem 1, the
first author studied it in [11,12] when F ∈ [0, a]×C([0, a]) → C([0, a])

(
C([0, a])
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is the set of continuous functions defined on [0, a]
)

and [13] when F ∈ [0, a]×X →
X,

(
X is the Banach space

)
. Here we generalize this work for fuzzy set RF .

The paper is structured as follows: In Sect. 2, we remember some basic knowl-
edge of fuzzy calculus. Several basic principles and properties of fuzzy fractional
calculus are introduced in Sect. 3 and in Sect. 4 we prove some results on the
existence and uniqueness of solutions of fuzzy fractional differential equations.
We denote to some examples, finally.

2 Preliminaries

We now recall some definitions needed in throughout the paper. Let us denote
by RF the class of fuzzy subsets of the real axis y : R → [0, 1] satisfying the
following properties:

(i) y is normal: there exists x0 ∈ R with y(x0) = 1,
(ii) y is convex fuzzy set: for all x, t ∈ R and 0 < λ ≤ 1, it holds that

y(λx + (1 − λ)t) ≥ min{y(x), y(t)},

(iii) y is upper semicontinuous: for any x0 ∈ R, it holds that

y(x0) ≥ lim
x→x0

y(x) ,

(iv) [y]0 = cl{x ∈ R|y(x) > 0} is compact.

Then RF is called the space of fuzzy numbers see [27]. Obviously, R ⊂ RF . If
y is a fuzzy set, we define [y]α = {x ∈ R|y(x) ≥ α} the α-level (cut) sets of y,
with 0 < α ≤ 1. Also, if y ∈ RF then α-cut of y denoted by [y]α = [yα

1 , yα
2 ].

Lemma 1. See ([14]) Let y, z : RF → [0, 1] be the fuzzy sets. Then y = z if and
only if [y]α = [z]α for all α ∈ [0, 1].

For y, z ∈ RF and λ ∈ R the sum y + z and the product λy are defined by

[y + z]α = [yα
1 + zα

1 , yα
2 + zα

2 ],

[λy]α = λ[y]α =
{

[λyα
1 , λyα

2 ], λ ≥ 0;
[λyα

2 , λyα
1 ], λ < 0,

∀α ∈ [0, 1]. Additionally if we denote 0̂ = χ{0}, then 0̂ ∈ RF is a neutral
element with respert to +.

Let d : RF × RF → R + ∪{0} by the following equation:

d(y, z) = sup
α∈[0,1]

dH([y]α, [z]α), for ally, z ∈ RF ,

where dH is the Hausdorff metric defined as:

dH([y]α, [z]α) = max{|yα
1 − zα

1 |, |yα
2 − zα

2
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The following properties are well-known see [26]:

d(y + w, z + w) = d(y, z) and d(y, z) = d(z, y), ∀ y, z, w ∈ RF ,

d(ky, kz) = |k|d(y, z), ∀k ∈ R, y, z ∈ RF (2)
d(y + z, w + e) ≤ d(y, w) + d(z, e), ∀ y, z, w, e ∈ RF ,

and (RF , d) is a complete metric space.

Remark 1. We denote by C([0, a],RF ) the space of all continuous fuzzy functions
on [0, a] and is a complete metric space with respect to the metric

h(y, z) = sup
t∈[0,a]

d
(
y(t), z(t)

)
.

We denote by L1
(
[0, a],RF

)
the space of all fuzzy functions F : [0, a] → RF

which are Lebesgue integrable on the bounded interval [0, a].

Definition 1. The mapping y : [0, a] → RF for some interval [0, a] is called a
fuzzy process. Therefore, its α-level set can be written as follows:

[y(t)]α = [yα
1 (t), yα

2 (t)], t ∈ [0, a], α ∈ [0, 1].

Theorem 1. [8] Let y : [0, a] → RF be Seikkala differentiable and denote
[y(t)]α = [yα

1 (t), yα
2 (t)]. Then, the boundary function yα

1 (t) and yα
2 (t) are dif-

ferentiable and
[y′(t)]α = [(yα

1 )′(t), (yα
2 )′(t)], α ∈ [0, 1].

Definition 2. [9] Let y : [0, a] → RF . The fuzzy integral, denoted by∫ c

b

y(t)dt, b, c ∈ [0, a], is defined levelwise by the following equation:

[∫ c

b

y(t)dt
]α

=
[∫ c

b

yα
1 (t)dt,

∫ c

b

yα
2 (t)dt

]
,

for all 0 ≤ α ≤ 1. In [9], if y : [0, a] → RF is continuous, it is fuzzy integrable.

Theorem 2. [7] If y ∈ RF , then the following properties hold:

(i) [y]α2 ⊂ [y]α1 , if 0 ≤ α1 ≤ α2 ≤ 1;
(ii) {αk} ⊂ [0, 1] is a nondecreasing sequence which converges to α then

[y]α =
⋂
k≥1

[y]αk .

Conversely if Aα = {[yα
1 , yα

2 ];α ∈ (0, 1]} is a family of closed real intervals
verifying (i) and (ii), then {Aα} defined a fuzzy number y ∈ RF such that
[y]α = Aα.
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3 Fuzzy Fractional Integral and Fuzzy Fractional
Derivative

Let γ ∈ R+ and y : [0, a] → RF be such that [y(t)]α = [yα
1 (t), yα

2 (t)] for all
t ∈ [0, a]. Suppose that yα

1 , yα
2 ∈ C([0, a],R) ∩ L1([0, a],R) for all α ∈ [0, 1] and

let

Aα :=
1

Γ (γ)

[∫ t

0

(t − s)γ−1yα
1 (s)ds,

∫ t

0

(t − s)γ−1yα
2 (s)ds

]
,

:=
[
Ψγ(t) ∗ yα

1 (t), Ψγ(t) ∗ yα
2 (t)

]
. (3)

Lemma 2. See ([10]) The family {Aα;α ∈ [0, 1]} given by 3, defined a fuzzy
number y ∈ RF such that [y]α = Aα.

Now for any positive real number γ > 0, we define

Ψγ(t) =

{
tγ−1

Γ (γ) , t > 0,

0, t ≤ 0,

and

Ψ−γ(t) = Ψ1+k−γ(t) ∗ δ1+k(t) , k = [γ],
Ψ−n(t) = δn(t), n = 0, 1, 2, . . . .

with the property Ψγ(t) ∗ Ψp(t) = Ψγ+p(t) for p > 0, where δn(t) is the nth
derivative of the delta function and Γ is the gamma function (for the properties
of Ψγ(t) see [17,18]).

Definition 3. Let y ∈ C([0, a],RF )∩L1([0, a],RF ) . The fuzzy fractional prim-
itive of order γ > 0 of y, is defined by

Iγy(t) =
1

Γ (γ)

∫ t

0

(t − s)γ−1y(s)ds,

by

[
Iγy(t)

]α

=
1

Γ (γ)

[∫ t

0

(t − s)γ−1yα
1 (s)ds,

∫ t

0

(t − s)γ−1yα
2 (s)ds

]
, (4)

=
[
yα
1 (t) ∗ Ψγ(t), yα

2 (t) ∗ Ψγ(t)
]
,

For γ = 1, we obtain I1y(t) =
∫ t

0

y(s)ds, t ∈ [0, a], that is, the integral operator.

Also, Subsequent properties are evident.

(i) Iγ(λy)(t) = λIγ(y)(t) for each constant λ ∈ RF ,
(ii) Iγ(y + z)(t) = Iγ(y)(t) + Iγ(z)(t) .
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Proposition 1. [10] If y ∈ C([0, a],RF ) ∩ L1([0, a],RF ) and p, γ > 0, then we
have

IpIγy = Ip+γy.

Definition 4. Let y ∈ C1+k([0, a],RF )∩L1([0, a],RF ) be a given function such
that [y]α = [yα

1 , yα
2 ] for all t ∈ [0, a] and α ∈ [0, 1] the fuzzy fractional differential

operator is defined

Dγy(t) =
1

Γ (1 + k − γ)

∫ t

0

(t − s)k−γD1+ky(s)ds, (5)

= D1+ky(t) ∗ Ψ1+k−γ(t),

by
[
Dγy(t)

]α

=
1

Γ (1 + k − γ)

[∫ t

0

(t − s)k−γD1+kyα
1 (s)ds,

∫ t

0

(t − s)k−γD1+kyα
2 (s)ds

]

=
[
D1+kyα

1 (t) ∗ Ψ1+k−γ(t), D1+kyα
2 (t) ∗ Ψ1+k−γ(t)

]
.

For k = 0, we obtain

[
Dγy(t)

]α

=
1

Γ (1 − γ)

[∫ t

0

(t − s)−γ d

ds
yα
1 (t)ds,

∫ t

0

(t − s)−γ d

ds
yα
2 (t)ds

]
,

provided that the equation defines a fuzzy number Dγy(t) ∈ RF . In fact[
Dγy(t)

]α =
[
Dγyα

1 (t),Dγyα
2 (t)

]
for all t ∈ [0, a] and α ∈ [0, 1].

4 Existence and Uniqueness of the Fuzzy Solution

We now consider the fuzzy fractional differential equation
{

Dγy(t) = F (t, y(t)) , t ∈ [0, a],
Djy(t)|t=0 = yj(0) ∈ RF , j = 0, 1, 2, . . . , k.

(6)

where γ ∈ R+ and F ∈ [0, a] × RF → RF is a continuous function on (0, a]
×RF . We call y : [0, a] → RF a fuzzy solution of 6, if

Dγyα
1 (t) = f1(t, y(t)), Djyα

1 (t)|t=0 = yα
1j(0)

Dγyα
2 (t) = f2(t, y(t)), Djyα

1 (t)|t=0 = yα
2j(0) (7)

for t ∈ [0, a] and 0 < α ≤ 1, where
[
F (t, y)

]α

=
[
f1(t, y), f2(t, y)

]

=
[
min{F (t, x) : x ∈ [yα

1 , yα
2 ]},max{F (t, x) : x ∈ [yα

1 , yα
2 ]}

]
.

If we can solve it (uniquely), we have only to verify that the intervals
[yα

1 (t), yα
2 (t)], for all α ∈ (0, 1], define a fuzzy number y(t) ∈ RF .
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Definition 5. A mapping y : [0, a] → RF is a solution to the problem 6 if it is
continuous and satisfies the integral equation

y(t) =
k∑

j=0

tj

j!
yj(0) +

1
Γ (γ)

∫ t

0

(t − s)γ−1F (s, y(s))ds. (8)

According to the method of successive approximation, let us consider the
sequence {yn(t)} such that y0 : [0, a] → RF be continuous,

yn(t) =
k∑

j=0

tj

j!
yj(0) +

1
Γ (γ)

∫ t

0

(t − s)γ−1F (s, yn−1(s))ds, (9)

where n = 1, 2, 3, . . . .
Now we are proving the following theorem on equivalence.

Theorem 3. Let F : [0, a] × RF → RF be continuous on [0, a] × RF . And
suppose ∃η > 0, such that

d
(
F (t, y(t)), F (t, z(t))

) ≤ ηd(y(t), z(t)), (10)

for every y(t), z(t) ∈ RF , t ∈ [0, a]. If | ηaγ

Γ (γ + 1)
| < 1 then the problem 6 has

a unique solution y(t) ∈ C
(
[0, a],RF

)
.

Proof. By using the definition 4, we can write 6 in the form
[
D1+kyα

1 (t) ∗ Ψ1+k−γ(t),D1+kyα
2 (t) ∗ Ψ1+k−γ(t)

]
=

[
F (t, y)

]α

,

from lemma 1
D1+kyα

1 (t) ∗ Ψ1+k−γ(t) = F (t, yα
1 , yα

2 ),

D1+kyα
2 (t) ∗ Ψ1+k−γ(t) = F (t, yα

1 , yα
2 ), (11)

where F = (f1, f2), operating with the convolution of Ψγ(t), we get

D1+kyα
1 (t) ∗ Ψ1+k(t) = F (t, yα

1 (t), yα
2 (t)) ∗ Ψγ(t),

D1+kyα
2 (t) ∗ Ψ1+k(t) = F (t, yα

1 (t), yα
2 (t)) ∗ Ψγ(t),

and taking into consideration the initial values 6 by choosing yn(0) =
[yα

1n(0), yα
2n(0)] we obtain

y(t) =
k∑

j=0

tj

j!
yj(0) +

1
Γ (γ)

∫ t

0

(t − s)γ−1F (s, y(s))ds, (12)

where y(t) = (yα
1 (t), yα

2 (t)) to 7 for all α ∈ [0, 1].
We will prove that the intervals [yα

1 (t), yα
2 (t)], for 0 < α ≤ 1, define a fuzzy

number. y(t) ∈ RF for each t ≥ 0; Means that y is a fuzzy solution to 6.
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The successive approximation y0 ∈ RF ,

yn(t) =
k∑

j=0

tj

j!
yj(0) +

1
Γ (γ)

∫ t

0

(t − s)γ−1F (s, yn−1(s))ds,

where n = 1, 2, 3..., . And the integral is the fuzzy integral, define a sequence
of fuzzy numbers yn(t) ∈ RF . Let us show that there exists a fuzzy set-valued
mapping y : [0, a] → RF such that d(yn(t), y(t)) → 0 uniformly on t ∈ [0, a] as
n → ∞.

Let t ∈ [0, a], from 9, it follows that, for n = 1

y1(t) =
k∑

j=0

tj

j!
yj(0) +

1
Γ (γ)

∫ t

0

(t − s)γ−1F (s, y0(s))ds, (13)

and for n = 2 from 9

y2(t) =
k∑

j=0

tj

j!
yj(0) +

1
Γ (γ)

∫ t

0

(t − s)γ−1F (s, y1(s))ds. (14)

From 13 and 14, we have

dH

(
[y2(t)]

α
, [y1(t)]

α
)

= dH

([ 1

Γ (γ)

∫ t

0
(t − s)

γ−1
F (s, y1(s))ds

]α
,
[ 1

Γ (γ)

∫ t

0
(t − s)

γ−1
F (s, y0(s))ds

]α)

≤ 1

Γ (γ)

∫ t

0
(t − s)

γ−1
dH

([
F (s, y1(s))

]α
,

[
F (s, y0(s))

]α)
ds, (15)

for any α ∈ [0, 1].
According to the condition 10 and using proprieties 2, we get

d
(
y2(t), y1(t)

) ≤ η

Γ (γ)

∫ t

0

(t − s)γ−1d
(
y1(s), y0(s)

)
ds

≤ η

Γ (γ)

∫ t

0

(t − s)γ−1 sup
s∈[0,a]

d
(
y1(s), y0(s)

)
ds (16)

Now, we can apply 16 to get

d
(
y2(t), y1(t)

) ≤ ηaγ

Γ (γ + 1)
h
(
y1, y0

)
. (17)

Starting from 16 and 17, we assume that

d(yn(t), yn−1(t)) ≤
( ηaγ

Γ (γ + 1)

)n−1

h(y1, y0), (18)

and we will show that inequality holds for d(yn+1(t), yn(t)) .
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Indeed, from 9 and condition 10, so

dH

(
[yn+1(t)]α, [yn(t)]α

)
= dH

([ 1
Γ (γ)

∫ t

0

(t − s)γ−1F (s, yn(s))ds
]α

,

[ 1
Γ (γ)

∫ t

0

(t − s)γ−1F (s, yn−1(s))ds
]α)

≤ 1
Γ (γ)

∫ t

0

(t − s)γ−1dH

([
F (s, yn(s))

]α

,

[
f(s, yn−1(s))

]α)
ds, (19)

for any α ∈ [0, 1]. And by properties 2, we obtain

d
(
yn+1(t), yn(t)

) ≤ η

Γ (γ)

∫ t

0

(t − s)γ−1d(yn(s), yn−1(s))ds

≤ η

Γ (γ)

∫ t

0

(t − s)γ−1
( ηaγ

Γ (γ + 1)

)n−1

h
(
y1, y0

)
ds (20)

≤ η

Γ (γ)

( ηaγ

Γ (γ + 1)

)n−1

h(y1, y0)
∫ t

0

(t − s)γ−1ds.

Considering 18 we have

d(yn+1(t), yn(t)) ≤
( ηaγ

Γ (γ + 1)

)n

h(y1, y0). (21)

Consequently, inequality 18 holds for n = 1, 2, . . .. We can also write

d
(
yn(t), yn−1(t)

) ≤
( ηaγ

Γ (γ + 1)

)n−1

h(y1, y0). (22)

From 22, with to the convergence, it follows that the suite having the general
term( ηaγ

Γ (γ + 1)

)n−1

→ 0, so d(yn(t), yn−1(t)) → 0 uniformly on 0 ≤ t ≤ a as
n → ∞.

Hence, there exists a fuzzy set-valued mapping y : [0, a] → RF such that
d
(
yn(t), y(t)

) → 0 uniformly on 0 ≤ t ≤ a as n → ∞.
From 10 and by 2, we get

d
(
F (t, yn(t), F (t, y(t))

) ≤ ηd
(
yn(t), y(t)

) → 0, (23)

uniformly on 0 ≤ t ≤ a as n → ∞.
With 23 into account, from 9, we obtain, for n → ∞

y(t) =
k∑

j=0

tj

j!
yj(0) +

1
Γ (γ)

∫ t

0

(t − s)γ−1F
(
s, y(s)

)
ds, (24)
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by the convergence of sequence 9, the end points of
[
yn(t)

]α converge to yα
1 (t)

and
yα
2 (t) respectively. Therefore at least one continuous solution exists 6.

Now, we prove that this solution is unique that, is from

z(t) =
k∑

j=0

tj

j!
yj(0) +

1
Γ (γ)

∫ t

0

(t − s)γ−1F
(
s, z(s)

)
ds, (25)

it follows that d(y(t), z(t)) ≡ 0 Indeed, from 9 and 25, we obtain

dH

(
[z(t)]α, [yn(t)]

α
)
= dH

([ 1

Γ (γ)

∫ t

0
(t − s)γ−1F (s, z(s))ds

]α
,

[ 1

Γ (γ)

∫ t

0
(t − s)γ−1F (s, yn−1(s))ds

]α)

≤ 1

Γ (γ)

∫ t

0
(t − s)γ−1dH

([
F (s, z(s))

]α
,

[
F (s, yn−1(s))

]α)
ds, (26)

for any α ∈ [0, 1]. And by 2, we obtain

d
(
z(t), yn(t)

) ≤ η

Γ (γ)

∫ t

0

(t − s)γ−1d
(
z(s), yn−1(s)

)
ds, n = 1, 2, . . . , (27)

but sup
t∈[0,a]

d
(
z(t), y0(t)

)
< ∞ being a solution of 25. It follows from 27 that

d
(
z(t), y1(t)

) ≤ η
aγ

Γ (γ + 1)
h(z, y0), t ∈ [0, a]. (28)

Assume that

d
(
z(t), yn(t)

) ≤
(
η

aγ

Γ (γ + 1)

)n

h(z, y0), t ∈ [0, a]. (29)

From

d
(
z(t), yn+1(t)

) ≤ η

Γ (γ)

∫ t

0

(t − s)γ−1d(z(s), yn(s))ds, t ∈ [0, a], (30)

and 29, one obtains

d
(
z(t), yn+1(t)

) ≤
(
η

aγ

Γ (γ + 1)

)n+1

h(z, y0), t ∈ [0, a]. (31)

Consequently, (29) holds for any n, therefore we have

d
(
z(t), yn(t)

)
= d

(
y(t), yn(t)

) → 0 (32)

on t ∈ [0, a] as n → ∞. This proves the uniqueness of the solution for 6.
Now write γ = 1 + k − p, 0 < p < 1, k = [γ] and consider the problem{

D1+kz(t) = F (t, z(t)), t ∈ [0, a],
Djz(t)|t=0 = zj(0) ∈ RF , j = 0, 1, 2, . . . , k.

(33)

Then, we get the following result.
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Theorem 4. Let F ∈ [0, a] × RF → RF be continuous on [0, a] × RF . and
satisfy the Lipschitz condition 10. If p → 0 (i.e γ → 1+ k) then the solution of
6 coincides with the solution of 33.

Proof. Suppose that y(t) is a solution of 6 and z(t) is a solution of 33, then
by the equivalence between 6 and the integral Eq. 8 and matching equivalence
between 33 and the integral equation

z(t) =
k∑

j=0

tj

j!
yj(0) +

1
Γ (1 + k)

∫ t

0

(t − s)kF (s, z(s))ds, (34)

we have

d(y(t), z(t)) ≤ d
( 1

Γ (γ)

∫ t

0
(t − s)γ−1F (s, y(s))ds,

1

Γ (1 + k)

∫ t

0
(t − s)kF (s, z(s))ds

)

= d
( 1

Γ (γ)

∫ t

0
(t − s)γ−1F (s, y(s))ds +

1

Γ (γ)

∫ t

0
(t − s)γ−1F (s, z(s))ds,

1

Γ (1 + k)

∫ t

0
(t − s)kF (s, z(s))ds +

1

Γ (γ)

∫ t

0
(t − s)γ−1F (s, z(s))ds

)

≤ 1

Γ (γ)
d
(∫ t

0
(t − s)γ−1F (s, y(s))ds,

∫ t

0
(t − s)γ−1F (s, z(s))ds

)

+
1

Γ (1 + k)
d
(∫ t

0
(t − s)kF (s, z(s))ds +

Γ (1 + k)

Γ (γ)

∫ t

0
(t − s)γ−1F (s, z(s))ds

)

≤ 1

Γ (γ)

∫ t

0
(t − s)γ−1d(F (s, y(s)), F (s, z(s))ds

+
1

Γ (1 + k)

∫ t

0
(t − s)k(d(F (s, z(s)), 0̂)|1 − Γ (1 + k)

Γ (γ)
(t − s)γ−1−k|)ds.

Therefore
h(y, z) ≤ ηaγ

Γ (γ + 1)
h(y, z) + κp, (35)

and hence
h(y, z) ≤ κp(

1 − ηaγ

Γ (γ+1)

) , (36)

where

κp =
1

Γ (1 + k)

∫ t

0

(t − s)k
(
d
(
F (s, z(s)), 0

)|1 − Γ (1 + k)
Γ (γ)

(t − s)p|
)
ds. (37)

Now, since

(t − s)kd
(
F (s, z(s)

)
, 0̂)|1 − Γ (1 + k)

Γ (1 + k − p)
(t − s)p| ≤ (t − s)kd

(
F (s, z(s)), 0̂

)

and

(t − s)kd
(
F

(
s, z(s)

)
, 0̂

)
|1 − Γ (1 + k)

Γ (1 + k − p)
(t − s)p| → 0 as p → 0,
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It follows from a theorem dominated by Lebesgue [19] that κp → 0 as p → 0
which proves that h(y, z) → 0 as γ → 1 + k

lim
γ→1+k

y(t) = z(t) in C
(
[0, a],RF

)
.

Remark 2. If the assumptions of Theorem 3 are satisfied, then

lim
γ→1+k

Dγy(t) = D1+kz(t) in C
(
[0, a],RF

)
.

From 6 and 33 we have

lim
γ→1+k

d(Dγy(t),D1+kz(t)) = lim
γ→1+k

d
(
F (t, y(t)), F (t, z(t))

)

≤ η lim
γ→1+k

d
(
y(t), z(t)

)
,

then
lim

γ→1+k
h(Dγy,D1+kz) ≤ η lim

γ→1+k
h(y, z) = 0

which proves the result.

5 Examples

In order to illustrate the previous results, we give here two examples.

Example 1. Let t ∈ [0, a], so the function F (t, y(t)) = t + y(t) is continuous on
[0, a] × RF and Lipschitzians

d
(
F (t, y(t)), F (t, z(t))

)
≤ d(y(t), z(t)),

for all y, z ∈ RF and t ∈ [0, a] it follows that
d(F (t, y(t)), F (t, z(t))) ≤ ηd(y(t), z(t)), with η = 1
Hence, we can apply our theorems to the initial value problem

{
Dγy(t) = t + y(t), t ∈ [0, a], γ ∈ R+,
Djy(t)|t=0 = yj(0) ∈ RF , j = 0, 1, 2 . . . , k.

Example 2. Let t ∈ [0, a], then the function F (t, z(t)) = z2(t) is continuous on
[0, a] × RF and Lipschitzians
dH

(
[F (t, z(t))]

α
, [F (t, y(t))]

α
)

= dH

(
F

(
t, [z(t)]

α)
, F

(
t, [y(t)]

α))

= dH

(
[z

2
(t)]

α
, [y

2
(t)]

α
)

= max
{∣∣∣

(
z

α
1 (t))

2 − (y
α
1 (t)

)2∣∣∣,
∣∣∣
(

z
α
2 (t))

2 − (y
α
2 (t)

)2∣∣∣
}

≤ max
{∣∣∣

(
z

α
1 (t) − y

α
1 (t)

)(
z

α
1 (t) + y

α
1 (t)

)∣∣∣,
∣∣∣
(

z
α
2 (t) − y

α
2 (t)

)(
z

α
2 (t) + y

α
2 (t)

)∣∣∣
}

≤ max
{∣∣∣

(
z

α
2 (t) + y

α
2 (t)

)∣∣∣
(∣∣∣(zα

1 (t) − y
α
1 (t))

∣∣∣,
∣∣∣(zα

2 (t) − y
α
2 (t))

∣∣∣
)}

≤
∣∣∣
(

z
α
2 (t) + y

α
2 (t)

)∣∣∣dH

(
[z(t)]

α
, [y(t)]

α
)
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d
(
F (t, z(t)), F (t, y(t))

)
≤ sup

α∈[0,1]

∣∣∣(zα
2 (t) + yα

2 (t)
)∣∣∣d(z(t), y(t)),

for all z, y ∈ RF and t ∈ [0, a] it follows that d
(
F (t, z(t)), F (t, y(t))

) ≤
ηd

(
z(t), y(t)

)
with η = sup

α∈[0,1]

∣∣(zα
2 (t) + yα

2 (t))
∣∣.

Hence, using our results to the initial value problem
{

Dγz(t) = z2(t) , t ∈ [0, a], γ ∈ R+,
Djz(t)|t=0 = zj(0) ∈ RF , j = 0, 1, 2, . . . , k.
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Abstract. In this work, we demonstrate the connection between the
solutions of approximate vector variational inequalities and approximate
efficient solutions of corresponding nonsmooth vector optimization prob-
lems via generalized approximate invex functions. The underlying varia-
tional inequalities are stated under the Clarke’s generalized Jacobian.

1 Introduction

Various significant applications in engineering and economics can only be stated
as a multiobjective optimization problem [1]. Nowadays, the connection of these
problems to vector variational inequalities is well-established for differentiable
convex functions [2]. In particular, results in this direction were developed under
various assumptions of generalized convexity [3–7] and nonsmooth invexity [8–
11]. On the other hand, relationships between a vector variational inequality and
a nonsmooth vector optimization problem (NVOP) were established under the
generalized approximate convexity assumption [12–14].

This paper is devoted to the case of NVOP involving generalized approxi-
mate invex multiobjective functions, which we have introduced in [15]. Our aim
is to use approximate vector variational inequalities (AVVIs) of Stampacchia and
Minty type in terms of Clarke’s generalized Jacobian to characterize approximate
efficient solutions. It is worth mentioning that, as generalized approximate invex-
ity is an extension of generalized approximate convexity, the results obtained in
our work are improvements and generalizations of the main results in [14].

The paper is organized as follows: in Sect. 2, we give some preliminary def-
initions, notation, and auxiliary results. In Sect. 3, we introduce the concept of
approximate efficiency for NVOPs, and derive their relationships to AVVIs using
the assumption of approximate invex functions. In Sect. 4, we give an example
to illustrate our main results. Finally, we conclude our paper in Sect. 5.
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2 Preliminaries

Let R
n be the n-dimensional Euclidean spaces, S ⊆ R

n be a given nonempty
set and C ⊆ R

m be a solid pointed convex cone. We use the following partial
ordering relations:

u ≥C v ⇔ u − v ∈ C;

u >C v ⇔ u − v ∈ intC.

Definition 1 ([16]). Let F : S → R
m be a vector-valued function. F is locally

Lipschitz if for each w ∈ S there is k > 0 and ρ > 0 such that, for all u, v ∈
B(w; ρ)

‖F (u) − F (v)‖ ≤ k‖u − v‖.

Throughout this paper, we let F := (F1, ..., Fm) : S → R
m be a locally lipschitz

function, θ : S × S → R
n be a mapping and τ >C 0 be a vector.

Definition 2 ([16]). The Clarke’s generalized Jacobian of F at u ∈ S is given
by

∂F (u) = conv{ lim
i→+∞

JF (u(i)) : u(i) → u, u(i) ∈ D},

where conv denotes the convex hull, JF (u(i)) indicates the Jacobian of F at u(i),
and D is the differentiability set of F .

We note that the Clarke’s generalized Jacobian is not equal to the cartesian
product of the components’ Clarke subdifferentials. Nevertheless, one has

∂F (u) ⊆ ∂F1(u) × ... × ∂Fm(u).

Note also that ∂(−F )(u) = −∂F (u).
We recall some definitions given in [15] which are a generalization of the

concepts of generalized approximate convexity provided in [12,14,17].

Definition 3. F is called approximate (θ, τ)−invex (A(θ, τ)I) at w ∈ S, if there
is ρ > 0 satisfying

F (u)−F (v) ≥C Avθ(u, v)− τ‖θ(u, v)‖, for each u, v ∈ B(w, ρ), Av ∈ ∂F (v).

If F is A(θ, τ)I at each w ∈ S, we say that F is A(θ, τ)I on S.

Taking θ(u, v) = u − v, approximate invexity reduces to approximate convexity
[18]. The counter-example given in [15, Example 2.2] shows that approximate
invexity is still more general.

Definition 4. • F is approximate pseudo (θ, τ)−invex of type 1 (AP(θ, τ)I-1)
at w ∈ S if there is ρ > 0 such that, whenever u, v ∈ B(w, ρ) and if

F (u) − F (v) <C −τ‖θ(u, v)‖,

then
Avθ(u, v) <C 0 for each Av ∈ ∂F (v).
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• F is approximate pseudo (θ, τ)−invex of type 2 (AP(θ, τ)I-2) at w ∈ S if
there is ρ > 0 such that, whenever u, v ∈ B(w, ρ) and if

F (u) − F (v) <C 0,

then
Avθ(u, v) + τ‖θ(u, v)‖ <C 0 for all Av ∈ ∂F (v).

Proposition 1. If F is AP(θ, τ)I-2 at w ∈ S, then F is AP(θ, τ)I-1 at w.

Proof. Assume that there is ρ > 0 satisfying for each u, v ∈ B(w, ρ)

F (u) − F (v) <C −τ‖θ(u, v)‖,

then
F (u) − F (v) <C 0.

Since F is AP(θ, τ)I-2 at w, then there is ρ > 0, ρ < ρ, satisfying for each
u, v ∈ B(w, ρ)

Avθ(u, v) + τ‖θ(u, v)‖ <C 0 for each Av ∈ ∂F (v),

which further implies that

Avθ(u, v) <C 0 for each Av ∈ ∂F (v).

Hence F is AP(θ, τ)I-1 at w ∈ S.

Definition 5. • F is approximate quasi (θ, τ)−invex of type 1 (AQ(θ, τ)I-1)
at w ∈ S if there is ρ > 0 such that for each u, v ∈ B(w, ρ)

Avθ(u, v) − τ‖θ(u, v)‖ >C 0, for some Av ∈ ∂F (v),

implies
F (u) >C F (v).

• F is approximate quasi (θ, τ)−invex of type 2 (AQ(θ, τ)I-2) at w ∈ S if there
is ρ > 0 such that, for each u, v ∈ B(w, ρ)

Avθ(u, v) >C 0, for some Av ∈ ∂F (v),

implies
F (u) − F (v) >C τ‖θ(u, v)‖.

The next proposition can be easily proven.

Proposition 2. If F is AQ(θ, τ)I-2 at v ∈ S, then F is AQ(θ, τ)I-1 at v.

Remark 1. • A(θ, τ)I ⇒
[

AP(θ, τ)I-1 and AQ(θ, τ)I-1
]
.
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• There is no relation between AP(θ, τ)I-2 and AQ(θ, τ)I-2 and A(θ, τ)I (for
examples, see [14]).

Now, we consider the following NVOP:

(NV OP ) min F (u) := (F1(u), · · ·, Fm(u)) subject to u ∈ S,

where each Fi : S → R are real-valued functions for any i ∈ {1, · · ·,m}.

Definition 6. Let ζ ∈ S.

(i) ζ is an efficient solution of (NVOP) iff there is no vector u ∈ S such that

F (u) ≤C F (ζ).

(ii) ζ is an τ -approximate efficient solution (τ -AES) of (NVOP) iff there is no
ρ > 0 such that, for each u ∈ B(ζ; ρ) \ {ζ}

F (u) − F (ζ) ≤C −τ‖θ(u, ζ)‖.

3 Relationships Between NVOP and AVVI

Consider the following AVVI of Stampacchia and Minty type in terms of Clarke
subdifferentials as follows:

(ASVVI). To find ζ ∈ S such that, there is no ρ > 0 satisfying for each
u ∈ B(ζ, ρ) and Aζ ∈ ∂F (ζ)

Aζθ(u, ζ) ≤C −τ‖θ(u, ζ)‖.

(AMVVI). To find ζ ∈ S such that, there is no ρ > 0 satisfying for each
u ∈ B(ζ, ρ) and Au ∈ ∂F (u)

Auθ(u, ζ) ≤C −τ‖θ(u, ζ)‖.

The following theorems describe relations between AVVI and NVOP.

Theorem 1. Let F be A(θ, τ)I at ζ ∈ S. If ζ solves (ASVVI) w.r.t. τ , then ζ
is a 2τ -AES of (NVOP).

Proof. Assume ζ fails to be a 2τ -AES of (NVOP). It means that there is ρ > 0
satisfying for each u ∈ B(ζ, ρ)

F (u) − F (ζ) ≤C −2τ‖θ(u, ζ)‖. (1)

As F is A(θ, τ)I at ζ, it follows that there is ρ̃ > 0, satisfying

F (u) − F (ζ) ≥C Aζθ(u, ζ) − τ‖θ(u, ζ)‖ ∀ u ∈ B(ζ, ρ̃), Aζ ∈ ∂F (ζ).
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By using (1) and the definition of approximate (θ, τ)− invexity, and by taking
ρ := min(ρ, ρ̃), we obtain

Aζθ(u, ζ) − τ‖θ(u, ζ)‖ ≤C −2τ‖θ(u, ζ)‖.

Hence
Aζθ(u, ζ) ≤C −τ‖θ(u, ζ)‖.

This means ζ does not solve (ASVVI) w.r.t τ .

Theorem 2. Let −F be A(θ, τ)I at ζ ∈ S. If ζ ∈ S is a τ -AES for (NVOP),
then ζ solves (ASVVI) w.r.t 2τ .

Proof. Assume ζ fails to be a solution of (ASVVI) w.r.t 2τ . It means that there
is ρ > 0 such that, for each u ∈ B(ζ, ρ), Aζ ∈ ∂F (ζ), we have

Aζθ(u, ζ) ≤C −2τ‖θ(u, ζ)‖.

Then

−Aζθ(u, ζ) ≥C 2τ‖θ(u, ζ)‖. (2)

By ∂(−F )(ζ) = −∂F (ζ) we deduce that −Aζ ∈ ∂(−F )(ζ).
As −F is A(θ, τ)I at ζ, it yields that there is ρ̃ > 0 satisfying

(−F )(u) − (−F )(ζ) ≥C −Aζθ(u, ζ) − τ‖θ(u, ζ)‖ ∀u ∈ B(ζ, ρ̃).

By using (2) and by taking ρ := min(ρ, ρ̃), we obtain

−F (u)+F (ζ)+τ‖θ(u, ζ)‖ ≥C −Aζθ(u, ζ) ≥C 2τ‖θ(u, ζ)‖ ∀u ∈ B(ζ, ρ)\{ζ},

which implies
F (u) − F (ζ) ≤C −τ‖θ(u, ζ)‖.

Therefore ζ cannot be a τ -AES of (NVOP).

Theorem 3. Let F be A(θ, τ)I at ζ ∈ S and θ(u, ζ)+θ(ζ, u) = 0 for any u ∈ S.
If ζ solves (AMVVI) w.r.t τ , then ζ is a 2τ -AES of (NVOP).

Proof. Assume ζ fails to be a 2τ -AES of (NVOP). It means that there is ρ > 0
satisfying for each u ∈ B(ζ, ρ)

F (u) − F (ζ) ≤C −2τ‖θ(u, ζ)‖. (3)

As −F is A(θ, τ)I at ζ, it yields that there is ρ̃ > 0 satisfying

(−F )(ζ)− (−F )(u) ≥C Avθ(ζ, u)− τ‖θ(ζ, u)‖ ∀u ∈ B(ζ, ρ̃), Av ∈ ∂(−F )(u),

then
F (u) − F (ζ) ≥C Avθ(ζ, u) − τ‖θ(ζ, u)‖.
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By using (3) and by taking ρ := min(ρ, ρ̃), we obtain

Avθ(ζ, u) − τ‖θ(ζ, u)‖ ≤C −2τ‖θ(u, ζ)‖ ∀u ∈ B(ζ, ρ) \ {ζ}.

From ∂(−F )(u) = −∂F (u), there is Au = −Av ∈ ∂F (u). Consequently, using
θ(u, ζ) + θ(ζ, u) = 0 together with the above inequality, we deduce

Auθ(u, ζ) ≤C −τ‖θ(u, ζ)‖.

This means ζ does not solve (AMVVI) w.r.t τ .

Theorem 4. Let −F be A(θ, τ)I at ζ ∈ S and θ(u, ζ)+θ(ζ, u) = 0 for all u ∈ S.
If ζ ∈ S is a τ -AES for (NVOP), then ζ solves (AMVVI) w.r.t 2τ .

Proof. Assume ζ fails to be a solution of (AMVVI) w.r.t 2τ . Thus, there is ρ > 0
satisfying for any u ∈ B(ζ, ρ), Au ∈ ∂F (u)

Auθ(u, ζ) ≤C −2τ‖θ(u, ζ)‖. (4)

As F is A(θ, τ)I at ζ, it yields that there is ρ̃ > 0, such that

F (ζ) − F (u) ≥C Auθ(ζ, u) − τ‖θ(ζ, u)‖ ∀u ∈ B(ζ, ρ̃), Au ∈ ∂F (u).

Since θ(ζ, u) = −θ(u, ζ), then

F (u) − F (ζ) − τ‖θ(u, ζ)‖ ≤C Auθ(ζ, u).

By using (3) and by taking ρ := min(ρ, ρ̃), we obtain

F (u) − F (ζ) ≤C −τ‖θ(u, ζ)‖.

We conclude that ζ cannot be a τ -AES of (NVOP).

Theorem 5. Let F be AP(θ, τ)I-2 at ζ ∈ S. If ζ solves (ASVVI) w.r.t. τ , then
ζ is a τ -AES of (NVOP).

Proof. Assume ζ fails to be a τ -AES of (NVOP). It means that there is ρ > 0
satisfying for all u ∈ B(ζ, ρ)

F (u) − F (ζ) ≤C −τ‖θ(u, ζ)‖ <C 0. (5)

As F is AP(θ, τ)I-2 at ζ, it yields that there is ρ̃ > 0, such that, whenever
u ∈ B(ζ, ρ̃)

F (u) − F (ζ) <C 0 ⇒ Aζθ(u, ζ) <C −τ‖θ(u, ζ)‖, ∀Aζ ∈ ∂F (ζ).

By using (5) and the definition of approximate quasi (θ, τ)−invexity type 2, and
by taking ρ := min(ρ, ρ̃), we obtain

Aζθ(u, ζ) ≤C −τ‖θ(u, ζ)‖.

This means ζ does not solve (ASVVI) w.r.t. τ .
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Theorem 6. Let −F be AQ(θ, τ)I-2 at ζ ∈ S. If ζ is a τ -AES of (NVOP), then
ζ solves (ASVVI) w.r.t. τ .

Proof. Assume ζ fails to be a solution of (ASVVI) w.r.t. τ , then, there is ρ > 0
satisfying for each Aζ ∈ ∂F (ζ) and u ∈ B(ζ, ρ)

Aζθ(u, ζ) ≤C −τ‖θ(u, ζ)‖.

Then

−Aζθ(u, ζ) ≥C τ‖θ(u, ζ)‖ >C 0. (6)

As ∂(−F )(ζ) = −∂F (ζ) it yields that −Aζ ∈ ∂(−F )(ζ).
Since −F is AQ(θ, τ)I-2 at ζ, it follows that there is ρ̃ > 0 such that, whenever
u ∈ B(ζ, ρ̃)

−Aζθ(u, ζ) >C 0 ⇒ −F (u) − (−F (ζ)) >C τ‖θ(u, ζ)‖.

By using (6) and the definition of approximate pseudo (θ, τ)−invexity type 2,
and by taking ρ := min(ρ, ρ̃), we get

F (u) − F (ζ) ≤C −τ‖θ(u, ζ)‖.

Consequently ζ cannot be a τ -AES of (NVOP).

The following corollary can be deduced from Theorems 5 and 6.

Corollary 1. Let F be AP(θ, τ)I-2 at ζ ∈ S and −F be AQ(θ, τ)I-2 at ζ. ζ is
a τ -AES of (NVOP) if and only if ζ solves (ASVVI) w.r.t. τ .

Theorem 7. Let F be AQ(θ, τ)I-2 at ζ and θ(u, ζ) + θ(ζ, u) = 0, ∀u ∈ S. If ζ
is a τ -AES of (NVOP), then ζ solves (AMVVI) w.r.t. τ .

Proof. Assume ζ fails to be a solution of(AMVVI) w.r.t. τ . Then, there is ρ > 0
satisfying for each Au ∈ ∂F (u) and u ∈ B(ζ, ρ)

Auθ(u, ζ) ≤C −τ‖θ(u, ζ)‖.

From θ(u, ζ) + θ(ζ, u) = 0, we obtain

Auθ(ζ, u) ≥C τ‖θ(ζ, u)‖ >C 0. (7)

As F is AQ(θ, τ)I-2 at ζ, it yields that, there is ρ̃ > 0 such that, whenever
u ∈ B(ζ, ρ̃)

Auθ(ζ, u) >C 0 ⇒ F (ζ) − F (u) >C τ‖θ(ζ, u)‖.

By using (7) and the definition of approximate quasi (θ, τ)−invexity type 2, and
by taking ρ := min(ρ, ρ̃), we deduce

F (u) − F (ζ) ≤C −τ‖θ(u, ζ)‖.

This means that ζ is not a τ -AES of (NVOP).
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Theorem 8. Let −F be AP(θ, τ)I-2 at ζ and θ(u, ζ) + θ(ζ, u) = 0, ∀u ∈ S. If
ζ ∈ S solves (AMVVI) w.r.t. τ , then ζ is a τ -AES of (NVOP).

Proof. Assume ζ fails to be a τ -AES of (NVOP). It means that there is ρ > 0
satisfying for any u ∈ B(ζ, ρ)

F (u) − F (ζ) ≤C −τ‖θ(u, ζ)‖.

Thus

−F (ζ) − (−F )(u) ≤C −τ‖θ(u, ζ)‖ <C 0. (8)

As −F is AP(θ, τ)I-2 at ζ, it yields that there is ρ̃ > 0, such that, whenever
u ∈ B(ζ, ρ̃)

−F (ζ) − (−F )(u) <C 0 ⇒ Avθ(u, ζ) <C −τ‖θ(u, ζ)‖, ∀Av ∈ ∂(−F )(u).

By using (8) and the definition of approximate pseudo (θ, τ)−invexity type 2,
and by taking ρ := min(ρ, ρ̃), we obtain

Avθ(u, ζ) ≤C −τ‖θ(u, ζ)‖, ∀Av ∈ ∂(−F )(u), u ∈ B(ζ, ρ).

Using ∂(−F )(u) = −∂F (u), there is Au = −Av ∈ ∂F (u), then we have

−Auθ(ζ, u) ≤C −τ‖θ(u, ζ)‖.

Since θ(u, ζ) + θ(ζ, u) = 0, therefore,

Auθ(u, ζ) ≤C −τ‖θ(u, ζ)‖.

This means ζ does not solve (AMVVI) w.r.t. τ .

The following corollary can be deduced from Theorems 7 and 8.

Corollary 2. Let F be AQ(θ, τ)I-2 at ζ ∈ S and −F be AP(θ, τ)I-2 at ζ and
θ(u, ζ) + θ(ζ, u) = 0, ∀u ∈ S. ζ is a τ -AES of (NVOP) if and only if ζ solves
(AMVVI) w.r.t. τ .

4 Example

Consider the following NVOP as an example to illustrate the obtained results.

min
u∈S

F (u) =

{
u2 + 3u, u ≥ 0
−u2 + 4u, u < 0,

where S = R, C = R
+ and θ(u, v) = (u − v)3 for each u, v ∈ S.
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The Clarke subdifferential of F at u ∈ S is defined by

∂F (u) =

⎧⎨
⎩

2u + 3, u > 0;
[3, 4] , u = 0;
−2u + 4, u < 0.

For 1 < τ < 2 , there is ρ = 1
2 > 0 such that, for each u, v ∈ B(ζ, ρ), ζ = 0,

Av ∈ ∂F (v), we have

F (u) − F (v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(u − v)(u + v + 3) > 0, if v > 0, u > 0, u − v > 0;
(u − v)(u + v + 3) < 0, if v > 0, u > 0, u − v < 0;
−u2 + 4u − v2 − 3v < 0, if v > 0, u ≤ 0;
u2 + 3u + v(v − 4) > 0, if v < 0, u ≥ 0;
(u − v)(4 − u − v) > 0, if v < 0, u < 0, u − v > 0;
(u − v)(4 − u − v) < 0, if v < 0, u < 0, u − v < 0;
u2 + 3u > 0, if v = 0, u > 0;
−u2 + 4u < 0, if v = 0, u < 0.

Also,

Avθ(u, v) + τ‖θ(u, v)‖ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(2v + 3 − τ)(u − v)3 < 0, if v > 0, u > 0, u − v < 0;

(2v + 3 − τ)(u − v)3 < 0, if v > 0, u ≤ 0;

(−2v + 4 − τ)(u − v)3 < 0, if v < 0, u < 0, u − v < 0;

ku3 < 0, if v = 0, u < 0,

where k ∈ [3, 4]. Hence, F is AP(θ, τ)I-2 at ζ = 0.
Since for any u > 0, one has

Aζθ(u, ζ) + τ‖θ(u, ζ)‖ = ku3 + τu3 > 0, k ∈ [2, 3].

Hence, there is no ρ > 0 satisfying for each u ∈ B(ζ, ρ) and Aζ ∈ ∂F (ζ)

Aζθ(u, ζ) ≤C −τ‖θ(u, ζ)‖.

Thus, ζ = 0 solves (ASVVI) w.r.t. τ .
Finally, as F is AP(θ, τ)I-2 at ζ = 0, then, from Theorem 5, ζ = 0 should be

a τ -AES of (NVOP). Indeed, for all u > 0 we have

F (u) − F (ζ) + τ‖θ(u, ζ)‖ = u2 + 3u + τu3 > 0.

Hence, there is no ρ > 0 such that, for each u ∈ B(ζ; ρ) \ {ζ}
F (u) − F (ζ) ≤C −τ‖θ(u, ζ)‖.

Therefore, ζ = 0 is a τ -AES of (NVOP).

Remark 2. In the above example, the function −F is AQ(θ, τ)I-2 at ζ = 0 and
θ(u, ζ) + θ(ζ, u) = 0, ∀u ∈ S. We can easily show that it verifies the conditions
of Theorem 6.
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5 Conclusions

We have shown the relationships between AVVI in terms of Clarke’s generalized
Jacobian and NVOP using the concepts of approximate efficiency and generalized
approximate invexity. Our work improves that of Gupta and Mishra [14] with
respect to two aspects:

• If the generalized approximate invexity assumption is replaced by general-
ized approximate convexity assumption, then the proof arguments remain
the same. Consequently, our theorems are more general since the concept of
invexity includes that of convexity as a special case.

• In addition to necessary conditions of approximate efficient solutions of
NVOP, we have also provided sufficient conditions using the generalized
approximate invexity of −F .

Acknowledgments. The authors are most grateful to Dr. Lhoussain Elfadil for con-
tinued help throughout the preparation of this paper.
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Abstract. In this paper, we will study the existence of an entropy solution to
the unilateral problem for a class of nonlinear anisotropic elliptic equation, with
second term being an element of L1(Ω). Our technical approach is based on a
monotony method and the truncation techniques in the framework of the weighted
anisotropic Sobolev space.

1 Introduction

The unilateral elliptic problems in weighted anisotropic Sobolev space have recently
attracted the attention of many authors (see [5,8,12]), who used different methods to
solve the question of the existence of solutions in the framework of weighted anisotropic
Sobolev space (we refer to [1,2,12,13] for more details). One of the motivations for
studying the unilateral elliptic problems comes from applications of mathematical mod-
eling of physical and mechanical processes in anisotropic continuous medium.

The purpose of this paper is to study the unilateral problem for a class of nonlinear
anisotropic elliptic equation of type:

{
Au−div

(
φ(u)

)
= f in Ω ,

u= 0 on ∂Ω ,
(1)

where Ω ⊂ R
N (N ≥ 2) is a bounded open subset with smooth boundary ∂Ω ,

1 < p1, · · · , pN < +∞, −→p and −→w are respectively the exponent and weight func-
tion vectors, which will be specified in the following. The term φ = (φ1, · · · ,φN)
belongs to C0(R,RN), Au = −div

(
a(x,u,∇u)

)
is the Leray-Lions operator defined on

W 1,−→p
0 (Ω ,−→w ), with a(x,u,∇u) is a Carathéodory’s function satisfying some hypotheses

which will be stated later. Finally, we mention that the second member f belongs to
L1(Ω).

In the non weighted case wi ≡ 1 for any i ∈ {1, ...,N}, by using monotony
method and the truncation techniques, the authors in [4] has established the exis-
tence of an entropy solutions for anisotropic elliptic unilateral problem like (1). we
refer the reader to the papers [8,15] and the references therein. Moreover, Boccardo
et al. [10] studied the existence of weak solutions for nonlinear elliptic problem with
c© Springer Nature Switzerland AG 2021
Z. Hammouch et al. (Eds.): SM2A 2019, LNNS 168, pp. 102–122, 2021.
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Au=−
N

∑
i=1

∂
∂xi

(
| ∂u
∂xi

|pi−2 ∂u
∂xi

)
, when φi(u) = 0 for i= 1, · · · ,N and the right-hand side

is a bounded Radon measure on Ω .
In general the function φi does not belongs to L1loc(Ω). Then, the problem (1) does

not admit weak solution. To avoid this situation, we use entropy solutions in this paper,
this concept of entropy solution was first proposed by Benilan et al. see [7].

Motivated by the above cited papers and the results in [4], we show the existence
result for the anisotropic unilateral nonlinear elliptic problem related to the equation in
the problem (1). Specifically, we show the existence result of an entropy solutions for
the following unilateral anisotropic problem,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u ≥ ψa.e. inΩ ,Tk(u) ∈W 1,−→p
0 (Ω ,−→ω ),

N

∑
i=1

∫
Ω
ai(x,u,∇u)∂iTk(u− v)dx+

N

∑
i=1

∫
Ω

φi(u)∂iTk(u− v)dx

≤ ∫
Ω f Tk(u− v)dx, ∀v ∈ Kψ ∩L∞(Ω), ∀k > 0,

(2)

in the convex class Kψ :=
{
u ∈W 1,−→p

0 (Ω ,−→ω ), u ≥ ψ a.e in Ω
}
, where ψ is a mea-

surable function on Ω such that

ψ+ ∈W 1,−→p
0 (Ω ,−→ω )∩L∞(Ω). (3)

Note that the uniqueness result being a rather delicate one, due to a counter-example by
Serrin (see [16]), we also mention some works [11,14] for further remarks.

The paper is outlined as follow: In the next section, we will give a brief discussion of
the weighted Lebesgue space and the weighted anisotropic Sobolev space. The Sect. 3
is dedicated to some necessary lemmas and basic assumptions of our problem. In the
last section, we present the main result and proofs.

2 Preliminaries

In this section, we recall some basic properties of the weighted Lebesgue-Sobolev
spaces needed to study problem (1), and we give the fundamental definitions and lem-
mas which will be used in the following pages.

Let Ω be a bounded open subset of RN(N ≥ 2) with smooth boundary ∂Ω . Let
p1, . . . , pN be N real numbers and −→p = {p1, . . . , pN} be a vector of exponent, the fol-
lowing vector −→w = {w1, . . . ,wN} be a vector of weight functions, i.e., every component
wi is a measurable function which is positive a.e. in Ω . Further, we suppose in all our
considerations that

(H1) wi ∈ L1loc(Ω) and w
−1
pi−1
i ∈ L1loc(Ω).

for any i= 1, . . . , N, we denote

∂iu=
∂u
∂xi

for i= 1, . . . ,N,
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p− =min{ p1, . . . , pN}, p+ =max{ p1, . . . , pN}.

We define the weighted Lebesgue space Lp(Ω ,γ) with weight γ in Ω as, the set of all
measurable functions u on Ω .

we endow it

‖u‖Lp(Ω ,γ) ≡ ‖u‖p,γ =
(∫

Ω
|u|pγ(x)dx

) 1
p

1 ≤ p < ∞. (4)

We denote by W 1,−→p (Ω ,−→w ) the weighted anisotropic Sobolev space of all functions
u ∈ L1loc(Ω) such that the derivatives ∂iu are in Lpi(Ω ,wi) for any i= 1, . . . , N.

This set of functions is a Banach space with respect to norm (see [12])

‖u‖1,−→p ,−→w = ‖u‖L1(Ω) +
N

∑
i=1

‖∂i u‖pi,wi . (5)

In the following to study the Dirichlet problem, we use the functional space

W 1,−→p
0 (Ω ,−→w ) defined as the closure of C∞

0 (Ω) in W 1,−→p (Ω ,−→w ) with respect to the
norm (5).

Let us remark that C∞
0 (Ω) is dense inW 1,−→p

0 (Ω ,−→w ) and
(
W 1,−→p

0 (Ω ,−→w ),‖ .‖1,−→p ,−→w
)

is a reflexive Banach space, for all i= 1, . . . ,N such that 1 < pi < ∞, (see [2] for more
details).

We next recall that the dual of the weighted anisotropic Sobolev spaceW 1,−→p
0 (Ω ,−→w )

is equivalent to W−1,
−→
p′
(Ω ,

−→
w∗), where

−→
p′ is the conjugate of −→p , i.e. p′

i =
pi

pi −1
and

−→
w∗ =

{
w∗
i = w

1−p′
i

i , i= 1, . . . ,N
}
.

Remark 1. suppose there is si ∈] Npi ,+∞[∩] 1
pi−1 ,+∞[ such that

w−si
i ∈ L1(Ω), for all i= 1, · · · ,N. (6)

Then, the expression

‖u‖
W 1,−→p
0 (Ω ,−→w )

=
N

∑
i=1

‖∂i u‖pi,wi (7)

is a norm defined onW 1,−→p
0 (Ω ,−→w ) which is equivalent to (5).

Note that (6) is stronger than the second integrability condition in (H1).

Let us consider the following exponent vector −→ps =
{
psi =

pi si
si+1

, i= 1, . . . ,N
}
.

Lemma 1. Suppose that (H1) and (6) hold, we have

• If p− < N, then W 1,−→p
0 (Ω ,−→w ) ⊂ Lq(Ω) for all q ∈ [

p−, p∗[, with p∗ =
Np−

N− p− .

• If p− = N, then W 1,−→p
0 (Ω ,−→w ) ⊂ Lq(Ω) for all q ∈ [p−,+∞[.
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Furthermore, the above embeddings are compacts.
The proof of this lemma comes from the fact that the following embedding (see [9]

for more details)
W 1,−→p

0 (Ω ,−→w ) ⊂W 1,−→ps
0 (Ω) ⊂W 1,p−

0 (Ω)

We consider the space

T 1,−→p
0 (Ω ,−→w ) :=

{
u measurable in Ω , Tk(u) ∈W 1,−→p

0 (Ω ,−→w ), for any k > 0
}

,

where

Tk(z) :=

{
z if |z| ≤ k,

k
z
|z| if |z| > k.

3 Basic Assumptions and Notion of Solutions

In this section, we recall some useful technical lemmas to show our aim, and we give
the assumptions of our problem.

We suppose that ai : Ω ×R×R
N 
→R are Carathéodory functions, for i= 1, . . . ,N

which satisfies the following assumptions, for every ξ , ξ ′ ∈R
N , θ ∈R and a.e. in x∈ Ω ,

ai(x,θ ,ξ ) ·ξi ≥ α wi
∣∣ξi∣∣pi , (8)

|ai(x,θ ,ξ )| ≤ β w
1/p′

i
i

(
Ri(x)+σ1/p′

i |θ |pi/p′
i +w

1/p′
i

i |ξi|pi−1), (9)(
ai(x,θ ,ξ )−ai(x,θ ,ξ ′)

) · (ξi −ξ ′
i ) > 0 for ξi �= ξ ′

i , (10)

where Ri(·) is a nonnegative function lying in Lp′
i(Ω) and α,β > 0.

Moreover, we suppose that

φi ∈C0(R,R) for i= 1, . . . , N, (11)

and
f ∈ L1(Ω). (12)

Lemma 2. [1] Let g ∈ Lr(Ω ,γ) and gn ⊂ Lr(Ω ,γ) such that ‖gn‖r,γ ≤C, 1< r < ∞, If
gn(x) → g(x) a.e. in Ω then gn ⇀ g weakly in Lr(Ω ,γ).

Lemma 3. [3] Suppose that (8)–(10) hold, let (un)n a sequence in W 1,−→p
0 (Ω ,−→w ) such

that un ⇀ u weakly in W 1,−→p
0 (Ω ,−→w ) and

N

∑
i=1

∫
Ω
(ai(x,un,∇un)−ai(x,u,∇u))∂i(un −u)dx → 0,

then un −→ u strongly in W 1,−→p
0 (Ω ,−→w ).
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Lemma 4. Let (un)n be a sequence from W 1,−→p
0 (Ω ,−→w ), if un ⇀ u weakly in

W 1,−→p
0 (Ω ,−→w ). Then Tk(un) weakly converges to Tk(u) in W

1,−→p
0 (Ω ,−→w ).

Proof. We have un ⇀ u weakly in W 1,−→p
0 (Ω ,−→w ) and W 1,−→p

0 (Ω ,−→w ) ↪→↪→ Lq(Ω), we
obtain un → u strongly in Lq(Ω) and a.e. in Ω , thus Tk(un) → Tk(u) a.e. in Ω .
On the other hand

‖Tk(un)‖W 1,−→p
0 (Ω ,−→w )

=
N

∑
i=1

‖∂iTk(un)‖pi,wi

≤
N

∑
i=1

(∫
Ω

∣∣T ′
k (un)∂iun

∣∣pi wi(x)dx
)1/pi

≤
N

∑
i=1

(∫
Ω

∣∣∂iun∣∣piwi(x)dx
)1/pi

= ‖un‖W 1,−→p
0 (Ω ,−→w )

Thus (Tk(un))n is bounded in W 1,−→p
0 (Ω ,−→w ), consequently Tk(un) ⇀ Tk(u) weakly in

W 1,−→p
0 (Ω ,−→w ). ��

Lemma 5. [3] If u ∈ W 1,−→p
0 (Ω , −→w ) then

N

∑
i=1

∫
Ω

∂iudx= 0.

Proof. Since u ∈ W 1,−→p
0 (Ω , −→w ) there exists uk ∈C∞

0 (Ω) such that uk → u strongly in

W 1,−→p
0 (Ω , −→w )
Moreover, since uk ∈C∞

0 (Ω) by Green’s Formula, we have

N

∑
i=1

∫
Ω

∂iuk dx=
∫

∂Ω
uk.

−→n ds= 0

Since ∂i uk → ∂i u strongly in Lpi(Ω ,wi) we have ∂i uk → ∂i u strongly in L1(Ω)

Passing to the limit in (3), we conclude that
N

∑
i=1

∫
Ω

∂iudx= 0. ��

4 Main Results

In this section we state and show the main result of our article.
The definition of an entropy solution for problem (1) can be defined as follows.

Definition 1. A function u ∈ T 1,−→p
0 (Ω ,−→w ) such that u ≥ ψ a.e. in Ω is said to be an

entropy solution for the unilateral problem (1), if

N

∑
i=1

∫
Ω
[ai(x,u,∇u)∂iTk(u−ϕ)+φi(u)∂iTk(u−ϕ)]dx ≤

∫
Ω

f Tk(u−ϕ)dx

for all ϕ ∈ Kψ ∩L∞(Ω).
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Theorem 1. Under the Assumptions (8)–(12), then the problem (1) admits at least one
entropy solution.

Proof:
Step l: Approximate problems.
let us consider the following approximate problems

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

un ∈ Kψ
N

∑
i=1

∫
Ω
ai(x,un,∇un)∂i(un − v)dx+

N

∑
i=1

∫
Ω

φ n
i ( un)∂i(un − v)dx ≤

∫
Ω

fn (un − v)dx

∀v ∈ Kψ and ∀k > 0,
(13)

where fn = Tn( f ) and φ n
i (s) = φi(Tn(s)) .

We define the operators Φn of Kψ to W−1,−→p ′
0 (Ω ,−→w ∗) by:

〈Φn u,v〉 =
N

∑
i=1

∫
Ω

φi(Tn(u))∂i vdx for all u ∈ Kψ and v ∈W 1,−→p
0 (Ω ,−→ω ).

Lemma 6. The operator Bn = A+Φn is pseudomonotone. Furthermore, Bn is coercive
in the following sense: there exists v0 ∈ Kψ such that

〈Bnv,v− v0〉
‖v‖1,−→p ,−→w

−→ +∞ if ‖v‖1,−→p ,−→w → +∞ for v ∈ Kψ .

Proof. In light of the Hölder’s type inequality, we get for every u,v ∈W 1,−→p
0 (Ω ,−→w ),

∣∣〈Φnu,v
〉∣∣ ≤

N

∑
i=1

∫
Ω

φi(Tn(u))∂ivw
−1
pi
i w

1
pi
i dx

≤
N

∑
i=1

(∫
Ω

∣∣φi(Tn(u))w
−1
pi
i

∣∣p′
idx

) 1
p′i

(∫
Ω

|∂ivw
1
pi
i |pidx

) 1
pi

≤
N

∑
i=1

(∫
Ω
sup
|s|≤n

|φi(s)|p′
i w

−p′i
pi

i dx
) 1

p′i
(∫

Ω
|∂iv|piwidx

) 1
pi

≤
N

∑
i=1

(∫
Ω
( sup
|s|≤n

|φi(s)|+1)p
′
iw

−1
pi−1
i dx

) 1
p′i

(∫
Ω

|∂iv|piwidx
) 1

pi

≤
N

∑
i=1

(
sup
|s|≤n

|φi(s)|+1
)(∫

Ω
w

−1
pi−1
i dx

) 1
p′i

(∫
Ω

|∂iv|piwidx
) 1

pi

≤C(n)‖v‖
W 1,−→p
0 (Ω ,−→w )

,

which implies that
| < Φnu,v > |

||v‖1,−→p ,−→w
≤C(n).
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Let v0 ∈ Kψ , thanks to Hölder’s inequality and (9), by using the following continu-

ous embeddings W 1,pi
0 (Ω ,wi) ↪→ Lpi(Ω ,wi), we obtain

| < Av,v0 > | ≤
N

∑
i=1

∫
Ω

|ai(x,v,∇v)∂iv0w
−1
pi
i w

1
pi
i |dx

≤
N

∑
i=1

(∫
Ω

∣∣ai(x,v,∇v)w
−1
pi
i

∣∣p′
i dx

) 1
p′i

(∫
Ω

∣∣∂iv0w
1
pi
i

∣∣pidx) 1
pi

≤ β
N

∑
i=1

(∫
Ω
R
p′
i

i (x)+σ |v|pi + |∂iv|piwidx
) 1

p′i
(∫

Ω
|∂iv0|piwidx

) 1
pi

≤ β
N

∑
i=1

(
C1+C2

∫
Ω

|∂iv|piwidx+
∫

Ω
|∂iv|piwidx

) 1
p′i

(∫
Ω

|∂iv0|piwidx
) 1

pi

≤ β
N

∑
i=1

C
1
p′i
1

(
1+

C2+1
C1

N

∑
i=1

∫
Ω

|∂iv|piwidx
) 1

p′i
(∫

Ω

∣∣∂iv0∣∣piwidx
) 1

pi

≤ βC4

N

∑
i=1

(
1+

C2+1
C1

N

∑
i=1

∫
Ω

|∂iv|piwidx
) 1

p′−
(∫

Ω

∣∣∂iv0∣∣piwi(x)dx
) 1

pi

≤ βC4

N

∑
i=1

(
1+C3

( N

∑
i=1

∫
Ω

∣∣∂iv∣∣piwidx
) 1

p′−
)(∫

Ω

∣∣∂iv0∣∣piwidx
) 1

pi

≤ βC4

(
1+C3

( N

∑
i=1

∫
Ω

∣∣∂iv∣∣piwidx
) 1

p′−
) N

∑
i=1

(∫
Ω

∣∣∂iv0∣∣piwidx
) 1

pi

≤ βC4

(
1+C3

( N

∑
i=1

∫
Ω

∣∣∂iv∣∣piwidx
) 1

p′−
)
‖v0‖W 1,−→p

0 (Ω ,−→w )
.

Therefore

∣∣ < Av,v− v0 >
∣∣

‖v‖
W 1,−→p
0 (Ω ,−→w )

≥ α

N

∑
i=1

∫
Ω

|∂iv|piwidx

‖v‖
W 1,−→p
0 (Ω ,−→w )

−
βC4‖v0‖W 1,−→p

0 (Ω ,−→w )

‖v‖
W 1,−→p
0 (Ω ,−→w )

− βC4C3

‖v‖
W 1,−→p
0 (Ω ,−→w )

( N

∑
i=1

∫
Ω

∣∣∂iv∣∣piwidx
) 1

p′− ‖v0‖W 1,−→p
0 (Ω ,−→w )

.

Then,

∣∣ < Av,v− v0 >
∣∣

‖v‖
W 1,−→p
0 (Ω ,−→w )

≥ α

N

∑
i=1

∫
Ω

|∂iv|piwidx

‖v‖
W 1,−→p
0 (Ω ,−→w )

[
1− β

α
C4C3

( N

∑
i=1

∫
Ω

∣∣∂iv∣∣pidx
) 1

p′−
−1

‖v0‖W 1,−→p
0 (Ω ,−→w )

]
−

βC4‖v0‖W 1,−→p
0 (Ω ,−→w )

‖v‖
W 1,−→p
0 (Ω ,−→w )

.
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According to Jensen’s inequality, we obtain

‖v‖p+−
W 1,−→p
0 (Ω ,−→w )

=
( N

∑
i=1

(∫
Ω

|∂iv|piwidx
) 1

pi
)p+−

≤
( N

∑
i=1

(∫
Ω

|∂iv|piwidx
) 1

p+−
)p+−

≤C
N

∑
i=1

∫
Ω

|∂iv|piwidx,

where

p+− =
{
p− if ‖∂iv‖Lpi (Ω ,wi) ≥ 1
p+ if ‖∂iv‖Lpi (Ω ,wi) < 1.

Then

N

∑
i=1

∫
Ω

|∂iv|piwidx

‖v‖
W 1,−→p
0 (Ω ,−→w )

→ +∞ and
N

∑
i=1

∫
Ω

|∂iv|piwidx → +∞ as ‖v‖
W 1,−→p
0 (Ω ,−→w )

→ +∞.

Using (4), we obtain
| < Av,v− v0 > |
‖v‖

W 1,−→p
0 (Ω ,−→w )

→ +∞ as ‖v‖1,−→p ,−→w → +∞.

Since
< Φnv,v >

‖v‖
W 1,−→p
0 (Ω ,−→w )

and
< Φnv,v0 >

‖v‖
W 1,−→p
0 (Ω ,−→w )

are bounded, then we get

< Bnv,v,−v0 >

‖v‖
W 1,−→p
0 (Ω ,−→w )

=
< Av,v− v0 >

‖v‖
W 1,−→p
0 (Ω ,−→w )

+
< Φnv,v,−v0 >

‖v‖
W 1,−→p
0 (Ω ,−→w )

→ +∞ as ‖v‖
W 1,−→p
0 (Ω ,−→w )

→ +∞.

We conclude that Bn = A+Φn is coercive.
It remains to show that Bn is pseudomonotone.

Let (uk)k be a sequence inW
1,−→p
0 (Ω ,−→w ) such that

⎧⎪⎪⎨
⎪⎪⎩

uk ⇀ u weakly in W 1,−→p
0 (Ω ,−→w )

Bnuk ⇀ χ weakly in W−1,−→p ′
0 (Ω ,−→w ∗)

limsup
k→+∞

< Bnuk,uk > ≤ < χ,u > .

We will show that χ = Bn u and < Bnuk,uk >−→< χ,u > as k → +∞. Since

W 1,−→p
0 (Ω ,−→w ) ↪→↪→ Lp−

(Ω), then uk → u strongly in Lp−
(Ω) and a.e. in Ω for a

subsequence denoted again (uk)k. Since (uk)k is bounded in W 1,−→p
0 (Ω ,−→w ). By using

(9) we have (ai(x,uk,∇uk))k is bounded in Lp′
i(Ω ,w∗

i ), then there exists a function
ϕi ∈ Lp′

i(Ω ,w∗
i ) such that

ai(x,uk,∇uk) ⇀ ϕi as k → +∞ (14)
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Moreover, since (φ n
i (uk))k is bounded in Lp′

i(Ω ,w∗
i ) and φ n

i (uk) → φ n
i (u) a.e. in Ω , we

obtain
φ n
i (uk) → φ n

i (u) strongly in Lp′
i(Ω ,wi) as k → +∞. (15)

For all v ∈W 1,−→p
0 (Ω ,−→w ) combining (14) and (15), we have

< χ,v > = lim
k→+∞

< Bn uk,v >

= lim
k→+∞

N

∑
i=1

∫
Ω
ai(x,uk,∇uk)∂ivdx+ lim

k→+∞

N

∑
i=1

∫
Ω

φ n
i (uk)∂ivdx

=
N

∑
i=1

∫
Ω

ϕi∂ivdx+
N

∑
i=1

∫
Ω

φ n
i (u)∂ivdx.

Hence, we obtain

limsup
k→+∞

< Bnuk,uk > = limsup
k→+∞

[ N

∑
i=1

∫
Ω
ai(x,uk,∇uk)∂iukdx+

N

∑
i=1

∫
Ω

φ n
i (uk)∂iukdx

]

= limsup
k→+∞

N

∑
i=1

∫
Ω
ai(x,uk,∇uk)∂iukdx+

N

∑
i=1

∫
Ω

φ n
i (u)∂iudx

≤ < χ,u >

=
N

∑
i=1

∫
Ω

ϕi∂iudx+
N

∑
i=1

∫
Ω

φ n
i (u)∂iudx

as a result

limsup
k→+∞

N

∑
i=1

∫
Ω
ai(x,uk,∇uk)∂iukdx ≤

N

∑
i=1

∫
Ω

ϕi∂iudx. (16)

Using (10), we get
N

∑
i=1

∫
Ω
(ai(x,uk,∇uk)−ai(x,uk,∇u))(∂iuk −∂iu)dx > 0. Then

N

∑
i=1

∫
Ω
ai(x,uk,∇uk)∂iukdx ≥ −

N

∑
i=1

∫
Ω
ai(x,uk,nablau)∂iudx

+
N

∑
i=1

∫
Ω
ai(x,uk,∇uk)∂iudx+

N

∑
i=1

∫
Ω
ai(x,uk,∇u)∂iukdx.

By (14), we have

liminf
k→+∞

N

∑
i=1

∫
Ω
ai(x,uk,∇uk)∂iukdx ≥

N

∑
i=1

∫
Ω

ϕi∂iudx. (17)

Using (16) and (17), we get

lim
k→+∞

N

∑
i=1

∫
Ω
ai(x,uk,∇uk)∂iukdx=

N

∑
i=1

∫
Ω

ϕi∂iudx (18)
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lim
k→+∞

< Bnuk,uk > = lim
k→+∞

N

∑
i=1

∫
Ω
ai(x,uk,∇uk)∂iukdx+ lim

k→+∞

N

∑
i=1

∫
Ω

φ n
i (uk)∂iukdx

=
N

∑
i=1

∫
Ω

ϕi∂iudx+
N

∑
i=1

∫
Ω

φ n
i (u)∂iudx

= < χ,u > .

Moreover, since ai(x,uk,∇u) −→ ai(x,u,∇u) strongly in Lp′
i(Ω ,wi), by using (18) we

have
N

∑
i=1

∫
Ω
(ai(x,uk,∇uk)−ai(x,uk,∇u))(∂iuk −∂iu)dx= 0.

Using Lemma 3, we obtain uk converges to u strongly in W 1,−→p
0 (Ω ,−→w ) and a.e. in Ω ,

then ai(x,uk,∇u) converges to ai(x,u,∇u) weakly in Lp′
i(Ω ,wi) and φ n

i (u) converges to
φ n
i (u) strongly in L

p′
i(Ω ,wi). Then for all v ∈W 1,−→p

0 (Ω ,−→w ), we get

< χ,v > = lim
k→+∞

< Bnuk,v >

= lim
k→+∞

N

∑
i=1

∫
Ω
ai(x,uk,∇uk)∂ivdx+ lim

k→+∞

N

∑
i=1

∫
Ω

φi(uk)∂ivdx

=
N

∑
i=1

∫
Ω
ai(x,u,∇u)∂ivdx+

N

∑
i=1

∫
Ω

φi(u)∂ivdx

=< Bnu,v >

Therefore Bnu= χ. ��
Proposition 1. Assume that (8)–(12) hold, then the problem (13) admits at least one
solution.

Proof. From Lemma 6 and Theorem 8.2 chapter 2 in [13], then the problem (13) admits
at least one solution. ��
Step 2: A priori estimate.

Proposition 2. Under the assumptions (8)–(12) and if un is a solution of the approxi-
mate problem (13). Then the following assertion is valid:

N

∑
i=1

∫
Ω

|∂iTk(un)|piwidx ≤C(k+1) for all k > 0,

where C is a constant.

Proof. Let v= un −ηTk(u+n −ψ+) where η ≥ 0. Since v ∈W 1,−→p
0 (Ω ,−→w ) and for all η

small enough, we get v ∈ Kψ . We take v as test function in problem (13), we obtain

N

∑
i=1

∫
Ω
ai(x,un,∇un)∂iTk(u+n −ψ+)dx +

N

∑
i=1

∫
Ω

φ n
i (un)∂iTk(u+n −ψ+)dx

≤
∫

Ω
fnTk(u+n −ψ+)dx.
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As result

N

∑
i=1

∫
Ω
ai(x,un,∇un)∂iTk(u+n −ψ+)dx ≤

∫
Ω
fnTk(u+n −ψ+)dx

+
N

∑
i=1

∫
Ω

|φ n
i (un)||∂iTk(u+n −ψ+)|dx.

Since ∂iTk(u+n −ψ+) = 0 on the set {u+n −ψ+ > k}, we get
N

∑
i=1

∫
{u+n −ψ+≤k}

ai(x,un,∇un)∂i(u+n −ψ+)dx ≤
∫

Ω
fnTk(u+n −ψ+)dx

+
N

∑
i=1

∫
{u+n −ψ+≤k}

|φ n
i (un)||∂i(u+n −ψ+)|dx,

thus, we have

N

∑
i=1

∫
{u+n −ψ+≤k}

ai(x,u+n ,∇u+n )∂iu+n dx ≤
∫

Ω
fnTk(u+n −ψ+)dx

+
N

∑
i=1

∫
{u+n −ψ+≤k}

|φ n
i (un)||∂iu+n |w

−1
pi
i w

1
pi
i dx+

N

∑
i=1

∫
{u+n −ψ+≤k}

|φ n
i (un)||∂iψ+|dx

+
N

∑
i=1

∫
{u+n −ψ+≤k}

|ai(x,u+n ,∇u+n )∂iψ+|dx

According to Young’s inequalities, we have for a positive constant λ

N

∑
i=1

∫
{u+n −ψ+≤k}

ai(x,u+n ,∇u+n )∂iu+n dx ≤
∫

Ω
fnTk(u+n −ψ+)dx

+C1(α)
N

∑
i=1

∫
{u+n −ψ+≤k}

|φ n
i (Tk+‖ψ‖∞(un))|p

′
iw

−1
pi−1
i dx+

α
6

N

∑
i=1

∫
{u+n −ψ+≤k}

|∂iu+n |piwidx

+
N

∑
i=1

∫
{u+n −ψ+≤k}

|φ n
i (Tk+‖ψ‖∞(un))||∂iψ+|dx

+
N

∑
i=1

λ p′
i

pi

∫
{u+n −ψ+≤k}

|ai(x,un,∇un)|p′
iw

1−p′
i

i dx+
N

∑
i=1

1
piλ pi

∫
{u+n −ψ+≤k}

|∂iψ+|piwidx.
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Using to (9) and taking λ =
(
p′
i α
6β

) 1
p′
i , we have

N

∑
i=1

∫
{u+n −ψ+≤k}

ai(x,un,∇un)∂iu+n dx ≤
∫

Ω
fnTk(u+n −ψ+)dx

+C1(α)
N

∑
i=1

∫
{u+n −ψ+≤k}

|φ n
i (Tk+‖ψ‖∞(un))|p

′
iw

−1
pi−1
i dx+

α
6

N

∑
i=1

∫
{u+n −ψ+≤k}

|∂iu+n |piwidx

+
N

∑
i=1

∫
{u+n −ψ+≤k}

|φ n
i (Tk+‖ψ‖∞(un))||∂iψ+|dx+

N

∑
i=1

α
6

∫
{u+n −ψ+≤k}

Ri(x)|p′
idx

+
N

∑
i=1

α
6

∫
{u+n −ψ+≤k}

|u+n |piwidx+
N

∑
i=1

α
6

∫
{u+n −ψ+≤k}

|∂iu+n |piwidx

+
N

∑
i=1

(6β )pi−1

pi(p′
iα)pi−1

∫
{u+n −ψ+≤k}

|∂iψ+|piwidx.

Combining (3), (8), (9), (10) and (H1), we have

N

∑
i=1

∫
{u+n −ψ+≤k}

|∂iu+n |piwidx ≤Ck+C′ (19)

As {x ∈ Ω ,u+ ≤ k} ⊂ {x ∈ Ω ,u+ −ψ+ ≤ k+‖ψ+‖∞}, then

N

∑
i=1

∫
Ω

|∂iTk(u+n )|piwidx=
N

∑
i=1

∫
{u+≤k}

|∂iu+n |piwidx ≤
N

∑
i=1

∫
{u+−ψ+≤k+‖ψ+‖∞}

|∂iu+n |piwidx.

Hence, thanks to (19), we get

N

∑
i=1

∫
Ω

|∂iTk(u+n )|piwidx ≤ (k+‖ψ+‖∞)C+C′ ∀k > 0. (20)

Similarly taking v= un+Tk(u−
n ) as test function in approximate problem (13), we have

N

∑
i=1

∫
Ω

|∂iTk(un)|piwidx ≤C′′(k+1). (21)

By (20) and (21), we obtain

N

∑
i=1

∫
Ω

|∂Tk(un)|piwi(x)dx ≤ (k+‖ψ+‖∞ +1)C′ for all k > 0.

��
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Step 3: Strong convergence of truncations.

Proposition 3. If un is a solution of approximate problem (13). Then there is a function
u and a subsequence of un such that

Tk(un) → T (u) strongly in W 1,−→p
0 (Ω ,−→w )

Proof. According to Proposition 2, we obtain

‖Tk(un)‖W 1,−→p
0 (Ω ,−→w )

≤C(k+‖ψ+‖∞ +1)
1
p− . (22)

Firstly, we shall demonstrate that (un)n is a Cauchy sequence in measure in Ω . For every
λ > 0, we obtain {|un−um| > λ} ⊂ {|un| > k}∪{|um| > k}∪{|Tk(un)−Tk(um)| > λ},
thus

meas{|un −um| > λ} ≤ meas{|un| > k}+meas{|um| > k}
+meas{|Tk(un)−Tk(um)| > λ}.

(23)

Using Hölder’s inequality, Lemma 1 and (22), we have

k.meas{|un| > k} =
∫

{|un|>k}
|Tk(un)|dx ≤

∫
Ω

|T (un)dx

≤ (meas(Ω))
1
p− ‖Tk(un)‖Lp− (Ω)

≤C(meas(Ω))
1
p− ‖Tk(un)‖W 1,−→p

0 (Ω ,−→w )

≤C(k+‖ψ+‖∞ +1)
1
p− .

Thus, meas{|un| > k} ≤C
(

1
k−1+p− + 1+‖ψ+‖∞

kp−
) 1

p− → 0 as k →+∞. Which means that,

for each ε > 0, there exists k0 such that for all k > k0, we get

meas{|un| > k} ≤ ε
3

and meas{|um| > k} ≤ ε
3
. (24)

As the sequence (Tk(un))n is bounded inW 1,−→p
0 (Ω ,−→w ), then there exists a subsequence

(Tk(un))n such that T (un) converges to vk a.e. in Ω , weakly in W 1,−→p
0 (Ω ,−→w ) and

strongly in Lp−
(Ω) as n goes to +∞. Which implies that the sequence (Tk(un))n is a

Cauchy sequence in measure in Ω , then for all λ > 0, there is n0 such that

meas{|Tk(un)−Tk(um)| > λ} ≤ ε
3
, ∀n,m ≥ n0. (25)

Using (23), (24) and (25), then ∀λ ,ε > 0, we have

meas{|un −um| > λ} ≤ ε for all n,m ≥ n0.

Hence (un)n is a Cauchy sequence in measure in Ω , then there exists a subsequence
denoted again by (un)n such that un converges to a measurable function u a.e. in Ω and

Tk(un) ⇀ T (u) weakly inW 1,−→p
0 (Ω ,−→w ) and a.e. in Ω for all k > 0. (26)
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Now, we will prove that

lim
n→∞

N

∑
i=1

∫
Ω
[ai(x,Tk(un),∇Tk(un))−ai(x,Tk(un),∇Tk(u))](∂iTk(un)−∂iTk(u))dx= 0.

(27)
Let us consider v= un+T1(un−Tm(un))− as test function in approximate problem (13),
we obtain

−
N

∑
i=1

∫
Ω
ai(x,un,∇un)∂iT1(un −Tm(un))−dx

−
N

∑
i=1

∫
Ω

φ n
i (un)∂iT1(un −Tm(un))−dx ≤ −

∫
Ω
fnT1(un −Tm(un))−dx.

Then

N

∑
i=1

∫
{−(m+1)≤un≤−m}

ai(x,un,∇un)∂iundx

+
N

∑
i=1

∫
{−(m+1)≤un≤−m}

φi(un)∂iundx ≤ −
∫

Ω
fnT1(un −Tm(un))−dx.

We pose Φn
i (s) =

∫ s

0
φ n
i (t)χ{−(m+1)≤t≤−m}dt. By using the Green’s formula, we obtain

N

∑
i=1

∫
{−(m+1)≤un≤−m}

φi(un)∂iundx=
N

∑
i=1

∫
Ω

∂iΦn
i (un)dx= 0.

Then, we have

N

∑
i=1

∫
{−(m+1)≤un≤−m}

ai(x,un,∇un)∂iundx ≤ −
∫

Ω
fnT1(un −Tm(un))−dx

According to Lebesgue’s theorem, we have

lim
m→+∞

limsup
n→+∞

∫
Ω
fnT1(un −Tm(un))−dx= 0

Then, we get

lim
m→+∞

limsup
n→+∞

N

∑
i=1

∫
{−(m+1)≤un≤−m}

ai(x,un,∇un)∂iundx= 0. (28)

Similarly, we choose v= un−ηT1(un−Tm(un))+ as test function in approximate prob-
lem (13), we have

lim
m→∞

limsup
n→∞

N

∑
i=1

∫
{m≤un≤m+1}

ai(x,un,∇un)∂iundx= 0. (29)
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We define the following function for each m > k:

hm(z) =

⎧⎨
⎩

1 if |z| ≤ m
0 if |z| ≥ m+1
m+1−|z| if m ≤ |z| ≤ m+1,

By using in (13) the test function ϕ = un −η(Tk(un)−T (u))+hm(un), we obtain

N

∑
i=1

∫
Ω
ai(x,un,∇un)∂i(Tk(un)−T (u))+hm(un)dx

+
N

∑
i=1

∫
Ω
ai(x,un ∇un)(Tk(un)−Tk(u))+∂iunh′

m(un)dx

+
N

∑
i=1

∫
Ω

φ n
i (un)∂i(Tk(un)−Tk(u))+hm(un)dx

+
N

∑
i=1

∫
Ω

φ n
i (un)∂iun(Tk(un)−Tk(u))+h′

m(un)dx

≤
∫

Ω
fn(Tk(un)−Tk(u))+hm(un)dx.

(30)

Using (28) and (29), we get the second integral in (30) converges to 0 when n and m
tend to +∞.

As hm(un) = 0 if |un| > m+1. Then, we obtain

N

∑
i=1

∫
Ω

φ n
i (un)∂i(Tk(un)−Tk(u))+hm(un)dx

=
N

∑
i=1

∫
Ω

φi(Tm+1(un))hm(un)∂i(Tk(un)−Tk(u))+dx.

By Lebesgue’s theorem, we get φ n
i (Tm+1(un))hm(un) → φi(T (u))hm(u) in Lp′

i(Ω ,w∗
i )

and ∂iTk(un) ⇀ ∂iT (u) weakly in Lpi(Ω ,wi) as n goes to +∞, then the third integral in
(30) converges to 0 when n and m tend to +∞.

Combining (8), (28), (29) and Lebesgue’s theorem, we get

lim
m→+∞

lim
n→+∞

N

∑
i=1

∫
{−(m+1)≤un≤−m}

|∂iun|pi(Tk(un)−Tk(u))+widx= 0,

and

lim
m→+∞

lim
n→+∞

N

∑
i=1

∫
{m≤un≤m+1}

|∂iun|pi(Tk(un)−Tk(u))+widx= 0.

We conclude that

lim
m→+∞

lim
n→+∞

N

∑
i=1

∫
Ω
ai(x,un,∇un)∂i(Tk(un)−Tk(u))+hm(un)dx ≤ 0,
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which implies that

lim
m→+∞

lim
n→+∞

N

∑
i=1

∫
{Tk(un)−Tk(u)≥0,|un|≤k}

ai(x,un,∇un)∂i(Tk(un)−Tk(u))hm(un)dx

− lim
m→+∞

lim
n→+∞

N

∑
i=1

∫
{Tk(un)−Tk(u)≥0,|un|>k}

ai(x,un,∇un)∂iTk(u)hm(un)dx ≤ 0.

As hm(un) = 0 in {|un| > m+1}, then we obtain

N

∑
i=1

∫
{Tk(un)−Tk(u)≥0,|un|>k}

ai(x,un,∇un)∂iTk(u)hm(un)dx

=
N

∑
i=1

∫
{Tk(un)−Tk(u)≥0,|un|>k}

ai(x,Tm+1(un),∇Tm+1(un))∂iTk(u)hm(un)dx.

Since (ai(x,Tm+1(un),∇Tm+1(un)))n≥0 is bounded in Lp′
i(Ω ,w∗

i ).
We have ai(x,Tm+1(un),∇T (u)) converges to Y i

m weakly in Lp′
i(Ω ,w∗

i ). Hence

lim
m→+∞

lim
n→+∞

N

∑
i=1

∫
{Tk(un)−Tk(u)≥0,|un|>k}

ai(x,Tm+1(un),∇Tm+1(un))∂iTk(u)hm(un)dx

= lim
m→+∞

N

∑
i=1

∫
{|u|>k}

Y i
m∂iTk(u)hm(u)dx= 0,

as results

lim
m→+∞

lim
n→+∞

N

∑
i=1

∫
{Tk(un)−Tk(u)≥0}

ai(x,Tk(un),∇Tk(un))

∂i(Tk(un)−Tk(u))hm(un)dx ≤ 0. (31)

Moreover, we have ai(x,Tk(un),∇Tk(u))hm(un) → ai(x,Tk(u),∇Tk(u))hm(u) in
Lp′

i(Ω ,w∗
i ) and ∂i(Tk(un)−Tk(u)) converges to 0 weakly in Lpi(Ω ,wi), then

lim
m→+∞

lim
n→+∞

N

∑
i=1

∫
{Tk(un)−Tk(u)≥0}

ai(x,Tk(un),∇Tk(u))

∂i(Tk(un)−Tk(u))hm(un)dx= 0. (32)

According to (10), (31) and (32), we deduce

lim
m→+∞

lim
n→+∞

N

∑
i=1

∫
{Tk(un)−Tk(u)≥0}

[
ai(x,Tk(un),∇Tk(un))−ai(x,Tk(un),∇Tk(u))

]

∂i(Tk(un)−Tk(u))hm(un)dx= 0. (33)

Similarly, we choose ϕ = un+(Tk(un)−Tk(u))−hm(un) as test function in (13), we
obtain

lim
m→+∞

lim
n→+∞

N

∑
i=1

∫
{Tk(un)−Tk(u)≤0}

[
ai(x,Tk(un),∇Tk(un))−ai(x,Tk(un),∇Tk(u))

]

∂i(Tk(un)−Tk(u))hm(un)dx= 0. (34)



118 A. Abbassi et al.

Using (33) and (34), we have

lim
m→+∞

lim
n→+∞

N

∑
i=1

∫
Ω

[
ai(x,Tk(un),∇Tk(un))−ai(x,Tk(un),∇Tk(u))

]

∂i(Tk(un)−Tk(u))hm(un)dx= 0. (35)

Now, we show

lim
m→+∞

lim
n→+∞

N

∑
i=1

∫
Ω

[
ai(x,Tk(un),∇Tk(un))−ai(x, Tk(un), ∇Tk(u))

]

∂i(Tk(un)−Tk(u))(1−hm(un))dx= 0.

Let ϕ = un + Tk(un)−(1− hm(un)) as test function in approximate problem (1), we
obtain

−
N

∑
i=1

∫
Ω
ai(x,un,∇un)∂iTk(un)−(1−hm(un))dx

+
N

∑
i=1

∫
Ω
ai(x,un,∇un)∂iunTk(un)−h′

m(un)dx−
N

∑
i=1

∫
Ω

φi(un)∂iTk(un)−(1−hm(un))dx

+
N

∑
i=1

∫
Ω

φi(un)∂iunTk(un)−h′
m(un)dx ≤ −

∫
Ω
fnTk(un)−(1−hm(un))dx. (36)

Thanks to (28) and (29), we have

lim
m→+∞

lim
n→+∞

N

∑
i=1

∫
Ω
ai(x,un,∇un)∂iunTk(un)−h′

m(un)dx= 0.

Thus, the second integral in (36) converges to 0 when n and m goes to +∞. As
∂iTk(un)− ⇀ ∂iTk(u)− in Lpi(Ω ,wi) and φi(Tk(un))(1 − hm(un)) → φi(Tk(u))(1 −
hm(u)) strongly in Lp′

i(Ω ,w∗
i ), we get

lim
m→+∞

lim
n→+∞

N

∑
i=1

∫
Ω

φi(un)∂iTk(un)−(1−hm(un))dx

= lim
m→+∞

N

∑
i=1

∫
Ω

φi(Tk(u))∂iTk(u)−(1−hm(u))dx.

In view to Lebesgue’s theorem, we get

lim
m→+∞

N

∑
i=1

∫
Ω

φi(Tk(u))∂iTk(u)−(1−hm(u))dx= 0.

Hence, the third integral in (36) converges to 0 when m and n tends to +∞.

We take Φn
i (t) =

∫ t

0
φi(s)Tk(s)−h′

m(s)ds, in light of Green’s Formula, we obtain

N

∑
i=1

∫
Ω

φ n
i (un)∂iunTk(un)−h′

m(un)dx=
N

∑
i=1

∫
Ω

∂iΦn
i (un)dx= 0.



Existence of Entropy Solutions Anisotropic Elliptic Nonlinear Problem 119

Then the last integral of the left-hand side of (36) converges to 0 when n and m tend
to +∞. By using to Lebesgue dominated convergence theorem, we get the term of the
right-hand side of (36) converges to 0 as m and n goes to +∞. We Conclude

lim
m→+∞

lim
n→+∞

N

∑
i=1

∫
{un≤0}

ai(x,un,∇un)∂iTk(un)(1−hm(un))dx= 0. (37)

Following this, for η small enough, we choose ϕ = un −ηTk(u+n −ψ+)(1−hm(un)) as
test function in (13), we obtain

N

∑
i=1

∫
Ω
ai(x,un,∇un)∂iTk(u+n −ψ+)(1−hm(un))dx

−
N

∑
i=1

∫
Ω
ai(x,un,∇un)∂iunTk(u+n −ψ+)h′

m(un)dx

+
N

∑
i=1

∫
Ω

φ n
i (un)∂iTk(u+n −ψ+)(1−hm(un))dx

−
N

∑
i=1

∫
Ω

φ n
i (un)∂iunTk(u+n −ψ+)h′

m(un)dx

≤
∫

Ω
fnTk(u+n −ψ+)(1−hm(un))dx. (38)

From the Hölder inequality, (8), (28) and (29), we get

lim
m→+∞

lim
n→+∞

N

∑
i=1

∫
Ω

φ n
i (un)∂iunTk(u+n −ψ+)h′

m(un)dx= 0.

By the Young inequality, we obtain

N

∑
i=1

∫
Ω
ai(x,un,∇un)∂iTk(u+n −ψ+)(1−hm(un))dx

≤
N

∑
i=1

∫
{−(m+1)≤un≤−m}

ai(x,un,∇un)∂iunTk(u+n −ψ+)dx

+
∫

Ω
fnTk(u+n −ψ+)(1−hm(un))dx

+
N

∑
i=1

∫
{u+n −ψ+≤k}

φ n
i (un)∂iu+n (1−hm(un))dx

+
N

∑
i=1

∫
{u+n −ψ+≤k}

φ n
i (un)∂iψ+(1−hm(un))dx

(39)

Thank to (28), we get the first term on the right-hand converges to 0 when n and m tend
to +∞. By the Lebesgue dominated convergence theorem, we obtain the second part in
the right-hand converges to 0 when m and n tend to +∞.
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As

N

∑
i=1

∫
{u+n −ψ+≤k}

φ n
i (un)∂iu+n (1−hm(un))dx

=
N

∑
i=1

∫
Ω

φ n
i (T{k+‖ψ+‖L∞(O)}(un))∂iT{k+‖ψ+‖L∞(O)}(u

+
n )(1−hm(un))dx.

(40)

Since ∂iT{k+‖ψ+‖L∞(Ω)}(u
+
n ) ⇀ ∂iT{k+‖ψ+‖L∞(Ω)}(u

+) weakly in Lpi(Ω ,wi) and
φ n
i (T{k+‖ψ+‖L∞(Ω)}(un))(1− hm(un)) → φi(T{k+‖ψ+‖L∞(Ω)}(u))(1− hm(u)) strongly in

Lp′
i(Ω ,w∗

i ), we obtain

N

∑
i=1

∫
Ω

φ n
i (T{k+‖ψ+‖L∞(Ω)}(un))∂iT{k+‖ψ+‖L∞(Ω)}(u

+
n )(1−hm(un))dx

=
N

∑
i=1

∫
Ω

φi(T{k+‖ψ+‖L∞(Ω)}(u))∂iT{k+‖ψ+‖L∞(Ω)}(u)(1−hm(u))dx+ ε(n).

Using the Lebesgue dominated convergencetheorem, we obtain

lim
m→∞

N

∑
i=1

∫
Ω

φi(T{k+‖ψ+‖L∞(Ω)}(u))∂iT{k+‖ψ+‖L∞(Ω)}(u)(1−hm(u))dx= 0.

Hence, we get the third integral converges to 0 as m and n tend to +∞. Similarly as
(37), we have

lim
m→+∞

lim
n→+∞

N

∑
i=1

∫
{un>0}

ai(x,un,∇un)∂iTk(un)(1−hm(un))dx= 0. (41)

According to (37) and (41), we obtain

lim
m→+∞

lim
n→+∞

N

∑
i=1

∫
Ω
ai(x,un, ∇un)∂ iTk(un)(1−hm(un))dx= 0. (42)

Furthermore, we have

N

∑
i=1

∫
Ω
(ai(x,Tk(un),∇Tk(un))−ai(x,Tk(un),∇Tk(u)))(∂iTk(un)−∂iTk(u))dx

=
N

∑
i=1

∫
Ω
(ai(x,Tk(un),∇Tk(un))−ai(x,Tk(un),∇Tk(u)))(∂iTk(un)−∂iTk(u))h(un)dx

+
N

∑
i=1

∫
Ω
(ai(x,Tk(un),∇Tk(un)))∂iTk(un)(1−hm(un))dx

−
N

∑
i=1

∫
Ω
(ai(x,Tk(un),∇Tk(un)))∂iTk(u)(1−hm(un))dx
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−
N

∑
i=1

∫
Ω
(ai(x,Tk(un),∇Tk(u)))(∂iTk(un)−∂iTk(u))(1−hm(un))dx.

Combining (35) and (42), the first and the second integrals on the right-hand converge
to 0 when m and n goes to ∞.

As (ai(x,Tk(un),∇Tk(un)))n is bounded in Lp′
i(Ω ,w∗

i ) and ∂ iTk(u)(1−hm(un)) −→
0 in Lpi(Ω ,wi) when m and n goes to +∞, hence the third term on the right-hand side
converge to 0 as m and n goes to +∞.

Where

ai(x,Tk(un),∇Tk(un))(1−hm(un)) −→ ai(x,Tk(u),∇Tk(u))(1−hm(u))

strongly in Lp′
i(Ω ,w∗

i ) and ∂iTk(un) ⇀ ∂iT (u) weakly in Lpi(Ω ,wi), we get the last
integral on the right-hand side converge to 0 as m and n goes to +∞. Then, we
obtain (27).

Thanks to (26), (27) and Lemma 3, we have

Tk(un) → T (u) strongly in W 1,−→p
0 (Ω ,−→w ) and a. e. in Ω for allk > 0.

��
Step 4: Passing to the limit.
Let ϕ ∈ Kψ ∩L∞(Ω), we choose v = un −Tk(un − ϕ) as test function in approximate
problem (13), we have

N

∑
i=1

∫
Ω
ai(x,un,∇un)∂iTk(un −ϕ)dx+

N

∑
i=1

∫
Ω

φ n
i (un)∂iTk(un −ϕ)dx

≤
∫

Ω
fnTk(un −ϕ)dx,

(43)

which implies that,

N

∑
i=1

∫
Ω
ai(x,Tk+‖ϕ‖∞(un),∇Tk+‖ϕ‖∞(un))∂iTk(un −ϕ)dx

+
N

∑
i=1

∫
Ω

φi(Tk+‖ϕ‖∞(un))∂iTk(un −ϕ)dx ≤
∫

Ω
fnTk(un −ϕ)dx.

As Tk(un) → T (u) strongly inW 1,−→p
0 (Ω ,−→w ) and a.e. in Ω for all k > 0, we obtain

ai(x,Tk+‖ϕ‖∞(un),∇Tk+‖ϕ‖∞(un)) ⇀ ai(x,Tk+‖ϕ‖∞(u),∇Tk+‖ϕ‖∞(u))weakly inL
p′
i(Ω ,w∗

i )

φi(Tk+‖ϕ‖∞(un)) → φi(Tk+‖ϕ‖∞(u)) strongly in Lp′
i(Ω ,w∗

i )

and
∂iTk(un −ϕ) → ∂iTk(u−ϕ) strongly in Lpi(Ω ,wi).

Passing to the limit in (43) and this completes the proof of theorem 1.
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Abstract. In this paper we study the Cauchy problem of the vis-
cous primitive equations of geophysics in critical Fourier-Besov-Morrey
spaces. By using the Fourier localization argument and the Littlewood-
Paley theory, we prove that the Cauchy problem with Prankster number
P = 1 is local well-posedness and global well-posedness when the initial
data (u0, θ0) are small and we give a stability result for global solutions.

Keywords: Navier-Stokes equations · Global well-posedness ·
Analytic solutions · Coriolis force · Fourier-Besov-Morrey space

1 Introduction

In this paper, we study the initial value problem of the viscous primitive equa-
tions of geophysics in R

3, which is a fundamental mathematical model in the
field of fluid geophysics. The model reads as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tu + νΔu + Ωe3 × u + (u.∇)u + ∇p = gθe3 (t, x) ∈ R
+ × R

3,

∂tθ + μΔθ + (u.∇)θ = −N 2u3 (t, x) ∈ R
+ × R

3,

∇.u = 0,

u(0, x) = u0(x) x ∈ R
3 ,

(1.1)

where u = u(t, x) = (u1(t, x), u2(t, x), u3(t, x)) and p = p(t, x) denotes the
unknown velocity field and the unknown pressure of the fluid at the point
(t, x) ∈ R

+ × R
3, respectively and θ is a scalar function representing the density

fluctuation in the fluid (in the case of the ocean it depends on the temperature
and the salinity, and in the case of the atmosphere it depends on the tempera-
ture), while u0 = u0(x) = (u1

0(x), u2
0(x), u3

0(x)) denote the given initial velocity
flied satisfying the compatibility condition ∇.u = 0. ν, μ and g are positive
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constants related to viscosity, diffusivity and gravity, respectively, Ω ∈ R repre-
sents the speed of rotation around the vertical unit vector e3 = (0, 0, 1), which
is called the Coriolis parameter, and “×” represents the outer product, hence,
−Ωe3 × u = (Ωu2,−Ωu1, 0). We recall that the Coriolis term has an another
expression −Ωe3 × u = −ΩJu, where the skew-symmetric matrix J defined by

J =

⎛

⎝
0 −1 0
1 0 0
0 0 0

⎞

⎠ .

N is the stratification parameter, a nonnegative constant representing the Brunt-
Visala wave frequency. The ratio P := ν

μ is known as the Prandtl number and
B := Ω

N is essentially the “Burger” number of geophysics.
When θ ≡ 0, N = 0 and Ω = 0, the problem (1.1) become the classical

Navier-Stokes equation:
⎧
⎨

⎩

ut − νΔu + (u.∇)u + ∇p = 0 (t, x) ∈ R
+ × R

3,
∇.u = 0,
u(0, x) = u0(x) x ∈ R

3 .

The existence of mild solutions and the regularity have been established locally
in time and global for small initial data in various functional spaces, for example
[5–8,28,29,34,36].

If only θ ≡ 0, N = 0 but Ω �= 0 the problem (1.1) corresponds to the usual
Navier-Stokes equation with Coriolis force,

⎧
⎨

⎩

ut − νΔu + Ωe3 × u + (u.∇)u + ∇p = 0 (t, x) ∈ R
+ × R

3,
∇.u = 0,
u(0, x) = u0(x) x ∈ R

3 .

Hieber and Shibata [22] obtained the uniform global well-posedness for the
Navier-Stokes equations with Coriolis force for small initial data in the Sobolev
space H

1
2 (R3). Iwabuchi and Takada [26] proved the existence of global solutions

for the Navier-Stokes equations with Coriolis force in Sobolev spaces Ḣs(R3)
with 1/2 < s < 3/4 if the speed of rotation Ω is large enough compared with
the norm of initial data ‖u0‖Ḣs , they also obtained the global existence and
the uniqueness of the mild solution for small initial data in the Fourier-Besov
spaces FḂ

−1

1,2 and proved the ill-posedness in the space FḂ
−1

1,q, 2 < q ≤ ∞ for all
Ω ∈ R see [27]. El Baraka and Toumlilin [10] got global well posedness result

with small initial data in FṄ 1−2α+ 3
p′ + λ

p

p,λ,q for α �= 1 and Ω = 0, moreover, in
[12] they generalize this result for α �= 1 and Ω �= 0 where they proved local
well-posedness results and global well-posedness results with small initial data
in Fourier-Besov-Morrey spaces.

When θ �= 0, N �= 0 and Ω �= 0, Babin, Maholov and Nicolaenko [3] proved
the existance of global solution for problem (1.1) in [Hs(T3)]4 with s � 3/4
for small initial data when the stratification parameter N is sufficiently large.
Charve [18,19] obtained the global well-posedness of problem (1.1) in [Ḣ

1
2 (R3)∩
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Ḣ1(R3)]4 under the assumptions that both Ω and N are sufficiently large for
arbitrary initial data, moreover we get the global well-posedness of (1.1) in
less regular initial value spaces. [24] J.Sun and S.Cui proved that the Cauchy
problem (1.1) with P = 1 is locally well-posed and globally well-posed when the

initial data (u0, θ0) are small in Fourier-Bessov spaces FB
2− 3

p
p,r for 1 < p ≤ ∞,

1 ≤ r < ∞ and FB−1
1,r for 1 ≤ r ≤ 2, they also proved that such problem is

ill-posed in FB−1
1,r for 2 < r ≤ ∞.

We refer to [14,23,25,32] for rich literature about global-in-time well-
posedness for fluid dynamics PDEs.
We first transform the Cauchy problem in to an equivalent Cauchy prob-
leme. By setting N := N√

g, v := (v1, v2, v3, v4) := (u1, u2, u3,
√

gθ

N ), v0 :=
(v1

0 , v2
0 , v3

0 , v4
0) := (u1

0, u
2
0, u

3
0,

√
gθ0

N ) and ∇̃ := (∂1, ∂2, ∂3, 0), (1.1) can be rewrit-
ten into the following problem:

⎧
⎨

⎩

vt + Av + Bv + ∇̃p = −(v.∇̃)v (t, x) ∈ R
+ × R

3,

∇̃v = 0,
v(0, x) = v0(x) x ∈ R

3 .

(1.2)

Where

A =

⎛

⎜
⎜
⎝

−ν � 0 0 0
0 −ν � 0 0
0 0 −ν � 0
0 0 0 −μ �

⎞

⎟
⎟
⎠ and B =

⎛

⎜
⎜
⎝

0 −Ω 0 0
Ω 0 0 0
0 0 0 −N
0 0 N 0

⎞

⎟
⎟
⎠ .

To solve the original problem (1.1), we may consider the following integral
equation:

v(t) = TΩ,N (t)v0 −
∫ t

0

TΩ,N (t − τ)P̃∇̃ · (v ⊗ v)dτ, (1.3)

where, P̃ = (P̃ij)4×4 the Helmholtz projection onto the divergence-free vector
fields defined by:

P̃ij =
{

δij + RiRj 1 ≤ i, j ≤ 3
δij otherwise,

and TΩ,N (.) denotes Stokes-Coriolis Stratification to the linear probleme of (1.2)
via Fourier transform, which is given explicitly by

TΩ,N (t)f = F−1[cos(
|ξ|′
|ξ| t)M1 + sin(

|ξ|′
|ξ| t)M2 + M3] ∗ (e−νΔtf).

Where

|ξ| :=
√

ξ2
1 + ξ2

2 + ξ2
3 and |ξ|′ := |ξ|′Ω,N :=

√

N2ξ2
1 + N2ξ2

2 + Ω2ξ2
3
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and

M1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

Ω2ξ2
3

|ξ|′2 0 −N2ξ1ξ3
|ξ|′2

ΩNξ2ξ3
|ξ|′2

0 Ω2ξ2
3

|ξ|′2 −N2ξ2ξ3
|ξ|′2 −ΩNξ1ξ3

|ξ|′2
−Ω2ξ1ξ3

|ξ|′2 −Ω2ξ2ξ3
|ξ|′2

N2(ξ2
1+ξ2

2)
|ξ|′2 0

ΩNξ2ξ3
|ξ|′2 −ΩNξ1ξ3

|ξ|′2 0 N2(ξ2
1+ξ2

2)
|ξ|′2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

M2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 − Ωξ2
3

|ξ||ξ|′ −Ωξ2ξ3
|ξ||ξ|′

Nξ1ξ3
|ξ||ξ|′

Ωξ2
3

|ξ||ξ|′ 0 −Ωξ1ξ3
|ξ||ξ|′

Nξ2ξ3
|ξ||ξ|′

−Ω2ξ2ξ3
|ξ||ξ|′

Ω2ξ1ξ3
|ξ||ξ|′ 0 −N(ξ2

1+ξ2
3)

|ξ||ξ|′
−Nξ1ξ3

|ξ||ξ|′ −Nξ2ξ3
|ξ||ξ|′

N(ξ2
1+ξ2

3)
|ξ||ξ|′ 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

M3 =

⎛

⎜
⎜
⎜
⎜
⎝

N2ξ2
2

|ξ|′2 −N2ξ1ξ3
|ξ|′2 0 −ΩNξ1ξ2

|ξ|′2
−N2ξ1ξ2

|ξ|′2
N2ξ2
|ξ|′2 0 ΩNξ1ξ3

|ξ|′2
0 0 0 0

−ΩNξ2ξ3
|ξ|′2

ΩNξ1ξ3
|ξ|′2 0 Ω2ξ2

3
|ξ|′2

⎞

⎟
⎟
⎟
⎟
⎠

.

Note that, denoting by M l
jk-th component of the matrix Ml(ξ), it is obvious

that non-vanishing M l
jk satisfies

|M l
jk| ≤ 2 for ξ ∈ R

3, j, k = 1, 2, 3, 4, l = 1, 2, 3.

Inspired by the work [10,24], the aim of this paper is to prove the global existence
and the stability of the global solution of the viscous primitive equations of
geophysics in critical Fourier-Besov-Morrey spaces, using abstract lemma on the
existence of fixed point solutions.

Lemma 1.1. Let X be a Banach space with norm ‖.‖X and B : X × X 
−→ X
be a bounded bilinear operator satisfying

‖B(u, v)‖X ≤ η‖u‖X‖v‖X

for all u, v ∈ X and a constant η > 0. Then, if 0 < ε < 1
4η and if y ∈ X

such that ‖y‖X ≤ ε, the equation x := y + B(x, x) has a solution x in X such
that ‖x‖X ≤ 2ε. This solution is the only one in the ball B(0, 2ε). Moreover, the
solution depends continuously on y in the sense: if ‖y′‖X < ε, x′ = y′+B(x′, x′),
and ‖x′‖X ≤ 2ε, then

‖x − x′‖X ≤ 1
1 − 4εη

‖y − y′‖X .
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2 Preliminaries and Main Results

To give the precise statements of our main results, we first recall the definitions
of the Morrey space Mλ

p(Rn), Besov space Bs
p,q(R

n) and Fourier-Besov-Morrey
space FṄ s

p,λ,q(R
n) were introduced by Ferreira and Lima [16] in order to analyze

a class of active scalar equations. As usual we denote by the space of Schwartz
functions on R

3, and by the space of tempred distributions on R
3. Choose two

nonnegative smooth radial functions χ, ϕ satisfying

suppϕ ⊂ {ξ ∈ R
n :

3
4

≤ |ξ| ≤ 8
3
},

∑

j∈Z

ϕ(2−jξ) = 1, ξ ∈ R
n\{0},

suppχ ⊂ {ξ ∈ R
n : |ξ| ≤ 4

3
}, χ(ξ) +

∑

j≥0

ϕ(2−jξ) = 1, ξ ∈ R
n .

We denote ϕj(ξ) = ϕ(2−jξ) and P the set of all polynomials. The space of
tempered distributions is denoted by S′. The homogeneous dyadic blocks Δ̇j

and Ṡj are defined for all j ∈ Z by

Δ̇ju = ϕ(2−jD)u = 2jn

∫

h(2jy)u(x − y) dy,

Ṡju =
∑

k≤j−1

Δ̇ku = χ(2−jD)u = 2jn

∫

h̃(2jy)u(x − y) dy,

where h = F−1ϕ and h̃ = F−1χ.
We defined the function spaces Mλ

p(Rn).

Definition 2.1. [28,34]. For 1 ≤ p < ∞, 0 ≤ λ < n, the Morrey spaces Mλ
p =

Mλ
p(Rn) is defined by

Mλ
p(Rn) = {f ∈ Lp

loc(R
n); ‖f‖Mλ

p
< ∞},

where
‖f‖Mλ

p
= sup

x0∈Rn

sup
r>0

r− λ
p ‖f‖Lp(B(x0,r)),

with B(x0, r) the ball in R
n with center x0 and radius r.

The space Mλ
p endowed with the norm ‖f‖Mλ

p
is a Banach space.

If 1 ≤ p1, p2, p3 < ∞ and 0 ≤ λ1, λ2, λ3 < n with 1
p3

= 1
p1

+ 1
p2

and λ3
p3

= λ1
p1

+ λ2
p2

,
then we have the Hölder inequality

‖fg‖
M

λ3
p3

≤ ‖f‖
M

λ1
p1

‖g‖
M

λ2
p2

.

Also, for 1 ≤ p < ∞ and 0 ≤ λ < n,

‖ϕ ∗ g‖Mλ
p

≤ ‖ϕ‖L1‖g‖Mλ
p
, (2.1)

for all ϕ ∈ L1 and g ∈ Mλ
p .
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Bernstein type lemma in Fourier variables in Morrey spaces.

Lemma 2.2. [16]. Let 1 ≤ q ≤ p < ∞, 0 ≤ λ1, λ2 < n, n−λ1
p ≤ n−λ2

q and let

γ be a multi-index. If supp(f̂) ⊂ {|ξ| ≤ A2j}, then there is a constant C > 0
independent of f and j such that

‖(iξ)γ f̂‖
M

λ2
q

≤ C2j|γ|+j(
n−λ2

q − n−λ1
p )‖f̂‖

M
λ1
p

. (2.2)

Then, we define the function spaces FṄ s

p,λ,q(R
n).

Definition 2.3. (Homogeneous Besov-Morrey spaces) Let s ∈ R, 1 ≤ p < ∞,
1 ≤ q ≤ ∞ and 0 ≤ λ < n, the space Ṅ s

p,λ,q(R
n) is defined by

Ṅ s
p,λ,q(R

n) =
{

u ∈ Z ′(Rn); ‖u‖Ṅ s
p,λ,q(Rn) < ∞

}
.

Here

‖u‖Ṅ s
p,λ,q(Rn) =

⎧
⎪⎨

⎪⎩

{∑

j∈Z

2jqs‖Δ̇ju‖q
Mλ

p

}1/q

for q < ∞,

sup
j∈Z

2js‖Δ̇ju‖Mλ
p

for q = ∞ .

The space Z ′(Rn) denotes the topological dual of the space Z(Rn) =
{
f ∈

S(Rn); ∂αf̂(0) = 0 for every multi-index α
}

and can be identified to the quotient
space S ′(Rn)/P, where P represents the set of all polynomials on R

n. We refer
to [37, chap. 8] and [15] for more details.

Definition 2.4. (Homogeneous Fourier-Besov-Morrey spaces)
Let s ∈ R, 0 ≤ λ < n, 1 ≤ p < ∞ and 1 ≤ q ≤ ∞. The space FṄ s

p,λ,q(R
n)

denotes the set of all u ∈ Z ′(Rn) such that

‖u‖FṄ s
p,λ,q(Rn) =

{∑

j∈Z

2jqs‖ ̂̇Δju‖q
Mλ

p

}1/q

< ∞, (2.3)

with appropriate modifications made when q = ∞.
Note that the space FṄ s

p,λ,q(R
n) equipped with the norm (2.3) is a Banach

space. Since M0
p = Lp, we have FṄ s

p,0,q = FḂs
p,q, FṄ s

1,0,q = FḂs
1,q = Ḃs

q and
FṄ −1

1,0,1 = χ−1 where Ḃs
q is the Fourier-Herz space and χ−1 is the Lei-Lin space

[4,11].

Now, we give the definition of the mixed space-time spaces.

Definition 2.5. Let s ∈ R, 1 ≤ p < ∞, 1 ≤ q, ρ ≤ ∞, 0 ≤ λ < n, and
I = [0, T ), T ∈ (0,∞]. The space-time norm is defined on u(t, x) by

‖u(t, x)‖Lρ(I,FṄ s
p,λ,q) =

{ ∑

j∈Z

2jqs‖ ̂̇Δju‖q
Lρ(I,Mλ

p )

}1/q

,

and denote by Lρ(I,FṄ s

p,λ,q) the set of distributions in S′(R×R
n)/P with finite

‖.‖Lρ(I,FṄ s
p,λ,q) norm.
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Theorem 2.6. Let Prandtl number P = 1, i.e., μ = ν, Ω ∈ R, 0 ≤ λ < 3,
1 ≤ q ≤ 2.
For max{1, 3−λ

2 } ≤ p < ∞, there exists a positive time T such that for v0 =

(u0, θ0) ∈ FṄ −1+ 3
p′ + λ

p

p,λ,q and ∇.u0 = 0, the problem (1.1) admits a unique local

solution (u, θ) ∈ L4
(
[0, T ),FṄ − 1

2+ 3
p′ + λ

p

p,λ,q

)
.

Furthermore 1 ≤ p < ∞ there exists a constant C0(p, q) such that for any v0 =

(u0, θ0) ∈ FṄ −1+ 3
p′ + λ

p

p,λ,q satisfying ∇.u0 = 0 and ‖(u0,
√

gθ0

N )‖
FṄ

−1+ 3
p′ + λ

p

p,λ,q

< C0μ,

the problem (1.1) admits a unique global solution

(u, θ) ∈ L∞
(
[0,∞);FṄ −1+ 3

p′ + λ
p

p,λ,q

)
∩ L1

(
[0,∞),FṄ 1+ 3

p′ + λ
p

p,λ,q

)
,

and it satisfies

‖(u,

√
gθ

N )‖
L∞([0,∞);FṄ

−1+ 3
p′ + λ

p

p,λ,q )
+ μ‖(u,

√
gθ

N )‖
L1([0,∞),FṄ

1+ 3
p′ + λ

p

p,λ,q )

≤ 2C‖(u0,

√
gθ0

N )‖
FṄ

−1+ 3
p′ + λ

p

p,λ,q

,

where C is a positive constant.

Theorem 2.7. Let T ∗ denote the maximal time of existence of a solution v =
(u, θ) in

L∞
(
[0, T ∗);FṄ −1+ 3

p′ + λ
p

p,λ,q

)
∩ L1

(
[0, T ∗),FṄ 1+ 3

p′ + λ
p

p,λ,q

)
. If T ∗ < ∞, then

‖v‖
L1([0,T ∗),FṄ

1+ 3
p′ + λ

p

p,λ,q )
= ∞.

Besides; if v′ = (u′, θ′) ∈ C(R+,FṄ −1+ 3
p′ + λ

p

p,λ,q ) is a global solution of (1.1), and

for all v′
0 ∈ FṄ −1+ 3

p′ + λ
p

p,λ,q satisfying

‖v′
0 − v0‖

FṄ
−1+ 3

p′ + λ
p

p,λ,q

< C0
μ

8
exp

{
−

∫ ∞

0

1
C0

(||B|| + ‖v‖
FṄ

1+ 3
p′ + λ

p

p,λ,q

)
}

(2.4)

for some constant C0 sufficiently small and ||B|| is matrix norm, then the viscous
primitive equations starting from v0 has a global solution v fulfilling the inequality

‖v′(t) − v(t)‖
FṄ

−1+ 3
p′ + λ

p

p,λ,q

+
μ

2
‖v′(s) − v(s)‖

L1([0,t),FṄ
1+ 3

p′ + λ
p

p,λ,q )

< C‖v′
0 − v0‖

FṄ
−1+ 3

p′ + λ
p

p,λ,q

exp
{∫ ∞

0

C(||B|| + ‖v‖
FṄ

1+ 3
p′ + λ

p

p,λ,q

)
}

where C is a positive constant.
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3 Well-Posedness

In this section we present the proof of Theorem 2.6. To this end, we establish
some basic estimates.

Lemma 3.1. Let T > 0, s ∈ R, 0 ≤ λ < 3, 1 ≤ p < ∞, 1 ≤ q, ρ, r ≤ ∞ and
f ∈ Lr([0, T ),FṄ s

p,λ,q). There exists a constant C > 0 such that

‖
∫ t

0

TΩ,N (t − τ)f(τ)dτ‖Lρ([0,T ),FṄ s
p,λ,q) ≤ C‖f‖

Lr

(
[0,T ),FṄ s−2− 2

ρ
+ 2

r
p,λ,q

).

Proof: Set 1 + 1
ρ = 1

ρ̃ + 1
r . The definition of the space-time norm of

Lρ([0, T ),FṄ s

p,λ,q) and Young’s inequality give

∥
∥
∥

∫ t

0

TΩ,N (t − τ)f(τ)dτ
∥
∥
∥

Lρ([0,T ),FṄ s
p,λ,q)

=
{∑

j∈Z

2jqs
(∫ T

0

‖ϕj

∫ t

0

F(TΩ,N (t − τ)f)(τ)dτ‖ρ
Mλ

p
dt

) q
ρ
}1/q

≤ C
{∑

j∈Z

2jqs
( ∫ T

0

‖ϕj

∫ t

0

e−μ|ξ|2(t−τ)f̂(τ)dτ‖ρ
Mλ

p
dt

) q
ρ
}1/q

≤ C
{∑

j∈Z

2jqs
( ∫ T

0

‖ϕj

∫ t

0

e−μ22j(t−τ)f̂(τ)dτ‖ρ
Mλ

p
dt

) q
ρ
}1/q

≤ C
{∑

j∈Z

2jqs
( ∫ T

0

e−tμρ̃22j

dt
) q

ρ̃ ‖ϕj f̂(τ)‖q
Lr([0,T ),Mλ

p )

}1/q

≤ C
{∑

j∈Z

2jq(s−2− 2
ρ + 2

r )‖ϕj f̂(τ)‖q
Lr([0,T ),Mλ

p )

}1/q

≤ C‖f‖
Lr([0,T ),FṄ s−2− 2

ρ
+ 2

r
p,λ,q )

.

Lemma 3.2. Let T > 0, 0 ≤ λ < 3, 1 ≤ p < ∞, 1 ≤ q ≤ ∞, s ∈ R and

u0 ∈ FN −1+ 3
p′ + λ

p

p,λ,q (R3). Then there exists a constant C > 0 such that

‖TΩ,N (.)v0‖
Lρ

(
[0,T ),FṄ s+ 2

ρ
p,λ,q

) ≤ C‖v0‖FṄ s
p,λ,q

, (3.1)

Proof: Since Supp ψj ⊂ {ξ ∈ R
3 : 2j−1 ≤ |ξ| ≤ 2j+1}, one has

|| ̂ΔjTΩ,N (.)v0||Mλ
p

≤ Ce−μ22jt||ψ̂j v̂0||Mλ
p
.

for all t ≥ 0, which yields that

|| ̂ΔjTΩ,N (.)v0||Lρ([0,T ),Mλ
p ) ≤ C

(1 − e−μ22jρT

μ22jρ

) 1
ρ ||ψ̂j v̂0||Mλ

p
.
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Thus, we have

‖TΩ,N (.)v0‖
Lρ

(
[0,T ),FṄ s+ 2

ρ
p,λ,q

) ≤ C‖v0‖FṄ s
p,λ,q

.

Proposition 3.3. [10] Let 1 ≤ p < ∞, 1 ≤ q ≤ 2, 1
2 ≤ α ≤ 1 + 3

2p′ + λ
2p and

0 ≤ λ < 3. Set

X = L∞
(
[0,∞),FṄ 1−2α+ 3

p′ + λ
p

p,λ,q

)
∩ L1

(
[0,∞),FṄ 1−2α+ 3

p′ + 2α
ρ + λ

p

p,λ,q

)
,

with the norm

‖u‖X = ‖u‖
L∞

(
[0,∞),FṄ

1−2α+ 3
p′ + λ

p

p,λ,q

) + μ‖u‖
L1

(
[0,∞),FṄ

1−2α+ 3
p′ +2α

ρ
+ λ

p

p,λ,q

) .

There exists a constant C = C(p, q) > 0 depending on α, p, q such that

‖∇.(u ⊗ v)‖
L1

(
[0,∞),FṄ

1−4α+ 3
p′ +2α

ρ
+ λ

p

p,λ,q

) ≤ Cμ−1‖u‖X‖v‖X . (3.2)

Proposition 3.4. [10] Let 0 ≤ λ < 3, max{1, 3−λ
2 } ≤ p < ∞, 1 ≤ q ≤ 2, I =

[0, T ), 0 < T ≤ ∞ and 2
3 < α ≤ 2

3 + 1
p′ + λ

3p . Set

Y = L4(I,FṄ 1− 3
2α+ 3

p′ + λ
p

p,λ,q ),

there exists a constant C = C(p, q) > 0 depending on p, q such that

‖uv‖
L2(I,FṄ

2−3α+ 3
p′ + λ

p

p,λ,q )
≤ C‖u‖Y ‖v‖Y . (3.3)

Proof of Theorem 2.6. For the local existence, we set

Y = L4(I,FṄ − 1
2+ 3

p′ + λ
p

p,λ,q ), I = [0, T ) .

Here, as usual, we begin with the mild integral equation

v(t) = TΩ,N (t)v0 −
∫ t

0

TΩ,N (t − τ)P̃∇̃ · (v ⊗ v)dτ, (3.4)

and we consider the bilinear operator B given by

B(v, v′) =
∫ t

0

TΩ,N (t − τ)P̃∇̃ · (v ⊗ v′)dτ.
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According to Lemma 3.1 and Proposition 3.4 with α = 1, we obtain

‖B(v, v′)‖
L4(I,FṄ

− 1
2+ 3

p′ + λ
p

p,λ,q )

= ‖
∫ t

0

TΩ,N (t − τ)P̃∇̃ · (v ⊗ v′)dτ‖
L4(I,FṄ

− 1
2+ 3

p′ + λ
p

p,λ,q )

≤ C‖∇̃.(v ⊗ v′)‖
L2(I,FṄ

−2+ 3
p′ + λ

p

p,λ,q )

≤ C‖vv′‖
L2(I,FṄ

−1+ 3
p′ + λ

p

p,λ,q )

≤ C‖v‖Y ‖v′‖Y .

Lemma 3.2 yields

‖TΩ,N (t)v0‖Y ≤ C‖v0‖
FṄ

−1+ 3
p′ + λ

p

p,λ,q

. (3.5)

Now, we shall decompose the initial data u0 into two terms

v0 = F−1(χB(0,δ)v̂0) + F−1(χBC(0,δ)v̂0) := v0,1 + v0,2,

where δ = δ(v0) > 0 is a real number. Since v0,2 converge to 0 in FṄ −1+ 3
p′ + λ

p

p,λ,q

as δ → +∞, by (3.5) there exists δ large enough such that

∥
∥TΩ,N (t)v0,2

∥
∥

Y
≤ 1

8C
.

For the first term v0,1,
∥
∥
∥TΩ,N (t)v0,1

∥
∥
∥

Y
≤

∥
∥
∥2j(− 1

2+ 3
p′ + λ

p )∥∥ϕje
−μt|ξ|2χB(0,δ)v̂0

∥
∥

L4(I,Mλ
p )

∥
∥
∥

�q

≤
∥
∥
∥2j(− 1

2+ 3
p′ + λ

p )∥∥ sup
ξ∈B(0,δ)

e−μt|ξ|2 |ξ| 1
2
∥
∥

L4([0,T ))
‖ϕj |ξ|− 1

2 v̂0‖Mλ
p

∥
∥
∥

�q

≤ Cδ
1
2 T

1
4

∥
∥
∥v0

∥
∥
∥

FṄ
−1+ 3

p′ + λ
p

p,λ,q

.

Thus for arbitrary v0 in FṄ −1+ 3
p′ + λ

p

p,λ,q , (3.4) has a unique local solution in Y on
[0, T ) where

T ≤
( 1

8C2δ
1
2 ‖u0‖

FṄ
−1+ 3

p′ + λ
p

p,λ,q

)4

.

For the global existence, we will again use Lemma 1.1 to ensure the existence of
global mild solution with small initial data in the Banach space X given by

X = L∞([0,∞),FṄ −1+ 3
p′ + λ

p

p,λ,q ) ∩ L1([0,∞),FṄ 1+ 3
p′ + λ

p

p,λ,q ) .
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According to Lemma 3.1 and Proposition 3.3, we obtain

‖B(v, v′)‖
L1([0,∞),FṄ

1+ 3
p′ + λ

p

p,λ,q )

=
∥
∥
∥

∫ t

0

TΩ,N (t − τ)P̃∇̃ · (v ⊗ v′)dτ
∥
∥
∥

L1([0,∞),FṄ
1+ 3

p′ + λ
p

p,λ,q )

≤ C‖∇̃.(v ⊗ v′)‖
L1([0,∞),FṄ

1−2α+ 3
p′ + λ

p

p,λ,q )

≤ Cμ−1‖v′‖X‖v‖X .

Similarly,

‖B(v, v′)‖
L∞([0,∞),FṄ

1−2α+ 3
p′ + λ

p

p,λ,q )

=
∥
∥
∥

∫ t

0

TΩ,N (t − τ)P̃∇̃ · (v ⊗ v′)dτ
∥
∥
∥

L∞([0,∞),FṄ
−1+ 3

p′ + λ
p

p,λ,q )

≤ C‖∇̃.(v ⊗ v′)‖
L1([0,∞),FṄ

−1+ 3
p′ + λ

p

p,λ,q )

≤ Cμ−1‖v‖X‖v′‖X .

Finally,

‖B(v, v′)‖X ≤ Cμ−1‖v‖X‖v′‖X .

Lemma 3.2 yields

‖TΩ,N (t)v0‖X ≤ C‖v0‖
FṄ

1−2α+ 3
p′ + λ

p

p,λ,q

.

If ‖v0‖
FṄ

−1+ 3
p′ + λ

p

p,λ,q

< C0μ with C0 = 1
4C2 , then (1.1) has a unique global solution

u ∈ X satisfying

‖v‖
L∞([0,∞);FṄ

−1+ 3
p′ + λ

p

p,λ,q )
+ μ‖v‖

L1([0,∞),FṄ
1+ 3

p′ + λ
p

p,λ,q )
≤ 2C‖v0‖

FṄ
−1+ 3

p′ + λ
p

p,λ,q

.

4 Stability of Global Solutions

In this section we prove Theorem 2.7. Let T ∗ be the maximal existence time of
a solution u of (1.1) in

L∞
(
[0, T ∗);FṄ −1+ 3

p′ + λ
p

p,λ,q

)
∩L1

(
[0, T ∗),FṄ 1+ 3

p′ + λ
p

p,λ,q

)
. In order to prove a blow-

up criterion of the solution given by Theorem 2.6, assume that T ∗ < ∞ and
‖v‖

L1([0,T ∗),FṄ
1+ 3

p′ + λ
p

p,λ,q )
< ∞, then we can find 0 < T0 < T ∗ satisfying

‖v‖
L1([T0,T ∗),FṄ

1+ 3
p′ + λ

p

p,λ,q )
<

1
2

.
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For t ∈ [T0, T
∗), we explicitly consider the integral equation

v(t) = TΩ,N (t)v(T0) −
∫ t

T0

TΩ,N (t − τ)P̃∇̃ · (v ⊗ v)dτ,

we obtain

|v̂(t, ξ)| ≤ e−μ|ξ|2t|v̂(T0, ξ)| +
∫ t

T0

e−μ(t−s)|ξ|2 |P̃∇̃ · (v ⊗ v)(s, ξ)|ds .

The same reasoning as in the proof of Proposition 3.3 gives

‖v‖
L∞([T0,t),FṄ

−1+ 3
p′ + λ

p

p,λ,q )
� ‖v(T0)‖

FṄ
−1+ 3

p′ + λ
p

p,λ,q

+ ‖v‖
L∞([T0,t),FṄ

−1+ 3
p′ + λ

p

p,λ,q )
‖v‖

L1([T0,t),FṄ
1+ 3

p′ + λ
p

p,λ,q )
.

It follows that

‖v‖
L∞([T0,t),FṄ

−1+ 3
p′ + λ

p

p,λ,q )
� ‖v(T0)‖

FṄ
−1+ 3

p′ + λ
p

p,λ,q

+
1
2
‖v‖

L∞([T0,t),FṄ
−1+ 3

p′ + λ
p

p,λ,q )
.

We can deduce that

sup
T0≤s≤t

‖v‖
FṄ

−1+ 3
p′ + λ

p

p,λ,q

� 2‖v(T0)‖
FṄ

−1+ 3
p′ + λ

p

p,λ,q

,∀t ∈ [T0, T
∗) .

Setting

M = max(2‖v(T0)‖
FṄ

−1+ 3
p′ + λ

p

p,λ,q

, max
t∈[0,T0]

‖v‖
FṄ

−1+ 3
p′ + λ

p

p,λ,q

) ,

we have

‖v(t)‖
FṄ

−1+ 3
p′ + λ

p

p,λ,q

� M, ∀t ∈ [0, T ∗) .

On the other side

v(t) = e−tμ(−Δ)u0 − Ω

∫ t

0
e−μ(t−τ)(−Δ)

P̃Bv(τ)dτ −
∫ t

0
e−μ(t−τ)(−Δ)

P̃∇̃ · (v ⊗ v)(τ)dτ .
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Then,

v(t′) − v(t) = (e−μt′(−Δ)v0 − e−μt(−Δ)v0)

−
( ∫ t′

0
e−μ(t′−τ)(−Δ)

P̃∇̃ · (v ⊗ v)(τ)dτ −
∫ t

0
e−μ(t−τ)(−Δ)

P̃∇̃ · (v ⊗ v)(τ)dτ
)

− Ω
( ∫ t′

0
e−μ(t′−τ)(−Δ)

P̃Bv(τ)dτ −
∫ t

0
e−μ(t−τ)(−Δ)

P̃Bv(τ)dτ
)

= [e−μt′(−Δ)v0 − e−μt(−Δ)v0] −
[ ∫ t′

t
e−μ(t′−τ)(−Δ)

P̃∇̃ · (v ⊗ v)(τ)dτ
]

−
[ ∫ t

0
e−μ(t−τ)(−Δ)(e−μ(t′−t)(−Δ) − 1)P̃∇̃ · (v ⊗ v)(τ)dτ

]

− Ω
[ ∫ t′

t
e−μ(t′−τ)(−Δ)

P̃Bv(τ)dτ
]

− Ω
[ ∫ t

0
e−μ(t−τ)(−Δ)(e−μ(t′−t)(−Δ) − 1)P̃Bv(τ)dτ

]

:= J1 + J2 + J3 + J4 + J5 .

We will estimate J1, J2, J3, J4 and J5;

‖J1‖
FṄ

−1+ 3
p′ + λ

p

p,λ,q

=
∥
∥
∥2j(−1+ 3

p′ + λ
p )‖ϕj(e−μt′|ξ|2 − e−μt|ξ|2)û0‖Mλ

p

∥
∥
∥

�q

≤
∥
∥
∥2j(−1+ 3

p′ + λ
p )‖ϕj(e−μ(t′−t)|ξ|2 − 1)û0‖Mλ

p

∥
∥
∥

�q
,

‖J2‖
FṄ

−1+ 3
p′ + λ

p

p,λ,q

≤
∥
∥
∥2j(−1+ 3

p′ + λ
p )

∫ t′

t

‖ϕje
−μ(t′−τ)|ξ|2F(∇̃ · v ⊗ v)(τ)‖Mλ

p
dτ

∥
∥
∥

�q

≤
∥
∥
∥2j( 3

p′ + λ
p )

∫ t′

t

‖ϕjF(v ⊗ v)(τ)‖Mλ
p
dτ

∥
∥
∥

�q
,

‖J3‖
FṄ

−1+ 3
p′ + λ

p
p,λ,q

≤

∥
∥
∥2

j(−1+ 3
p′ + λ

p
) ×

∫ t

0
‖ϕje

−μ(t′−τ)|ξ|2
(1 − e

−μ(t′−t)|ξ|2
)F(∇̃ · v ⊗ v)(τ)‖Mλ

p
dτ

∥
∥
∥

�q

≤
∥
∥
∥2

j( 3
p′ + λ

p
)

∫ t

0
‖ϕj(e

−μ(t′−t)|ξ|2 − 1)F(v ⊗ v)(τ)‖Mλ
p

dτ
∥
∥
∥

�q
,

‖J4‖
FṄ

−1+ 3
p′ + λ

p

p,λ,q

�
∥
∥
∥2j(−1+ 3

p′ + λ
p )

∫ t′

t

‖ϕje
−μ(t′−τ)|ξ|2F(Bv)(τ)‖Mλ

p
dτ

∥
∥
∥

�q

�
∥
∥
∥2j(−1+ 3

p′ + λ
p )

∫ t′

t

‖ϕjF(Bv)(τ)‖Mλ
p
dτ

∥
∥
∥

�q
,

and
‖J5‖

FṄ
−1+ 3

p′ + λ
p

p,λ,q

�

∥
∥
∥2

j(−1+ 3
p′ + λ

p
) ×

∫ t

0
‖ϕje

−μ(t′−τ)|ξ|2
(1 − e

−μ(t′−t)|ξ|2α
)F(Bv)(τ)‖Mλ

p
dτ

∥
∥
∥

�q

�
∥
∥
∥2

j(−1+ 3
p′ + λ

p
)
∫ t

0
‖ϕj(e

−μ(t′−t)|ξ|2α − 1)F(Bv)(τ)‖Mλ
p

dτ
∥
∥
∥

�q
.
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The dominated convergence theorem gives

lim sup
t,t′↗T ∗,t≤t′

‖v(t) − v(t′)‖
FṄ

−1+ 3
p′ + λ

p

p,λ,q

= 0 .

This means that v(t) satisfies the Cauchy criterion at T ∗. As FṄ −1+ 3
p′ + λ

p

p,λ,q is

a Banach space, then there exists an element v∗ in FṄ −1+ 3
p′ + λ

p

p,λ,q such that

v(t) → v∗ in FṄ −1+ 3
p′ + λ

p

p,λ,q as t → T ∗. Set v(T ∗) = v∗ and consider the prob-
leme (1.2) starting by v∗. By the well-posedness we obtain a solution exist-
ing on a larger time interval than [0, T ∗), which is a contradiction. Now, let

v ∈ C(
[0, T ∗);FṄ −1+ 3

p′ + λ
p

p,λ,q

) ∩ L1
(
[0, T ∗),FṄ 1+ 3

p′ + λ
p

p,λ,q

)
be the maximal solution

of (1.1) corresponding to the initial condition v′
0. We want to prove T ∗ = ∞.

Put w = v′ − v and w0 = v′
0 − v0. We have

wt + Aw + Bw + w · ∇̃w + v · ∇̃w + w · ∇̃v = −∇̃p .

We first apply P̃ to the above equation, then we have

wt + Aw = −P̃Bw − P̃∇̃.(w ⊗ w) − P̃∇̃.(v ⊗ w) − P̃∇̃.(w ⊗ v) .

Due to Duhamel’s formula, we write

|ŵ(t, ξ)| ≤ e−μ|ξ|2t|ŵ(0, ξ)| +
∫ t

0

e−μ(t−s)|ξ|2 |F(P̃∇̃.(w ⊗ w))(s, ξ)|ds

+
∫ t

0

e−μ(t−s)|ξ|2 |F(P̃∇̃.(v ⊗ w))(s, ξ)|ds

+
∫ t

0

e−μ(t−s)|ξ|2 |F(P̃∇̃.(w ⊗ v))(s, ξ)|ds

+
∫ t

0

e−μ(t−s)|ξ|2 |F(P̃Bw)(s, ξ)|ds .

Then, for t ∈ [0, T ∗) we get

μ‖w‖
L1([0,t),FṄ

1+ 3
p′ + λ

p

p,λ,q
)

≤ C
{

‖w0‖
FṄ

−1+ 3
p′ + λ

p

p,λ,q

+ ‖∇̃.(w ⊗ w)‖
L1([0,t),FṄ

−1+ 3
p′ + λ

p

p,λ,q
)

+ ‖∇̃.(v ⊗ w)‖
L1([0,t),FṄ

−1+ 3
p′ + λ

p

p,λ,q
)

+ ‖∇̃.(w ⊗ v)‖
L1([0,t),FṄ

−1+ 3
p′ + λ

p

p,λ,q
)

+ ‖Bw‖
L1([0,t),FṄ

−1+ 3
p′ + λ

p

p,λ,q
)

}
.
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Similarly,

‖w‖
L∞([0,t),FṄ

−1+ 3
p′ + λ

p

p,λ,q )
≤ ‖w0‖

FṄ
−1+ 3

p′ + λ
p

p,λ,q

+ ‖∇̃.(w ⊗ w)‖
L1([0,t),FṄ

−1+ 3
p′ + λ

p

p,λ,q )

+ ‖∇̃.(v ⊗ w)‖
L1([0,t),FṄ

−1+ 3
p′ + λ

p

p,λ,q )

+ ‖∇̃.(w ⊗ v)‖
L1([0,t),FṄ

−1+ 3
p′ + λ

p

p,λ,q )

+ ‖Bw‖
L1([0,t),FṄ

−1+ 3
p′ + λ

p

p,λ,q )
.

Consequently, for t ∈ [0, T ∗) we get

‖w(t)‖
FṄ

−1+ 3
p′ + λ

p

p,λ,q

+ μ‖w‖
L1([0,t),FṄ

1+ 3
p′ + λ

p

p,λ,q )

≤ C
{

‖w0‖
FṄ

−1+ 3
p′ + λ

p

p,λ,q

+ ‖∇̃.(w ⊗ w)‖
L1([0,t),FṄ

−1+ 3
p′ + λ

p

p,λ,q )

+ ‖∇̃.(v ⊗ w)‖
L1([0,t),FṄ

−1+ 3
p′ + λ

p

p,λ,q )

+ ‖∇̃.(w ⊗ v)‖
L1([0,t),FṄ

−1+ 3
p′ + λ

p

p,λ,q )

+ ‖Bw‖
L1([0,t),FṄ

−1+ 3
p′ + λ

p

p,λ,q )

}

� ‖w0‖
FṄ

−1+ 3
p′ + λ

p

p,λ,q

+ L1 + L2 + L3 .

Where

L1 = ‖∇̃.(w ⊗ w)‖
L1([0,t),FṄ

−1+ 3
p′ + λ

p

p,λ,q )
,

L2 = ‖∇̃.(v ⊗ w)‖
L1([0,t),FṄ

−1+ 3
p′ + λ

p

p,λ,q )
+ ‖∇̃.(w ⊗ v)‖

L1([0,t),FṄ
−1+ 3

p′ + λ
p

p,λ,q )

and L3 = ‖Bw‖
L1([0,t),FṄ

−1+ 3
p′ + λ

p

p,λ,q )
. The same calculus in the proof of

Proposition 3.3 gives

L1 � ‖w‖
L∞([0,t),FṄ

−1+ 3
p′ + λ

p

p,λ,q )
‖w‖

L1([0,t),FṄ
1+ 3

p′ + λ
p

p,λ,q )
,

L2 �
∫ t

0

‖w‖
FṄ

−1+ 3
p′ + λ

p

p,λ,q

‖v‖
FṄ

1+ 3
p′ + λ

p

p,λ,q

,

L3 � ||B||‖w‖
L1([0,t),FṄ

−1+ 3
p′ + λ

p

p,λ,q )
.
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Then

‖w(t)‖
FṄ

−1+ 3
p′ + λ

p

p,λ,q

+ μ‖w‖
L1([0,t),FṄ

1+ 3
p′ + λ

p

p,λ,q )

≤ C
{

‖w0‖
FṄ

−1+ 3
p′ + λ

p

p,λ,q

+ ‖w‖
L∞([0,t),FṄ

−1+ 3
p′ + λ

p

p,λ,q )
‖w‖

L1([0,t),FṄ
1+ 3

p′ + λ
p

p,λ,q )

+
∫ t

0

‖w‖
FṄ

−1+ 3
p′ + λ

p

p,λ,q

‖v‖
FṄ

1+ 3
p′ + λ

p

p,λ,q

+ ||B||‖w‖
L1([0,t),FṄ

−1+ 3
p′ + λ

p

p,λ,q )

}
.

Put

T = sup{t ∈ [0, T ∗), ‖w‖
L∞([0,t],FṄ

−1+ 3
p′ + λ

p

p,λ,q )
<

μ

4C
} . (4.1)

For t ∈ [0, T ), we have

‖w(t)‖
FṄ

−1+ 3
p′ + λ

p

p,λ,q

+
μ

2
‖w‖

L1([0,t),FṄ
−1+ 3

p′ + λ
p

p,λ,q )

≤ C
{‖w0‖

FṄ
−1+ 3

p′ + λ
p

p,λ,q

+
∫ t

0

‖w‖
FṄ

−1+ 3
p′ + λ

p

p,λ,q

(‖B‖ + ‖u‖
FṄ

1+ 3
p′ + λ

p

p,λ,q

)
}

.

Gronwall’s Lemma yields

‖w(t)‖
FṄ

−1+ 3
p′ + λ

p

p,λ,q

+
μ

2

∫ t

0

‖w‖
FṄ

1+ 3
p′ + λ

p

p,λ,q

≤ C‖w0‖
FṄ

−1+ 3
p′ + λ

p

p,λ,q

exp
{∫ t

0

C(‖B‖ + ‖u‖
FṄ

1+ 3
p′ + λ

p

p,λ,q

)
}

≤ C‖w0‖
FṄ

−1+ 3
p′ + λ

p

p,λ,q

exp
{∫ ∞

0

C(||B|| + ‖v‖
FṄ

1+ 3
p′ + λ

p

p,λ,q

)
}

.

Thus if we take C0 sufficiently small in (2.4), we have

‖w(t)‖
FṄ

−1+ 3
p′ + λ

p

p,λ,q

+
μ

2
‖w‖

L1([0,t),FṄ
−1+ 3

p′ + λ
p

p,λ,q )
<

μ

8C
,

which contradicts the Definition (4.1) .
Then T = T ∗ and ‖w‖

L1([0,T ∗),FṄ
1+ 3

p′ + λ
p

p,λ,q )
< ∞, therefore T ∗ = ∞. This

completes the proof of Theorem 2.7.
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Abstract. The main purpose of this paper is to develop the concept of
regional controllability for an important class of Caputo time-fractional
semi-linear systems using the analytical approach, where the dynamic
of the considered system is generates by an analytical semigroup. This
approach use the fixed point techniques and semigroup theory. Finally,
we present some numerical simulations to approve our theoretical results.

1 Introduction

Fractional Calculus has received a considerable amount of interest in the last
years, its main purpose is the investigation of the notions of derivation and
integration of real or complex order. Many problems in physics, chemistry, engi-
neering and control theory are represented by fractional equations (see [4,14]
and [9]), which are being used in modeling the anomalous behavior of problems
occurring in the real world . Fractional operators (integration and differentia-
tion) have an important advantage, which is the nonlocal property, where the
current state, of a fractional system, depends on historical and past states. Many
researchers worked on the existence of solutions for initial and boundary value
fractional differential equations (see [13,18] ), Zhou and Jiao discussed the exis-
tence of mild solution for fractional evolution and neutral evolution equations
in Banach spaces based on a probability density function and semigroup theory
(see [20] and [19]), seeing this big interest on fractional order systems, it is nat-
ural to study and analyze these kinds of systems as an extension or a general
case of classical dynamical systems (ie. systems with integer order derivatives).

The analysis of dynamical systems consists of many branches and various
concepts, Controllability being one amongst others. The concept of controllabil-
ity consists of steering a system into a desired state (exactly or approximately)
at time T from an arbitrary initial state. The concept in hand has a very vast
literature for various type of systems (linear, Semi-linear, nonlinear...), for more
informations (see [3,6,8,11,17,21]). In many practical applications their exists
states which are not reachable, also sometimes we only need to control the system
on a particular region, in this cases the regional controllability concept should
be considered (see [12,15,16] and references therein).

Regional controllability’s purpose is to steer a system into a desired state only
in a subregion of the whole evolution domain, this notion is a general case of
c© Springer Nature Switzerland AG 2021
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‘global’ Controllability. This notion is developed by several researchers to cover
various types of systems. In particular, recently Ge,Chen and Kou discussed the
regional controllability for time-fractional sub-diffusion systems with Caputo and
Riemann-Liouville fractional derivatives (see [7]).

The concept in hand, namely regional controllability for nonlinear fractional
systems, is in an initial stage and needs some more research, thus the motivation
for this work, is to develop this theory for semi-linear time-fractional systems
with Caputo derivative by using the analytical approach, which is based on the
fixed point techniques and semigroup theory .

This paper is presented as follows, in Sect. 2, we introduce some preliminaries,
definitions and results which will be used throughout this work. In Sect. 3, by
using some properties of analytical semigroup and under suitable assumptions
we show that the considered system is regionally controllable by a control that
will be given later. In Sect. 4 , we provide an algorithm, which is based on the
steps of the used approach. The Sect. 5 is devoted to present successful numerical
results illustrating the theoretical ones. Finally a conclusion shall be giving.

2 Preliminaries and Considered System

In this section, we recall some basic definitions and properties used throughout
this paper.

Definition 1 [10]. The (left) Caputo fractional derivative of a function y at a
point t of order α ∈ ]0, 1] is defined as follows :

CDα
0+y(t) =

1
Γ (1 − α)

∫ t

0

(t − s)−α d

ds
(y(s))ds, 0 ≤ t < T. (1)

We have the following two propositions.

Proposition 1 [1]. Let X and Y be two Banach spaces. Let’s consider f ∈
L1

loc(0, T ;X) and T : [0, T ] → L (X,Y ) be a strongly continuous function. Then
the convolution

(T ∗ f)(t) :=
∫ t

0

T (t − s)f(s)ds,

exists in the bochner sense and defines a continuous function from [0, T ] into Y

Proposition 2 [1](Young’s Inequality). Let’s consider p, q, s ≥ 1 such that
1
q

+

1
p

= 1 +
1
s
.

If T ∈ L
p

(0, T ;L (X,Y )) and f ∈ L
q

(0, T ;X), then

T ∗ f ∈ L
s

(0, T ;Y ) and ‖T ∗ f‖
L

s (0,T ;Y )
≤ ‖f‖

L
q (0,T ;X)

.‖T ‖
L

p (0,T ;L (X,Y ))
.
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Let w be a measurable function defined from [0, T ] to R
+. The Weighted

Lebesgue space ([2]) associate to w is defined by:

L
p

w
[0, T ] :=

{
f ∈ Lp

loc
[0, T ]

∣∣∣∣
∫ T

0

w(t)|f(t)|pdt < +∞
}

, p ≥ 1

which is a Banach space endowed with the norm :

‖f‖
L

p
w [0,T ]

=

[∫ T

0

w(t)|f(t)|pdt

] 1
p

.

For 0 < α ≤ 1, let w(t) = tα−1, we denote L
p

w[0, T ] := L
p

α−1(0, T ) and we have
the following inclusion L

p

α−1(0, T ) ⊂ L
p

[0, T ].
Let’s consider n ∈ N

∗, Ω an open bounded subset of Rn with smooth enough
boundary ∂Ω and let α ∈ ]0, 1]. For a time T > 0, set Q = Ω× ]0, T ] and
Σ = ∂Ω× ]0, T ] . Let’s consider the following fractional semi-linear evolution
equation:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

CDα
0+yu(x, t) + Ayu(x, t) = Nyu(x, t) + Bu(t) in Q,

yu(ξ, t) = 0 on Σ,

yu(x, 0) = y0(x) in Ω,

(2)

where

• −A is the infinitesimal generator of a C0 semi-group {S (t)}t≥0 on the Hilbert
space X = L2(Ω).

• N a nonlinear operator.
• B is the control operator from U into X which is linear.
• u is given in U = L2(0, T,U ) and y0 ∈ X.

Without loss of generality, we denote yu(., t) := yu(t).

Definition 2 [5,19]. A mild solution of the system (2) is any function yu in
C(0, T ; X) satisfying the following integral equation :

yu(t) = Sα(t)y0 +

∫ t

0

(t − τ)α−1Kα(t − τ)Ny(τ)dτ +

∫ t

0

(t − τ)α−1Kα(t − τ)Bu(τ)dτ,

(3)
where

Sα(t) =
∫ ∞

0

φα(θ)S (tαθ)dθ,

Kα(t) = α

∫ ∞

0

θφα(θ)S (tαθ)dθ,
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φα(θ) =
1
α

θ−1− 1
α Wα(θ− 1

α ) for all θ positive,

and

Wα(θ) =
1
π

∞∑
n=1

(−1)n−1θ−nα−1Γ (nα + 1)
n!

sin(nπα).

we have the following proposition.

Proposition 3 [20]. For all β ≥ −1, we have
∫ ∞

0

θβφα(θ)dθ =
Γ (1 + β)
Γ (1 + αβ)

,

then we have the following remark.

Remark 1. If β = 0, we can see that φα is a probability density.

Let ω ⊂ Ω be a subregion with positive Lebesgue measure. The restriction
operator in ω is defined as follows:

χω : L2(Ω) −→ L2(ω)

y 
−→ y|ω
and we denote its adjoint by χ∗

ω.
The mild solution defined by (3) can be written :

yu(t) = Sα(t)y0 + Lα(t)Nyu(.) + Lα(t)Bu(.), (4)

where

Lα(t)y(.) =
∫ t

0

(t − τ)α−1Kα(t − τ)y(τ)dτ.

We also define the restriction of the controllability operator in ω by:

Hα
ω : U −→ L2(ω)

u 
−→ χωLα(T )Bu.

Definition 3. The system (2) is said to be exactly (respectively, approximately)
ω-controllable if for all yd ∈ L2(ω) (respectively, for all ε > 0 and for all yd ∈
L2(ω)), we can find a control u ∈ U such that χωyu(T ) = yd (respectively,
||χωyu(T ) − yd||L2(ω) ≤ ε).

Problem: For any state yd in L2(ω), is it possible to find a control u∗ that steer
the system (2) in a finite time T to yd only in the subregion ω ?
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We consider the following linear system associate to the nonlinear system (2):
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

CDα
0+y(x, t) + Ay(x, t) = Bu(t) in Q,

y(ξ, t) = 0 on Σ,

y(x, 0) = y0(x) in Ω,

(5)

which we suppose, for the rest of this work, to be approximately ω-controllable.
Then we give the following proposition.

Proposition 4. If the following hypotheses hold

• [yd − χωSα(T )y0 − χωLα(T )Nyu∗(.)] ∈ Im(Hα
ω ),

• Im(Hα
ω ) a closed subset.

Then the system (2) is exactly ω- controllable by the control

u∗(.) = Hα†
ω [yd − χωSα(T )y0 − χωLα(T )Nyu∗(.)].

Where

Hα†
ω := Hα∗

ω

(
Hα

ω Hα∗
ω

)−1

is the Pseudo-inverse operator of Hα
ω .

Proof. Using the expression (3), the solution of system (2) controlled by u∗ is
giving by the following formula

yu∗(t) = Sα(t)y0 + Lα(t)Nyu∗(.) + Lα(t)BHα†
ω [yd − χωSα(T )y0 − χωLα(T )Nyu∗(.)],

hence

χωyu∗ (T ) = χωSα(T )y0 + χωLα(T )Nyu∗(.) + Hα
ωH

α†
ω [yd − χωSα(T )y0 − χωLα(T )Nyu∗(.)],

since
[yd − χωSα(T )y0 − χωLα(T )Nyu∗(.)] ∈ Im(Hα

ω ),

and Hα
ωHα†

ω is the orthogonal projection on Im(Hα
ω).

Then

χωyu∗ (T ) = χωSα(T )y0 + χωLα(T )Nyu∗(.) + yd − χωSα(T )y0 − χωLα(T )Nyu∗ (.) = yd.

In the next section, we will study the regional controllability of the system (2)
in Im(Hα

ω ) endowed with the norm

||yd||Im(Hα
ω ) = ||Hα†

ω yd||U
Remark 2. ||.||Im(Hα

ω ) defines a semi-norm on Im(Hα
ω ) but it becomes a norm if

the linear system (5) is approximately ω-controllable .
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Proof. It is sufficient to show that

||yd||Im(Hα
ω ) = 0 =⇒ yd = 0

We have
||yd||Im(Hα

ω ) = 0 =⇒ ||Hα†
ω yd||U = 0

=⇒ Hα†
ω yd = 0

=⇒ (Hα∗
ω Hα

ω )Hα†
ω yd = 0

=⇒ Hα∗
ω yd = 0.

Since the linear system (5) is approximately ω-controllable, then ker(Hα∗
ω ) = {0}

by [7], therefore yd = 0.

3 Analytical Approach

We consider the system (2) with y0 = 0, moreover, let −A the infinitesimal
generator of an analytic semigroup of bounded linear operator (T (t))t≥0 on X.

Let 0 be an element of the resolvent set of −A , then it is possible to define
the fractional power Aν for any ν belongs to the interval ]0, 1]. Xν := D(Aν) is
a Banach space, which is dense in X, endowed with the graph norm: ||.||Xν =
||Aν(.)||X .

Remark 3. For the sake of simplification, we choose the order of fractional power
of A to be the same as the order of fractional derivative.

We have the following proposition.

Proposition 5. [12] For all α ∈ ]0, 1], the following properties are satisfied

(i) ∃ Cα > 0 such that ||AαT (t)||L (X,X) ≤ Cαt−α 0 < t ≤ T.

(ii) ∀ t ∈ [0, T ], we have

||Kα(t)||L (X,Xα) ≤ αCα

tα2 × Γ (2 − α)
Γ (1 + α(1 − α))

:= fα(t).

Corollary 1. Let’s consider H(t) = tα−1Kα(t) and q ≥ 1. If fα ∈ Lq
α−1(0, T ),

then

H ∈ L
q

(0, T ;L (X,Xα)) and ||H(.)||Lq
(0,T ;L (X,Xα)) ≤ ||fα(.)||Lq

α−1(0,T ).

Hypotheses :
We assume that the following conditions hold.
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(i) For all p, s ≥ 1, there exists q ≥ 1 such that

1
q

= 1 +
1
p

− 1
s

and fα ∈ Lq
α−1(0, T ). (6)

(ii) Let N : Lp(0, T ;Xα) −→ Ls(0, T ;X) be the nonlinear operator satisfying
⎧⎨
⎩

N(0) = 0,

||Nx − Ny||Ls(0,T ;X) ≤ k(||x||, ||y||)||x − y||Lp(0,T ;Xα),
(7)

where k : R+ × R
+ −→ R

+ is such that lim
(θ1,θ2)→(0,0)

k(θ1, θ2) = 0.

We define the operator

Ψ(yd, u) = Hα†
ω (yd − χωLα(T )Nyu).

Then the regional controllability problem becomes a fixed point problem of the
function Ψ(yd, .), where yd is an element of Im(H

α

ω )

Theorem 1. If the hypotheses (i) and (ii) hold and

(iii)
||Lα(.)Bu||Lp(0,T ;Xα) ≤ β||u||U , β > 0, (8)

(iv)

||χωKα(.)||L (X,Im(Hα
ω )) = gα ∈ Lr

α−1(0, T ),
1
r

+
1
s

= 1, (9)

are satisfied, then the following assertions hold.

1. There exists a > 0, ρ = ρ(a) > 0 and m = m(a) > 0 such that for any state
yd in B(0, ρ) ⊂ Im(H

α

ω ) there exists u∗ in B(0,m) that steers the system (2)
to yd in ω. Where B(0, k) is a ball with center 0 and radius k.

2. The mapping
F : B(0, ρ) −→ U

yd 
−→ u∗,

is a lipschitz mapping.

Proof. 1- Based on hypothesis (ii), we have

lim
(θ1,θ2)→(0,0)

k(θ1, θ2) = 0,

then ∃ a > 0, ∃ ν > 0 such that

k(θ1, θ2) < ν <
1

β||gα||Lr
α−1(0,T ) + ||fα||Lq

α−1(0,T )

∀θ1, θ2 ≤ a,
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which gives

sup
θi≤a

k(θ1, θ2) ≤ ν <
1

β||gα||Lr
α−1(0,T ) + ||fα||Lq

α−1(0,T )

.

Let’s consider A1 = β||gα||Lr
α−1(0,T ) sup

θi≤a
k(θ1, θ2) and A2 = ||fα||Lq

α−1(0,T )

sup
θi≤a

k(θ1, θ2).

We have A1 < 1 and A2 < 1.
If we set

m =
a

β
(1 − ||fα||Lq

α−1(0,T ) sup
θ≤a

k(θ, 0)),

then m is positive.
In fact,

||fα||Lq
α−1(0,T ) sup

θ≤a
k(θ, 0) ≤ A2 < 1.

Moreover, the following function

f : B(0,m) −→ B(0, a)

u 
−→ yu

is a Lipschitz mapping with constant
β

1 − A2
.

For that, by the equation (4) and corollary (1), for all u, v ∈ B(0,m), we have

||yu − yv ||Lp(0,T ;Xα) = ||Lα(.)N(yu − yv) + Lα(.)B(u − v)||Lp(0,T ;Xα)

≤ ||(H ∗ N(yu − yv))(.)||Lp(0,T ;Xα) + ||Lα(.)B(u − v)||Lp(0,T ;Xα),

using hypotheses (ii) and (iii) we get

||yu − yv||Lp(0,T ;Xα) ≤ A2||yu − yv||Lp(0,T ;Xα) + β||u − v||U ,

hence f is a lipschitz mapping with constant
β

1 − A2
.

Next we show that Ψ(yd, .) has a unique fixed point in B(0,m).
Let’s consider yd ∈ Im (Hα

ω ) and u, v ∈ B(0,m), we have

||Ψ(yd, u) − Ψ(yd, v)||U = ||χωLα(T )(Nyu − Nyv)||Im Hα
ω

≤ ||gα||Lr
α−1(0,T )||Nyu − Nyv||Ls(0,T ;X)

≤ ||gα||Lr
α−1(0,T ) sup

(θi≤a)

k(θ1, θ2)||yu − yv||Lp(0,T ;Xα),

since f is lipschitz, then

||Ψ(yd, u) − Ψ(yd, v)||U ≤ βA1

1 − A2
||u − v||U . (10)
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If we denote A3 :=
βA1

1 − A2
, we have A3 < 1, thus Ψ(yd, .) is a strict contrac-

tion mapping.
For u ∈ B(0,m), we have yu ∈ B(0, a) and

||Ψ(yd, u)||U = ||yd − χωLα(T )Nyu||Im (Hα
ω )

≤ ||yd||Im (Hα
ω ) + ||χωLα(T )Nyu||Im (Hα

ω )

≤ ||yd||Im (Hα
ω ) + ||gα||Lr

α−1(0,T )a sup
(θ≤a)

k(θ, 0),

therefore, if

||yd||Im (Hα
ω ) ≤ m − ||gα||Lr

α−1(0,T )a sup
(θ≤a)

k(θ, 0),

then Ψ(yd, u) ∈ B(0,m).
We set ρ =

a

β
(1 − (||fα||Lq

α−1(0,T ) + β||gα||Lr
α−1(0,T )) sup

θ≤a
k(θ, 0)),

hence, if yd ∈ B(0, ρ) ⊂ Im (Hα
ω ), we deduce from the Picard fixed point

theorem that Ψ(yd, .) admits a unique fixed point u∗ ∈ B(0,m).
We remark that u∗ obtained is solution of the exact regional controllability
problem.

2- Let zd and yd in B(0, ρ), we have

F (zd) − F (yd) = Ψ(zd, F (zd)) − Ψ(zd, F (yd)) + Ψ(zd, F (yd)) − Ψ(yd, F (yd)),

since
||Ψ(zd, F (zd)) − Ψ(zd, F (yd))||U ≤ A3||F (zd) − F (yd)||U ,

||Ψ(zd, F (yd)) − Ψ(yd, F (yd))||U = ||zd − yd||Im (Hα
ω ).

Then
||F (zd) − F (yd)||U ≤ 1

1 − A3
||zd − yd||Im (Hα

ω ),

therefore, F satisfies the Lipschitz condition.

Moreover, the Picard fixed point theorem gives also the existence of a sequence
which converges to the control u∗.

We give the following proposition.

Proposition 6. The sequence
⎧⎨
⎩

u0 = 0

un+1 = Hα†
ω (yd − χωLα(T )Nyun

),
(11)

converges to u∗ in B(0,m) ⊂ U .
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Proof. Let’s consider n, k ∈ N
∗ we have

||un+k − un||U ≤
n+k−1∑

l=n

||ul+1 − ul||U .

By the Inequality (10) we obtain

||ul+1 − ul||U = ||Ψ(yd, ul) − Ψ(yd, ul−1)||U ≤ A3||ul − ul−1||U ≤ Al
3||u1||U ,

which yields

||un+k − un||U ≤
n+k−1∑

l=n

Al
3||u1||U ≤ 1 − Ak

3

1 − A3
An

3 ||u1||U ,

hence since An
3 → 0

n→+∞
, we conclude that lim

n→+∞ ||un+k − un||U = 0.

The sequence (un)n is a Cauchy sequence on B(0,m), then (un)n converges
to u in B(0,m).

Passing to the limit in (11), we have u = Ψ(yd, u), since Ψ(yd, .) has a unique
fixed point in B(0,m), then u = u∗ .

4 Algorithm

In this section, we present an algorithm which has as objective, finding a control
that steering the considered system to the desired state only in ω, this leads to
some numerical simulations which will be presented in the next section.

Algorithm 1
.

Initialization:
Fractional order of derivative α.
The region ω.
Actuator (D, f).
r1 = yd.
Error estimate ε.
Calculation of u1 = H†α

ω r1 and obtain yu1(T ).
repeat

rn = rn−1 + (yd − χωyun−1(T )), n ≥ 2.

Calculation of un = Hα†
ω rn .

Solve the semi-linear system (2) controlled by un.
until

||χωyun(T ) − yd||Im(Hα
ω) < ε.

.
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5 Numerical Results

In this section, we present two numerical simulations illustrating our theoretical
result where the first one is done by using zonal actuator and the second example
is giving by using a pointwise actuator.

5.1 Case of Zonal Actuator

Let’s consider the following sub-diffusion one-dimensional system with order
α = 0.7:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C

D
0.7

0+z(x, t) − ∂2z(x,t)

∂x2
= χDu(t) +

∞∑
j=1

(< z, ϕj >)2ϕj(x) in [0, 1]× ]0, 3]

z(x, t) = 0 on{0, 1}× ]0, 3]
z(x, 0) = 0 in [0, 1],

(12)
where ϕj(x) =

√
2 sin(jπx).

The control operator in the system (12) is given by a zonal actuator (D, f)
where D = [0.2 , 0.3] and f = 1.

We consider the region ω = ]0.4 , 0.68] and the desired state zd(x) =
5.3 x2 (x − 1)2 (x − 0.4).

Using the previous algorithm, we obtain the following results:

Fig. 1. Desired state and estimate final one in ω = [0.4 , 0.68]
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In the subregion ]0.4, 0.68], we can see that the regional final state and the
desired state zd are very close with error || χωzu(x, t) − zd ||L2(ω)= 7.05 × 10−4.

Here we have the evolution of the control function.

Fig. 2. Control function.

with a transfer cost || u∗ ||2L2(0,T )= 0.13.

5.2 Case of Pointwise Actuator

We will treat the same kind of system with α = 0.8 and a pointwise actuator
located in b = 0.4, which amounts to consider the following system:
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C

D
0.8

0+z(x, t) − ∂2

∂x2
z(x, t) = δbu(t) +

∞∑
j=1

(< z, ϕj >)2ϕj(x) in [0, 1] × ]0, 2]

z(ξ, t) = 0 on {0, 1}× ]0, 2]
z(x, 0) = 0 in [0, 1],

where ϕj(x) =
√

2 sin(jπx).
The subregion under consideration is ω = ]0.45 , 0.7]. Let’s consider the fol-

lowing desired state:

zd(x) = x(x − 1)(3.5x − 0.2)(0.6 − x)(x − 0.1).
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Using the proposed algorithm, we obtain the following figure:

Fig. 3. Desired and estimate final states in ω.

We can see that the final state is very close to the desired state in the sub-
region ]0.45, 0.7] with an error of

|| χωzu(t) − zd ||L2(ω)= 6.04 × 10−4.

The following figure shows the evolution of the control function.
with a transfer cost || u∗ ||2L2(0,T )= 0.03.

Fig. 4. Control function.
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6 Conclusion

In this work, we have studied the regional controllability of Caputo time-
fractional sub-diffusion system with analytical approach, which is a technical
one, based on fixed point techniques and semigroup theory, we also presented
an algorithm based on our theoretical results, which leads to successful numer-
ical results. As a future work, we are working on the concept of boundary and
gradient regional controllability for the same type of systems.
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Abstract. In this work, we will investigate the quadratic optimal con-
trol for bilinear systems. We will first study the existence of a solution for
the considered optimal control. Then, we will focus on a special class of
bilinear systems for which the quadratic optimal control can be expressed
in a feedback law form. The approach relies on the conditions of optimal-
ity and linear semi-group theory.

Keywords: Quadratic cost · Optimal control · Bilinear systems

1 Introduction

The subject of this paper is to study the quadratic optimal control for infinite
dimensional bilinear systems. The importance of bilinear systems lies in the fact
that they represent a theoretical model for real processes (natural or industrial)
and that they represent a first generalization of linear systems. Optimal con-
trol theory consists in seeking the best control strategy among others from the
set of admissible controls, that is the one that enables us to reach a precise
objective (reach a desired state, minimize a cost or energy, etc.). Quadratic cost
functions have a wide use in differential geometry, statistics, special relativity,
solid mechanics, etc. Optimal control problems have been the subject of several
works. In [7], Kalman has studied the problem of quadratic optimal control for
linear finite-dimensional systems. He characterized the control in term of the
system’s state and the solution of the Riccati equation. These results have been
generalized by Banks and Yu [4] to a class of infinite dimensional semi-linear
systems. The case of distributed bilinear systems has been considered by Alami
[2]. Another approach, based on the Pontryagin’s maximum principle, has been
developed by Pontryagin [10] for finite-dimensional systems. These results have
been generalized by different authors (e.g. [1,5,8,11,12]) for a class of semi-linear
systems with a variety of cost functions. The main limit of the approach based
on the adjoint equation is that such an equation involves the unknown optimal
control. This together with the nonlinear dependence of the state w.r.t to con-
trol becomes somehow embarrassing when one looks for the explicit expression
of optimal control.

In this work, we consider the problem of optimal control that minimizes a
given quadratic cost. In Sect. 2, we will first state our quadratic optimal problem
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for bilinear systems and then study the existence of an optimal control. In Sect. 3,
we will focus on a special class of bilinear system for which the quadratic optimal
control can be expressed in a feedback law form.

2 Quadratic Optimal Control

2.1 Problem Statement

Let us consider the following bilinear system
{

ẏ(t) = Ay(t) + u(t)By(t)
y(0) = y0 ∈ X

(1)

where

• A : D(A) ⊂ X �→ X is the infinitesimal generator of a linear C0- semigroup
S(t) of isometries on a real Hilbert space X whose inner product and the
corresponding norm are denoted respectively by 〈., .〉 and ‖.‖,

• B : X �→ X is a linear bounded operator,
• u(·) is a scalar valued control that belongs to the control space L2(0, T ) and

y(·) is the corresponding mild solution with initial state y0 ∈ X.

The quadratic cost function J to be minimized is defined by

J(u) = 2‖y(T )‖ +
∫ T

0

‖y(t)‖2dt +
∫ T

0

u(t)2dt, (2)

for any admissible control u, i.e. for which the corresponding solution y exists
and J(u) makes sense.

It is well known that for any u ∈ L2(0, T ) the system (1) admits a unique
mild solution (see [3]) and we have J(u) < +∞ .

In the sequel we take Uad := L2(0, T ) (the set of admissible control).
The optimal control problem may be stated as follows

{
minJ(u)
u ∈ Uad

(3)

Let us introduce the following time varying cost function

J(u)(t) = 2‖y(t)‖ +
∫ t

0

‖y(s)‖2ds +
∫ t

0

u(s)2ds, t ∈ [0, T ]· (4)
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2.2 Existence of the Optimal Control

In this subsection, we prove the existence of a square integrable control u that
minimizes the cost (2).

Theorem 1. There exists an optimal control solution of the problem (3).

Proof: Since the set {J(u)/u ∈ Uad} ⊂ R
+ is not empty and bounded from

below, it admits a lower bound J∗. Let (un)n∈N be a minimizing sequence such
that J(un) → J∗.

By the coercivity of the mapping R : u �→ ∫ T

0
‖u(t)‖2dt, we deduce that the

sequence (un) is bounded, so it admits a subsequence still denoted by (un) as
well, which weakly converges to u∗ ∈ Uad .

Let yn and y∗ be the solutions of (1) respectively corresponding to un and u∗.
From Theorem 3.6 of [3] we have

lim
n→+∞ ‖yn(t) − y∗(t)‖ = 0, ∀t ∈ [0, T ]· (5)

Since the norm ‖.‖ is lower semi-continuous, it follows from (5) that for all
t ∈ [0, T ]

‖y∗(t)‖2 ≤ lim
n→+∞ inf‖yn(t)‖2·

Applying Fatou’s lemma we obtain

∫ T

0

‖y∗(t)‖2dt ≤ lim
n→+∞ inf

∫ T

0

‖yn(t)‖2dt· (6)

Taking into account that R is convex and lower semi-continuous with respect to
the weak topology, we get ( see Corollary III.8 of [6])

R(u∗) ≤ lim
n→+∞ inf R(un)· (7)

Combining the formulas (5), (6) and (7) we deduce that

J(u∗) = 2‖y∗(T )‖ +

∫ T

0

‖y(t)‖2dt +

∫ T

0

u∗(t)2dt

≤ 2 lim
n→+∞

inf ‖yn(T )‖ + lim
n→+∞

inf

∫ T

0

‖yn(t)‖2dt + lim
n→+∞

inf

∫ T

0

un(t)2dt

≤ lim
n→+∞

infJ(un)

≤ J∗·

So we conclude that J(u∗) = J∗ and hence u∗ is a solution of the problem (3).
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3 Feedback Optimal Control

In the previous section, we have established an existence result of the quadratic
optimal control for the problem (3). However, this result does not provide any
information about the expression of the optimal control. This section consists
of expressing the quadratic optimal control as an explicit feedback for a class of
bilinear systems with B = I. Thus the system (1) becomes

{
ẏ(t) = Ay(t) + u(t)y(t)
y(0) = y0 ∈ X

(8)

Theorem 2. The feedback control defined by

u∗(t) = −‖y∗(t)‖, (9)

is an optimal control for the problem (3).

Proof: Observing that the mapping y → −‖y‖y is locally Lipschitz, we deduce
that the system (8), controlled by (9), has a unique mild solution defined on a
maximal sub-interval [0, T ], which is given by the following variation of constants
formula

y∗(t) = S(t)y0 −
∫ t

0

S(t − s)‖y∗(s)‖y∗(s)ds·

Moreover, the control (9) results in decreasing norm state which implied that
the optimal solution is global (see [9] p.185).

Let v ∈ Uad and let yv be the respective solution to system (8). Here, we will
show that J(u∗) ≤ J(v)· To this end, two cases will be discussed.

Case 1: y∗(t) �= 0, ∀t ∈ [0, T ]·
Case 1.1: yv(t) �= 0, ∀t ∈ [0, T ]·
Let An = nA(nI − A)−1 be the Yoshida approximation of the operator A, and
let yvn

be the respective solution to (8) with An instead of A. Since the operator
An is bounded, it follows that yvn

∈ H1(0, T ).
Multiplying the system (8) by the state yvn

, and using that A generates an
isometric semi-group we deduce that

‖yvn
(t)‖ d

dt
‖yvn

(t)‖ =
1
2
d

dt
‖yvn

(t)‖2 = v(t)‖yvn
(t)‖2, ∀t ∈ (0, T )·

Taking into account that ‖yv(t)‖ �= 0, for all t ∈ [0, T ] and that yvn
−→ yv

(strongly) as n → +∞, we deduce that

∃N ∈ N,∀n ≥ N, ‖yvn
(t)‖ �= 0,∀t ∈ [0, T ]

so that
d

dt
‖yvn

(t)‖ = v(t)‖yvn
(t)‖, ∀t ∈ (0, T )· (10)
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Integrating (10) over [0, T ], we get

2(‖yvn
(T )‖ − ‖y0‖) =

∫ T

0
2v(t)‖yvn

(t)‖dt
=

∫ T

0

(
(v(t) + ‖yvn

(t)‖)2 − (v2(t) + ‖yvn
(t)‖2)

)
dt.

(11)

Using the fact that yvn
−→ yv (strongly) as n → +∞, we deduce by taking the

limit in the relation (11) that

J(v) − 2‖y0‖ =
∫ T

0

(v(t) + ‖yv(t)‖)2dt ≥ 0. (12)

In particular for v = u∗ we get

J(u∗) − 2‖y0‖ =
∫ T

0

(u∗(t) + ‖y∗(t)‖)2dt· (13)

This, together with the expression (9), gives

J(u∗) − 2‖y0‖ = 0. (14)

Combining (12) and (14) we conclude that

J(v) ≥ J(u∗).

Case 1.2: ∃t1 ∈ (0, T ) /yv(t1) = 0·
In this case we have yv(t) = 0, ∀t ∈ [t1, T ].

Let us define t′ by

t′ = inf{t ∈ [0, T ] /yv(t) = 0}.
By the continuity of the state yv we deduce that yv(t′) = 0 and that yv(t) �=
0, ∀t ∈ [0, t′).

Following the same method as in the previous case, we conclude that

J(v)(t′) ≥ J(u∗)(t′). (15)

Moreover, it comes from the expression of J(v) that

J(v)(T ) =
∫ T

0

(v2(t) + ‖yv(t)‖2)dt = J(v)(t′) +
∫ T

t′
v2(t)dt ≥ J(v)(t′)· (16)

Since y∗(t) �= 0 for all t ∈ [0, t′] we deduce, according to Case 1.1, that

J(u∗)(T ) = J(u∗)(t′) = 2‖y0‖. (17)

Combining (15), (16) and (17) we conclude that

J(v)(T ) ≥ J(v)(t′) ≥ J(u∗)(t′) = J(u∗)(T ).
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Case 2: ∃t1 ∈ [0, T ] /y∗(t1) = 0·
Here we have y∗(t) = 0, ∀t ∈ [t1, T ].

Then, taking t′ = inf{t ∈ [0, T ] /y∗(t) = 0}, we deduce that y∗(t′) = 0 and
y∗(t) �= 0, ∀t ∈ [0, t′)·

According to Case 1 we have

J(v)(t′) ≥ J(u∗)(t′),∀v ∈ Uad· (18)

Using the fact that y∗(t) = 0, for all t ∈ [t′, T ], we derive from the expression of
J(u∗) that

J(u∗)(T ) =
∫ T

0

(u∗2(t) + ‖y∗(t)‖2)dt =
∫ t′

0

(u∗2(t) + ‖y∗(t)‖2)dt = J(u∗)(t′).

(19)
In the sequel, we will show that J(v)(T ) ≥ J(v)(t′), which amounts to showing
that ∫ T

t′
(v2(t) + ‖yv(t)‖2)dt + 2‖yv(T )‖ − 2‖yv(t′)‖ ≥ 0.

Case 2.1: yv(t) �= 0, ∀t ∈ [t′, T ]·
According to Case 1.1 we have
∫ T

t′
(v2(t) + ‖yv(t)‖2)dt + 2‖yv(T )‖ − 2‖yv(t′)‖ =

∫ T

t′
(v(t) + ‖yv(t)‖)2dt ≥ 0·

It follows that

J(v)(T ) ≥ J(v)(t′). (20)

Combining (18), (19) and (20) we obtain that

J(v)(T ) ≥ J(u∗)(T ).

Case 2.2 : ∃t1 ∈ [t′, T ] /yv(t1) = 0·
In this case we have yv(t) = 0, ∀t ∈ [t1, T ].

Then, letting t′′ = inf{t ∈ [t′, T ] /yv(t) = 0}, we deduce that yv(t′′) = 0 and
that yv(t) �= 0, ∀t ∈ [t′, t′′). Here again we get from Case 1.1

J(v)(t′′) ≥ J(v)(t′).

Since yv(t) = 0 for all t ∈ [t′′, T ], we can see that

J(v)(T ) =
∫ T

0

(v2(t) + ‖yv(t)‖2)dt = J(v)(t′′) +
∫ T

t′′
v2(t)dt ≥ J(v)(t′′)·

We conclude that

J(v)(T ) ≥ J(v)(t′′) ≥ J(v)(t′). (21)
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Combining (18), (19) and (21) we get that

J(v)(T ) ≥ J(u∗)(T ).

Then, we conclude that u∗ is an optimal control for the problem (3).

4 Examples

4.1 Wave Equation

Let us consider the following wave equation⎧⎨
⎩

∂2

∂t2 z(t, x) = Δz(t, x) + u(t)a(x)z(t, x), t ∈ [0, T ] and x ∈ Ω = (0, 1)
z(t, 0) = z(t, 1) = 0, t ∈ [0, T ]
z(0, x) = z0(x), x ∈ Ω

where a(.) ∈ L∞(Ω) and u ∈ L2(0, T ). This system has the form of the system
(1) if we take X = H1

0 (Ω) × L2(Ω) with 〈(y1, z1), (y2, z2)〉X = 〈y1, y2〉H1
0 (Ω) +

〈z1, z2〉L2(Ω) and

A =
(

0 I
Δ 0

)
with D(A) = H1

0 (Ω) ∩ H2(Ω) × H1
0 (Ω) and B =

(
0 0
a 0

)
·

Here B is a linear bounded operator on X and A is the infinitesimal generator
of a linear C0- semi-group S(t) of isometries and y(t) = (z(t), ż(t)).

The quadratic cost function is given by

J(u) = 2(‖z(T )‖2
H1

0 (Ω)+‖ż(T )‖2
L2(Ω))

1
2 +

∫ T

0

(‖z(t)‖2
H1

0 (Ω)+‖ż(t)‖2
L2(Ω))dt+

∫ T

0

u(t)2dt·
(22)

According to Theorem 1, there exists an optimal control u∗ that minimizes the
quadratic cost (22).

4.2 The Transport Equation

Let us consider the following transport problem⎧⎨
⎩

∂
∂ty(t, x) = − ∂

∂xy(t, x) + u(t)y(t, x) t ∈ [0, T ] and x ∈ Ω = (0,+∞)
y(t, 0) = 0, t ∈ [0, T ]
y(0, x) = y0(x), x ∈ Ω

where u ∈ L2(0, T ) is the control and y(t) = y(t, .) ∈ L2(Ω) is the state. The
operator A = − ∂

∂x with domain D(A) = H1
0 (Ω) generates a C0 semi-group S(t)

of isometries on X = L2(Ω) .
According to Theorem 2, the feedback control u(t) = −‖y(t)‖ minimizes the

following functional cost

J(u) = (
∫ +∞

0

y(T, x)2dx)
1
2 +

∫ T

0

(
∫ +∞

0

y(t, x)2dx)dt +
∫ T

0

u(t)2dt·
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5 Conclusion

In this paper, we investigated the quadratic optimal control problem for a class
of bilinear infinite dimensional systems . We formulated optimality conditions in
the general case, then we showed that the optimal control can be expressed as a
feedback law for a class of bilinear systems. The established results are applied
to wave and transport equations. As a natural continuation of the present work
is to extend the obtained results to a larger class of bilinear systems, and to
study the problems of controllability and stability of bilinear systems using a
quadratic optimal control.
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Abstract. In this paper, we study the concept of regional observability, more
precisely the regional reconstruction of the initial state of a linear fractional sys-
tem on a subregion ω of the evolution domain Ω . We use the Hilbert uniqueness
method in order to reconstruct the initial state of the given system, which consists
of transforming the reconstruction problem into a solvability one. After present-
ing an algorithm that allows us to reconstruct the regional initial state, we give,
at the end, two successful numerical results, in order to backup our theoretical
work, each with a different type of sensor and with a reasonable value of error.

1 Introduction

Let Ω be a bounded domain in R
n, n ≥ 1, with smooth enough boundary ∂Ω , [0,T ] a

time interval, α ∈ [0,1] and A a second order, linear, differential operator. We consider
the following fractional system :

⎧
⎪⎨

⎪⎩

RL
D

α

0+
y(x, t) = Ay(x, t) in Ω × [0,T ],

y(ξ , t) = 0 on ∂Ω × [0,T ],
lim
t �→0+

I
1−α

0+
y(x, t) = y0(x) in Ω ,

(1)

where
RL
D

α

0+
is the left sided Riemann-Liouville fractional derivative of order α . This

kind of systems are called fractional diffusion equations or processes, which mean some
kind of a diffusion phenomena governed by evolution equations involving fractional
derivatives with respect to time and whose solution is given by means of a probabil-
ity density function [21]. These systems were and are still being widely investigated
because, as the theory of continuous time random walks (CTRW) states, they provide a
better characterization of anomalous diffusion processes, they also give a better perfor-
mance compared with conventional diffusion systems [13].

Not only for this kind of systems, Fractional Calculus is a valuable and useful
tool especially in modeling real world phenomena in the fields of physics, engineer-
ing, aerospace, visco-elasticity, electricity, chemistry, control theory and so forth. For
more details see [3,18,23,25].

For instance, in [19], a time-fractional diffusion system for signal smoothing is
used, it was mentioned that the fractional model has another adjustable time-fractional
c© Springer Nature Switzerland AG 2021
Z. Hammouch et al. (Eds.): SM2A 2019, LNNS 168, pp. 164–178, 2021.
https://doi.org/10.1007/978-3-030-62299-2_12
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derivative order to control the diffusion process. In the same work, already simulated
signals were used in order to compare between the classical diffusion equation and the
fractional one. It is claimed that the fractional diffusion filtering, which was applied
to nuclear magnetic resonance (NMR) spectrum smoothing, has more advantageous
results than those of the classical diffusion filtering, it was also stated that its perfor-
mance is higher than that of the classical smoothing methods.

Fractional Calculus (FC) is a wide discipline of mathematics which has been around
since 300 years ago, the first traces of this subject goes back to Leibniz and L’hospital

in their discussion about the meaning of
dn

dxn
if n=

1
2
. The first attempt to give a logical

definition is due to Liouville in 1832, and since then a lot of researchers came up with
new and different definitions of fractional derivatives, we mention : Riemann-Liouville,
Caputo, Riez, Caputo-Fabrizo, Atangana-Baleanu and many other ones. We refer the
reader seeking more information about fractional calculus and its properties to see the
following books and the references therein [15,17,23].

One thing that some find hard to grasp is the initial conditions in a Riemann-
Liouville type time-fractional system, which are given as a limit of an integral, we
refer any one wondering about this issue to the work of Heymans and Podlubny [14]
where they demonstrated that, in fact, one can give a significant physical meaning to
such types of initial conditions, and it is very much possible to attribute some values to
those kinds of conditions by using appropriate measurements and observations. They
also gave a series of concrete examples where these initial conditions make complete
sense.

A very important discipline of mathematics that we are dealing with in this paper,
is control theory, this field of study plays a serious role in linking between mathematics
and technology and it includes several notions such as controllability, stability, observ-
ability, stabilization and many more.

In this paper, we deal with observability, precisely the regional observability of a
time fractional diffusion system written in terms of Riemann-Liouville time-fractional
derivative. The concept of observability was introduced for the first time by the
Hungarian-American engineer Rudolf Kalman [16]. This notion has as goal the pos-
sibility of finding and reconstructing the initial state of the considered system in a
finite time using only the outputs (measurements). This concept has been thoroughly
investigated and it also possesses a large literature for various types of system (linear,
semilinear...). For more information see [9,24,26,27] and the references therein.

We shall point out the fact that in case of distributed or diffusion systems not all
states are observable, hence the necessity of introducing a more weaker notion to cut
back the losses for non observable systems, we are speaking about regional observabil-
ity which also consists of finding and reconstructing the initial state of a system but only
in a desired subregion of the evolution domain ω ⊂ Ω . Regional observability had seen
light for the first time in the nineties with professors El Jai and Afifi for discrete sys-
tems see [1], and El Jai and Zerrik for continuous systems see [2,12]. Afterwards this
concept started to be developed by Badraoui, Boutoulout, El Alaoui, Bourray, Zouiten
and Torres to cover various types of systems and cases see [4–8,10,28,30].

Lately, regional observability for time-fractional diffusion systems was being stud-
ied, see [13], which does not only cover the regional observability but regional analysis
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in general (regional controllability, regional stability, regional detectability...) for time
fractional diffusion processes.

The main goal of this work is to reconstruct the initial state of the considered system
using an extension of the Hilbert uniqueness method (HUM), which was firstly intro-
duced by Lions in [20]. This approach relies on the concept of duality for integer order
distributed parameter systems, this duality comes from Green’s formula. This property
fails to work for non-integer order systems, yet we can derive a similar property of dual-
ity where the adjoint or dual system is given in terms of Caputo fractional derivative.
This relation is obtained with the help of fractional green’s formula see [22].

This paper will be organized as follows : After this introduction, we give, in Sect. 2,
some preliminary results to be used along this work also as a quick follow up of the
considered system. In Sect. 3, we show the formulation and steps of the HUM approach
and in Sect. 4, we propose an algorithm that reconstructs the initial state of our system
in a desired subregion. As for Sect. 5, we present two successful numerical simulations
to back up our work, the first is given with a pointwise sensor and second with a zonal
sensor.

2 Considered System and Preliminaries

In this section, we shall introduce some basic definitions needed to present our main
result. We give a quick reminder of some necessary notions and properties of fractional
calculus followed by other tool of control theory.

We recall the following definitions.

Definition 1 [17].We call the left sided fractional integral of order α ∈ [0,1] of a func-
tion y(x, t) at t ∈ [0,T ] for all x ∈ Ω , the following integral formula :

(
I

α

0+
y(x, .)

)
(t) =

1
Γ (α)

∫ t

0
(t− s)α−1y(x,s)ds,

where Γ (α) :=
∫ +∞

0
tα−1e−tdt is the Euler’s gamma function.

Definition 2 [17]. We define the left sided Riemann-Liouville fractional derivative of
order α ∈ [0,1] of a function y(x, t) in t ∈ [0,T ] for all x ∈ Ω , by :

(
RL
D

α

0+
y(x, .)

)
(t) :=

d
dt

(
I

1−α

0+
y(x, .)

)
(t) =

1
Γ (1−α)

d
dt

∫ t

0
(t− s)−αy(x,s)ds.

Definition 3 [17]. The right sided Caputo fractional derivative of order α ∈ [0,1] of a
function y(x, t) in t ∈ [0,1] for all x ∈ Ω is given as follows :

(
C
D

α

T− y(x, .)
)
(t) =

−1
Γ (1−α)

∫ T

t
(s− t)−α ∂

∂ s
y(x,s)ds.
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Let’s denote, if there is no confusion,
(
I

α

0+
y(x, .)

)
(t) :=I

α

0+
y(x, t),

(
RL
D

α

0+
y(x, .)

)
(t) :=

RL
D

α

0+
y(x, t) and

(
C
D

α

T− y(x, .)
)
(t) :=

C
D

α

T− y(x, t).

Let A : D(A) ⊆ L2(Ω) → L2(Ω) be a second order, linear, differential operator, which
generates a C0-semigroup {S(t)}t≥0 on L2(Ω) and C : D(C) ⊆ L2(Ω) −→ O a linear,
possibly unbounded, operator called the observation operator, where O is the observa-
tion space.

We consider the system (1) augmented with the output equation,

z(t) =Cy(., t), t ∈ [0,T ]. (2)

We give now the definition of the mild solution for the above system.

Definition 4 [29].We say that a function y ∈C(0,T ;L2(Ω)) is a mild solution of (1) if
the following formula is satisfied:

y(x, t) = tα−1Rα(t)y0(x), ∀(x, t) ∈ Ω × [0,T ], (3)

where

Rα(t) = α
∫ +∞

0
θξα(θ)S(tα θ)dθ , t ∈ [0,T ],

ξα(θ) =
1
α

θ
−1− 1

α ϖα

(

θ
− 1

α
)

, θ ∈]0,+∞[.

and

ϖα(θ) =
1
π

+∞

∑
n=1

(−1)n−1θ−nα−1 nα +1
n!

sin(nπα), θ ∈]0,+∞[.

Note that ξα is probability density, that is,

ξα(θ) ≥ 0, ∀θ ∈]0,+∞[ and
∫ +∞

0
ξα(θ)dθ = 1,

and that the output function can be written as follows,

z(t) = tα−1CRα(t)y0(.) = Kα(t)y0.

The operator Kα(.) : L2(Ω)−→ L2([0,T ],O) appears to be a linear operator, it is called
the observability operator and it plays an important role in the characterization of
observability.

Remark 1. The operator Kα(.) is bounded ifC is bounded.

In order to study the concept of regional observability we need to use the adjoint oper-
ator of Kα(.) which is not always defined, precisely in the case when the operator C is
not bounded, so for K∗

α(.) to be well defined we need to assume thatC is an admissible
observation operator, then we have the following definition.
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Definition 5 [31].We say that the operatorC is an admissible observation operator for
Rα if,

∃M > 0, such that
∫ T

0
‖CRα(t)x‖2O dt ≤ M‖x‖2

L2(Ω)
∀x ∈ D(A).

Remark 2. IfC is bounded then it is also an admissible observation operator.

For the rest of this work we suppose thatC is an admissible observation operator, in this
case the adjoint operator Kα(.) is given as follows,

K∗
α(.) : L

2(0,T ;O) −→ L2(Ω)

q �−→
∫ T

0
tα−1R∗

α(t)C
∗q(t)dt.

Let ω ⊂ Ω be a subregion with positive Lebesgue measure, we define the restriction
operator in ω by,

χω : L2(Ω) −→ L2(ω),
y �−→ y|ω ,

and χ∗
ω denotes its adjoint, and we have the following definition.

Definition 6 [13]. The system (1) together with the output (2) is said to be approxi-
mately regionally observable in ω (or approximately ω-observable) if

Im(χωK
∗
α(.)) = L2(ω),

equivalently
K er

(
Kα(.)χ∗

ω

)
= {0}.

We now introduce the notion of sensors which plays an important role in the domain of
observability, their main role is to collect data on the studied phenomenon.

Definition 7 [11]. A sensor is a couple (Σ , f ), where Σ is a non empty subset of the
evolution domain Ω , it is called the spatial support of the sensor, and f is the spatial
distribution.

A sensor is called zonal if Σ ⊂ Ω is a subset with strictly positive Lebesgue measure,
in this case f ∈ L2(Σ), O = R and z(t) =Cy(., t) = 〈 f ,y(., t)〉

L2(Σ)
.

A sensor is called pointwise if Σ = {b} ∈ Ω , in this case f = δb, where δb is the
Dirac delta function centered at b, and the output function is written

z(t) = 〈δb,y(., t)〉L2(Ω)
= y(b, t).

Definition 8 [13]. A sensor (Σ , f ) is called strategic if the system (1) augmented with
the output function (2), which is given by means of the sensor (Σ , f ) is approximately
ω-observable. It is called non strategic if not.
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We now present one version of the fractional green’s formula [22].
∀ψ ∈C

∞
(0,T ;L

2
(Ω)),

∫ T

0

∫

Ω

[
RL
D

α

0+
y(x, t)−Ay(x, t)

]
ψ(x, t)dsdt =

∫

Ω
ψ(x,T )I

1−α

0+
y(x,T )dx

+
∫ T

0

∫

Ω

[
C
D

α

T− ψ(x, t)−A∗ψ(x, t)
]
y(x, t)dxdt−

∫

Ω
ψ(x,0) lim

t �→0+
I

1−α

0+
y(x, t)dx

+
∫ T

0

∫

∂Ω

∂y(ς , t)
∂νA

ψ(ς , t)dςdt−
∫ T

0

∫

∂Ω
y(ς , t)

∂ψ(ς , t)
∂ν

A∗
dςdt.

(4)

3 HUM Approach

Firstly we define the following set,

G=
{
g ∈ L2(Ω) | g|Ω\ω = 0

}
,

this choice of G is not arbitrary, in fact, we are searching for the value of the initial state
in a subregion ω without taking into account the residual part (the value of the initial
state in Ω \ω), hence it is natural to consider it null as in the definition of G.

For all ϕ0 ∈ G, we consider the following linear system,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

RL
D

α

0+
ϕ(x, t) = Aϕ(x, t) in Ω × [0,T ],

ϕ(ξ , t) = 0 on ∂Ω × [0,T ],

lim
t �→0+

I
1−α

0+
ϕ(x, t) = ϕ0(x) in Ω ,

(5)

the unique mild solution of this system is written,

ϕ(x, t) = tα−1Rα(t)ϕ0(x), ∀(x, t) ∈ Ω × [0,T ]. (6)

We define on G×G the following bilinear form,

〈., .〉G : G×G −→ C

(ϕ0 ,g0) �−→
∫ T

0
〈tα−1CRα(t)ϕ0 , t

α−1CRα(t)g0〉O dt.

This form satisfies the properties of conjugate symmetry
(
〈ϕ0 ,g0〉G = 〈g0,ϕ0〉G

)
and

positiveness
(〈ϕ0 ,ϕ0〉G ≥ 0

)
.

We give the following proposition.

Proposition 1. If the system (5) together with (2) is approximately ω-observable then
the form 〈., .〉G defines a scalar product on G.
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Proof. All that remains is to prove the definiteness of 〈., .〉G ,(
i.e : 〈ϕ0 ,ϕ0〉G = 0 =⇒ ϕ0 = 0

)
, in fact

〈ϕ0 ,ϕ0〉G =
∫ T

0
〈tα−1CRα(t)ϕ0 , t

α−1CRα(t)ϕ0〉O dt =
∫ T

0
‖tα−1CRα(t)ϕ0‖2O dt,

hence
〈ϕ0 ,ϕ0〉G = 0 =⇒ ‖tα−1CRα(t)ϕ0‖2O = 0, ∀t ∈ [0,T ],

then

tα−1CRα(t)ϕ0 = 0, ∀t ∈ [0,T ],

which gives

tα−1CRα(t)χ∗
ω χω ϕ0 = Kα(t)χ∗

ω (χω ϕ0) = 0, ∀t ∈ [0,T ],

and since the system (5) is approximately ω-observable we have that

χω ϕ0 = 0,

thus

ϕ0 = 0, in ω,

and by definition of G, we have

ϕ0 = 0, in Ω \ω,

finally

ϕ0 = 0, in Ω .

��
For the rest of this work, we assume that the system (5) – (2) is approximately

ω-observable, hence 〈., .〉G is a scalar product and we denote by ‖.‖G :=
√

〈., .〉G the
natural norm on G based upon the scalar product of G.

With the help of the fractional green’s formula, see equation(4), we derive the fol-
lowing retrograded system,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

C
Dα
T−φ(x, t) = A∗φ(x, t)+C∗Cϕ(., t) in Ω × [0,T ] ,

φ(ξ , t) = 0 on ∂Ω × [0,T ] ,

φ(x,T ) = 0 in Ω ,

(7)

which has a unique mild solution φ ∈C
(
0,T ;L2(Ω)

)
, given by the following integral

formula,

φ(t) =
∫ T

t
(τ − t)α−1R∗

α(τ − t)C∗Cϕ(τ)dτ. (8)
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if ϕ0 is chosen in G such that Cϕ(t) = z(t), then the following system

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

C
Dα
T−ψ(x, t) = A∗ψ(x, t)+C∗z(t) in Ω × [0,T ] ,

ψ(ξ , t) = 0 on ∂Ω × [0,T ] ,

ψ(x,T ) = 0 in Ω ,

(9)

can be seen as the adjoint system of (5).
We define the mapping

Λ : G −→ G

ϕ0 �−→ χ∗
ω χω (ψ(0)) ,

hence the problem of regional reconstruction is reduced to solving the following
equation,

Λϕ0 = χ∗
ω χω (ψ(0)) . (10)

Remark 3. χ∗
ω χω is projection operator on G.

We have the following theorem,

Theorem 1. If the system (5) together with (2) is approximately ω-observable then the
equation (10) has a unique solution which corresponds with the initial state in ω .

Proof. Let’s consider ϕ0 ∈ G, we have :

〈Λϕ0 ,ϕ0〉G = 〈χ∗
ω χω (ψ(0)),ϕ0〉G ,

= 〈ψ(0),ϕ0〉G ,

= 〈
∫ T

0
t2α−2Rα(t)∗C∗CRα(t)ϕ0dt,ϕ0〉G ,

=
∫ T

0
〈tα−1CRα(t)ϕ0 , t

α−1CRα(t)ϕ0〉O dt,

= 〈ϕ0 ,ϕ0〉G
= ‖ϕ0‖2G .

Thus Λ is an isomorphism. ��



172 K. Zguaid et al.

4 Algorithm

This section is reserved to the proposed algorithm for the reconstruction of the initial
state in ω , this leads to some numerical results which will be presented in the next
section.

In order to give an algorithm that reconstructs the initial state, we assume that the
operator A generates a complete system of eigenfunctions {ϕi}i∈N∗ on the state space
L2(Ω) associated with the eigenvalues {λi}i∈N∗ .

Note that the family {ϕi}i∈N∗ is an orthonormal basis of L2(Ω).
In this case, Rα and ϕ are respectively expressed as follows,
∀w ∈ L2(Ω), ∀(x, t) ∈ Ω × [0,T ] :

Rα(t)w=
+∞

∑
i=1

Eα,α (λit
α)〈w,ϕi〉L2(Ω)

ϕi(.).

ϕ(x, t) =
+∞

∑
i=1

tα−1Eα,α (λit
α)〈ϕ0 ,ϕi〉L2(Ω)

ϕi(x),

where, Eα,β (t) :=
+∞

∑
n=0

tn

Γ (nα +β )
, is the two parameter Mittag Lefller function.

The solution of (9) at t = 0 can be written as follows, ∀x ∈ Ω ,

ψ(x,0) =
+∞

∑
i=1

∫ T

0
τα−1Eα,α (λiτα)〈C∗z(τ),ϕi〉L2(Ω)

dτϕi(x)

From theorem 1, we have

〈Λϕ0 ,ϕ0〉G = ‖ϕ0‖
2

G
=

∫ T

0
‖Cϕ(., t)‖2

O
dt

Case 1 : If the measurements are given by mean of a pointwise sensor (b,δb) :

〈Λϕ0 ,ϕ0〉G =
+∞

∑
i, j=1

∫ T

0
t
2α−2

Eα,α

(
λit

α
)
Eα,α

(
λ jt

α
)
dtϕi(b)ϕ j(b)

×〈ϕ0 ,ϕi〉L2(Ω)
〈ϕ0 ,ϕ j〉L2(Ω)

.

We set

Λi j =
∫ T

0
t
2α−2

Eα,α

(
λit

α
)
Eα,α

(
λ jt

α
)
dtϕi(b)ϕ j(b), ∀i, j = 1, ...,∞.

Case 2 : If the measurements are given by mean of a zonal sensor (D, f ) : 〈Λϕ0 ,ϕ0〉G =
+∞

∑
i, j=1

∫ T

0
t
2α−2

Eα,α

(
λit

α
)
Eα,α

(
λ jt

α
)
dt〈 f ,ϕi〉L2(D)

×〈 f ,ϕ j〉L2(D)〈ϕ0 ,ϕi〉L2(Ω)
〈ϕ0 ,ϕ j〉L2(Ω)

.
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We set

Λi j =
∫ T

0
t
2α−2

Eα,α

(
λit

α
)
Eα,α

(
λ jt

α
)
dt〈 f ,ϕi〉L2(D)〈 f ,ϕ j〉L2(D) , ∀i, j = 1, ...,∞.

The problem (10) can be written now as

AX = b, where A ∈ MN,N (C), X ∈ MN,1(C) and b ∈ MN,1(C), (11)

such that,

Ai j = Λi j , Xi = 〈ϕ0 ,ϕi〉L2(Ω)
and bj = 〈χ∗

ω χω (ψ(0)),ϕ j〉L2(Ω)
.

After resolving the system (11), we obtain the reconstructed initial state. Then we give
the following algorithm.

Algorithm

• Initialization of : ε, α, ω, Sensors, y0.
• Repeat

→ Solve (9), and get ψ
→ Calculate the components of Λ
→ Solve the system (11) and get ϕ0 .

• Until ‖y0 −ϕ0‖L2(ω)
≤ ε.

5 Numerical Results

In this section, we show some numerical illustrations of our result. We will present two
examples with the same system but with different output functions, the first one will be
given with a pointwise senor whereas for the second one, measurements are given by a
zonal sensor.

Pointwise Sensor

Let us consider the following time-fractional system,
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

RL
D

0.5

0+
y(x, t) =

∂ 2

∂x2
y(x, t) in [0,1]× [0,2],

y(0, t) = y(1, t) = 0 in [0,2],

lim
t �→0+

I
0.5

0+
y(x, t) = y0(x) in [0,1],

(12)

The operator
∂ 2

∂x2
has a complete set of eigenfunctions ϕi(x) =

√
2sin(iπx) with the

corresponding eigenvalues λi = −i2π2.
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The system (12) is augmented by the output equation given by means of a pointwise
sensor localized at b= 0.72,

z(t) = y(b, t), t ∈ [0,T ],

we consider the region ω =]0.35,0.65[ and the initial state (Supposed to be unknown)

y0(x) = 2x(x−1)(2x−1).

By applying the proposed algorithm, we obtain Fig. 1.

Fig. 1. Initial and estimated initial state in ω = [0.35,0.65].

The reconstruction error is ‖y0 −ϕ0‖L2(ω)
= 1.0410×10

−4
.

The Fig. 1 shows that the estimated and real initial state are near one another in the
subregion ω .

Figure 2, shows the evolution of the reconstruction error in terms of the sensor’s
location.

Zonal Sensor

We consider, in this example, the same system (12) but with α = 0.4 and measurements
given by a zonal sensor (D, f ) where D = [0.25,0.35] and f ≡ 1. The output function
is given as follows

z(t) = 〈 f ,y(., t)〉
L2(D)

.

The considered subregion is ω = [0.2,0.6] and the initial state (Supposedly unknown)
is y0(x) = (ex −1)ln(2− x).
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Fig. 2. Evolution of the reconstruction error in function of the sensor’s location.

Fig. 3. Initial and estimated initial state in ω = [0.2,0.6].

The reconstruction error is ‖y0 −ϕ0‖L2(ω)
= 3.2×10

−3
.

We also see, in Fig. 3, that the reconstructed initial state and the initial one are
besides each other in the desired subregion ω .

The following table shows the evolution of the reconstruction error in function of
the geometric domain of the sensor.
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Table 1. Evolution of the reconstruction error in function of the geometric domain of the sensor.

Geometric domain of the sensor Error

[0.15, 0.25] 1.8×10−3

[0.25, 0.35] 3.2×10−3

[0.35, 0.45] 1.9×10−3

[0.45, 0.55] 4.77×1011

[0.55, 0.65] 3.5×10−3

[0.65, 0.75] 2.9×10−3

[0.75, 0.85] 2.6×10−3

[0.85, 0.95] 3.4×10−3

The same remark about the position of the sensor applies here. We see that if the
sensor is placed in [0.45,0.55] then the sensor is not strategic.

6 Conclusion

In this work, we studied the regional reconstruction of the initial state for a Riemann-
Liouville type time-fractional diffusion system, and for that we adopted an extension
of the Hilbert uniqueness method, which was introduced by the french mathematicians
Jacques-Louis Lions. We supposed the admissibility condition on the observation oper-
ator, which is necessary when it is unbounded, and that the considered system is approx-
imately regionally observable, which is also necessary, because we can’t reconstruct
the initial state, regionally, if the system isn’t at least approximately regionally observ-
able. We proposed an algorithm that helps us achieve our goal and at the end we gave
two successful numerical results, with satisfying errors of reconstruction, to valid our
algorithm. For the future, we are working on the concept of regional observability for
semilinear fractional diffusion systems, we also plan on making the algorithm better in
order to get a lesser error.
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Abstract. We introduce the stability notion of the fractional differential
systems under Riemann–Liouville time derivative of order α ∈ (0, 1),
evolving on a spatial domain Ω. Then, we characterize the asymptotic
behavior of the state. Also, we present sufficient and necessary conditions
to achieve the exponential stability of this important class of systems.
Hence, we study the state stabilization of fractional differential systems
by means of decomposition method. Several examples and simulations
are given to show the applicability of our presented results.

1 Introduction

The fractional calculus history dates back to the Seventeenth century (more
precisely to 1695), when the possible meaning of the half order differentiation was
discussed by Marquis de L’Hospital and Gottfried Wilhelm Leibniz. Since then,
this question has been studied by many well-known mathematicians over the
years, such as: Euler, Feller, Fourier, Laurent, Letnikov, Liouville, Grünewald,
Riemann and many others. However, the fractional calculus theory has been
evolved speedily since the Nineteenth century, mainly as a foundation of several
mathematical branches such as, fractional differential systems and fractional
geometry. Moreover, during last decades, the investigation, especially, of the
fractional differential systems theory was motived by the great development of
fractional calculus one. Hence, nowadays, the fractional differential systems have
been proved as a powerful tool to characterize various dynamical models and
many real world systems. For example, it can be mentioned viscoelastic systems
[1], diffusion and some heat transfer process [5], amongst others.

Stability analysis is an interesting concept in differential systems and control
theories, as well as in their applications. Indeed, the stability of integer order
differential systems was widely studied ([2,13,16]). Many approaches were used
to establish several degrees of their stability and stabilization: the asymptotic
and exponential stability have been considered using Lyapunov equation [13].
Also, the strong stabilization has been treated by means of Riccati equation
[4]. Moreover, the exponential stabilization has been developed using a specific
state space and system decomposition [16]. Recently, the stability was introduced
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to fractional calculus [11,14,18–20]. Furthermore, many studies investigated the
stability of fractional order systems [17]. For example Qian et al have been devel-
oped some stability analytical results for Riemann-Liouville fractional systems
of order α ∈ (0, 1), including perturbed systems, linear systems and time-delayed
systems [14]. Also, a fractional Lyapunov direct method has been proposed, by
Li et al, to study the power law stability and the exponential stability [11].
Moreover, in [6], Ge et al introduced the regional stability notion for Riemann–
Liouville linear fractional differential systems, where they charcterized the strong
stability using the spectrum properties of the system dynamic and the strong
stabilization via decomposition method.

In this work, we shall present some new stability and stabilization theorems
for Riemann–Liouville linear fractional differential systems of order α ∈ (0, 1).
In details, we formulate the problem and we characterize the asymptotic and
exponential stability of such class of systems in Sect. 2. In Sect. 3, we derive
the fractional differential systems stabilization using especially decomposition
method. Finally, we give a conclusion in the last section which contains a syn-
thesis and some perspectives.

2 Stability of Fractional Differential Systems

In this section we consider, in Ω ⊂ R
n (n = 1, 2, 3, ..), an open bounded subset

with a regular boundary ∂Ω, the following fractional diffusion system, defined as
⎧
⎪⎨

⎪⎩

RL
0 Dα

t z(x, t) = Az(x, t), x ∈ Ω, t ∈ ]0,+∞[
z(η, t) = 0, η ∈ ∂Ω, t ∈ ]0,+∞[
lim

t−→0+
0I

1−α
t z(x, t) = z0(x), x ∈ Ω,

(1)

where A : D(A) ⊂ L2(Ω) −→ L2(Ω) is a linear operator that generates a
C0-semi-group (S(t))t≥0 [3] on L2(Ω), RL

0 Dα
t and 0I

α
t denote, respectively, the

Riemann-Liouville derivative and integral of order α ∈ (0, 1) [10], that are
given by

0I
α
t z(., t) = Γ (α)−1

∫ t

0

(t − υ)α−1z(., υ) dυ

and
RL
0 Dα

t z(., t) =
d

dt
0I

1−α
t z(., t),

with Γ (α) =
∫ +∞

0

yα−1e−y dy is the Gamma function.

The mild solution z ∈ C(0, T, L2(Ω)) of system (1) [7] is defined as

z(., t) = Hα(t)z0(.) = tα−1Kα(t)z0(.), (2)

where

Kα(t) = α

∫ +∞

0

ξφα(ξ)S(tαξ) dξ (3)
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and
φα(ξ) = α−1ξ−1− 1

α Pα(ξ− 1
α ), (4)

with

Pα(ξ) = π−1
+∞∑

n=1

(−1)n Γ (nα + 1)
n!

ξαn−1 sin(nπα), ξ ∈ (0,∞).

Remark 1. Pα(.) represents the function of the probability density.

First, we state some stability definitions.

Definition 1. System (1) is said to be

• Exponentially stable, if for all z0 ∈ L2(Ω) there exist Q and σ > 0 satisfying

‖z(., t)‖ ≤ Qe−σt‖z0‖, ∀t ≥ 0.

• Strongly stable, if for all z0 ∈ L2(Ω) the corresponding solution z(., t) of (1)
fulfills

lim
t−→+∞ ‖z(., t)‖ = 0.

Remark 2. The exponential stability implies the strong one.

In the following theorem we present the link between the strong stability of the
fractional differential system (1) and the spectrum properties of its dynamic A .

Let us introduce the sets

σ1(A) =
{

λ ∈ σ(A) : |arg(λ)| ≤ απ

2

}

and
σ2(A) =

{
λ ∈ σ(A) : |arg(λ)| >

απ

2

}
,

where σ(A) indicates the points spectrum of the operator A.

Theorem 1. Let (λn)n≥1 and (χn)n≥1 be the eigenvalues and the corresponding
eigenfunctions of the operator A, with (χn)n≥1 form an orthonormal basis on
L2(Ω). If σ1(A) = ∅ and ∀λn ∈ σ2(A), n = 1, 2, ..., there exists ε > 0 satisfying
λn ≤ −ε, then the system (1) is strongly stable in Ω.

Proof. For z0 ∈ L2(Ω), the solution of (1) [7] can be written as

z(., t) = tα−1
+∞∑

n=1

Eα,α(λntα)〈z0, χn〉χn(.), ∀z0 ∈ L2(Ω), (5)

where

Eα,α(λntα) =
+∞∑

k=0

(λntα)k

Γ (αk + α)
.
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From (5), one has

‖z(., t)‖2 = t2(α−1)
+∞∑

n=1

(Eα,α(λntα))2〈z0, χn〉2.

Also, using the fact that σ1(A) = ∅ and λn ≤ −ε for all λn ∈ σ2(A), and the
Mittag-Leffler function Eα,α(−x), x ≥ 0, is completely monotonic [15], yields

‖z(., t)‖ ≤ tα−1Eα,α(−εtα)‖z0‖.

It follows, since |Eα,α(−εtα)| ≤ 1 for α ∈ (0, 1) [8], that

‖z(., t)‖ −→ 0 as t −→ +∞.

Example 1. Let’s consider the sub-diffusion system
⎧
⎪⎪⎨

⎪⎪⎩

RL
0 D0.6

t z(x, t) =
∂2

∂x2
z(x, t), x ∈ Ω, t ∈ ]0,+∞[

z(η, t) = 0, η ∈ ∂Ω, t ∈ ]0,+∞[
lim

t−→0+
0I

0.4
t z(x, t) = x3(x − 1), x ∈ Ω,

(6)

with Ω = ]0, 1[. According to (6), we get that the dynamic A =
∂2

∂x2
, with the

eigenvalues being
λn = −n2π2, n ≥ 1 (7)

and the corresponding eigenfunctions being

χn(x) =
√

2 sin(nπx), n ≥ 1.

The solution of system (6) is defined by

z(x, t) = t0.4
+∞∑

n=1

E0.6(λnt0.6)〈z0, χn〉χn(x).

One has, for all n ≥ 1, that

|arg(λn)| = π >
απ

2
=

3π

10
,

which implies that σ1(A) = ∅ and σ2(A) =
{−n2π2, n ≥ 1

}
.

Also, from (7), one has that

λn ≤ −π2, n ≥ 1.

so, for all λn ∈ σ2(A), there exist ε = π2 > 0 such that

λn ≤ −ε, n ≥ 1.

Hence, by applying the above Theorem, we get the strong stability of system (6)
as it is illustrated by Fig. 1.
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Fig. 1. The state z(x, t) behavior of system (6) at t = 0, t = 10, t = 16.

We shall use the next lemma to study the exponential stability for system (1).

Lemma 1. Suppose there exists a function R(.) ∈ L2(0,+∞; R+) fulfilling

‖Hα(t + τ)z‖ ≤ R(t)‖Hα(τ)z‖,∀t, τ ≥ 0, (8)

for all z ∈ L2(Ω), then the operators (Hα(t))t≥0 are uniformly bounded.

Proof. To show the boundedness of (Hα(t))t≥0, we prove that

sup
t≥0

‖Hα(t)z‖ < ∞, ∀z ∈ L2(Ω).

Otherwise, there exists a sequence (t1 + rn), t1 > 0 and rn −→ +∞ with

‖Hα(t1 + rn)z‖ −→ +∞ as n −→ +∞. (9)

From the following relation
∫ +∞

0

‖Hα(τ + rn)z‖2 dτ =
∫ +∞

rn

‖Hα(τ)z‖2 dτ, −→ 0
n−→+∞,

and by Fatou’s Lemma, it follows that

lim inf
n−→+∞ ‖Hα(τ + rn)z‖ = 0,

almost everywhere 0 ≤ τ < +∞.
Thus, for some τ0 < t1 we can find a subsequence rnp

such that

lim
p−→+∞‖Hα(τ0 + rnp

)z‖ = 0. (10)
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Moreover, by virtue of (8), one has

‖Hα(t1 + rnp
)z‖ ≤ R(t1 − τ0)‖Hα(τ0 + rnp

)z‖. (11)

Then, combining (11) and (10), one obtains

‖Hα(t1 + rnp
)z‖ −→ 0 as p −→ +∞, (12)

which is absurd. Hence, using the principale of the uniform boundedness, we get
the stated result.

Theorem 2. Assume that the operator (Hα(t))t≥0 satisfies the condition (8)
and the inequality

‖Hα(t + τ)z‖ ≤ ‖Hα(t)z‖.‖Hα(τ)z‖, ∀t, τ ≥ 0, (13)

holds for all z ∈ L2(Ω), then the system (1) is exponentially stable, if and
only if

∫ +∞

0

‖Hα(t)z‖2 dt < ∞, ∀z ∈ L2(Ω). (14)

Proof. Let us show that

σ0 = lim
t−→+∞

ln ‖Hα(t)‖
t

. (15)

We have, for all t ≥ 0, the following relation

t‖Hα(t)z‖2 =
∫ t

0

‖Hα(t)z‖2 dτ

=
∫ t

0

‖Hα(τ + t − τ)z‖2 dτ.

Using (13), yields

t‖Hα(t)z‖2 ≤
∫ t

0

‖Hα(t − τ)z‖2‖Hα(τ)z‖2 dτ.

Since the operator Hα(t) is bounded for all t ≥ 0, and by virtue of (14), one gets

t‖Hα(t)z‖2 ≤ ξ‖z‖2, for some ξ > 0,

moreover, for t sufficiently large, yields

‖Hα(t)‖ < 1,

hence, there exists t1 > 0 satisfying

ln ‖Hα(t)‖ < 0,
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for all t ≥ t1. Then,

σ0 = inf
t≥0

ln ‖Hα(t)‖
t

< 0.

Furthermore, let Sp = sup
t∈ ]0,t1]

‖Hα(t)‖ with t1 > 0 is fixed. Thus, for every t > t1

we may find an integer β ≥ 0 such that βt1 ≤ t ≤ (β + 1)t1.
From (13), yields

‖Hα(t)‖ = ‖Hα(βt1 + (t − βt1))‖
≤ ‖Hα(βt1)‖‖Hα(t − βt1)‖,

which implies that

ln ‖Hα(t)‖
t

≤ ln ‖Hα(βt1)‖
t

+
ln ‖Hα(t − βt1)‖

t
,

using again condition (13), we obtain that

ln ‖Hα(t)‖
t

≤ βt1
t

ln ‖Hα(t1)‖
t1

+
ln ‖Sp‖

t
,

taking into acount that t1 is arbitrary and
βt1
t

≤ 1, it follows

lim sup
t−→+∞

ln ‖Hα(t)‖
t

≤ inf
t>0

ln ‖Hα(t)‖
t

≤ lim inf
t−→+∞

ln ‖Hα(t)‖
t

,

which implies that (15) is satisfied.
Then, for all σ ∈ ]0,−σ0], there exists Q > 0 such that

‖Hα(t)z‖ ≤ Qe−σt‖z‖,

for all z ∈ L2(Ω) and t ≥ 0.
The converse implication of the theorem is immediate.

Remark 3. When α = 1, we retrieve the exponential stability result established
in [2].

3 Stabilization of Fractional Differential Systems

In this section we investigate the strong stabilization of time fractional differen-
tial systems under Riemann-Liouville derivative of order α ∈ (0, 1), described by

⎧
⎪⎨

⎪⎩

RL
0 Dα

t z(x, t) = Az(x, t) + Bu(x, t), x ∈ Ω, t ∈ ]0,+∞[
z(η, t) = 0, η ∈ ∂Ω, t ∈ ]0,+∞[
lim

t−→0+
0I

1−α
t z(x, t) = z0(x), x ∈ Ω,

(16)

where the operator A is defined as in system (1), the operator B is linear and
bounded from X into L2(Ω), with Ω ⊂ R

n is an open bounded subset and X is
a Hilbert space of controls, and u ∈ L2(0,+∞,X).
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Definition 2. The system (16) is said to be strongly stabilizable if there exists
a bounded operator K ∈ L(L2(Ω),X) such that the system

⎧
⎪⎨

⎪⎩

RL
0 Dα

t z(x, t) = (A + BK)z(x, t), x ∈ Ω, t ∈ ]0,+∞[
z(η, t) = 0, η ∈ ∂Ω, t ∈ ]0,+∞[
lim

t−→0+
0I

1−α
t z(x, t) = z0(x), x ∈ Ω

(17)

is strongly stable in Ω.

The solution of system (17) is defined by

z(., t) = tα−1KK
α (t)z0(.),

with

KK
α (t) = α

∫ +∞

0

ξφα(ξ)SK(tαξ) dξ,

where φα(.) is given by (4) and (SK(t))t≥0 is the semi-group generated by A +
BK.

3.1 Characterization of Stabilization

We have the following theorem.

Theorem 3. Let (λK
n )n≥1 and (χK

n )n≥1 be the eigenvalues and the correspond-
ing eigenfunctions of the operator A + BK, with (χK

n )n≥1 form an orthonormal
basis on L2(Ω). If σ1(A + BK) = ∅ and ∀λK

n ∈ σ2(A + BK), n = 1, 2, ..., there
exists ε > 0 satisfying λK

n ≤ −ε, then the system (16) is strongly stabilizable in
Ω by the control

u(x, t) = Kz(x, t). (18)

Proof. The system (1) admits a unique mild solution [7] given by

z(., t) = tα−1
+∞∑

n=1

Eα,α(λK
n tα)〈z0, χK

n 〉χK
n (.), ∀z0 ∈ L2(Ω),

It follows

‖z(., t)‖2 = t2(α−1)
+∞∑

n=1

(Eα,α(λK
n tα))2〈z0, χn〉2.

Also, Using the fact that σ1(A) = ∅ and λK
n ≤ −ε for all λK

n ∈ σ2(A), and the
Mittag-Leffler function Eα,α(−x), x ≥ 0, is completely monotonic [15], yields

‖z(., t)‖ ≤ tα−1Eα,α(−εtα)‖z0‖.

Using the fact that |Eα,α(−εtα)| ≤ 1 for α ∈ (0, 1) [8], it follows that

‖z(., t)‖ −→ 0 as t −→ +∞,

which means that the system (16) is strongly stabilizable by the feedback control
u(x, t) = Kz(x, t).
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Example 2. Let us consider the fractional diffusion system
⎧
⎪⎨

⎪⎩

RL
0 D0.8

t z(x, t) = Az(x, t) + Bu(t), x ∈ Ω, t ∈ ]0,+∞[
z(0, t) = z(π, t) = 0, t ∈ ]0,+∞[
lim

t−→0+
0I

0.2
t z(x, t) = xsin(x), x ∈ Ω,

(19)

where Ω = ]0, π[, the operator Az = z+
1

4π2

∂2z

∂x2
and the control operator B = I.

The eigenvalues of A are defined by

λn = 1 − n2

4
, n ≥ 1 (20)

and the corresponding eigenfunctions are given by

χn(x) =
√

2 sin(nπx), n ≥ 1.

System (19) is unstable since λ1, λ2 ≥ 0.
Applying the control (18), with K = −I, to system (19). One has, the oper-

ator A + BK =
1

4π2

∂2

∂x2
, with the eigenvalues being

λK
n = −n2

4
, n ≥ 1 (21)

and the corresponding eigenfunctions being χK
n (x) = χn(x), n ≥ 1.

Moreover, one has

z(x, t) = t0.2
+∞∑

n=1

E0.8,0.8(λK
n t0.8)〈z0, χK

n 〉χK
n (x).

From (21), we have

|arg(λK
n )| = π >

απ

2
=

2π

5
,

yields σ1(A + BK) = ∅ and σ2(A + BK) =
{

−n2

4
, n ≥ 1

}

.

Also, from (21), one has that

λK
n ≤ −1

4
, n ≥ 1.

Consequently, from Theorem 3, we conclude that the system (19) is strongly
stabilizable in Ω by the beedback control (18). Numerical illustration is given in
Fig. 2.
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Fig. 2. The state z(x, t) behavior of system (19) at t = 0, t = 3, t = 8 and t = 19.

3.2 Decomposition Approach

In the following, we propose an approach characterizing a feedback control
that guarantees the stabilization of system (16). We suppose that A is a self
adjoint operator with compact resolvent on H = L2(Ω). So, the eigenvalues
(λn)n≥1 of A are real (which can be numbered in decreasing order in such away
that λn −→ −∞

n−→+∞
) and there are at most finitely many nonnegative eigenvalues

(λn)1≤n≤l, each with finite-dimensional eigenspace, such that λn ≥ −δ, for some
δ > 0. Yields σ(A) can be decomposed as

σ(A) = σs(A) ∪ σu(A), (22)

with σs(A) and σu(A) defined as

σs(A) = {λn ≤ −δ, n = l + 1, l + 2...},

σu(A) = {λn ≥ δ, n = 1, 2, ..., l}.

Since the eigenvectors (χn)n≥1 associated to the eigenvalues (λn)n≥1 forms a
complete and orthonormal basis in H [16], then one has the following decompo-
sition of the state space

H = Hs ⊕ Hu,

with
Hs = (I − P )H = V ect{χl+1, χl+2, ...}

and
Hu = PH = V ect{χ1, χ2, ..., χl},
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where the operator P ∈ L(H) represents the projection one [9].
Furthermore, the decomposition of system (16) may be described by
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

RL
0 Dα

t zs(x, t) = Aszs(x, t) + (I − P )Bu(x, t), x ∈ Ω, t ∈ ]0,+∞[
zs(η, t) = 0, η ∈ ∂Ω, t ∈ ]0,+∞[
lim

t−→0+
zs(x, t) = z0s(x) = (I − P )z0(x), x ∈ Ω

zs = (I − P )z, z ∈ L2(Ω)

(23)

and
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

RL
0 Dα

t zu(x, t) = Auzu(x, t) + PBu(x, t), x ∈ Ω, t ∈ ]0,+∞[
zu(η, t) = 0, η ∈ ∂Ω, t ∈ ]0,+∞[
lim

t−→0+
zu(x, t) = z0u(x) = Pz0(x), x ∈ Ω

zu = Pz, z ∈ L2(Ω),

(24)

where As and Au define the restrictions of A on Hs and Hu respectively, with
{

σ(As) = σs(A)
σ(Au) = σu(A)

and the operator Au is bounded on Hu.
For α = 1 case, in [16], it has been shown that if As satisfies the following

spectrum growth condition

lim
t−→+∞

‖Ss(t)‖
t

= sup(Re(σ(As))),

then the stabilization of system (16) boils down to the stabilization of (24).
The following theorem gives an extension of this result to α ∈ (0, 1) case.

Theorem 4. Let the spectrum σ(A) of A satisfies the above spectrum decom-
position assumption (22) and σ(As) ⊂ σ2(A). If the system (24) is strongly
stabilizable by the control

u(x, t) = Kuzu(x, t), (25)

where Ku ∈ L(H,U) with

‖zu(., t)‖ ≤ M t−μ, (26)

for some μ > 0 and M > 0, then the system (16) is strongly stabilizable using
the feedback control (25).

Proof. One has that the system (23) admits a unique mild solution [7] given by

zs(., t) =tα−1
+∞∑

n=l+1

Eα,α(λntα)〈z0s, χn〉χn(.)

+

+∞∑

n=l+1

∫ t

0

(t − τ)α−1Eα,α(λn(t − τ)α)〈(I − P )Bu(., τ), χn〉χn(.) dτ.

(27)
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From the spectrum decomposition relation (22), we have that λn ≤ −δ, for all
n ≥ l+1, then using the completely monotonic property [15] of the Mittag-Leffler
function Eα,α(−x), x ≥ 0, yields

Eα,α(λntα) ≤ Eα,α(−δtα), ∀ n ≥ l + 1, (28)

and
Eα,α(λn(t − τ)α) ≤ Eα,α(−δ(t − τ)α), ∀ n ≥ l + 1. (29)

Replacing (28) and (29) in (27) and applying the control u(x, t) = Kuzu(x, t)
into (23), one obtains

‖zs(., t)‖ ≤tα−1Eα,α(−δtα)‖z0s‖

+ Cp

∫ t

0

(t − τ)α−1τ−μEα,α(−δ(t − τ)α) dτ,

with Cp = MΓ (1 − μ)‖Ku‖‖I − P‖‖B‖. It implies

‖zs(., t)‖ ≤ Eα,α(−δtα)
t1−α

‖z0s‖ + Cp

+∞∑

k=1

∫ t

0

(−δ)k(t − s)αk+α−1s−μ ds

Γ (αk + α)

≤ Eα,α(−δtα)
t1−α

‖z0s‖ + Cp

+∞∑

k=1

(−δ)ktαk+α−μ

Γ (αk + α − μ − 1)
Γ (1 − μ)

≤ Eα,α(−δtα)
t1−α

‖z0s‖ + Cpt
α−μEα,α−μ+1(−δtα).

Then, since σ(As) ⊂ σ2(A), it follows

‖zs(., t)‖ ≤ ω1

t1−α(1 + δtα)
‖zs0‖ + Cp

ω2t
α−μ

1 + δtα
, ω1, ω2 > 0,

which leads to
lim

t−→+∞‖zs(., t)‖ = 0. (30)

On the other hand, taking into acount (26) and that control (25) strongly sta-
bilizes system (24), one gets

lim
t−→+∞‖zu(., t)‖ = 0. (31)

Hence, from the relation

‖z(., t)‖ ≤ ‖zs(., t)‖ + ‖zu(., t)‖, (32)

it follows, by using (31) and (30), that lim
t−→+∞‖z(., t)‖ = 0, which achieves the

proof.
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Example 3. Let’s consider Ω = ]0, 2[ and the fractional diffusion system
⎧
⎪⎪⎨

⎪⎪⎩

RL
0 D0.4

t z(x, t) =
2

9π2

∂2z

∂x2
z(x, t) + δz(x, t) + Bu(t), x ∈ Ω, t ∈ ]0,+∞[

z(0, t) = z(2, t) = 0, t ∈ ]0,+∞[
lim

t−→0+
0I

0.6
t z(x, t) = z0(x), x ∈ Ω,

(33)

where the operator Az =
2

9π2

∂2z

∂x2
+ δz, with δ = 2 and

D(A) = {z ∈ L2(0, 2), z(0, t) = z(2, t) = 0, (∀ t > 0)}

is self-adjoint and the control operator B = δI.
The eigenvalues and the eigenfunctions of A are given by

{
λn = 2 − 2n2

9 , n ≥ 1
χn(x) =

√
2 sin(nπx), n ≥ 1.

One has σ(A) = {16
9

,
4
3
, 0} ∪ {λn, n = 4, 5, ...} which satisfies the spectrum

decomposition assumption (22) with

σs(A) = {2 − 2n2

9
, n = 4, 5, ...},

σu(A) = {16
9

,
4
3
, 0},

and σs(A) ⊂ σ2(A) because of |arg(2 − 2n2

9
)| = π >

0.4π

2
, for all n ≥ 4.

The eigenvectors (χn)n≥1 associated to the eigenvalues (λn)n≥1 forms a com-
plete basis on L2(Ω), thus the system (33) may be decomposed into sub-systems
(23) and (24) with

Aszs =
+∞∑

n=4

λn〈zs, χn〉χn,∀ zs ∈ Hs = V ect{χn, n ≥ 4}

Auzu =
3∑

n=1

λn〈zu, χn〉χn,∀ zu ∈ Hu = V ect{χ1, χ2, χ3}. (34)

On the other hand, system (33) is unstable since λ1, λ2, λ3 ≥ 0.
So, applying the control (18), with K = −I, to the unstable part of system

(33) with (34). It follows that the operator Au + BuK =
2

9π2

∂2

∂x2
, with the

eigenvalues being

λK
n = −2n2

9
, n ≥ 1

and the corresponding eigenfunctions being χK
n (x) = χn(x), n ≥ 1.
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Yields (33) is strongly stabilizable. Indeed, for all λK
n ∈ σu(A), one has that

|arg(λK
n )| = |arg(−2n2

9
)| = π >

0.4π

2
, 1 ≤ n ≤ 3

and
λK

n < −2
9
, 1 ≤ n ≤ 3.

Moreover, one has

zu(x, t) = t0.6
+∞∑

n=4

E0.4,0,4(λK
n t0.4)〈z0, χK

n 〉χK
n (x).

Using the fact that the Mittag-Leffler function Eα,α(−x), x ≥ 0, is completely
monotonic [15], it follows that

‖zu(., t)‖ ≤ ‖t0.6
+∞∑

n=1

E0.4,0,4(−2
9
t0.4)〈zu0, χ

K
n 〉χK

n ‖.

Also, by considering the fact that |Eα,α(−εtα)| ≤ 1 for α ∈ (0, 1) [8] yields

‖zu(., t)‖ ≤ t0.6‖zu0‖,

which means that (26) holds with M = ‖zu0‖ and μ = 0.6.
Hence, all the contitions of Theorem 4 are satisfied. Thus system (33) is

strongly stabilizable by u(x, t) = −2z(x, t).

4 Conclusion

The present paper deals with the concepts of the stability and stabilization of the
state for Riemann–Liouville time fractional differential system of order α ∈ (0, 1).
We investigated several interesting strong stability criterion’s. Also, we explored
the exponential stability. Furthermore, the decomposition method is utilized to
derive the stabilization of fractional differential systems. Hence, we presented
different examples with some simultations to illustrate the applicability of the
estabilished theorems. We claim that our developed results can be useful to
analyse and control the behaviour of several real world phenomena such as some
heat transfer processes and anomalous sub-diffusion ones.

The problem of the state gradient stability of fractional time differential
systems of order α ∈ (0, 1) could be considered as our future work. Various
questions are still open, for example, extending the presented results here to
a class of complex linear fractional systems and studying the stabilization of
fractional semilinear systems as well as nonlinear ones in general, which are
closer to real applications.
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Abstract. In this paper, we consider (i) how to establish semicircu-
lar elements {Uk}N

k=1 induced by N -many mutually orthogonal projec-
tions {qk}N

k=1, for N ∈ (N \ {1}) ∪ {∞}, and the corresponding free

product Banach ∗-probability space L
(N)
Q generated by {Uk}N

k=1, (ii)

the free-distributional data on L
(N)
Q , (iii) certain ∗-homomorphisms on

L
(N)
Q , and (iv) how the ∗-homomophisms of (iii) deform the original free-

distributional data of (ii).

Keywords: Free probability · Projections · (Weighted-)semicircular
elements · Banach ∗-probability spaces · Integer-shifts ·
Restricted-integer-shifts

1 Introduction

In this paper, we study certain ∗-homomorphisms acting on a free product
Banach ∗-algebra L

(N)
Q generated by mutually free, N -many semicircular ele-

ments S(N) = {Uk}N
k=1, induced by mutually orthogonal N -many projections

Qo = {qk}N
k=1, for

N ∈ N
∞
>1

def
= (N \ {1}) ∪ {∞},

where ∞ = |N| . Especially, we consider the cases where such ∗-
homomorphisms are constructed by some shifting processes on the index set

{1, ..., N}
of S(N), or of Qo. The main results show how our ∗-homomorphisms deform

the free probability on L
(N)
Q .
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1.1 Motivations

In earlier works (e.g., [1,4,6,12,15,19–21]), semicircular elements are
constructed-and-studied in topological ∗-probability spaces (e.g., C∗-probability
spaces, or W ∗-probability spaces, or Banach ∗-probability spaces, etc.). Different
from them, the construction of semicircular elements here is motivated by that
of weighted-semicircular elements in the Banach ∗-probability spaces of [5] and
[8] from an analysis on the p-adic number fields Qp, for primes p.

By mimicking the weighted-semicircularity of [5] and [8], a construction of
(weighted-)semicircular elements from arbitrary mutually orthogonal |Z|-many
projections in fixed C∗-probability spaces is introduced, and the correspond-
ing (weighted-)semicircular law(s) is (are) considered in [6] (See short Sects. 3
through Sect. 5 below). Independently, free distributions of free reduced words
in mutually free, multi semicircular elements were characterized, estimated, and
asymptotically estimated by their joint free moments in [7] (See Sect. 6.2 below).

Based on the main results of [6] and [7], the free product Banach ∗-algebra
L
(N)
Q generated by the free semicircular family S(N) = {Uk}N

k=1, which is induced
by the family Qo = {qk}N

k=1 of mutually orthogonal projections q1, ..., qN of an
arbitrary C∗-probability space (Ao, ψo), is considered as a Banach ∗-subalgebra
of the Banach ∗-probability space LQ, generated by mutually free, |Z|-many
semicircular elements. Then the free-distributional data on L

(N)
Q would be char-

acterized naturally (e.g., [7]). And then, we define-and-study a certain type of
∗-homomorphisms on L

(N)
Q . In particular, we are interested in how these mor-

phisms on L
(N)
Q affect the original free-probabilistic information on L

(N)
Q .

1.2 Overview

In short Sects. 2, 3, 4 and 5, we introduce backgrounds of our works briefly.
In Sect. 6, we construct an operator algebra LQ generated by our semicircular
elements under free product, and free-distributional data on LQ are considered.

In Sect. 7, certain shifting processes on Z are defined, and the corresponding
∗-isomorphisms are established on LQ. It is shown that such ∗-isomorphisms
form a subgroup B of the automorphism group Aut(LQ) of LQ; and, it is iso-
morphic to the infinite cyclic abelian group (Z, +) as groups. Interestingly, our
(weighted-)semicircularity on LQ is preserved by the action of B, implying that
the action of B preserves the free probability on LQ.

In Sect. 8, arbitrarily given N -many mutually orthogonal projections of a C∗-
algebra are fixed for N ∈ N

∞
>1, and we study how they induce the corresponding

free semicircular family S(N), and show this family generates the Banach ∗-
probability space L(N)

Q . Especially, L(N)
Q can be understood as a free-probabilistic

sub-structure of LQ of Sect. 7. By restricting the action of B on LQ to that
on L

(N)
Q , it is proven that this restricted action of B distorts the original free

probability “on L
(N)
Q .” Such distortions are characterized.
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2 Preliminaries

For fundamental free probability theory, e.g., see [17,19], and the citations
therein. Free probability is the noncommutative operator-algebraic analogue of
classical measure theory (including probability theory) and statistical analysis. It
is not only an important branch of functional analysis (e.g., [2–4,7,12,14,15]),
but also an interesting application in related fields (e.g., [5,6,8,13,16,20,21]).

We here use combinatorial approach [17] of Speicher. Joint free moments and
joint free cumulants of operators will be computed, and the (free-probabilistic)
free product (of [17] and [19]) will be used without detailed definitions and
backgrounds.

3 The Banach ∗-Algebra LQ

Let (B, ϕ) be a topological ∗-probability space (a C∗-probability space, or a W ∗-
probability space, or a Banach ∗-probability space, etc.), where B is a topological
∗-algebra (a C∗-algebra, resp., a W ∗-algebra, resp., a Banach ∗-algebra, etc.),
and ϕ is a bounded linear functional on B.

An operator a ∈ B is said to be a free random variable, if we understand it as
an element of (B, ϕ). A free random variable a ∈ (B, ϕ) is said to be self-adjoint,
if the operator a is self-adjoint in B in the sense that a∗ = a in B, where a∗ is
the adjoint of a (e.g., [11]).

Definition 3.1. A self-adjoint free random variable a is weighted-semicircular
in (B, ϕ) with the weight t0 ∈ C

× = C \ {0} (or, in short, t0-semicircular), if

kB
n (a, ..., a) =

{
kB
2 (a, a) = t0 if n = 2

0 otherwise, (3.1)

for all n ∈ N, where kB
• (...) is the free cumulant on B in terms of ϕ under

the Möbius inversion of [17].
If t0 = 1 in (3.1), the 1-semicircular element a is said to be semicircular in

(B, ϕ). i.e., a is semicircular in (B, ϕ), if

kn(a, ..., a) =
{

1 if n = 2
0 otherwise, (3.2)

for all n ∈ N.

By the Möbius inversion of [17], the weighted-semicircularity (3.1) is re-
characterized as follows: a self-adjoint operator a is t0-semicircular in (B, ϕ), if
and only if

ϕ(an) = ωn

(
t
n
2
0 cn

2

)
, (3.3)
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where

ωn
def
=

{
1 if n is even
0 if n is odd,

for all n ∈ N, and ck are the k-th Catalan numbers,

ck =
1

k + 1

(
2k
k

)
=

1
k + 1

(2k)!
k!(2k − k)!

=
(2k)!

k!(k + 1)!
,

for all k ∈ N0 = N ∪ {0}.
So, by (3.3), a free random variable a is semicircular in (B, ϕ), if and only if

a is 1-semicircular in (B, ϕ), if and only if

ϕ(an) = ωn cn
2
, (3.4)

for all n ∈ N.
From below, we use the t0-semicircularity (3.1) (or the semicircularity (3.2))

and its characterization (3.3) (resp., (3.4)) alternatively.
If a is a self-adjoint free random variable of (B, ϕ), then

the freemoments {ϕ(an)}∞
n=1,

and

the free cumulants {kB
n (a, ..., a)}∞

n=1

provide equivalent free-distributional data of a in (B, ϕ) (e.g., [17]). Indeed,
the Möbius inversion makes us have

ϕ(an) =
∑

π∈NC(n)

(
Π

V ∈π
kB

|V |(a, ..., a)
)

,

and

kB
n (a, ..., a) =

∑
π∈NC(n)

(
Π

V ∈θ
ϕ(a|V |)

)
μ(π, 1n),

where NC(n) is the lattice of all noncrossing partitions over {1, ..., n}, and
“V ∈ π” means “V is a block of π,” and where μ(π, 1n) is the Möbius functional
values at the interval [π, 1n] in NC(n), where

1n = {(1, ..., n)}
is the maximal element of the lattice NC(n) having a single block (1, ..., n).
We now fix a C∗-probability space (A, ψ), where A is a C∗-algebra, and

assume that A contains mutually orthogonal, |Z|-many projections {qj}j∈Z, i.e.,

q∗
j = qj = q2j in A, for all j ∈ Z, (3.5)
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and

qiqj = δi,jqj in A, for all i, j ∈ Z,

where δ is the Kronecker delta. Remark that there do exist such C∗-
probabilistic structures naturally (e.g., [5,8,11]), or artificially (e.g., [6]).

Fix the family,
Q = {qj : j ∈ Z} in A, (3.6)

of mutually orthogonal projections qj ’s of (3.5).
And let Q be the C∗-subalgebra of A generated by the family Q of (3.6),

Q
def
= C∗ (Q) ⊆ A, (3.7)

where C∗(Y ) are the C∗-subalgebras generated by the subsets Y ∪ Y ∗ of A,
where

Y ∗ = {y∗ : y ∈ Y } in A.

Proposition 3.1. If Q is the C∗-subalgebra (3.7) of A, then

Q
∗-iso= ⊕

j∈Z

(C · qj)
∗-iso= C

⊕|Z|, (3.8)

in A, where ⊕ is the direct product of C∗-algebras.

Proof. The characterization (3.8) is proven by the mutual-orthogonality (3.5)
of Q. �

Define the linear functionals ψj on the C∗-algebra Q by

ψj (qi) = δijψ(qj), for all i ∈ Z, (3.9)

for all j ∈ Z, where ψ is the linear functional of (A, ψ). These linear func-
tionals {ψj}j∈Z of (3.9) are well-defined on Q by (3.8).

Assumption. Let (A, ψ) be a fixed C∗-probability space, and let Q be the
C∗-subalgebra (3.7) of A. From below, we assume

ψ(qj) �= 0 in C
× = C \ {1}, for all j ∈ Z,

where qj are projections in the generating family Q of (3.6). 	

Then, as an independent C∗-algebra, the C∗-subalgebra Q of A forms C∗-

probability spaces (Q, ψj), where ψj are the linear functionals (3.9) on Q, for all j
∈ Z. We call them, the j-th C∗-probability spaces of Q in (A, ψ), for all j ∈ Z.

Now, define bounded linear transformations c and a acting on the C∗-algebra
Q, by linear morphisms satisfying

c (qj) = qj+1, and a (qj) = qj−1, (3.10)

for all j ∈ Z. Then c and a are well-defined operators “acting on Q” by (3.8).
These are understood to be Banach-space operators in the operator space B(Q),
consisting of all bounded linear transformations on Q, by understanding Q as a
Banach space under its C∗-norm topology (e.g., [9]).
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Definition 3.2. The Banach-space operators c and a of (3.10) are said to be
the creation, respectively, the annihilation on Q. Define

l = c + a on Q. (3.11)

We call this Banach-space operator l of (3.11), the radial operator on Q.

Now, define a subspace L of B(Q) by

L
def
= C[{l}]

‖.‖
, (3.12)

equipped with the operator norm,

‖T‖ = sup{‖Tq‖Q : ‖q‖Q = 1}, (3.13)

where ‖.‖Q is the C∗-norm on Q, where Z
‖.‖

are the operator-norm closures
of subsets Z ⊆ B(Q) (e.g., [9]). By (3.12), this subspace L forms a Banach
algebra in the vector space B(Q).

On this Banach algebra L of (3.12), define an operation (∗) by
(∑∞

n=0
tnln

)∗
=

∑∞
n=0

tnln inL, (3.14)

where z are the conjugates of z ∈ C.
Then the operation (3.13) is a well-defined adjoint on L (See [6]), and hence,

every element of L is adjointable (in the sense of [9]) in B(Q). So, the Banach
algebra L of (3.12) forms a Banach ∗-algebra with the adjoint (3.13) in B(Q).
We call this Banach ∗-algebra L, the radial (Banach ∗-)algebra on Q.

Construct now the tensor product Banach ∗-algebra LQ,

LQ = L ⊗C Q, (3.15)

where ⊗C is the tensor product of Banach ∗-algebras, where L is the radial
algebra (3.12).

Definition 3.3. The Banach ∗-algebra LQ of (3.14) is called the radial projec-
tion (Banach ∗-)algebra on Q.

4 Weighted-Semicircular Elements

In this section, we construct weighted-semicircular elements induced by the fam-
ily Q of (3.6) in the radial projection algebra LQ of (3.14). Let (Q, ψj) be the
j-th C∗-probability spaces of Q in (A, ψ), where ψj are the linear functionals of
(3.9), for all j ∈ Z.

Note that, if

uj
def
= l ⊗ qj ∈ LQ, for all j ∈ Z, (4.1)
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then

un
j = (l ⊗ qj)

n = ln ⊗ qj , for all n ∈ N,

for j ∈ Z. i.e., such operators {uj}j∈Z generate LQ, by (3.8), (3.12) and
(3.14).

By (4.1), one can define a linear functional ϕj on LQ by a morphism satisfying
that

ϕj ((l ⊗ qi)n)
def
= ψj (ln(qi)) (4.2)

for all n ∈ N, for all i, j ∈ Z.
By the well-defindness of the linear functionals {ϕj}j∈Z of (4.2), the Banach

∗-algebra LQ forms well-defined Banach ∗-probability spaces,

(LQ, ϕj) , for all j ∈ Z. (4.3)

If c and a are the creation, respectively, the annihilation on Q of (3.10), then

ca = 1Q = ac , the identity operator on Q,

in B(Q). So, one has

cn1an2 = an2cn1 ,∀n1, n2 ∈ N. (4.4)

By (4.4), we have

ln = (c + a)n =
∑n

k=0

(
n
k

)
ckan−k, (4.5)

for all n ∈ N, where
(

n
k

)
=

n!
k!(n − k)!

, for all k ≤ n ∈ N0.

By (4.5), for any n ∈ N,

l2n−1 =
∑2n−1

k=0

(
2n − 1

k

)
ckan−k, (4.6)

and

l2n =
∑2n

k=0

(
2n
k

)
ckan−k =

(
2n
n

)
cnan + [ Rest terms] (4.7)

(e.g., see [6] for details).

Proposition 4.1. Let l be the radial operator on Q. Then

(4.8) l2n−1 does not contain the nonzero 1Q -summand.

(4.9) l2n contains the nonzero 1Q -summand,
(

2n
n

)
· 1Q.
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Proof. The statements (4.8) and (4.9) are shown by (4.6) and (4.7),
respectively. �

Since

un
j = (l ⊗ qj)

n = ln ⊗ qj ,

one has
ϕj

(
u2n−1

j

)
= ψj

(
l2n−1 (qj)

)
= 0, (4.10)

for all n ∈ N, by (4.8).
Also, we have

ϕj

(
u2n

j

)
= ψj

(
l2n (qj)

)
= ψj

((
2n
n

)
qj + [Rest terms]

)

=
(

2n
n

)
ψj (qj) =

(
2n
n

)
ψ (qj) ,

by (4.7) and (4.9). i.e.,

ϕj

(
u2n

j

)
=

(
2n
n

)
ψ (qj) , for all n ∈ N. (4.11)

Thus, by (4.10) and (4.11), the following free-distributional data are obtained.

Proposition 4.2. Fix j ∈ Z, and let uk = l ⊗ qk be the k-th generating operators
of (LQ, ϕj), for all k ∈ Z. Then

ϕj (un
k ) = δj,kωn

((n

2
+ 1

)
ψ (qj)

)
cn

2
, (4.12)

where ωn and cn
2
are in the sense of (3.3) for all k ∈ Z, and n ∈ N.

Proof. By (4.10) and (4.11), one can get that: if uj is the j-th generating operator
of LQ, then

ϕj

(
u2n−1

j

)
= 0,

and

ϕj

(
u2n

j

)
=

(
2n
n

)
ψ (qj) =

(
n + 1
n + 1

)(
2n
n

)
ψ (qj)

= ((n + 1)ψ (qj))
(

1
n + 1

(
2n
n

))

= ((n + 1)ψ (qj)) cn,

for all n ∈ N.
If k �= j in Z, and uk is the k-th generating operator of LQ, then

ϕj (un
k ) = 0, for all n ∈ N,

by (3.9) and (4.2). �
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Based on (4.12), define the linear morphisms,

Ej,Q : LQ → LQ,

by linear transformations satisfying

Ej,Q (un
i )

def
=

⎧⎪⎨
⎪⎩

ψ(qj)
n−1

([n2 ]+1) un
j if i = j

0LQ
, the zero operator of LQ otherwise,

(4.13)

for all n ∈ N, i, j ∈ Z, where [n
2 ] means the minimal integer greater than or

equal to n
2 .

The linear transformations Ej,Q of (4.13) are well-defined on LQ by the
cyclicity (3.12) of a tensor factor L of LQ, and by the structure theorem (3.8) of
the other tensor factor Q of LQ, by (3.14).

Now, define the linear functionals τj on LQ by

τj
def
= ϕj ◦ Ej,Q on LQ, for all j ∈ Z, (4.14)

where Ej,Q are in the sense of (4.13).

Definition 4.1. The Banach ∗-probability spaces,

LQ(j) denote= (LQ, τj) , (4.15)

are called the j-th (free) filter of LQ, for all j ∈ Z.

Observe on the j-th filter LQ(j) of (4.15) that:

τj

(
un

j

)
= ϕj

(
Ej,Q

(
un

j

))

= ϕj

(
ψ(qj)

n−1

([n2 ]+1)
(
un

j

))
= ψ(qj)

n−1

([n2 ]+1) ϕj

(
un

j

)

= ψ(qj)
n−1

([n2 ]+1) ωn

((
n
2 + 1

)
ψ (qj)

)
cn

2
,

by (4.12), i.e.,

τj

(
un

j

)
= ωnψ(qj)ncn

2
, (4.16)

where ωn and cn
2

are in the sense of (3.3), for all n ∈ N, for j ∈ Z.

Lemma 4.3. Let LQ(j) = (LQ, τj) be the j-th filter of LQ, for j ∈ Z. Then

τj (un
i ) = δj,i

(
ωnψ(qj)ncn

2

)
, (4.17)

for all n ∈ N, for all i ∈ Z.
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Proof. If i = j in Z, then the formula (4.17) holds by (4.16). Meanwhile, if i �= j
in Z, then τj (un

i ) = 0, by (4.2) and (4.13). Therefore, the formula (4.17) holds
for all i ∈ Z. �

The following theorem is proven by (4.17).

Theorem 4.4. Let LQ(j) be the j-th filter of LQ, for j ∈ Z. Then the j-th
generating operator (4.1) of LQ is ψ(qj)2-semicircular in LQ(j). Meanwhile, all
other k-th generating operators uk of LQ have the zero free distribution on LQ(j),
for all k �= j in Z.

Proof. Note that the generating operators uk are self-adjoint in LQ, since

u∗
k = (l ⊗ qk)∗ = l ⊗ qk = uk

for all k ∈ Z, by (3.13).
If uj is the j-th generating operator of LQ, then

τj

(
un

j

)
= ωn

(
ψ (qj)

2
)n

2
cn

2
,

for all n ∈ N, by (4.17). Therefore, by (3.3), uj is ψ(qj)2-semicircular in
LQ(j).

Now, suppose k �= j in Z, and take the generating operator uk of LQ(j).
By the self-adjointness of uk, the free distribution of uk is characterized by the
free-moment sequence,

(τ (un
k ))∞

n=1 = (0, 0, 0, 0, ...),

by (4.17). So, uk has the zero free distribution on LQ(j), whenever k �= j. �

By using the Möbius inversion of [17], one can obtain that: if kj
•(...) is the

free cumulant on LQ in terms of a linear functional τj , then

kj
n

⎛
⎝uk, uk, ......, uk︸ ︷︷ ︸

n-times

⎞
⎠ =

{
δj,kψ(qj)2 if n = 2
0 otherwise, (4.18)

for all n ∈ N, for all j, k ∈ Z (e.g., see [6] for details).

5 Semicircular Elements

Let LQ(j) be the j-th filter for j ∈ Z. Then, for a fixed j ∈ Z, the j-th generating
operator uj is ψ(qj)2-semicircular in LQ(j), since

τj

(
un

j

)
= ωnψ(qj)ncn

2
,

equivalently,

kj
n (uj , ..., uj) =

{
ψ(qj)2 if n = 2
0 otherwise, (5.1)

for all n ∈ N, by (4.17) and (4.18).
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Theorem 5.1. Let Uj = 1
ψ(qj)

uj in the j-th filter LQ(j) for j ∈ Z, where uj

is the j-th generating operator of LQ. If

ψ(qj) ∈ R
× = R \ {0} in C

×, (5.2)

then Uj is semicircular in LQ(j), for j ∈ Z.

Proof. Fix j ∈ Z, and assume the condition (5.2) holds. Then

U∗
j =

(
1

ψ(qj)
uj

)∗
= Uj ,

in LQ, because uj is self-adjoint. Consider now that

τj

(
Un

j

)
= 1

ψ(qj)n
τ

(
un

j

)

= 1
ψ(qj)n

(
ωnψ(qj)ncn

2

)
= ωncn

2
,

(5.3)

for all n ∈ N.
Therefore, under (5.2), the self-adjoint free random variable Uj is semicircular

in LQ(j), by (3.4) and (5.3). �

Assumption. For convenience, we assume from below that

ψ(qj) ∈ R
× inC, for qj ∈ Q,

for all j ∈ Z. 	


6 The Free Filterization LQ(Z)

In this section, we construct the free product Banach ∗-probability space LQ(Z)
of the free filters {LQ(j)}j∈Z, and the corresponding sub-structure LQ = (LQ,
τ) generated by a free semicircular family

{Uj ∈ LQ(j) : j ∈ Z},

and study free-distributional information on LQ.

6.1 The Semicircular Filterization LQ

As before, let (A, ψ) be the fixed C∗-probability space containing a family Q =
{qj}j∈Z of mutually orthogonal projections, satisfying

ψ(qj) ∈ R
×, for all j ∈ Z,

and let LQ(j) be the j-th filters of Q, for all j ∈ Z.
From the system,
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{LQ(j) : j ∈ Z},

define the free product Banach ∗-probability space LQ(Z) by

LQ(Z) denote= (LQ(Z), τ)
def
= �

j∈Z

LQ(j) =
(

�
j∈Z

LQ,j , �
j∈Z

τj

)
,

(6.1.1)

with

LQ(Z) = �
j∈Z

LQ,j , with LQ,j = LQ,∀j ∈ Z,

and

τ = �
j∈Z

τj on LQ(Z).

For more about free-probabilistic free product, see [17] and [19].

Definition 6.1. The free product Banach ∗-probability space LQ(Z) of (6.1.1)
is said to be the free filterization of Q ⊂ (A, ψ).

Define now two subsets X and S of LQ(Z) by

X = {uj ∈ LQ(j) : j ∈ Z}, (6.1.2)

and

S = {Uj =
1

ψ(qj)
uj ∈ LQ(j) : j ∈ Z},

where uj are the operators (4.1), for all j ∈ Z.
A subset Y of a topological ∗-probability space (B, ϕ) is said to be a free

family, if all elements of Y are mutually free in (B, ϕ). And, a free family Y is
called a free (weighted-)semicircular family in (B, ϕ), if all elements of Y are
(weighted-)semicircular in (B, ϕ). (e.g., [5] and [19]).

Theorem 6.1. Let X and S be the families of (6.1.2) in LQ(Z).

(6.1.3) X is a free weighted-semicircular family in LQ(Z).
(6.1.4) S is a free semicircular family in LQ(Z).

Proof. Let X be in the family of (6.1.2) in LQ(Z). By (6.1.1), all elements uj of
X are from mutually distinct free blocks LQ(j) for all j ∈ Z, and hence, they
are mutually free in LQ(Z). Thus, the subset X forms a free family in LQ(Z).
Moreover, the powers un

j ∈ LQ(Z) of uj ∈ X are contained in the same free
block LQ(j) as free reduced words with their lengths-1 of LQ(Z), for all n ∈ N,
implying that
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τ
(
un

j

)
= τj

(
un

j

)
= ωnψ(qj)ncn

2
,∀n ∈ N,

by (5.1). Therefore, the statement (6.1.3) holds.
Similarly, the family S of (6.1.2) is a free family in LQ(Z), because

Uj =
1

ψ(qj)
uj = U∗

j , for all j ∈ Z,

and the family X is a free family in LQ(Z). So, the semicircularity (5.4) of
Uj ’s shows that the statement (6.1.4) holds. �

By (6.1.3) and (6.1.4), the “j-th” generating operators uj of the free blocks
LQ(j), and their powers un

j ∈ LQ(j) provide nonzero free-distributional data
on the free filterization LQ(Z). In particular, the free (reduced) words in X ∪ S
(under operator-multiplication on LQ(Z)) have non-vanishing free distributions
on LQ(Z).

Definition 6.2. In the free filterization LQ(Z), define a Banach ∗ -subalgebra
LQ of LQ(Z) by

LQ
def
= C [X ], (6.1.5)

where X is the free weighted-semicircular family (6.1.3) of LQ(Z), and Y
are the topological closures of the subsets Y of LQ(Z). Construct the Banach
∗-probability space,

LQ
denote=

(
LQ, τ = τ |LQ

)
, (6.1.6)

in LQ(Z) = (LQ(Z), τ) . We call LQ of (6.1.5) or (6.1.6), the semicircular
(free-sub-)filterization of LQ(Z).

By the definitions (6.1.5) and (6.1.6), one obtains the following structure
theorem.

Theorem 6.2. Let LQ be the semicircular filterization (6.1.5). Then

LQ = C[S] ∗-iso= �
j∈Z

C[{uj}] ∗-iso= C

[
�

j∈Z

{uj}
]
, (6.1.7)

in LQ(Z), where “∗-iso= ” means “being Banach-∗-isomorphic,” and where (�)
in the first ∗-isomorphic relation of (6.1.7) means the free-probabilistic free prod-
uct of [17] and [19], and (�) in the second ∗-isomorphic relation of (6.1.7) is the
pure-algebraic free product inducing noncommutative free words in X .

Proof. Set-theoretically, one has

X = {ψ(qj)Uj ∈ LQ(j) : j ∈ Z}
in the free filterization LQ(Z), where Uj ∈ S are the semicircular elements

of (6.1.4). Therefore,



Deformed Semicircular Laws 207

C[X ] = C[S] inLQ(Z),

i.e., the equality (=) of (6.1.7) holds.
By the definition (6.1.5) of LQ, it is generated by the free family X , and

hence, the first ∗-isomorphic relation of (6.1.7) holds in LQ(Z) by (6.1.1) and
(6.1.6).

Since

LQ
∗-iso= �

j∈Z

C[{uj}] in LQ(Z),

every element T of LQ is a limit of linear combinations of free reduced words
in X . Note that all (pure-algebraic) free words in X have their unique free-
reduced-word forms as their operator-product in LQ(Z) (e.g., [17] and [19]).
Therefore, the second ∗-isomorphic relation of (6.1.7) holds. �

6.2 Free-Distributional Data Induced by Semicircular Elements

In this section, we consider general free-distributional data on LQ. In particular,
we are interested in joint free moments of S in LQ. Throughout this section,
let (B, ϕ) be an arbitrarily fixed topological ∗-probability space, and suppose
there are N -many semicircular elements x1, ..., xN in (B, ϕ), for N ∈ N \ {1}.
Assume further that they are free from each other in (B, ϕ).

By the self-adjointness of these semicircular elements x1, ..., xN ∈ (B, ϕ),
the free distribution, say

ρ
denote= ρx1,...,xN

,

of them are characterized by the joint free-moments

∞∪
n=1

(
∪

(i1,...,in)∈{1,...,N}n
{ϕ (xi1xi2 ...xin)}

)
(6.2.1)

(e.g., [17]). i.e., the free distribution ρ of (6.2.1), is characterized by the free-
moments,

N∪
l=1

{ϕ(xn
l )}∞

n=1 , (6.2.2)

and the “mixed” free-moments,

∞∪
s=2

⎧⎨
⎩ϕ

(
xn1

i1
xn2

i2
...xns

is

)
∣∣∣∣∣∣

(i1, ..., is) ∈ {1, ..., N}s

are mixed in {1, ..., N},
for all n1, ..., ns ∈ N

⎫⎬
⎭ , (6.2.3)

by (6.2.1). To characterize the free distribution ρ, we consider the free-
distributional data (6.2.2) and (6.2.3), independently.
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Corollary 6.3. The free-distributional data (6.2.2) of ρ are determined by the
semicircularity. i.e.,

ϕ (xn
l ) = ωncn

2
, for all n ∈ N, (6.2.4)

for all l = 1, ..., N.

Proof. The formula (6.2.4) is obtained by the semicircularity (3.4). �

Let’s concentrate on the free-distributional data (6.2.3) of the free distribu-
tion ρ. For any s ∈ N \ {1}, we fix an s-tuple Is,

Is
denote= (i1, ..., is) ∈ {1, ..., N}s, (6.2.5)

which is mixed in {1,..., N} in the sense that there exists at least one entry
ik0 in Is such that ik0 �= il, for some l �= k0 in {1, ..., s}.

For example,

I8 = (1, 1, 3, 2, 4, 2, 2, 1),

in {1, 2, 3, 4, 5}8.
From the sequence Is of (6.2.5), define a set

[Is] = {i1, i2, ..., is}, (6.2.6)

without considering repetition. For instance, if I8 is as above, then

[I8] = {i1, i2, ..., i8},

with

i1 = i2 = i8 = 1,

i4 = i6 = i7 = 2,

i3 = 3, and i5 = 4.

i.e., all 1’s in I8 are regarded as distinct elements i1, i2 and i8 in the set [I8].
From the set [Is] of (6.2.6), define a unique “noncrossing” partition π(Is) of

the non-crossing-partition lattice NC ([Is]) over [Is], such that (i) starting from
the very first entry i1, construct the block V1 of π(Is), satisfying

V1 =
(
ij1 = i1, ij2 , ..., ij|V1|

)
∈ π(Is), (6.2.7)

⇐⇒

∃k ∈ {1, ..., N}, s.t., ij1 = ij2 = ... = ij|V | = k,

and then do the same process to the very next entry other than ij1 , ...,
ij|V1| , step-by-step, until such processes end, (ii) such a partition π(Is) of (i) is
“maximal” in NC ([Is]) (e.g., [17]).
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For example, if I8 and [I8] are as above, then there exists a noncrossing
partition

π(I8) = {(i1, i2, i8), (i3), (i4, i6, i7), (i5)}
= {(1, 1, 1), (3), (2, 2, 2), (4)},

in NC([I8]), satisfying the above conditions (i) and (ii). In this case,

V1 = {i1, i2, i8} = {1, 1, 1}, as in (6.2.7).

Denote the noncrossing partition π(Is) ∈ NC ([Is]) of (6.2.6) by

π(Is) = {V1, ..., Vt},

where t ≤ s and Vk ∈ π(Is) are the blocks of (ii), satisfying (i), for k = 1, ..., t.
Then the partition π(Is) is the joint partition,

π(Is) = 1|V1| ∨ 1|V2| ∨ ... ∨ 1|Vt|, (6.2.8)

where 1|Vk| are the maximal partitions of NC (Vk), for all k = 1, ..., t, by
regarding Vk as discrete sets.

Let Is be in the sense of (6.2.5), and let xi1 , ..., xis be the corresponding
semicircular elements of (B, ϕ) induced by Is, without considering repetition in
the set {x1, ..., xN} of our fixed mutually free, N -many semicircular elements
of (B, ϕ). And then, define a free random variable X[Is] by

X[Is]
def
=

s

Π
l=1

xil ∈ (B,ϕ). (6.2.9)

If X[Is] is a free random variable (6.2.9), then

ϕ (X[Is]) =
∑

π∈NC([Is])

kπ

by the Möbius inversion of [17], where kπ are the partition-depending free
cumulants of [17],

kπ = Π
V ∈π

kV ,

where kV is the block-depending free cumulants of [17], and hence, it goes to

=
∑

π∈NC([Is]), π≤π(Is)

kπ

by the mutual-freeness of x1, ..., xN in (B, ϕ)

=
∑

(θ1,...,θt)∈NC(V1)×...×NC(Vt)

kθ1∨...∨θt
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by (6.2.8)

=
∑

(θ1,...,θt)∈NC2(V1)×...×NC2(Vt)

kθ1∨...∨θt

=
∑

(θ1,...,θt)∈NC2(V1)×...×NC2(Vt)

(
t

Π
l=1

kθl

)
, (6.2.10)

by the semicircularity (3.2) of xi1 , ..., xis in (B, ϕ), where NC2(X) is the
subset,

NC2(X) = {π ∈ NC(X) : ∀V ∈ π, |V | = 2}, (6.2.11)

of the noncrossing-partition lattice NC(X) over sets X.
By (6.2.10), (6.2.11) and (3.2), if there is at least one k0 ∈ {1, ..., t}, such

that |Vk0 | is odd in N (or equivalently, if s is odd), then

ϕ (X[Is]) = 0,

where X[Is] is in the sense of (6.2.9).
Meanwhile, if

|Vk| ∈ 2N, for all k = 1, ..., t, (6.2.12)

where 2N = {2n : n ∈ N}, then the formula (6.2.10) is nonzero.
More precisely, if the condition (6.2.12) is satisfied, then the summands

kθ1∨...∨θt
of (6.2.10) satisfy that

kθ1∨...∨θt
= Π

V ∈θ1∨...∨θt

kV = Π
V ∈θ1∨...∨θt

(
t

Π
i=1

1#(θi)

)
= 1, (6.2.13)

by the semicircularity (3.2), where #(θi) are the number of blocks of θi, for
all i = 1, ..., t. Therefore, if the condition (6.2.12) holds, then

ϕ (X[Is]) =
∑

(θ1,...,θt)∈NC2(V1)×...×NC2(Vt)

1

= |NC2 (V1) × ... × NC2 (Vt)| ,
(6.2.14)

by (6.2.10) and (6.2.13), where |Y | are the cardinalities of sets Y.

Theorem 6.4. Let Is be a mixed s-tuple (6.2.5), and let X[Is] =
s

Π
l=1

xil be the

corresponding free random variable (6.2.9) of (B, ϕ). If

π(Is) = 1|V1| ∨ ... ∨ 1|Vt|,

in the sense of (6.2.7) and (6.2.8), then

ϕ (X[Is]) =

⎧⎪⎪⎨
⎪⎪⎩

t

Π
i=1

c |Vi|
2

if |Vk| ∈ 2N,
for all k = 1, ..., t

0 otherwise,

(6.2.15)
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where ck are the k-th Catalan numbers for all k ∈ N0.

Proof. Under hypothesis,
ϕ (X[Is])

=

⎧⎪⎪⎨
⎪⎪⎩

|NC2 (V1) × ... × NC2 (Vt)| if |Vk| ∈ 2N,
for all k = 1, ..., t

0 otherwise,

by (6.2.14).
Recall that, for every countable set X, with |X| ∈ 2N, the set

NC2 (X) = {θ ∈ NC(X) : ∀V ∈ θ, |V | = 2}
is equipotent (or bijective) to the noncrossing-partition lattice NC

(
|X|
2

)
over {1, ..., |X|

2 } (e.g., [5] and [8]). i.e., if |Vk| ∈ 2N, then

|NC2 (Vk)| =
∣∣∣∣NC

( |Vk|
2

)∣∣∣∣ , (6.2.16)

for all k = 1, ..., t. So, we have
ϕ (X[Is])

=

⎧⎪⎪⎨
⎪⎪⎩

∣∣∣NC
(

|V1|
2

)
× ... × NC

(
|Vt|
2

)∣∣∣ if |Vk| ∈ 2N,
for all k = 1, ..., t

0 otherwise,

=

⎧⎪⎨
⎪⎩

t

Π
l=1

c |Vl|
2

if |Vl| ∈ 2N, for all l = 1, ..., t

0 otherwise,

(6.2.17)

by (6.2.16), because |NC(X)| = c|X|, for all finite sets X (e.g., [7,8,14,17]).
Therefore, the formula (6.2.15) holds by (6.2.17). �

Remark 6.1. The more combinatorial computational techniques, and the
refined results of (6.2.15) are considered “analytically” in [7], including direct
estimations, and asymptotic estimations of (6.2.15). However, in this paper, the
free-distributional data (6.2.15) is enough for our purposes. The importance here
is that the free-distributional data induced by mutually free, multi semicircular
elements are dictated by the semicircularity (3.2), by (6.2.4) and (6.2.15).

We provide some examples before finishing this section.
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Example 6.1. (1) Let x1, x2, x3, x4 be mutually free semicircular elements of
(B, ϕ), and let

W = x2
1x

4
2x

2
1x

2
3 ∈ (B,ϕ)

be a free reduced word with its length-4. Then one can take

IW = (1, 1, 2, 2, 2, 2, 1, 1, 3, 3) let= (i1, ..., i10),

and

π(IW ) = {(i1, i2, i7, i8), (i3, i4, i5, i6), (i9, i10)},

with
V1 = {i1, i2, i7, i8} = {1, 1, 1, 1},
V2 = {i3, i4, i5, i6} = {2, 2, 2, 2},

and
V3 = {i7, i8} = {3, 3}.

Therefore,

ϕ (W ) = c 4
2
c 4

2
c 2

2
= c22c1 = 4.

(2) Meanwhile, if W = x2
1x3x2x4x

2
2x1 ∈ (B, ϕ), then

IW = (1, 1, 3, 2, 4, 2, 2, 1) ,

and

π(I8) = {(i1, i2, i8), (i3), (i4, i6, i7), (i5)}
= {(1, 1, 1), (3), (2, 2, 2), (4)}

satisfying that

ϕ (X[I8]) = ϕ
(
x2
1x3x2x4x

2
2x1

)
= c 3

2
c 1

2
c 3

2
c 1

2
= 0,

by (6.2.15).
(3) Now, let W = x4

1x
4
2x

6
1x

4
2 ∈ (B, ϕ). Then one can take

IW = (i1, i2, ..., i18),

having

π(I18) = {V1, V2, V3},

with

V1 = {i1, i2, i3, i4, i9, i10, i11, i12, i13, i14},

and

V2 = {i5, i6, i7, i8}, V3 = {i15, i16, i17, i18}.
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(Here, since all entries of V2 and V3 are identical to 2, one may/can be
tempted to make a block

{i5, i6, i7, i8, i15, i16, i17, i18},

but, in such a case, this block has crossing with V1, disobeying the conditions
(i) and (ii)!)

Therefore,

ϕ
(
x4
1x

4
2x

6
1x

4
3

)
= c 10

2
c 4

2
c 4

2
= 168,

by (6.2.15).

6.3 Free-Distributional Data on LQ

Let LQ be our semicircular filterization (6.1.5) of the free filterization LQ(Z),
generated by the free semicircular family S of (6.1.4). By the structure theorem
(6.1.7), all free random variables of LQ are the limits of linear combinations of
free reduced words, formed by

W =
N

Π
l=1

Unl
jl

, for Ujl ∈ S,∀l = 1, ..., N, (6.3.1)

in S, for all N ∈ N, where n1, ..., nN ∈ N, and the N -tuple (j1, ..., jN ) is
alternating in Z.

Theorem 6.5. Let W be a free reduced word (6.3.1) of LQ in S.

(6.3.2) If j1 = j2 = ... = jN in (6.3.1), then τ(W ) is characterized by (6.2.4).
(6.3.3) If (j1, ..., jN ) is mixed in (6.3.1), then τ(W ) is determined by (6.2.15).

Proof. Note that all semicircular elements of any topological ∗-probability spaces
have the same free distribution, “the” semicircular law, characterized by the free-
moment sequence

(0, c1, 0, c2, 0, c3, 0, c4, ...),

equivalently, the free-cumulant sequence

(0, 1, 0, 0, 0, 0, ...),

by (3.2) and (3.4), where ck are the k-th Catalan numbers for all k ∈ N.
By this universality of the semicircular law (or, by the identically-free-

distributedness of all semicircular elements in terms of [19]), the statements
(6.3.2) and (6.3.3) are shown by (6.2.4) and (6.2.15), respectively. �

The above theorem characterizes the free-distributional data on the semicir-
cular filterization LQ, in terms of joint free moments of generating semicircular
elements of S, by (6.3.2) and (6.3.3).
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7 Integer-Shifts on LQ

In this section, let (A, ψ) be the fixed C∗-probability space containing a family
Q = {qj}j∈Z of mutually-orthogonal projections qj ’s having

ψ(qj) ∈ R
×, for all j ∈ Z,

and let LQ be the semicircular filterization.

7.1 (±)-Shifts on Z

Let Z be the set of all integers. Define functions h+ and h− on Z by

h+(j) = j + 1, (7.1.1)

and

h−(j) = j − 1,

for all j ∈ Z. By the definition (7.1.1), these two functions h± are well-defined
bijections on Z, satisfying h−1

+ = h−, where f−1 mean the functional inverses of
invertible functions f.

Then, for these bijections h± of (7.1.1), one can construct the bijections h
(n)
±

on Z,

h
(n)
± = h± ◦ h± ◦ · · · ◦ h±︸ ︷︷ ︸

n-times

, (7.1.2)

for all n ∈ N, with identities, h
(1)
± = h±, where (◦) is the usual functional

composition. It is easy to check that

h
(n)
± (j) = j ± n, for all j ∈ Z,

for all n ∈ N.

Definition 7.1. We call the functions h
(n)
± of (7.1.2), the n-(±)-shifts on Z,

for n ∈ N.

7.2 Integer-Shifts on LQ

Let h
(n)
± be n-(±)-shifts of (7.1.2) on Z, for all n ∈ N. Define now a multiplicative

bounded linear transformation β± on LQ by the morphisms satisfying that:

β± (Uj) = Uh±(j), (7.2.1)

for Uj ∈ S, for all j ∈ Z, where S is our free semicircular family (6.1.4) of
LQ(Z), generating LQ.

By (6.1.6) and (6.1.7), the above multiplicative linear transformation β± of
(7.2.1) is well-defined on LQ.
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Lemma 7.1. Let Y =
N

Π
l=1

Unl
jl

∈ LQ, for Uj1 , ..., UjN ∈ S, and n1, ..., nN ∈ N,

for N ∈ N. Then

β± (Y ) =
N

Π
l=1

Unl

h±(jl)
. (7.2.2)

Proof. If Y ∈ LQ be as above, then, by the multiplicativity of β±, one has that

β±(Y ) =
N

Π
l=1

β±
(
Unl

jl

)
=

N

Π
l=1

(β± (Ujl))
nl =

N

Π
l=1

Unl

h±(jl)
.

So, the formula (7.2.2) holds. �

Let uj1 , ..., ujN ∈ X be weighted-semicircular elements of LQ, for N ∈ N,
where X is the free weighted-semicircular family (6.1.3), generating LQ, and let

X =
N

Π
l=1

unl
jl

, for n1, ..., nN ∈ N.

Then one has

β± (X) = β±

((
N

Π
l=1

ψ(qjl)
nl

)(
N

Π
l=1

Unl
jl

))

since

Ujl =
1

ψ(qjl)
ujl ∈ S ⇐⇒ ujl = ψ(qjl)Ujl ∈ X ,

so, the above formula goes to

=
(

N

Π
l=1

ψ(qjl)
nl

)
β±

(
N

Π
l=1

Unl
jl

)

=
(

N

Π
l=1

ψ(qjl)
nl

) (
N

Π
l=1

Unl

h±(jl)

)
, (7.2.2)′

by (7.2.2)
By (7.2.2)′, one can see that the freeness on LQ is preserved to that on LQ.

Theorem 7.2. The multiplicative linear transformations β± of (7.2.1) are ∗-
isomorphisms on LQ.

Proof. By (6.1.5) and (6.1.6), each element of the semicircular filterization LQ

is a limit of linear combinations of free reduced words in the generating free
semicircular family S. So, we focus on free reduced words of LQ in S.

Let (j1, ..., jN ) be an alternating N -tuple in Z for N ∈ N, and let

Y =
N

Π
l=1

Unl
jl

, for n1, ..., nN ∈ N.
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be a free reduced word with its length-N in LQ by (6.1.7).
Then, by (7.2.2),

β±(Y ) =
N

Π
l=1

Unl

h±(jl)
, (7.2.3)

are free reduced words with their lengths-N in LQ, where h± are the (±)-
shifts (7.1.1) on Z, since

(h±(j1), ..., h±(jN )) = (j1 ± 1, ..., jN ± 1)

are alternating in Z, too.
Also, if Y is as above, then

β±(Y ∗) = β±

(
N

Π
l=1

U
nN−l+1
jN−l+1

)

by the self-adjointness of Uj1 , ..., UjN

=
N

Π
l=1

U
nN−l+1

h±(jN−l+1)

by

=
(

N

Π
l=1

Unl

h±(jl)

)∗
= (β±(Y ))∗

,

showing that
β±(S∗) = (β±(S))∗

, for all S ∈ LQ. (7.2.4)

By (7.2.4), the bijective bounded multiplicative linear transformations β± of
(7.2.1) are well-defined ∗-isomorphisms on LQ. �

The above theorem illustrates that the (±)-shifts h± of (7.1.1) on Z induce
the ∗-isomorphisms β± of (7.2.2) on LQ.

Definition 7.2. The ∗-isomorphisms β± of (7.2.1) are said to be (±)-integer-
shift(-∗-isomorphism)s on LQ.

These two ∗-isomorphisms β± satisfy the following identity relation on LQ.

Lemma 7.3. The (±)-integer shifts β± satisfy

β+β− = 1LQ
= β−β+on LQ, (7.2.5)

where 1LQ
is the identity map on LQ.

Proof. It is enough to consider the cases where we have free reduced words
formed by

Y =
N

Π
l=1

Unl
jl

of LQ, for n1, ..., nN ∈ N,

for N ∈ N, where (j1, ..., jN ) is alternating in Z. Observe that

β+β−(Y ) = β+

(
N

Π
l=1

Unl

h−(jl)

)
= β+

(
N

Π
l=1

Unl
jl−1

)

=
N

Π
l=1

Unl

h+(jl−1) =
N

Π
l=1

Unl
jl−1+1 = Y.
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Similarly,

β−β+(Y ) = Y, in LQ.

So, for any arbitrary operators S ∈ LQ,

β+β−(S) = S = β−β+(S), in LQ.

Thus, the relation (7.2.5) holds. �

From the (±)-shifts β± on LQ, construct the ∗-isomorphisms βn
±,

βn
± = β±β± · · · · · ·β±︸ ︷︷ ︸

n-times

on LQ, (7.2.6)

for all n ∈ N0 = N ∪ {0}, with axiomatization:

β0
+ = 1LQ

= β0
−.

Since β± and 1LQ
are well-defined ∗-isomorphisms, the morphisms βn

± of
(7.2.9) are well-defined ∗-isomorphisms on LQ, too, for all n ∈ N0.

Definition 7.3. Let βn
± be the ∗-isomorphisms (7.2.6) on the semicircular fil-

terization LQ, for all n ∈ N0, with axiomatization β0
± = 1LQ

. Then we call them
the n-(±)-(integer-)shifts on LQ, for all n ∈ N0.

By (7.2.5) and (7.2.6), we obtain the following relation on the set {βn
± : n ∈

N0}.

Lemma 7.4. Let βn
± be the n-(±)-shifts on LQ, for n ∈ N0. Then

βn1
+ βn2− = βn2− βn1

+ =

⎧⎨
⎩

1LQ
if n1 = n2

βn1−n2
+ if n1 > n2

βn2−n1− if n1 < n2,
(7.2.7)

on LQ, for all n1, n2 ∈ N0. And

βn1
+ βn2

+ = βn1+n2
+ , and βn1− βn2− = βn1+n2− , (7.2.8)

on LQ, for all n1, n2 ∈ N0.

Proof. The formulas (7.2.7) and (7.2.8) are proven by the straightforward com-
putations. �

The above relations (7.2.7) and (7.2.8) can be re-expressed as follows;

βn1
e1

βn2
e2

= βn2
e2

βn1
e1

= β
|e1n1+e2n2|
sgn(e1n1+e2n2)

on LQ, (7.2.9)

with
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sgn(e1n1 + e2n2) =
{

+ if e1n1 + e2n2 ≥ 0
− if e1n1 + e2n2 ≤ 0,

for all e1, e2 ∈ {±}, and n1, n2 ∈ N0, where sgn is the sign map,

sgn(j) =
{

+ if j ≥ 0
− if j < 0,

for all j ∈ Z, and |.| is the absolute value on Z.
Now, let

B = {βn
±}n∈N0 . (7.2.10)

Then it is a subset of the automorphism group,

Aut (LQ) =

⎛
⎝

⎧⎨
⎩α : LQ → LQ

∣∣∣∣∣∣
α are

∗ -isomorphisms
on LQ

⎫⎬
⎭ , ·

⎞
⎠ , (7.2.11)

of all ∗-isomorphisms on LQ, where the operation (·) is the product of ∗-
isomorphisms.

By (7.2.10), this system B is clearly a “subset” of the automorphism group
Aut(LQ) of (7.2.11). Note that, by (7.2.9),

(
βn1

e1
βn2

e2

)
βn3

e3
= β

|e1n1e2n2|
sgn(e1n1e2n2)

βn3
e3

= β
|e1n1e2n2e3n3|
sgn(e1n1e2n2e3n3)

= βn1
e1

β
|e2n2e3n3|
sng(e2n2e3n3)

= βn1
e1

(
βn2

e2
βn3

e3

)
, (7.2.12)

on LQ, for all e1, e2, e3 ∈ {±}, n1, n2, n3 ∈ N0.

Theorem 7.5. Let B be the subset (7.2.10) of Aut(LQ). Then

(7.2.13) B is a subgroup of Aut(LQ).

Proof. Let B be the set (7.2.10). By (7.2.9), the operation (·) is closed on B.
By (7.2.12), this operation is associative on B.

Since

β0
+ = 1LQ

= β0
− ∈ B,

and

βn
e · 1LQ

= βn
e = 1LQ

· βn
e on LQ,

for all e ∈ {±}, and n ∈ N0, the set B contains the group-identity 1LQ
of

Aut (LQ) .
By (7.2.7), all elements βn

± ∈ B have their unique (·)-inverses βn
∓ ∈ B, such

that

βn
+βn

− = 1LQ
= βn

−βn
+ on LQ,

for all n ∈ N0,
Therefore, the system B is a subgroup of Aut(LQ). �
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As a subgroup of Aut (LQ), the group B satisfies the following algebraic
property.

Theorem 7.6. Let B be the subgroup (7.2.10) of Aut(LQ). Then

B
Group

= (Z,+), (7.14)

where “
Group

= ” means “being group-isomorphic,” where (Z, +) is the infinite
cyclic abelian group.

Proof. Define a function Φ : Z → B by

Φ : j ∈ Z �−→ β
|j|
sgn(j) ∈ B, (7.2.15)

with correspondence

0 ∈ Z �−→ 1LQ
= β0

± ∈ B.

Then this function Φ of (7.2.15) is a well-defined bijection from Z onto B,
by (7.2.6). And it satisfies that

Φ(j1 + j2) = β
|j1+j2|
sgn(j1+j2)

= β
|j1|
sgn(j1)

β
|j2|
sgn(j2)

= Φ(j1)Φ(j2),
(7.2.16)

in B, for all j1, j2 ∈ Z.
So, the bijection Φ is a group-homomorphism by (7.2.16), i.e., the relation

(7.14) holds. �

The above theorem characterizes the algebraic structure of the group B =
{βn

±}n∈N0 in the automorphism group Aut(LQ).

Definition 7.4. The subgroup B of the automorphism group Aut(LQ) is called
the integer-shift (sub)group (of Aut(LQ) acting) on LQ.

7.3 Free Distributions on LQ Affected by B

Let B be the integer-shift group (7.2.10) acting on the semicircular filterization
LQ of Q. We here consider how the action of our ∗-isomorphisms βn

± ∈ B affects
the original free-distributional data on the semicircular filterization LQ.

Take an arbitrary free reduced word,

Y =
N

Π
l=1

Unl
jl

inLQ (7.3.1)

where Ujl = 1
ψ(qjl )

ujl ∈ S are the generating semicircular elements of LQ,

where ujl ∈ X are the ψ(qj)2-semicircular elements, for all l = 1, ..., N, for N
∈ N, and where the N -tuple (j1, ..., jN ) is alternating in Z, and n1, ..., nN ∈ N.
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Theorem 7.7. Let Y be a free reduced word (7.3.1) of LQ in S. Then

τ
(
βk

e (Y )
)

= τ(Y ), (7.3.2)

for all e ∈ {±} and k ∈ N0.

Proof. First assume that N = 1, and hence, Y = Un1
j1

in LQ. Then, by the
semicircularity of Uj1 , Uj1ek ∈ S in LQ, one has that

τ
(
βk

e (Y )
)

= τ
(
Un1

jek

)
= ωn1cn1

2
= τ

(
Un1

j1

)
, (7.3.3)

for all βk
e ∈ B.

Assume now that N > 1 in N, and the free reduced word Y ∈ LQ with its
length-N is in the sense of (7.3.1). Note that the image

βk
e (Y ) =

N

Π
l=1

Unk

jlek

is again a free reduced word with the same length-N in LQ, for all βk
e ∈ B.

Now, let Is be the s-tuple of (6.2.5), satisfying

Y = X[Is] in LQ, for some s ≥ N,

where X[Is] is in the sense of (6.2.9). Similarly, let Is′ be the s′-tuple of
(6.2.5), satisfying

βk
e (Y ) = X[Is′ ] in LQ,

for βk
e ∈ B, where X[Is′ ] is in the sense of (6.2.9).

Then, since Y and βk
e (Y ) are the same-length free reduced words having the

same free-ness structure, one has not only

s = s′ in N,

but also

π(Is) = π(Is′) in NC ([Is])
lattice= NC ([Is′ ]) ,

where π(Is) and π(Is′) are the noncrossing partitions of (6.2.7), and “lattice= ”
means “being lattice-isomorphic.” (Recall that if X and Y are finite discrete
sets, then NC(X) and NC(Y ) are lattice-isomorphic, if and only if |X| = |Y |
in N).

By the semicircularity (7.3.3) of Uj1 , ..., UjN , Uj1ek, ..., UjNek ∈ S in LQ, we
have

τ
(
βk

e (Y )
)

= τ (X[Is′ ]) = τ (X[Is]) = τ (Y ) ,

by (6.2.15) or (6.3.3), for all βk
e ∈ B.

Therefore, the statement (7.3.2) holds. �
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The above theorem shows how the original free distributional data on the
semicircular filterization LQ is affected by the group-action of the integer-shifts
of B on LQ. i.e., B preserves the free probability on LQ, by (7.3.2).

8 Semicircular Elements Induced by Multi Projections

Now, we have all ingredients for studying our main interests. In this section, we
show that if there are N -many mutually orthogonal projections in an arbitrary
C∗-probability space, then there exists a corresponding free semicircular family
S(N), induced by the projections in a certain free product Banach ∗-probability
space L

(N)
Q , for any

N ∈ N
∞
>1 = (N \ {1}) ∪ {∞}.

And then, consider certain ∗-homomorphisms acting on L
(N)
Q , and study how

they deform the free probability on L
(N)
Q .

8.1 A Free Semicircular Family S(N ) Induced by N-many
Projections

Let (Ao, ψo) be a C∗-probability space containing its N -many mutually orthog-
onal projections

Qo = {qo
1, ..., q

o
N} (8.1.1)

for N ∈ N
∞
>1, and let

Qo = C∗ (Qo) ⊆ Ao (8.1.2)

be the C∗-subalgebra of A generated by the family Qo of (8.1.1).
Suppose

ψo (qo
k) ∈ R

× in C,∀k = 1, ..., N. (8.1.3)

Proposition 8.1. Let Qo be the C∗-subalgebra (8.1.2). Then

Qo
∗-iso=

N⊕
l=1

(C · qo
l ) ∗-iso= C

⊕N . (8.1.4)

Proof. Since the generating set Qo of Qo consists of mutually orthogonal N -
many projections qo

1, ..., qo
N , the structure theorem (8.1.4) is immediately

proven. �

Suppose there is a C∗-probability space (A, ψ) containing a family Q =
{qj}j∈Z of mutually orthogonal |Z|-many projections qj ’s, satisfying

ψ (qj) ∈ R
× in C, for all j ∈ Z.

Assume further that there exist projections qj1 , ..., qjN ∈ Q, such that

ψ (qjl) = ψo (qo
l ) inR

×, (8.1.5)
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for all l = 1, ..., N, where ψo is the linear functional on the C∗-algebra Ao,
satisfying the condition (8.1.3).

For convenience, we re-index the subfamily

{qj1 , ..., qjN } of Q (8.1.6)

by

{q1, ..., qN} in Q,

without loss of generality, from below.

Theorem 8.2. Let Qo be the C∗-subalgebra (8.1.2) of a fixed C∗-probability
space (Ao, ψo), generated by the family Qo of (8.1.1). Then, under (8.1.5) and
(8.1.6), there exists a Banach ∗-subalgebra

L
(N)
Q

∗-iso=
N
�

l=1
C[{Ul}]

of the semicircular filterization LQ of (6.1.5).

Proof. Let Q = C∗(Q) be the C∗-subalgebra (3.7) of the C∗-probability space
(A, ψ) satisfying (8.1.5), under the re-indexing process (8.1.6). First, define a
linear morphism

Ψ : Qo → Q

by

Ψ
(∑N

l=1
tlq

o
l

)
def
=

∑N

l=1
tlql +

∑
j∈Z \ {1,...,N}

0 · qj .

Then it is an injective ∗-homomorphism from Qo to Q, by (3.8) and (8.1.4).
Thus, one can construct the semicircular elements

Ul = l ⊗ ql = l ⊗ Ψ (qo
l ) ∈ LQ, (8.1.7)

in the free semicircular family S of (6.1.4), generating the semicircular filter-
ization LQ, for all l = 1, ..., N.

By the structure theorem (6.1.7) of LQ, one can define the Banach ∗-
subalgebra

L
(N)
Q

def
= C[{U1, ..., UN}]

∗-iso= C [{l ⊗ Ψ(qo
l ) : l = 1, ..., N}]

∗-iso=
N
�

l=1
C[{l ⊗ Ψ(qo

j )}] =
N
�

l=1
C[{Ul}] (8.1.8)

of LQ, by (8.1.7).
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It shows that: if the condition (8.1.5) is satisfied under (8.1.6), then the family
Qo of (8.1.1) induces Banach ∗-probability space,

L
(N)
Q =

(
L
(N)
Q , τ = τ |

L
(N)
Q

)
,

generated by the free semicircular family

S(N) = {Ul = l ⊗ Ψ(qo
l )}N

l=1, (8.1.9)

as a free-probabilistic sub-structure of the semicircular filterization LQ. �

The above theorem shows that if the conditions (8.1.3) and (8.1.5) are satis-
fied under the re-indexing process (8.1.6), then the family Qo of (8.1.1) induces
a Banach ∗-probability space L

(N)
Q of (8.1.8) generated by the free semicircular

family S(N) of (8.1.9), as an embedded free-probabilistic sub-structure of the
semicircular filterization LQ of (6.1.5).

Remark 8.1. As we briefly discussed in [6], whenever such a family Qo of
(8.1.1) in a C∗-probability space (Ao, ψo) is fixed, in fact, one can construct
the corresponding C∗-probability space (A, ψ), having its family Q of mutually
orthogonal |Z|-many projections, artificially-but-naturally.

Assume first that N < ∞ in N
∞
>1. If Qo = C∗ (Qo) is the C∗-subalgebra

(8.1.2) of Ao, satisfying (8.1.4), then one can construct the direct product C∗-
algebra Q,

Q = ⊕
k∈Z

Qo,k
∗-iso= C

⊕|Z|, with Qo,k = Qo,

equipped with its linear functional ψ,

ψ = ⊕
k∈Z

ψo,k on Q, with ψo,k = ψo.

So, in the above C∗-probability space (Q, ψ) (or a C∗-probability space (A,
ψ) with A ⊇ Q), there exist infinitely many projections q, such that

ψ(q) = ψo(ql), for some l ∈ {1, ..., N}.

Assume now that N = ∞ in N
∞
>1, and let

Qo = C∗ (Qo) = C∗ ({qo
1, qo

2, q03 , ...}) .

Then, for convenience, by the canonical re-indexing, one can let

Qo = C∗ ({qo
0, qo

1, qo
2, ...}) ,

by identifying qo
i with qo

i−1, for all i ∈ N.
Now, consider a subfamily Q′

o of Qo,

Q′
o = {qo

−1, q
o
−2, ...} = {qo

0, q
o
1, q

o
2, ...} \ {qo

0},
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with identity:

qo
−k = qo

k, for all k ∈ N,

of the re-indexed family Qo, and construct

Q′ = C∗ (Q′
o) .

Then we have the direct product C∗-algebra

Q = Qo ⊕ Q′
o

∗-iso= C
⊕|Z|,

equipped with its linear functional

ψ = ψo ⊕ ψ′
o, with ψ′

o = ψo |Q′
o
,

satisfying

ψ (qo
0) = ψo(qo

0), and ψ
(
qo
±n

)
= ψo (qo

n) ,

for all n ∈ N.
Therefore, in fact, whenever such a family Qo of (8.1.1) is fixed in a C∗-

probability space (Ao, ψo), there does exist a family Q of mutually orthogonal
|Z|-many projections in a C∗-probability space (Q, ψ) (or (A, ψ) with A ⊇ Q),
such that Q automatically satisfies (8.1.5) (and (8.1.6)).

By the above remark, the following corollary is regarded as a re-statement
of the above theorem.

Corollary 8.3. Let (Ao, ψo) be an arbitrary C∗-probability space containing
mutually orthogonal N -many projections q1, ..., qN , satisfying (8.1.3), for N ∈
N

∞
>1. Then there exists a free semicircular family S(N) induced by {qk}N

k=1 in a
certain Banach ∗-probability space L

(N)
Q .

Proof. The proof is done by (8.1.7), (8.1.8), (8.1.9), and the very above
remark. �

8.2 Restricted Integer-Shifts on L
(N )
Q

Let (Ao, ψo) be a C∗-probability space containing the family Qo of (8.1.1), sat-
isfying (8.1.3). In Sect. 8.1, we showed that such a family Qo of mutually orthog-
onal N -many projections induces the free semicircular family S(N) of (8.1.9) in
a free product Banach ∗-probability space

L
(N)
Q = (L(N)

Q , τ), with τ = τ |
L
(N)
Q

,

of (8.1.8), for N ∈ N
∞
>1. Moreover, this Banach ∗-probability space is under-

stood as a free-probabilistic sub-structure of the semicircular filterization LQ of
(6.1.5).
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Since the integer-shift group

B = {βk
e ∈ Aut(LQ) : e ∈ {±}, k ∈ N0}

of (7.2.13) acts on LQ naturally, as an infinite cyclic abelian group, one can
restrict the action of B on LQ to that on L

(N)
Q .

Lemma 8.4. Let βk
e ∈ B be an integer-shift on LQ, and Ul ∈ S(N), a semi-

circular element, generating L
(N)
Q , for l = 1, ..., N, and suppose βk

e |
L
(N)
Q

is the

restriction of βk
e on L

(N)
Q , also denoted simply by βk

e . If

N ∈ N>1 = N
∞
>1 \ {∞},

then

βk
e (Ul) =

{
Ulek if 1 ≤ lek ≤ N
O otherwise, (8.2.1)

in L
(N)
Q , where O is the zero element of L(N)

Q .
Meanwhile, if N = ∞ in N

∞
>1, then

βk
e (Ul) =

⎧⎨
⎩

Ul+k if e = +
Ul−k if e = −, and l > k
O if e = −, and l ≤ k,

(8.2.2)

in L
(N)
Q .

Proof. First, assume that N < ∞ in N
∞
>1, i.e., N ∈ N>1, and fix l ∈ {1, ..., N}

arbitrarily, and let βk
e ∈ B be an integer-shift on LQ. Let’s restrict βk

e on L
(N)
Q ,

i.e.,

βk
e

denote= βk
e |

L
(N)
Q

on L
(N)
Q .

Then, for a semicircular elements Ul ∈ S(N), generating L
(N)
Q , one has that:

if e = +, then

βk
e (Ul) =

{
Ul+k if l + k ≤ N
O if l + k > N ; (8.2.3)

and if e = −, then

βk
e (Ul) =

{
Ul−k if l − k ≥ 1
O if l − k < 1,

(8.2.4)

in L
(N)
Q .

By (8.2.3) and (8.2.4), one obtains that

βk
e (Ul) =

{
Ulek if 1 ≤ lek ≤ N
O otherwise, (8.2.5)
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in L
(N)
Q . Therefore, the formula (8.2.1) holds by (8.2.5).

Now, assume that N = ∞ in N
∞
>1. Then, the restricted action of βk

e ∈ B on
L
(N)
Q satisfies that: if e = +, then

βk
e (Ul) = Ul+k; (8.2.6)

if e = −, then

βk
e (Ul) =

{
Ul−k if l − k ≥ 1
O if l − k < 1,

(8.2.7)

in L
(N)
Q . Therefore, the formula (8.2.2) is shown by (8.2.6) and (8.2.7). �

The above lemma not only show how the restricted action of the integer-
shift group B on L

(N)
Q acts on the free generator set S(N), but also demonstrates

that the restrictions of integer-shifts are no longer ∗-isomorphisms on L
(N)
Q , in

general.
Let B be an arbitrary topological ∗-algebra. Then the (∗-)homomorphism

semigroup Hom(B) is defined to be the semigroup (under composition)

Hom(B) = {f : f is a ∗ -homomorphism on B}.

Since the zero map on B is contained in Hom(B), it cannot be a group
(under composition), however, it forms a well-defined semigroup.

Notation. From below, we denote the family of restricted integer-shifts on L
(N)
Q

by B(N), i.e.,

B(N) =
{

βk
e |

L
(N)
Q

∣∣∣∣ βk
e ∈ B, with

e ∈ {±}, k ∈ N0

}
. (8.2.8)

Also, for convenience, we denote the restrictions βk
e |

L
(N)
Q

∈ B(N), simply by

βk
e , as above. 	


Lemma 8.5. Let B(N) be the set (8.2.8) of the restricted integer-shifts on L
(N)
Q .

Then

B(N) ⊆ Hom
(
L
(N)
Q

)
, (8.2.9)

equivalently, every element βk
e ∈ B(N) is a ∗-homomorphism on L

(N)
Q .

Proof. First, assume that N ∈ N>1 in N
∞
>1. If βk

e ∈ B(N) satisfies

lek < 1, or lek > N,∀l = 1, ..., N, (8.2.10)

then such a restricted integer-shift βk
e is identified with the zero ∗-

homomorphism 0(N)
Q on L

(N)
Q , i.e.,
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βk
e (T ) = 0(N)

Q (T ) = O in L
(N)
Q ,

for all T ∈ L
(N)
Q , by (8.1.8), (8.2.1) and (8.2.10).

And hence, all elements βk
e of B(N) satisfying (8.2.10) are identified with

0(N)
Q , i.e.,

βk
e = 0(N)

Q ∈ Hom
(
L
(N)
Q

)
. (8.2.11)

Suppose that βk
e ∈ B(N) satisfies

1 ≤ lek ≤ N, (8.2.12)

for some l ∈ {1, ..., N}. Then, by (8.2.1), the morphism βk
e is a well-defined

∗-homomorphism on L
(N)
Q , since it is the restriction of a ∗-isomorphism on LQ ⊇

L
(N)
Q . i.e.,

βk
e ∈ Hom(L(N)

Q ), (8.2.13)

under (8.2.12).
So, if N ∈ N>1, then

B(N) ⊆ Hom
(
L
(N)
Q

)
, (8.2.14)

by (8.2.11) and (8.2.13).
Assume now that N = ∞ in N

∞
>1. If βk

+ ∈ B(N), then

βk
+ ∈ Hom

(
L
(N)
Q

)
; (8.2.15)

if βk
− ∈ B(N), then

βk
− ∈ Hom

(
L
(N)
Q

)
, (8.2.16)

by (8.2.2), because there are infinitely many semicircular elements {Ul}∞
l=1

generating L
(N)
Q . However, in this case,

βk
e �= 0(N)

Q inHom
(
L
(N)
Q

)
,∀k ∈ N0, e ∈ {±}, (8.2.17)

different from (8.2.11). Indeed, for any arbitrarily fixed βk
− ∈ B(N), there

always exists n > k in N, such that

βk
−(Un) = Un−k �= O in LQ.

Therefore, if N = ∞ in N
∞
>1, then

B(N) ⊆ Hom
(
L
(N)
Q

)
\ {0(N)

Q }, (8.2.18)

by (8.2.15), (8.2.16) and (8.2.17).
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In conclusion, if B(N) is the family (8.2.8) of the restricted integer-shifts on
L
(N)
Q , then

B(N) ⊆ Hom
(
L
(N)
Q

)
,

by (8.2.14) and (8.2.18), for all N ∈ N
∞
>1. �

The relation (8.2.9) shows that all restricted integer-shifts of the family B(N)

of (8.2.8) are well-defined ∗-homomorphisms on L
(N)
Q . However, they cannot be

∗-isomorphisms in general on L
(N)
Q . Also, from the proof of (8.2.9), one can realize

that the size of B(N) can be much smaller than the original integer-shift group
B, especially when N < ∞ in N

∞
>1. Also, the proof shows that

N < ∞ ⇐⇒ 0(N)
Q ∈ B(N).

Definition 8.1. Let B(N) be in the sense of (8.2.8). We call B(N), the
restricted(-integer)-shift family on L

(N)
Q , for N ∈ N

∞
>1.

Now, consider an algebraic property of the restricted-shift family B(N) in
the homomorphism semigroup Hom

(
L
(N)
Q

)
. Recall that the integer-shift group

B is a group acting on LQ in Aut (LQ) . How about the restricted-shift family

B(N) in Hom
(
L
(N)
Q

)
? This question can be answered by (8.2.1) and (8.2.2).

If the subset B(N) were an algebraic structure embedded in Hom
(
L
(N)
Q

)
,

then the following relation should hold;

βk1
e1

, βk2
e2

∈ B(N) =⇒ βk1
e1

βk2
e2

∈ B(N). (8.2.19)

For instance, if B(N) were an algebraic structure, and if βk
e ∈ B(N), then

βk
+βk

−, βk
−βk

+ should be in B(N).

Observe now that, for a generating semicircular element Uk ∈ S(N) of L(N)
Q ,

with

k ≥ 1, with 1 ≤ 2k ≤ N,

in {1, ..., N}, one has that

βk
−βk

+ (Uk) = βk
−

(
βk
+ (Uk)

)
= βk

− (Uk+k)

= βk
− (U2k) = U2k−k = Uk,

(8.2.20)

meanwhile, (8.2.20)

βk
+βk

− (Uk) = βk
+ (Uk−k) = βk

+ (O) = O,
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in L
(N)
Q .

The relation (8.2.20) illustrates that two ∗-homomorphisms βk
+βk

−, and βk
−βk

+

are distinct ∗-homomorphisms in Hom
(
L
(N)
Q

)
, i.e.,

βk
+βk

− �= βk
−βk

+ in Hom
(
L
(N)
Q

)
. (8.2.21)

The relation (8.2.21) shows that there does “not” exist βn
e = βn

e |
L
(N)
Q

∈ B(N),

such that either

βn
e = βk

+βk
−, or βn

e = βk
−βk

+, in B(N),

by (8.2.8), i.e.,

βk
+βk

− �= βk
−βk

+ /∈ B(N), (8.2.22)

⇐⇒

βk
+βk

− �= βk
−βk

+ ∈ Hom
(
L
(N)
Q

)
\ B(N).

i.e., the relation (8.2.19) does not hold on B(N), equivalently, the multipli-
cation on ∗-homomorphisms is not closed (or, well-defined) on B(N).

Theorem 8.6. The restricted-shift family B(N) of (8.2.8) is a subset of
Hom

(
L
(N)
Q

)
, but it is not an algebraic sub-structure of Hom

(
L
(N)
Q

)
.

Proof. By (8.2.9), the restricted-shift family B(N) is a well-defined subset of the
homomorphism semigroup Hom(L(N)

Q ). However, by (8.2.22), it cannot be an

algebraic sub-structure of Hom
(
L
(N)
Q

)
. �

The above theorem shows that, different from the integer-shift group B,
a subgroup of the automorphism group Aut (LQ) , our restricted-shift families

B(N) have no nice algebraic properties as a subset of Hom
(
L
(N)
Q

)
, for N ∈

N
∞
>1. However, every restricted shift βk

e ∈ B(N) acts nicely on L
(N)
Q , as a ∗-

homomorphism.

8.3 Free Probability on L
(N )
Q Affected by B(N )

In this section, we consider how the restricted-shift family B(N) deform the
original free-distributional data on the free product Banach ∗-probability space
L
(N)
Q of (8.1.8).

Theorem 8.7. Let βk
e ∈ B(N) be a restricted shift on L

(N)
Q , and let Ul ∈ S(N)

be a semicircular element of L(N)
Q , for l ∈ {1, ..., N}, for N ∈ N

∞
>1. Then the

free distribution of Wl = βk
e (Ul) is either the semicircular law, or the zero free

distribution in L
(N)
Q .
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Proof. Under hypothesis, for any N ∈ N
∞
>1,

Wl =
{

Ulek ∈ S(N) if 1 ≤ lek ≤ N
O, otherwise,

in L
(N)
Q , by (8.2.1), (8.2.2), (8.2.9) and (8.2.19). So, if Wl = Ulek ∈ S(N), then

it is semicircular, while, if Wl = O, then it follows the zero free distribution in
L
(N)
Q . �

The above theorem characterizes how the action of the restricted-shift fam-
ily B(N) deform the semicircular law induced by S(N); the semicircularity is
deformed to be either the semicircular law, or the zero free distribution. So, one
can have the following generalized result.

Theorem 8.8. Let Ul1 , ..., Uls be semicircular elements of S(N), for

Is = (l1, ..., ls) ∈ {1, ..., N}n,

for n ∈ N, in L
(N)
Q , and let βk

e ∈ B(N) be a restricted shift on L
(N)
Q . Define

a free (non-reduced, or reduced) word X[Is] by

X[Is] =
s

Π
t=1

Ult ∈ L
(N)
Q . (8.3.1)

Then one has either

τ
(
βk

e (X[Is])
)

= τ (X[Is]) , satisfying (6.2.15) (8.3.2)

or

τ
(
βk

e (X[Is])
)

= 0.

Proof. Let X[Is] be in the sense of (8.3.1). Then it is a well-defined free random
variable of L(N)

Q , as a free (non-reduced, or reduced) word in S(N), by (8.1.8).
Assume first that there exists at least one entry lp in the s-tuple Is such that

βk
e

(
Ulp

)
= O,

up to (8.2.1), or (8.2.2). Then, by the multiplicativity of βk
e ∈ B(N),

βk
e (X[Is]) = βk

e (Ut1) · · · βk
e

(
Ulp

) · · · βk
e (Uls) = O

in L
(N)
Q , implying that

τ
(
βk

e (X[Is])
)

= 0.

Meanwhile, if

βk
e (Ult) �= O in L

(N)
Q , for all t = 1, ..., s,
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then

τ
(
βk

e (X[Is])
)

= τ (X[Is]) ,

by (6.3.2), (6.3.3), (7.3.2), (7.3.3), (8.2.1) and (8.2.2), because βk
e preserves

the free “reduced” word of X[Is] (as an operator) to the same-length free
reduced word βk

e (X[Is]) with the same free-ness in L
(N)
Q . Therefore, the free-

distributional data (8.3.2) holds. �

The above theorem generalizes Theorem 8.7 by (8.3.2). But, the proof of
Theorem 8.8 illustrates that the free-distributional data (8.3.2) is dictated by
the free-probabilistic information of Theorem 8.7, too.
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1 Introduction

A finite generalized continued fraction is of the form
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...
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where p0, p1, . . . , pm and q1, q2, . . . , qm can be any complex numbers or functions.
It can also be written equivalently as

p0 +
m

K
�=1

q�

p�
= p0 +

m∑

�=1

q�|
|p�

= p0 +
q1

p1+
q2

p2+
· · · qm−1

pm−1+
qm

pm
.

In this paper, we will use the second compact form above. For more information
on the theory of continued fractions, please refer to the papers [7,14] and closely
related references therein.

In general, a tridiagonal matrix of order n is defined for n ∈ N by

Dn =
(
ei,j

)
1≤i,j≤n

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α1 β1 0 0 · · · 0 0 0 0
γ1 α2 β2 0 · · · 0 0 0 0
0 γ2 α3 β3 · · · 0 0 0 0
0 0 γ3 α4 · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · αn−3 βn−3 0 0
0 0 0 0 · · · γn−3 αn−2 βn−2 0
0 0 0 0 · · · 0 γn−2 αn−1 βn−1

0 0 0 0 · · · 0 0 γn−1 αn

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (1.1)

where

ei,j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

αi, 1 ≤ i = j ≤ n;
βi, 1 ≤ i = j − 1 ≤ n − 1;
γj , 1 ≤ j = i − 1 ≤ n − 1;
0, otherwise.

In the papers [15,16,18], the determinant |Dn| and some special cases were
discussed, computed, and applied to several problems in analytic combinatorics
and analytic number theory. In the papers [2,5,6,9,15,16,18], there are some
computation of the inverse and determinant of the general tridiagonal matrix
Dn. For more information about this topic, please refer to the papers [4,8,12,13]
and closely related references therein.

Let n ≥ 2 and

Pn =
(
pi,j

)
1≤i,j≤n

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 c1 0 0 · · · 0 0 0 0
a2 b2 c2 0 · · · 0 0 0 0
a3 0 b3 c3 · · · 0 0 0 0
a4 0 0 b4 · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

an−3 0 0 0 · · · bn−3 cn−3 0 0
an−2 0 0 0 · · · 0 bn−2 cn−2 0
an−1 0 0 0 · · · 0 0 bn−1 cn−1

an 0 0 0 · · · 0 0 0 bn

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (1.2)
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where

pi,j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ai, 1 ≤ i ≤ n, j = 1;
bi, 2 ≤ i = j ≤ n;
ci, 1 ≤ i = j − 1 ≤ n − 1;
0, otherwise.

In this paper, by the help of mathematical induction and some proper-
ties of determinants, we will present several explicit and recurrent formulas
for evaluations of two determinants |Pn| and |Dn| and will apply these newly-
established formulas to evaluations for determinants of the Sylvester matrix and
two Sylvester type matrices.

2 Explicit and Recurrent Formulas for |Pn|
Right now we start off to present explicit and recurrent formulas for |Pn|.
Theorem 2.1. Let n ≥ 2 and bk �= 0 for 2 ≤ k ≤ n. Then the determinant |Pn|
can be computed recurrently by

|Pn| = λ1,n

n∏

k=2

bk, (2.1)

where
λk,n = ak − ck

bk+1
λk+1,n, 1 ≤ k ≤ n − 1 (2.2)

and λn,n = an.

Proof. When n = 2, it is easy to see that

|P2| =
∣∣∣∣
a1 c1
a2 b2

∣∣∣∣ = a1b2 − a2c1

and

λ1,2

2∏

k=2

bk = λ1,2b2 =
(

a1 − c1λ2,2

b2

)
b2 =

(
a1 − c1a2

b2

)
b2 = a1b2 − a2c1 = |P2|.

This means that the formula (2.1) is valid for n = 2.
Assume that the formula (2.1) validates for n = m−1, equivalently speaking,

|Pm−1| = λ1,m−1

m−1∏

k=2

bk.
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When n = m, expanding the determinant |Pm| according to the first rank and
utilizing the assumption for n = m − 1 give

|Pm| = a1

m∏

k=2

bk − c1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a2 c2 0 · · · 0 0 0 0
a3 b3 c3 · · · 0 0 0 0
a4 0 b4 · · · 0 0 0 0
...

...
...

. . .
...

...
...

...
am−3 0 0 · · · bm−3 cm−3 0 0
am−2 0 0 · · · 0 bm−2 cm−2 0
am−1 0 0 · · · 0 0 bm−1 cm−1

am 0 0 · · · 0 0 0 bm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= a1

m∏

k=2

bk − c1λ2,m

m∏

k=3

bk =
(

a1 − c1
b2

λ2,m

) m∏

k=2

bk = λ1,m

m∏

k=2

bk.

By mathematical induction, we derive the formula (2.1). The proof of
Theorem 2.1 is complete.

Theorem 2.2. For n ≥ 2, the determinant |Pn| can be computed explicitly by

|Pn| = a1

n∏

k=2

bk −
n∑

k=2

(−1)k

(
k−1∏

�=1

c�

n∏

m=k+1

bm

)
ak. (2.3)

Proof. From the recurrent relation (2.2), it follows that

λ1,n = a1 − c1
b2

λ2,n

= a1 − c1
b2

(
a2 − c2

b3
λ3,n

)

= a1 − c1
b2

[
a2 − c2

b3

(
a3 − c3

b4
λ4,n

)]

= · · ·

= a1 − c1
b2

[
a2 − c2

b3

(
a3 − c3

b4

[
a4 − · · · − c�−1

b�

(
a� − c�

b�+1
λ�+1,n

)])]

= · · ·

= a1 − c1
b2

[
a2 − c2

b3

(
a3 − c3

b4

[
a4 − · · · − c�−1

b�

(
a� − · · ·

− cn−3

bn−2

[
an−2 − cn−2

bn−1

(
an−1 − cn−1

bn
λn,n

)])])]

= a1 − c1
b2

[
a2 − c2

b3

(
a3 − c3

b4

[
a4 − · · · − c�−1

b�

(
a� − · · ·

− cn−3

bn−2

[
an−2 − cn−2

bn−1

(
an−1 − cn−1

bn
an

)])])]
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= a1 − c1
b2

(
a2 − c2

b3

[
a3 − c3

b4

(
a4 − · · · − c�−1

b�

[
a� − · · ·

− cn−3

bn−2

(
an−2 − cn−2

bn−1
an−1 +

cn−2cn−1

bn−1bn
an

)])])

= a1 − c1
b2

(
a2 − c2

b3

[
a3 − c3

b4

(
a4 − · · · − c�−1

b�

[
a� − · · ·

−
(

cn−3

bn−2
an−2 − cn−3cn−2

bn−2bn−1
an−1 +

cn−3cn−2cn−1

bn−2bn−1bn
an

)])])

= · · ·

= a1 −
n∑

k=2

(−1)k

(
k∏

�=2

c�−1

b�

)
ak

for n ≥ 2. Substituting this result into (2.1) and simplifying lead to (2.3). The
proof of Theorem 2.2 is complete.

Remark 2.1. Applying ak = k, bk = k, and ck = k to the explicit formula (2.3)
in Theorem 2.2 reveals

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 0 0 · · · 0 0 0 0
2 2 2 0 · · · 0 0 0 0
3 0 3 3 · · · 0 0 0 0
4 0 0 4 · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

n − 3 0 0 0 · · · n − 3 n − 3 0 0
n − 2 0 0 0 · · · 0 n − 2 n − 2 0
n − 1 0 0 0 · · · 0 0 n − 1 n − 1

n 0 0 0 · · · 0 0 0 n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
1 − (−1)n

2
n!.

3 Explicit and Recurrent Formulas for |Dn|
Now we are in a position to present explicit and recurrent formulas for |Dn|.
Theorem 3.1. For n ∈ N, the determinant |Dn| can be explicitly and recur-
rently computed by

|Dn| = α1α2 + (α1 − β1γ1)
n∏

m=3

[
αm +

m−2

K
�=1

(−βm−�γm−�)
αm−�

]
(3.1)

−
n∑

k=3

[
k−1∏

�=1

(β�γ�)

]∏n
m=k+1

[
αm + K

m−2
�=1

(−βm−�γm−�)
αm−�

]

∏k−1
m=2

[
αm + K

m−2
�=1

(−βm−�γm−�)
αm−�

]

and

|Dn| = η1,n

(
α2 +

n∏

k=3

[
αk +

k−2

K
�=1

(−βk−�γk−�)
αk−�

])
, (3.2)
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where K
p
�=q for p < q is understood to be zero,

η1,n = −1− β1

α2
η2,n, η2,n = γ1 − β2

α3 − β2γ2
α2

η3,n, η3,n = −γ1γ2

α2
− β3

α4 − β3γ3

α3− β2γ2
α2

η4,n,

ηk,n = (−1)k

∏k−1
�=1 γ�

α2 +
∏k−1

�=3

[
α� + K

�−2
m=1

(−β�−mγ�−�)

α�−m

] − βk

αk+1 + K
k−1
�=1

(−βk−�+1γk−�+1)

αk−�+1

ηk+1,n

for 4 ≤ k ≤ n − 1, and

ηn,n = (−1)n

∏n−1
�=1 γ�

α2 +
∏n−1

k=3

[
αk + K

k−2
�=1

(−βk−�γk−�)
αk−�

] .

Proof. The determinant |Dn| of the tridiagonal matrix Dn in (1.1) can be
rewritten as

|Dn| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

α1 β1 0 0 · · · 0 0 0 0
γ1 α2 β2 0 · · · 0 0 0 0

−γ1γ2
α2

0 α3 − β2γ2
α2

β3 · · · 0 0 0 0
0 0 γ3 α4 · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · αn−3 βn−3 0 0
0 0 0 0 · · · γn−3 αn−2 βn−2 0
0 0 0 0 · · · 0 γn−2 αn−1 βn−1

0 0 0 0 · · · 0 0 γn−1 αn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

α1 β1 0 0 · · · 0 0 0 0
γ1 α2 β2 0 · · · 0 0 0 0

−γ1γ2
α2

0 α3 − β2γ2
α2

β3 · · · 0 0 0 0
γ1γ2γ3

α2α3−β2γ2
0 0 α4 − α2β3γ3

α2α3−β2γ2
· · · 0 0 0 0

...
...

...
...

. . .
...

...
...

...
0 0 0 0 · · · αn−3 βn−3 0 0
0 0 0 0 · · · γn−3 αn−2 βn−2 0
0 0 0 0 · · · 0 γn−2 αn−1 βn−1

0 0 0 0 · · · 0 0 γn−1 αn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= · · ·

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 β1 0 0 · · · 0 0 0 0
a2 b2 β2 0 · · · 0 0 0 0
a3 0 b3 β3 · · · 0 0 0 0
a4 0 0 b4 · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

an−3 0 0 0 · · · bn−3 βn−3 0 0
an−2 0 0 0 · · · 0 bn−2 βn−2 0
an−1 0 0 0 · · · 0 0 bn−1 βn−1

an 0 0 0 · · · 0 0 0 bn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,
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where

b2 = α2, b3 = α3 − β2γ2

b2
, b4 = α4 − β3γ3

b3
, . . . , bn−3 = αn−3 − βn−4γn−4

bn−4
,

bn−2 = αn−2 − βn−3γn−3

bn−3
, bn−1 = αn−1 − βn−2γn−2

bn−2
, bn = αn − βn−1γn−1

bn−1

and

a1 = α1, a2 = γ1, a3 = −γ2
b2

a2, a4 = −γ3
b3

a3, . . . , an−3 = −γn−4

bn−4
an−4,

an−2 = −γn−3

bn−3
an−3, an−1 = −γn−2

bn−2
an−2, an = −γn−1

bn−1
an−1.

The sequences bk and ak for k ≥ 3 can be formulated by finite generalized
continued fractions

bk = αk − βk−1γk−1

αk−1 − βk−2γk−2

αk−2− βk−3γk−3

αk−3− βk−4γk−4

...
...

α4− β3γ3
α3− β2γ2

α2

= αk +
k−2

K
�=1

(−βk−�γk−�)
αk−�

and

ak = (−1)k

∏k−1
�=1 γ�∏k−1
�=2 b�

.

Using (2.3) results in

|Dn| =
(

b2 +
n∏

k=3

Bk

)

a1 −
(

β1

n∏

m=3

Bm

)

a2 −
n∑

k=3

(−1)k

(
k−1∏

�=1

β�

n∏

m=k+1

Bm

)

ak

= α1

(

α2 +

n∏

k=3

[

αk +
k−2
K

�=1

(−βk−�γk−�)

αk−�

])

− β1γ1

n∏

m=3

[

αm +
m−2
K

�=1

(−βm−�γm−�)

αm−�

]

−
n∑

k=3

k−1∏

�=1

β�

n∏

m=k+1

[

αm +
m−2
K

�=1

(−βm−�γm−�)

αm−�

] ∏k−1
�=1 γ�

∏k−1
�=2

[
α� + K

�−2
i=1

(−β�−iγ�−i)

α�−i

]

which can be rearranged as (3.1).
Making use of (2.1) and (2.2) yields (3.2). The proof of Theorem 3.1 is

complete.

4 Discussions

In this section, we discuss our main results and related ones by several remarks.
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Remark 4.1. In [3, p. 1018], it was stated that J. J. Sylvester found in 1854 that

|Mn(s)| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

s 1 0 0 · · · 0 0 0 0
n s 2 0 · · · 0 0 0 0
0 n − 1 s 3 · · · 0 0 0 0
0 0 n − 2 s · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · s n − 2 0 0
0 0 0 0 · · · 3 s n − 1 0
0 0 0 0 · · · 0 2 s n
0 0 0 0 · · · 0 0 1 s

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
n∏

k=0

(s + n − 2k).

An application of (3.1) to |Mn(s)| yields

|Mn(s)| = s2 + (s − n)
n∏

m=3

[
s +

m−2

K
�=1

−(m − �)(n − m + � + 1)
s

]

−
n∑

k=3

[
k−1∏

�=1

�(n − � + 1)

]∏n
m=k+1

[
s + K

m−2
�=1

−(m−�)(n−m+�+1)
s

]
∏k−1

m=2

[
s + K

m−2
�=1

−(m−�)(n−m+�+1)
s

]

= s2 + (s − n)
n∏

m=3

[
s +

m−2

K
�=1

−(m − �)(n − m + � + 1)
s

]

− n!
n∑

k=3

(k − 1)!
(n − k + 1)!

∏n
m=k+1

[
s + K

m−2
�=1

−(m−�)(n−m+�+1)
s

]
∏k−1

m=2

[
s + K

m−2
�=1

−(m−�)(n−m+�+1)
s

]

� s2 + (s − n)
n∏

m=3

S(s;m,n) − n!
n∑

k=3

(k − 1)!
(n − k + 1)!

∏n
m=k+1 S(s;m,n)

∏k−1
m=2 S(s;m,n)

.

Now we try to explicitly compute

S(s;m,n) = s +
m−2

K
�=1

−(m − �)(n − m + � + 1)
s

.

When m = 3, it is easy to obtain that

S(s; 3, n) =
s2 − 2(n − 1)

s
� β1

α1
.

When m = 4, employing the above result for S(s; 3, n), we can acquire

S(s; 4, n) =
β1s − 3(n − 2)α1

β1
=

s(s2 − 5n + 8)
s2 − 2n + 2

� β2

α2
.

If assuming S(s; k + 1, n) = βk−1
αk−1

, then, by mathematical induction, we have

S(s; k + 2,m) =
βk

αk
=

βk−1s − αk−1(k + 1)(n − k)
βk−1

.
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Note that αk−1 = βk−2. Then

βk − βk−1s + βk−2(k + 1)(n − k) = 0.

Further replacing k by k + 2 results in

βk+2 − βk+1s + (k + 3)(n − k − 2)βk = 0.

By the approach utilized in [15, Theorem 3.1], the characteristic equation is

t2 − st + (k + 3)(n − k − 2) = 0

which has solutions

t =
s ± √

s2 − 4(k + 3)(n − k − 2)
2

.

Consequently, it follows that

βk = A

(
s +

√
s2 − 4(k + 3)(n − k − 2)

2

)k−1

+ B

(
s − √

s2 − 4(k + 3)(n − k − 2)

2

)k−1

,

where

A = −2s3 − 2(5n − 8) − (s2 − 2n + 2)(s +
√

s2 − 20n + 80 )
2
√

s2 − 20n + 80

and

B =
2s3 − 2(5n − 8) − (s2 − 2n + 2)(s − √

s2 − 20n + 80 )
2
√

s2 − 20n + 80
.

In a word, we provide an alternative expression for the Sylvester determinant
|Mn(s)|.
Remark 4.2. In [3], by virtue of left eigenvector method, the determinants

|Mn(s, t)| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

s 1 0 0 · · · 0 0 0
n s + t 2 0 · · · 0 0 0
0 n − 1 s + 2t 3 · · · 0 0 0
0 0 n − 2 s + 3t · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · s + (n − 2)t n − 1 0
0 0 0 0 · · · 2 s + (n − 1)t n
0 0 0 0 · · · 0 1 s + nt

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
n∏

k=0

(
s +

nt

2
+

n − 2k

2

√
t4 + 4

)
,
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and

|Mn(s, t; x, y)| =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

s x 0 0 · · · 0 0 0
nv s + t 2x 0 · · · 0 0 0
0 (n − 1)y s + 2t 3x · · · 0 0 0
0 0 (n − 2)y s + 3t · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · s + (n − 2)t (n − 1)x 0
0 0 0 0 · · · 2y s + (n − 1)t nx
0 0 0 0 · · · 0 y s + nt

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

=
n∏

k=0

(

s +
nt

2
+

n − 2k

2

√

t4 + 4xy

)

of tridiagonal matrices similar to the Sylvester matrix were collected and calcu-
lated. These evaluations can be computed alternatively by Theorem 3.1.

Remark 4.3. The condition bk �= 0 for 2 ≤ k ≤ n in Theorem 2.1 is removed off
in Theorem 2.2. Therefore, the explicit formula (2.3) is better than the recurrent
formulas (2.1) and (2.2).

Remark 4.4. The explicit formula (2.3) can be simply reformulated as

|Pn| =
n∑

k=1

(−1)k+1

(
k−1∏

�=1

c�

n∏

m=k+1

bm

)
ak,

where the empty product is understood to be 1 as usual.

Remark 4.5. Let

Un = (ui,j)1≤i,j≤n =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α1 γ1 0 0 · · · 0 0 0 τ1
α2 β2 γ2 0 · · · 0 0 0 τ2
α3 0 β3 γ3 · · · 0 0 0 τ3
α4 0 0 β4 · · · 0 0 0 τ4
...

...
...

...
. . .

...
...

...
...

αn−3 0 0 0 · · · βn−3 γn−3 0 τn−3

αn−2 0 0 0 · · · 0 βn−2 γn−2 τn−2

αn−1 0 0 0 · · · 0 0 βn−1 γn−1

αn 0 0 0 · · · 0 0 0 βn

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where

ui,j =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

αi, 1 ≤ i ≤ n, j = 1;
βi, 2 ≤ i = j ≤ n;
γi, 1 ≤ i = j − 1 ≤ n − 1;
τi, 1 ≤ i ≤ n − 2, j = n;
0, otherwise.
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The determinant |Un| can be rewritten as

|Un| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

α1 γ1 0 0 · · · 0 0 0 τ1
α2 β2 γ2 0 · · · 0 0 0 τ2
α3 0 β3 γ3 · · · 0 0 0 τ3
α4 0 0 β4 · · · 0 0 0 τ4
...

...
...

...
. . .

...
...

...
...

αn−3 0 0 0 · · · βn−3 γn−3 0 τn−3

αn−2 0 0 0 · · · 0 βn−2 γn−2 τn−2

αn−1 0 0 0 · · · 0 0 βn−1 γn−1

αn 0 0 0 · · · 0 0 0 βn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

α1 − αnτ1
βn

γ1 0 0 · · · 0 0 0 0
α2 − αnτ2

βn
β2 γ2 0 · · · 0 0 0 0

α3 − αnτ3
βn

0 β3 γ3 · · · 0 0 0 0
α4 − αnτ4

βn
0 0 β4 · · · 0 0 0 0

...
...

...
...

. . .
...

...
...

...
αn−3 − αnτn−3

βn
0 0 0 · · · βn−3 γn−3 0 0

αn−2 − αnτn−2
βn

0 0 0 · · · 0 βn−2 γn−2 0
αn−1 − αnγn−1

βn
0 0 0 · · · 0 0 βn−1 0

αn 0 0 0 · · · 0 0 0 βn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= βn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

α1 − αnτ1
βn

γ1 0 0 · · · 0 0 0
α2 − αnτ2

βn
β2 γ2 0 · · · 0 0 0

α3 − αnτ3
βn

0 β3 γ3 · · · 0 0 0
α4 − αnτ4

βn
0 0 β4 · · · 0 0 0

...
...

...
...

. . .
...

...
...

αn−3 − αnτn−3
βn

0 0 0 · · · βn−3 γn−3 0
αn−2 − αnτn−2

βn
0 0 0 · · · 0 βn−2 γn−2

αn−1 − αnγn−1
βn

0 0 0 · · · 0 0 βn−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

An application of Theorem 2.1 and 2.2 and Remark 4.4 straightforwardly yields

|Un| =

n−2∑

k=1

(−1)k+1(αkβn − τkαn)

k−1∏

�=1

γ�

n−1∏

m=k+1

βm + (−1)n(αn−1βn − τn−1αn)

n−2∏

�=1

γ�

and

|Un| = Λ1,n−1

n∏

k=2

βk,

where
Λk,n−1 = αk − αn

βn
τk − γk

βk+1
Λk+1,n−1, 1 ≤ k ≤ n − 2

and Λn−1,n−1 = αn−1 − αn

βn
γn−1.
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Remark 4.6. The determinant |Pn| of Pn in (1.2) can be rearranged as

|Pn| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 c1 0 0 · · · 0 0 0 0
a2 b2 c2 0 · · · 0 0 0 0
a3 0 b3 c3 · · · 0 0 0 0
a4 0 0 b4 · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

an−3 0 0 0 · · · bn−3 cn−3 0 0
an−2 0 0 0 · · · 0 bn−2 cn−2 0
an−1 0 0 0 · · · 0 0 bn−1 cn−1

0 0 0 0 · · · 0 0 −anbn−1
an−1

bn − ancn−1
an−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= · · ·

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 c1 0 · · · 0 0 0
0 b2 − a2c1

a1
c2 · · · 0 0 0

0 −a3b2
a2

b3 − a3c2
a2

· · · 0 0 0
0 0 −a4b3

a3
· · · 0 0 0

...
...

...
. . .

...
...

...
0 0 0 · · · cn−3 0 0
0 0 0 · · · bn−2 − an−2cn−3

an−3
cn−2 0

0 0 0 · · · −an−1bn−2
an−2

bn−1 − an−1cn−2
an−2

cn−1

0 0 0 · · · 0 −anbn−1
an−1

bn − ancn−1
an−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= a1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b2 − a2c1
a1

c2 · · · 0 0 0
−a3b2

a2
b3 − a3c2

a2
· · · 0 0 0

0 −a4b3
a3

· · · 0 0 0
...

...
. . .

...
...

...
0 0 · · · cn−3 0 0
0 0 · · · bn−2 − an−2cn−3

an−3
cn−2 0

0 0 · · · −an−1bn−2
an−2

bn−1 − an−1cn−2
an−2

cn−1

0 0 · · · 0 −anbn−1
an−1

bn − ancn−1
an−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

� a1|Qn−1|.

Therefore, by virtue of Theorems 2.1 and 2.2, we derive that the determinant
|Qn−1| satisfies

|Qn−1| =
|Pn|
a1

=
λ1,n

a1

n∏

k=2

bk (4.1)

and

|Qn−1| =
|Pn|
a1

=
n∏

k=2

bk − 1
a1

n∑

k=2

(−1)k

(
k−1∏

�=1

c�

n∏

m=k+1

bm

)
ak. (4.2)
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Further letting ⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

αk = bk+1 − ak+1ck

ak
, 1 ≤ k ≤ n − 1

βk = ck+1, 1 ≤ k ≤ n − 2

γk = −ak+2bk+1

ak+1
, 1 ≤ k ≤ n − 2

(4.3)

in Eqs. (4.1) and (4.2) reveals

|Dn−1| =
λ1,n

a1

n∏

k=2

bk (4.4)

and

|Dn−1| =
n∏

k=2

bk − 1
a1

n∑

k=2

(−1)k

(
k−1∏

�=1

c�

n∏

m=k+1

bm

)
ak. (4.5)

From the second equality in (4.3), it is not difficult to see that ck = βk−1 for
2 ≤ k ≤ n − 1. If we can derive another relations from (4.3) to express ak for
1 ≤ k ≤ n and bk for 2 ≤ k ≤ n in terms of αk for 1 ≤ k ≤ n − 1, βk for
1 ≤ k ≤ n − 2, and γk for 1 ≤ k ≤ n − 2, then, by substituting these relations
into (4.4) and (4.5), an alternative and explicit expression for evaluation of |Dn|
would be concluded. This is an open problem and we leave it to the interested
readers.

Remark 4.7. In [1, Lemma 1.1] and [11, Lemma 2.1], it was acquired that
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

τ1 τ2 τ3 τ4 · · · τn−2 τn−1 τn

α β 0 0 · · · 0 0 0
γ α β 0 · · · 0 0 0
0 γ α β · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · β 0 0
0 0 0 0 · · · α β 0
0 0 0 0 · · · γ α β

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
n∑

k=1

(−1)k−1τkbn−k(βγ)(k−1)/2Uk−1

(
α

2
√

βγ

)
,

(4.6)
where Uk(s) is the kth Chebyshev polynomials of the second kind, which can be
generated [19,20,22] by

1
1 − 2st + t2

=
∞∑

k=0

Uk(s)tk, |s| < 1, |t| < 1.

Taking τ1 = τ2 = · · · = τn−1 = 0 and τn = 1 and reformulating, the formula (4.6)
becomes ∣∣∣∣∣∣∣∣∣∣∣∣∣

α β 0 · · · 0 0
γ α β · · · 0 0
0 γ α · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · α β
0 0 0 · · · γ α

∣∣∣∣∣∣∣∣∣∣∣∣∣
n×n

= (βγ)n/2Un

(
α

2
√

βγ

)
. (4.7)
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This is different from

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

α β 0 · · · 0 0
γ α β · · · 0 0
0 γ α · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · α β
0 0 0 · · · γ α

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

n×n

=

⎧

⎪⎪⎨

⎪⎪⎩

(

α +
√

α2 − 4βγ
)n+1 − (

α − √

α2 − 4βγ
)n+1

2n+1
√

α2 − 4βγ
, α2 �= 4βγ

(n + 1)

(
α

2

)n

, α2 = 4βγ

(4.8)
and ∣∣∣∣∣∣∣∣∣∣∣∣∣

α β 0 · · · 0 0
γ α β · · · 0 0
0 γ α · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · α β
0 0 0 · · · γ α

∣∣∣∣∣∣∣∣∣∣∣∣∣
n×n

=
n∏

j=1

(
β + 2α

√
γ

α
cos

jπ

n + 1

)
(4.9)

which are established and collected in [15, pp. 130] and [18, Theoem 4].
Comparing (4.7) with (4.8) and (4.9), taking β = γ = 1 and α = 2s, and

simplifying yield

Un(s) =
n∏

j=1

(
1 + 2

√
2s cos

jπ

n + 1

)

=

⎧
⎪⎨

⎪⎩

(
s +

√
s2 − 1

)n+1 − (
s − √

s2 − 1
)n+1

2n+1
√

s2 − 1
, s2 �= 1

(n + 1)sn, s2 = 1

which are alternative explicit formulas for the Chebyshev polynomials of the
second kind Un(s).

Remark 4.8. On 21 September 2019, we were reminded of the paper [10] in which
an alternative explicit formula for elements of the inverse of a tridiagonal matrix
and an efficient and fast computing method to obtain elements of the inverse of
a tridiagonal matrix by backward continued fractions were investigated.

Remark 4.9. Theorem 2.2 in this paper has been applied in the proof of [17,
Theorem 3.3].

Remark 4.10. This paper is a revised version of the preprint [21].
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16. Qi, F., Čerňanová, V., Shi, X.-T., Guo, B.-N.: Some properties of central Delannoy
numbers. J. Comput. Appl. Math. 328, 101–115 (2018). https://doi.org/10.1016/
j.cam.2017.07.013

17. Qi, F., Huang, C.-J.: Computing sums in terms of beta, polygamma, and Gauss
hypergeometric functions. Rev. R. Acad. Cienc. Exactas F́ıs. Nat. Ser. A Mat.
RACSAM 114, 9 p. (2020). Article no. 191. https://doi.org/10.1007/s13398-020-
00927-y

https://doi.org/10.1016/j.amc.2010.01.089
https://doi.org/10.1016/j.amc.2010.01.089
https://doi.org/10.1016/j.cam.2017.08.008
https://doi.org/10.1016/j.cam.2017.08.008
https://doi.org/10.1016/j.aml.2005.11.012
https://doi.org/10.1016/j.jmaa.2008.04.002
https://doi.org/10.1007/BF01699475
https://doi.org/10.1137/0706014
https://doi.org/10.1088/0305-4470/30/22/026
https://doi.org/10.1016/j.amc.2007.07.046
https://doi.org/10.1016/j.amc.2007.07.046
https://doi.org/10.4064/am35-1-7
https://doi.org/10.4064/am35-1-7
https://doi.org/10.13001/1081-3810.1223
https://doi.org/10.1016/j.jnt.2017.08.034
https://doi.org/10.1016/j.cam.2017.07.013
https://doi.org/10.1016/j.cam.2017.07.013
https://doi.org/10.1007/s13398-020-00927-y
https://doi.org/10.1007/s13398-020-00927-y


248 F. Qi et al.

18. Qi, F., Liu, A.-Q.: Alternative proofs of some formulas for two tridiagonal deter-
minants. Acta Univ. Sapientiae Math. 10(2), 287–297 (2018). https://doi.org/10.
2478/ausm-2018-0022

19. Qi, F., Niu, D.-W., Lim, D.: Notes on explicit and inversion formulas for the
Chebyshev polynomials of the first two kinds. Miskolc Math. Notes 20(2), 1129–
1137 (2019). https://doi.org/10.18514/MMN.2019.2976

20. Qi, F., Niu, D.-W., Lim, D., Guo, B.-N.: Some properties and an application of
multivariate exponential polynomials. Math. Methods Appl. Sci. 43(6), 2967–2983
(2020). https://doi.org/10.1002/mma.6095

21. Qi, F., Wang, W., Lim, D., Guo, B.-N.: Some formulas for determinants of tridi-
agonal matrices in terms of finite generalized continued fractions. HAL preprint
(2019). https://hal.archives-ouvertes.fr/hal-02372394

22. Qi, F., Zou, Q., Guo, B.-N.: The inverse of a triangular matrix and several iden-
tities of the Catalan numbers. Appl. Anal. Discrete Math. 13(2), 518–541 (2019).
https://doi.org/10.2298/AADM190118018Q

https://doi.org/10.2478/ausm-2018-0022
https://doi.org/10.2478/ausm-2018-0022
https://doi.org/10.18514/MMN.2019.2976
https://doi.org/10.1002/mma.6095
https://hal.archives-ouvertes.fr/hal-02372394
https://doi.org/10.2298/AADM190118018Q


Author Index

A
Abada, Nadjet, 1
Abbassi, A., 123
Abbassi, Adil, 102
Akgül, Ali, 23, 34
Akgül, Esra Karatas, 23, 34
Allalou, Chakir, 102, 123

B
Boutoulout, Ali, 141, 164, 179

C
Chadli, Lalla Saadia, 78
Chahdane, Helima, 1
Cho, Ilwoo, 194

E
El Alaoui, Fatima Zahrae, 164, 179
El Alaoui, Fatima-Zahrae, 141
ElFadily, Sanaa, 61

G
Guo, Bai-Ni, 233

H
Hammouch, Zakia, 44
Hammouche, Hadda, 1
Harir, Atimad, 78

J
Jennane, Mohsine, 91

K
Kaddar, Abdelilah, 61
Kalmoun, El Mostafa, 91

Kassidi, Abderrazak, 102
Khalid, Najib, 61

L
Lim, Dongkyu, 233

M
Melliani, Said, 78

O
Oulha, Y., 123
Ouzahra, Mohamed, 156

P
Prakasha, D. G., 44

Q
Qi, Feng, 233

T
Tajani, Asmae, 141

V
Veeresha, P., 44

W
Wang, Wen, 233

Y
Yahyaoui, Soufiane, 156

Z
Zguaid, Khalid, 164
Zitane, Hanaa, 179

© Springer Nature Switzerland AG 2021
Z. Hammouch et al. (Eds.): SM2A 2019, LNNS 168, p. 249, 2021.
https://doi.org/10.1007/978-3-030-62299-2

https://doi.org/10.1007/978-3-030-62299-2

	Contents
	Existence Results for Impulsive Partial Functional Fractional Differential Equation with State Dependent Delay
	1 Introduction
	2 Preliminaries
	3 Main Result
	4 Application
	5 Conclusion
	References

	A Novel Method for Solving Nonlinear Jerk Equations
	1 Introduction
	2 Reproducing Kernel Method
	3 Numerical Experiments
	4 Conclusions
	References

	Solving a New Type of Fractional Differential Equation by Reproducing Kernel Method
	1 Introduction
	2 Reproducing Kernel Method
	3 Numerical Experiments
	4 Conclusions
	References

	An Efficient Approach for the Model of Thrombin Receptor Activation Mechanism with Mittag-Leffler Function
	Abstract
	1 Introduction
	2 Preliminaries
	3 Basic idea of {\varvec q} -HATM
	4 Solution for Proposed Model
	5 Existence of Solutions for the Proposed Problem
	6 Numerical Results and Discussion
	7 Conclusion
	References

	Stability Analysis of Bifurcated Limit Cycles in a Labor Force Evolution Model
	1 Introduction
	2 Hopf Bifurcation Analysis
	2.1 Equilibria
	2.2 Local Stability
	2.3 Local Hopf Bifurcation

	3 Direction and Stability of the Hopf Bifurcation
	4 Numerical Simulations
	4.1 Qualitative Behavior of Solutions
	4.2 Effect of Parameters on Critical Delay

	5 Conclusion
	References

	Existence and Uniqueness Results of Fractional Differential Equations with Fuzzy Data
	1 Introduction
	2 Preliminaries
	3 Fuzzy Fractional Integral and Fuzzy Fractional Derivative
	4 Existence and Uniqueness of the Fuzzy Solution
	5 Examples
	References

	Approximate Efficient Solutions of Nonsmooth Vector Optimization Problems via Approximate Vector Variational Inequalities
	1 Introduction
	2 Preliminaries
	3 Relationships Between NVOP and AVVI
	4 Example
	5 Conclusions
	References

	Existence of Entropy Solutions for Anisotropic Elliptic Nonlinear Problem in Weighted Sobolev Space
	1 Introduction
	2 Preliminaries
	3 Basic Assumptions and Notion of Solutions
	4 Main Results
	References

	Well-Posedness and Stability for the Viscous Primitive Equations of Geophysics in Critical Fourier-Besov-Morrey Spaces
	1 Introduction
	2 Preliminaries and Main Results
	3 Well-Posedness
	4 Stability of Global Solutions
	References

	Regional Controllability of a Class of Time-Fractional Systems
	1 Introduction
	2 Preliminaries and Considered System
	3 Analytical Approach
	4 Algorithm
	5 Numerical Results
	5.1 Case of Zonal Actuator
	5.2 Case of Pointwise Actuator

	6 Conclusion
	References

	Quadratic Optimal Control for Bilinear Systems
	1 Introduction
	2 Quadratic Optimal Control
	2.1 Problem Statement
	2.2 Existence of the Optimal Control

	3 Feedback Optimal Control
	Appendix
	4 Examples
	4.1 Wave Equation
	4.2 The Transport Equation

	5 Conclusion
	References

	Regional Observability of Linear Fractional Systems Involving Riemann-Liouville Fractional Derivative
	1 Introduction
	2 Considered System and Preliminaries
	3 HUM Approach
	4 Algorithm
	5 Numerical Results
	6 Conclusion
	References

	Stability Analysis of Fractional Differential Systems Involving Riemann–Liouville Derivative
	1 Introduction
	2 Stability of Fractional Differential Systems
	3 Stabilization of Fractional Differential Systems
	3.1 Characterization of Stabilization
	3.2 Decomposition Approach

	4 Conclusion
	References

	Deformed Joint Free Distributions of Semicircular Elements Induced by Multi Orthogonal Projections
	1 Introduction
	1.1 Motivations
	1.2 Overview

	2 Preliminaries
	3 The Banach *-Algebra LQ
	4 Weighted-Semicircular Elements
	5 Semicircular Elements
	6 The Free Filterization LQ(Z)
	6.1 The Semicircular Filterization LQ
	6.2 Free-Distributional Data Induced by Semicircular Elements
	6.3 Free-Distributional Data on LQ

	7 Integer-Shifts on LQ
	7.1 ()-Shifts on Z
	7.2 Integer-Shifts on LQ
	7.3 Free Distributions on LQ Affected by B

	8 Semicircular Elements Induced by Multi Projections
	8.1 A Free Semicircular Family S(N) Induced by N-many Projections
	8.2 Restricted Integer-Shifts on LQ(N)
	8.3 Free Probability on LQ(N) Affected by B(N)

	References

	Several Explicit and Recurrent Formulas for Determinants of Tridiagonal Matrices via Generalized Continued Fractions
	1 Introduction
	2 Explicit and Recurrent Formulas for |Pn|
	3 Explicit and Recurrent Formulas for |Dn|
	4 Discussions
	References

	Author Index



