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Abstract. This position paper connects the areas and communities of abstract
argumentation and attack-defence trees in the area of security. Both areas deal
with attacks, defence and support and both areas rely on applications dealing
with human aggressive activities. The unifying idea we use in this paper is to
regard arguments as AND-OR attack trees as proposed by Schneier in the secu-
rity domain. The core model, which is acceptable for both communities, is a
pair (S,�), where S is a set of attack trees (the “arguments”) and� is a binary
relation on attack trees (the “attack” relation). This leads us to the notion of an
attack-defence framework, which provides an argumentation-based semantics for
attack-defence trees and more general attack-defence graphs.

1 Introduction

Argumentation is an interdisciplinary research area concerning the study of conflicts
that arise due to competing objectives and views across a range of disciplines. Security
is an obvious example of such a discipline where there are human actors with competing
interests. The interests and objectives of an attacker seeking to obtain secrets, disrupt
services, track users, etc., conflict with those of a defender such as system adminis-
trators, software engineers, security guards and others professionals that protect our
society both online and offline.

It should be of no surprise that there are immediate parallels between argumentation
and methods developed for modelling the relationships between the actions of attack-
ers and defenders in security, notably attack-defence trees [1] and defence trees [2]. In
this work we show that it is possible to provide directly a semantics for attack-defence
trees by building on models of abstract argumentation. However, on the surface, there
are a few differences in modelling styles in argumentation compared to attack-defence
trees. Notably, in argumentation, various types of relations can be reduced to a single
attack-relation tree formed of attack relations, whereas established semantics for attack-
defence trees based on multisets collapse such trees of layers of attacks, defences,
counter-attacks, etc., to a two-layer structure where there is only one layer of attacks,
some of which are countered by a layer of defences. We develop bipolar argumenta-
tion frameworks [3] that incorporate a notion of support [4] and hence are capable of
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modelling in styles favoured by both the argumentation and security communities. This
enables us to translate added value in both directions.

From Security to Argumentation. Traditionally, arguments are modelled in a fairly
binary fashion: if an argument is attacked by another argument that is not attacked then
it is out, hence cannot be an acceptable argument. The source of potential confusions
arises in argumentation when there are loops, for example loops may be created in legal
arguments where witnesses attack each other. In security, the sources of uncertainty are
quite different. They come from the fact that many attacks take resources such as secu-
rity guards, networking equipment, or botnets, which have associate costs, capacities
and likelihoods of success. There may be other factors such as the risk of exposing the
identity of the attackers leaving them open to prosecution (the feeling of impunity), bal-
anced against the motives of a profile of attacker. For such reasons, semantics proposed
for attack-defence trees typically take into account quantities and qualities in various
attribute domains that indicate the capability of attacker and defenders to fulfil their
actions. This quantitative aspect we translate from the attack-defence trees to argumen-
tation frameworks by making explicit a notion of abstract “weapons” that represent the
actions and resources that an attacker or defender can use to perpetrate attacks or hold
out against them.

From Argumentation to Security. As mentioned above, much of the attention in the
argumentation community revolves around resolving disputes when there are cycles in
arguments. Thus the graph structures considered in argumentation are more flexible
than the trees stratified into layers of attacks and defences, that form attack-defence
trees. While it may be useful for security to incorporate loops, in this work, we take a
clearer and simpler first step in that direction. We allow not only trees, but also directed
acyclic graphs to appear. Such an extension of attack-defence trees is useful for making
explicitly when multiple instances of nodes representing actions of an attacker are in
fact the same attack, hence we need not kill all instances to counter that attack, but only
the one instance of that action, which of course impacts the resource sensitive analysis
[5]. A more adventurous aspect of the modest liberalisation of attack-defence trees that
we propose is to forget about the distinction between attacks and defences. We simply
have arguments that attack each other, and need not explicitly indicate that the argument
is an attack tree associated with an attacker or defender. This allows the modelling of
scenarios where two actions of an attacker may be in conflict, for example, enabling a
DDoS attack may blow the cover for a stealthy attacker gathering private information
from inside the system. Furthermore, a defensive action, such as installing a hypervi-
sor, for separating processes sharing the same underlying hardware may mitigate attacks
exploiting vulnerabilities in inter-process communication in software, but may support
cache timing side channels at the hardware level. Going further, some nodes may not
even be attackers or defenders, they may be engineering requirements such as proto-
col standards or legal requirements such as clauses of the GDPR regulation that are
impacted by a successful attack or by adopting a particular defensive strategy.

Table 1 provides an overview comparing the security and argumentation domains
from which this paper draws. Considering the above observations, since these domains
were already close we believe that a relatively small step is required to build a general
framework accommodating the needs of both communities—in one way we move from
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Table 1. Comparison between argumentation and security domains

Argumentation frameworks Attack-defence trees

Argumentation is a well-developed area
with a community formed over 50 years

Strong security community using methods
inspired by fault trees which have been in
use for over 50 years

Have a range of semantics May benefit from improved semantics

Mainly concerned with loops May benefit from handling loops, or at
least more general acyclic graphs

Semantics focus on evidence for claims,
i.e., proof certificates

Could benefit from more proof theory

Trees are a well-behaved case for this area Mainly concerned with trees with a
stratified structure, formed by alternating
layers of attacks and defences

Emphasises attack relations, allowing
arbitrary alternations between moves of
attackers and defenders in their underlying
games

Reduces counter-attacks to a single layer
of attacks countered by defences, by using
support relations

trees to more general graphs and in the other direction we bring in resource consid-
erations. For example, it is reasonable that the legal domain may have some resource
consideration, e.g., whether an argument stands may take into account the number of
witnesses and their credibility. In the security domain, it is reasonable to lift some con-
straints on patterns of attacks and defences.

We develop these ideas as follows. In Sect. 2, we provide background on the tra-
ditional notion of an argumentation framework and make explicit obvious parallels
and differences compared to attack-defence trees. In Sect. 3, we close the gap between
the models by introducing the notion of attack-defence framework, firstly by defining
what it means for one attack tree to attack another attack tree, and, secondly, by pro-
viding an algorithm accommodating the notion of support. In Sect. 4, we discuss the
argumentation-based model introduced in juxtaposition with key examples of attack-
defence trees, and highlight extension and directions enabled.

2 Preliminaries Drawing from Argumentation

We briefly summarise mathematical tools of argumentation on which we build. An
argumentation framework is a pair consisting of a set of arguments S and a relation
� Ď S ˆ S called the attack relation. Argumentation traditionally defines set theoreti-
cally or algorithmically two subsets for an argumentation framework (S ,�).

– The in set E` Ď S , which is a maximal (with respect to subset inclusion) conflict-
free set such that: if z is such that ∀y.(y � z ⇒ ∃y′ P E s.t. y′ � y) then z P E.
I.e., any argument attacking an element of E is attacked by another element of E.
By conflict-free, we mean that no two x, y P E are such that x� y.
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– The out set E− =
{
y | ∃x P E` s.t. x� y

}
.

If we restrict to acyclic graphs these sets partition the set of arguments, i.e., we have
E` X E− =H and E` Y E− = S .

In the acyclic setting, the above sets can be generated algorithmically from (S ,�)
by calculating E` =

⋃
i E

`
i and E− =

⋃
i E
−
i , where E

`
i and E−i are defined inductively

as follows. We say x is not attacked in S i if ¬∃y P S i s.t. y� x.

1. Base case: Let S 0 = S , E`
0 =H and E−0 =H.

2. Inductive case: Let S n`1 = S n \ (Eǹ Y E−n ).
Let E`

n`1 = {x P S n`1 | x is not attacked in S n`1}.
Let E−n`1 =

{
x P S n`1 | ∃y P E`

n`1s.t. y� x
}
.

Physical Security

Break In

Lock

Defeat Lock

Reinforce Security Guard

Defeat Guard

Video Cameras

Fig. 1. An argumentation framework which is
also an attack-defence tree.

Consider the example argumentation
framework in Fig. 1. The argumentation
framework depicted is also an attack-
defence tree [1], where, in attack-defence
tree terminology, the attack relations are
countermeasures, where an action of an
attacker is defeated by an action of
a defender, or an action of defender
is defeated by a counter-attack of an
attacker. In the figure, attack relations
are represented by dotted double-headed
arrows in order to align with the dotted
line notation of attack-defence trees. This
notation, at the same time, makes explicit
the direction of the attack, as attack
relation � indicates. The colours are
not necessary for argumentation frame-
works; they simply allow ease of reading
when there is a clear alternation between
two actors the proponent and opponent,
i.e., the actions of the attacker and defender.

For the example in Fig. 1, the in set and out set are as follows.

E` = {Video Camera,Defeat Lock,Reinforce, Security Guard,Physical Security}
E− = {Defeat Guard,Break in,Lock}

Thus we say Physical Security is an acceptable argument with respect to E`, since
any argument that attacks it (i.e., Break In) is defeated by some element of E`, (e.g.,
Security Guard). We note that E` is a maximal admissible set, which, in argumentation
terminology is called the preferred extension. Thus the algorithm used to generate E`
emphasises that the preferred extension is easy to compute in the acyclic setting.

In addition to the notion of attack, we require also a notion of support in order to
provide an argumentation-based semantics for attack-defence trees. In order to accom-
modate support—e.g., the act of supporting a security goal of a system with a range
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of network and physical security measures, as is possible using attack-defence trees—
we take a step towards a more general model. We would like to define acyclic bipolar
argumentation frameworks, that is a pair of relations on a set of arguments S :

(S ,�,→) ,where� Ď S ˆ S ,→ Ď S ˆ S and� Y→ is acyclic

The first relation x� y indicates that x attacks y. The second relation x→ y represents
that x supports y. These bipolar argumentation frameworks accommodate conventions
from both argumentation and security.

Fig. 2.Modelling counter-defence “Strong Password” as an attack or as a support.

Argumentation Convention: Most argumentation approaches reduce support to attacks
(i.e., eliminate support). This is achieved by reducing y → b to y � β � b by making
use of auxiliary node β. Thus y supports b by defending against an attacker. See for
example, the bipolar argumentation framework (which happens to be also an attack-
defence tree) to the left of Fig. 2. In that example, the Strong Password y, attacks the
Dictionary Attack β, in order to support the Password b.

Security Convention: One might argue that the above approach drawing directly from
argumentation is not quite the right viewpoint, since the Strong Password does not
actively attack the Dictionary Attack. What really happens is that the Strong Password
strengthens the password to make it more resistant to the Dictionary Attack. This idea
is reflected in the existing multiset semantics for attack-defence trees [1] that elimi-
nates counter-attacks by reducing them to supports. Under such semantics for attack-
defence trees, an argumentation framework with relations as depicted to the left of Fig. 2
might more accurately be modelled, as depicted in the example on the right of Fig. 2. In
that diagram, instead of employing Strong Password as a counter-attack for Dictionary
Attack we employ it as a support for access control.

The use of the support relation from the bipolar argumentation frameworks allows
the fact that the Strong Password really is supporting the Access Control mechanism
rather than attacking the Dictionary Attack to be made explicit. It is a modelling choice
which presentation better respects the situation, a semantics based on argumentation
that accommodates support (to be developed in the next section) would likely distin-
guish these scenarios, i.e., the diagrams in Fig. 2 may be distinguished by their “in sets”
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(which should be a suitable generalisation of preferred extensions). To get a feeling of
the intuition behind why this should be the case, observe that in the diagram on the right
of Fig. 2 nobody attacks the Dictionary Attack so it should be declared “in” by default,
that is β P E`; whereas in the diagram on the left the Dictionary Attack is out by default,
since it is attacked by a Strong Password that is not attacked by anyone, hence is in by
default. Thus in an extended algorithm accommodating support we expect y P E` and
β P E− for the attack-defence tree on the right of Fig. 2.

In contrast, instead of “Strong Password”, consider employing an anti-bruteforcing
defensive mechanism, such as a CAPTCHA, against a Dictionary Attack. This could
be considered to be more accurately modelled as an attack on the Dictionary Attack
denoted by β rather than in terms of supporting the Access Control goal. This is a
modelling choice for the security expert.

Fig. 3. The dictionary attack here attacks both the password and strong password.

Going further, the diagram in Fig. 3 is an attack-defence tree. This is different from
the support relation to the right of Fig. 2, since by attacking directly the access control
argument we suggest that both the Password and Strong Password are killed by the
dictionary attack. In order to interpret such scenarios, we require richer structure than
provided by traditional argumentation frameworks à la Dung [6]. In order to formally
present such a semantics, further machinery is defined in the next section.

3 Attack-Defence Frameworks: Trees Attacking Trees

Fig. 4. A joint attack relation as an attack-
defence tree.

The semantics in this section are built
out of those in Sect. 2 and finite sets of
multisets of weapons, where weapons are
“actions” in attack-defence tree termi-
nology. We start with defining enhanced
argumentation frameworks with joint
attacks (S ,R), where S is viewed as a
set of weapons (the atomic actions that
appear at the leaves of attack trees), and
R is more general than just a binary rela-
tion over S : we allow the source of the
attack to be a multiset of elements of S .
Thus R is a relation between finite multisets built from S , say Multiset(S ), and elements
of S , i.e., R Ď Multiset(S ) ˆ S . We use the notation a ∗ b ∗ c to represent the multiset
with three elements, the weapons a, b and c.
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Allowing multisets of weapons to attack weapons, allows us to model scenarios such
as o ∗ k R g, as depicted in Fig. 4, using an auxiliary node, labeledOverpower. Note that
while such scenarios are not expressible using traditional argumentation frames, they do
appear in several richer models of argumentation, where such attack relation are called
joint attacks [7,8]. In the attack-defence tree notion in Fig. 4, the fact that multiple
actions/weapon/resources must be used together is depicted using an arc between the
arrows, which is a conjunctive refinement in attack tree terminology [9].

We will use argumentation frameworks with joint attacks to define a semantics for
another argumentation framework with more structure, which we call an attack-defence
framework, since it will generalise attack-defence trees to more general graphical struc-
tures, in the spirit of argumentation frameworks.

We denote attack-defence frameworks as a quintuple:

(S,�,→, S ,�) where� Ď S ˆ S,→ Ď S ˆ S, and� Ď S ˆ Set(Multiset(S )).

Its arguments m P S, denoted in bold, are mapped by functional relation � to sets of
multisets of weapons drawn from the set S (the set of weapons of the argumentation
frame with joint attack above). Think of the resources assigned to arguments as basic
AND-OR attack trees in the original sense of Schneier [9]. I.e., each node is part of an
attack-defence tree consisting of only the actions of the attacker or those of the defender
(the connected green or red components only in the example figures). Attack trees allow
for actions to be:

– conjunctively refined, requiring several actions to be performed to realise the action
refined, as denoted using multisets of actions,

– or disjunctively refined, where one of the possible actions in the disjunction suffices
to realise the action refined, as denoted using the sets of multisets

Thus we take the viewpoint that elements of our attack-defence frameworks rep-
resent attack trees, more precisely sets of multisets of weapons regarded as AND-OR
attack trees flattened after applying the standard mapping to multisets [10] that reduces
the attack tree to a disjunctive normal form. From an argumentation perspective we are
essentially assuming that arguments are attack trees. These attack trees represent agents
carrying each a variety of weapons, where each of these weapons are elements of S and
the sets of multisets represent a choice between a number of combination of weapons
that may be employed. Note this viewpoint does not distinguish between agents that are
attackers or defenders, agents playing any role maybe be equipped with weapons in this
manner.

3.1 Interpreting the Attack Relation of Attack-Defence Frameworks

We first explain how to interpret the attack relation only, for attack-defence frame-
works. Consider the following example of an attack tree denoted as a set of multisets:
m � {(a1 ∗ a2) , b1, b2}, where a1, a2, b1, b2 P S . The above example may be regarded
as the attack tree in Fig. 5, where a node denoted with an arc represents conjunctive
refinement, and a node without an arc represents disjunctive refinement.
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Fig. 5. An attack tree denoted by
{(a1 ∗ a2) , b1, b2}. The resources accu-
mulated at each node are indicated in
brackets.

We now explain the meaning of m.
We are relying in underlying argumentation
frameworks with joint attacks of the form
(S ,R) in order to provide a semantics for the
attack relation.

*1) The meaning of m is a collection of
three weapons. The first weapon is a
composite weapon built up of two com-
ponent weapons a1 and a2 denoted by
a1 ∗ a2. Note that ∗ is used to denote a
multiset consisting of two elements a1
and a2. The second weapon is b1 and the
third is b2.

*2) So, if we want to attack m we need to
attack all three components’ weapons and leavem without weapons. This comple-
ments that perspective that, ifm were to be used to attack another attack tree, there
are three options for executing the attack and hence, if it is not the case that all
three attack options are defeated, then the attack may be perpetrated.

Expressions like {(a1 ∗ a2), b1, b2} are understood as resource weapons, which can
be used for attack or for defence. (a1 ∗ a2) is a composite weapon which has two com-
ponents. So to neutralise the composite weapon (a1 ∗ a2) we need to kill at least one of
its components, and to attackm we must attack each of its weapons.

So, if n � {(α1 ∗ α2 ∗ α3), δ1, δ2} is the set of weapons of another argument, say
Mercenary 2, keen to attack m, say Mercenary 1, then for n to attack m it must attack
each of n’s weapons. This scenario may be represented using the attack-defence tree in
Fig. 6.

Fig. 6. An attack tree attacking another attack tree.
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*3) So, we have:

n� m iff n� (a1 ∗ a2)
and n� b1
and n� b2

So for n to attack any single weapon x (such as one of the weapons inm), we need
a weapon in n to attack x. So we follow rule *4):

*4) We interpret disjunctive attacks [11] and attacks on multisets as follows.

{z, y}� x iff def. zRx _ yRx
u� z ∗ y iff def. uRz _ uRy

where z ∗ y is a weapon with two components. So, for example

u� {(z ∗ y),w} iff (u� (z ∗ y) and uRw) iff ((uRz _ uRy) ^ uRw).

Therefore we have
*5) {(α1 ∗ α2 ∗ α3), δ1, δ2}� x iff [δ1Rx or δ2Rx or (α1 ∗ α2 ∗ α3)Rx], and
*6) n� {(a1 ∗ a2), b1, b2} iff n� (a1 ∗ a2) and n� b1 and n� b2.

Fig. 7. Two possible joint attack relations realising the attack in Fig. 6.

This gives a full meaning to n� m in terms of the underlying argumentation frame
with joint attacks that can realise the attack relations indicated, where the attack relation
is restricted to a multiset of weapons attacking individual weapons.

Thus for the above example in Fig. 6, one such underlying argumentation framework
generated from n� m is the following relation R1.

δ1 R1 a2 δ1 R1 b1 δ1 R1 b2

Another example that would also realise the attack n� m would be relation R2 defined
as follows.

α1 ∗ α2 ∗ α3 R2 b1 α1 ∗ α2 ∗ α3 R2 a1 δ2 R2 b2
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These two possible joint attack relations realising the attack in Fig. 6 are depicted
by the respective diagrams in Fig. 7, as indicated by the overlaid attack relations from
multisets of weapons in attack tree n to weapons inm. Obviously, this is not an exhaus-
tive list of joint attack relations; indeed there are 54 such joint attack relations realising
the attack between the trees in this example. It is sufficient for one of those joint attack
relations to be realisable in practice, in order for the attack n � m to be realisable in
practice.

Following the method illustrated above, it is clear that we can give a semantics for
the attack relation on attack-defence frameworks, where trees may attack trees in terms
of a set of argumentation frameworks with joint attacks.

For a further example consider Fig. 8. Here we have, according to our weapon inter-
pretation the following.

b � {b1, b2} β � {α1, α2} x � {x1, x2}.
We get {b1, b2}� {α1, α2}� {x1, x2}.
α1, α2 are used as weapons to kill {x1, x2}. So the meaning of {α1, α2} � {x1, x2} is

(α1Rx1 ^ α1Rx2) _ (α1Rx1 ^ α2Rx2) _ (α2Rx1 ^ α2Rx2) _ (α2Rx1 ^ α1Rx2).
The meaning of {b1, b2}� {α1, α2} is similar, namely (b1Rα1 ^ b1Rα2)_ (b1Rα1 ^

b2Rα2) _ (b2Rα1 ^ b2Rα2) _ (b2Rα1 ^ b1Rα2).

Fig. 8. A variation on Fig. 3, where each node has a choice of weapon to employ.

Putting the above together, an argumentation framework that realises the above con-
straints is depicted in Fig. 9. That is, we have an attack relation R such that:

b1 R α1 b1 R α2 α1 R x1 α2 R x2
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Fig. 9. An example of an argumentation frame-
work realising the attack relations in Fig. 8.
Notice that the argumentation framework gener-
ated need not be a tree.

For the argumentation framework
defined by R it is clear that we can ask
traditional argumentation questions such
as: what is the preferred extension, i.e.,
the in set E`, for the realisation of the
attack-defence framework in Fig. 8, as
given in Fig. 9. The preferred extension
is of course the following set.

E` = {b1, x1, x2}
Notice that, since x � {x1, x2}, for x to be
acceptable it is sufficient that x1 or x2 is
an acceptable argument. Thus since x1 and x2 both happen to be acceptable with respect
to E`, we can claim that x is acceptable with respect to E`. Similarly, since b � {b1, b2}
and b1 is acceptable with respect to E` we have b is acceptable with respect to E`
(recall sets represent a disjunctive refinement in attack trees, i.e., a choice of possible
attacks, so it is sufficient for one multiset in the set of multisets to be acceptable). In
contrast, since β � {α1, α2} and neither α1 nor α2 is acceptable with respect to E`
(equivalently they are both in E−), β is not an acceptable argument with respect to E`.

In summary, in this example b and x are “in” and β is “out”. This is exactly as
expected for the traditional argumentation frame, in the sense described in Sect. 2,
where we take b, β and x to be atomic arguments and define the attack relation as
b � β � x. The reason, or evidence for the admissibility of x is however now more
fine grained, reflecting the more fine grained nature of the arguments. Since for each
underlying argumentation framework E` is unique in this acyclic setting, it is suffi-
cient to say “x is an acceptable argument with respect to the argumentation framework
defined by R”, where one such R is depicted in Fig. 9.

3.2 Interpreting the Support Relation

But what about support? Here we explain support and provide a semantics in terms of an
algorithm rewriting the attack-defence frameworks introduced in this work, inspired by
the traditional algorithm for argumentation frameworks at the top of Sect. 2. We make
use of the attack tree in Fig. 10 to guide the development of an algorithm suitable for
both the security and argumentation communities. The example features Cloudbursting,
which is the practice of scaling a service temporarily to the Cloud, so as to cope with
spikes of demand and to sit out distributed denial of service attacks (DDoS) [12].

In our algorithm, we make use of the concept of a belt. A belt (a maximal anti-chain)
for a bipolar argumentation frame is a set B Ď S such that:

– For no x, y P B does x� y or x→ y hold. Hence B is conflict free.
– every z P S is either below or above or in B.

To understand the terminology “maximal anti-chain” used above observe the fol-
lowing. A maximal chain in (S ,�) is a maximal sequence x1, x2, . . . xn such that for
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all i = 1, . . . n − 1, xi � xi`1. Thus every maximal chain containing an argument z
intersects a belt B in exactly one point.

The idea is that we start with the belt consisting of all arguments that are not attacked
or supported, i.e., the sources of the graph. We then move forwards across the attack-
defence framework to another belt reachable by realising the attack and support relation
of a node in that belt.

Fig. 10. A bipolar argumentation framework involving support.

We firstly illustrate what our algorithm should do on the attack-defence framework
in Fig. 10. To be precise, we specify this attack-defence framework as the following
quadruple defined in the bullet points below.

– The abstract arguments, i.e., the nodes of the graph:

{
Service Availability, In-house Servers,Server 1,Server 2,Cloudburst,DDoS

}

– The attack relation:
DDoS� In-house Servers

– The support relation:

In-house Servers→ Service Availability Cloudburst→ Service Availability

Server 1→ In-house Servers Server 2→ In-house Servers

– The (initial) resource assignment:

Service Availability �H
In-house Servers �H

Server 1 � {s1}
Server 2 � {s2}

Cloudburst � {c}
DDoS � {d}

Remark 1. Observe that Service Availability and In-house Servers are initially assigned
no resources, as indicated by the empty set. This is because these arguments have no
resources inherently, by themselves, instead they inherit their resources via support rela-
tions from the arguments Server 1, Server 2, and Cloudburst. Thus if we consider the
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argumentation frame without the DDoS node, we could represent this scenario using
the attack tree consisting of the single node Service Availability, assigned the resources
{s1, s2, c}. The advantage of using explicit support relations rather than a single node is
that we can employ more fine-grained precision indicating that the in-house servers are
affected by the DDoS attack, but Cloudbursting is not affected by a DDoS attack.

Observe also that the sub-framework consisting of “In-house Servers”, “Server 1”
and “Server 2” could alternatively be modelled by a single node “In-house Servers” with
resource assignment {s1, s2}. That modelling decision would not changing the meaning
of the tree, since the DDoS attack takes out both servers indiscriminately.

We propose an algorithm that executes as follows on Fig. 10.

Initialisation: The initial belt (those nodes that are not attacked or supported by any
other node) is defined as follows:

{Cloudburst,DDoS,Server 1,Server 2}
Note all of these arguments should correspond to leaves of some attack-defence tree
and hence should have resources assigned to them, which is indeed the case for this
example.

Step 1:We consider some belt reachable from the initial belt by taking at most one step
away from the initial belt, with respect to the attacks and supports. For this example,
there is only one choice: the following belt, which is reachable by the attack and support
relations in one step:

{Cloudburst, In-house Servers}
Notice that argument Cloudburst does not advance, if it were to advance we would
not have a belt. Firstly, we update the attack-defence framework to reflect the support
relations resulting in the attack defence framework where the resources assigned to
“Server 1” and “Server 2” are sent to “In-house Servers”—resulting in the new annota-
tion {s1, s2} for that node.

Secondly, we apply the construction from the previous section to generate an argu-
mentation framework (with joint attacks) based on the weapons given by the resource
assignment. I.e., we interpret d � {s1, s2}, thereby generating the relation R1 consisting
of d R1 s1 and d R1 s2.

Step 2: As with Step 1 above, we progress to the next belt:

{
Service Availability

}

This belt is reachable by two supports from the nodes of the previous belt Cloudburst
and In-house Servers, hence we update the resources, assigned to “Service Availability,”
by sending the resources from “In-house Servers” and “Cloudburst,” resulting in the
annotation {s1, s2, c} for the node “Service Availability.”

Since there are no attacks for this iteration of the algorithm R2 = R1.
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Output of Algorithm: The result of running the algorithm is an updated resource
assignment as follows:

Service Availability � {s1, s2, c}
In-house Servers � {s1, s2}

Server 1 � {s1}
Server 2 � {s2}

Cloudburst � {c}
DDoS � {d}

This is accompanied by the argumentation framework on weapons, with relation R
defined as.

d R s1 d R s2

Note that, in general there could be a set of argumentation frameworks with joint attacks
generated; but, in this case, there is only a single choice of argumentation framework.

Analysis: Consider the output of the algorithm and observe that, since nothing attacks
d or c in R they are both elements of preferred extension E`. Hence c is acceptable with
respect to E` in the conventional sense of the argumentation framework defined by R2.
Going further, since the argument Service Availability of the updated attack-defence
framework has resource annotation {s1, s2, c} and c is acceptable with respect to E`, we
can say that “Service Availability is an acceptable argument with respect E`.”

We reinterpret the above from the perspective of security. The preferred extension
says that if a DDoS attack is active and the option to Cloudbursting is available then we
have Service Availability.

3.3 An Algorithm for Attack-Defence Frameworks, in Its General Form

We now distil the general algorithm from the above worked examples.

The input: An attack-defence framework (S,�,→, S ,�). I.e., a bipolar argumenta-
tion framework (S,�,→) with a resource assignment � mapping arguments to sets of
multisets of weapons built from the atoms in S .

Remark 2. The attack-defence framework may be generated from an attack-defence
tree, by assigning a singleton atomic weapon to each action and the empty set of
resources to each node in the attack-defence tree. However, more general acyclic graphs
of relations and more detailed resource assignments are also permitted.

The initialisation: We define the initial mapping �0, belt B0 and set of joint attack
relation R0 as follows.
– �0=�
– B0 = {x : x P S and there is no y P S such that y� x or y→ x}
– R0 = {H}
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The inductive step: Let Bn`1 be a belt (not necessarily uniquely defined) such that
Bn`1 � Bn and for all y P Bn`1 there exists x P Bn such that x = y or x � y or x → y,
i.e., every element of Bn`1 is either in Bn or reachable from Bn. Notice there must be
some progress forwards, since at lest one element of Bn`1 must not be in Bn.

The assignment of sets of multisets of weapons to arguments is updated as follows.

y �n`1 S n Y
⋃
{T : ∃x P Bn s.t. x→ y ^ x �n T } where y �n S n.

The set of relation
{
Ri
n`1

}
is then updated by using the set of joint attack relations

on weapons generated by each x � y where x P Bn, x P Bn`1, Recall, that joint attack
relations map mutisets of weapons to single weapons. More precisely, we have Rn`1 is
defined as follows, where � is point-wise union of sets of relations:

Rn`1 = Rn � {R : ∀x P Bn,∀y P Bn`1 s.t. x� y ^ x �n`1 S ^ y �n`1 T^
∀m P T,∃w P m s.t. ∃n P S s.t. n R w }

The above defines more formally the joint attack relations generated as described in
Sect. 3.1.

The output: Assuming the attack-defence framework is finite and acyclic, the algo-
rithm eventually terminates, returning the assignment and set of joint attack relations at
that iteration of the algorithm.

Remark 3. This is just one possible algorithm. Note, some security assessments may
require more annotations and different algorithms for advancing from one belt to the
next, for interpreting the attack relation, and for interpreting the joint attack relation.
We return to this point in our discussion of this model, which occupies the remaining
sections of the paper.

4 Reorientation from the Perspective of Attack-Defence Trees

Let us motivate and explain what we are doing in this paper in a Socratic fashion starting
bottom up with the security requirements driven by examples of attack-defence trees.
This approach enables us to compare existing treatments of attack-defence trees in the
security area, with existing treatments of such frameworks in the argumentation area.
This enables us to export ideas and technical tools from the argumentation area into the
security area.

We take as a starting point an attack-defence tree in Fig. 1 of reference [1], repro-
duced in the Appendix (Fig. 17). We study this figure and compare it, bit by bit with
argumentation frameworks, and try to see how to understand it in a new improved more
detailed point of view. Viewed as a bipolar argumentation framework (i.e., a graph
formed from attack and support relations) Fig. 17 has the following characteristics.

1. The graph has no cycles. (The handling of cycles is still an open problem in the
attack-defence tree context, while it is more central in the argumentation context.)

2. The graph has a single top node (let us call it the goal g) to be defended and it is
layered as a tree with layer 1 defending/protecting g and each layer n ` 1 attacking
the previous layer n and or defending layer n − 1.
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3. The graph uses joint attacks and joint supports
4. The nodes have internal meaningful contents. They are not atomic letter nodes. This

should be taken into account when offering semantics for the tree

There are several ways of looking at Fig. 17.

1. As a traditional formal argumentation framework. This works only for limited exam-
ples, such as Fig. 1.

2. As a graph for a game between two players (the defender/protector of g and the
attacker of g) the levels/layers are moves and countermoves of the players. This
view is better but still not exactly right. We shall also discuss this. The graph can be
flattened to a mini-max matrix. All defences can put forward in layer 1—consisting
of all possible best strategic defensive moves—and the attacker can attack all possi-
ble defensive strategies and the net result is the solution. The problem with this view
is that we need to address more features of the application, for example the temporal
evolution of moves, the availability and cost of resources and the local reasoning
and aim of each player and, prospectively, the treatment of cycles.

3. As action counter action temporal sequence between two agents, the one protecting
g and the other in principle attacking g. This is a much better view but it needs to be
fine-tuned to various applications.

We now ask how do we proceed, and where do we find the connection and use of
argumentation in the attack-defence trees context? We start with examples from both
areas and step by step, using a Socratic method, add components that converge towards
our target theory.

Let us now look at formal argumentation frameworks and find a framework to the
formal argumentation community, (Fig. 11) which may be, on the face of it, similar to
what Fig. 17 seems to be. We then continue our analysis of Fig. 17. Consider Fig. 11. In
this figure we use a single arrow for support “→” and a double arrow for attack “�”.
To start our comparison, the nodes in Fig. 11 are explained and exemplified by nodes in
Fig. 17 in parentheses below.

Explanation of the nodes of Fig. 11:

Fig. 11. A scenario with goals, attacks and
defences, in terms of attack relations and as
an attack defence tree.

Fig. 12. A subtree of Fig. 17, where some
attacks defeat and others weaken.
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– g is the goal to protect (Data Confidentiality)
– a, b are supports (Physical Security, Network Security, etc.)
– α, β, γ attack the support (Break In, Dictionary Attack, Corruption)
– x, y, z support a, b, c by attacking the attacks (Security Guard, Strong Password, etc.).

Comparing Fig. 17 and Fig. 11, let us make some observations.

Observation 1. In Fig. 17, consider the subpart of the figure represented by Fig. 2. In
this figure the node y does not attack β in the sense of “killing” β but makes b stronger
so that it can withstand the attack of β.

In other words, the part of the figure (namely the formal attack and defence sub-
figure to the left of Fig. 2) can be transformed to the bipolar argumentation framework
to the right of Fig. 2.

Figure 2 represents a bipolar argumentation framework, that is a framework with
attack and defence (in argumentation terminology). One of the interpretations of such
frameworks, from the argumentation point of view, is that to attack and kill a node b,
we need also to kill all of its supporters (i.e., we need to attack y as well). Adopting
established terminology [13], the set {b, y} forms a support group. Indeed this is also
the security view of the attack and defence in Fig. 17, in that the attacks must continue
on node y = Strong Password. Indeed in Fig. 17, y = Strong Password is attacked by
“Strong Password Attacks” (i.e. Find Note, Same Password Different Accounts).

Observation 2. On the other hand, the part of Fig. 17 depicted in Fig. 12 consisting of
b, β, y with the additional options, u and w, is different. It has the additional feature
that it the security guard is attacked in two possible ways: bribing, which weakens the
guard and may be ineffective, and killing, which removes the guard.This observation
departs from mainstream argumentation. In argumentation, if a node x attacks a node
y (i.e. x � y), then if x is alive then the attack on y is always successful and x kills
y and y is dead. There is no intermediate result such as weakening y, which might be
accommodated in a more resource sensitive model.

From the perspective of security, a limitation of lifting directly from argumentation
without reworking the semantics is that resource considerations remain limited—all
arguments are either “in” or “out” with respect to some joint attack relation. For attack-
defence trees, when determining whether an argument such as “data confidentiality” is
maintained we consider the resources assigned to an attacker profile. Resources may
be specialised equipment or expertise, a budget or time; while profiles of attackers may
include cybercriminals, rogue states, script kiddies or cyberterrorists. Only by combin-
ing such viewpoints can we estimates the vulnerabilities a system is exposed to and
priorities mitigating those attacks with limited security resources.

Instead of calculating whether nodes are in or out we may wish to calculate quan-
tities that remain after being attacked. For instance in Fig. 10, for some attacker and
defender profiles, there may not be sufficient budget for the defender to use Cloudburst-
ing, but there is not sufficient motive for the attacker to perpetrate the DDoS attack any
way. Bringing in such resource considerations from security would be a contribution to
the area of argumentation.
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Fig. 13. Scenario where a defensive action
supports a new attack.

Fig. 14. Scenario with multiple goals, and
goals that are not necessarily security
related.

Observation 3. Consider the framework in Fig. 13. This is an acyclic graph rather than
a tree. There is no attack-defence node distinction: a “green” node can support a “red”
node (colours are meaningless in this model, they simplify making connection with
established attack-defence tree notations).

Scenario for Fig. 13: A company with a limited cyber security budget may not have
the resources to defend against sophisticated attackers using in house security solu-
tions. Their solution to defeat these sophisticated cyber attacks is to outsource part
of their infrastructure to a secure Cloud environment. The dedicated expertise and tools
behind the Cloud-based security solution does reduce the risk of the company becoming
exposed to certain sophisticated attacks on their in-house infrastructure; however, this
move does leave open the organisation to new attacks. Thus, a side-effect of employing
Cloud-based security is that new attacks that exploit the fact that certain operations are
occurring over a WAN are enabled. Thus the use of certain defences may support new
attacks.

Notice that, while we do not have side effects in Fig. 17, it is possible to add exam-
ples of side effects. In Fig. 12, killing the guard may activate a Murder Investigation as
a side effect and we might not want that.

Observation 4. The scenario in Fig. 14 presents multiple goals, which would not be
permitted if we restrict to trees. The privacy goal is to ensure ePassport holders cannot
be linked from one session to the next, which is called unlinkability. There are attacks
on unlinkability, involving relaying messages to remote readers [14]. Note furthermore,
that such attacks do not completely compromise unlinkability, e.g., ePassport holders
cannot be tracked forever, only in a limited time window, so there are resource consid-
erations here.

The effectiveness of these relay attacks on ePassport unlinkability could be reduced
by encrypting error messages that leak information. The added dimension is that the
defensive action of encrypting an error message attacks a second goal, which is to
satisfy the ICAO specification for ePassports so that the ePassport is compatible with
ePassport readers internationally. Thus there may be multiple goals, and not all goals
need be security related.
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Fig. 15. Diagrammatic representation of the
argumentation framework generated algorithmi-
cally in Sect. 3.2, which forms a disconnected
acyclic graph with no single root node.

An additional reason for permitting
multiple goals and even disconnected
acyclic graphs is illustrated in Fig. 9.
That figure depicts a graph with multiple
sinks which is an attack relation realising
that realises another attack relation that
formed a tree. Thus by permitting general
acyclic graphs we can use graphical nota-
tion to depict both attack-defence trees,
where arguments may be attack trees,
and its semantics given by a set of joint
attack relations where the target of each
attack is an atomic action or weapon. To see why such acyclic graphs need not be
connected, observe that the joint attack relation generated by the running example in
Sect. 3.2 can be depicted as in Fig. 15. Recall that nothing attacked the Cloudburst argu-
ment whose resources were denoted by the weapon c.

Observation 5. In formal argumentation frameworks, a node x attacking several targets
attacks all of them in the same way. There is no option for different attacks for different
targets. This is not the case in Fig. 17, “defeat lock” attacking the back door is most
likely not the same as the one attacking the front door. The attacks are directional.

Observation 6. In Security, there is a stress on resources, hence the use of linear logic
in semantics for attack trees [15,16]. Formal argumentation is based on classical logic.

Observation 7. The structure of an attack-defence framework could be taken further, to
provide a still finer semantics for attack-defence trees, by introducing an explicit con-
junctive support relation. For example, consider the first attack-defence tree in Fig. 16.

Fig. 16. A case for conjunctive support with two variations.

Existing semantics for attack-defence tree in the literature, and also the semantics
in this paper, are not sensitive to the fact that the reason that Overpower is countered
is that people were searched upon entry to the building. Indeed, the existing semantics
would assign the same meaning to the first tree in Fig. 16 and the two other scenarios.

In terms of the semantics provided, Overpower will be assigned the attack tree
denoted by {o ∗ k} and a set of two attack relations, say {R1,R2}, will be generated, where
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s R1 k and s R2 o. Thus the semantics are currently indiscriminate about which weapons
or actions are countered by the argument Search—it is not necessarily the Knives, as
the first attack-defence tree in Fig. 16 might intuitively suggest. As, explained above,
established multiset semantics in the literature [1] would also not make it explicit that
only the argument Knives is attacked.

The above limitation of the semantics could be resolved by an explicit conjunctive
support, which is interpreted in the algorithm by extending the weapons in the nodes
supported, using multiset union, by using the resources available to the source node.
This would enable the three scenarios in Fig. 16 to be distinguished, since the generated
attack relations would be {R1}, {R2} and {R1,R2} respectively.

A further advantage of breaking down all nodes in an attack-defence tree into argu-
ments is that we can refer explicitly to sub-goals of attackers, not just the roots of trees.
That is, we can ask questions, such as whether a sub-goal is an acceptable argument
with respect to some preferred extension. Recent work on attack trees, has argued for
the value of giving sub-goals an explicit status [17].

Remark 4 (Summary of discussion in Sect. 4). We summarise the points learnt from
our discussion in this section. To give good argumentation like semantics for Fig. 17
describing a security scenario, we need to enrich argumentation with the following
features:

1. And/or attacks and defence (this we have already in argumentation).
2. Allow converting attack to support and support to attacks (this has been done previ-

ously [18], but for only the numerical case).
3. Allow for weakening attacks (as well as attacks which fail) in a directional way.

(This means that for the same live x and different targets, say for example, x �
y1, x � y2, and x � y3, it is possible that the attack of x on y1 will succeed, the
attack on y2 will fail and the attack on y3 will only weaken y3. Compare this with
numerical attacks which change the strength of the target by a numerical factor.)

4. Deal with side effects in the formal argumentation level, because in practice for
example when you hack into a server you may cause side effects.

5. We need one more principle: Consider below, where we have nodes a1, . . . , an sup-
porting g. To make sure we successfully kill g we need to kill all of a1, . . . , an. This
is for the case where all the ai are independent supports.

g

ana1 . . .

This is not like how it goes in logical and legal argumentation. If we have a1 	
g, . . . , an 	 g, then attacking or falsifying all ai does not mean that g is false. There
may be some new x 	 g.
In the model introduced in this paper, we embody this principal by assigning argu-
ments representing intermediate nodes in an attack tree no resources initially. Since
such nodes inherit all their resources from their supports, killing all their supports
kills the intermediate argument.
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Fig. 17. An ADTree for protecting data confidentiality from reference [1]
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6. Running Global Side effects. Each node costs money. Guards need to be paid, Keys
need to be acquired, etc. We have a global budget node which needs to be treated as
a special weapon node.

7. Local support. This principle has to do with supporting local nodes in the middle of
the tree. We note that in Fig. 17 all the support nodes actually support the security of
the data. There is a sequence of nodes:

acquire keys� lock door� break in through door.
So let us add support to acquire key the support we add is “increase budget to buy
keys”. This support is not for server security, it supports locally the attack of acquire
keys.

5 Conclusion

This position paper proposes attack-defence frameworks, defined in Sect. 3, which build
on concepts in argumentation so that we may assess the acceptability of arguments in
security scenarios described by attack-defence trees. Attack-defence frameworks bor-
row from some more recent developments in argumentation, namely:

– bipolar argumentation frames that incorporate support as well as attack,
– joint attacks for describing scenarios where multiple resources must be used together
to execute an attack,

– and disjunctive attacks allowing multiple possible ways of realising an attack.

In addition, attack-defence frameworks take into account resource considerations, by
annotating arguments with sets of multisets of weapons or actions, which are essen-
tially attack trees. This semantics generates multiple possible ways of realising attacks,
which can, in turn, be used to explain why arguments such as Data Confidentiality or
intermediate goals such as Physical Security, or Lock Doors are acceptable arguments.

The development of attack-defence frameworks has been guided by examples from
the security domain. However, this model has been developed with other fields in mind
such as legal argumentation (think lawyers attacking each other), ecology (think of
species competing with and supporting each other) and medical sciences (think of the
side effect of taking medicine along the lines of Fig. 13), hence may be broadly applied.
For security specifically, a key added value of this work is the notion of evidence for
an argument, as given by preferred extensions for example, which is a central notion
in the various semantics investigated in the argumentation domain. The model admits
general graphical structures to be described thus we are not restricted to trees, nor are
we restricted to asking question about a goal represented by a root node.
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