
Harley Eades III
Olga Gadyatskaya (Eds.)

LN
CS

 1
24

19

7th International Workshop, GraMSec 2020
Boston, MA, USA, June 22, 2020
Revised Selected Papers

Graphical Models
for Security

Lecture Notes in Computer Science 12419

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Harley Eades III • Olga Gadyatskaya (Eds.)

Graphical Models
for Security
7th International Workshop, GraMSec 2020
Boston, MA, USA, June 22, 2020
Revised Selected Papers

123

Editors
Harley Eades III
Augusta University
Augusta, GA, USA

Olga Gadyatskaya
Leiden University
Leiden, The Netherlands

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-62229-9 ISBN 978-3-030-62230-5 (eBook)
https://doi.org/10.1007/978-3-030-62230-5

LNCS Sublibrary: SL4 – Security and Cryptology

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0001-8474-5971
https://orcid.org/0000-0002-3760-9165
https://doi.org/10.1007/978-3-030-62230-5

Preface

The 7th International Workshop on Graphical Models for Security (GraMSec 2020)
was held virtually on June 22, 2020, colocated with the Computer Security
Foundations Symposium (CSF 2020).

Since its establishment in 2014, GraMSec seeks to bring together academic
researchers and practitioners from industry and government to discuss the latest
challenges and insights in graphical models applied in the security domain. It enjoys a
large community of security professionals passionate about designing and applying
graphical models and visualizations for capturing security of systems. Such graphical
models and visualizations are often very versatile, being able to represent a multitude of
security facets and to support security experts in tasks like formal socio-technical
security modeling or automated security assessment.

These post-proceedings contain revised versions of the 7 full technical papers and 3
short papers, which were selected from 14 submissions. In addition to the presentations
of these papers, Mariëlle Stoelinga from University of Twente and Radboud
University, The Netherlands, gave a keynote talk titled “Safety Versus Security: Why
Have They Not Married Yet?” This talk, which focused on similarities and discrep-
ancies between security and safety models and approaches, showed the GraMSec
audience several inspiring research directions.

The organization of GraMSec 2020 was affected by the COVID-19 global health
crisis. The workshop was held online and authors and the Program Committee mem-
bers were touched by this global emergency. We thank all authors for submitting their
research results to GraMSec 2020. We thank all Program Committee members and the
external reviewers for their time and effort toward a balanced and exciting workshop
program. We are grateful to the invited speaker and the presenters for delivering their
engaging talks online. Finally, we would also like to thank the Steering Committee of
GraMSec, and especially Barbara Fila, for their support in organizing the workshop.

September 2020 Harley Eades III
Olga Gadyatskaya

Organization

Program Chairs

Harley Eades III Augusta University, USA
Olga Gadyatskaya Leiden University, The Netherlands

Program Committee

Ludovic Apvrille Télécom Paris, France
Marco Angelini Sapienza University of Rome, Italy
Paul Attie Augusta University, USA
Stefano Bistarelli University of Perugia, Italy
Carlos E. Budde University of Twente, The Netherlands
Bram Cappers TU Eindhoven, The Netherlands
Daniele Codetta-Raiteri Università del Piemonte Orientale, Italy
Julia Eisentraut TU Munich, Germany
Mathias Ekstedt KTH Royal Institute of Technology, Sweden
Barbara Fila INSA Rennes, IRISA, France
Holger Hermanns Saarland University, Germany
Ross Horne University of Luxembourg, Luxembourg
Dong Seong Kim University of Canterbury, New Zealand
Rajesh Kumar Birla Institute of Technology and Science, Pilani, India
Kate Labunets TU Delft, The Netherlands
Tong Li Beijing University of Technology, China
Sjouke Mauw University of Luxembourg, Luxembourg
Per Håkon Meland SINTEF, Norway
Federica Paci University of Verona, Italy
Stéphane Paul Thales Research and Technology, France
Sophie Pinchinat University of Rennes, CNRS, IRISA, France
Saša Radomirovic Heriot-Watt University, UK
Riccardo Scandariato University of Gothenburg and Chalmers University

of Technology, Sweden
Ketil Stølen SINTEF Digital, University of Oslo, Norway
Axel Tanner IBM Research, Switzerland
Rolando Trujillo-Rasua Deakin University, Australia
Katja Tuma University of Gothenburg and Chalmers University

of Technology, Sweden
Luca Viganò King’s College London, UK
Lingyu Wang Concordia University, Canada
Wojcieh Widel KTH Royal Institute of Technology, Sweden
Jan Willemson Cybernetica, Estonia

Steering Committee

Sushil Jajodia George Mason University, USA
Barbara Fila INSA Rennes, IRISA, France
Sjouke Mauw University of Luxembourg, Luxembourg
Christian W. Probst Unitec, New Zealand
Ketil Stølen SINTEF Digital, University of Oslo, Norway

Publicity Chair

Barbara Fila INSA Rennes, IRISA, France

Web Chair

Reynaldo Gil Pons University of Luxembourg, Luxembourg

Additional Reviewers

Ivan Merkanti
Raúl E. Monti
Matthias Ramparison
Carlo Taticchi

viii Organization

Safety Versus Security: Why Have They Not
Married Yet?

(Abstract of Invited Talk)

Mariëlle Stoelinga1,2

1 University of Twente, The Netherlands
2 Radboud University, The Netherlands
m.i.a.stoelinga@utwente.nl

Abstract. Safety and security are two historically separated fields that have
many aspects in common. Safety is the absence of disruptions due to unintended
failures; security is the absence of disruptions due to malicious attacks. While
both safety and security aim at mitigating system risks with cost-effective
counter measures, they take opposing views when in comes to modelling,
measuring, and mitigating. In this talk, I will present the main differences and
similarities between safety and security risk analyses, as well as directions to
reconcile these important fields, through mathematical game theory, uncertainty
reasoning, and stochastic analysis. The research is funded by an ERC consol-
idator grant CAESAR: integrating safety and cybersecurity through stochastic
model checking.

Contents

Attack Trees

Causal Model Extraction from Attack Trees to Attribute Malicious
Insider Attacks . 3

Amjad Ibrahim, Simon Rehwald, Antoine Scemama, Florian Andres,
and Alexander Pretschner

Library-Based Attack Tree Synthesis . 24
Sophie Pinchinat, François Schwarzentruber, and Sébastien Lê Cong

Asset-Centric Analysis and Visualisation of Attack Trees 45
Christopher Schmitz, André Sekulla, and Sebastian Pape

Attacks and Risks Modelling and Visualisation

An Attack Simulation Language for the IT Domain. 67
Sotirios Katsikeas, Simon Hacks, Pontus Johnson, Mathias Ekstedt,
Robert Lagerström, Joar Jacobsson, Max Wällstedt, and Per Eliasson

Representing Decision-Makers in SGAM-H: The Smart Grid Architecture
Model Extended with the Human Layer . 87

Adam Szekeres and Einar Snekkenes

Breaking the Cyber Kill Chain by Modelling Resource Costs 111
Kristian Haga, Per Håkon Meland, and Guttorm Sindre

GroDDViewer: Dynamic Dual View of Android Malware 127
Jean-François Lalande, Mathieu Simon, and Valérie Viet Triem Tong

Models for Reasoning About Security

Attack-Defence Frameworks: Argumentation-Based Semantics
for Attack-Defence Trees . 143

Dov M. Gabbay, Ross Horne, Sjouke Mauw, and Leendert van der Torre

A Diagrammatic Approach to Information Flow in Encrypted
Communication. 166

Peter M. Hines

Contextualisation of Data Flow Diagrams for Security Analysis 186
Shamal Faily, Riccardo Scandariato, Adam Shostack, Laurens Sion,
and Duncan Ki-Aries

Author Index . 199

xii Contents

Attack Trees

Causal Model Extraction from Attack
Trees to Attribute Malicious Insider

Attacks

Amjad Ibrahim1(B), Simon Rehwald1, Antoine Scemama2, Florian Andres1,
and Alexander Pretschner1

1 Department of Informatics, Technical University (TUM) of Munich,
Garching b. Munich, Germany

{ibrahim,rehwald,andres,pretschn}@cs.tum.edu
2 Brainloop AG, Munich, Germany

Abstract. In the context of insiders, preventive security measures have
a high likelihood of failing because insiders ought to have sufficient priv-
ileges to perform their jobs. Instead, in this paper, we propose to treat
the insider threat by a detective measure that holds an insider account-
able in case of violations. However, to enable accountability, we need
to create causal models that support reasoning about the causality of a
violation. Current security models (e.g., attack trees) do not allow that.
Still, they are a useful source for creating causal models. In this paper, we
discuss the value added by causal models in the security context. Then,
we capture the interaction between attack trees and causal models by
proposing an automated approach to extract the latter from the former.
Our approach considers insider-specific attack classes such as collusion
attacks and causal-model-specific properties like preemption relations.
We present an evaluation of the resulting causal models’ validity and
effectiveness, in addition to the efficiency of the extraction process.

1 Introduction

Security is crucial in systems that deal with sensitive customer assets. Adver-
saries are constantly trying to compromise the integrity, confidentiality, or avail-
ability of such assets. These attempts are carried out by insiders or outsiders of
the system. In this paper, we are chiefly interested in insiders, specifically mali-
cious insiders such as a rogue employee. For instance, according to the Cyber
Security Intelligence Index by IBM X-Force Research [29], insiders carried out
60% of all attacks in 2015. Insiders can, tamper with records in the database,
leak or delete documents, which leads to reputation damage, legal costs, and
reimbursements [13]. Reports show that insiders carry out the most significant,
and costly attacks [13,29]. Such attacks are likely to succeed, and their impact is

TUM partners were in part funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) under grant no. PR1266/4-1, Conflict resolution and
causal inference with integrated socio-technical models.

c© Springer Nature Switzerland AG 2020
H. Eades III and O. Gadyatskaya (Eds.): GraMSec 2020, LNCS 12419, pp. 3–23, 2020.
https://doi.org/10.1007/978-3-030-62230-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62230-5_1&domain=pdf
https://doi.org/10.1007/978-3-030-62230-5_1

4 A. Ibrahim et al.

significant [31]. In this context, preventive measures have a high likelihood of fail-
ing because insiders ought to have sufficient privileges for their jobs. They may
abuse their privileges. The term “abuse” makes this problem especially hard due
to the unpredictable nature of insiders and the necessity of their privileges. That
said, insiders are mostly not malicious. Typically, there is a trust base between
a company and its employees, not to mention the contracts an employee signs
upon starting a job.

We propose addressing the insider threat using a detective approach that
helps a company to attribute malicious acts [36]. Detective approaches, such
as accountability, provide a mechanism to answer questions about security inci-
dents (e.g., “why was the document leaked?”) and attribute responsible parties
a posteriori. Attack attribution is the process of identifying the perpetrator of a
cyber-attack [22]. This mechanism increases forensic readiness, and establishes
the basis for taking legal action against an attacker [9,30,34]. As such, attribu-
tion can be considered in many cases as a deterrent measure [9,33].

Insider attack attribution does not inherit the challenges facing attribution
such as tools prepositioning [37], and the Internet anonymity [9]. Still, there are
no robust approaches to attribute insider attacks. Surveys show that the attri-
bution literature focused on the IP level in network attacks [9,33,37]. Instead,
we tackle insider attacks attribution through an automated reasoning capability.

Accountability, fundamentally, means preserving evidence and supporting
reasoning about the causal relationships within the collected evidence [11].
Actual causality, as an essential ingredient for accountability, is studied in dif-
ferent fields of computer science [7]; however, it was not utilized for attributing
insiders. For that, we adopt the definition of Halpern and Pearl (HP) [6,7] to
infer actual causality. HP is a formal foundation to answer causal queries in a
way that matches the human way of thinking. This enables us to explain insider
attacks. However, the first challenge towards this adoption is constructing causal
models which are required by HP. We propose to solve this problem by relating
causal models to security models.

Security models [17] such as ATs [32] are appealing to scientists for their
formalism [21,28], to managers for their visual nature, and to engineers for
their systematic categorization of threats. ATs are used for risk estimation, cost
approximation, and defense planning. We aim to add forensics analysts to the list
of AT beneficiaries, and supporting causality reasoning to its purposes. However,
ATs are not readily sufficient to be used for after-the-fact forensic analysis.

Our goal is to create models that attribute blame to a human, i.e., an insider.
However, ATs do not usually include potential attackers (suspects). This is what
differentiates ATs from causal models. Thus, we analyze the implications of
adding suspects to ATs. Then, we detail a complete approach to extract causal
models from AT and show their utilization to infer causality automatically [12].
We focus on models for insiders because we think that accountability is a deter-
rent measure against insiders. Further, while creating those models, we exploit
the unique property of insider threats, i.e., the ability to identify suspects before-
hand. Our contributions are: a) a proposal of utilizing actual causality theories

Causal Model Extraction from Attack Trees 5

in insider threat attribution and forensics. We discuss the usefulness of this pro-
posal throughout the paper. b) an automated extraction approach of causal mod-
els from ATs. This transformation enables attributing suspects, creating exoge-
nous variables, and recommending preemption relations. c) an open-source tool
(ATCM) that implements the approach with an evaluation of the efficiency,
the validity of the approach, and the effectiveness of the model.

2 Preliminaries

We review the formalism of attack trees in Sect. 2.1, we elaborate on the foun-
dations of causality in Sect. 2.2, with an example in Sect. 2.3.

2.1 Foundations of Attack Trees

ATs model potential security threats within a system and the steps necessary to
perform an attack [32]. The root node contains the ultimate goal of an attack
tree while the sub-nodes describe activities that are necessary to conduct the
respective parent activity/goal. The relationship between a node and its children
can be either OR or AND (represented by a circular line below the node).

Depending on the required purpose, attack trees have been defined using
different semantics such as multi-set semantics [21], linear-logic semantics [8],
timed automata [18], Markov decision process [2], and propositional logic [28].
In this paper, we aim to reason about the actual causality relations among binary
events, i.e., whether the occurrence or absence of a specific event was the cause
of another event. Hence, we use the equation-propositional semantics similar
to [28]. Such formalism is simple, expressive, and general. The main difference
between our definition and the definition in [28] is that we create a propositional
formula for each node in the tree (excluding the leaves), while the whole tree is
represented with a minimized formula of the root in [28].

For the formal definition, we follow Mauw and Oostdijk’s [21] way of defin-
ing an attack tree. However, we adapt it to use propositional logic semantics.
Formally, Definition 1, adapted from [21], expresses attack trees.

Definition 1. Attack Tree [21] is a 4-tuple AT = (N , →, n0, [[n]]) where

– N is a finite set of attack nodes
– n0 ∈ N is the root node
– →⊆ N × N is a finite set of acyclic relations.
– [[n]] is a function that returns a propositional formula for each n ∈ N , the

formula represents the semantical dependency of a node on its children nodes.

6 A. Ibrahim et al.

2.2 Actual Causality

HP is the influential formal framework proposed by Joseph Halpern and Judea
Pearl [7] to define actual causality. It is based on counter-factual reasoning (CF),
in which we think of alternative worlds where if the cause is removed, the effect
does not occur. Essentially it is a simple but-for test, i.e., but for the existence
of some event X, would Y have occurred? The naive CF reasoning fails to deal
with many situations in the literature [20]. Thus, HP is introduced on the basis
of structural equations causal models (SEMs). The utilization of structural equa-
tions in this context allows for interventions, which enables CF. Intervention is
the act of changing a value in the model and checking the effects that it has on
other values; this allows us to answer the metaphysical counter-factual queries.

Causal Model. A causal model, which is the focus of this paper, is formally
defined by Halpern and Pearl in Definition 2 [6]. It uses variables to describe
properties of the world, and their values present states of these properties. The
influence of the variables on each other is modeled by the equations [6]. An
equation represents a mechanism, FY , in the modeled world, which describes how
variable Y is set depending on the values of the other variables. Variables are
classified into exogenous (U) and endogenous (V) variables. Exogenous variables
are determined outside the model; they represent the factors that the modeler
does not consider as causes, but rather given. Endogenous variables represent
the factors deemed causal; their values are determined by the equations.

Definition 2. Causal Model [6] M is 4-tuple M = (U ,V,R,F), where

– U is a set of exogenous variables,
– V is a set of endogenous variables,
– R associates with every Y ∈ U ∪ V a set R(Y) of possible values for Y ,
– F associates with X ∈ V FX : (×U∈UR(U)) × (×Y ∈V\{X}R(Y)) → R(X).

We focus on binary acyclic models in which all the variables are boolean and
there is always a unique solution to the equations, given a context. A specific set
of values for the exogenous variables is called a context. Models are visualized in
causal graphs with variables U ∪ V as nodes. There is an edge from a node X to
a node Y , if the equation of Y , denoted as FY , depends on X in the model.

Reasoning About Causality. We present the notations used by HP [6], before
defining actual causes in Definition 3. A sequence of variables X1, . . . , Xn is
abbreviated as a vector

−→
X , values of the variables are denoted by small letters

x1, . . . , xn. Analogously, X1 = x1, . . . , Xn = xn is abbreviated
−→
X = −→x . Values

of all exogenous variables U , also called (actual) context, is written as −→u . A
variable Y is set to value y writing Y ← y, i.e., we substitute the equation of
Y (FY) with a constant. For a causal model M = (U ,V,R,F) and a vector

−→
X

of variables in V, a submodel M−→
X←−→x can be obtained by setting

−→
X to −→x in

all functions F and removing
−→
X from V in the model M . A primitive event,

given a model M , is a formula of the form X = x for X ∈ V and x ∈ R(X).
A basic causal formula is of the form [Y1 ← y1, . . . , Yk ← yk]ϕ, where ϕ is a

Causal Model Extraction from Attack Trees 7

Boolean combination of primitive events. Y1, . . . , Yk (abbreviated
−→
Y) are distinct

variables in V, and yi ∈ R(Yi), that are intervened on, i.e., their functions are
substituted with constants. A causal formula ψ can be evaluated in M given a
context −→u . We write (M,−→u) |= ψ if ψ evaluates to true in the causal model
M given context −→u . The statement (M,−→u) |= [

−→
Y ← −→y](X = x) implies that

solving the equations in the submodel M−→
Y ←−→y with context −→u yields the value

x for variable X. Definition 3 shows the three conditions of an actual cause.

Definition 3. Actual Cause [6]
−→
X = −→x is an actual cause of ϕ in (M,−→u) if

the following three conditions hold:

AC1. (M,−→u) |= (
−→
X = −→x) and (M,−→u) |= ϕ.

AC2. There is a set
−→
W of variables in V and a setting −→x ′ of the variables in−→

X such that if (M,−→u) |= −→
W = −→w , then (M,−→u) |= [

−→
X ← −→x ′,

−→
W ← −→w]¬ϕ.

AC3.
−→
X is minimal in satisfying the first two conditions.

Given a causal model, we use Definition 3 to answer causal queries by check-
ing the conditions. AC1 sets a trivial condition:

−→
X = −→x can only be a cause

of ϕ, if
−→
X = −→x and ϕ are true under (M,−→u). AC2 checks the counter-factual

relation between the cause and the effect, i.e., changing the cause
−→
X = −→x leads

to the non-occurrence of ϕ. AC2 allows us to fix a set of variables
−→
W at their

actual value −→w . AC3 is a minimality condition to ensure only essential events are
part of the cause. In this paper, we aim to enable this kind of reasoning, in the
context of insider attacks, by proposing an automated method for constructing
causal models. We discuss, in the following, why we believe instantiating the HP
framework in the security domain is a beneficial capability.

Distinguishing between exogenous and endogenous variables as suggested in
HP, at first sight, does not appear to be revolutionary. However, this distinction
enables the choice of what to count as a possible cause (endogenous) and what
not to (exogenous), hence, it treats cases of irrelevance . As such, in security we
can limit our attribution based on the goal. If we are looking for legal evidence,
then we can include possible human actors as endogenous variables. If we are
looking for an intrusion explanation, then we can include the running services as
endogenous variables. Furthermore, HP correctly classifies the non-occurrence
of events as causes. For example, an administrator “forgetting” to install the
latest update of the firmware on a server can be a cause of an exploit.

A typical problem of causality definitions, which HP deals with, is preemp-
tion. It resembles the confusing cases where several potential causes exist and
coincide, but one cause preempts the others. The problem for simple CF defi-
nitions is that if the earlier cause A had not been there, cause B would have
triggered the effect anyway (just a bit later). Thus, A is not classified as a
cause. HP deals with this by using

−→
W from Definition 2 and auxiliary vari-

ables. Accounting for preemption, in insiders attacks, is beneficial. Specifically,
in attacks with different strategies of attacking. For example, an administrator
copying a DB backup file, although this is a policy violation, is not the actual

8 A. Ibrahim et al.

cause of the data breach that happened. The copy act was preempted by a privi-
lege abuse of another employee. Further, differentiating actual causes in cases of
preemption is crucial when preventive measures such as an intrusion detection
system (IDS) are deployed. For example, an IDS may preempt an attack from
succeeding although the basic steps of the attack were carried out.

Conjunction and Disjunction. HP can consider a combination of events as
a cause. There are attacks that are carried out by multiple steps, and hence
are modeled using an AND gate. For example, to read a service’s memory, an
attacker accesses the machine, then attaches a debugger to the running process.
On the other hand, there are attacks that can be carried out using different tech-
niques or by exploiting different vulnerabilities. For example, to steal the master
key from a system, the attacker can either obtain it decrypted from memory
or encrypted from the database (the attacker then has to decrypt it). A more
interesting scenario would be if two insiders cooperated in performing an attack,
i.e., a collusion attack. Such attacks are a major threat class of insiders [15]. We
will see in Sect. 3 that our approach exploits this ability in HP.

2.3 Malicious Insider Example

In this section, we consider a simplified real-world example, inspired by an indus-
trial partner, to illustrate the previous definitions; we also use it as a running
example throughout the paper. The example introduces a model of insider behav-
ior leading to sealing a master encryption-key in production. It is simple enough
to be explained yet expressive to illustrate HP, especially with preemption.

An excerpt of the causal graph is shown in Fig. 1. Although it is similar
to an AT, it visualizes a causal model according to Definition 2; as a result of
this paper, we aspire to construct such models using ATs. The model repre-
sents one strategy to steal the key (MKS) by obtaining its encrypted version
and decrypting it (as opposed to stealing it decrypted, which is omitted for
readability). The attack can be executed by one of two administrators (assum-
ing no collusion), Suzy (S) or Billy (B). They both have sufficient privileges
in the system; however, S has more expertise in the system. The event of S
or B decrypting the key is denoted by the variables S.DK,B.DK respectively.
For that, each of them needs to read the pass-phrase from a script (Get(P))
and read the key from the database (Get(K)). For now, we assume an arbi-
trary causal connection between S.DK and B.DK which is meant to represent
a preemption relation, i.e., a bias to represent S’s stronger abilities; such rela-
tions are crucial in causality [11]. In this paper, we model them using dashed
arrows because we think they can be dynamically altered by a modeler to express
different concepts, e.g., S has higher privileges, B has a better history in the
company, S came earlier in the morning when the incident was reported, or a
combination of these factors. We have four exogenous variables (omitted from
the model) that set the values for Get(P)/Get(K) for both S and B, i.e., U
is {S.Get(P)exo, S.Get(K)exo, B.Get(P)exo, B.Get(K)exo}. The equations of the
model follow; the dashed part of the equations shows the preemption relation.

– S.DK = S.Get(P) ∧ S.Get(K)

Causal Model Extraction from Attack Trees 9

S.Get(P)

S.DK

Master Key
Stolen

S.Get(K)

B.Get(P)
B.DK

B.Get(K)

Fig. 1. An excerpt of steal master key causal model

– B.DK = B.Get(P) ∧ B.Get(K)∧ ¬S.DK
– MKS = S.DK ∨ B.DK

The model is not sufficient for causality inference, we still need to set the con-
text (exogenous variables). This is done through logging, and auditing. Assume
we have the following context (1, 1, 1, 1) (S and B both got the pass-phrase and
the key) when considering the ordering of the variables as provided. We use the
context and the model to answer causal queries such as: Q1: is Suzy the cause
of stealing the key?, or Q2: what is the actual cause of exposing the key?. Let us
answer Q1 by checking if S.Get(K) is a cause of MKS with W = {B.DK} using
the conditions from Definition 3. Equation 1 shows the crucial steps (of checking
AC2) to conclude that S.Get(K) is the cause. Note that with an empty set W ,
AC2 does not hold (case of preemption), but with W= {B.DK} (Step 3 Eq. 1),
the effect does not happen (Step 4) and hence S.Get(K) is a cause.

Step 1 S.Get(K) = 0 Intervening on x
Step 2 S.DK = 1 ∧ 0 = 0 Other variables state
Step 3 B.DK = 0 Cannot change this variable
Step 4 MKS = 0 ∨ 0 = 0 Effect is not happening

(1)

Additionally, we can answer Q2 by checking if B.Get(K) is a cause? Fol-
lowing similar steps, the answer is no, because no matter how W is set, MKS
will still be True. These questions cannot be answered using an attack tree only.
Even if we have attributed the attack tree with the potential suspects, we still
cannot infer actual causality directly in cases of preemption or missing events.
In this paper, we contribute a method that uses attack trees to construct causal
models with suspects and preemption relations; thus, establishing the ability to
use causal reasoning to answer queries in the context of insider attacks.

3 Attack Trees to Causal Models

Causality is model-relative; thus, the creation of a model is a crucial requirement
for causality and blame attribution. Although attack trees are widely used to
model attacks on a system, they are not readily sufficient to attribute blame.
Mainly because they normally do not include the attacker; rather, they represent

10 A. Ibrahim et al.

the attack strategies. That said, they are a promising starting point to creating
causal models since they express the dependencies among attacker acts, and
match the properties of a causal model. First, ATs are already a propositional
combination of events with (OR, AND) relations. The ability to formalize ATs in
boolean algebra makes them trivial to be expressed as causal models. Second, HP
focuses on acyclic models; ATs are acyclic. This section proposes an automated
methodology for constructing causal models based on ATs. Our methodology
refers to the following activities that are discussed throughout this section.

1. Suspect Attribution. Refers to representing potential suspects in the model.
In Sect. 3.1, we transform the original AT T to an attributed AT T ′.

2. Tree to Model transformation (Sect. 3.2). It includes a.) variable selection:
listing the different factors that are considered in the model. They repre-
sent the causes, effects, and the environment. Each factor is expressed as a
variable in the model. b.)variable classification: classifying what can be con-
sidered as a cause (or effect) (endogenous) and what not (exogenous). c.)
semantics expression: representing how the variables affect each other using
propositional logic operators like and, or and negation.

3. Preemption Relations Addition (Sect. 3.3). Refers to incorporating useful
knowledge about the variables to create preemption relations.

3.1 Suspect Attribution

To bring it closer to causal models, we add suspects to ATs. As shown in this
section, the way suspects are added is crucial in determining the scope of the
causal queries that can be answered using the resulting model. To the best of our
knowledge, no prior work has tried to explore approaches to restructure ATs to
include roles in an automated manner. Instances of roles (e.g., data-center admin
Suzy) are the potential attackers (suspects) that have privileges to perform an
attack. We refer to the process of adding suspects to AT as suspect attribution.

Suspect attribution is an automated unfolding (duplicating) task of parts of
the tree followed by allotting the new parts to a suspect. To create a new branch
for each suspect, we keep the parent node of the gate, and introduce an inter-
mediate level of new nodes (attribution nodes) that correspond to insiders. The
allotment is represented by renaming the nodes to include the suspect identifier,
e.g., Billy.Read Pass Phrase. Regardless of its location, a subtree containing a
node and all its descendants is attributed according to Definition 4.

Definition 4. A subtree B = (N , →, n0, [[n]]) is attributed with suspects
{s1, s2, . . . sl} by: 1) Creating a set (size l) of B duplicates, denoted
{B1,B2 . . . Bl}. A duplicate Bi contains the nodes of B with every node renamed
with i suffix.
2) Constructing a new tree AB with root n0 from B, then adding the disconnected
{B1,B2 . . . Bl}, and connecting their root nodes using an OR function with n0.

Unfolding a tree can be done at different levels. However, depending on the
internal structure, this may produce trees that model different attack vectors.

Causal Model Extraction from Attack Trees 11

Consequently, the range of the causal-queries that can be analyzed using the
resulting models depends on the unfolding level. For example, in Fig. 2, we
present the complete AT of the example in Sect. 2.3, including stealing the key
decrypted. Figure 2 is modeled using ADTool [5,16], which denotes an AND
relation by the presence of a horizontal edge touching the input arcs of a node.
Let us consider attributing the left subtree of Fig. 2 with two instances of an
admin role, i.e., Billy and Suzy. We can do that at level two (root level is one).
The resulting tree is represented in Fig. 3. It clearly models the possible ways to
steal the master key by either Billy or Suzy. The complete attack paths in the
tree allow expressing the behavior of one suspect performing an attack.

Steal Master Key

Decrypt The Key

Get The Passphrase

From Script From Network

Get The Key

From File From DB

Steal Decrypted

From Key Management Service

Access Attach Debugger

Fig. 2. Steal key attack tree (drawn using ADTool [5,16])

Decrypt The Key

S.Decrypt The Key

S.Get The Passphrase

S.From Script S.From Network

S.Get The Key

S.From File S.From DB

B.Decrypt The Key

B.Get The Passphrase

B.From Script B.From Network

B.Get The Key

B.From File B.From DB

Fig. 3. L-2 unfolding (drawn using ADTool [16])

Alternatively, we can attribute the suspects at the third level (L-3). Inter-
estingly, the resulting attack tree, as seen in Fig. 4, models more possibilities
than the previous case; now, we can model attack paths with a possibility of
collusion between insiders [15]. As a result, attacks that involve both Suzy and
Billy cooperating to steal the master key are now covered in this tree, and hence,
causal-queries to blame them are possible on the resulting model.

Since collusion attacks are plausible among insiders [15], we use the second
attribution (L-3), especially since it also includes the attacks within (L-2) attri-
bution. This comparison is an instance of the specialization concept proposed
by Horne et al. [8].

12 A. Ibrahim et al.

Decrypt The Key

Get The Passphrase

S.Get The Passphrase

S.From Script S.From Network

B.Get The Passphrase

B.From Script B.From Network

Get The Key

S.Get The Key

S.From File S.From DB

B.Get The Key

B.From File B.From DB

Fig. 4. L-3 unfolding (drawn using ADTool [16])

Actually, the attribution level is not the crucial factor in determining the
expressiveness of the attribution. Somewhat, it depends on the structure and
the semantics of the branch (first-level subtree). Specifically, if we have an AND
gate in the branch, the expressiveness of the model will depend on the attribution
level. If we want to include the possibility of collusion attacks, then the unfolding
should happen at a level that is greater than the AND gate level.

Although, unfolding after the last AND gate allows considering any possi-
bility of colluding attacks, in some cases it may be unnecessary. For example,
let us consider the second branch in Fig. 2. If we attribute suspects after the
fourth level, then we assume that suspects collude by having one accessing a
container and the other attaching a debugger; this is unlikely to happen. Still,
it produces a model that can be used for single-agent queries. We propose to
generate causal models from attributed ATs based on different attribution levels.
The branch structure automatically determines the level (based on the above),
or the modeler can explicitly specify the attribution level.

Semantics of Attribution. Let us start with AND Gates. An AND gate is
visualized in the left column of Table 1. The semantics of the node is given by
the formula associated with it, i.e., a = b ∧ c. We discussed how to unfold such
a gate, at the first level which does not account for collusion attacks (middle
column), or at the second level (right column).

The semantics of unfolding the (L1) with two suspects (denoted by ′ and ′′)
is shown in second row (steps 1–3) of Table 1. The last step shows a disjunctive
normal form (DNF) of the formula. Similarly, the right column shows the for-
mulas and simplification of unfolding at (L2). Comparing the forms shows that
the possible attack scenarios of (L1) unfolding are included in the (L2) unfold-
ing (this can be seen as a specialization [8] of attack trees). In other words, the
formula (L1) implies (L2), i.e., L1 =⇒ L2 is a tautology. Thus, causal queries
of the single blame can also be answered when unfolding on the second level.

Unfolding allows us to attribute possible suspects of an attack to the best of
the modeler’s knowledge. Simplifying the unfolded gates into their DNF proves
the preservation of the original gate semantics, i.e., a = b ∧ c. Essentially the
occurrence of the two concrete actions (b, c) combined causes an event (a). This
is expressed in each clause of the DNFs. Informally, a clause is one instance of
the original formula. We have to keep in mind, that this transformation is built
on the assumption that the list of suspects is the universe of all the possible

Causal Model Extraction from Attack Trees 13

Table 1. Unfolding AND

agents that can perform this attack. This assumption allows us to say that the
semantics of the transformed tree (or branch) is now refined to enumerate all
the possible scenarios, each presented as a clause that combines single or multi-
suspects. Lastly, the case of unfolding OR gates is similar and simpler because
the complication of the unfolding level is eliminated. Regardless of the level, an
original formula like a = b ∨ c, will be unfolded to a = b′ ∨ c′ ∨ b′′ ∨ c′′.

3.2 Attributed Attack Tree Transformation

Since we are reusing the existing knowledge in the attributed attack trees, the
three activities variable selection, semantics expression, and variable classifica-
tion are trivial. Basically, we consider each node as an endogenous variable that
defines whether or not an attack step has been conducted. Since the nodes are
connected with different operators, we use them to construct the equations and
therefore express the semantic relationships between the variables. Before we do
the transformation, we need to extend the tree, i.e., duplicate its leaves.

In attack trees, a leaf node represents an atomic step that is not further
refined [32]. When transferring leaves into endogenous variables of a causal
model, they lack corresponding formulas. Alternatively, we can consider them
as exogenous variables that represent the environment (context), but then they
cannot be regarded as potential causes in our reasoning. Thus, we extend the
tree with a duplicate set of leaves. In other words, each leaf on the tree gets an
inbound edge from a new node that has the same name with an exo suffix. Tree
extension aids us in classifying the variables, and it also maintains the possibility
that any node in the original tree can be considered as a cause. Definition 5 is a
tree extension function, where E(T) copies the set of leaves of a tree T .

14 A. Ibrahim et al.

Definition 5 Extension Rule. The relation T (N , →, n0) ⇒ T ′′(N ′′, →′′, n0)
is defined by the following rule.

– N ′′ : N
⋃

rename(E(T), exo); where rename(A, suffix) is a function that
renames nodes in set A to with a given suffix.

– →′′ : {→}
⋃

∀m∈E(T)(m → m exo).

We should note that the same node can occur multiple times in AT. However,
in our causal model, exactly one instance of a variable exists. For the scope of
this paper, we only allow node re-occurrence among leaves. So far, we discussed
the first two automated steps in our extraction process which are related to the
AT. Now, we are ready to create the model from the extended and attributed
AT. We will illustrate that by a formal mapping that depends on the definitions
Definition 1 and Definition 2.

Definition 6. Attack Tree To Causal Model
AT = (N ,→,n0, [[n]]) is mapped to a M = (U ,V,R,F) i.e. AT � M as follows

– U = E(AT), where E(AT) returns the leaf nodes of a tree AT
– V = N\E(AT), where \ is the difference between two sets.
– R = {0, 1}.
– F associates with each X ∈ V a propositional formula FX = [[X]], which

corresponds to the semantical formula from the AT.

3.3 Adding Preemption Relations

So far, we discussed how to map the structure (variable and dependencies), the
semantics (formulas), and their causal importance (endogenous or exogenous).
Now, we augment the model with suspect-related information that is useful to
create preemption relations. HP introduces a treatment of preemption cases by
relating the involved variables “somehow.” As we mentioned in Sect. 2.3, pre-
emption relations represent auxiliary connections among variables that express
the same event conducted by a different suspect (e.g., Billy.Get Key/Suzy.Get
Key). They are decisive in models that have potential identical causal relations,
especially, with the symmetrical nature of our models brought by our attribu-
tion approach [7,11]. Since preemption relations can stem from different facts,
it can be hard to model them. For example, they represent the level of Suzy’s
privileges in a system, Billy’s criminal record, or a combination of such factors.
To automate their modeling in the context of insiders, we propose to base the
creation of preemption relations on metrics of insiders’ risk assessment. Specif-
ically, we introduce the suspiciousness metric (SM), which provides an order
relation over the set of suspects conducting a particular type of attack. In other
words, it is a value given to each suspect that aggregates their ability to perform
an event or willingness to commit an attack. The precise way of calculating SM
depends on the context of an incident; hence, we do not provide one; it can be a
simple reflection of privileges in the system; it can be a sum of weighted factors

Causal Model Extraction from Attack Trees 15

(privileges and record). Since SM values reflect disparity among suspects, they
can be global (a value of the attacker ability for all possible attacks) or local (a
value of attacker ability for a specific attack). This flexibility in deciding how to
calculate SM, and whether it is global or local, give the modeler some freedom
to decide how to model preemption. Yet, the whole concept can be automated.

We introduce preemption relations among attribution variables one level
after the attribution level. At that level the tree contains variables representing
the same event allotted for different suspects. We connect every two variables
with an edge from the more suspicious suspect (higher SM) to the less suspicious
suspect (in case of equal values the edge is not added). Assume we have three
suspects: X1,X2,X3, each performing event Z, and the order of their ability
is X1 > X2 > X3. Then, the following acyclic preemption relations are added
X1.Z ��� X2.Z, X1.Z ��� X3.Z, X2.Z ��� X3.Z to the graph. The semantics
of this arrow is represented by a negation clause added to the less suspicious
suspect about the more suspicious one, i.e., X3.Z = . . . ∧¬X1.Z ∧ ¬X2.Z .

Definition 7. Given a model resulting from Definition 6, a preemption relation
(���) is a added between two attribution variables (S1.e, S2.e) of the same event
(e) for different suspects, denoted S1.e ��� S2.e, if SM(S1.e) > SM(S2.e).

3.4 Tool Support

Having introduced our approach, we present a tool ATCM (Attack Tree to
Causal Model). ATCM is a command line tool that automates suspect attribu-
tion, tree to model transformation, and preemption relation addition.1 As the
name suggests, ATCM takes an attack tree and suspects’ specification as an
input and generates a causal model. Attack trees are created using a variety
of tools. To get access to the information stored in such a AT, it needs to be
exportable to a format that can be accessed and used by us. An example of tools
fulfilling this requirement is ADTool [5,16], which provides XML-representation
of its trees. Consequently, we are able to use those as input for ATCM.

In general, ATCM incorporates a three-step approach: parsing, transforma-
tion, and extraction. First of all, we need to create a machine-readable object,
i.e., binary, representation out of a given XML-File that defines an attack tree
(Parsing). For this purpose, we have developed our own parsing components.
However, since this object representation is specifically tailored to each of the
supported file formats, we want to transform the latter into a uniform tree rep-
resentation, which comprises both attack and other similar models such as fault
trees, while ensuring that no semantic information is lost (Transformation). For
this representation, we are using the Model Exchange Format (MEF) (https://
open-psa.github.io/mef/) in a slightly simplified form.

The advantage of abstracting the specific format such as ADT format is that
the most essential functionality of this tool, i.e., the extraction of the causal
model, needs to be developed only once. This reduces its error-proneness and

1 ATCM is available at: https://github.com/amjadKhalifah/ATCM.

https://open-psa.github.io/mef/
https://open-psa.github.io/mef/
https://github.com/amjadKhalifah/ATCM

16 A. Ibrahim et al.

increases maintainability. Once an attack has been transferred into this uniform
representation, the described generation of the causal model can begin (Extrac-
tion). We export the results in a human-readable report and generate a causal
graph in the DOT format, which is a commonly used for describing graphs in a
textual format and can be rendered into a visualization by multiple tools.

4 Evaluation

In our evaluation, we analyze the following qualities: the efficiency of the model
extraction, the validity, and the effectiveness of the resulting models. For the
first, we discuss (in Sect. 4.1) the performance cost and the size expansion of the
tree in relation to different variables. In Sect. 4.2, we focus on the quality of the
model. Clearly, we do not aim to discuss the expressiveness of AT since their
refinement and granularity are decided by the modeler. However, we discuss the
validity of our models in relation to the input AT. Lastly, we discuss how to use
the causal model in a technical setting to infer causality.

Table 2. Use cases of our evaluation

Class Use case Nodes # Potential attackers

HP HP1 3 2

HP2 2 2

Insider (industry) Steal master key 12 {2, 8}
Insider (literature) BecomeRootUser1 8 {2, 8}

BecomeRootUser2 11 {2, 8}
Artificially generated Artificial1 255 {2, 8}

Artificial2 1017 {2, 8}
Artificial3 3057 {2, 8}

We use four classes of use-cases in our experiments. Table 2 shows the partic-
ular attack trees of each class, along with the number of nodes in the tree. Each
class contains one or more trees that cover different sources as follows: 1) HP
examples: We use two famous examples from the causality domain [6]. This class
is mainly used for the discussion of the validity. 2) Insiders from industry: This
class includes a real-world attack tree which comes from an industrial partner.
It represents insider’s strategies to steal a master key from a deployment of an
enterprise solution. 3) Insiders from Literature: This class includes two attack
trees borrowed from [35]. They represent privilege escalation. The first uses win-
dows command line and scheduler, and the other uses Metasploit and Internet
Explorer. 4) Artificially generated trees: This class contains three trees that we
generated automatically. They do not hold any semantic value. The aim of using
them is to analyze the efficiency of extraction. In our experiments, we will vary
the number of suspects and test our model extraction for 2, and 8 suspects.

Causal Model Extraction from Attack Trees 17

4.1 The Efficiency of the Extraction

Depending on the size, the structure of the AT, the attribution level l of each
branch, and the number of suspects s, the size of the resulting model will vary.
Since we are attributing branches at different levels, the size of the result-
ing model is the sum of attributed branch-sizes plus one. This is expressed as
((

∑n
i=1 |bli(s)|) + 1), where n is the number of branches, and |bli|(s) is the size

(number of nodes) of branch i attributed at level l with s suspects. We express
the attributed branch size |bli|(s) as a function of suspects and its original size.

Definition 8. Attributed Branch Size |bli|(s)

|bli(s)| = (s · (|bi| − |bi|l>L>1 + |bi|Leafs) + |bi|l�L>1)

– |bi|, |bi|Leafs are the sizes of the original branch bi and the number of its
leaves,

– |bi|l>L>1, |bi|l�L>1 are the size of the exclusive and inclusive subtree between
the branch root and attribution level. Inclusion refers to counting the root and
the leaves or excluding them.

We clearly see that our approach increases the tree size. Especially with very
large trees, forensic analysts are not supposed to inspect their models manually.
Rather, as we point in Sect. 4.3, there exist automated tools to analyze causal
models. Thus, analysts focus on managing their ATs and formulating their causal
queries. Next, we evaluate the efficiency of the extraction process.

Table 3. Evaluation of the efficiency

2 suspects 8 suspects

Top Middle Leafs Top Middle Leafs

AT n l b n exec(s) n exec(s) n exec(s) n exec(s) n exec(s) n exec(s)

SMK 12 5 2 37 0.0002 36 0.0002 36 0.0003 139 0.0004 126 0.0004 108 0.0004

Be.Root1 8 4 1 24 0.0002 25 0.0002 23 0.0002 90 0.0004 91 0.0004 71 0.0004

Be.Root2 11 4 1 32 0.0002 35 0.0002 32 0.0003 122 0.0006 125 0.0006 98 0.0006

T1 255 8 2 767 0.0069 767 0.0117 767 0.0512 3059 0.0283 2879 0.0460 2303 0.1925

T2 1017 8 8 3065 0.0354 3065 0.1133 3065 0.7473 12233 0.1380 11513 0.4610 9209 2.99

T3 3057 8 16 6129 0.0939 6129 0.4084 6129 2.94 24465 0.3700 23025 1.65 18417 11.97

Table 3 shows the execution time exec(s) in seconds and the model size n
of six ATs. Their properties are shown as n: number of nodes, l: depth of the
tree, and b: number of branches. We have attributed the trees with 2 and 8
suspects. We attributed each tree at root-level, middle-level, and leaf-level. We
created benchmarks, based on Java Microbenchmark Harness to measure the
execution time. The benchmarks measure the time from parsing an AT until
the creation of the corresponding causal model. The values shown in Table 3
have been obtained by running 10 warm-up and 20 measurement iterations on
a Windows 10 machine equipped with 8 GB of RAM and a quad-core Intel® i7
processor.

18 A. Ibrahim et al.

For the small use cases (SMK, Be.Root1, and Be.Root2) the execution time
is small (below 0.7 ms). The interesting part is with the artificial trees, where we
see a clear proportional increase of execution time with the deeper attribution
levels. This is due to our recursive algorithm. Model size, on the other hand, is of
less importance in that context, we can see that a 23025 node model took 1.7 s to
be extracted (L-4), while a 9209 node model took 2.9 s (L-8). Nevertheless, these
values do not exhibit a bottleneck. Hence, based on this empirical evaluation,
our approach should be efficient enough for any reasonable-sized AT.

4.2 The Validity of the Approach

There are no properties that discuss the validity of a causal model. Rather,
scientists have dealt with modeling by example. We use a similar approach. We
apply our approach to problematic examples in the literature [7] and compare
the results. Our goal is to check if we were able to automate the method of
creating models by splitting the general knowledge represented as trees from
the suspects. Although those examples are not security attacks, we model them
as such.2 To that end, we followed the following process. First, represent the
abstract causal knowledge as a tree (Table 4 middle column). Second, configure
the actors in the scenarios, e.g., Billy and Suzy. Third, generate the model (Table
4 right column). Lastly, compare the generated model with the model presented
in the papers.

For space limit, we only present two examples (Arsonists, Rock Throw-
ing). Arsonists (example 3.2 in [7]): Suppose that two arsonists drop lit matches
in different parts of dry forest, and both cause trees to start burning. Either
match by itself suffices to burn down the whole forest. HP describes the essen-
tial structure with 3 endogenous variables ML1 and ML2, where MLi = 0 if
arsonist i does not drop the lit match and 1 otherwise, and similarly, a variable
FB for forest burning down. Rock Throwing (example 3.2 in [6]: “Suzy and Billy
both pick up rocks and throw them at a bottle denoted in the model as (ST and
BT). Suzy’s rock gets there first, shattering the bottle denoted in the model as
(BS). Since both are perfectly accurate, Billy would have shattered the bottle,
if Suzy’s throw did not preempt his throw.” Table 4 shows that the models vary
a bit. This variation is negligible because it does not affect the semantics from a
causal perspective. Our model can be proved easily to be a conservative extension
[7] of the model from HP. Lastly, the fact that these examples are not limited
to insiders suggests that our approach generalizes to a broader class of attacks.
However, as we argued in the introduction, the potential deterrence brought by
our solution (accountability) is only apparent in the context of insider attacks.

2 Arsonists and Rock-Throwing are typical examples in the causality literature. We
may consider setting a forest on fire as an attack on the forest, with lighting matches
being a possible step of an attack. We may also consider shattering a bottle an attack
on the bottle, with throwing a stone being a possible step of an attack. The point here
is to show that our mechanism produces valid results also for well-known examples.

Causal Model Extraction from Attack Trees 19

Table 4. Models from HP examples

4.3 The Effectiveness of the Model

To evaluate the effectiveness of our models, we briefly show how they are used in
a real-world production environment. We experimented with a technical setting
of the example from Sect. 2.3. First, we created the corresponding model using
ATCM. Second, we set the context for two concrete scenarios: Sce-1, in which
Suzy stole the key with the existence of preemption, and Sce-2, in which B illy
did. Third, using formal proof systems from [11,12], we reason about the causal-
ity. We tested the models in an environment that contains a set of micro-services
and third-party software that are deployed as docker containers. To set the con-
text, we utilized monitoring tools namely, auditD to monitor file accesses, and
Couchbase audit to monitor queries. These tools generate logs that we used to
set the exogenous variables. For our experiment, we set the context manually.
For example, this sentence from auditD ...“MESSAGE”: “PATH name= .̈../
script.txt ”..auid= 1001 uid= 1001.. is translated into S.From Script exo=
1 (Suzy’s id=1001). U = {S Scriptexo, S DBexo, S F ileexo, S NWexo . . . }.

20 A. Ibrahim et al.

Accordingly, we have two contexts, namely Sce-1 {1, 1, 1, 1, 1, 1, 1, 1} and Sce-2
{0, 0, 0, 0, 1, 1, 1, 1} when we consider the ordering of the variables.

Due to our recent solver of actual causality queries [12], we analyzed the two
contexts using the steal master key 8-suspects model with 91 endogenous and 48
exogenous variables. We used the two questions from Sect. 2.3: Q1: is Suzy the
cause of stealing the key?, Q2: Is Billy’s decryption of the key or Suzy’s the actual
cause of stealing it?. Sce-1 represented the situation of having multiple tentative
suspects. The results matched our ground truth, i.e., Suzy was concluded to
be responsible for the incident. Although this may seem intuitive, it was only
enabled by the fact that we made our knowledge explicit using a causal model.
The analysis of Q1 took 3.07 ms and consumed 3.2 MB of memory. For Sce-2,
it was easier to conclude that Billy is the reason for stealing the key since the
context was clearer (Suzy and other suspects did not log into the system). The
analysis of the model for Q2 took 2.78 ms and consumed 3.2 MB of memory.

5 Related Work

Security. To the best of our knowledge, no previous work has tried to generate
HP models for malicious insiders. However, the thorough work on attack and
defense modeling is interesting. Kordy et al. classified DAG-based models into
two classes: tree or Bayesian network (BN) based models. Although a BN is
similar to a causal model, there are two differences in utilizing them in secu-
rity. First, BNs are used for the probabilistic inference of an attack likelihood
and prediction. However, we aim to use the causal models for inferring actual
causality. Second, a causal model contains a semantic perspective represented
by the SEM, while BN only contains a dependency relation supported by con-
ditional probability table. In this direction, we see the work by Qin et al. [26]
which indeed converts attack trees to BN to correlate alerts to predict attacks.
Similarly, Althebyan and Panda [1] present a BN model to evaluate and analyze
a system after an insider attack. Their evaluation and analysis do not include
attributing the attacker. Poolsapassit and Ray [25,27] use AT in a similar way.
They do not convert it to other models but rather combine it with insider’s
intent to predict malicious activity. In [25] they use AT to investigate logs. The
two papers are related to our goal but different in the approach of converting AT
to causal models annotated with possible suspects. Most of the work reporting
on insiders aims to detect the attacks at run-time [15,24,31]. Although our work
can be combined with such approaches, it is different since we consider post-
mortem attribution. Chinchani et al. [4] proposed a specific modeling language
for insiders; however, we used AT for reasons of industry utilization and tool
support [16].

For attack attribution, researchers [9,33] have identified three techniques:
digital forensics, malware based analysis, and indirect attribution techniques
that use statistical models to identify attackers. Most of these techniques target
outsider attackers. Unlike our approach, digital forensics tools mainly face the
challenge of scalability with the size of logs [33], whereas we can elicit require-
ments of logging from our modes. That is, we only monitor the properties that

Causal Model Extraction from Attack Trees 21

set our context. Malware based analysis targets a different attack vector than
us. Indirect attribution techniques are interesting since they use statistical mod-
els; however, they require massive amounts of data. In contrast, we make use of
explicit knowledge represented in attack trees.

Causality is a cross-domain concept. An overview of different application
fields of causality is presented by Halpern in [7]. An example of research based on
the HP definition is the work by Kuntz et al. [19], who are using counterexample
traces of model checking tools to construct fault trees. This is similar to our
target in general but different in two key aspects. First, it does not leverage
security threat models to construct causal models that are used to infer causality
in the postmortem. Second, our approach is to model only unwanted behavior
while they utilize behavioral models of the systems. Some of the authors of
this paper also discussed the idea of creating holistic causal models for Cyber-
Physical Systems from different technical models in [10] and human models
in [14]. The approach focused on combining those models without targeting one
attack vector like insiders. Further literature examining model discovery is listed
in a paper by Chen and Pearl [3,23]. These approaches are data-driven methods
that differ from our approach of creating causal models from other models.

6 Conclusions and Future Work

To handle the insider threat, we proposed enabling accountability through sup-
porting causal reasoning. To that end, we presented a methodology that intro-
duces HP causal models into the security domain. We showed that such models
are beneficial in the context of insiders, and we considered AT as a source for
creating them. However, we identified suspect attribution as a crucial step in the
conversion. Thus, we introduced a method to add suspects to AT considering the
possibility of them colluding. Also, we focused on creating models that include
preemption relations. This work can then be combined with causality reasoners
to enable forensics analysis of insider accidents. Although it is hard to evaluate
models reasonably, we showed that our approach is efficient to extract valid and
useful models. For future work, we plan to study other notions of threat models
such as attack-defense trees or ATs with sequential conjunction and analyze how
do they relate ton automated causal modeling and contextualization.

References

1. Althebyan, Q., Panda, B.: A knowledge-based Bayesian model for analyzing a
system after an insider attack. In: Jajodia, S., Samarati, P., Cimato, S. (eds.) SEC
2008. ITIFIP, vol. 278, pp. 557–571. Springer, Boston, MA (2008). https://doi.
org/10.1007/978-0-387-09699-5 36

2. Aslanyan, Z., Nielson, F.: Model checking exact cost for attack scenarios. In: Maf-
fei, M., Ryan, M. (eds.) POST 2017. LNCS, vol. 10204, pp. 210–231. Springer,
Heidelberg (2017). https://doi.org/10.1007/978-3-662-54455-6 10

3. Chen, B., Pearl, J.: Graphical tools for linear structural equation modeling. Tech.
rep., DTIC Document (2014)

https://doi.org/10.1007/978-0-387-09699-5_36
https://doi.org/10.1007/978-0-387-09699-5_36
https://doi.org/10.1007/978-3-662-54455-6_10

22 A. Ibrahim et al.

4. Chinchani, R., Iyer, A., Ngo, H.Q., Upadhyaya, S.: Towards a theory of insider
threat assessment. In: Proceedings of International Conference on Dependable Sys-
tems and Networks, 2005, DSN 2005, pp. 108–117. IEEE (2005)

5. Gadyatskaya, O., Jhawar, R., Kordy, P., Lounis, K., Mauw, S., Trujillo-Rasua,
R.: Attack trees for practical security assessment: ranking of attack scenarios with
ADTool 2.0. In: Agha, G., Van Houdt, B. (eds.) QEST 2016. LNCS, vol. 9826, pp.
159–162. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-43425-4 10

6. Halpern, J.Y.: A modification of the Halpern-pearl definition of causality. In: Pro-
ceedings of the Twenty-Fourth International Joint Conference on Artificial Intelli-
gence, IJCAI 2015 (2015)

7. Halpern, J.Y.: Actual Causality. MIT Press, Cambridge (2016)
8. Horne, R., Mauw, S., Tiu, A.: Semantics for specialising attack trees based on

linear logic. Fundamenta Informaticae 153(1–2), 57–86 (2017)
9. Hunker, J., Hutchinson, B., Margulies, J.: Role and challenges for sufficient cyber-

attack attribution. Institute for Information Infrastructure Protection (2008)
10. Ibrahim, A., Kacianka, S., Pretschner, A., Hartsell, C., Karsai, G.: Practical causal

models for cyber-physical systems. In: Badger, J.M., Rozier, K.Y. (eds.) NFM 2019.
LNCS, vol. 11460, pp. 211–227. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-20652-9 14

11. Ibrahim, A., Klesel, T., Zibaei, E., Kacianka, S., Pretschner, A.: Actual causality
canvas: a general framework for explanation-based socio-technical constructs. In:
ECAI 2020, the 24th European Conference on Artificial Intelligence. Frontiers in
Artificial Intelligence and Applications. IOS Press (2020)

12. Ibrahim, A., Rehwald, S., Pretschner, A.: Efficient checking of actual causality with
sat solving. Eng. Secur. Dependable Softw. Syst. 53, 241 (2019)

13. Institute, P.: 2015 cost of cyber crime study: global (2015)
14. Kacianka, S., Ibrahim, A., Pretschner, A., Trende, A., Lüdtke, A.: Extending causal

models from machines into humans. Electron. Proc. Theor. Comput. Sci. 308, 17–
31 (2019)

15. Ko, L.L., Divakaran, D.M., Liau, Y.S., Thing, V.L.: Insider threat detection and
its future directions. Int. J. Secur. Netw. 12(3), 168–187 (2017)

16. Kordy, B., Kordy, P., Mauw, S., Schweitzer, P.: ADTool: security analysis with
attack-defense trees. In: Quantitative Evaluation of Systems - 10th International
Conference, QEST, pp. 173–176 (2013)

17. Kordy, B., Piètre-Cambacédès, L., Schweitzer, P.: Dag-based attack and defense
modeling: don’t miss the forest for the attack trees. Comput. Sci. Rev. 13, 1–38
(2014)

18. Kumar, R., Ruijters, E., Stoelinga, M.: Quantitative attack tree analysis via priced
timed automata. In: Sankaranarayanan, S., Vicario, E. (eds.) FORMATS 2015.
LNCS, vol. 9268, pp. 156–171. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-22975-1 11

19. Kuntz, M., Leitner-Fischer, F., Leue, S.: From Probabilistic Counterexamples via
Causality to Fault Trees. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-24270-0 6

20. Lewis, D.: Counterfactuals and comparative possibility. J. Philos. Logic 2(4), 418–
446 (1973). https://doi.org/10.1007/BF00262950

21. Mauw, S., Oostdijk, M.: Foundations of attack trees. In: Won, D.H., Kim, S. (eds.)
ICISC 2005. LNCS, vol. 3935, pp. 186–198. Springer, Heidelberg (2006). https://
doi.org/10.1007/11734727 17

22. Nicholson, A., Janicke, H., Watson, T.: An initial investigation into attribution in
SCADA systems. In: ICS-CSR (2013)

https://doi.org/10.1007/978-3-319-43425-4_10
https://doi.org/10.1007/978-3-030-20652-9_14
https://doi.org/10.1007/978-3-030-20652-9_14
https://doi.org/10.1007/978-3-319-22975-1_11
https://doi.org/10.1007/978-3-319-22975-1_11
https://doi.org/10.1007/978-3-642-24270-0_6
https://doi.org/10.1007/978-3-642-24270-0_6
https://doi.org/10.1007/BF00262950
https://doi.org/10.1007/11734727_17
https://doi.org/10.1007/11734727_17

Causal Model Extraction from Attack Trees 23

23. Pearl, J.: Causality. Cambridge University Press, Cambridge (2009)
24. Phyo, A., Furnell, S.: A detection-oriented classification of insider it misuse. In:

Third Security Conference (2004)
25. Poolsapassit, N., Ray, I.: Investigating computer attacks using attack trees. In:

Craiger, P., Shenoi, S. (eds.) DigitalForensics 2007. ITIFIP, vol. 242, pp. 331–343.
Springer, New York (2007). https://doi.org/10.1007/978-0-387-73742-3 23

26. Qin, X., Lee, W.: Attack plan recognition and prediction using causal networks.
In: 20th Annual Computer Security Applications Conference. IEEE (2004)

27. Ray, I., Poolsapassit, N.: Using attack trees to identify malicious attacks from
authorized insiders. In: di Vimercati, S.C., Syverson, P., Gollmann, D. (eds.)
ESORICS 2005. LNCS, vol. 3679, pp. 231–246. Springer, Heidelberg (2005).
https://doi.org/10.1007/11555827 14

28. Rehák, M., et al.: Runtime monitoring and dynamic reconfiguration for intrusion
detection systems. In: Kirda, E., Jha, S., Balzarotti, D. (eds.) RAID 2009. LNCS,
vol. 5758, pp. 61–80. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-04342-0 4

29. Research, I.X.F.: 2016 cyber security intelligence index (2016)
30. Rowlingson, R.: A ten step process for forensic readiness. Int. J. Digit. Evid. 2(3),

1–28 (2004)
31. Salem, M.B., Hershkop, S., Stolfo, S.J.: A survey of insider attack detection

research. In: Stolfo, S.J., Bellovin, S.M., Keromytis, A.D., Hershkop, S., Smith,
S.W., Sinclair, S. (eds.) Insider Attack and Cyber Security. Advances in Informa-
tion Security, vol. 39. Springer, Boston (2008). https://doi.org/10.1007/978-0-387-
77322-3 5

32. Schneier, B.: Attack trees. Dr. Dobb’s J. 24(12), 21–29 (1999)
33. Shamsi, J.A., Zeadally, S., Sheikh, F., Flowers, A.: Attribution in cyberspace: tech-

niques and legal implications. Secur. Commun. Netw. 9(15), 2886–2900 (2016)
34. Tan, J.: Forensic readiness. Cambridge, MA:@ Stake, pp. 1–23 (2001)
35. Tu, M., Xu, D., Butler, E., Schwartz, A.: Forensic evidence identification and

modeling for attacks against a simulated online business information system. J.
Digit. Forensic Secur. Law 7(4), 4 (2012)

36. Weitzner, D.J., Abelson, H., Berners-Lee, T., Feigenbaum, J., Hendler, J., Suss-
man, G.J.: Information accountability. Commun. ACM 51(6), 82–87 (2008)

37. Wheeler, D.A., Larsen, G.N.: Techniques for cyber attack attribution. Tech. rep.,
Institute for Defense Analyses Alexandria VA (2003)

https://doi.org/10.1007/978-0-387-73742-3_23
https://doi.org/10.1007/11555827_14
https://doi.org/10.1007/978-3-642-04342-0_4
https://doi.org/10.1007/978-3-642-04342-0_4
https://doi.org/10.1007/978-0-387-77322-3_5
https://doi.org/10.1007/978-0-387-77322-3_5

Library-Based Attack Tree Synthesis

Sophie Pinchinat(B), François Schwarzentruber, and Sébastien Lê Cong

Univ Rennes/IRISA/CNRS, Rennes, France
sophie.pinchinat@irisa.fr

Abstract. We consider attack trees that can contain OR-, AND- and SAND-
nodes. Relying on a formal notion of library inspired from context-free
grammars, we introduce a generic attack tree synthesis problem that
takes such a library and a trace as inputs. We show that this synthe-
sis problem is NP-complete. The NP membership relies on an involved
adaptation of the so-called CYK parsing algorithm. The NP hardness
is established via a reduction from a recent covering problem. Finally,
we show that the addressed synthesis problem collapses down to P for
bounded-AND-arity libraries.

1 Introduction

In security analysis, attack trees [23] offer a representation to describe many
attacks with brevity. They offer a reading of high-level explanations of attacks
using different levels of abstractions. Also, they are convenient to perform quan-
titative analysis on attacks in order to select efficient counter-measures, as well as
to identify attacker profiles in e.g., forensic [21]. As general objects, they are use-
ful in various situations in the industry: they are used for assessing the security of
physical infrastructures [17], cyber security platforms such as voting systems [8]
or specific machines like an ATM [9], and also to conduct quantitative analyses
of a system that uses radio-frequency identification (RFID) technology [6].

We here informally introduce the attack tree model on a toy running example
in physical security.

Example 1. A museum has two possible entries, both monitored by the same two
cameras. The two cameras have a mutual protection system (distinct from the
visual surveillance) so that they monitor each other: if a camera gets frozen while
being monitored by the other, then an alarm is triggered. In order to neutralize
a camera, the attacker can launch a virus on any camera: this virus immediately
disables its ability to monitor the other camera, then, possibly after some time,
it freezes the camera. Additionally, the freezing is temporary so that a frozen
camera may recover from freezing.

Assume at least one camera has been infected by a virus. The attack tree of
Fig. 1 describes ways of attacking the museum to steal the painting: each node
of the tree matches a task, and the children of a node match the subtasks. This
tree displays three types of inner nodes, that specify how the subtasks should
be accomplished. In OR-nodes, one subtask has to be achieved. In SAND-nodes,
c© Springer Nature Switzerland AG 2020
H. Eades III and O. Gadyatskaya (Eds.): GraMSec 2020, LNCS 12419, pp. 24–44, 2020.
https://doi.org/10.1007/978-3-030-62230-5_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62230-5_2&domain=pdf
https://doi.org/10.1007/978-3-030-62230-5_2

Library-Based Attack Tree Synthesis 25

subtasks should be realized sequentially (from left to right). In AND-nodes, all
subtasks have to be executed in parallel. According to this tree, stealing the
painting can be achieved for example by (1) turning the security off, then (2)
entering the museum, and finally (3) taking the painting.

Fig. 1. An attack tree for stealing a painting in a museum with two doors, protected
by two security cameras.

The design of attack trees can be a tedious and error-prone process if done
manually: indeed, security experts may run into trouble as soon as the material
they work on gets fairly big (lengthy log files, for example). In this context,
gathering information becomes a complex task, and the resulting trees can get
quite large. Hence, automated attack tree synthesis, even partial, is useful.

As shown in the Sect. 2, many algorithms have been proposed for several
variants of attack tree synthesis. In particular, some previous works rely on
models for representing the accumulated expert knowledge about existing attack
patterns, in order to synthesize attack trees [10,14]. Regrettably, the quality of
the deployed algorithms can hardly be evaluated because of a lack of results on
the intrinsic complexity of the tree synthesis problem.

It is therefore desirable to have a clear understanding of the attack tree
synthesis problem(s) at a theoretical level in order to justify any algorithm.
This requires a sleek definition of the attack tree synthesis problem, generic and
simple enough to capture the core difficulty of the issue.

The present paper is about such a study. Our mathematical setting is the
one of attack trees with a trace semantics, in the spirit of [2,3]. The main reason
for it comes from the generic notion of trace. Indeed, traces can be found in
most domains: as abstractions of system executions in verification, as sequences
of events in monitoring, as log files in security, as plans in AI, as sequences of
letters in formal languages and in bioinformatics, etc.

We define the notion of library as an abstract model for some expert knowl-
edge, inspired from context-free grammars [12], and generic enough to resemble
proposals from the literature on attack tree generation, and in particular the
ones of [14] and [10].

26 S. Pinchinat et al.

Importantly, our approach is model-free, which makes it relevant for situa-
tions where the system model is unknown; only a trace, reminiscent of some
system observation, matters. The synthesis decision problem, that we simply
call the attack tree synthesis problem is defined as: given an input a library and
an input trace, answers whether there exists an attack tree based on the given
library whose trace semantics contains the input trace.

We prove that the attack tree synthesis problem is NP-complete. Noticeably,
its NP-hardness is obtained by reducing the recently considered “Packed Interval
Covering Problem” [22]. The NP-membership relies on a non-trivial adaptation
of the classic Cocke–Younger–Kasami parsing algorithm [15]. Interestingly, we
highlight the role of the AND-operator by showing a drop to the class P in the
problem complexity if the arity of this operator is bounded in the input libraries.

The paper is organized as follows: in Sect. 2, we consider related works and
their limits. In Sects. 3 and 4, we settle the formal setting of attack trees with
their trace semantics and with the library model, respectively. Section 5 contains
the full synthesis problem study. The paper ends with a concluding section and
research perspectives.

2 Related Work

We focus on the attack tree synthesis literature of the last two decades, in a
chronological order; the reader interested in a survey on attack tree literature
can refer to [26] (notice that the assumptions are quite diverse, but that there
is an agreement that attack trees should help experts reasoning about ways
of attacking a system). In some contributions, the formal semantics of attack
trees is omitted, which makes hard stating properties of the generated trees,
and in particular about what they describe. Also some works do not define the
synthesis problem as a formal problem, making hard to evaluate the efficiency of
the proposed approach with regards to the intrinsic complexity of the problem.

In Hong et al. [11], the semantics of the considered attack trees is not pro-
vided. The tree generation does not rely on any notion of library. The input is a
set of attacks (that can be given or inferred as paths from some attack graph).
Their procedure considers as the first step the naive tree obtained as the com-
plete disjunction of all input attacks, where each attack is represented by the
mere sequential conjunction of all its actions. In a second step, (although not
told this way in the paper) the procedure resorts to controlled regular expres-
sion manipulations to make the former huge tree hopefully smaller. The purpose
of this technique is mostly used to achieve quantitative analysis in an attack
graph, and does not target readability of the tree. No meaning of the subtasks
that inhabit the internal sub-nodes can be inferred by this procedure that arti-
ficially creates internal nodes from algebraic laws on regular expressions. Also,
the approach lacks the use of AND operator that can provide more succinct trees
and indeed, as explained by the authors, the synthesized trees have exponential
size in the size of the input.

Vigo et al. [25] do not use a library and do not consider the sequential con-
junction of subtasks (SAND operator). The input are a “program” representing

Library-Based Attack Tree Synthesis 27

the system and a point to reach in the former. The programs are described
in so-called “value-passing quality calculus”, a calculus which derives from the
π-calculus. The system program with its point to reach is translated into a propo-
sitional formula that is interpreted as an attack tree (with intended meaning of
disjunction and conjunction operators). However, since the internal nodes of the
synthesized trees are abstract, the resulting trees are used more for quantitative
analysis than for explaining ways of attacking.

Pinchinat et al. [18,19] present a tool for synthesizing attack trees. The
method is very close to our approach, since it is based on a library, and on
a bottom-up construction of the tree inspired by context-free grammar syntactic
analysis. The used library is defined aside the synthesis functionality; it can be
defined manually in the tool, but may also be imported from previous projects.
However, the procedure does not support operator AND.

In the setting of Ivanova et al. [13], the authors suggest a high-level language
intended to turn a graph, a so-called “graphical system model”, into an attack
tree with the intention to make the graph more readable. Those graphical mod-
els specify an initial state of some system – vertices represent elements (such as
doors, agents, information, and so on), and the attacker has to reach some final
configuration. The translation from one setting to another does not rely on a
precise semantic framework. The translation from the graph to an attack tree
is generic, not taking advantage of any specific expert knowledge. The library
is implicitly based on ad-hoc patterns (with first-order logic features) corre-
lated with fixed ontologies (locations, actors, processes, items). As a result, the
obtained trees are unbalanced, and not readable. Also, only disjunction and
sequential conjunction are considered.

Gadyatskaya et al. [10] define a library-based generic synthesis problem
parameterized by the semantics of attack trees. The library is called a refine-
ment specification. However, the paper focuses on the particular series-parallel
graph (SP) semantics, where the AND operator has a truly concurrent meaning.
Surprisingly, the authors restrict to SP graphs without any AND operator, that
is as a set of traces. This prevents to address the synthesis problem for arbitrary
refinement rules. Also, the paper does not provide the complexity analysis of the
addressed synthesis problem. The tree models we consider here are not based
on actions (at the leaves), but it can be established that our semantics coincides
with the SP semantics if the AND operator is discarded. Our synthesis problem
can therefore be seen as a restriction of their work to a singleton set of single
traces, but also as an extension of it as we allow AND operators.

Jhawar et al. [14] consider the issue of automating the completion of an attack
tree rather than synthesizing one, by an iterated top-down approach. A criterion
based on annotations of nodes with preconditions and postconditions, makes it
possible to attach subtrees from some library at some leaves. The logical setting
to describe the annotations lacks dynamic features (such as temporal modalities)
amenable to the use of sequential conjunction.

In [5], Audinot et al. study the non-emptiness of an attack tree, in a frame-
work similar to what we consider here: given an attack tree, they query the

28 S. Pinchinat et al.

existence of an attack described by the input tree. Our problem can be read as
the dual of this problem since the trace is known but a tree has to be found.

3 Attack Trees and Their Trace Semantics

We consider the setting of [3], where attack tree leaves are labeled by atomic
goals, but due to our concern, we equip them with a trace semantics instead of a
path semantics, in natural manner. Indeed, traces are mere abstraction of finite
paths (in some transition system), by replacing each state along the path by its
set of true facts; thus a trace is a finite sequence of facts. In formal approaches
facts are modeled by abstract propositions in a set Prop = {p, q, r, . . .}.

Intuitively, an atomic goal at a leaf of an attack tree describes the achieve-
ments of some primitive task by providing two Boolean formulas that we call
the precondition and the postcondition. An achievement is a finite sequence of
facts called a trace, formalized as a finite sequence of valuations over a set of
some propositions. Now, a trace achieves an atomic goal if the precondition of
that goal holds at the beginning of the sequence and the postcondition of that
goal holds at its end. The trace semantics of a non-leaf attack tree is given
in a compositional manner by means of operations on (sets of) traces, such as
concatenation.

We now get into the formal definitions.

3.1 Attack Trees

Formally, an attack tree is a tree whose leaves are atomic goals of the form
〈ι to γ〉, where ι and γ are Boolean formulas over a set of atomic propositions
Prop, called the precondition and the postcondition respectively. Each inner node
of an attack tree is labelled by some operator OP ranging over OR (disjunction),
SAND (sequential conjunction) or AND (conjunction), and is called an OP-node.

Fig. 2. The formal attack tree for the museum example.

Example 2. Figure 2 shows a formalization of the informal attack tree from
Fig. 1, with 3 inner nodes and 5 leaves. Propositions occurring in the atomic
goals of the leaves are interpreted as follows: monitori means “camera i is

Library-Based Attack Tree Synthesis 29

being monitored (by the other camera)”, frozeni means “camera i is frozen”,
enterj means “entered in museum via door j”, and hasPaint means “the paint-
ing was stolen”. Therefore, the atomic goal 〈¬monitor2 to frozen1〉 models
the task of hacking camera 1: launching the virus immediately stops cam-
era 1 from monitoring camera 2 and eventually freezes camera 1. Symmet-
rically, goal 〈¬monitor1 to frozen2〉 regards the hacking of camera 2. We
will elaborate on the camera-hacking phase later, in Subsect. 3.4. Also, goal
〈frozen1 ∧ frozen2 to entera〉 models the task of entering the museum via
door a without surveillance.

Definition 1 (Attack tree). An attack tree τ over Prop is:

– either a leaf of the form 〈ι to γ〉 where ι, γ are Boolean formulae over Prop;
– or an expression OP(τ1, . . . , τm) where OP is the operator OR, AND or SAND,

m ≥ 1 is the arity, and τ1, . . . , τm are attack trees.

In Definition 1 we confuse a node and the subtree rooted at that node. This
is standard when trees are defined inductively.

Example 3. The attack tree given in Fig. 2 is

SAND(AND(〈¬monitor2 to frozen1〉, 〈¬monitor1 to frozen2〉),
OR(〈frozen1 ∧ frozen2 to entera〉, 〈frozen1 ∧ frozen2 to enterb〉),

〈entera ∨ enterb to hasPaint〉)
The second central objects of concern are traces.

3.2 Traces and Operations on Sets of Traces

Executions of systems are alternating sequences consisting of states and actions.
In our setting for attack trees, the focus is put on states. In fact, the states
themselves are not “observable” along an execution, but only the truth values of
facts/propositions about them. A truth value of propositions is formally captured
by the standard notion of valuation in propositional logic. Thus an observation
of a (finite) execution, usually called a trace [7], is a finite sequence of valua-
tions; two successive valuations in a trace correspond to a state transition in the
observed system.

We now formally define traces, sets of traces, and particular operations over
languages that provide the semantics of operators OR, SAND and AND in attack
trees. For the rest of this section, we fix a set Prop of propositions.

A valuation is a subset of Prop with the meaning that propositions in this
set are true while the others are false; for the empty valuation ∅, all propositions
are thus false. We therefore write 2Prop for the set of valuations on the set Prop,
with typical element ν ∈ 2Prop. Given a Boolean formula ϕ over Prop, we write
ν |= ϕ to denote that ν satisfies ϕ.

Traces are finite sequences of valuations, and we denote by ε the empty
sequence. Given a trace t ∈ (2Prop)∗, the length |t| of t is defined as its number

30 S. Pinchinat et al.

of valuations. For 1 ≤ i ≤ |t|, the ith valuation of t is denoted by t(i). We set
t.first = t(1) and t.last = t(|t|) and we denote by t[i, j] the subsequence of t
starting at position i and ending at position j. For instance, if t = ν1ν2ν3ν4ν5,
then t.first = ν1, t.last = ν5 and t[2, 4] = ν2ν3ν4.

Example 4. Consider the trace {monitor1} {monitor1} ∅ {frozen1}
{frozen1, frozen2} {enterb, frozen1, frozen2} {hasPaint, frozen1, frozen2}
of length 7 from the museum example. It reflects the scenario where, during the
first two timesteps, both cameras work, camera 1 is monitored and camera 2 is
not. At the third step, camera 1 is not any more monitored. Then, camera 1 is
frozen, before camera 2. Next, the intruder enters the building via door b while
both cameras are frozen, and finally steals the painting while the cameras are
still frozen.

In the following, we may write traces with arrows between their valuations
in order to emphasize the underlying state transitions that take place: t = ν1 →
ν2 → ν3 → ν4 → ν5.

Regarding the trace semantics of attack trees that will be given in Definition 4,
the OR operator will be understood as the union operation over sets of traces,
whereas the two other operators SAND and AND will be given less classic interpre-
tations that we present now.

3.3 Synchronized Concatenation

The synchronized concatenation � slightly differs from the usual concatenation
in formal languages and conveys the notion of sequential executions of scenarios;
it will provide the semantics of the SAND operator in attack trees.

Definition 2 (Synchronized concatenation). The synchronized concatena-
tion of two traces is defined only if the last valuation of the former is equal to the
first valuation of the latter, and simply concatenates the two traces by merging
this common element. Formally,

ν1 . . . νnν � νν′
1ν

′
2 . . . ν′

m = ν1 . . . νnνν′
1 . . . ν′

m.

Example 5. {frozen1, frozen2} {enterb, frozen1, frozen2} � {enterb,
frozen1, frozen2} {hasPaint, frozen1, frozen2} = {frozen1, frozen2}
{enterb, frozen1, frozen2} {hasPaint, frozen1, frozen2}; the synchronized
concatenation is possible thanks to the common matching valuation
{enterb, frozen1, frozen2}.

The synchronized concatenation � is associative, so that binary � suffices.
We lift the synchronized concatenation to sets L,L′ of traces by letting

L � L′ = {t � t′ | t ∈ L, t′ ∈ L′ and t � t′ is defined}.

Library-Based Attack Tree Synthesis 31

3.4 Parallel Composition

The parallel composition written � is adapted from [3] to traces. This oper-
ation reflects the meaning of achieving subgoals in a concurrent manner, and
aims at capturing what the AND operator expresses in attack trees. We moti-
vate its definition on an example with the concurrent achievement of two atomic
goals: consider the AND-node from Fig. 2 and the following trace (a prefix of the
trace in Example 4) realizing a successful hacking of both cameras, namely goal
〈¬monitor2 to frozen1〉 and goal 〈¬monitor1 to frozen2〉.

︸ ︷︷ ︸

〈¬monitor2 to frozen1〉

{monitor1} → {monitor1} →
〈¬monitor1 to frozen2〉

︷ ︸︸ ︷

∅ → {frozen1} → {frozen1, frozen2} (1)

Right from the start, camera 1 gets a virus and cannot monitor camera 2
(monitor2 is false). The observation does not change for one step, and then,
camera 2 gets infected too (monitor1 turns false). Then, camera 1 gets frozen
first (frozen1), and next camera 2 does too (frozen2). Realizing the conjunction
of the hacking subgoals means that they are executed concurrently: any transi-
tion of the global hacking task falls under one of the hacking subgoals, and the
global task is embedded in the achievement of both subgoals. On the contrary,
the following trace does not reflect a conjunction of the two hacking subgoals
because the second transition does not serve any of the hacking subgoals.

{monitor1} → {monitor1, frozen1}
︸ ︷︷ ︸

〈¬monitor2 to frozen1〉

→ {monitor2} → {monitor2, frozen2}
︸ ︷︷ ︸

〈¬monitor1 to frozen2〉

In concrete terms, a virus is launched on camera 1, then camera 1 gets frozen,
then a virus is launched on camera 2 while camera 1 gets back to normal oper-
ation, then finally, camera 2 gets frozen. In this scenario, the second hacking
task starts too late and the alarm is triggered (camera 1 is able to notice the
discrepancy in camera 2’s behaviour). The AND-node of the tree expresses that
it is necessary for the two hacking subgoals to take place with some overlapping
of their transitions to be successful. This is formalized in Definition 3 as parallel
composition of traces which can be interpreted as follows: if one sees a trace,
of length n, as displaying some “activity”, every transition (i.e., action) along
this trace corresponds to a 1-length subinterval [k, k +1] ⊆ [1, n], while subgoals
correspond to arbitrary subintervals. In the example, the camera 1 hacking sub-
goal of the 5-length trace of Expression (1) corresponds to subinterval [1, 4] and
the camera 2 hacking subgoal corresponds to subinterval [3, 5]. Therefore each
transition along this trace serves at least one of the two camera hacking subgoals.

More formally, let us say that the intervals I1, . . . , Im cover an interval I
whenever

m
⋃

�=1

I� = I and each [k, k + 1] ⊆ I is contained in some I�.

32 S. Pinchinat et al.

We can now proceed to the formal definition of the parallel composition.

Definition 3 (Parallel composition). A trace t is a parallel composition
of traces t1, . . . , tm if there are m intervals I1, . . . , Im that cover [1, n] for some
positive integer n and such that t[I�] = t�, for every 1 ≤ 	 ≤ m. We also simply
say that traces t1, . . . , tm cover trace t.

Example 6. Figure 3 shows that the trace t = ν1 . . . ν7 is a parallel composition
of traces t1, t2 and t3 with respective intervals [1, 2], [4, 7], [2, 5]. Indeed, all
transitions ν1 → ν2, ν2 → ν3, . . . , ν6 → ν7 are covered. On the contrary, t is
not a parallel composition of t1, t2 and t′3 since the only interval candidates are
respectively [1, 2], [4, 7], [3, 5], but none of them fully includes the subinterval
[2, 3]. In other words, the transition ν2 → ν3 is not covered.

Fig. 3. The trace t is a parallel composition of t1, t2, t3 but not of t1, t2, t
′
3.

The parallel composition reflects the conjunctive execution of activities and
not the conjunction of the effects of these activities, which is a legitimate inter-
pretation of the AND operator in attack trees (see the series-parallel graph seman-
tics considered in [10]). Typically, requiring to open and to close a door does
mean to attain a situation where the door is both open and closed.

Traces t1, . . . , tm may cover several traces, i.e. may have several parallel com-
positions. We let �(t1, . . . , tm) be the set of parallel compositions of t1, . . . , tm.
For instance, �(ν′νν, ννν′′) = {ν′ννν′′, ν′νννν′′}. We lift the parallel composi-
tion to sets L1, . . . , Lm of traces by letting

�(L1, . . . , Lm) =
⋃

t1∈L1,...,tm∈Lm

�(t1, . . . , tm).

It should be remarked that the synchronized concatenation � is associative,
so that binary � suffices, while this is not the case for � in general: for example,
ν1ν2ν3ν4 ∈ �(ν1ν2, ν3ν4, ν2ν3), but �(�(ν1ν2, ν3ν4), ν2ν3) = ∅ because ν1ν2
and ν3ν4 do not share any valuation.

3.5 Trace Semantics of Attack Trees

Now, we define the trace semantics of attack trees. Operators in attack trees are
interpreted as operations on trace sets: OR means union ∪, SAND means synchro-
nized concatenation �, and AND means parallel composition �.

Library-Based Attack Tree Synthesis 33

Definition 4 (Trace semantics of attack tree). The trace semantics of an
attack tree τ is a set of traces L(τ) ⊆ (2Prop)∗, inductively defined on τ :

L(〈ι to γ〉) = {t ∈ (2Prop)∗ | t.first |= ι and t.last |= γ};
L(OR(τ1, . . . , τm)) = L(τ1) ∪ . . . ∪ L(τm);
L(SAND(τ1, . . . , τm)) = L(τ1) � . . . � L(τm);
L(AND(τ1, . . . , τm)) = �(L(τ1), . . . , L(τm)).

Since the SAND operator relies on the associative operation �, we may sometimes
assume for convenience and w.l.o.g. that the degree of the SAND-nodes is 2. In
contrast, such an assumption would not hold for operator AND since � is not
associative.

Example 7. Revisiting the attack tree τ from Example 3, the following trace from
Example 4 is a possible trace of the museum example that can be explained by
the tree τ , i.e., that is in L(τ):

{monitor1}{monitor1} ∅ {frozen1}{frozen1, frozen2}
{enterb, frozen1, frozen2}{hasPaint, frozen1, frozen2}.

Indeed, first its prefix {monitor1}{monitor1} ∅ {frozen1} {frozen1, frozen2}
belongs to L(AND(〈¬monitor2 to frozen1〉, 〈¬monitor1 to frozen2〉)), as a par-
allel composition of {monitor1}{monitor1} ∅ {frozen1} ∈ L(〈¬monitor2 to)〉
L(〈frozen1 to)〉 and ∅{frozen1}{frozen1, frozen2} ∈ L(〈¬monitor1 to)〉
L(〈frozen2 to)〉. Second, its factor {enterb, frozen1, frozen2} ∈
L(〈frozen1 ∧ frozen2 to entera〉), thus its belongs to the trace seman-
tics of the subtree of τ rooted at the OR-node. Third, its suffix
{enterb, frozen1, frozen2}{hasPaint, frozen1, frozen2} belongs to the trace
semantics of the last child of the SAND-node.

4 Libraries

The attack tree synthesis problem seems trivial: the single-node tree 〈� to �〉,
where formula � means tautologically true, explains any trace! In order to syn-
thesize interesting attack trees, we consider a library, that is a set of refinement
rules, alike a context-free grammar rules. We will as much as possible keep close
to notations introduced in [10]: for instance, we use ρ to denote a refinement rule.

In a context-free grammar style, we consider G a finite set of non-terminal
goals, with typical elements g, g1, g2, and terminal goals that are atomic goals
〈ι to γ〉 (where ι, γ are Boolean formulas).

Definition 5 (Refinement rules and library). A refinement rule (over G) ρ
is either a so-called elementary rule g � 〈ι to γ〉 where ι, γ are Boolean formulas;
or a rule g � OP(g1, . . . , gm) where OP is an operator, m ≥ 1, and g1, . . . , gm ∈ G.
A refinement rule g � OP(g1, . . . , gm) refines g. The arity of a refinement rule
is 0 if it is elementary, and the arity of the operator OP appearing in the rule
otherwise.

34 S. Pinchinat et al.

A library L over G is a finite set of refinement rules (over G). The size of L
is the total number of non-terminal goal occurrences that appear in all its rules,
both in left-hand and right-hand sides of rules.

Example 8. Let us continue with the museum example where we add the propo-
sition incenter read as “the intruder is in the control center”. The following set
of rules Lmuseum is library (and relies on the vocabulary of Example 2), where
non-terminal goals are sentences written in italic to emphasize their role in our
model of a library.

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

go to center � 〈� to incenter〉
blow up a bomb � 〈incenter to frozen1 ∧ frozen2〉
enter via door a � 〈frozen1 ∧ frozen2 to entera〉
enter via door b � 〈frozen1 ∧ frozen2 to enterb〉
take � 〈entera ∨ enterb to hasPaint〉
disable camera 1 � 〈¬monitor2 to frozen1〉
disable camera 2 � 〈¬monitor1 to frozen2〉
steal � SAND(disable cameras, enter , take)
disable cameras � AND(disable camera 1 , disable camera 2)
disable cameras � SAND(go to center , blow up a bomb)
enter � OR(enter via door a, enter via door b)

Goal go to center represents reaching the control center (without any precon-
dition, which is written �), while goal blow up a bomb represents setting up a
bomb that will disable both cameras while being in the control center. The other
goals are clear. Note that there are two rules that refine goal disable cameras
which reflects different ways of disabling both cameras. Allowing for different
refinement rules for an abstract goal is of utter importance because libraries
are filled by experts analysing different systems: for example, the rule to hack a
USB key may drastically vary depending on the underlying OS. Encapsulating
alternatives into a single OR means that they may occur in the same system. Hav-
ing a different rule for each alternative means that they correspond to different
systems.

We now fix a library L over some set of non-terminal goals G. We define L-
attack trees, in the spirit of what was called a “correct tree” in [10]: intuitively,
they are attack trees obtained by iteratively applying refinement rules of the
library on leaf-nodes until the leaves correspond to atomic goals.

Definition 6 (L-attack tree). An L-attack tree is an attack tree τ (in the
sense of Definition 1) equipped with a mapping 	 that maps every node of τ onto
a non-terminal goal of G in such a way that:

– if x is a leaf 〈ι to γ〉, then the rule 	(x) � 〈ι to γ〉 is in L;
– if x is a node OP(x1, . . . , xk) then the rule 	(x) � OP((x1), . . . , 	(xk)) is in L.

The label 	(x) of a node in Definition 6 is a non-terminal goal. This non-
terminal goal arising from the library carries information, such as text – as done

Library-Based Attack Tree Synthesis 35

in Example 8, or a CVE identifier1. It is this information that makes L-attack
trees readable to experts.

Example 9. Figure 4 shows two Lmuseum-attack trees for Lmuseum defined in
Example 8.

Fig. 4. Two Lmuseum-attack trees.

We say that the non-terminal goal g derives the trace t if there exists an
L-attack tree τ whose root’s label is g and such that t is in L(τ).

Given a library L, we can always manage to find an equivalent library L′

where all SANDs are binary, in the sense that the trace semantics of an L′-attack
tree is equal to trace semantics of some L-attack trees, and vice versa. Note that
L′ can be computed in polynomial time in the size of L.

In the rest of this paper, we assume that every refinement rule based on SAND
operator has arity 2. Table 1 sums up the formal notions defined so far.

Table 1. Important formal notions defined in the paper.

Formal notions Intuitive meanings

A trace An observed attack (e.g. a log file)

An attack tree (Definition 1) An explanation of an observed attack

A non-terminal goal A high-level attack objective

A refinement rule A known attack tree pattern

A library (Definition 5) A set of known attack tree patterns

An L-attack tree (Definition 6) An explanation of an observed attack constructed
with the known attack-tree patterns in L

1 CVE is a dictionary of publicly disclosed cybersecurity vulnerabilities and exposures
https://cve.mitre.org/cve/.

https://cve.mitre.org/cve/

36 S. Pinchinat et al.

5 Attack Tree Synthesis

The attack tree synthesis problem consists in building a tree (if any) that explains
an observed trace t (e.g. a log file) in terms of a given library L. Formally, we
address the underlying decision problem for analyzing the complexity for this
synthesis problem, but the developed algorithm does build a tree.

Definition 7 (Attack tree synthesis problem).

– Input: a library L, a trace t ∈ (2Prop)∗.
– Question: is there an L-attack tree τ such that t ∈ L(τ)?

The rest of this section is dedicated to the proof of the following theorem.

Theorem 1. The attack tree synthesis problem is NP-complete. Furthermore,
the synthesis problem restricted to libraries in which the arity of AND is bounded
is in P.

For proving the NP-hardness of the attack tree synthesis problem, we identify
a decision problem at the core of the synthesis problem: the “Packed Interval
Covering Problem” [22].

5.1 A Detour on the Packed Interval Covering Problem

The Packed Interval Covering Problem (PIC) is a cover problem, where one has
to cover a given interval using one interval from each given pack. It is defined as
follows.

– Input: a non-empty interval I of integers and a family of finite sets P1, . . . , Pm

(packs) of subintervals of I.
– Question: are there subintervals I1 ∈ P1, . . . , Im ∈ Pm such that I =

⋃

k=1..m

Ik?

Example 10. We borrow the example in [22]: for interval [1, 9], there are three
packs {[1, 6], [5, 9]}, {[1, 3], [4, 6], [7, 7]}, {[4, 4]}. Interval [1, 9] can be covered by
selecting [5, 9], [1, 3] and [4, 4] in the respective packs, as shown in Fig. 5.

Fig. 5. Example of an instance of the Packed Interval Covering Problem.

Library-Based Attack Tree Synthesis 37

Theorem 2 [22]. PIC is NP-complete.

5.2 NP-Hardness of the Synthesis Problem

We establish a reduction from PIC to the attack tree synthesis problem.
Consider an arbitrary instance of PIC with target interval I = [1, N] and

packs (Pk)1≤k≤m, each of the form Pk = {[mk
j , nk

j] | 1 ≤ j ≤ |Pk|}.
We now describe an instance 〈L, t〉 of the attack tree synthesis problem as

follows. Take N distinct propositions p0, . . . , pN .
First, define trace t = {p0} . . . {pN} to encode the target interval [1, N]: each

subtrace {pi−1}{pi} of t of length 2 is intended to match integer i ∈ [1, N].
Second, the library L contains exactly the following rules.

– Rule gselect(k,j) � 〈pmk
j −1 to pnk

j
〉 for every k ∈ {1, . . . , m} and every j ∈

{1, . . . , |Pk|} that amounts to requiring that if the j-th interval [mk
j , nk

j] of
pack Pk is selected, then it is covered;

– Rule gpack(k) � OR(gselect(k,1), . . . , gselect(k,|Pk|)), for every k ∈ {1, . . . , m}
requiring to select one of the |Pk| intervals in the pack Pk;

– Rule gunion � AND(gpack(1), . . . , gpack(m)) expressing that one must select an
interval in each pack Pk;

Example 11. For the PIC instance of Example 10, we get trace

t = {p0}{p1}{p2}{p3}{p4}{p5}{p6}{p7}{p8}{p9}

and the following library:
⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎩

gunion � AND(gpack(1), gpack(2), gpack(3))
gpack(1) � OR(gselect(1,1), gselect(1,2))
gpack(2) � OR(gselect(2,1), gselect(2,2), gselect(2,3))
gpack(3) � OR(gselect(3,1))

gselect(1,1) � 〈p0 to p6〉
gselect(1,2) � 〈p4 to p9〉
gselect(2,1) � 〈p0 to p3〉
gselect(2,2) � 〈p3 to p6〉
gselect(2,3) � 〈p6 to p7〉
gselect(3,1) � 〈p3 to p4〉

The obtained instance 〈L, t〉 is computed in polynomial time from the PIC
instance 〈I, P1, . . . , Pm〉. Clearly, the instance 〈L, t〉 of the attack tree synthesis
problem is positive if, and only if, the original PIC instance 〈I, P1, . . . , Pm〉 is
positive. Indeed, there is a correspondence between the choice of intervals in
packs, and the children of nodes labelled by gpack(1), . . . , gpack(m) whose respec-
tive semantics exhibits m subtraces that cover the full trace t.

5.3 NP-Membership of the Synthesis Problem

The following table shows the correspondence between some refinement rules
and context-free grammars (CFG) rules in formal languages. Notice that there
is no grammar rules counterpart for refinement rules with an AND operator.

38 S. Pinchinat et al.

Refinement rule CFG production rule

g � 〈ι to γ〉 X → a

g � OR(g1, g2) X → Y | Z

g � SAND(g1, g2) X → Y Z

Still, we are able to design an algorithmbased on a variant of the classic bottom-
upparsing algorithm“Cocke–Younger–Kasami algorithm” (CYK) [15,24,27]. The
original algorithm answers whether some input context-free grammar can generate
some input word. It relies on a dynamic programming solution that computes, for
each subword by increasing length, the set of non-terminals that generate it.

Algorithm Design. As in CYK, we handle sets Goals[i, j] that collect goals
of G that derive the subtrace t[i, j]. Nevertheless, we cannot rely on the mere
dynamic programming anymore since the three operators do not necessarily
make use of decreasing intervals. The following example illustrates the phe-
nomenon with an artificial example of library.

Example 12. For Prop = {p1, p2, p3, p4}, take trace t = {p1}{p2}{p3}{p4} and
the following library L:

⎧

⎨

⎩

ρ1 : g � OR(g′)
ρ2 : g′ � SAND(g, g)
ρ3 : g � SAND(g′, g)

ρ4 : g � SAND(g′, g′′)
ρ5 : g � 〈p2 to p3〉
ρ6 : g′ � 〈p1 to p1〉

ρ7 : g′ � 〈p1 to p2〉
ρ8 : g′′ � 〈p3 to p4〉

Figure 6 shows an L-attack tree for the trace t. Although the nodes marked *
and the node marked ** are at different levels in the tree, we will see that both
arise when computing Goals[1, 3] to parse subtrace t[1, 3] = {p1}{p2}{p3}.

Fig. 6. An L-attack tree for t.

Let us zoom on a bottom-up parsing of the trace t, by successively increasing
the length of the subintervals [i, j] to compute Goals[i, j] that derives t[i, j].

Library-Based Attack Tree Synthesis 39

During the treatment of the 1-length interval [1, 1], g′ is put in Goals[1, 1]
thanks to Rule ρ6, which allows next to add g by Rule ρ1; Goals[2, 2], Goals[3, 3]
and Goals[4, 4] are empty.

We skip the computation for intervals of length 2, and focus on the treatment
of interval [1, 3]: in order to obtain the subtree of Fig. 6 rooted at node marked *
for subtrace t[1, 3], the parsing procedure should have added goal g in Goals[1, 3]
according to Rule ρ3 (corresponding to the marked ** node) before adding g′

(node *) thanks to Rule ρ2. But because of the mutual recursivity of the rules,
it seems difficult to know a priori which of Rule ρ2 and Rule ρ3 should be
considered first.

In order to face the potential inability to exhibit a hierarchy of the rules for
an arbitrary input library, we propose an algorithm that iterates over rules until
stabilization for each interval of the input trace.

Importantly, the ability to solve the synthesis problem even for libraries with
mutual recursivity between rules is not a mere technical achievement but a true
need: indeed, libraries may be fed incrementally by uncoordinated experts, which
prevents us from requiring any sort of (in)dependencies between rules. Thus
restricting to non recursive libraries (as for the museum Example 8) would be a
very limited solution.

Regarding the technical aspects of our algorithm, the parsing of SAND-rules
is handled with a minor adaptation of the CYK algorithm because of the tiny
difference between classic concatenation and synchronized concatenation. On
the contrary, since AND-rules of libraries do not have any counterpart in CF
grammars, we resort to a novel method based on non-deterministically guessing
one interval per subgoal, hence a non-deterministic algorithm.

Algorithm Pseudo-Code. Algorithm 1 presents the pseudo-code of our non-
deterministic algorithm that decides the attack tree synthesis in polynomial-
time. As in CYK, we consider each interval [i, j] of [1, n] by increasing length
(line 1), and we compute Goals[i, j] (in the repeat-until loop, lines 2–18) that is
a set of goals that derive t[i, j] (possibly the set of exactly all such goals when the
right non-deterministic choices are taken). The repeat-until loop stops when
Goals[i, j] stabilizes, that is when nothing has been added to Goals[i, j] in the
last iteration.

We iterate over all the rules of the library and update Goals[i, j] according to
the semantics given in Definition 4. For a rule g � 〈ι to γ〉, we add the goal g to
Goals[i, j] if ι holds at time i and γ holds at time j. For a rule g � OR(g1, . . . , gm),
as long as there is a goal gk in Goals[i, j], we add g to Goals[i, j]. For a rule
g � SAND(g1, g2), if there is a mid-position t between time i and j such that
g1 is in Goals[i, t] and g2 is in Goals[t, j], we add g to Goals[i, j]. For a rule
g � AND(g1, . . . , gm), we first non-deterministically choose intervals I1, . . . , Im

included in [i, j]. In the case I1, . . . , Im is a covering of [i, j] and goals g1, . . . , gm

are respectively in Goals[I1], . . . , Goals[Im], we add g in Goals[i, j]. Note that
if g is added in Goals[i, j] then the rule g � AND(g1, . . . , gm) can be applied
to construct an attack tree. The reverse is false: it might be the case that the

40 S. Pinchinat et al.

Algorithm 1. attackTreeSynthesis(L, t): it has an accepting execution iff
there is an L-attack tree whose semantics contains t.

1: for all intervals [i, j] of [1, n] by increasing length do
2: repeat
3: for all rules ρ in L do
4: match ρ do
5: case g � 〈ι to γ〉:
6: if t(i) |= ι and t(j) |= γ then
7: Goals[i, j] := Goals[i, j] ∪ {g}
8: case g � OR(g1, . . . , gm):
9: if there is 1 ≤ k ≤ m and gk ∈ Goals[i, j] then

10: Goals[i, j] := Goals[i, j] ∪ {g}
11: case g � SAND(g1, g2):
12: if there is i ≤ t ≤ j such that g1∈Goals[i, t] and g2∈Goals[t, j] then
13: Goals[i, j] := Goals[i, j] ∪ {g}
14: case g � AND(g1, . . . , gm):
15: non-deterministically choose I1, . . . , Im ⊆ [i, j]
16: if I1, . . . , Im covers [i, j] and g1 ∈ Goals[I1] and . . . and gm ∈ Goals[Im]

then
17: Goals[i, j] := Goals[i, j] ∪ {g}
18: until Goals[i, j] stabilises
19: if (Goals[1, n] 	= ∅) accept else reject

rule g � AND(g1, . . . , gm) can be applied although g is not added to Goals[i, j].
Nevertheless, if the rule g � AND(g1, . . . , gm) can be applied then there is an
execution in which the goal g is added to Goals[i, j].

At the end, the input is accepted exactly when Goals[1, n] is not empty, that
is, when the algorithm found that there is an attack tree for the full trace t.

Proposition 1 states the main properties of Algorithm 1.

Proposition 1

1. Executions of attackTreeSynthesis(L, t) have length in poly(size(L) + |t|).
2. (Soundness) If there is an accepting execution of attackTreeSynthesis(L,

t), then there is an L-attack tree τ such that t ∈ L(τ).
3. (Completeness) If there is an L-attack tree τ such that t ∈ L(τ), then there

is an accepting execution of attackTreeSynthesis(L, t).

Proof. Consider an execution of attackTreeSynthesis(L, t). At each iteration
of the repeat-until loop (lines 2–18), the set Goals[i, j] is increasing and
bounded by finite G. Choosing non-deterministically I1, . . . , Im ⊆ [i, j] consists
in choosing 2m numbers in [i, j], which can be done in polynomial-time. The
rest is polynomial hence Point 1.

Also, the invariant “for every execution of attackTreeSynthesis(L, t),
Goals[i, j] is included in the set of goals that derive t[i, j]” entails Point 2.
Finally, it suffices to consider the execution that chooses the right intervals at
line 15 to get Point 3.

Library-Based Attack Tree Synthesis 41

By Proposition 1, the attack tree synthesis problem is in NP. To achieve
the proof of Theorem 1, it remains to restrict to libraries with bounded-arity
AND-rules.

5.4 Libraries with Bounded-Arity AND-Rules

It can be observed that the combinatorics of the unbounded AND operator con-
tributes to the problem’s complexity. By bounding the AND operator arity in
library L, the resulting subclass of the synthesis problem falls into P.

To see this, observe that bounding the AND operator arity yields a polynomial
number of covers, so that line 15 of Algorithm 1 can be replaced by a for-loop
over all covers that executes a polynomial number of times in the arity m.

6 Conclusion

We have presented a mathematical setting that addresses an attack tree synthesis
problem. In this contribution, we rely on a formal trace semantics of attack trees
inspired from the path semantics proposed, e.g., in [3,4]. Our setting exploits
the ontology of library whose rules describe how a subgoal can be refined into
a combination of subgoals; such combinations rely on any of the classic tree
operators OR, SAND, and AND. The synthesis problem has two inputs: a library
and a trace. It consists in building an attack tree whose refinements are provided
by the input library and whose semantics contains the input trace. We have
established that the (associated decision) problem is NP-complete. However, the
proposed algorithm is only polynomial in the size of the trace. This is good news
for the two following reasons. First, traces might be long objects (e.g., log files).
Second, the exponential blow up caused by the arity of AND rules in libraries
should be tamed in practice: the library is often fixed, and a manually entered
AND-rule in this library is unlikely to have a huge arity. We have implemented
our algorithm in a humble educative prototype that the interested reader may
find at http://attacktreesynthesis.irisa.fr/.

Regarding synthesis, our algorithm can be easily extended to keep track of
subtrees: each time a goal is added in Goals, there is a matching subtree that
we could build – as done for the classic CYK algorithm to return the syntactic
tree of a parsed word. This is classic in dynamic programming and can still be
exploited in our case.

Recently, new operators have been proposed to combine subgoals, among
which are weak variants of existing operators, as done in [16] and [20]. We claim
that our algorithm can be easily extended to deal with these operators.

This contribution opens several perspectives both theoretical and practical.

Theoretical Level. (1) We can investigate the use of first-order formulas in atomic
goals 〈ι to γ〉, which would encompass the kinds of rules in [14] and [13]. We
foresee the need for pattern-matching techniques or Robinson’s unification that
may impact the theoretical complexity of the problem. (2) We may also relax the

http://attacktreesynthesis.irisa.fr/

42 S. Pinchinat et al.

problem by not synthesizing a single tree, but a minimal number of trees where
each one parses a piece of the input trace. (3) We have to go beyond the case of a
single trace, and synthesize a tree whose semantics contains (or equals) an input
finite set of traces. This has already been addressed in [10] for the restricted case
of OR and SAND-rules only, and regrettably with an incomplete procedure; the
authors write that their procedure “either generates a correct tree or aborts” (in
contrary, our approach is complete, see Point 3 of Proposition 1).

Practical Level. We foresee two main tracks. The first track regards the lengthy
traces arising from concrete log files. Even if our algorithm is polynomial in this
parameter, scalability is still an issue. We may explore abstractions of traces
(e.g., modulo stuttering equivalence), or subclasses of libraries with efficient
parsing methods (e.g., of the type LL(1)). The second track is ambitious and
aims at bridging the gap between formal libraries and libraries in practice, such
as the knowledge base of adversary tactics MITTRE ATT&CK2. We are not
aware of any significant advance but of a humble recent degree project [1]3. This
topic should become very hot in the near future.

References

1. Åberg, O., Sparf, E.: Validating the meta attack language using mitre att&ck
matrix (2019)

2. Audinot, M.: Assisted design and analysis of attack trees. Ph.D. thesis, Université
de Rennes, vol. 1 (2018)

3. Audinot, M., Pinchinat, S., Kordy, B.: Is my attack tree correct? In: Foley, S.N.,
Gollmann, D., Snekkenes, E. (eds.) ESORICS 2017. LNCS, vol. 10492, pp. 83–102.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66402-6 7

4. Audinot, M., Pinchinat, S., Kordy, B.: Guided design of attack trees: a system-
based approach. In: 31st IEEE Computer Security Foundations Symposium, CSF
2018, Oxford, United Kingdom, July 9–12, 2018, pp. 61–75. IEEE Computer Soci-
ety (2018). https://doi.org/10.1109/CSF.2018.00012

5. Audinot, M., Pinchinat, S., Schwarzentruber, F., Wacheux, F.: Deciding the non-
emptiness of attack trees. In: Graphical Models for Security - 5th International
Workshop on Graphical Models for Security, Oxford, UK - July 8, 2018, pp. 25–38
(2018). https://doi.org/10.1007/978-3-319-46263-9 2

6. Bagnato, A., Kordy, B., Meland, P.H., Schweitzer, P.: Attribute decoration of
attack-defense trees. Int. J. Secur. Softw. Eng. 3(2), 1–35 (2012). https://doi.org/
10.4018/jsse.2012040101

7. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, Cambridge (2008)
8. Board, E.A., Board, S.: Election operations assessment - threat trees and matrices

and threat instance risk analyzer (TIRA) (2009). https://www.eac.gov/assets/
1/28/Election Operations Assessment Threat Trees and Matrices and Threat
Instance Risk Analyzer (TIRA).pdf

2 https://attack.mitre.org/.
3 http://www.diva-portal.org/smash/get/diva2:1350884/FULLTEXT01.pdf.

https://doi.org/10.1007/978-3-319-66402-6_7
https://doi.org/10.1109/CSF.2018.00012
https://doi.org/10.1007/978-3-319-46263-9_2
https://doi.org/10.4018/jsse.2012040101
https://doi.org/10.4018/jsse.2012040101
https://www.eac.gov/assets/1/28/Election_Operations_Assessment_Threat_Trees_and_Matrices_and_Threat_Instance_Risk_Analyzer_(TIRA).pdf
https://www.eac.gov/assets/1/28/Election_Operations_Assessment_Threat_Trees_and_Matrices_and_Threat_Instance_Risk_Analyzer_(TIRA).pdf
https://www.eac.gov/assets/1/28/Election_Operations_Assessment_Threat_Trees_and_Matrices_and_Threat_Instance_Risk_Analyzer_(TIRA).pdf
https://attack.mitre.org/
http://www.diva-portal.org/smash/get/diva2:1350884/FULLTEXT01.pdf

Library-Based Attack Tree Synthesis 43

9. Fraile, M., Ford, M., Gadyatskaya, O., Kumar, R., Stoelinga, M., Trujillo-Rasua,
R.: Using attack-defense trees to analyze threats and countermeasures in an ATM:
a case study. In: Horkoff, J., Jeusfeld, M.A., Persson, A. (eds.) PoEM 2016. LNBIP,
vol. 267, pp. 326–334. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
48393-1 24

10. Gadyatskaya, O., Jhawar, R., Mauw, S., Trujillo-Rasua, R., Willemse, T.A.C.:
Refinement-aware generation of attack trees. In: Livraga, G., Mitchell, C. (eds.)
STM 2017. LNCS, vol. 10547, pp. 164–179. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-68063-7 11

11. Hong, J.B., Kim, D.S., Takaoka, T.: Scalable attack representation model using
logic reduction techniques. In: 2013 12th IEEE International Conference on Trust,
Security and Privacy in Computing and Communications, pp. 404–411 (July 2013)

12. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory,
Languages, and Computation. Pearson International Edition, 3rd edn. Addison-
Wesley, Boston (2007)

13. Ivanova, M.G., Probst, C.W., Hansen, R.R., Kammüller, F.: Attack tree generation
by policy invalidation. In: Akram, R.N., Jajodia, S. (eds.) WISTP 2015. LNCS,
vol. 9311, pp. 249–259. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
24018-3 16

14. Jhawar, R., Lounis, K., Mauw, S., Ramı́rez-Cruz, Y.: Semi-automatically augment-
ing attack trees using an annotated attack tree library. In: Katsikas, S.K., Alcaraz,
C. (eds.) STM 2018. LNCS, vol. 11091, pp. 85–101. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-01141-3 6

15. Kasami, T.: An efficient recognition and syntax-analysis algorithm for context-free
languages. Coordinated Science Laboratory Report no. R-257 (1966)

16. Mantel, H., Probst, C.W.: On the meaning and purpose of attack trees. In: 32nd
IEEE Computer Security Foundations Symposium, CSF 2019, Hoboken, NJ, USA,
June 25–28, 2019, pp. 184–199. IEEE (2019). https://doi.org/10.1109/CSF.2019.
00020

17. (NESCOR), N.E.S.C.O.R.: Analysis of selected electric sector high risk failure sce-
narios, version 2.0 (2015). http://smartgrid.epri.com/doc/NESCOR%20Detailed
%20Failure%20Scenarios%20v2.pdf

18. Pinchinat, S., Acher, M., Vojtisek, D.: Towards synthesis of attack trees for sup-
porting computer-aided risk analysis. In: Canal, C., Idani, A. (eds.) SEFM 2014.
LNCS, vol. 8938, pp. 363–375. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-15201-1 24

19. Pinchinat, S., Acher, M., Vojtisek, D.: ATSyRa: an integrated environment for
synthesizing attack trees. In: Mauw, S., Kordy, B., Jajodia, S. (eds.) GraMSec
2015. LNCS, vol. 9390, pp. 97–101. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-29968-6 7

20. Pinchinat, S., Fila, B., Wacheux, F., Thierry-Mieg, Y.: Attack trees: a notion of
missing attacks. In: Graphical Models for Security - 6th International Workshop,
GraMSec@CSF 2019, Hoboken, NJ, USA, June 24, 2019, Revised Papers, pp. 23–49
(2019)

21. Poolsapassit, N., Ray, I.: Investigating computer attacks using attack trees. In:
Craiger, P., Shenoi, S. (eds.) DigitalForensics 2007. ITIFIP, vol. 242, pp. 331–343.
Springer, New York (2007). https://doi.org/10.1007/978-0-387-73742-3 23

22. Saffidine, A., Cong, S.L., Pinchinat, S., Schwarzentruber, F.: The packed interval
covering problem is NP-complete. CoRR abs/1906.03676 (2019). http://arxiv.org/
abs/1906.03676

https://doi.org/10.1007/978-3-319-48393-1_24
https://doi.org/10.1007/978-3-319-48393-1_24
https://doi.org/10.1007/978-3-319-68063-7_11
https://doi.org/10.1007/978-3-319-68063-7_11
https://doi.org/10.1007/978-3-319-24018-3_16
https://doi.org/10.1007/978-3-319-24018-3_16
https://doi.org/10.1007/978-3-030-01141-3_6
https://doi.org/10.1007/978-3-030-01141-3_6
https://doi.org/10.1109/CSF.2019.00020
https://doi.org/10.1109/CSF.2019.00020
http://smartgrid.epri.com/doc/NESCOR%20Detailed%20Failure%20Scenarios%20v2.pdf
http://smartgrid.epri.com/doc/NESCOR%20Detailed%20Failure%20Scenarios%20v2.pdf
https://doi.org/10.1007/978-3-319-15201-1_24
https://doi.org/10.1007/978-3-319-15201-1_24
https://doi.org/10.1007/978-3-319-29968-6_7
https://doi.org/10.1007/978-3-319-29968-6_7
https://doi.org/10.1007/978-0-387-73742-3_23
http://arxiv.org/abs/1906.03676
http://arxiv.org/abs/1906.03676

44 S. Pinchinat et al.

23. Schneier, B.: Attack trees: modeling security threats. Dr. Dobb’s J. Softw. Tools
24(12), 21–29 (1999)

24. Sipser, M.: Introduction to the Theory of Computation. PWS Publishing Company,
Boston (1997)

25. Vigo, R., Nielson, F., Nielson, H.R.: Automated generation of attack trees. In: IEEE
27th Computer Security Foundations Symposium, CSF 2014, Vienna, Austria, 19–
22 July, 2014, pp. 337–350 (2014)

26. Wide�l, W., Audinot, M., Fila, B., Pinchinat, S.: Beyond 2014: formal methods for
attack tree-based security modeling. ACM Comput. Surv. 52(4), 1–36 (2019)

27. Younger, D.H.: Recognition and parsing of context-free languages in time n3. Inf.
Control 10(2), 189–208 (1967)

Asset-Centric Analysis and Visualisation
of Attack Trees

Christopher Schmitz1(B), André Sekulla2, and Sebastian Pape1

1 Goethe University Frankfurt, Frankfurt am Main, Germany
{christopher.schmitz,sebastian.pape}@m-chair.de

2 University of Siegen, Siegen, Germany
andre.sekulla@uni-siegen.de

Abstract. Attack trees are an established concept in threat and risk
analysis. They build the basis for numerous frameworks aiming to deter-
mine the risk of attack scenarios or to identify critical attacks or attack
paths. However, existing frameworks do not provide systematic analy-
ses on the asset-level like the probability of successful or near-successful
attacks on specific assets. But these insights are important to enable
decision-makers to make more informed decisions. Therefore, a generic
approach is presented that extends classical attack tree approaches by
asset-specific analyses. For this purpose, the attack steps in the attack
trees are annotated with corresponding assets. This allows identifying the
attack paths each asset is exposed to. In combination with the standard
attack tree parameter “probability of attack success”, a set of comple-
mentary attack success and protection metrics can be applied on each
step of the paths. Furthermore, an integrated visualisation scheme is
proposed that illustrates the results in a comprehensible way so that
decision-makers can intuitively understand what the metrics indicate. It
also includes several features improving usability and scalability. As proof
of concept, we have implemented a prototype of our proposed method.

Keywords: Attack trees · Attack graphs · Security metrics · Assets ·
Visualisation

1 Introduction

Attack trees are an established concept in threat and risk analysis. Security
analysts can use them to determine or compare the risk of attack scenarios, to
identify the most likely attack paths or to detect the most serious attack steps.
However, current attack tree approaches do not link this information to the
asset-level. Thus, they do not provide any systematic information on the assets’
security or risk level. This includes, for example, the probability that an asset will
be subject to a (non-) successful attack but also its impact on the overall risk.
This information can be of crucial importance from a decision-making perspec-
tive, especially when it comes to the question of how to protect against certain
attack scenarios in a resource-efficient way which often requires a prioritisation.
c© Springer Nature Switzerland AG 2020
H. Eades III and O. Gadyatskaya (Eds.): GraMSec 2020, LNCS 12419, pp. 45–64, 2020.
https://doi.org/10.1007/978-3-030-62230-5_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62230-5_3&domain=pdf
https://doi.org/10.1007/978-3-030-62230-5_3

46 C. Schmitz et al.

To address this issue, a generic approach is presented that complements existing
attack tree-based risk assessment frameworks, such as the LiSRA framework [20],
with meaningful information on the asset-level. This helps to assess the assets’
security level in a systematic and less subjective way and helps decision-makers
in mitigating the most critical assets first.

These insights are then visualised in a proper way so that decision-makers
can intuitively understand possible attack routes as well as the individual attack
chances and the risk sensitivity of each asset. This helps to reflect on the imple-
mented security measures in order to better protect the assets at stake and
support the analysis of the underlying risk assessment framework.

The approach consists of the following steps: First, the attack steps in the
attack trees are annotated with corresponding assets. This link builds the basis
for any security-related analysis with respect to these assets. The attack trees
are then transformed into the new concept of “asset-centric attack graphs”.
They illustrate the attack paths leading to each individual asset and show which
assets have to be attacked in which sequence to perform a successful attack. In
combination with the “probability of attack success”, which is a very common
parameter for attack trees, new graph metrics are developed that provide mean-
ingful insights on the asset-level [12]. These metrics are developed in such a way
that they can be combined in a complementary way. This enables to visualise
them in an integrated way so that decision-makers can intuitively understand
the assets’ security level. Since real-world infrastructures can be very complex
and difficult to comprehend it is also shown how the visualisation scheme can
cope with large infrastructures and complex attacks scenarios.

The remainder of this paper is organised as follows. After discussing the
background and the related work in Sect. 2, Sect. 3 explains how asset-centric
attack graphs can be derived from classical attack trees. Furthermore, meaningful
graph metrics are proposed. Section 4 then presents the proposed visualisation
scheme that describes how all the metrics can be illustrated in an intuitive
way. Section 5 gives insights on the prototype implementation and evaluates
the fulfilment of the requirements that were specified before. Finally, Sect. 6
concludes and points out future work ideas.

2 Background and Related Work

This section gives a brief introduction on attack trees and attack graphs and
also gives an overview of related work in both areas.

2.1 Attack Trees

Attack trees are an established concept in threat and risk analysis initially intro-
duced in 1999 by Schneier [21]. An attack tree illustrates an attack scenario from
an attacker’s perspective and represents it in a hierarchical, tree-based structure.
The attack goal is located in the root node of the tree and is subsequently decom-
posed into more fine-grained attack steps using logical operations. The leaf nodes

Asset-Centric Analysis and Visualisation of Attack Trees 47

finally describe atomic attacker activities. Besides the standard OR and AND
operators it is also possible to model more sophisticated operators like “sequen-
tial AND” (SAND) described by Jhawar et al. [7]. It is used to consider the
sequence of attacker activities.

The principal idea of attack tree-based risk assessment approaches is to anal-
yse the tree nodes with risk-related parameters. Common parameters are the
probability of attack success, the costs to perform an attack step or the required
skill level. Using bottom-up algorithms these parameters are then propagated up
the tree in order to calculate the values for the entire attack tree [12]. There is
a large number of approaches determining the risk of attack scenarios like this,
for example, the ADTool or the LiSRA framework [11,12,20]. However, only
a few approaches consider assets as a central artefact within attack trees [17],
and there is no approach that provides systematic analyses of (aggregated) asset
classes [12].

2.2 Attack Graphs

An attack graph is an abstraction of attack paths in an infrastructure. The first
concept of an attack graph has been proposed by Phillips and Swiler in 1998 [18].
Much work has already been done to define security metrics that can be applied
on attack graphs [6,12,13,24]. Several metrics have been defined that are based
on the number and the structure of attack paths like the shortest path metric,
the number of paths metric, the (normalised) mean of path lengths metric, or
the median of path lengths metric [6]. In contrast to these metrics, that only rely
on the attack paths, Wang et al. combine path information with the probabilities
that specific exploits are executed. In this way, they determine the probability
of multi-step attacks [22]. Although this is a specific metric for network secu-
rity that does not aim to rate or compare certain assets, reachability metrics,
in general, build the basis for some of the metrics introduced in the present
work. It is shown how reachability metrics can be applied to asset-centric attack
graphs. Furthermore, different variations of the standard reachability metric are,
amongst other metrics (like the asset risk sensitivity), proposed in this work. The
variations indicate, for instance, the probability of near-successfully attack spe-
cific assets. The combination of these variations enables an integrated perspective
which constitutes one of the central elements of the visualisation scheme. Saw-
illa and Ou follow a different approach and apply an adapted Google PageRank
algorithm on attack graphs in order to rate assets [19]. The assets are associ-
ated with vulnerability data from public databases. The algorithm evaluates the
assets only in relation to each other. Therefore, it cannot be used to measure
the assets’ security absolutely. There also exist other approaches that consider
assets as central artefacts [3,8,9]. However, they cannot be simply applied on
(existing) attack trees but they require in-depth knowledge in threat modelling.
Apart from that, systematic analyses of (aggregated) asset classes have not been
covered by any of these approaches.

Besides that, a key limitation of many attack graph models is that they lack in
scalability which makes it challenging to manage their complexity in user inter-

48 C. Schmitz et al.

action. This is mainly due to the fact that real-world attack scenarios can be very
complex. As a consequence, many of the attack graph models are too complex to
be objectively evaluated by humans in a reasonable time [4,5,14,15,23]. However,
efforts have been made to address this issue. Noel and Jajodia have proposed
a technique to collapse attack graph elements through hierarchical aggregation
so that attack graphs can be viewed and analysed at different abstraction lev-
els [15]. In 2005, they described a filtering approach that allows the user to filter
graph elements so that only the attack subgraphs of interest are shown [14].
Williams et al. represent attack graphs on the basis of treemaps (instead of clas-
sical node-link graphs), and they make use of spatial grouping and colour-coding
to indicate the level of compromise [23]. Furthermore, they automatically group
hosts with similar levels of compromise. Another approach aiming to reduce the
complexity of attack graphs has been presented by Homer et al. [4]. They propose
a technique to systematically identify and remove “useless” attack paths. Addi-
tionally, their approach performs a grouping of similar attack steps. However,
these approaches were not designed to be applied to assets or asset hierarchies.
In general, most visualisation approaches in information security are “special-
purpose representations” [2].

3 Asset-Centric Analysis of Attack Trees

This section first introduces a scenario that is used to explain the approach. Fur-
thermore, two exemplary attack trees are described for this scenario. Afterwards,
it is explained how such trees can be annotated with assets. On this basis, the
transformation rules are described to transform attack trees into asset-centric
attack graphs. These transformations are necessary for all further asset-specific
analyses. Finally, the metrics that build the foundation of the assets’ analyses
are presented.

3.1 Scenario Description

The infrastructure depicted in Fig. 1 is adapted from Homer et al. [4]. It illus-
trates a realistic network infrastructure which consists of three subnets: a demili-
tarized zone (DMZ), an internal office IT and an industrial control system (ICS)
to control critical infrastructure components of an energy provider. Only the
DMZ is directly accessible from the Internet. From there, the internal office IT
can be accessed through a firewall. Only the Citrix server, which is located in
the office IT, has access to the ICS - more precisely to the data historian that
again has direct access to the communication server. The goal of the first attack
scenario is to gain access to the communication server to modify its control
logic. The scenario is illustrated in attack tree T1 which is depicted in Fig. 2. It
is assumed that three attack paths lead to the communication server. For illus-
tration purposes, we give concrete examples for the attacks required to complete
the first attack path. For the other paths, we focus more on the actual routes.

An attacker could run a vulnerability scanner from outside the network to
discover vulnerabilities on the webserver (a1). As a result, he might be able to

Asset-Centric Analysis and Visualisation of Attack Trees 49

Internet

Main Building

ICS BuildingIndustrial
Control
System

(ICS)

Office IT

DMZ

VPN Server

Web Server

File Server

Citrix Server

Communication Servers

Data HistorianOperating Station

User Workstations

Printer

Fig. 1. Exemplary infrastructure

perform a command injection attack on the file server (a2), and could then access
the Citrix server by replacing a binary or shell script on the file server that will
be executed on the Citrix server (a3). From there, the data historian in the ICS
could be reached by attacking the remote services (a8). Due to the direct access
to the communication server from the data historian, the attacker could finally
execute malicious code on the target (a9). So the first attack path is:

a1 → a2 → a3 → a8 → a9

Alternatively, one could target the VPN server (a4) and attack the Citrix server
from there (a5). Then, an attacker could perform a8 and a9 in the ICS, as
described above. Therefore, the second attack path is:

a4 → a5 → a8 → a9

50 C. Schmitz et al.

Modify control logic on
communication server

Gain access to
Citrix server

-Citrix
Server
-Office IT
-M Build.

-VPN
Server
-DMZ
-M Build.

-File
Server
-Office IT
-M Build.

-Web
Server
-DMZ
-M Build. -Citrix

Server
-Office IT
-M Build.

Asset
Classes

Attacker
Activities

Aggregated
Attacker
Activities

Attack Goal

a2a1 a4a3

a5

-Work-
station
-Office IT
-M Build.

-Citrix
Server
-Office IT
-M Build.

a7a6

-Data
Histor.
-ICS
-ICSBuild.

-Comm.
Server
-ICS
-ICS Build.

a9a8

Fig. 2. Attack tree T1 with corresponding assets

Instead of directly attacking the Citrix server an alternative attack path is to
first attack a workstation:

a4 → a6 → a7 → a8 → a9

The workstation may not be as protected as the Citrix server but may have
more permissions to access the Citrix server than an external connection via the
VPN server allows. It is assumed that the attacker has the privileges for lateral
movements in the network unless otherwise specified by defining a specific attack
in order to gain access to another network or asset in general.

The second attack scenario is represented by attack tree T2 which is shown in
Fig. 3. It is used to demonstrate the scalability for multiple attack trees. Unlike
the first tree, it does not target the communication server but the workstation.

3.2 Annotation of Attack Trees with Assets

The attacker activities of an attack tree can be annotated with different assets,
e. g. server assets, security zones or buildings. From a modelling perspective, it
makes more sense to annotate asset classes instead of specific assets because of
their higher abstraction level. For reasons of readability the terms asset is used
in the following instead of “asset class”. A comprehensive overview of assets can
be found in the ISO/IEC 27005 risk management standard that comes up with

Asset-Centric Analysis and Visualisation of Attack Trees 51

-Work-
station
-Office IT
-M Build.

-Work-
station
-Office IT
-M Build.

-VPN
Server
-DMZ
-M Build.

-VPN
Server
-DMZ
-M Build.

a22a21 a24a23

Fig. 3. Attack tree T2 with corresponding assets

a hierarchical overview of assets. It differentiates between primary assets and
supporting assets. Primary assets are the organisation’s business processes &
activities and sensitive information, such as trade and business secrets. Both of
them can be of crucial importance to an organisation’s success. More interesting
from a security engineering perspective are supporting assets because they need
to be protected by security measures in the first place. This also becomes clear
from the ISO/IEC 27005 definition: “These assets have vulnerabilities that are
exploitable by threats aiming to impair the primary assets of the scope (processes
and information).” Therefore, only supporting assets are used for annotation.

The standard defines an asset hierarchy covering a wide range of assets, from
hardware over software to location assets that include, for instance, security
zones and buildings. However, especially for specific attacks, it makes sense to
refine these assets with respect to attack-relevant characteristics to cope with
attack scenarios targeting more specific types of attack vectors. For example, the
asset smart meter (which is relevant for the electric sector) could be differentiated
with respect to the supported remote data transmission standard (GSM/GPRS,
WiFi, Bluetooth, Ethernet etc.). This allows that even specific attacks, such
as those targeting only smart meters supporting a WiFi transmission, can be
precisely assigned to individual assets.

The assigned assets should have the same level of abstraction as the respective
attacks. Accordingly, it may be useful to merge similar assets, e. g. comparable
workstations that are exposed to similar attacks. A similar host-grouping is
applied by Homer et al. in order to reduce complexity [4]. On the other hand, in
case of very heterogeneous assets, it makes sense to split these assets into different
assets. This enables a more fine-grained analysis. For example, workstations in
the ICS might be subject to different attacks than workstations in the office IT.

3.3 Transformation of Attack Trees into Asset-Centric Attack
Graphs

Annotated attack trees can be transformed into so-called “asset-centric attack
graphs”. The general idea of attack graphs is to systematically illustrate all pos-

52 C. Schmitz et al.

Operator Attack Tree Asset-Centric Attack Graph

OR

AND

SAND1

1 Sequential AND

Fig. 4. Transformation of attack tree to attack graph patterns (based on [10])

sible attack paths that are required to achieve the goal of an attack scenario.
Asset-centric in this context means that each node represents an asset. There-
fore, asset-centric attack graphs show which assets have to be attacked in which
sequence to perform a successful attack. Attack paths are thus represented on
the level of network topology which typically increases the comprehensibility [4].

The general idea to transform attack trees into attack graphs is already
described in literature [10]. The rules to transform an asset-annotated attack tree
into an asset-centric attack graph is shown in Fig. 4. If an asset is represented
by different nodes in the graph after applying these rules, they must be merged.
It is also important to ensure that no cycle is created, as the graphs used in
the following are assumed to be acyclic. This can either be ensured by post-
annotation checks that indicate which (sub) trees have to be remodelled or by
real-time checks which requires a tool-based annotation of assets. After applying
the transformation rules on the initial attack trees in Fig. 2 and Fig. 3 the asset-
centric attack graph in Fig. 5 is constructed.

Asset-Centric Analysis and Visualisation of Attack Trees 53

Fig. 5. Asset-centric attack graph focusing on physical assets

The primary purpose of the resulting graph in Fig. 5 is to provide a better
understanding of the relation between attacks paths and assets. This is why it
concentrates on physical assets (server and workstation assets) only. It must be
noted that in case of parallel attack steps of different attack paths the tree does
not allow to unambiguously distinguish which attack steps belong to which path
(e. g. whether a6 or a23 is a direct successor of a4). This is different for the data
structure used for the analysis. However, the graph still shows the sequence of
attack steps required to successfully attack a certain asset. This helps to identify
neuralgic points, for instance, that all attacks on the communication server run
over the Citrix server and the data historian. It also gives a first indication of
how exposed the assets are to attacker activities.

The presented approach could generally directly start with adequately con-
structed attack graphs without considering attack trees before. However, to
extend the scope to the popular concept of attack trees, it makes sense to describe
the process starting with attack trees.

3.4 Security Metrics

In this subsection, we introduce security metrics that can be applied on the
assets in an attack graph. The probability of attack success is a very common
metric for attack trees. The counterpart for the analysis at the asset-level, that
is introduced here, is the probability of successful asset attack. Another metric
is the asset (non-) reachability that describes the probability that an attacker
is (not) able to reach the targeted asset at all. Both metrics can be used in
combination to derive for each asset how many of the attack attempts can be
successfully mitigated. These metrics also allow to derive the probability that
an asset is reached but not successfully attacked, in the following referred to as
near-successful asset attack, although those attacks can even be more challenging
than others in practice. Another central metric is the risk sensitivity of an asset
which measures the maximum impact a specific asset can have on the overall
risk.

Successful Asset Attack. To determine the attack success for an asset v one
must first calculate the probability for each attack path leading up to this asset.

54 C. Schmitz et al.

Then, one can determine the probability that an attacker can follow at least one
of these attack paths until he reaches the targeted asset.

To successfully run through an attack path all of its attacker activities have
to be successfully performed. Thus, the success chances for an attack path results
from the product of the probabilities of all involved attacker step. Equation (1)
shows the probability to complete path i. P (αij) is the probability to successfully
perform attack step j of attack path i. Path i is passed through until the k-th
step is reached. k specifies after how many steps an asset v is reached in a
particular attack path i. It is returned by the following function: kv

i := f(i, v).
So P (sv

i) calculates the probability for the complete path i.

P (sv
i) = P

⎛
⎝

kv
i⋂

j=1

αij

⎞
⎠ =

∏kv
i

j=1
P (αij) (1)

Often an asset can be reached via several attack paths so an attacker can try
different ways one after another. The probability to successfully perform (the
first k steps of) at least one attack path results from the union set of all attack
paths Iv containing asset v. This is reflected by the inclusion-exclusion principle,
also known as sieve formula presented in Eq. (2) [1].

P (Sv) = P

⎛
⎝

|Iv|⋃
i=1

sv
i

⎞
⎠ =

∑|Iv|
t=1

(−1)t−1

⎛
⎝ ∑

1≤i1<...<it≤|Iv|
P (sv

i1 ∩ ... ∩ sv
it)

⎞
⎠ (2)

It defines a summation over all t-element subsets {i1, ..., it} for each attack path
{1, ..., Iv} that contain asset v. It must be noted that the union of attack paths
is specified by Eq. (3) ensuring that each attacker activity αikv

i
is considered

only once, even if it appears in several attack paths. The rationale is that a
single attacker activity (that is defined from one asset to another) must not be
counted multiple times, even if it appears in several paths running in parallel.
For example, if the attacker activity a6 (from the VPN server to the workstation)
would occur in both attack trees T1 and T2, it would still only be included once
in the calculation of the workstation’s attack probability. The reason for this is
that it is the same attack step by definition.

P (sv
i1 ∩ ... ∩ sv

it) =
∏

αik∈{sv
i1

,...,sv
it

}
P (αikv

i
) (3)

Asset Non-reachability. The reachability is calculated similarly to the attack
success. The only difference is that an attacker only has to pass the first k − 1
attack steps because then he can reach the asset and can continue with k − th
step directly targeting the final asset. Therefore, the reachability of an asset v
for attack path i is represented by Eq. (4).

P (rv
i) = P

⎛
⎝

kv
i −1⋂
j=1

αij

⎞
⎠ =

∏kv
i −1

j=1
P (αij) (4)

Asset-Centric Analysis and Visualisation of Attack Trees 55

The probability that at least one of the |Iv| attack paths are performed success-
fully is calculated using the sieve formula (see Eq. (5)).

P (Rv) =
∑|Iv|

t=1
(−1)t−1

⎛
⎝ ∑

1≤i1<...<it≤|Iv|
P (rv

i1 ∩ ... ∩ rv
it)

⎞
⎠ (5)

The constraint that each attacker step must not appear multiple times also
applies for the reachability as shown in Eq. (6).

P (rv
i1 ∩ ... ∩ rv

it) =
∏

αik∈{rv
i1

,...,rv
it

}
P (αikv

i
) (6)

The probability of an asset’s non-reachability builds the counterpart that indi-
cates how many per cent of all attacks do not reach the asset v. It is calculated
as the complementary probability and is shown in Eq. (7).

P (Rv) = (1 − P (Rv)) (7)

Near-Successful Asset Attack. The probability that an asset is reached but
not successfully attacked is derived from both the attack success and the reach-
ability metric. That means the first k − 1 attack steps are successful but the the
k − th step fails. It is shown in Eq. (8).

P (nv
i) =

∏kv
i −1

j=1
P (αij) ×

∏kv
i

j=kv
i

(1 − P (αij)) (8)

=
∏kv

i −1

j=1
P (αij) × (

1 − P (αikv
i
)
)

(9)

Finally, P (nv
i) is inserted into the sieve formula in Eq. (10) with the constraint

shown in Eq. (11).

P (Nv) = P

⎛
⎝

|Iv|⋃
i=1

nv
i

⎞
⎠ =

∑|Iv|
t=1

(−1)t−1

⎛
⎝ ∑

1≤i1<...<ir≤|Iv|
P (nv

i1 ∩ ... ∩ nv
it)

⎞
⎠

(10)

P (nv
i1 ∩ ... ∩ nv

it) =
∏

αikv
i

∈{rv
i1

,...,rv
it

}
P (αikv

i
) (11)

Additionally, it is possible to derive the asset’s self-protection capability from
both the near-successful asset attacks and the successful asset attacks. The self-
protection capability is independent of exogenous infrastructural factors, i. e.,
the self-protection capability of a specific server asset is not influenced by its
location in a network topology.

56 C. Schmitz et al.

Asset Risk Sensitivity. An asset’s risk sensitivity determines how sensitive
the overall risk reacts on changes to an asset’s vulnerability. So it also serves
as a measure of protection efficiency. It is assessed as follows: first, all attacker
activities directing to the asset to be analysed are identified. They can be read
directly from the asset-centric attack graph (see Fig. 5). The Citrix server, for
instance, is exposed to the three attacker activities a3, a5 and a7. These attacker
activities are then assumed to be completely secure respectively completely inse-
cure. The overall risk is then simulated for both states. The difference between
both risk values (maximum risk range) represents the maximum impact, ceteris
paribus, the asset can have on the overall risk. Technically, the insecure state is
modelled by temporarily setting the probability of successful asset attack for the
k − th attack step required to reach asset v in attack path i to 1. Equation (12)
expresses the state more formally.

P v
insecure := P (αikv

i
) = 1 ∀ i ∈ Iv (12)

The secure state is modelled similarly but with a probability of a successful asset
attack of 0 (see Eq. (13)).

P v
secure := P (αikv

i
) = 0 ∀ i ∈ Iv (13)

The approach presented in this paper extends basic attack tree approaches by
asset-specific analyses. Such an attack tree approach can be used to simulate the
risk for both states (e. g. LiSRA) [20]. Finally, the difference of both risk values
determines the risk sensitivity of an asset v, denoted as ρv (see Eq. (14)).

ρv = ΔRisk(P v
secure, P

v
insecure) (14)

In Sect. 4 it is shown how the proposed set of complementary metrics can be
visualised in an integrated way.

4 Asset-Centric Visualisation of Attack Graphs

This section proposes a visualisation scheme illustrating the metrics presented in
Sect. 3.4 in a comprehensible and self-explanatory way. The scheme aims to sup-
port decision-makers in analysing attack scenarios and to enable more informed
decisions. As already discussed, real-world attack trees and attack graphs are
often far too complex to be objectively evaluated by humans in a reasonable
time. For example, Homer et al. have automatically generated the attack graph
for basically the same attack scenario also used in this work. They have used the
popular MulVAL (Multihost Multistage Vulnerability Analysis) attack graph
tool suite [16]. Although the scenario does not seem to complex, the result-
ing graph consists of about 130 nodes [4]. This example demonstrates the need
for features (cf. Sect. 4.3) supporting decision-makers to analyse complex infras-
tructures with a large number of assets and attacks. They are proposed in the
following.

Asset-Centric Analysis and Visualisation of Attack Trees 57

4.1 Requirements

The authors have elicited the following key requirements and criteria that have
to be fulfilled from a practical viewpoint:

R1 An understandable and comprehensible visualisation of the results. Even
users with a lack of technical or security know-how should be able to under-
stand and use the results. This ensures that also less specialised staff from
small and medium-sized organisations are able to benefit from the approach.
Therefore, the metrics presented must be self-explanatory so that it becomes
clear what the metrics indicate.

R2 The most critical threats and attack targets must be identifiable and stand
out from less critical threats and attack targets. The user’s focus should be
immediately directed to the most critical points of the system in order to be
able to take measures as quickly and as effective as possible.

R3 Besides that, another key requirement is scalability. A scalable visuali-
sation enables to analyse complex real-world scenarios with large attack
trees. Although this aspect is of high practical relevance many attack graph
approaches have fundamental scalability problems [15].

4.2 Metrics Visualisation

Figure 6 illustrates an overall view that incorporates the proposed metrics into
the asset-centric attack graph.

Attack Success. The attack success metrics introduced in Sect. 3.4 have been
developed in such a way that they can be combined in a complementary way. For
this purpose, the values of the three core metrics are presented in a bullet-based
scheme. Each metric is represented by different coloured bullets (red, green,
white). Their values are then mapped to the corresponding number of bullets on
a scale with 20 bullets, i. e. a probability of successful asset attack of 0.50 yields
10 bullets. The concept of coloured bullets with a scale of 5 per cent per bullet
makes it easy to comprehend and to compare the information at first sight. The
colour coding for the metrics is shown in Table 1.

Figure 6 shows the use in practice. The boxes at the bottom of each asset icon
show the integrated view. For example, 50% (10 white bullets) of the attacks
do not reach the Citrix server. 40% (8 red bullets) of all attacks are successful,
whereas 10% (2 green bullets) can be blocked at the asset. Additionally, the
relation between red and green bullets of an asset indicates its self-protection
capability. Moreover, it can be seen that the percentage of attacks reaching a
certain asset (sum of red and green bullets) decreases the deeper the asset is
located in the infrastructure and the less inbound bullets paths it has. The same
holds for the percentage of successful attacks per asset (number of red bullets),
and therefore also for the number of blocked attacks (number of green bullets).

58 C. Schmitz et al.

Table 1. Symbols for metrics visualisation

Symbol Formula Description
P(S v) Probability that an attacker successfully attacks asset v (successful asset

attack)
P(Nv) Probability that an attacker reaches but not successfully attacks asset v

(near-successful asset attack)
P(Rv) Probability that an attacker does not reach asset v (asset non-reachability)
v Risk sensitivity of asset v

Risk Sensitivity. Another metric is the risk sensitivity of an asset that mea-
sures the maximum impact an asset can have on the overall risk. It is illustrated
with a coloured protection shield at the right top corner of each asset (from
green = low to red = high). The green shields for the two ICS servers in Fig. 6,
for instance, indicate that the overall risk reacts less sensitive to changes of the
ICS servers’ vulnerability than on the vulnerability of the Citrix server which
occurs in all attack paths. Although the adverse impact of a compromised ICS
server is much higher, far fewer attacks do reach these servers as indicated by
the attack success metrics.

Attack Paths. Besides the risk sensitivity and the attack success metrics, it
is also essential to understand the attack paths and the attacker activities lead-
ing to the respective assets. An attack path connects the assets and illustrates
which assets have to be attacked in which sequence. Moreover, the number of
inbound and outbound attack paths per asset is illustrated as shown in Fig. 6.
They represent to which attacker activities an asset is exposed to and which
attacks can be performed from which asset. The number of attacks from asset to
asset is represented by the width of the respective edges and is also shown tex-
tually. For example, the workstation can be attacked by three different attacker
activities - all of them require the VPN server to be successfully attacked first.
More detailed information is provided by a mouseover function that displays the
concrete attacker activities, their success chances and also refers to the attack
trees they originate from.

4.3 Usability and Scalability Features

This section presents features to provide a more usable and scalable view on
the security-relevant aspects of the analysed attack scenarios. This is important
since it poses a big challenge in practice.

Layered View. The overall view depicted in Fig. 6 provides detailed insights
for each asset. Although this detailed view can be reasonable not all details and
aspects are always necessary. For complex infrastructures, it can even produce
an information overload. Therefore, strong scalability features are needed.

Asset-Centric Analysis and Visualisation of Attack Trees 59

ICS Building
ICS

Main Building
Office ITDMZ

File ServerWeb Server

(1) (1)

(1)

Data Historian

Commun.
Server

(1)

●●●●●●●●●●
●●●●●●●●●●

●●●○○○○○○○
○○○○○○○○○○

●●●●●●●●○○
○○○○○○○○○○

●●●●●●●●●●
○○○○○○○○○○

●●●●●●●●●●
●●●●●●●●●●

(1)

●●●●●●●●●●
●●●●●●●●●●

(3)

(1)

Workstation

●●●●○○○○○○
○○○○○○○○○○

Outer
Fiewall

Inner
Firewall

Internet
(1)

●●●●●●●●●●
●●●○○○○○○○

VPN Server

Citrix Server

- attack a6 (P=0.21)
from attack tree T1

- attacks a23 (P=0.4), a24 (P=0.3)
from attack tree T2

(3)

Fig. 6. Detailed view (Colour figure online)

Following the ISO/IEC 27005 definition assets can be structured hierarchi-
cally so that, for instance, each Exchange server asset is part of the mail server
asset which again is part of the general server asset and so on. Asset hierarchies
can also be defined individually. For example, each server type is part of a spe-
cific security zone, as long as this definition matches the asset annotation in the
attack trees. These hierarchies enable to aggregate all metrics to the next higher
level (e. g. from server level to level of security zones). This can be achieved
by calculating the median and the standard deviation for the lower level assets.
Although the median is not an exact metric it still provides a good overview of
the asset’s security. Figure 7 shows such a high-level perspective where all met-
rics at the physical asset level are aggregated to the level of security zones. For
the ICS zone this yields to P (SICS) = Median(0.15, 0.05) = 0.10, P (U ICS) =
Median(0.25, 0.10) = 0.175, and P (RICS) = Median(0.6, 0.85) = 0.725. The
presentation of the standard deviations is triggered by a mouseover effect.

Additionally, the number of inbound and outbound attack paths to and from
each asset is aggregated to the next higher level by summing. For example, the
DMZ has 4 inbound attack paths (1 to the webserver and 3 to the VPN server)
and 5 outbound attack paths leading to the office IT (1 to the file server, 1 to
the Citrix server and 3 to the workstation). This is calculated by summing up
the paths for the respective asset.

60 C. Schmitz et al.

Office IT ICSDMZ
(4) (1)

●●●●●●●●●●
●●●●●●●●●●

●●●●●●○○○○
○○○○○○○○○○

●●●●●●●●●○
○○○○○○○○○○

Internet

●●●●●●●●●●
●●●●●●●●●●

- attacks a2 (P=0.12), a5 (P=0.43), a6 (P=0.2)
from attack tree T1

- attacks a23 (P=0.02), a24 (P=0.45)
from attack tree T2

(5)

Fig. 7. High-level view on the security zones

Often there is the need to have a closer look at certain aspects of the infras-
tructure in order to analyse them in detail. This is possible by expanding only
these aspects. It is demonstrated in Fig. 8 that shows a high-level perspective for
all security zones except for the office IT that can now be analysed in detail.

ICS
(4)

●●●●●●○○○○
○○○○○○○○○○

Internet

Office IT

File Server

(1) (1)

(3)

(1)

●●●●●●●●●●
○○○○○○○○○○

(1)

Workstation

●●●●○○○○○○
○○○○○○○○○○

(1) ●●●●●●●●●●
●●●○○○○○○○

Citrix Server

DMZ

●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●

Fig. 8. Focused view on the office IT

Filter Functionality. Also, filtering functions are provided so that the most
critical threats stand out from less critical threats and that the user is imme-
diately directed to the neuralgic points. As described before, the visualisation
scheme is scalable and supports the analysis of multiple attack scenarios. By
default, all scenarios are covered by the analysis. Depending on the target of
evaluation it is also possible to display only a subset of scenarios and assets. For
example, if a decision-maker wants to analyse the physical security of the ICS
building he can display all physical assets as well as the asset “ICS building”
and hide all others.

Asset-Centric Analysis and Visualisation of Attack Trees 61

Another filter enables to only display assets with an actual attack vector.
Since no attack path in the presented scenario involves the printer or the oper-
ating station both assets are not displayed by default.

Additionally, a threshold can be set for each of the metrics so that only
those assets with a score above are shown, i. e. a threshold for the probability of
successful asset attack of 0.1 would hide all assets with lower attack chances. This
filter can also be used complementary to the layered view. Applied to the view
of Fig. 8 the workstation would be hidden in this case. This makes it possible to
obtain only the necessary and relevant information which is essential especially
for complex infrastructures.

Data Reduction. An effective approach for reducing complexity is host-
grouping techniques [4]. As described in the section on annotating assets, com-
parable assets that are exposed to similar attacks should be grouped. For exam-
ple, the workstation node might represent a grouping of many workstations with
comparable configurations. This can significantly reduce the redundancy of data.

5 Prototype Implementation and Evaluation

In this section the developed prototype is described. In addition, it is briefly
discussed to what extent the requirements for the visualisation listed above have
been met.

5.1 Implementation

The presented approach has also been implemented as a proof of concept in Java.
Figure 9 gives an impression of how the GUI looks like. The tool allows importing
a single attack tree or an entire directory of attack trees on the client computer.
The import function supports the XML format. The XML structure is based on
the widely used ADTool that is also supported by the LiSRA framework [11]. The
attacker activities of the imported trees can be annotated with assets directly
in the tool. In the lower part of the tool there is an exemplary filtering function
to exclude certain assets from the analysis by name or by threshold values.
Additionally, important analysis results are summarised on the right side.

5.2 Evaluation of the Visualisation Requirements

The fulfilment of the previously defined requirements is briefly discussed in the
following, concentrating on the core aspects. The borders are not clearly demar-
cated. Some explanations also fulfil another requirement to some extent.

R1 The first requirement addresses aspects like understandability and compre-
hensibility. According to Homer et al., administrators, who typically deal
with network structure plans on a regular basis, will find the representation
of attack paths on the level of network topology easier to understand than

62 C. Schmitz et al.

Fig. 9. Prototype implementation

complex attack graphs [4]. Furthermore, the metrics are presented in an inte-
grated way. Their representation allows a quite intuitive interpretation of the
values.

R2 The most important information must be immediately clear (see R1) and
obvious at first glance. This requirement is ensured by the filtering function-
ality that hides all non-critical assets and attacks. Furthermore, the proposed
metrics are displayed graphically next to the corresponding assets. This allows
the metrics to be immediately associated with the correct assets.

R3 To meet the requirement of scalability various features have been integrated.
The most important is the layered view. In addition to a very fine-granular
view also aggregated views are supported enabling a high-level analysis, as
shown in the example of the view for analysing security zones. All metrics are
automatically re-calculated according to the chosen abstraction level. Start-
ing from this view, it is possible to navigate through the infrastructure, for
instance, by following the critical assets. Additionally, this can be comple-
mented by the filter functionality that allows hiding the non-relevant assets
that are out-of-scope or non-critical.

6 Conclusion and Future Work

Attack trees are an established concept in threat and risk analysis that is used
to analyse entire attack scenarios and their attacker activities. They enable to
identify the most likely attack paths or the most serious attacks. However, there
are no attack tree approaches that provide systematic analyses on the asset-
level. But this is important from a defenders’ perspective to better understand
the security and risk of each asset.

Asset-Centric Analysis and Visualisation of Attack Trees 63

Therefore, a novel approach has been proposed that extends attack tree
frameworks by linking the attacker activities in the trees to the asset-level. These
annotated attack trees can then be transformed into an asset-centric attack
graph that illustrates the attack paths for each asset. Together with the stan-
dard attack tree parameter “probability of attack success” these paths enable to
apply a set of complementary security metrics that give meaningful insights for
each asset. To enable these calculations novel metrics like the asset risk sensi-
tivity or the near-successful asset attack have been proposed, partially based on
existing reachability metrics. One of the main contributions concerning the secu-
rity metrics lies in the combination of (partially new) metrics which enable an
integrated visualisation. Furthermore, a visualisation scheme has been developed
to integrate these complementary metrics into the asset-centric attack graph. All
results are presented in such a way that decision-makers can intuitively under-
stand the attack paths as well as the rationale for the individual attack chances
and the risk sensitivity of each asset. Since usability and scalability issues pose
a big challenge in the visualisation of attack graphs several features have been
proposed to cope with complex attack scenarios. The approach has also been
implemented in a prototype. The next step will be to conduct a user study to
systematically evaluate and improve the approach from a users’ perspective.

Acknowledgments. This work was partially supported by European Union’s Hori-
zon 2020 research and innovation program from the project CyberSec4Europe (grant
agreement number: 830929). We also thank Niklas Paul for his contribution to the
prototype implementation.

References

1. Inclusion-exclusion principle. https://mathworld.wolfram.com/Inclusion-Exclusion
Principle.html (2020). Accessed 04 May 2020

2. Fink, G.A., North, C.L., Endert, A., Rose, S.: Visualizing cyber security: usable
workspaces. In: 2009 6th International Workshop on Visualization for Cyber Secu-
rity, pp. 45–56 (2009)

3. Holm, H., Shahzad, K., Buschle, M., Ekstedt, M.: P2 cysemol: predictive, proba-
bilistic cyber security modeling language. IEEE Trans. Dependable Secure Com-
put. 12(6), 626–639 (2015)

4. Homer, J., Varikuti, A., Ou, X., McQueen, M.A.: Improving attack graph visual-
ization through data reduction and attack grouping. In: Goodall, J.R., Conti, G.,
Ma, K.-L. (eds.) VizSec 2008. LNCS, vol. 5210, pp. 68–79. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-85933-8 7

5. Hong, J.B., Kim, D.S., Chung, C.J., Huang, D.: A survey on the usability and prac-
tical applications of graphical security models. Comput. Sci. Rev. 26, 1–16 (2017)

6. Idika, N., Bhargava, B.: Extending attack graph-based security metrics and aggre-
gating their application. IEEE Trans. Dependable Secure Comput. 9(1), 75–85
(2010)

7. Jhawar, R., Kordy, B., Mauw, S., Radomirović, S., Trujillo-Rasua, R.: Attack trees
with sequential conjunction. In: Federrath, H., Gollmann, D. (eds.) SEC 2015.
IAICT, vol. 455, pp. 339–353. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-18467-8 23

https://mathworld.wolfram.com/Inclusion-ExclusionPrinciple.html
https://mathworld.wolfram.com/Inclusion-ExclusionPrinciple.html
https://doi.org/10.1007/978-3-540-85933-8_7
https://doi.org/10.1007/978-3-319-18467-8_23
https://doi.org/10.1007/978-3-319-18467-8_23

64 C. Schmitz et al.

8. Johnson, P., Vernotte, A., Ekstedt, M., Lagerström, R.: pwnpr3d: an attack-graph-
driven probabilistic threat-modeling approach. In: 2016 11th International Confer-
ence on Availability, Reliability and Security (ARES), pp. 278–283 (2016)

9. Johnson, P., Lagerström, R., Ekstedt, M.: A meta language for threat model-
ing and attack simulations. In: Proceedings of the 13th International Conference
on Availability, Reliability and Security. ARES 2018, Association for Computing
Machinery, New York, NY, USA (2018). https://doi.org/10.1145/3230833.3232799

10. Karray, K., Danger, J.-L., Guilley, S., Abdelaziz Elaabid, M.: Attack tree construc-
tion and its application to the connected vehicle. In: Koç, Ç.K. (ed.) Cyber-Physical
Systems Security, pp. 175–190. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-98935-8 9

11. Kordy, B., Kordy, P., Mauw, S., Schweitzer, P.: Adtool: security analysis with
attack-defense trees. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.)
Quantitative Evaluation of Systems, pp. 173–176. Springer, Heidelberg (2013)

12. Kordy, B., Piètre-Cambacédès, L., Schweitzer, P.: Dag-based attack and defense
modeling: don’t miss the forest for the attack trees. Technical report (2014)

13. Lippmann, R.P., Ingols, K.W.: An annotated review of past papers on attack
graphs. Technical report, Massachusetts Inst of Tech Lexington Lincoln Lab (2005)

14. Noel, S., Jacobs, M., Kalapa, P., Jajodia, S.: Multiple coordinated views for net-
work attack graphs. In: IEEE Workshop on Visualization for Computer Security,
2005. (VizSEC 05), pp. 99–106. IEEE (2005)

15. Noel, S., Jajodia, S.: Managing attack graph complexity through visual hierarchical
aggregation. In: Proceedings of the 2004 ACM Workshop on Visualization and Data
Mining for Computer Security, pp. 109–118 (2004)

16. Ou, X., Govindavajhala, S., Appel, A.W.: Mulval: A logic-based network security
analyzer. In: USENIX Security Symposium. vol. 8, pp. 113–128. Baltimore, MD
(2005)

17. Paul, S., Vignon-Davillier, R.: Unifying traditional risk assessment approaches
with attack trees. J. Inf. Secur. Appl. 19(3), 165–181 (2014). http://www.
sciencedirect.com/science/article/pii/S2214212614000180

18. Phillips, C., Swiler, L.P.: A graph-based system for network-vulnerability analysis.
In: Proceedings of the 1998 Workshop on New security Paradigms, pp. 71–79 (1998)

19. Sawilla, R.E., Ou, X.: Identifying critical attack assets in dependency attack
graphs. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS, vol. 5283, pp.
18–34. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88313-5 2

20. Schmitz, C., Pape, S.: Lisra: lightweight security risk assessment for decision sup-
port in information security. Comput. Secu. 90, 101656 (2020)

21. Schneier, B.: Attack trees. Dr. Dobb’s J. 24(12), 21–29 (1999)
22. Wang, L., Islam, T., Long, T., Singhal, A., Jajodia, S.: An attack graph-based

probabilistic security metric. In: Atluri, V. (ed.) Data and Applications Security
XXII, pp. 283–296. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-70567-3 22

23. Williams, L., Lippmann, R., Ingols, K.: An interactive attack graph cascade and
reachability display. In: VizSEC 2007, pp. 221–236. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-78243-8 15

24. Yusuf, S.E., Hong, J.B., Ge, M., Kim, D.S.: Composite metrics for network security
analysis. Softw. Netw. 2017(1), 137–160 (2018)

https://doi.org/10.1145/3230833.3232799
https://doi.org/10.1007/978-3-319-98935-8_9
https://doi.org/10.1007/978-3-319-98935-8_9
http://www.sciencedirect.com/science/article/pii/S2214212614000180
http://www.sciencedirect.com/science/article/pii/S2214212614000180
https://doi.org/10.1007/978-3-540-88313-5_2
https://doi.org/10.1007/978-3-540-70567-3_22
https://doi.org/10.1007/978-3-540-70567-3_22
https://doi.org/10.1007/978-3-540-78243-8_15

Attacks and Risks Modelling
and Visualisation

An Attack Simulation Language
for the IT Domain

Sotirios Katsikeas1(B) , Simon Hacks1 , Pontus Johnson1 ,
Mathias Ekstedt1 , Robert Lagerström1 , Joar Jacobsson2,

Max Wällstedt2, and Per Eliasson2

1 Division of Network and Systems Engineering, KTH Royal Institute of Technology,
Stockholm, Sweden

{sotkat,shacks,pontusj,mekstedt,robertl}@kth.se
2 foreseeti AB, Stockholm, Sweden

{joar.jacobsson,max.wallstedt,per.eliasson}@foreseeti.com
https://www.kth.se/nse, http://www.foreseeti.com

Abstract. Cyber-attacks on IT infrastructures can have disastrous con-
sequences for individuals, regions, as well as whole nations. In order to
respond to these threats, the cyber security assessment of IT infras-
tructures can foster a higher degree of security and resilience against
cyber-attacks. Therefore, the use of attack simulations based on system
architecture models is proposed. To reduce the effort of creating new
attack graphs for each system under assessment, domain-specific lan-
guages (DSLs) can be employed. DSLs codify the common attack logics
of the considered domain.

Previously, MAL (the Meta Attack Language) was proposed, which
serves as a framework to develop DSLs and generate attack graphs for
modeled infrastructures. In this article, we propose coreLang as a MAL-
based DSL for modeling IT infrastructures and analyzing weaknesses
related to known attacks. To model domain-specific attributes, we stud-
ied existing cyber-attacks to develop a comprehensive language, which
was iteratively verified through a series of brainstorming sessions with
domain modelers. Finally, this first version of the language was validated
against known cyber-attack scenarios.

Keywords: Meta Attack Language · Threat modeling · Attack
simulation · Attack graphs · Domain specific language · IT
Infrastructure

This work has received funding from the Swedish Civil Contingencies Agency through
the research centre Resilient Information and Control Systems (RICS), European
Union’s H2020 research and innovation programme under the Grant Agreements no.
833481 and no. 832907, the Swedish Energy Agency, and the Swedish Governmental
Agency for Innovation Systems (Vinnova).

c© Springer Nature Switzerland AG 2020
H. Eades III and O. Gadyatskaya (Eds.): GraMSec 2020, LNCS 12419, pp. 67–86, 2020.
https://doi.org/10.1007/978-3-030-62230-5_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62230-5_4&domain=pdf
http://orcid.org/0000-0001-8287-3160
http://orcid.org/0000-0003-0478-9347
http://orcid.org/0000-0002-3293-1681
http://orcid.org/0000-0003-3922-9606
http://orcid.org/0000-0003-3089-3885
https://doi.org/10.1007/978-3-030-62230-5_4

68 S. Katsikeas et al.

1 Introduction

Today, our society is heavily dependent on IT infrastructures. Another fact is
that cyber-attacks on IT infrastructures can have disastrous consequences for
individuals, regions, and whole nations. One example are the recent deliber-
ate disruptions of electrical power and energy systems [3,19], which resulted
in real-world catastrophic physical damage, like major power outage or city-
wide disruptions of any service that requires electric power. But also, attacks on
automated vehicles [20] and internet of things enabled attacks [21,24] are good
examples of IT related cyber-attacks.

It is therefore necessary to keep such critical IT infrastructures secure. In
order to respond to these threats, the assessment of IT infrastructure’s cyber
security can foster a higher degree of security and resilience against cyber-
attacks.

However, such an assessment is difficult. In order to identify vulnerabilities,
the security-relevant parts of the system must be understood and all potential
attacks have to be identified [17]. There are three challenges related to these
needs: First, it is challenging to identify all relevant security properties of a
system. Second, it might be difficult to collect this information. Last, the col-
lected information needs to be processed to uncover all weaknesses that can be
exploited by an attacker.

Attack graphs have been previously proposed as a method to assess security
on larger system architectures. This approach is gaining in popularity, both in
academia and in industry the last years.

Hitherto, we have proposed the use of attack graph simulations based on
system architecture models (e.g., [4,9]) to support these challenging tasks.
Our approaches facilitate the modeling of systems and simulating cyber-attacks
against them, in order to identify the greatest weaknesses. This can be imagined
as the execution of a great number of parallel virtual penetration tests. Such
an attack simulation tool enables the security assessor to focus on the collec-
tion of the information about the system required for the simulations, since the
simulation tackles the first and third challenges.

As the previous approaches rely on a static implementation, we propose
the use of MAL (the Meta Attack Language) [11]. This framework for domain-
specific languages (DSLs) is used to define which information about a system is
required and specifies the generic attack logic. Then, MAL automatically gener-
ates attack graphs corresponding to security simulations involving the modeled
system. Since MAL is a meta language (i.e. the set of rules that should be used
to create a new DSL), no particular domain of interest is represented.

Using MAL threat/attack DSLs for many kinds of domains can be defined,
as for example industrial control systems, vehicles, IoT, etc. The goal of using
DSLs is to make the DSLs as detailed and domain specific as possible in order to
be able to get precise results, valid for the specific domains. More specifically, the
goal is to capture the specifics of the domains, attack vectors, design strengths
and weaknesses. However, these domains also share a lot of common properties
and designs. Example of commonalities are that software is executed among all

An Attack Simulation Language for the IT Domain 69

of these domains, execution stacks like virtual machines or operating systems
(OS) are used, software communicates over networks, there are accounts with
privileges and many more. Therefore, we can conclude that even if we want to
capture specifics, in the end, it would be a redundant waste of effort to capture
the same fundamental information more than once for all the different DSLs.

We therefore propose to design a core DSL that will cover the basic and
common structure of software systems and IT infrastructure. Our goal with this
work is to capture the basic architecture for future DSLs. Therefore, this work
aims to create and evaluate a MAL-based DSL, named coreLang, that would
have a high level of abstraction and will, therefore, be suitable for modeling
generic IT infrastructures. Ideally, the aim for corelang is to cover the basics
for all possible domains. Then, due to this higher level of abstraction, coreLang
could be extended to create other MAL-based DSLs. This is a large task and our
current ambition is to get the fundamentals correct for some basic domains (such
as normal enterprise IT and control systems). In this paper, the first release of
coreLang will be presented. and the open-source code behind the language is
publicly available on our GitHub repository1.

Following, we will present related work before a brief introduction to MAL,
the framework that we mainly use in this work, this is done in Sect. 3. Then, in
Sect. 4 the language that was developed is presented in detail. To give a better
understanding of the capabilities of the language, we created an example model
of the IT infrastructure part of the Ukrainian cyber-attack scenario, which is
presented in Sect. 5. Finally, the validation and discussion about this work is
done in Sect. 6, which is followed by the conclusion.

2 Related Work

This work is related to three domains of previous work: attack/defense graphs,
model-driven security engineering, and information technology (IT) security.

First, as already mentioned, attack/defense graphs are widely applied as a
formalism for security analysis. Second, there are DSLs for the security analysis
of software and system models defined in the domain of model-driven security
engineering. Finally, due to the fact that coreLang is designed to be applied in
the domain of IT security, the results of existing IT attack studies are utilized
for the evaluation of the language.

The concept of attack trees is based on the works by Weiss [25] and Schneier
[22,23]. Attack trees were formalized by Mauw & Oostdijk [16] and extended to
include defenses by Kordy et al. [13]. As summarized in [14], there are several
approaches to elaborating on attack graphs (e.g., [10,26]). Based on the theo-
retical achievements of previously presented papers, various tools using attack
graphs have been developed. These tools largely operate by collecting informa-
tion regarding existing systems or infrastructures and automatically creating

1 https://github.com/mal-lang/coreLang/tree/stable.

https://github.com/mal-lang/coreLang/tree/stable

70 S. Katsikeas et al.

attack graphs based on this information. For example, the topological vulnera-
bility analysis (TVA) tool [18] models security conditions in networks and uses
a database of exploits as transitions between security conditions.

A sub-domain of attack graph modeling, that is of more interest to us, focuses
on probabilistic attack graphs (e.g., facilitating Bayesian networks). In [6], the
authors applied the TVA tool to generate attack graphs, transform generated
graphs into dynamic Bayesian networks, and enrich the Bayesian networks using
probabilities based on common vulnerability scoring system (CVSS) scores. The
CVSS was also utilized by [28] to model uncertainties in attack structures,
attacker actions, and alert triggering.

Several DSLs have been built in MAL serving as good examples of the capa-
bilities a MAL-based DSL has and how it can be developed. These languages
provide the capability to model a system’s design based on its components and
their interactions. Furthermore, such languages also facilitate the modeling of
security properties such as constraints, requirements, or threats. One example
of a MAL-based DSL is vehicleLang [12], which is a DSL for modeling cyber-
attacks on modern vehicles. Another example is a simplistic core language, that
only contains the most common IT entities and attack steps and is included in
the presentation of MAL [11]. Finally, another MAL-based DSL that will soon
be published but some parts of it were used as inspirational blueprints for devel-
oping coreLang, is awsLang, which is a DSL for modeling Amazon Web Services
environments [5].

Apart from the languages mentioned before, there exist some security lan-
guages which do not support automated analysis purposes [2,15]. They offer
only the capability to model security relevant properties. An analysis needs to
be conducted manually without any further support.

Approaches using attack graphs and system modeling have been united in
some previous works (e.g., P2CySeMoL [9], and securiCAD [4]). The core concept
of these methods is to generate probabilistic attack graphs automatically from a
given system specification. Attack graphs serve as inference engines to produce
predictive security analysis results from system models.

MAL, that will be briefly presented in the next section, is a modeling and
simulation framework based on graphical models. It combines attack graphs with
conceptual graphical software system modeling techniques.

coreLang does not aim to propose a new way of performing system and attack
modeling and simulations but is rather building on top of MAL to provide a DSL
solution for the modeling of the general IT domain.

3 MAL

For a detailed overview of the MAL, we refer readers to our original paper, which
focuses on core grammar, syntax, formalism, and additional details regarding
the MAL [11]. However, for completeness, a short presentation of the MAL is
provided below.

First, a DSL created with MAL contains the main elements that are found
on the domain under study. Those are called assets in MAL. The assets contain

An Attack Simulation Language for the IT Domain 71

attack steps, which represent the actual attacks/threats that can happen on
them.

An attack step can be connected with one or more following attack steps
to create an attack path. Those are used to create attack graphs which are
facilitated when the simulation is run. Attack steps can be either of the type OR
or the type AND, indicating that performing any individual parental attack step
is required (OR) or performing all parental attack steps is required (AND) for
the current step to be performed. Additionally, each attack step can be associated
with specific types of risks. The risks can be any combination of confidentiality
(C), integrity (I), and availability (A) and are specified in brackets after the
attack step name. Furthermore, defenses are entities that do not allow connected
attack steps to be performed if they have the value TRUE. Finally, probability
distributions can be assigned to the attack steps in order to represent the effort
needed to complete the related attack step.

Assets also have associations between each other that describe the relations
between them. Inheritance between assets is also possible and each child asset
inherits all the attack steps of the parent asset. Additionally, the assets can be
organized into categories.

Next, a short example of how a MAL-based DSL looks like follows. On this
example, four modeled assets can be seen together with the connections of attack
steps from one asset to another. When looking on the code under the Host asset,
the connect attack step is an OR attack step while access is an AND attack
step. Then the -> symbol denotes the connected next attack step. For example,
if an attacker performs phish on the User, it is possible then to reach obtain
on the associated Password and as a result finally perform authenticate on the
associated Host. In the last lines of the example the associations between the
assets are defined.

category System {
asset Network {

| access
-> hosts.connect

}

asset Host {
| connect

-> access
| authenticate

-> access
| guessPassword

-> guessedPassword
| guessedPassword [Exponential(0.02)]

-> authenticate
& access {C,I,A}

}

72 S. Katsikeas et al.

asset User {
| attemptPhishing

-> phish
| phish [Exponential(0.1)]

-> passwords.obtain
}

asset Password {
| obtain {C}

-> host.authenticate
}

}

associations {
Network [networks]

* <-- NetworkAccess --> *
[hosts] Host

Host [host]
1 <-- Credentials --> *
[passwords] Password

User [user]
1 <-- Credentials --> *
[passwords] Password

}

4 CoreLang

To model domain specific properties in our language, we relied on brainstorm-
ing sessions with people from foreseeti AB which can be considered as domain
experts, since they are in close contact with IT architects and security officers
of many different industries and they provided us with lessons learned from over
five years of development and usage of the securiCAD tool which contains an
attack graph generating DSL. During those sessions, we presented our percep-
tion of the corresponding topic under study and they provided comments back
to us. The comments we got were used as an early indication if we are moving
towards the right direction. These workshops were conducted for two hours on
a weekly basis for five months.

In the end of this development phase, six different main asset categories have
been included in coreLang (see Fig. 1): system, vulnerability, user, identity and
access management (IAM), data resources, and networking. In this section, those
categories and the related design decisions will be explained in detail.

4.1 System

The first category System is the collection of assets that usually represent the
computing instances in an environment, and thus are the natural attack surface.

An Attack Simulation Language for the IT Domain 73

Fig. 1. Overview of assets and their associations in coreLang

First, an asset called Object was created (inspired by the object-oriented
programming concept) that provides common functionality to all inheriting
assets. Basically, an Object is the simplest form of an asset that can have a
Vulnerability. Then, Object is specialized into two child assets, System and
Application.

The System asset specifies the hardware on which Applications can run.
After achieving physical access, the attacker can try to authenticate on it and/or
perform a denial of sevice attack on all the Applications that are executed on
it. Except physical access, two more levels of access are modeled on a System.
The first one is the specific access, which models the ability to locally connect to
the hosted applications after authenticating. Then, there is also the full access,
which is gained after a “high-privilege” Identity authenticates itself or is com-
promised.

On the other hand, the Application asset specifies everything that is exe-
cuted or can execute other applications. For that reason, the Application asset
is more complex and includes a wider range of attack steps. With the same way
that is modeled for the System asset, in order to get access on an Application
two previous attack steps need to be compromised, the first one is some kind of
connect and second a successful authentication. There are three possible ways
of “connecting” to an Application: i) either via local connect, which occurs
because any identity with “low-privilege” access on the executing instance is
assumed to be able to locally (i.e., on the same host application, using loop-
back) interact with the executed applications, ii) via network connect, which

74 S. Katsikeas et al.

can happen when an application is exposed on a network, or iii) via identity
local interaction which happens when the associated “low-privilege” Identity
is compromised or authenticates itself. More details about the Identities will
be provided in the corresponding Sect. 4.4. It is worth noting that some attack
steps (e.g. codeExecution) were adopted from awsLang [5].

To clarify the definition of the Application asset, the relevant MAL
code snippet is presented below. Additionally, how the attack steps of the
Application asset are connected with the attack steps of other assets, with
which Application has associations with, is represented on the MAL generated
graph in Fig. 2, where the big circles are the assets, the small circles are rep-
resenting OR attack steps, the small squares represent AND attack steps, and
the small upside-down triangles represent the defenses.

asset Application extends Object
{

| localConnect
-> localAccess,

connectLocalInteraction,
attemptUseVulnerability

& localInteraction
-> appExecutedApps.localConnect,

attemptUseVulnerability

| attemptUseVulnerability
-> vulnerabilities.attemptAbuse

| networkConnect
-> networkAccess,

connectLocalInteraction,
attemptUseVulnerability

| accessNetworkAndConnections
-> networks.access,

appConnections.applications.networkConnect,
appConnections.transmit,
appConnections.transmitResponse

| authenticate
-> localAccess,

networkAccess

| access {C,I,A}
-> read,

modify,
deny,

An Attack Simulation Language for the IT Domain 75

appExecutedApps.access,
containedData.attemptAccess,
accessNetworkAndConnections,
hostApp.localConnect

| codeExecution
-> access,

executionPrivIds.assume,
modify

| read {C}
-> containedData.attemptRead

| modify {I}
-> containedData.attemptAccess

| deny {A}
-> containedData.attemptDelete

...
}

Lastly, this category contains PhysicalZone, which is the location where
Systems are physically deployed. If physical access is performed on a
PhysicalZone, then the attacker is able to connect and get physical access on
the Systems that are part of the PhysicalZone.

4.2 Vulnerability

The basic idea of creating a MAL-based language is to provide a set of already
known attack steps to the modeler. However, this incorporates two types of
shortcomings. First, we concentrate on known attack steps. But, there are also
attack steps that are not known yet. Second, the level of abstraction selected for
coreLang is another shortcoming. Because of that, we cannot provide all possible
attack steps upfront, as the attack steps are very diverse for different assets.

To overcome these issues, we provide a set of Vulnerabilities and
Exploits. On the one hand, these assets can be used as a foundation for other
language developers. On the other hand, we provide a standard and abstract set
of Vulnerability and Exploit that represent three discrete levels of impor-
tance. These can be used by the end-user to model attack steps that are not
known at the time of creating the language. Basically, any Object can have
a Vulnerability that leads to different levels of impact to the vulnerable
Object. This Vulnerability can then be facilitated by an Exploit that can
have different levels of complexity, for example a Low Complexity Exploit can
be exploited in order to abuse a High Impact Vulnerability.

76 S. Katsikeas et al.

Fig. 2. Graph representing the attack steps, and their connections, of the Application
asset in coreLang

An Attack Simulation Language for the IT Domain 77

4.3 User

This category contains the representation of a User. The User serves as attack
surface for social engineering attacks. The most apparent attack that is modeled
in this asset is the phishing attack of the User, which can lead to either creden-
tial theft or takeover of the user’s computer. The latter one allows a malicious
backdoor connection to be opened to the user’s computer, which the attacker can
then use to further compromise the same machine or perform lateral movement.

4.4 IAM

Identity and access management (IAM) is an accepted concept to manage dif-
ferent identities representing users and their access to certain applications [27].
Therefore, the IAM category in coreLang is comprised of the Identity asset
that represents a user group, and the Credentials asset that can be associated
with one or more Identities. After legitimate authentication or an illegitimate
compromise of an Identity, the attacker assumes its privileges. Thus, both legit-
imate and illegitimate access is represented. As already mentioned, access to an
Identity is usually secured by means of Credentials. Those Credentials can
be stolen/guessed by the attacker directly (e.g., due to brute-force) or the User
can be convinced to enter them by themselves (e.g., due to social engineering,
like phishing, as mentioned previously).

Identities are, however, not only associated with Credentials but also
with Users and Objects, like Systems and Applications, as seen in Fig. 1. An
Identity associated with a User models the usage of that Identity by a User
or by an Application running under the identity’s privileges. Additionally, an
Identity that is associated with a System or an Application represents the
privileges that the Identity has over it.

When it comes to IAM on a System, two different levels of Identity-System
associations are modeled. First there is the Low Privilege Access which provides
individual level/specific access on a System from an Identity. Second, there is
the High Privilege Access, which is equal to gaining full access on the System as
every possible associated Identity. The reason for choosing to have these two
levels of privileges is because of the commonly used separation between simple
and admin users. In other words, a simple user of a System is only able to access
specific parts of the system while an admin user has full access on the System.

On the Application side, there are three different levels of Identity-
Application associations modeled. First, there is the Low Privilege Application
Access, which only provides local interaction with the Application. But, this
simple local interaction is the only prerequisite for many Vulnerabilities and,
therefore, can result in severe compromise of the whole infrastructure [29]. Sec-
ond, there is the Execution Privilege Access, which represents the fact that every
Application is executed with the privileges of an Identity. In this case, if the
Application is compromised, then the privileges of the associated Identity
should also be compromised. Finally, there is the High Privilege Application
Access, which models the higher level of privileges over an Application and if

78 S. Katsikeas et al.

such privileges get compromised, all the child/executed applications should also
be compromised.

An example in which all three levels of access are implemented is the follow-
ing: if we assume an operating system and a simple user running a web browser
on that operating system then the user will have Execution Privilege Access on
the web browser, which is an Application and will also have Low Privilege
Application Access on the operating system, which again is an Application,
then the administrator of that operating system will have High Privilege Appli-
cation Access on it.

4.5 Data Resources

This category groups the assets that are usually communicated. First, the
Information asset is defined as a conceptually abstract concept that is then
incorporated in the Data asset. The Data asset represents any form of data that
can be stored or transmitted. This asset was heavily based on the homonymous
asset found on awsLang [5]. An attacker can perform the classical actions of
read, write, and delete, which all are modeled as attack steps. Those attack steps
can be reached either by compromising the Identity that is associated with the
Data or by compromising the asset that contains those Data, as for example the
Connection or the Application asset.

4.6 Networking

The last category is concerned with networking related assets. First, the Network
asset is defined. An attacker that has physical access to a Network can perform
a denial of service attack by physically destroying the network medium. But if
the attacker has network access, it is able to network connect and perform denial
of service to all the network exposed Applications as well as attempt network
forwarding to other neighbouring Networks.

The border of every Network is defined by a RoutingFirewall, which spec-
ifies a border router with firewall capabilities that can interconnect many net-
works. The RoutingFirewall is modeled as a System and is therefore subject
to possible Vulnerabilities. A Vulnerability can lead to full access which
results in bypassing of all the network rules defined by the firewall.

Lastly, there is the Connection asset, which specifies the existence of a con-
nection between Applications or Networks and could consequently be used for
lateral movement by an attacker. Each Connection that is associated with the
RoutingFirewall represents a connection rule meaning that the firewall allows
the forwarding of the associated traffic. If a Connection is not associated with
the RoutingFirewall, then the corresponding traffic is prohibited.

While Applications can be associated with connections in a single way,
Networks have three different types of associations with a Connection in regard
to the three possible rules that can be found on a firewall. Those are, first
the simple Network Connection, which models a bidirectional connection rule,
second the Out Network Connection, which models a uni-directional connection

An Attack Simulation Language for the IT Domain 79

rule that solely allows outgoing traffic of this Network, and third the In Network
Connection which models the uni-directional connection rule that allows only
incoming traffic into that Network.

5 Example Model

As already mentioned, coreLang aims to provide a high level of abstraction in the
models created. For that reason, it is suitable for modeling a wide variety of IT
infrastructures with a high level of abstraction. To demonstrate the application
of coreLang, we use it to model a simplified version of the Ukrainian cyber-attack
scenario and the way we interpreted it from an analysis that was published on
it [3], that described how the attackers got a foothold on the internal networks.

The model was created in securiCAD [4], which is a software tool developed
by foreseeti AB for creating models of IT architectures and performing virtual
attack simulations on them, and which also allows to create MAL-based models
after the language file is loaded into the tool.

In our case, the example model was created after the main development phase
of the language was completed and, therefore, only minor changes were needed
in the language to be able to fully represent the modeled scenario. The file of the
created model can be found on our GitHub repository and in Fig. 3, the created
model is presented. Additionally, the attack path shown in the attack graph,
presented in Fig. 4, was the only possible path towards reaching the end goal. In
the case where multiple attack paths were calculated, the less time consuming
and most probable one would be highlighted on the attack graph.

The attack description below is based on the simulation results which are in
accordance to what the analysis reports from that specific cyber-attack state [3].

The simulated attack scenario, which is presented on the generated attack
graph in Fig. 4, is the following. First, the attacker performs a social engineer-
ing attack towards the User by sending a malicious payload file attached on
a Microsoft Office Word document sent via email. Then, the User opens the
document and executes the payload. Due to a Vulnerability on the Office
Word Application, the malicious payload is executed and the vulnerability is
exploited allowing the attacker to successfully execute code and take control of
the user’s Office Word application. The attacker has assumed the privileges of the
Identity associated with the Office Word application and, therefore, has access
on the Application. That, in turn, allows a local connect to the Windows oper-
ating system, which is an Application. Unluckily enough, the operating system
is also vulnerable and the attacker can attempt exploit this also to gain access on
it. Next, due to poor security policy enforcement, the Credentials for another
workstation located in the same office Network is stored in the operating sys-
tem in a text file and is accessible by the attacker. The attacker can also access
the office Network and network connect to the second workstation. By having
the Credentials that attacker is also able to authenticate and gain access on
this workstation. Gaining access on this workstation is proven to be resourceful
since a VPN client Application is executed on that operating system. Again,

80 S. Katsikeas et al.

Fig. 3. coreLang model in securiCAD of the IT infrastructure of the Ukrainian cyber-
attack example model

An Attack Simulation Language for the IT Domain 81

Fig. 4. coreLang generated attack graph for the Ukrainian cyber-attack example model

82 S. Katsikeas et al.

the attacker was lucky, since the VPN Credentials are stored as file on that
workstation. By accessing them, is then able to network connect on the VPN
server on the DMZ Network and then use the Connection to human-machine
interface (HMI) in order to send control commands on the HMI controlling the
power grid.

6 Validation and Discussion

According to Hevner et al. [8], five methods can be used to evaluate the produced
by research artifacts: observations, analysis, experiments, tests, and descriptions.
Because developing coreLang was similar to developing source code, tests were
selected as an evaluation method. This decision was made based on the fact that
testing is widely used in application development and commonly accepted as a
means for ensuring that an application behaves as intended.

In our work, the tests were implemented as use case tests [7]. More specifically,
as the development of the language proceeded through different asset categories,
some real-world use cases that describe a variety of common IT attacks, that
should be supported by the language, were provided to us by our collaborators
and domain experts from foreseeti AB. One example of the use cases that we used
was a model containing a Red Hat Enterprise Linux server that was running an
Oracle Database which was hosting two databases and all the relevant database
administrator, database analyst and system administrator users. Then another
use case that was used was of a network infrastructure containing a set of network
exposed applications and a set of networks where the traffic was managed by
specified connection rules that were set up on the routing firewall asset.

In total, we used ten main use case models and a variety of smaller and easier
ones to create use case models to evaluate our design was correct. Models for
those test use cases were created and simulations were ran. The results of those
simulations were then discussed with the same domain experts in evaluation
sessions and feedback was provided back to us. If the feedback suggested that
improvements or changes are needed in the language to better reflect the reality,
an iteration of the development phase for this asset category and evaluation
session was done.

By using use cases for validation, we ensure that the generated language
fulfills the requirements of having a high level of abstraction while it retains its
correctness. Additionally, the language still covers real-world scenarios that are
typically requested from the IT infrastructure modelers that will eventually be
the users of this language.

Through the evaluation sessions we had, the goal was to use the experiences of
our collaborators in order to improve coreLang. Those experiences were related to
parts of the models that were previously cumbersome to model using the existing
tools and MAL languages, and also experiences about cases that were not at all
modelable previously. Some examples of such incomplete modeling cases are IAM
and networking. In the case of IAM, the common properties of Identities and
user groups were not identified, which resulted in increased complexity when

An Attack Simulation Language for the IT Domain 83

modeling IAM. Then, on the other hand, networking was also troublesome to be
accurately modeled because no separation between reachability and connectivity
was defined in the previous MAL languages.

One problem that occurred during development was caused by the higher
level of abstraction that we wanted to retain in the language. Some common IT
elements, interactions or relations could not be explicitly modeled. Our solution
to this problem was to make assumptions in the design of the language that allow
the more specific cases to be modeled with a higher level of abstraction. These
assumptions are documented in the language itself. One characteristic example
is that on coreLang, there is no asset specifying an operating system nor a guest
operating system, both cases can be modeled by having two application assets
associated with each other in a hierarchical manner where one is the executor
and the other is the executee. This type of recursive design approach can be
considered a strength of the language since it allows the modeling of different
nested execution cases (e.g. the case of a guest OS running on a VM under a
host OS and the case of an OS running an software application) using a single
solution.

Another example of such an assumption that was made is related to the
three different application privilege levels that are available in the language.
More specifically, the use of the two discrete access levels, namely low and high
privilege application access, was inspired by the fact that typically an applica-
tion is either being executed under a simple user’s (low) or root/admin’s (high)
privileges and it always is associated with one type of them, in our case called
execution privilege.

Another problem that we had to solve, again related to the level of abstrac-
tion, was that it would not be clear to users of the language to understand how
exactly each of the included assets should be used in a model. To solve this prob-
lem, first, a proper name for each one of the assets was selected, then, second, a
short documentation text about each asset was included in the language. Such
documentation is also found under each attack step specified in the language to
provide useful context information to the user.

7 Conclusion and Future Work

Assessing the cyber security of IT infrastructures is becoming increasingly impor-
tant as the number of IT security issues and cyber-attacks increases. This arti-
cle presented coreLang, which is a MAL-based domain specific language for the
abstract IT domain.

coreLang supports a high level of modeling abstraction and is therefore suit-
able for modeling generic IT infrastructures. This higher level of abstraction
makes the developed language easier to expand since it is easier to use it as a
foundation for many different MAL-based DSLs. Finally, coreLang is an open-
source project to which anyone can contribute2.

2 https://mal-lang.org/coreLang/.

https://mal-lang.org/coreLang/

84 S. Katsikeas et al.

There are several potential directions for future work and future work is
something expected since coreLang is still a work in progress and this is the first
release.

First, coreLang could be used as a foundation for the creation of extensions
that will allow the language to become more specific when needed. Since core-
Lang captures the basic IT architecture and has a high level of abstractions it
could be used as a foundation for future MAL-based DSLs. For example, some
new assets could be added in an extension file that will enhance the language
with capabilities for better specific operating system and software modeling.

Second, given the fact that software vulnerabilities are covered in a com-
prehensive way, an extension could be to add an on par with the common vul-
nerability scoring system (CVSS) [1] representation of software vulnerabilities.
This could be done by creating new vulnerability assets that can be mapped or
parameterized, in a one-to-one manner, to all the possible CVSS configurations
and therefore allow a realistic representation of vulnerabilities.

Then, another future addition on the language would be to add defenses that
are able to either completely stop or make the attacks, that are already modeled,
harder to perform. This would allow more flexible models to be simulated without
having to change the assets that are placed in the model.

Finally, since there are many common properties of all IT environments, we
aimed to develop a well structured boilerplate language that can be reused and
extended when environments start to differ. For that reason, if we had specified
probabilities and probability values for all the included attack steps the abstrac-
tion of the language would have been harmed. Our approach to address this
was to not provide probabilities and values but instead consider the definition
of correct probabilities and probability values as future work that needs to be
done either separately or as a part of the DSL that will built on top of coreLang
as their foundation.

References

1. CVSS v3.1 Specification Document. https://www.first.org/cvss/v3.1/specifi
cation-document

2. Almorsy, M., Grundy, J.: Secdsvl: a domain-specific visual language to support
enterprise security modelling. In: 2014 23rd Australian Software Engineering Con-
ference (ASWEC), pp. 152–161. IEEE (2014)

3. Defense Use Case: Analysis of the cyber attack on the Ukrainian power grid. Elec-
tricity Information Sharing and Analysis Center (E-ISAC) (2016)

4. Ekstedt, M., Johnson, P., Lagerström, R., Gorton, D., Nydrén, J., Shahzad, K.:
securiCAD by foreseeti: a CAD tool for enterprise cyber security management. In:
2015 IEEE 19th International Enterprise Distributed Object Computing Workshop
(EDOCW), pp. 152–155. IEEE (2015)

5. Engström, V., Johnson, P., Lagerström, R.: Automating Cyber Attack Simulations
Against Amazon Web Services Environments (To be published) (2020)

6. Frigault, M., Wang, L., Singhal, A., Jajodia, S.: Measuring network security using
dynamic bayesian network. In: Proceedings of the 4th ACM workshop on Quality
of protection, pp. 23–30. ACM (2008)

https://www.first.org/cvss/v3.1/specification-document
https://www.first.org/cvss/v3.1/specification-document

An Attack Simulation Language for the IT Domain 85

7. Hasling, B., Goetz, H., Beetz, K.: Model based testing of system requirements using
uml use case models. In: 2008 1st International Conference on Software Testing,
Verification, and Validation, pp. 367–376. IEEE (2008)

8. Bichler, M.: Design science in information systems research. WIRTSCHAFTSIN-
FORMATIK 48(2), 133–135 (2006). https://doi.org/10.1007/s11576-006-0028-8

9. Holm, H., Shahzad, K., Buschle, M., Ekstedt, M.: P2CySeMoL: predictive, prob-
abilistic cyber security modeling language. IEEE Trans. Dependable Secure Com-
put. 12(6), 626–639 (2015). https://doi.org/10.1109/TDSC.2014.2382574

10. Ingols, K., Chu, M., Lippmann, R., Webster, S., Boyer, S.: Modeling modern net-
work attacks and countermeasures using attack graphs. In: Computer Security
Applications Conference, 2009. ACSAC 2009. Annual, pp. 117–126. IEEE (2009)

11. Johnson, P., Lagerström, R., Ekstedt, M.: A meta language for threat modeling
and attack simulations. In: Proceedings of the 13th International Conference on
Availability, Reliability and Security, p. 38. ACM (2018)

12. Katsikeas, S., Johnson, P., Hacks, S., Lagerström, R.: Probabilistic modeling and
simulation of vehicular cyber attacks : An application of the meta attack language.
In: Proceedings of the 5th International Conference on Information Systems Secu-
rity and Privacy (2019)

13. Kordy, B., Mauw, S., Radomirović, S., Schweitzer, P.: Foundations of attack-
defense trees. In: International Workshop on Formal Aspects in Security and Trust,
pp. 80–95. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-19751-
2 6

14. Kordy, B., Piètre-Cambacédès, L., Schweitzer, P.: Dag-based attack and defense
modeling: don’t miss the forest for the attack trees. Comput. Sci. Rev. 13, 1–38
(2014)

15. Lund, M.S., Solhaug, B., Stølen, K.: Model-Driven Risk Analysis: The CORAS
Approach. Springer, New York (2010)

16. Mauw, S., Oostdijk, M.: Foundations of attack trees. In: International Conference
on Information Security and Cryptology. pp. 186–198. Springer (2005)

17. Morikawa, I., Yamaoka, Y.: Threat tree templates to ease difficulties in threat
modeling. In: 2011 14th International Conference on Network-Based Information
Systems, pp. 673–678 (2011). https://doi.org/10.1109/NBiS.2011.113

18. Noel, S., Elder, M., Jajodia, S., Kalapa, P., O’Hare, S., Prole, K.: Advances in topo-
logical vulnerability analysis. In: Conference For Homeland Security, 2009. CATCH
2009. Cybersecurity Applications Technology, pp. 124–129 (2009). https://doi.org/
10.1109/CATCH.2009.19

19. Petermann, T., Bradke, H., Lüllmann, A., Poetzsch, M., Riehm, U.: Was bei einem
Blackout geschieht: Folgen eines langandauernden und großflächigen Stromausfalls,
vol. 662. Büro für Technikfolgen-Abschätzung (2011)

20. Petit, J., Shladover, S.E.: Potential cyberattacks on automated vehicles. IEEE
Trans. Intell. Transport. Syst. 16(2), 546–556 (2015)

21. Prokofiev, A.O., Smirnova, Y.S., Silnov, D.S.: The internet of things cybersecu-
rity examination. In: 2017 Siberian Symposium on Data Science and Engineering
(SSDSE), pp. 44–48 (2017)

22. Schneier, B.: Attack trees. Dr. Dobb’s journal 24(12), 21–29 (1999)
23. Schneier, S.: Lies: Digital Security in a Networked World. Wiley, New York 21,

318–333 (2000)
24. Stellios, I., Kotzanikolaou, P., Psarakis, M., Alcaraz, C., Lopez, J.: A survey of iot-

enabled cyberattacks: assessing attack paths to critical infrastructures and services.
IEEE Commun. Surv. Tutorials 20(4), 3453–3495 (2018)

https://doi.org/10.1007/s11576-006-0028-8
https://doi.org/10.1109/TDSC.2014.2382574
https://doi.org/10.1007/978-3-642-19751-2_6
https://doi.org/10.1007/978-3-642-19751-2_6
https://doi.org/10.1109/NBiS.2011.113
https://doi.org/10.1109/CATCH.2009.19
https://doi.org/10.1109/CATCH.2009.19

86 S. Katsikeas et al.

25. Weiss, J.: A system security engineering process. In: Proceedings of the 14th
National Computer Security Conference, vol. 2, pp. 572–581 (1991)

26. Williams, L., Lippmann, R., Ingols, K.: GARNET: A Graphical Attack Graph and
Reachability Network Evaluation Tool. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-85933-8 5

27. Witty, R.J., Allan, A., Enck, J., Wagner, R.: Identity and access management
defined. Research Study SPA-21-3430, Gartner (2003)

28. Xie, P., Li, J.H., Ou, X., Liu, P., Levy, R.: Using Bayesian networks for cyber
security analysis. In: 2010 IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), pp. 211–220. IEEE (2010)

29. Yan, D., Liu, F., Jia, K.: Modeling an information-based advanced persistent threat
attack on the internal network. In: ICC 2019–2019 IEEE International Conference
on Communications (ICC), pp. 1–7 (2019)

https://doi.org/10.1007/978-3-540-85933-8_5
https://doi.org/10.1007/978-3-540-85933-8_5

Representing Decision-Makers in
SGAM-H: The Smart Grid Architecture
Model Extended with the Human Layer

Adam Szekeres(B) and Einar Snekkenes

Department of Information Security and Communication Technology,
Norwegian University of Science and Technology - NTNU, Gjøvik, Norway

{adam.szekeres,einar.snekkenes}@ntnu.no

Abstract. The safety and security of critical infrastructures is both
a technical and a social issue. However, most risk analysis methods
focus predominantly on technical aspects and ignore the impact strategic
human decisions have on the behavior of systems. Furthermore, the high
degree of complexity and lack of historical data for probability estima-
tions in case of new and emerging systems seriously limit the practical
utility of traditional risk analysis methods. The Conflicting Incentives
Risk Analysis (CIRA) method concentrates on human decision-makers to
address these problems. However, the method’s applicability is restricted
by the fact that humans are not represented in the Smart Grid Architec-
ture Model (SGAM) which is the industry’s most well-known model of
the Smart Grid ecosystem. Therefore, the main objective of this paper
is to establish a connection between CIRA and SGAM by proposing
the SGAM-H, an enhanced version of the original architecture model
complemented by the Human Layer. The development and evaluation of
the artifact is guided by the Design Science Research methodology. The
evaluation presents a working example of applying the CIRA method on
a scenario involving intra-organizational risks at a Distribution System
Operator. The key benefit of the SGAM-H is that it enables the construc-
tion of a common understanding among stakeholders about risks related
to key decision-makers, which is a fundamental first step towards form-
ing a more complete picture about potential issues affecting the electric
grids of the future.

Keywords: Information security risk analysis · Conflicting Incentives
Risk Analysis (CIRA) · Smart Grid Architecture Model (SGAM) ·
SGAM-H · Human Layer · Stakeholder motivation

1 Introduction

Nation-wide electrification of industries and societies beginning in the 1880s had
tremendous economical and societal benefits [7] and the demand for a stable and

This work was partially supported by the project IoTSec – Security in IoT for Smart
Grids, with number 248113/O70 part of the IKTPLUSS program funded by the
Norwegian Research Council.

c© Springer Nature Switzerland AG 2020
H. Eades III and O. Gadyatskaya (Eds.): GraMSec 2020, LNCS 12419, pp. 87–110, 2020.
https://doi.org/10.1007/978-3-030-62230-5_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62230-5_5&domain=pdf
https://www.iotsec.no/
http://www.forskningsradet.no/prognett-iktpluss/Home_page/1254002053513
http://www.forskningsradet.no
https://doi.org/10.1007/978-3-030-62230-5_5

88 A. Szekeres and E. Snekkenes

reliable supply of electricity has exceeded that for any other forms of energy [28].
A properly functioning power grid represents an indispensable infrastructure for
modern societies, which supports all aspects of life. While demand for electricity
will keep rising in the future (e.g., due to increasing electrification of the trans-
portation sector, growing populations, etc.) international directives and regula-
tions have been pushing toward a shift from dependency on fossil and nuclear
power sources to more eco-friendly and sustainable renewables. Most renewable
power sources (e.g., wind, solar) are intermittent in nature which requires a
paradigm shift from centralized large-scale generation models to flexible, dis-
tributed and small-scale solutions [11]. At the same time economic constraints
make the complete reconstruction of the power grid highly unfeasible. The envis-
aged solution is encompassed in the concept of the Smart Grid (SG), which aims
at solving the challenges of the future by relying on the physical infrastructure
of the past with enhancements from novel information and communication tech-
nologies. Thus the SG represents a highly complex system with real-time sensing
and control capabilities using a bidirectional flow of electricity and information,
enabled by the addition of internet of things (IoT) devices at various parts of the
grid. Several stakeholders are involved in SG-related activities including: legis-
lators, governmental agencies, standardizing bodies, data protection authorities,
organizations focusing on the generation, transmission, distribution of electric-
ity, equipment manufacturers, software and security providers, researchers and
consumers [8].

Developments in SGs are driven by a combination of political, economic and
ecological motives. Misaligned incentives are unavoidable when the number of
interacting stakeholders is considered in a system of such complexity (both tech-
nically and socially). Misaligned incentives are particularly prevalent in informa-
tion systems where those who are responsible for providing security are not the
same people who benefit from the protection or suffer when things go wrong. For
example, increasing the dependency of critical infrastructures on public infor-
mation systems (network convergence) can be an efficient short-term cost saving
strategy for utility companies, but it increases society’s long-term vulnerability,
which will ultimately bear the costs [24]. It has been demonstrated that mis-
aligned incentives, negative externalities and moral hazard arise in a variety of
settings within the field of information security [1]. The identification and miti-
gation of such problems is crucial for ensuring the safety and security of societies
depending on SGs and other critical infrastructures.

1.1 Conflicting Incentives Risk Analysis (CIRA)

The Conflicting Incentives Risk Analysis (CIRA) method focuses on the moti-
vation of individual stakeholders to define risks. The lack of relevant historical
data in case of emerging and dynamic systems creates a significant challenge
for traditional (i.e., relying on frequentist probability estimations) risk analy-
sis methods [37]. Furthermore, deliberate human actions due to misalignment
of incentives is rarely at the center of risk analysis procedures. CIRA defines
risk as the misalignment between stakeholder incentives. The analysis focuses

SGAM Human Layer 89

on the Risk owner’s (i.e., person at risk) exposure to the actions or inactions of
several other stakeholders (Strategy owners) who are in the position to choose
courses of actions [32]. CIRA combines quantitative methods to characterize
risks attributed to key decision-makers, therefore, aims at overcoming some of
the problems associated with qualitative risk scoring methods [15].

1.2 Smart Grid Architecture Model (SGAM)

The creation of the Smart Grid Architecture Model (SGAM) was motivated
by the need to represent stakeholders, applications and systems that will have
to achieve efficient interdependent operations in future SGs. To ensure these
goals, developers and standardization bodies of the SG need to have a common
understanding or shared model about the systems which will be implemented.
To capture the EU-specific requirements the SGAM was designed to tackle the
complexity by representing systems in a consistent and comprehensive way. It
enables standards gap analysis; visualization and assessment of use cases in a
technology-neutral way; comparison of different approaches and road-maps from
various viewpoints. Figure 1 presents the SGAM, based on [4]. Domains repre-
sent the energy conversation chain from generation site to customer premises.
Zones capture the power system management supported by ICT from the level of
processes to markets. Interoperability layers represent different levels of abstrac-

Fig. 1. The Smart Grid Architecture Model (SGAM) based on [4].

90 A. Szekeres and E. Snekkenes

tion from the physical hardware to business perspectives highlighting the inter-
connectedness and dependencies between entities.

How is it possible to analyse risks arising from human decision-making in a
complex system as the SG? Several management failures (management of tree
growth, lack of vulnerability and system-health assessment, etc.) contributed
to the 2003 Northeast blackout in the US, affecting 55 million people with an
estimated economic impact of $6 billion [25]. Organizations responsible for the
development and maintenance of the grid need to have the right incentives in
place to achieve their goals at a socially optimal level. Are measures in place
to protect the privacy of customers despite increased monitoring capabilities
enabled by smart meters and other smart home devices [22]? Does information
security contribute to the organizational goals or is it perceived as a impediment
to smooth operations [48]? Can the SG fulfill the hopes by providing electricity in
a safe, reliable and secure way without significantly increasing society’s exposure
to new threats [19]?

1.3 Problem Statement and Motivation

In order to enable the application of the CIRA method on SG use cases, a
connection between the models has to be established. Human decision-makers are
not represented in the existing SGAM, which may result in ignoring the impact
strategic human decisions have on the grid. The SGAM documentation briefly
mentions human-aspects: “The concept of an Actor is very general and can cover
People (their roles or jobs), systems, databases, organizations, and devices” [4].
However some critical distinguishing features justify separating human decision-
makers from the Actor concept. Human decision-makers:

– are self-determined (i.e., choosing their own goals [10]);
– have unique motivations, which may not be in alignment with organiza-

tional/societal objectives (e.g., principal-agent models [47]);
– are in the unique position to control all other objects (e.g., regulations, busi-

ness goals, components, etc.) within a system.

Ergo, human decision-makers have distinctive and significant impact on every
aspect of the system’s behavior which requires the explicit integration of human
decision-makers into a reference architecture to provide a more comprehensive
model. Furthermore, it is necessary to investigate the CIRA method’s adequacy
for analysing risks in highly complex emerging systems, where the application
of traditional risk analysis methods may be infeasible (due to lack of historical
data for probability estimations and unmanageable complexity of information
systems).

This paper presents an approach for addressing these gaps in the literature.
The paper is structured as follows: Sect. 2 provides an overview about modifi-
cations to the basic SGAM as well as approaches for modeling humans from a
broad range of domains. Section 3 describes the Design Science Research Method-
ology (DSRM) which guided the development and evaluation of the paper’s arti-
fact. The artifact is presented and evaluated by a case study throughout Sect. 4.

SGAM Human Layer 91

Section 5 discusses key findings and Sect. 6 draws conclusions. The paper ends
with ideas for further work in Sect. 7.

2 Related Work

This section is divided into two parts. The first part reviews research work which
proposes or implements extensions to the generic SGAM to solve specific tasks. A
literature search using the search string (“sgam” extend OR extension) appearing
anywhere in the articles was conducted on Google Scholar and articles citing
the original publication were screened; other relevant articles were identified
among references. Studies describing the application of SGAM were excluded.
The second part presents approaches for modeling human behavior across various
domains to illustrate design decisions about the models.

2.1 Variants of SGAM

The Information System Architecture for e-Mobility (EM-ISA) is an early SGAM
variant focusing on electric vehicle (EV) integration into the grid. The model
significantly reduces the number of the domains and zones, then proposes the
integration of human-machine interfaces into the model to capture interac-
tions between humans (operators) and objects without further specifying human
attributes [35]. The Electric Mobility Architecture Model (EMAM) focuses on
EV integration as well. In EMAM, the Generation domain is removed and an
electric mobility domain is added to the grid plane, while keeping the rest of the
original model unchanged. Recognizing the utility of the SGAM for standard-
isation purposes, two other reference models were developed following similar
architecture engineering principles. While the layers of The Smart City Infras-
tructure Architecture Model (SCIAM) and the Smart Home Architecture Model
(SHAM) are the same as those of SGAM, different domains and zones are intro-
duced which may decrease compatibility between models [46]. SGs may differ
between countries, therefore it is important to increase compatibility between
various implementations. Two state-of-the-art models (the SGAM from EU and
the NISTIR 7628 from U.S.) are combined in order to facilitate security analysis
from the beginning of the development process [45]. In addition to the previ-
ously described variants two more architecture models are described in [43]. The
Home and Building Architecture Model (HBAM) utilizes SGAM’s layered app-
roach with different zones and domains introduced to capture relevant concepts
within scope of smart homes and buildings. The Reference Architecture Model
for Industry 4.0 (RAMI 4.0) is regarded as the most sophisticated derivative of
the SGAM containing zones and domains relevant for industrial applications and
extending the interoperabilty perspectives with an additional layer. Two more
reference models have been developed using the SGAM’s design principles. The
Reference Architecture Model Automotive (RAMA) represents the life-cycle of
connected vehicles and the related information technologies and the Maritime
Architecture Framework (MAF) models information exchange between various
actors in the maritime domain [44].

92 A. Szekeres and E. Snekkenes

2.2 Approaches for Modeling Humans

Models in general, are abstract representations of a complex entity or phe-
nomenon capturing its most significant aspects for a pre-specified purpose.
Analogies, shared features and other similarities between entities play a key
role in modelling activities. For example, pigs and other animals can represent
humans in medical experiments due to the high number of shared features (in
terms of genetics, physiology and anatomy, etc.) [23]. Investigations in road
safety require human models which accurately capture the physical properties
of real humans in car crash scenarios [2]. Personas or user archetypes are widely
used human models in the software engineering industry. Personas guide the
development process by representing future users and their goals in relation to
the product [5]. Realism of human models is becoming increasingly important
in virtual environments where representations can replace real humans (in com-
munication context [3]) or simulated agents are required to act realistically (in
training context [27]). For behavior prediction, a human model must incorporate
psychological constructs that are most likely to govern or influence (i.e., medi-
ate and moderate) the behavior of interest. Models reduce real-world complex-
ity, which enables that only a small set of well-defined parameters are required
for predictions. The importance of appropriately modeling humans and human
behavior has been recognized in a variety of domains. Human performance and
mental load models have been developed to represent operator characteristics
and to assist the design of human-machine interfaces in the context of indus-
trial control systems [38]. A variety of human behaviors are of interest to the
military, therefore a wide range of human models have been developed (at the
individual and group level) to support agent-based behavioral simulations [30].
A key challenge is to find the right balance between the model’s complexity and
its realism [16]. In the context of information security, humans can be repre-
sented by a utility function which is the most suitable level of abstraction for
game theoretic simulations [20]. People have great impact on the Earth’s overall
condition, but humans are not yet explicitly represented in Earth system models
used for simulating ecological dynamics. The selection of an appropriate human
model relies on the modeler’s understanding about the strengths and weaknesses
of each model [26].

2.3 Summary of Related Work

The reviewed literature demonstrates the SGAM’s acceptance among practition-
ers and researchers and presents several domain- or task-specific variants inspired
by the original model. However, the representation of human decision-makers is
lacking, which impedes the efficient application of CIRA on SG scenarios. The
broad overview on the literature of human modeling approaches highlights that
models should be developed according to relevant design considerations (e.g.,
specifying the model’s content in relation to the behavior of interest, complexity-
realism trade off, etc.).

SGAM Human Layer 93

3 Methodology

This study is based on the design science research (DSR) paradigm, which pro-
vides an organizing framework for the development of purposeful artifacts to
solve a specific problem [14]. The DSR methodology defines three cycles which
interact with each other during task execution [13]. The design cycle represents
the core activities (development and evaluation of the artifact in an iterative pro-
cess) which is embedded in a broader context. The design cycle receives input
from two sources. The relevance cycle refers to the interaction between the envi-
ronment (where problems and needs for a new solution arise) and the design
cycle (produces solutions). Artifacts from the design cycle are fed back to the
environment through the relevance cycle and the artifacts are applied in the
context where they were intended to function. Interaction of the design cycle
with the supporting knowledge-base defines the rigor cycle which provides the
necessary tools, methodologies, theories for the development and evaluation of
the artifact. Information flows in both directions between the rigor and design
cycles as well, thus new knowledge and experience resulting from the construc-
tion of the artifact are recorded in the knowledge-base using the most suitable
format (presentation, tutorial, academic paper, etc.).

The relevance cycle serves as a starting point for any DSR activity by spec-
ifying the context and problems in the domain (i.e., requirements), that the
artifact should solve. Furthermore, it defines evaluation criteria for testing the
artifact’s utility within the environment. The need to represent human stake-
holders within the SG has been arising from interactions with other stakeholders
(students, conference and project participants). Difficulty of creating a common
understanding among stakeholders about CIRA’s applicability and relevance was
identified as a major barrier to the method’s acceptance and adoption. Thus, a
more efficient method of conveying meaning was set as a requirement. The sec-
ond step focuses on the identification of suitable theories, frameworks to meet
requirements. Therefore, the rigor cycle was used for the identification of existing
frameworks by reviewing the relevant literature, which resulted in identifying the
SGAM as an ideal candidate requiring customization. The development activ-
ity within the design cycle was used to extract key concepts from CIRA and
to create visual representations of its abstract concepts. An important design
consideration was to keep a high degree of compatibly with the original SGAM
version, therefore an extension is proposed: the SGAM-H enhanced by a Human
Layer and its necessary components. The artifact model was built from scratch in
Microsoft Visio, to ensure re-usability and mutability (the Visio-based templates
reported in [34] were not available online). The final step within the design cycle
is the evaluation of the artifact which is achieved through a hypothetical case
study (qualitative, descriptive method) demonstrating how key CIRA concepts
are mapped onto the Human Layer and how it conveys meaning. The artifact is
evaluated in terms of its efficacy, ease of use, completeness and homomorphism
(i.e., correspondence with another model) [31].

94 A. Szekeres and E. Snekkenes

4 Human Layer

This section presents the Human Layer as an extension of the SGAM, giving rise
to the SGAM-H. The Human Layer’s basic elements for constructing and repre-
senting the context of risk analysis are introduced. Next, the artifact’s efficacy is
demonstrated on a hypothetical case study which applies the CIRA method on
a SG scenario focusing on risks experienced by the CEO of a Distribution Sys-
tem Operator (DSO). Several aspects of the case study were inspired by media
reports [36] and analyses of real-world incidents [25] accompanied by relevant
scientific literature [6] in order to increase its realism. Finally, the artifact is
evaluated along the previously identified criteria.

Figure 2 presents the Human Layer placed on top of the business layer of the
original SGAM. This implementation enables the representation of human stake-
holders with their relevant attributes on the architecture model and emphasizes
the critical role that strategic human decisions can have on various aspects of
SGs.

Fig. 2. SGAM-H including the Human Layer.

SGAM Human Layer 95

Figure 3 presents the stakeholder models; components to represent human
attributes and other elements of the layer to capture key concepts of CIRA.
Two types of stakeholder classes are distinguished by color and related captions:
human models in blue represent the risk owner, human models in white repre-
sent the class of strategy owners. Post-analysis states are distinguished by a tag
above the models to display the risks explicitly (i.e., consequences for the risk
owner, incentives for the strategy owner). The sign (±) represents the direction of
utility change following strategy execution. Furthermore, incentives are marked
with red fill color on the strategy owner figures. The height of the red coloring
from the bottom of the figure matches with the magnitude of the incentive (i.e.,
an incentive of 50 produces a red fill color up to 50% of the figure’s height).
Strategy owners’ profile information is captured in brackets, to record the infor-
mation used for the construction of motivational profiles before the analysis.
Stakeholders are linked to other entities (e.g., physical hardware, organizations,
etc.) by dashed lines. Strategies are represented by continuous lines ending in an
arrow, directed from the strategy owner to the risk owner.

Fig. 3. Components of the Human Layer. (Color figure online)

4.1 Case Study: DSO Risks

This sub-section demonstrates the use of the SGAM-H through a case study in
which the CIRA method is applied to a scenario focusing on the risks faced by

96 A. Szekeres and E. Snekkenes

the organizational leader of a DSO, since the organization has a critical role in
the SG ecosystem. Numbering of the subsequent paragraphs follows the steps of
the CIRA procedure based on [32].

1. Identification of the Risk Owner. The risk owner is the CEO of a DSO,
who is interested in intra-organizational risks which may interfere with the objec-
tives of the organization.

2. Identification of the Risk Owner’s Key Utility Factors. The key util-
ity factors (UFs) were identified by relying on the Balanced Scorecard (BSC)
method, which was designed to aid managers in evaluating and measuring orga-
nizational performance through a set of measures linked to organizational objec-
tives [18]. Four perspectives are distinguished by the BSC method: Financial,
Customers and stakeholders, Learning and growth and Internal business pro-
cesses. The method enables the development of key performance indicators at
various levels (departments, individuals) to achieve better organizational per-
formance. Since utility companies such as DSOs operate as natural monopolies
due to high infrastructural costs, their operations differ from purely for-profit
organizations. In the not-for-profit sector, the financial perspective is often seen
as a constraint rather than an objective, which requires different priorities [21].
Some work has been done to adapt the BSC to the specific needs of utility com-
panies [17,33]. Table 1 presents the risk owner’s key utility factors derived from
the BSC perspectives.

Table 1. Key utility factors of the CEO.

BSC perspectives Utility factors

Financial Revenue

Customers and stakeholders Customer privacy

Contribution to public welfare

Learning and growth Innovation

Internal business processes Relationship with regulators

3–5. Identification of Strategies that May Influence the Risk Owner’s
Utility Factors; Identification of Roles and Named Strategy Owners
Which Can Execute the Strategies. Steps 3–5 of the procedure are summa-
rized in Table 2. For each utility factor an appropriate strategy was identified by
considering key processes and functions at a DSO. The identification of roles and
strategy owners is aided by the organizational chart which allocates the respon-
sibilities and tasks to various roles occupied by actual persons. The scenario

SGAM Human Layer 97

Table 2. The risk owners’ utility factors (UFs); strategies that impact the risk owner’s
utility factors; roles and individuals.

Affected UFs Strategy Role Person

Customer
privacy

Help a friend
(S1)

Dispatcher Sigurd

Contribution
to public
welfare

Fix street
lights (S2)

Operations manager Emma

Innovation Recruit
research
applicants
(S3)

Head of R&D Hanne

Relationship
with
regulators

Support
system
integration
(S4)

CISO Henry

description for each person illustrates motivational factors at play regarding the
dilemmas they face in a given situation.

Sigurd works as a dispatcher at the organization. He is approached by his
best friend who suspects that his wife is cheating on him and asks Sigurd to
monitor the detailed electricity consumption of their holiday house which he
thinks is used as a hideout by her. He has access to the relevant data, and thinks
he can fulfil the request without getting into trouble. The legal and financial
implications of a privacy breach are of key interest to the risk owner. Emma
is responsible for distributing tasks efficiently within her team of technicians
working in the field. Citizens are complaining about faulty street lights and dan-
gerously dark streets. She has to decide how to allocate tasks within the team
based on existing efficiency measures in place. Hanne works at the R&D depart-
ment developing new services for customers. Students with novel ideas apply
to get work experience at the organization, but she perceives recruitment and
training of students as a nuisance since student projects rarely get converted
into successful products. She has to decide whether increasing the number of
student projects (to fulfill an important societal role) worth lowering her per-
formance indicators. Henry believes that the new agenda to harmonize all data
acquisition systems at the organization would create a singularity threat and he
believes in security through diversity. He has the final word regarding the new
system’s implementation in the project.

6. Identification of the Strategy Owners’ Utility Factors. For each strat-
egy owner two types of utility factors are distinguished. Work-related factors are
derived from the BSC method’s perspectives. Personal utility factors are repre-

98 A. Szekeres and E. Snekkenes

sented by basic human values [40]. Table 3 presents the key utility factors for
each strategy owner.

Table 3. Work-related and personal utility factors for each strategy owner.

Strategy owner Utility factors

Work-related (associated
with role)

Personal

Sigurd Percentage of successfully
located faults and dispatched
repair teams within time
frame (%)

ST OC CO HE SE

Emma Percentage of reconnected
electricity customers within
time frame (%)

Hanne New services ready for
market (%)

Henry Percentage of resolved
cyber-incidents within a time
frame (%)

Note. ST: self-transcendence, OC: openness to change,
CO: conservation, HE: hedonism, SE: self-enhancement.

7. Operationalization of Utility Factors. To operationalize the utility fac-
tors, existing work on DSO-specific KPIs was surveyed [6,12] as well as relevant
regulations (GDPR [9]). KILE (quality-adjusted revenue frames for energy not
delivered) represents customers’ costs for interruptions, and is a form of revenue
reduction due to interruptions, which aims at incentivizing utility companies
to maintain operational reliability [29]. Utility factors capturing personal moti-
vations were operationalized in previous work as publicly observable pieces of
information, for the construction of motivational profiles [39–41]. Table 4 presents
how each utility factor is operationalized.

8. Weighing of Utility Factors. Table 5 presents each utility factor’s contribu-
tion to the person’s overall utility. For the purpose of demonstration, the CEO’s
overall utility is entirely composed of work-related utility factors. Employees on
the other hand, derive utility from other factors which are not directly linked to
their professional role (i.e., human values). Work-life balance is represented by
the global ratio between work-related and personal utility factors. Weights (w)
of the personal utility factors capture the relative importance of basic human
values for the subject. Thus, weights are inferred from psychological profiles
based on various publicly available pieces of information (e.g., demographics [41],
texts produced by the subject [39], evidence of past choices reflecting value

SGAM Human Layer 99

Table 4. Utility factors operationalized.

Role Type of utility

factor

Utility factor Operationalized as

Risk owner Professional Revenue R = Revenue cap − KILE

(CENS) [29]

Customer’s data

privacy (%)

CDP = 1 − (privacy-related

penalties/privacy breach cap

(0.04 * annual turnover)) [9]

Contribution to public

welfare (%)

PW = resolved public complaints

within 1month/all complaints in

a period

Innovation (%) INN = number of established

research collaborations with

universities/number of

applications from students

Relationship with

regulators (%)

REG = number of reports

accepted without modification/all

reports submitted

Strategy owner Percentage of

successfully located

faults and dispatched

repair teams within

time frame (%)

TDISP = number of successful

responses within 30min/all

trouble calls received

Percentage of

reconnected electricity

customers within time

frame (%)

TREST = number of successfully

reconnected customers within

24 h/number of customers

assigned without electricity

supply

New services ready for

market (%)

MARK = new market

ready-services/all R&D projects

initiated

Percentage of resolved

cyber- incidents within

time frame (%)

CYINC = successfully mitigated

cyber-incidents within 12 h/all

reported

Personal Self-transcendence Publicly available pieces of

information for psychological

profiling: text analysis [39],

demographic features [41], item

ownership and habits [40]

Openness to change

Conservation

Hedonism

Self-enhancement

trade-offs, habits [40]). Various metrics have been used for quantifying the accu-
racy/uncertainty of the inferred profiles: R2 - coefficient of determination (range:
0.19–0.39), PI - prediction interval (Mean: 0.077, SD: 0.794), Pearson correlation
coefficients between predicted and ground-truth scores (range: 0.34–0.52) [40].
All the weights sum to 1 for each stakeholder.

100 A. Szekeres and E. Snekkenes

Table 5. Weighing of utility factors.

CEO w Sigurd w Emma w Hanne w Henry w

Revenue 0.300 Percentage of
successfully
located faults
and dispatched
repair teams
within time
frame (%)

0.25 Percentage of
reconnected
electricity
customers
within time
frame (%)

0.30 New services
ready for
market (%)

0.35 Percentage of
resolved
cyber-
incidents
within time
frame (%)

0.40

Customer’s
data privacy
(%)

0.175 Self-
transcendence

0.18 Self-
transcendence

0.12 Self-
transcendence

0.10 Self-
transcendence

0.11

Contribution
to public
welfare (%)

0.175 Openness to
change

0.14 Openness to
change

0.20 Openness to
change

0.20 Openness to
change

0.10

Innovation
(%)

0.175 Conservation 0.17 Conservation 0.09 Conservation 0.05 Conservation 0.18

Relationship
with
regulators
(%)

0.175 Hedonism 0.16 Hedonism 0.12 Hedonism 0.16 Hedonism 0.06

Self-
enhancement

0.10 Self-
enhancement

0.17 Self-
enhancement

0.14 Self-
enhancement

0.15

9. Determination of Each Strategy’s Impact on the Utility Factors.
Each strategy owner’s decision-making process is modeled in Table 6 with the
decisions’ impact on the risk owner’s utility factors. For simplicity each strat-
egy’s influence is limited to a maximum of two utility factors. Real-world choices
are determined by the complex trade-offs between utility factors as perceived by
the stakeholders in a choice situation (i.e., dilemma). Personal features (repre-
sented by the weights of each utility factor) interact with salient features of the
immediate situation (i.e., initial and final values- capturing states as opposed to
traits). Decisions are motivated/demotivated by the overall gains/losses expected
from the execution of a strategy. The decision-making process is modeled as
C = f(P × S), where C is a choice, P refers to personal features and S cap-
tures situational features. The formula may include the accuracies with which
an analyst can assess the relevant person-situation interactions. The results of
the context establishment are depicted on the SGAM-H in Fig. 4.

10. Utility Estimation. Each stakeholder’s overall utility is calculated in
Table 7 before and after strategy execution. The weighted sum of each utility
factor produces the overall utilities according to the Multi Attribute Utility
Theory used in CIRA [32].

11. Calculation of Incentives. Differences in terms of the overall utilities
before and after strategy execution are presented in Table 8. Stakeholders prefer
options that increase their utility to options that decrease it, therefore options
with positive contribution are selected, whereas options which provide disutility
are avoided.

SGAM Human Layer 101

Table 6. Impact of the strategies on utility factors.

Final values after strategy execution

A B C D

Utility factors Weights Initial

value

Help a

friend (S1)

Fix street

lights(S2)

Recruit

research

applicants

(S3)

Support

system

integration

(S4)

CEO Revenue 0.3 50 50 48 53 55

Customer’s data

privacy (%)

0.175 50 15 50 50 50

Contribution to

public welfare (%)

0.175 50 50 60 50 50

Innovation (%) 0.175 50 50 50 65 50

Relationship with

regulators (%)

0.175 50 50 50 50 90

Sigurd Percentage of

successfully

located faults and

dispatched repair

teams within time

frame (%)

0.25 50 50

Self-transcendence 0.18 20 90

Openness to

change

0.14 50 50

Conservation 0.17 50 50

Hedonism 0.16 50 50

Self-enhancement 0.1 50 50

Emma Percentage of

reconnected

customers within

time frame (%)

0.3 90 30

Self-transcendence 0.12 50 50

Openness to

change

0.2 50 50

Conservation 0.09 50 50

Hedonism 0.12 50 50

Self-enhancement 0.17 50 50

Hanne New services

ready for market

(%)

0.35 50 10

Self-transcendence 0.1 50 50

Openness to

change

0.2 50 50

Conservation 0.05 50 50

Hedonism 0.16 50 20

Self-enhancement 0.14 50 50

Henry Percentage of

resolved

cyber-incidents

within time frame

(%)

0.4 60 30

Self-transcendence 0.11 50 50

Openness to

change

0.1 50 50

Conservation 0.18 50 40

Hedonism 0.06 50 50

Self-enhancement 0.15 50 50

102 A. Szekeres and E. Snekkenes

Fig. 4. Summary of context establishment on the SGAM-H.

Table 7. Utility estimation.

Utility

Initial Final

Stakeholders Help a friend
(S1)

Fix street
lights (S2)

Recruit
research
applicants (S3)

Support system
integration (S4)

CEO 50 43.875 51.15 53.525 58.5

Sigurd 44.6 57.2

Emma 62 44

Hanne 50 31.2

Henry 54 40.2

SGAM Human Layer 103

Table 8. Change in utilities.

Stakeholders Change in utilities (incentives)

Help a
friend
(S1)

Fix street
lights (S2)

Recruit research
applicants (S3)

Support system
integration (S4)

CEO −6.125 1.15 3.525 8.5

Sigurd 12.6

Emma −18

Hanne −18.8

Henry −13.8

12. Determination of Risks. Risks are expressed and presented to the CEO
as incentive-consequence (I-C) pairs in Table 9. Incentives represent the strength
of motivation for each strategy owner to select/avoid the related option, conse-
quences capture the risk to the risk owner. Risks that are characterized by a
positive incentive and a negative consequence are threat risks. Negative incen-
tive and positive consequence pairs represent opportunity risks, which would be
desirable for the risk owner but the strategy owner would have to take a loss to
provide the benefit. The assessed risks are shown on the Human Layer in Fig. 5.

Table 9. Risks experienced by the CEO.

Strategy Incentive Consequence

Help a friend
(S1)

12.6 −6.125

Fix street lights
(S2)

−18 1.15

Recruit research
applicants (S3)

−18.8 3.525

Support system
integration (S4)

−13.8 8.5

13. Risk Evaluation. The CEO has to subjectively evaluate whether the risks
are above or below the acceptability threshold. Risk that are below the accep-
tance level may not require further action and may only be monitored (e.g.,
fixing the street lights, recruit students). Risks that are above the threshold
require risk treatment. It should be noted that this demonstration relies on crisp
numbers, which do not capture appropriately the accuracies/uncertainties asso-
ciated with each measurement along the chain of inference. Thus, to draw a more
accurate picture for real-world applications it is important to understand how

104 A. Szekeres and E. Snekkenes

Fig. 5. Risk representation on the Human Layer.

errors propagate. According to [42] the error in a quantity which is derived from
other quantities (each measured with some uncertainty) is calculated as:

(Measured value of) x = xbest ± δx,

xbest = best estimate for x,

δx = uncertainty or error in measurement,
δx

xbest
= fractional uncertainty.

Since C (choice) is calculated as the product of P and S, the relative error of C
can be calculated as the sum of fractional uncertainties in quadrature assuming
independent random errors as follows:

δC

C
=

√(
δP

P

)2

+
(

δS

S

)2

The resulting relative error can be converted into absolute error, and used to
compute C ± δC which more accurately captures it’s uncertainty.

14. Risk Treatment. Strategy 1 and 4, are above the risk acceptance threshold,
therefore certain incentive modifications are necessary to make the options more
(for opportunity risks) or less (for threat risks) desirable for the strategy owners.

SGAM Human Layer 105

A risk mitigation for S1 would be to increase personal accountability in case of
privacy violations to make the option less desirable for the strategy owner. Miti-
gation of S4 involves the adjustment of the relevant KPI which focuses exclusively
on cyber-incident response times by the inclusion of a cross-departmental rat-
ing system linked to bonuses which measures cooperation between departments.
This can provide incentives to seek mutually beneficial outcomes. The need for
alignment between departments requires novel metrics both at the micro and
macro levels within the organization.

4.2 Evaluation of the Human Layer

The artifact is qualitatively evaluated across the following criteria by its devel-
opers (i.e., internal evaluation by two people): efficacy, ease of use, complete-
ness and homomorphism adhering to the definitions in [31]. A five point grading
scale (5-excellent, 4-good, 3-satisfactory, 2-sufficient, 1-unsatisfactory) is used for
describing the extent to which the artifact fulfills the evaluation criteria. Effi-
cacy is rated 5 since it successfully establishes a connection between SGAM and
CIRA by representing human stakeholder models, thus addressing the identified
gap in the literature. Ease of use is rated 3, since the development and construc-
tion of the models from scratch required significant effort initially in terms of
time spent (several days). After the basic models have been established and with
subsequent reuse of the artifacts (i.e., iterative adjustments and updates applied
to the models as the case study was developing which involved the identifica-
tion of relevant literature, extraction of key concepts and customization of the
metrics, etc.) it was possible to reduce the effort significantly (below 1 h for each
iteration). Completeness is rated 5 since it captures all the relevant elements
and relationships between elements identified in CIRA. Homomorphism refers
to the correspondence with a reference model (i.e., original SGAM) and is rated
4 since the extension does not interfere with the original model’s structure but
further adjustments may be necessary to ensure full, unambiguous compatibility
with SGAM objects.

5 Discussion

Critical infrastructures designed and built in the previous century are becoming
more autonomous and interconnected by the inclusion of IoT devices. Moderni-
sation is driven by a variety of economical, political and ecological motives.
Increasing dependency on ICT gives rise to previously unimaginable risks which
may endanger the safety, security and privacy of societies at scale. High levels
of complexity and lack of historical data about system behavior represent great
practical impediments for traditional risk analysis methods. The CIRA method
proposes a solution to these problems by focusing on the behavior of fundamental
components of any modern system: key decision-makers. Human decision-makers
are not appropriately represented on the most well-established model of the SG
(SGAM) which may lead to under-recognition of people’s influence on the SG.

106 A. Szekeres and E. Snekkenes

Consequently, risk analyses may exclusively focus on technical aspects and miss
the point, that technology is under the control of human decision-makers with
unique motivations. In order to address this imbalance between perspectives, and
to enable the creation of a common understanding about the human aspects, this
paper proposed the SGAM-H with the Human Layer on top of the SGAM inter-
operability layers. The extension aimed at keeping compatibility with the original
model to a maximum to increase chances of adoption. The extension’s efficacy
was demonstrated through a case study which applies the CIRA method to a
DSO scenario. The case study was inspired by real-world incidents and presented
the application of metrics developed for real-world organizations to ensure its
realism. The case study presented one threat risk and three opportunity risks to
demonstrate the method’s applicability. Since the concept of threat risk is more
similar to the traditional concept of risk (i.e., an event with negative conse-
quences), the demonstration served the purpose of providing more details about
the concept of opportunity risk which has received relatively less attention pre-
viously. The artifact has been evaluated along several criteria, thus completing
an iteration within the DSR methodology’s design cycle. The evaluation has
also uncovered some limitations: lack of formal integration of the decision-maker
models (and attributes) into existing SGAM models using the Unified Modeling
Language (UML); the case study used for demonstration is hypothetical, since
access to real-world organizations is limited; the internal, qualitative evaluation
represents a weak form of evaluation.

6 Conclusions

The key contributions of this work are as follows: proposal of the SGAM-H
augmenting the original SGAM with the Human Layer to create a common
understanding among stakeholders operating in the SG ecosystem about the
importance of focusing on human-related risks, and to improve risk communica-
tion when the CIRA method is applied to SG scenarios. Furthermore, the study
contributes by presenting a fully worked-out example of CIRA’s application,
which may help students and practitioners in better understanding the method’s
procedures. Recent developments regarding CIRA have been incorporated into
the case study (e.g., use of BSC method, operationalization of motivational pro-
files, differentiation between various aspects of utility, propagation of errors, risk
treatment options) and the artifact is evaluated to identify its strengths and
weaknesses.

7 Further Work

This study focuses on intra-organizational risks where the CEO is assumed to
have the capability to mitigate the identified risks. However, the connection with
the other SGAM-layers ensures that relevant stakeholders can be identified from
any layer. Stakeholders from other organizations could be identified and elevated

SGAM Human Layer 107

from the business layer to analyze inter-organizational risks. Owners of informa-
tion or physical assets could be identified and elevated to the Human Layer,
where the existing connections between assets are inherited by the stakeholders,
enabling the identification and specification of strategies that are at the dis-
posal of the strategy owners. This procedure could be a significant step towards
replacing the analyst’s intuition for strategy identification (step 3). Development
of new tools would be required to increase the usability of the Human Layer
(e.g., inclusion of interactive functionality would improve user-experience and
risk communication capabilities). Furthermore, scalability could be improved
by additional software support to enable the representation of more stakehold-
ers on the Human Layer. Simulation-based analyses could be conducted by a
more completely populated SGAM model in which the effects of strategic deci-
sions could propagate through the system to simulate and analyze the reactions
of other entities (e.g., customers, competitors). Finally, the evaluation can be
improved by using more rigorous quantitative evaluation methods, independent
of the developers of the artifact (external evaluation). Field experiments with
practitioners, or students require the creation of training materials, while appli-
cation to real-world cases and expert evaluations can be useful to assess user
acceptance. It should be investigated how the general idea of a Human Layer
can be applied to other domains (e.g., e-health, transportation domains, etc.)
to improve understanding about deliberate human behavior and information
security risks.

Acknowledgements. We would like to thank the four anonymous reviewers whose
comments helped to improve the quality of the paper.

References

1. Anderson, R., Moore, T.: Information security: where computer science, economics
and psychology meet. Philos. Trans. Roy. Soc. A Math. Phys. Eng. Sci. 367(1898),
2717–2727 (2009)

2. Behr, M., et al.: A human model for road safety: from geometrical acquisition
to model validation with Radioss. Comput. Meth. Biomech. Biomedi. Eng. 6(4),
263–273 (2003)

3. Capin, T.K., Noser, H., Thalmann, D., Pandzic, I.S., Thalmann, N.M.: Virtual
human representation and communication in VLNET. IEEE Comput. Graphics
Appl. 17(2), 42–53 (1997)

4. CEN-CENELEC-ETSI Smart Grid Coordination Group: Smart grid reference
architecture (2012)

5. Cooper, A.: The inmates are Running the Asylum. Macmillan, London (1996)
6. Delgado, I., Aguado, I.: Report on common KPIs D1.4 r2. Project Demonstration

646531, The UPGRID Consortium, Brussels (2016). http://upgrid.eu/wp-content/
uploads/2018/01/151104 UPGRID WP1 D14 KPIs v14 final.pdf. Accessed 15
Apr 2020

7. Devine, W.D.: From shafts to wires: historical perspective on electrification. J.
Econ. Hist. 43(2), 347–372 (1983)

http://upgrid.eu/wp-content/uploads/2018/01/151104_UPGRID_WP1_D14_KPIs_v14_final.pdf
http://upgrid.eu/wp-content/uploads/2018/01/151104_UPGRID_WP1_D14_KPIs_v14_final.pdf

108 A. Szekeres and E. Snekkenes

8. Dragomir, D., Nölle, C., Stomff, S.: Stakeholders’ Requirements Analysis
Report - D3.1. Project Demonstration 318782, STARGRID project, Brussels
(2013). http://stargrid.eu/downloads/2014/07/STARGRID Stakeholders-Report
D3.1 v1.0 2013 10 11.pdf. Accessed 15 Apr 2020

9. European Parliament, Council of the European Union: Regulation (EU) 2016/679
of the European Parliament and of the Council (GDPR). Official Journal of
the European Union (2016), https://eur-lex.europa.eu/legal-content/EN/TXT/
HTML/?uri=CELEX:32016R0679#d1e40-1-1. Accessed 15 Apr 2020

10. Gagné, M., Deci, E.L.: Self-determination theory and work motivation. J. Organ.
Behav. 26(4), 331–362 (2005)

11. Gungor, V.C., et al.: Smart grid technologies: communication technologies and
standards. IEEE Trans. Industr. Inf. 7(4), 529–539 (2011)

12. Harder, W.J.: Key Performance Indicators for Smart Grids. Master’s thesis, Uni-
versity of Twente, 7522 Enschede, July 2017

13. Hevner, A.R.: A three cycle view of design science research. Scand. J. Inf. Syst.
19(2), 4 (2007)

14. Bichler, M.: Design science in information systems research. WIRTSCHAFTSIN-
FORMATIK 48(2), 133–135 (2006). https://doi.org/10.1007/s11576-006-0028-8

15. Hubbard, D., Evans, D.: Problems with scoring methods and ordinal scales in risk
assessment. IBM J. Res. Dev. 54(3), 2–1 (2010)

16. Hudlicka, E., Zacharias, G., Psotka, J.: Increasing realism of human agents by
modeling individual differences: Methodology, architecture, and testbed. In: Sim-
ulating Human Agents, American Association for Artificial Intelligence Fall 2000
Symposium Series, pp. 53–59 (2000)

17. Jürgensen, J.H., Nordström, L., Hilber, P.: A scorecard approach to track reliabil-
ity performance of distribution system operators. In: 23rd International Conference
on Electricity Distribution-CIRED Lyon, 15–18 June 2015. CIRED-Congrès Inter-
national des Réseaux Electriques de Distribution (2015)

18. Kaplan, R.S., Norton, D.P.: Putting the balanced scorecard to work. Econ. Impact
Knowl. 27(4), 315–324 (1998)

19. Lee, R., Assante, M., Conway, T.: Analysis of the cyber attack on the Ukrainian
power grid, Defense Use Case. Electricity Information Sharing and Analysis Center
(E-ISAC) 388 (2016)

20. Liu, P., Zang, W., Yu, M.: Incentive-based modeling and inference of attacker
intent, objectives, and strategies. ACM Trans. Inf. Syst. Secur. (TISSEC) 8(1),
78–118 (2005)

21. Martello, M., Watson, J.G., Fischer, M.J.: Implementing a balanced scorecard in
a not-for-profit organization. J. Bus. Econ. Res. (JBER) 6(9), 67–80 (2008)

22. McKenna, E., Richardson, I., Thomson, M.: Smart meter data: Balancing consumer
privacy concerns with legitimate applications. Energy Policy 41, 807–814 (2012)

23. Meurens, F., Summerfield, A., Nauwynck, H., Saif, L., Gerdts, V.: The pig: a model
for human infectious diseases. Trends Microbiol. 20(1), 50–57 (2012)

24. Moore, T.: The economics of cybersecurity: principles and policy options. Int. J.
Crit. Infrastruct. Prot. 3(3–4), 103–117 (2010)

25. Muir, A., Lopatto, J.: Final report on the august 14, 2003 blackout in the united
states and canada: causes and recommendations. US-Canada Power System Outage
Task Force, Canada (2004)

26. Müller-Hansen, F., et al.: Towards representing human behavior and decision mak-
ing in earth system models-an overview of techniques and approaches. Earth Syst.
Dyn. 8 (2017)

http://stargrid.eu/downloads/2014/07/STARGRID_Stakeholders-Report_D3.1_v1.0_2013_10_11.pdf
http://stargrid.eu/downloads/2014/07/STARGRID_Stakeholders-Report_D3.1_v1.0_2013_10_11.pdf
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679#d1e40-1-1
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679#d1e40-1-1
https://doi.org/10.1007/s11576-006-0028-8

SGAM Human Layer 109

27. Musharraf, M., Khan, F., Veitch, B.: Validating human behavior representation
model of general personnel during offshore emergency situations. Fire Technol.
55(2), 643–665 (2019)

28. National Research Council: Electricity in Economic Growth. The National
Academies Press, Washington, DC (1986). https://doi.org/10.17226/900, https://
www.nap.edu/catalog/900/electricity-in-economic-growth

29. NVE: KILE - kvalitetsjusterte inntektsrammer ved ikke levert energi, October
2019. https://www.nve.no/reguleringsmyndigheten/okonomisk-regulering-av-nett
selskap/om-den-okonomiske-reguleringen/kile-kvalitetsjusterte-inntektsrammer-
ved-ikke-levert-energi/, Accessed 15 Apr 2020

30. Pew, R.W., Mavor, A.S. (eds.): Representing Human Behavior in Military Simu-
lations: Interim Report. The National Academies Press, Washington, DC (1997).
https://doi.org/10.17226/5714, https://www.nap.edu/catalog/5714/representing-
human-behavior-in-military-simulations-interim-report

31. Prat, N., Comyn-Wattiau, I., Akoka, J.: A taxonomy of evaluation methods for
information systems artifacts. J. Manag. Inf. Syst. 32(3), 229–267 (2015)

32. Rajbhandari, L., Snekkenes, E.: Using the conflicting incentives risk analysis
method. In: Janczewski, L.J., Wolfe, H.B., Shenoi, S. (eds.) SEC 2013. IAICT,
vol. 405, pp. 315–329. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-39218-4 24

33. Sánchez-Ortiz, J., Garćıa-Valderrama, T., Rodŕıguez-Cornejo, V.: Towards a bal-
anced scorecard in regulated companies: a study of the Spanish electricity sector.
Electr. J. 29(9), 36–43 (2016)

34. Santodomingo, R., Uslar, M., Gottschlak, M., Goering, A., Nordstrom, L., Valden-
maiier, G.: The discern tool support for knowledge sharing in large smart grid
projects. CIRED Workshop (2016)

35. Schuh, G., Fluhr, J., Birkmeier, M., Sund, M.: Information system architecture
for the interaction of electric vehicles with the power grid. In: 2013 10th IEEE
International Conference on Networking, Sensing and Control (ICNSC), pp. 821–
825. IEEE (2013)

36. Selyukh, A.: NSA staff used spy tools on spouses, ex-lovers: watchdog. U.S, Septem-
ber 2013. https://www.reuters.com/article/us-usa-surveil-lance-watchdog/nsa-
staff-used-spy-tools-on-spouses-ex-lovers-watchdog-idUSBRE98Q14G20130927

37. Snekkenes, E.: Position paper: privacy risk analysis is about understanding con-
flicting incentives. In: Fischer-Hübner, S., de Leeuw, E., Mitchell, C. (eds.) IDMAN
2013. IAICT, vol. 396, pp. 100–103. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-37282-7 9

38. Stassen, H.G., Johannsen, G., Moray, N.: Internal representation, internal model,
human performance model and mental workload. Automatica 26(4), 811–820
(1988)

39. Szekeres, A., Snekkenes, E.A.: Predicting CEO misbehavior from observables:
comparative evaluation of two major personality models. In: Obaidat, M.S. (ed.)
ICETE 2018. CCIS, vol. 1118, pp. 135–158. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-34866-3 7

40. Szekeres, A., Snekkenes, E.A.: Construction of human motivational profiles by
observation for risk analysis. IEEE Access 8, 45096–45107 (2020)

41. Szekeres, A., Wasnik, P.S., Snekkenes, E.A.: Using demographic features for the
prediction of basic human values underlying stakeholder motivation. In: Proceed-
ings of the 21st International Conference on Enterprise Information Systems, vol-
ume 2: ICEIS, pp. 377–389. INSTICC, SciTePress (2019)

https://doi.org/10.17226/900
https://www.nap.edu/catalog/900/electricity-in-economic-growth
https://www.nap.edu/catalog/900/electricity-in-economic-growth
https://www.nve.no/reguleringsmyndigheten/okonomisk-regulering-av-nettselskap/om-den-okonomiske-reguleringen/kile-kvalitetsjusterte-inntektsrammer-ved-ikke-levert-energi/
https://www.nve.no/reguleringsmyndigheten/okonomisk-regulering-av-nettselskap/om-den-okonomiske-reguleringen/kile-kvalitetsjusterte-inntektsrammer-ved-ikke-levert-energi/
https://www.nve.no/reguleringsmyndigheten/okonomisk-regulering-av-nettselskap/om-den-okonomiske-reguleringen/kile-kvalitetsjusterte-inntektsrammer-ved-ikke-levert-energi/
https://doi.org/10.17226/5714
https://www.nap.edu/catalog/5714/representing-human-behavior-in-military-simulations-interim-report
https://www.nap.edu/catalog/5714/representing-human-behavior-in-military-simulations-interim-report
https://doi.org/10.1007/978-3-642-39218-4_24
https://doi.org/10.1007/978-3-642-39218-4_24
https://www.reuters.com/article/us-usa-surveil-lance-watchdog/nsa-staff-used-spy-tools-on-spouses-ex-lovers-watchdog-idUSBRE98Q14G20130927
https://www.reuters.com/article/us-usa-surveil-lance-watchdog/nsa-staff-used-spy-tools-on-spouses-ex-lovers-watchdog-idUSBRE98Q14G20130927
https://doi.org/10.1007/978-3-642-37282-7_9
https://doi.org/10.1007/978-3-642-37282-7_9
https://doi.org/10.1007/978-3-030-34866-3_7
https://doi.org/10.1007/978-3-030-34866-3_7

110 A. Szekeres and E. Snekkenes

42. Taylor, J.R.: An introduction to error analysis: The study of uncertainties in phys-
ical measurements. University Science Books, Sausalito, California (1997)

43. Uslar, M., Engel, D.: Towards generic domain reference designation: How to learn
from smart grid interoperability. DA-Ch Energieinformatik 1, 1–6 (2015)

44. Uslar, M., et al.: Applying the smart grid architecture model for designing and vali-
dating system-of-systems in the power and energy domain: a European perspective.
Energies 12(2), 258 (2019)

45. Uslar, M., Rosinger, C., Schlegel, S.: Security by design for the smart grid: com-
bining the SGAM and NISTIR 7628. In: 2014 IEEE 38th International Computer
Software and Applications Conference Workshops, pp. 110–115. IEEE (2014)

46. Uslar, M., Trefke, J.: Applying the smart grid architecture model SGAM to the
EV domain. In: EnviroInfo, pp. 821–826 (2014)

47. Waterman, R.W., Meier, K.J.: Principal-agent models: an expansion? J. Public
Adm. Res. Theor. 8(2), 173–202 (1998)

48. Weishäupl, E., Yasasin, E., Schryen, G.: Information security investments: an
exploratory multiple case study on decision-making, evaluation and learning. Com-
put. Secur. 77, 807–823 (2018)

Breaking the Cyber Kill Chain by
Modelling Resource Costs

Kristian Haga1 , Per H̊akon Meland1,2(B) , and Guttorm Sindre1

1 Norwegian University of Science and Technology, Trondheim, Norway
{kristian.haga,per.hakon.meland,guttorm.sindre}@ntnu.no

2 SINTEF Digital, Trondheim, Norway
per.h.meland@sintef.no

https://www.ntnu.no/

https://www.sintef.no/

Abstract. To combat cybercrime, a clearer understanding of the attacks
and the offenders is necessary. When there is little available data about
attack incidents, which is usually the case for new technology, one can
make estimations about the necessary investments an offender would
need to compromise the system. The next step would be to implement
measures that increase these costs to a level that makes the attack
unattractive. Our research method follows the principles of design sci-
ence, where cycles of research activities are used to create artefacts
intended to solve real-world problems. Our artefacts are an approach
for creating a resource costs model (RCM) and an accompanying mod-
elling tool implemented as a web application. These are used to find
the required attacker resources at each stage of the cyber kill chain. End
user feedback show that structured visualisation of the required resources
raises the awareness of the cyberthreat. This approach has its strength
and provides best accuracy with specific attacks, but is more limited
when there are many possible attack vectors of different types.

Keywords: Cyber kill chain · Costs · Resources · Profiling · Attack
tree

1 Introduction

As our use of technology in almost every aspect of life steadily increases, so
does our exposure to cybercrime. To combat this growing form of criminality, a
clearer understanding of the costs, benefits and attractiveness of cyberattacks is
necessary [18]. This is in accordance with Routine Active Theory [5], extended
to include cybercrime [6,8], which states that crime will occur when all of the
following four conditions are met: There exist an 1) accessible and attractive
target, 2) the absence of a capable guardian and the presence of 3) a motivated
offender with 4) the resources required to commit the crime. For the latter case, it
is not just a question of technical skills, but also a requirement that the offender

c© Springer Nature Switzerland AG 2020
H. Eades III and O. Gadyatskaya (Eds.): GraMSec 2020, LNCS 12419, pp. 111–126, 2020.
https://doi.org/10.1007/978-3-030-62230-5_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62230-5_6&domain=pdf
http://orcid.org/0000-0001-9688-7029
http://orcid.org/0000-0002-5509-0184
http://orcid.org/0000-0001-5739-8265
https://doi.org/10.1007/978-3-030-62230-5_6

112 K. Haga et al.

is able to invest in software development and hardware acquisition, as well as
the time it takes to plan, prepare and perform the attack. Alternatively, the
offender could bribe an insider or hire someone else to do it through cybercrime-
as-a-service [21] being offered by third parties.

We hypothesize that during threat analysis, it is possible to reduce the com-
plexity of the resource requirement to a monetary concern, complemented by a
limited set of attacker characteristics. This will allow us to identify the potential
offenders and come up with technical and non-technical mitigations that will
significantly increase the attacker costs.

The contribution of this paper is a modelling approach that maps resource
costs to each stage of a cyberattack, and derives the total cost of the attack.
We have utilized principles from Schneier’s attack trees [32] and the Lockheed
Martin’s cyber kill chain [13], both already widely known in the security commu-
nity, to structure this approach. A dedicated prototype tool has been developed
to simplify and visualise this process, and we have completed the first rounds
of iterative evaluation among experts. This tool is able to show calculations
interactively and extract potential offenders based on a built-in library from
available cybercriminal profile literature. Our goal is to improve the accuracy
of threat analysis, and especially increase the understanding and awareness of
cyberthreats among sectorial domain stakeholders.

This paper is structured as follows. Section 2 gives an overview of background
knowledge and literature, and Sect. 3 explains our method. Results are given in
Sect. 4, which are discussed in the light of evaluations in Sect. 5. Finally, Sect. 6
concludes the paper.

2 Background

2.1 The Cyber Kill Chain

Already in 1998, Meadows [23] presented a way of dividing attacks into different
stages or phases to make visual representation easier. The next stage would not
commence before the previous one had completed, and she used different colours
to represent the assumed difficulty of each stage. The stages were not predeter-
mined, but varied according to the nature of the attack. Later on, McQueen
et al. [22] defined a set of five fixed stages, reconnaissance, breach, penetrate,
escalation and damage, which were then modelled as a compromise graph in
order to find the weakest link(s) in the attack path based on expected time-
to-compromise. Hutchins et al. [14] describe different phase-based models from
military usage (countering terrorist attacks) and the information security field
(between 2008–2010), and present their own version nicked the intrusion kill
chain. This model was later on renamed and branded as the cyber kill chain [13]
by Lockheed Martin, and has proven to be widely popular among defenders of
IT and enterprise networks [1]. The seven stages of the cyber kill chain are:

Reconnaissance: Research, identification and selection of target.

Breaking the Cyber Kill Chain 113

Weaponization: Coupling a malware (e.g. remote access trojan) with
an exploit into a deliverable payload, e.g. a media file.

Delivery: Transmission of the weapon to the targeted environment, e.g.
an email attachment or USB-drive.

Exploitation: Triggers malicious code. Ranges from auto-executing
within the host’s operating system to users triggering execution.

Installation: Installation of the malware on the victim system, allowing
the adversary to maintain presence inside the environment.

Command and Control (C2): Establishes a channel for the adversary
to access the target environment.

Actions on Objectives: Complete attack objectives, such as data
extraction, establish hop point, break integrity or make system unavail-

able.

According to Hahn et al. [10], a developed cyber kill chain provides the basis
for a “systematic study of how the various cyberattack steps and phases can
perturb the system layers and eventually impact physical operations”. This is
subsequently used in their analysis framework to develop security properties and
design systems resilient to cyberattacks. As shown by Pols [27], there are many
variants of the kill chain found in the literature. Some with different stage types
and others with up to eighteen different stages. We chose to focus our work on
the original seven stage cyber kill chain due to its popularity.

2.2 Attack Tree Cost Modelling

Attack trees are acyclic graphs used to model threats from the viewpoint of the
perpetrator. Schneier’s original attack tree paper [32] showed how different costs
could be assigned to alternative leaf nodes and how these propagated to define
the cheapest way of attack. A fundamental paradigm for this kind of modelling is
the assumption of a rational attacker [3], meaning that 1) there will be no attack
if the attack is unprofitable and 2) the attacker chooses the most profitable way
of attacking.

There have also been several approaches where costs are used in combination
with other attributes. For instance, Buldas et al. [3] include costs, gains, penalties
and associated probability values. Further examples of different attributes and
references to papers that utilize costs in attack trees is given by Bagnato et al.
[2]. Having more attributes enables additional ways of analysing attack trees, for
instance Kumar et al. [19] show how to find the minimum time to complete an
attack given a specific budget. Jensen et al. [15] present an approach where cost
is a function of time instead of a constant cost per atomic attack attempt. Still,
the major challenge of assigning accurate attribute values to attack tree nodes
is difficult to overcome as attacker-specific information tends to be based on a
best guess [31].

114 K. Haga et al.

A comprehensive overview of more than thirty attack and defence modelling
approaches based on directed acyclic graphs can be found in a survey paper by
Kordy et al. [17]. A more recent survey focusing on fault and attack trees has
been published by Nagaraju et al. [24].

2.3 Cybercriminal Profiling

Shinder and Tittel [33] define a profile to be a set of characteristics likely to
be shared by criminals who commit a certain type of crime. The use of profiles
during criminal investigations can be traced several hundred years back in time,
and though this is not an exact science, Nykodym et al. [25] argue that the
track record legitimates the concept. However, they also argue that attackers
have more advantages in a cyber setting as they do not have to be physically
present at the crime scene.

The two main methods for profiling are known as inductive and deductive
[37]. In the former, a profile database is developed based on information from
already committed crime, and offender characteristics are correlated with types
of crime. In the latter, forensics evidence is gathered from the crime scene and
used to deduce the characteristics of the offender. Most of the established litera-
ture comes from the digital forensics field and relates to deductive profiling. We
have been mostly interested in inductive profiling as a tool to identify potential
offenders before any crime is actually committed. Furthermore, it is well estab-
lished that likely offenders have motive, means and opportunity (MMO) [26,35]
before committing any crime. As attacker costs belongs to the means charac-
teristic, the literature becomes more limited. Warikoo et al. [37] have capability
factor as one of their six profile identification metrics, where available resources
for e.g. purchasing malware belongs. Preuß et al. [28] created a small set of pro-
files based on twelve cybercrime cases between 1998 and 2004. Due to the limited
sample size, they could not create a structured set of attributes for these, but
found that the principle of minimum costs and maximum results were present in
all. Casey [4] presents a threat agent library of archetypal cybercriminal agents
where resources is one of the eight attributes defining them. Casey’s work is used
to define Attack Resource Level in the cyberthreat exchange format STIX [16].

3 Method

Our research method follows the principles of design science, supporting a prag-
matic research paradigm where artefacts are created to solve real-world prob-
lems by cycling through research activities related to relevance, design and rigor
[11,34]. The problem we try to address is the challenge of quantifying cyberrisks
when there is little reliable historical data about attacks. Our artefacts are 1)
an approach for creating a resource costs model (RCM), that is used to find the
required attacker investments at each stage of the cyber kill chain and 2) an
accompanying modelling tool implemented as a web application.

Breaking the Cyber Kill Chain 115

As a part of the relevance cycle, we initially worked with opportunities and
problems related to cybersecurity for maritime shipping. We analysed typical
vulnerabilities and threats towards eNavigation systems, and made cost estima-
tions for attacking the various underlying technology modules.

During the rigor cycle, past knowledge, as presented in Sect. 2, was examined
and we chose to build on practices that already had a significant uptake among
practitioners.

Most central to design science research is the design cycle, consisting of arte-
fact construction, evaluation and refinements based on feedback. Initially, we
applied “pen-and-paper” variants of the RCM and validated the expressiveness
by constructing models of known cyberattacks towards maritime systems. The
second iteration produced a minimum viable product (MVP) of the tool. Ries
[29] defines a MVP as the version of a new product which allows developers to
collect the maximum amount of validated learning about customers with the
least effort. Our MVP consisted of an info page tutorial and functionality for
building basic resource costs models for each attack phase. For the evaluation
we recruited eight security experts who modelled a specific use case. These were
observed during modelling and debriefed afterwards. The third iteration added
the cybercriminal profiling feature, improved the user interface, as well as tweak-
ing flawed features and functions. This evaluation included another eight security
professional from the industry and two maritime domain experts.

4 Results

4.1 The Resource Costs Model

In a resource cost model (RCM), each stage in the cyber kill chain represents
the root node of a resource tree, depicted in Fig. 1, which is similar in structure
to an attack tree.

Fig. 1. A resource tree for a single cyber kill chain stage

116 K. Haga et al.

The second level of the tree defines which resource types are required to
complete the parent stage. At this level, all nodes have a conjunctive (AND)
relationship since an attack would require all necessary resources. A resource
can belong to five different classes:

Skill: Includes domain knowledge, malware development abilities or util-
isation of cybercrime tools or guides.

Tangible: Necessary hardware components or other physical objects.
This can range from advanced technology to soldering tools.

Logic: Commercially available software, data sets or cybercrime tools or
services.

Logic-atomic: Necessary resources that cannot be broken into smaller
parts, e.g. an IP-address, email address or a password.

Behavioral: Actions that must be conducted as a part of the attack, for
instance bribing, sending out phishing emails or social engineering.

The third level in the tree, resource alternatives, are disjunctive (OR) leaf
nodes that present ways to realize their parent resource class. Each resource
alternative is associated with a cost interval and a confidence value. A confidence
close to zero communicates that there is little evidence to support the stated
cost interval. At the other end of the scale, a confidence of 1 means that there
is exhaustive evidence to back the stated cost interval and that the price of the
resource is not subject to great variation.

We can express the total cost interval of the attack T formally by stating
that all resources Rj need to have a valid set V of resource alternatives. Let α
represent the minimum estimated cost of the cheapest resource alternative and
β represent maximum cost of the most expensive resource alternative. From this
we can derive the following:

T = [(min cost =
∑

stage ∈
kill chain

∑

i∈V

αi), (max cost =
∑

stage ∈
kill chain

∑

i∈V

βi)] (1)

By letting φ be the average confidence of the n resource alternatives asso-
ciated with a resource Rj and ci is the confidence of a resource alternative i
associated with Rj , we get the following associated confidence C of the total
cost:

φj =

∑
i∈Rj

ci

n
(2)

C =
∏

stage ∈
kill chain

∏

R

φj (3)

Breaking the Cyber Kill Chain 117

In order to mitigate an attack, at least a one of the resources throughout
the cyber kill chain must be made too expensive for the adversary. However, the
adversary only needs a single resource alternative for each of the resources.

4.2 The IRCM Tool

To validate the modelling approach, we have built an interactive installation of
the model in the form of a web application called Interactive Resource Cost Model
(IRCM) tool. This allows the users to model cyberattacks of their choosing, while
concurrently deriving the total cost of the attack and probable cybercriminal
profiles able to conduct it. An example screenshot from a single resource tree is
shown in Fig. 2, while a screenshot of the RCM for the complete cyber kill chain
is included in AppendixA.

Fig. 2. A screenshot resource tree from the reconnaissance stage

These examples are taken from the maritime domain, where the Electronic
Chart Display and Information System (ECDIS) is a central component for ship
navigation. It displays the vessels position on a chart and integrates information
from a number of sensors, such as radar, gyro, GNSS, echo sounder, weather mea-
surements and the anti-collision systems. Malicious manipulation of this position
could cause confusion on the ship bridge and potential course alteration could
lead to collisions in congested waters [38]. The examples are loosely based on
the demonstrated attack against an air-gapped ECDIS system by Lund et al.
[20]. This attack was also structured according to the cyber kill chain, but in
contrast to an external attack, it was conducted in cooperation with the Royal
Norwegian Navy. Also, no information about resource costs were given, so here
we have made our own estimations.

As can be seen in Fig. 2, there are four resources defined for the reconnais-
sance stage. The first one, ECDIS documentation, is a tangible class, and the
alternatives are to either purchase the documentation from the vendor legally,
or steal it. The second resource is another tangible class, and represents an oper-
ational ECDIS unit that can be used to analyse its operating system, software
and network traffic. It can be realized in different ways, by purchasing a unit

118 K. Haga et al.

from vendor or the black market, or running it as a software simulation. These
alternatives vary in price, from relatively cheap software (where you pay accord-
ing to sailing route) to more expensive hardware units in the range of $10 000 -
$30 000. The third resource is of class logic-atomic, and represents information
about the ship inventory used to determine which type and where the ECDIS
units are installed. To simplify the model, only a single bribe insider alternative
is used. The final resource is also of type skill, and represents required knowledge
about vulnerabilities gained through scanning and testing.

Both resources and resource alternatives are created by using the tool input
data forms. An example screenshot for the ECDIS resource alternative purchased
from vendor is shown in Fig. 3.

Fig. 3. A screenshot from the resource alternative window

The tool has a built-in database of cybercriminal profiles that the
model inductively retrieves candidates from. This database is summarized in
AppendixB and has been based on profile definitions we have found in the liter-
ature [4,16,30,37]. We found out that mapping total attack cost with assumed
wealth was not a very useful way of doing this. The wealthiest attacker is not

Breaking the Cyber Kill Chain 119

always the most likely one, and attackers have more than one characterizing
dimension. Therefore, the tool is able to exclude improbable attacker profiles
from the database based on optional information that is assigned to the resources
in the RCM. The exclusion rules are based on the following:

– Total minimal cost exceeds the financial capacities of the profile [no cost, low,
medium, high].

– The accumulated time to require all resources exceed its motivational limit
[no time, low, medium, high].

– Any resource alternative that requires a higher technical skill level than the
profile possesses [none, minimal, operational, adept].

– Any resource that requires moral limits to be broken [legally, illegally].
– Any resource that require an access level the profile does not possess [internal,

external].

The extended ECDIS attack example in AppendixA shows aggregated model
information based on input contained in the individual resource tree for each
attack stage. The cost interval has a broad range, mostly due to the choice
of purchasing ECDIS hardware unit versus other cheaper alternatives in both
the reconnaissance and delivery stages. Besides from these, the overall resource
costs related to tangible and skill are relatively low. By analysing the model, we
find that there are significant costs related to the delivery stage as the attacker
would need physical presence at the ship and gain access to the bridge or bribe
an insider. It is the air-gapping of the ECDIS that provides the main security
measure by making delivery costly. When considering opening up for online soft-
ware and chart updates, it is clear that additional secure measures will be needed
to preserve an expensive attack vector. The confidence value is also very low,
but would have been much higher if we had modelled the attack with a spe-
cific ECDIS unit in mind where costs are more certain. Also, a higher number
of resources will automatically yield a lower confidence, which is natural since
acquiring many resources increases uncertainty. The main benefit of the confi-
dence is for attack comparison, which is not shown in these examples. Given the
various exclusion rules that have been applied to the model, the most proba-
ble attacker profile in this case is cyber warrior (described in AppendixB). The
cyber warrior profile is not limited by financial requirements of this attack, has
a high technical skill level and has little concern for moral limits.

5 Discussion

Hong and Kim [12] have pointed to the inherit challenge with graph-based attack
models, namely the ability to scale. A purely tree-based model will generate
large, bewildering attack trees for complex attacks. In turn, this creates a conflict
between analysis and comprehensibility [7]. Hence, some sort of decomposition is
needed. We chose to combine two modelling techniques to amplify their advan-
tages and overcome some of their shortcomings. The cyber kill chain allows us

120 K. Haga et al.

to divide the attack into seven consecutive steps, and by breaking the chain in
the early stages we don’t have to embellish the later ones. The relatively small
resource tree for each of the stages breaks down composite resource requirements
into atomic ones, which can be more accurately estimated. This was the main
takeaway from the first iteration of the design cycle. Secondly, we experienced
that deriving a cost interval, rather than a single estimate, provides more confi-
dent information regarding the availability of an attack. A cheap, more available
resource alternative set may provide a less stealthy attack than an expensive
alternative. By determining both the minimum and maximum cost, we include
both the risk willing and risk averse offenders. A large cost interval does not nec-
essarily imply an inaccurate cost estimate, but rather that the evaluated attack
can be carried out with a wide span of sophistication and possible impact on the
target.

The second iteration involved eight expert end users from a research institute
who were observed using the MVP of the tool and debriefed afterwards. Seven
out of these eight expressed that the main difficulty was to understand the
difference between resource and resource alternative in the models. We were also
able to observe that classifying resources was not straightforward, and the users
spent some time navigating between the information page and the modelling
interface to check definitions and the tutorial example. Both of these issues
improved quickly with hands-on experience and by refining the info page. It was
stated during the debrief that “especially interesting is the fact that making
only a single resource unavailable, thus breaking the kill chain, will mitigate the
entire attack” and all independently agreed that the structured visualisation of
the required resources would raise the awareness of the cyberthreat. Some also
expressed that many of the resources are impossible to make unavailable, which
is true of course. In the MVP, we used attack trees as the tree structure term, and
this caused some confusion since the RCM focus on resource required to perform
the attack and not the attack actions, hence we changed this to resource tree.

The third iteration had a focus on inducing criminal profiles from the models
and made several improvements to the MVP. We recruited eight profession-
als from the security industry and two maritime domain experts as end users.
Feedback showed that the approach improves the understanding of attacks. The
cheapest attack options were considered the most probable, which is helpful
when identify mitigation efforts. One of the domain experts encouragingly com-
mented: “It is still a lot of guesswork, but it is systematic guesswork”. Being able
to document and provide traceability to threat estimations is vital for industries
which require safety and security certification of components. More details of
these evaluations can be found in the report by Haga [9]. Parallel to this, Walde
and Hanus [36] successfully employed the RCM to plan the purchase of necessary
components in order to demonstrate a GNSS spoofing attack.

Breaking the Cyber Kill Chain 121

As already mentioned, the wealthiest attacker is not always the most likely
one, therefore we are using five identifying attributes as exclusion rules. A known
limitation is that none of these say much about the motive of the offender, that
is why she would commit the crime. This has been out of our scope, but could be
extended by looking at the attack impact and attacker reward. Those consider-
ations would have to be determined on a case-by-case basis, requiring additional
knowledge dimensions. There is a general criticism towards the cyber kill chain
that it focuses too much on the perimeter and malware attack vector [27], and
we have seen supportive evidence of that too. Therefore, future improvements
could be to include other sets of stages more suitable to describe attacks such
as for instance related to social engineering, denial-of-service or code injection.

6 Conclusion

Through the iterative nature of design science we have made many improvements
to the RCM modelling approach and the accompanying tool. However, we still
consider this work to be in progress with many potential improvements related
to usefulness and usability. We are also planning to extend the user testing and
evaluation, particularly in the field of maritime cybersecurity, but also in other
domains to ensure that the artefacts could have a wider usage than just the
maritime context. Nevertheless, there is no silver bullet to threat modelling.
We are trying to address the real-world problem of missing historical incident
data, which is a particular concern for new technology. Attacker costs is one
aspect that could be useful during threat estimations, but this must be seen
in combination with possible attacker reward as well. In addition, defence costs
must be compared with possible loss to make an overall risk assessment.

The RCM has its strength and provides best accuracy with specific attacks;
when there are few resources and resource alternatives. Hence, we would not rec-
ommend this approach when you want to represent attacks with many possible
attack vectors of different types. In such cases, several RCMs could be created
and compared, but this quickly becomes a tedious task. As always, the analyst
should choose the right tool for the job at hand.

Acknowledgment. The research leading to these results has partially been performed
by the Cyber Security in Merchant Shipping Service Evolution (CySiMS-SE) project,
which received funding from the Research Council of Norway under Grant No. 295969.

A Tool screenshots

See Figs. 4 and 5.

122 K. Haga et al.

Fig. 4. A screenshot from the first three stages; Reconnaissance, Weaponization and
Delivery.

Breaking the Cyber Kill Chain 123

Fig. 5. A screenshot from the last four stages; Exploitation, Installation, Command
and Control and Actions on Objectives

124 K. Haga et al.

B Cybercriminal profiles

Script kiddie (SK) has a low level of motivation, thus time consuming
attacks are not attractive to this profile. The technical skills are limited

to minimal and the profile only accepts a minimal cost. Script kiddies will only
utilize resources that can be realized legally and have external access.

Hacktivist (H) has a medium to high level of motivation anchored in the
political cause they represent, thus they may conduct time consuming, tar-

geted attacks. The technical skills of a hacktivist is limited to minimal. In order
to fight for their cause, the hacktivist accepts some expenses. The hacktivist is
willing to require resources illegally and have external access level.

Vandal (V) has a low to medium motivation and will only invest a limited
amount of time in attention seeking attacks. The technical skills of the

vandal is limited to minimal and the profile accepts a low cost. Vandals will
only utilize resources that can be realized legally and have external access.

Petty criminal (PC) has a medium motivation level, willing to invest
some time in attacks that bring financial gain. They possess operational

technical skills and accepts a medium cost. The petty criminal is willing to
require resources illegally and has external access level.

Mobster (M) has a medium to high level of motivation given that finan-
cial gain is possible, thus they may conduct time consuming attacks. The

technical skills are operational and the profile accepts costly attacks. Mobsters
won’t second guess illegal resources and have external access level.

Cyberwarrior (CW) is a state-sponsored actor with a high motivation
level, thus will conduct persistent, highly time consuming attacks. The

cyberwarrior has adept technical skills for launching any attack. In addition,
the cyberwarrior is not limited by any costs and disposes resources that may be
required illegally. As an immediate result of the adept skill level, the cyberwarrior
has internal access.

Terrorist (T) tends to be highly motivated and well-funded, thus
can conduct time consuming and costly cyberattacks to front beliefs.

The technical skills are limited to minimal. The Terrorist is willing to require
resources illegally and have external access level.

Internal - Hostile (IN-H) has a medium motivation level and may launch
attacks that require some time. The profile knows the system well, which

yields an operational technical skill. Some expenses are acceptable, limited to
legally acquired resources. Internals have internal access level by default.

Internal - Non-hostile (IN-NH) launces cyberattacks by accident,
thus not motivated at all to invest any time or money in a cyberattack

and will only possess resources that can be legally realized. Given that accidental
cyberattacks are possible yields an operational skill level and an internal access
level.

Breaking the Cyber Kill Chain 125

References

1. Assante, M.J., Lee, R.M.: The industrial control system cyber kill chain. SANSIn-
stitute InfoSec Reading Room 1 (2015)

2. Bagnato, A., Kordy, B., Meland, P.H., Schweitzer, P.: Attribute decoration of
attack-defense trees. Int. J. Secure Softw. Eng. (IJSSE) 3(2), 1–35 (2012)

3. Buldas, A., Laud, P., Priisalu, J., Saarepera, M., Willemson, J.: Rational choice
of security measures via multi-parameter attack trees. In: Lopez, J. (ed.) CRITIS
2006. LNCS, vol. 4347, pp. 235–248. Springer, Heidelberg (2006). https://doi.org/
10.1007/11962977 19

4. Casey, T.: Threat agent library helps identify information security risks. Intel
White Paper 2 (2007)

5. Cohoen, L.E., Felson, M.: Social change and crime rate trends: a routine activity
approach. Am. Sociol. Rev. 44(4), 588–608 (1979)

6. Ekblom, P., Tiley, N.: Going equipped. Br. J. Criminol. 40(3), 376–398 (2000)
7. Gadyatskaya, O., Trujillo-Rasua, R.: New directions in attack tree research: catch-

ing up with industrial needs. In: Liu, P., Mauw, S., Stølen, K. (eds.) GraMSec
2017. LNCS, vol. 10744, pp. 115–126. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-74860-3 9

8. Grabosky, P.N.: Virtual criminality: old wine in new bottles? Soc. Legal Stud.
10(2), 243–249 (2001)

9. Haga, K.: Breaking the cyber kill chain by modelling resource costs. Master’s thesis,
NTNU, Trondheim, Norway (2020)

10. Hahn, A., Thomas, R.K., Lozano, I., Cardenas, A.: A multi-layered and kill-chain
based security analysis framework for cyber-physical systems. Int. J. Crit. Infras-
truct. Prot. 11, 39–50 (2015)

11. Hevner, A., Chatterjee, S.: Design science research in information systems. In:
Design Research in Information Systems, pp. 9–22. Springer, Boston (2010).
https://doi.org/10.1007/978-1-4419-5653-8 2

12. Hong, J.B., Kim, D.S.: Performance analysis of scalable attack representation mod-
els. In: Janczewski, L.J., Wolfe, H.B., Shenoi, S. (eds.) SEC 2013. IAICT, vol.
405, pp. 330–343. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
39218-4 25

13. Hutchins, E.M.: The cyber kill chain. Technical report, Lockheed Mar-
tin (2020). https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-
chain.html. Accessed 12 Apr 2020

14. Hutchins, E.M., Cloppert, M.J., Amin, R.M.: Intelligence-driven computer network
defense informed by analysis of adversary campaigns and intrusion kill chains.
Leading Issues Inf. Warfare Secur. Res. 1(1), 80 (2011)

15. Jensen, P.G., Larsen, K., Legay, A., Poulsen, D.: Quantitative evaluation of attack
defense trees using stochastic timed automata. In: International Workshop on
Graphical Models for Security, pp. 75–90. HAL Id: hal-01640091 (2017)

16. Jordan, B., Piazza, R., Wounder, J.: Stix version 2.0. part 1: Stix core concepts.
Technical report, OASIS Committee Specifications 01 (2017) http://docs.oasis-
open.org/cti/stix/v2.0/stix-v2.0-part1-stix-core.html. Accessed 13 Apr 2020

17. Kordy, B., Piètre-Cambacédès, L., Schweitzer, P.: Dag-based attack and defense
modeling: don’t miss the forest for the attack trees. Comput. Sci. Rev. 13, 1–38
(2014)

18. Kshetri, N.: The simple economics of cybercrimes. IEEE Secur. Privacy 4(1), 33–39
(2006)

https://doi.org/10.1007/11962977_19
https://doi.org/10.1007/11962977_19
https://doi.org/10.1007/978-3-319-74860-3_9
https://doi.org/10.1007/978-3-319-74860-3_9
https://doi.org/10.1007/978-1-4419-5653-8_2
https://doi.org/10.1007/978-3-642-39218-4_25
https://doi.org/10.1007/978-3-642-39218-4_25
https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html
https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html
http://docs.oasis-open.org/cti/stix/v2.0/stix-v2.0-part1-stix-core.html
http://docs.oasis-open.org/cti/stix/v2.0/stix-v2.0-part1-stix-core.html

126 K. Haga et al.

19. Kumar, R., Ruijters, E., Stoelinga, M.: Quantitative attack tree analysis via priced
timed automata. In: Sankaranarayanan, S., Vicario, E. (eds.) FORMATS 2015.
LNCS, vol. 9268, pp. 156–171. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-22975-1 11

20. Lund, M.S., Hareide, O.S., Jøsok, Ø.: An attack on an integrated navigation sys-
tem. NECESSE 3(2), 149–163 (2018)

21. Manky, D.: Cybercrime as a service: a very modern business. Comput. Fraud Secur.
2013(6), 9–13 (2013)

22. McQueen, M.A., Boyer, W.F., Flynn, M.A., Beitel, G.A.: Quantitative cyber risk
reduction estimation methodology for a small scada control system. In: Proceedings
of the 39th Annual Hawaii International Conference on System Sciences (HICSS
2006), vol. 9, pp. 226–226. IEEE (2006)

23. Meadows, C.: A representation of protocol attacks for risk assessment. In: Pro-
ceedings of the DIMACS Workshop on Network Threats, pp. 1–10 (1998)

24. Nagaraju, V., Fiondella, L., Wandji, T.: A survey of fault and attack tree modeling
and analysis for cyber risk management. In: 2017 IEEE International Symposium
on Technologies for Homeland Security (HST), pp. 1–6. IEEE (2017)

25. Nykodym, N., Taylor, R., Vilela, J.: Criminal profiling and insider cyber crime.
Comput. Law Secur. Rev. 21(5), 408–414 (2005)

26. Pendse, S.G.: Ethical hazards: a motive, means, and opportunity approach to curb-
ing corporate unethical behavior. J. Bus. Ethics 107(3), 265–279 (2012)

27. Pols, P.: The unified kill chain: Designing a unified kill chain for analyzing, com-
paring and defending against cyber attacks. Cyber Security Academy (2017)

28. Preuß, J., Furnell, S.M., Papadaki, M.: Considering the potential of criminal pro-
filing to combat hacking. J. Comput. Virol. 3(2), 135–141 (2007)

29. Ries, E.: The lean startup : how constant innovation creates radically successful
businesses. Portfolio Penguin (2011)

30. Rogers, M.K.: The psyche of cybercriminals: a psycho-social perspective. In: Ghosh,
S., Turrini, E. (eds.) Cybercrimes: A Multidisciplinary Analysis, pp. 217–235.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-13547-7 14

31. Saini, V., Duan, Q., Paruchuri, V.: Threat modeling using attack trees. J. Comput.
Sci. Colleges 23(4), 124–131 (2008)

32. Schneier, B.: Attack trees. Dr. Dobb’s J. 24(12), 21–29 (1999)
33. Shinder, D.L., Tittel, E.: Chapter 3 - understanding the people on the scene. In:

Scene of the Cybercrime, pp. 93–146. Syngress, Burlington (2002)
34. Simon, H.A.: The Sciences of the Artificial, 3rd edn. MIT Press, Cambridge (1996)
35. Van Ruitenbeek, E., Keefe, K., Sanders, W.H., Muehrcke, C.: Characterizing the

behavior of cyber adversaries: the means, motive, and opportunity of cyberattacks.
In: 40th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks Supplemental (DSN 2010), pp. 17–18 (2010)

36. Walde, A., Hanus, E.G.: The feasibility of AIS- and GNSS-based attacks within
the maritime industry. Master’s thesis, NTNU, Trondheim, Norway (2020)

37. Warikoo, A.: Proposed methodology for cyber criminal profiling. Inf. Secur. J.
Global Perspect. 23(4–6), 172–178 (2014)

38. Wingrove, M.: Security flaws open ECDIS to cyber crime. Technical report, Riv-
iera (2018). https://www.rivieramm.com/opinion/opinion/security-flaws-open-
ecdis-to-cyber-crime-24334. Accessed 20 Apr 2020

https://doi.org/10.1007/978-3-319-22975-1_11
https://doi.org/10.1007/978-3-319-22975-1_11
https://doi.org/10.1007/978-3-642-13547-7_14
https://www.rivieramm.com/opinion/opinion/security-flaws-open-ecdis-to-cyber-crime-24334
https://www.rivieramm.com/opinion/opinion/security-flaws-open-ecdis-to-cyber-crime-24334

GroDDViewer: Dynamic Dual
View of Android Malware

Jean-François Lalande(B) , Mathieu Simon, and Valérie Viet Triem Tong

CentraleSupélec, Inria, Univ Rennes, CNRS, IRISA, Rennes, France
{jean-francois.lalande,mathieu.simon,valerie.viet triem tong}@inria.fr

Abstract. Understanding an Android malware is a difficult task that
requires strong skills in reverse engineering. Few tools exist except the
well know IDA and Ghidra tools that are more focused on the analysis
of binaries. In the Android world, understanding a malware requires to
analyze the bytecode of the application, possibly obfuscated or hidden
in a benign application that has been modified. At execution time, the
malware can download new payloads, compromise the smartphone, and
install new apps. We believe that a security analyst would appreciate to
visualize and replay an execution of an Android malware. In particular,
an analysis that bridges the gap between the bytecode and the events
occurring during the execution would help to understand the malware
behavior. In this article, we propose GroDDViewer the first tool offer-
ing a dual view of the execution of an Android malware. The first view
represents the execution at operating system level through the represen-
tation of all information flow between files, processes and sockets. The
second view represents what happened in the code of the application,
during its execution. The benefit of this visualization tool is illustrated
on a ransomware sample. In future, we plan to evaluate the tool with a
panel of users on a benchmark of malware samples.

Keywords: Malware · Visualization

1 Introduction

Security researchers have different goals when working on Android malware anal-
ysis. Faruki et al. have discussed these goals and the associated methodologies [6].
Most contributions try to decide if an application is a malware or not. Few works
try to address the problem of understanding the behavior of a malware appli-
cation. Nevertheless, such an activity is an important task for security analysts
of companies or government agencies that are involved in cyber security. Their
state of practice is still manual code inspection, which is time-consuming and
error-prone without automated support [16]. Any tool supporting this process
speeds up the investigation when a malware has to be characterized.

c© Springer Nature Switzerland AG 2020
H. Eades III and O. Gadyatskaya (Eds.): GraMSec 2020, LNCS 12419, pp. 127–139, 2020.
https://doi.org/10.1007/978-3-030-62230-5_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62230-5_7&domain=pdf
http://orcid.org/0000-0003-4984-2199
https://doi.org/10.1007/978-3-030-62230-5_7

128 J.-F. Lalande et al.

Analyzing and understanding Android malware can have multiple goals. Most
of the time it consists in locating a payload, triggering it, for example if it is
encrypted. By observing the actions of the malware, the analyst should be able
to classify a sample as a locker, a Remote Administration Tool, a ransomware,
etc. If the application has been piggybacked [11], the analyst should find out the
malicious code. Then, he has to understand what the malicious code is doing,
when executed, and we believe that for these tasks, the security analyst needs
to be helped by tools, especially visualization tools.

A lot of approaches are based on static analysis but well known contributions
such as CopperDroid [17], CrowDroid [5], DroidScope [22], Harvester [4] have
focused on extracting malware information from an execution. As mentioned by
Faruki et al., such approaches have to face to the difficulty of being sure that
the malware has been successfully executed. Thus, new approaches [1,7] focused
on the particular problem of helping the execution of malware that wait for
particular conditions to occur. Nevertheless, all these dynamic approaches focus
on how to get data from an execution (system calls, variable values, network
operations, etc.) but not on how to display the captured data for the security
analyst. Most of the time, online platforms that propose an analysis report give
basic textual information about a sample, like virustotal or Andrubis [21]. Such
tools can give aggregate view of a huge amount of malware samples analyzed,
like one million analysis of Andrubis [12]. Aggregate views are useless for the
security analyst that needs to gain information of a particular sample, especially
if this sample is a newly discovered one that has never been analyzed before.

In this article, we propose a new visualization approach, GroDDViewer, for
helping a malware analyst to gain information about the execution of a malware
sample. GroDDViewer gathers information from a static and a dynamic analy-
sis performed by external tools. This way, GroDDViewer offers a dual view of
the execution of the malware: one view dedicated to the representation of the
attack by all the information flows generated at operating system level between
processes, files and sockets, and a second view dedicated to the representation
of the executed malicious code. These two views can be manipulated by the
analyst and can focus on precise intervals of time. Additionally, GroDDViewer
offers a replay feature to animate the two views and see the malware operating
and executing itself. GroDDViewer is implemented as a standalone Javascript
webpage in order to be easily loaded on any platform in a web browser.

The rest of the article is structured as follows. Section 2 presents the
approaches related to the visualization of Android malware. Section 3 briefly
explains how are collected the data from a malware execution before moving on
Sect. 4 that presents the visualization interface of GroDDViewer. We illustrate
our tool on a real malware use case in Sect. 5. Finally, Sect. 6 concludes the
paper.

2 Related Work

Visual analysis can be used to classify or recognize malware [19]. In [13], the
authors use visual similarities of malware’s image to discover relationships

GroDDViewer: Dynamic Dual View of Android Malware 129

between malware. In [14], a graphical overview of the similarities of Android
malware’s code help to identity the shell code shared by different malware sam-
ples. These approaches have a different goal because they help to understand
the evolution of a family of malware or multiple samples.

For investigating the code and execution traces of a malware, most
approaches rely on static or dynamic methods. Static analysis can be used to
collect data and build visualization tools that help to classify, browse malware
families or study one particular malware. On the other side, few papers focus
on the visualization of dynamic analysis. This is surprising, as malware ana-
lysts need to collect information from executions, for example API and kernel
calls [20]. A complementary approach is to monitor the network during an anal-
ysis, which can give good insight of malware activities [23].

We found several approaches that focus on the analysis of one single malware
and capture dynamic data and propose visualization results that have similari-
ties with our approach. Trinius et al. [18] propose to use treemaps to visualize
system calls and treegraphs to represents the system commands during the time
of execution. This work is similar to our approach as is a sort of dual view of
a malware (system and command levels) with a dynamic view that helps the
user to get what is happening over time. Nevertheless, it is focused on ×86
binaries; thus API calls are realtive to POSIX accesses. With Android malware,
more information is available about the Java bytecode that should be exploited.
Another works of Gregio et al. [8,9] have similar ideas for representing malware’s
actions with graphs. The visualization that is proposed is dynamic: it displays
over time the use of the API calls for manipulating files, processes, network, reg-
isters. The chosen visualization is a spiral of actions that represents the whole
timeline of the performed actions. We keep this idea in our proposal, but we
prefer to use dynamic animation for representing what is happening over time.
Indeed, if the malware performs a lot of time the same actions, the timeline
visualization should remain compact. Additionally, this approach is again ded-
icated to x86 binaries and does not handle the specificites of Android. In [15],
Quist et al. introduce the visualization of the control flow of the program for
executable malware. This approach produces very large graphs but helps to iso-
late loops, and especially unpacking stages which is of primary interest for x86
malware. Compared to our approach, we intend to use the control flow graph to
link observations to the reversed source code of the malware. Thus, we need to
have more readability on such kind of representation.

When dealing with a unique malware, well known online platforms give very
basic information, mainly in a text based way. The most developed source of
information are the blogs web pages that give precise insight for a particular
sample. Such analysts use virtualized emulators or real smartphones to execute
the malware and can be helped by uncompilers or debuggers like the well known
IDA software. Nevertheless, such tools have no advanced display capabilities
when a malware operates million of system calls, creates hundreds of files and
has thousands of Java classes to understand. The particular nature of Android
applications and the way the malware are implemented, as a repackaged benign

130 J.-F. Lalande et al.

application where malicious code has been added, pushed us to develop a new
visualization interface. Additionally, all the cited approaches are related to the
visualization of ×86 malware and do not focus on the particularities of Android
malware (except for Paturi et al. [14]).

One recent paper focuses on Android malware: this tool is called “Android
Malicious Flow Visualization Toolbox” and is a suite of interactive visualization
diagrams that helps to investigate the malicious behavior of an application [16]
This contribution is really close to our approach: the investigator works on a
specific application in three phases: first, he observes the interactions with the
Android system, in particular the sensitive APIs; second, he formulate hypoth-
esis of possible leaks of sensitive data; third, it helps to confirm these leaks by
investigating visually the control flow, including broken by the Java exception
mechanism. Compared to GroddViewer, the Android Malicious Flow Visual-
ization Toolbox give a more precise insight of the control flow for the analyst.
Nevertheless, it lacks a view of flows at operating system level (files, other pro-
cesses) and it lacks dynamic capabilities to synchronize events that occur during
time with the visualization framework.

Another recent paper focuses on the dynamic aspect of an execution: Viz-
Mal [3], represents the maliciousness of an application over time with green and
red boxes. The decision about the maliciousness of an execution slot is performed
using machine learning techniques applied to syscall traces. This approach is
complementary to our approach but give few information visually. When a red
box is identified, the analyst still have to investigate the code and the operation
performed by the malware.

As a conclusion, we believe that our paper is the first to propose a visual-
ization for Android malware combining the view of the code and the operating
system events captured during an execution.

3 Material Collection

GroDDViewer leverages existing static and dynamic tools to offer a representa-
tion of the attack itself and the malicious code that has been executed during
the attack.

First, the malicious behavior is captured by AndroBlare [2], that monitors
flows of information at operating system level. AndroBlare intercepts system
calls responsible of information flows between files, sockets or processes which
enable to observe the malware from the operating system point of view. AndroB-
lare relies on tainting techniques : the malware APK file is tainted with a mark
and each process or object of the system can obtain the mark if a system call
generates an information flow from a marked process/object. During the execu-
tion, all the interactions that happened between the process created from the
APK file and the system are collected in a log. These interactions are process
creation, file creation, and socket interactions. We also collect the state of the
device file owned by the user before and after an execution in order to be able
to show what happened to these files.

GroDDViewer: Dynamic Dual View of Android Malware 131

The attack is triggered by GroddDroid [1], a framework that detects suspi-
cious codes and controls multiple executions of a malware in order to force the
execution of code identified as suspicious. A method of the bytecode may be
considered suspicious after a static analysis that computes a score based on its
API usage. For example, a method performing a lot of cryptography or using
reflection can be considered as suspicious. The analyst should later look at the
methods considered as suspicious to confirm or deny their suspiciousness. Grodd-
Droid instruments the bytecode to be able to trace the execution of all branches
of the control flow. Then, it executes and stimulates the malware in a real smart-
phone and audits the executed branches. If the suspicious code is not reached,
GroddDroid changes branch conditions in order to push the execution towards
the malicious code. During such multiple executions, we collect the name and
the time of the executed branches in order to be able to give a representation of
the executed code at method level, as described later in Sect. 4.

GroDDViewer collects all data from files produced by GroddDroid and Blare.
For achieving the visualization, the processing is performed by Javascript scripts
that read these files, which avoids to use an HTTP server.

4 Visualizing Malware Execution

4.1 Overview

GroDDViewer offers a dual view of a malware execution: a view of all the
information flows at operating system level and a view of the executed mali-
cious bytecode. As shown in Fig. 1, 2, and 4, four main components explain the
malware execution:

1. System Flow Graph (upper part of Fig. 1) represents all the information
flows induced by the malware execution that occurred at system level;

2. Interactions frequency (bottom part of Fig. 1): represents the number of
information flow events over time;

3. Method Control Flow and Bytecode View (Fig. 2 and Fig. 3): represents
the control flow of method calls and the bytecode of a method;

4. User interface navigation (Fig. 4) represents what is seen on the smart-
phone from the user perspective, if any, and the events to go from one screen
to another one.

Dynamic interactions of the user with these graphical elements provide addi-
tional information. For example, the user can click to get additional information
such as a file modification or the bytecode source. The selection of time inter-
vals provides a zoom capability on a specific period of time. The replay feature
animates the graphs in order to replay events at operating system and bytecode
levels. All these features are described in the next sections.

132 J.-F. Lalande et al.

Fig. 1. Overview of GroDDViewer (part 1): System Flow Graph (upper part) – Inter-
actions frequency (bottom part) – Malware investigated: Simplelocker (cf. Section 5).
(Color figure online)

GroDDViewer: Dynamic Dual View of Android Malware 133

4.2 System Flow Graph

Information flows between objects of the operating system represent how the
malware contaminates the operating system from the APK file (upper part of
Fig. 1). Each edge of the graph may appear multiple times as system calls can
be triggered often by the process, for example when writing a file. We record the
timestamps of each occurrence which enables to replay the interactions.

A node of the graph can be a process, a socket, or a file. When clicking on a
file, the difference of content is displayed between the initial state and final state
of the experiment, if the file is a text file. It allows to follow the content modified
or created by a malware. If the malware just read information, the edges show
a transition from the file to a process.

The toolbar provides additional functionalities to manipulate the System
Flow Graph. First, additional nodes can be displayed. The Full graph option
shows the possible duplicate process nodes. It corresponds to the execution of
multiple independent processes that have the same name. The System Server
graph option shows the subgraph of the System Server process and all con-
nected other processes that have been contaminated by the mark through System
Server. As System Server is the central process that delivers Android Services
and may asks to other Android process some data, the size of this subgraph can
be very large if the malware accesses frequently the Android API. Thus, masking
this part of the graph helps to visualize the processes that are accessed by the
malware but it may be necessary to reactivate it to learn what the malware tries
to access. Second, nodes that have similar extensions can be grouped. It allows
to reduce the graph when a malware generates a lot of similar files, for example
writes log files or accesses multiple sockets.

Finally, the layout of the processes can be controlled using the Grid Layout
option. It forces the placement of all, higher or a custom number of processes on
a grid. This tool helps to browse the graph when the number of nodes is large.

4.3 Interactions Frequency

At the bottom part of Fig. 1, a frequency graph displays the number of events
occurring for information flows at kernel level. Because a simple Java operation
can generate a large number of system calls, the number of flows in few millisec-
onds can be very high. Thus, we discretize the time of experiments in an interval
[0, 1000] and we display the number of events on a logarithmic y axis.

The interaction frequency graph also intends to be used for zooming on a
precise time interval. Indeed, some malware actions can be concentrated in a
particular portion of time: the user selects a new time interval in [0, 1000] on the
upperpart of the interaction frequency graph. A new selection of an interval [x, y]
has two effects. First, the lower orange graph is updated accordingly. Second, the
System Flow graph is updated to display the processes, files and sockets involved
during [x, y]. This functionality is particularly useful for understanding what the
malware is doing on a particular period of time, or where the user shows a pick
of activity on the Interaction frequency graph.

134 J.-F. Lalande et al.

Fig. 2. Overview of GroDDViewer (part 2): Method Control Flow – Malware investi-
gated : Simplelocker (cf. Section 5). (Color figure online)

4.4 Control Flow and Bytecode Views

The dual view of the System Flow Graph is the Method call graph that represents
the control flow between methods. We could have displayed the entire control
flow, i.e. by representing the control flow of the inside of a method, but the
graph would have become difficult to understand. Thus, we define the nodes as
methods and the edges represents explicit calls of methods. This way, we obtain
a graphic representation of the code of the malware. A path, in such a graph, is
a possible nested suite of method calls until a return statement unstack the last
call.

As shown in Fig. 2, in order to help the user to browse the graph, we give the
possibility to fold/unfold the methods (blue nodes) by packages (orange) and
classes (pink). Suspicious classes have a red border and help the user to focus on
suspicious methods. Each node of the call graph can be clicked. GroDDViewer
displays the bytecode in a popup window, as shown in Fig. 3. This way, the user
can analyze the suspicious bytecode and follow the malware developer logic.

GroDDViewer: Dynamic Dual View of Android Malware 135

Fig. 3. Bytecode visualization

Fig. 4. Automaton of the navigated screens

4.5 User Interface Navigation

GroDDViewer also displays the different screens of the application that appeared
during an execution, as shown in Fig. 4. These screenshots are represented as
automata where transitions are labeled with the simulated user interaction.

4.6 Dynamic Replay

As the collected data come from an execution of the malware, we also record
the timestamps associated to all events: the dates of the observed flows of the
System Flow Graph and the dates of the branches of the control flow graph of
the bytecode. The collected timestamps are extracted from the kernel (for the
System Flow Graph) or from the Android logcat command when the malware

136 J.-F. Lalande et al.

bytecode is executed. Thus, we have to synchronize the two sources of timestamp
to be able to replay events with a precision acceptable from the user perspective.

The Replay feature, located in the Time tools group of the toolbar, replay
all events in a dual manner: the System Flow Graph events are animated syn-
chronously with the Method Control Flow graph. This animation helps to see
simultaneously the operation at system level, for exemple file creation or socket
communication, while the methods of the bytecode are called. It helps to iden-
tify the nature of the methods from the nature of the performed action in the
system, as illustrated in the use case in Sect. 5.

5 Use Case

We have chosen to study a ransomware called SimpleLocker1 from the Kharon
dataset [10] to present an example of use case of GroDDViewer. SimpleLocker is
a ransomware that encrypts the user files before asking for a ransom to the user.
If the user pays the ransom, the attacker may trigger the unencryption process
using the Tor network. The visualization for this malware corresponds to Figs. 1
and 2.

5.1 Static Analysis

When displaying the GroDDViewer page for the SimpleLocker malware , several
things can be noted. First, the System Flow Graph contains several processes
(upper part of Fig. 1). When excluding the processes like m.android.phone or
servicemanager, two processes can be noted: tor and libprivoxy.so. It is uncom-
mon to have more than one process for a benign Android application. Multiple
processes reveal that the malware have launched another application. In partic-
ular, the graph shows a file torrc that is wrote by the process org.SimpleLocker
and read by the tor process. tor connects to several IPs: we can easily suspect
that this malware tries to communicate with the attacker using the Tor network.

Second, the Method Control Flow and Bytecode View gives an overview of
the code (Fig. 2). Two entry points are identified: onCreate, the standard way
of creating an Android Activity and onStartCommand which is used to start an
Android Service. Nine methods have been identified as suspicious (red borders).
One of the most interesting is doShellCommands which name is highly suspicious.
Clicking this method shows the bytecode that tries to run shell commands using
java.lang.Runtime. All other suspicious methods can be inspected but we already
know that they have been flagged as suspicious (high score) due to API calls such
as encryption, telephony, etc. Other displayed intermediate nodes participate to
the paths of calls to reach the suspicious nodes.

1 The visualization of SimpleLocker using GroDDViewer is available at: http://
people.rennes.inria.fr/Jean-Francois.Lalande/talks/GraMSec20/SimpLocker sample
fd694cf5ca1dd4967ad6e8c67241114c.html.

http://people.rennes.inria.fr/Jean-Francois.Lalande/talks/GraMSec20/SimpLocker_sample_fd694cf5ca1dd4967ad6e8c67241114c.html
http://people.rennes.inria.fr/Jean-Francois.Lalande/talks/GraMSec20/SimpLocker_sample_fd694cf5ca1dd4967ad6e8c67241114c.html
http://people.rennes.inria.fr/Jean-Francois.Lalande/talks/GraMSec20/SimpLocker_sample_fd694cf5ca1dd4967ad6e8c67241114c.html

GroDDViewer: Dynamic Dual View of Android Malware 137

5.2 Dynamic Analysis

Using the replay capability of GroDDViewer gives an insight about the malware
actions. The Interaction frequency graph (bottom part of Fig. 1) shows a lot of
interactions on the interval [0, 100]. When replaying, this first part corresponds
to Android routines and are not linked with the malware execution that starts
later. SimpleLocker starts at time t = 250: after being unpacked from the .apk
file, it deploys local files like torrc and privoxy.config. Then, a long interaction is
observed at time t = 258 with a file ending by .enc. This means that some long
operations are running for this file. At timestamp 960, operations are finished
on this file. At the end of the replay, we also see some interactions between the
tor process and some IPs.

This first dynamic overview suggests to focus on the interval t > 240.
Thus, the user can use the zoom functionality to put the replay window on
t ∈ [240, 1000].

Then, the dynamic replay of Method Control Flow graph shows a sequence of
calls onCreate → run → encrypt at times t near 250. It corresponds to the gener-
ation of the encrypted file .enc after starting the main activity of the application.
Indeed, if the user inspects the executed encrypt method, as shown in Fig. 3, the
first lines of the bytecode shows the code $r1 = new org.SimpleLocker.AesCrypt
followed by specialinvoke $r1.(“jndlasf074hr”) which corresponds to the call to
the constructor of the used AES encryption algorithm with a constant encryption
key. When opening the other animated nodes such as findExistingProc, findPro-
cessIdWithPidOf, the user may think that it corresponds to the control of the
Tor process for handling communication, which is less interesting to investigate.

Thus, the replay shows the encryption occurring at time t > 250 with the
AES algorithm with a constant key. Unfortunately, as the communication is
handled by a native independent process, we cannot inspect using the Method
Control Flow graph the details of the execution of the communication protocol.

6 Conclusion

In this paper, we have presented GroDDViewer, an online tool for analyzing,
understanding and replaying Android malware. GroDDViewer presents a dual
view of malware: the graph of interactions that represents the operations that
occured at operating system level and the graph of the methods of the bytecode.
The presented use case illustrates how the user can easily gain some knowledge
on the execution of a malware. Of course, such a tool cannot replace a manual
investigation of the details of the bytecode but ease the understanding of the
malware behavior. Future works concern the evaluation of the tool on a large
panel of Android malware. Security analysts that conduct regular analysis of new
samples will be involved in a campaign with two groups: one using GroDDViewer
and not the other. Such a study will help to evaluate finely the obtained benefits.

138 J.-F. Lalande et al.

References

1. Abraham, A., Andriatsimandefitra, R., Brunelat, A., Lalande, J.F., Viet Triem
Tong, V.: GroddDroid: a Gorilla for triggering malicious behaviors. In: 10th Inter-
national Conference on Malicious and Unwanted Software, pp. 119–127. IEEE
Computer Society, Fajardo, Puerto Rico, October 2015. https://doi.org/10.1109/
MALWARE.2015.7413692

2. Andriatsimandefitra, R., Tong, V.V.T.: Capturing android malware behaviour
using system flow graph. In: Au, M.H., Carminati, B., Kuo, C.-C.J. (eds.) NSS
2014. LNCS, vol. 8792, pp. 534–541. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-11698-3 43

3. Bacci, A., Martinelli, F., Medvet, E., Mercaldo, F.: VizMal: a visualization tool
for analyzing the behavior of Android malware. In: 4th International Confer-
ence on Information Systems Security and Privacy, vol. 1: ForSE, pp. 517–525.
SciTePress, Funchal, Madeira, Portugal, January 2018. https://doi.org/10.5220/
0006665005170525

4. Bodden, E.: Harvesting runtime values in android applications that feature anti-
analysis techniques. In: Network and Distributed System Security Symposium, pp.
21–24, February 2016. https://doi.org/10.14722/ndss.2016.23066

5. Burguera, I., Zurutuza, U., Nadjm-Tehrani, S.: Crowdroid: behavior-based malware
detection system for android. In: 1st ACM Workshop on Security and Privacy in
Smartphones and Mobile Devices, p. 15. ACM Press, Chicago, USA, October 2011.
https://doi.org/10.1145/2046614.2046619

6. Faruki, P., et al.: Android security: a survey of issues, malware penetration and
defenses. IEEE Commun. Surv. Tutorials 17(2), 1–27 (2015). https://doi.org/10.
1109/COMST.2014.2386139

7. Fratantonio, Y., Bianchi, A., Robertson, W., Kirda, E., Kruegel, C., Vigna, G.:
TriggerScope: towards detecting logic bombs in android applications. In: IEEE
S&P, pp. 1–33, May 2016. https://doi.org/10.1109/SP.2016.30

8. Grégio, A.R.A., Santos, R.D.C.: Visualization techniques for malware behavior
analysis. In: Communications, and Intelligence (C3I) Technologies for Homeland
Security and Homeland Defense X, vol. 8019, p. 801905, June 2011. https://doi.
org/10.1117/12.883441

9. Grégio, A.R.A., et al.: Interactive, visual-aided tools to analyze malware behavior.
In: 12th International Conference on Computational Science and Its Applications.
LNCS, vol. 7336, pp. 302–313. Salvador de Bahia, Brazil, June 2012. https://doi.
org/10.1007/978-3-642-31128-4 22

10. Kiss, N., Lalande, J.F., Leslous, M., Viet Triem Tong, V.: Kharon dataset: android
malware under a microscope. In: The Learning from Authoritative Security Exper-
iment Results Workshop. The USENIX Association, San Jose, United States, May
2016

11. Li, L., et al.: Understanding android app piggybacking: a systematic study of mali-
cious code grafting. IEEE Trans. Inf. Forensics Secur. 12(6), 1269–1284, June 2017.
https://doi.org/10.1109/TIFS.2017.2656460

12. Lindorfer, M., Neugschwandtner, M.: ANDRUBIS-1,000,000 apps later: a view on
current android malware behaviors. In: 3rd International Workshop on Building
Analysis Datasets and Gathering Experience Returns for Security. IEEE Computer
Society, San Jose, CA, USA, September 2014. https://doi.org/10.1109/BADGERS.
2014.7

https://doi.org/10.1109/MALWARE.2015.7413692
https://doi.org/10.1109/MALWARE.2015.7413692
https://doi.org/10.1007/978-3-319-11698-3_43
https://doi.org/10.1007/978-3-319-11698-3_43
https://doi.org/10.5220/0006665005170525
https://doi.org/10.5220/0006665005170525
https://doi.org/10.14722/ndss.2016.23066
https://doi.org/10.1145/2046614.2046619
https://doi.org/10.1109/COMST.2014.2386139
https://doi.org/10.1109/COMST.2014.2386139
https://doi.org/10.1109/SP.2016.30
https://doi.org/10.1117/12.883441
https://doi.org/10.1117/12.883441
https://doi.org/10.1007/978-3-642-31128-4_22
https://doi.org/10.1007/978-3-642-31128-4_22
https://doi.org/10.1109/TIFS.2017.2656460
https://doi.org/10.1109/BADGERS.2014.7
https://doi.org/10.1109/BADGERS.2014.7

GroDDViewer: Dynamic Dual View of Android Malware 139

13. Long, A., Saxe, J., Gove, R.: Detecting malware samples with similar image sets.
In: The 11th Workshop on Visualization for Cyber Security, pp. 88–95, November
2014. https://doi.org/10.1145/2671491.2671500

14. Paturi, A., Cherukuri, M., Donahue, J., Mukkamala, S.: Mobile malware visual ana-
lytics and similarities of attack toolkits (malware gene analysis). In: 2013 Interna-
tional Conference on Collaboration Technologies and Systems (CTS), pp. 149–154.
IEEE, May 2013. https://doi.org/10.1109/CTS.2013.6567221

15. Quist, D.A., Liebrock, L.M.: Visualizing compiled executables for malware analysis.
In: 6th International Workshop on Visualization for Cyber Security, pp. 27–32,
Atlantic City, NJ, USA. IEEE, October 2009. https://doi.org/10.1109/VIZSEC.
2009.5375539

16. Santhanam, G.R., Holland, B., Kothari, S.C., Mathews, J.: Interactive visualiza-
tion toolbox to detect sophisticated android malware. In: IEEE Symposium on
Visualization for Cyber Security, pp. 1–8, Phoenix, AZ, USA. IEEE Computer
Society, October 2017. https://doi.org/10.1109/VIZSEC.2017.8062197

17. Tam, K., Khan, S., Fattori, A., Cavallaro, L.: CopperDroid: Automatic recon-
struction of android malware behaviors. In: 22nd Annual Network and Distributed
System Security Symposium, San Diego, California, USA, February 2015. https://
doi.org/10.14722/NDSS.2015.23145

18. Trinius, P., Holz, T., Gobel, J., Freiling, F.C.: Visual analysis of malware behavior
using treemaps and thread graphs. In: 6th International Workshop on Visualiza-
tion for Cyber Security, pp. 33–38, Atlantic City, NJ, USA. IEEE, October 2009.
https://doi.org/10.1109/VIZSEC.2009.5375540

19. Wagner, M., et al.: A survey of visualization systems for malware analysis. In: Euro-
Vis, pp. 105–125, Cagliari, Italy, May 2015. https://doi.org/10.2312/eurovisstar.
20151114

20. Wagner, M., et al.: Problem characterization and abstraction for visual analytics in
behavior-based malware pattern analysis. In: 11th Workshop on Visualization for
Cyber Security, pp. 9–16, Paris, France (2014). https://doi.org/10.1145/2671491.
2671498

21. Weichselbaum, L.: Andrubis: android malware under the magnifying glass. Tech-
nical report (2014)

22. Yan, L.K., Yin, H.: DroidScope: seamlessly reconstructing the OS and Dalvik
semantic views for dynamic Android malware analysis. In: USENIX Security Sym-
posium, p. 29. USENIX Association, August 2012

23. Zhuo, W., Nadjin, Y.: MalwareVis: entity-based visualization of malware network
traces. In: The 9th International Symposium on Visualization for Cyber Security,
pp. 41–47, Seattle, WA, USA. ACM Press October 2012. https://doi.org/10.1145/
2379690.2379696

https://doi.org/10.1145/2671491.2671500
https://doi.org/10.1109/CTS.2013.6567221
https://doi.org/10.1109/VIZSEC.2009.5375539
https://doi.org/10.1109/VIZSEC.2009.5375539
https://doi.org/10.1109/VIZSEC.2017.8062197
https://doi.org/10.14722/NDSS.2015.23145
https://doi.org/10.14722/NDSS.2015.23145
https://doi.org/10.1109/VIZSEC.2009.5375540
https://doi.org/10.2312/eurovisstar.20151114
https://doi.org/10.2312/eurovisstar.20151114
https://doi.org/10.1145/2671491.2671498
https://doi.org/10.1145/2671491.2671498
https://doi.org/10.1145/2379690.2379696
https://doi.org/10.1145/2379690.2379696

Models for Reasoning About Security

Attack-Defence Frameworks:
Argumentation-Based Semantics

for Attack-Defence Trees

Dov M. Gabbay1, Ross Horne1(B), Sjouke Mauw1,2, and Leendert van der Torre1,2

1 Department of Computer Science, University of Luxembourg, Esch-sur-Alzette, Luxembourg
ross.horne@uni.lu

2 SnT, University of Luxembourg, Luxembourg, Luxembourg

Abstract. This position paper connects the areas and communities of abstract
argumentation and attack-defence trees in the area of security. Both areas deal
with attacks, defence and support and both areas rely on applications dealing
with human aggressive activities. The unifying idea we use in this paper is to
regard arguments as AND-OR attack trees as proposed by Schneier in the secu-
rity domain. The core model, which is acceptable for both communities, is a
pair (S,�), where S is a set of attack trees (the “arguments”) and� is a binary
relation on attack trees (the “attack” relation). This leads us to the notion of an
attack-defence framework, which provides an argumentation-based semantics for
attack-defence trees and more general attack-defence graphs.

1 Introduction

Argumentation is an interdisciplinary research area concerning the study of conflicts
that arise due to competing objectives and views across a range of disciplines. Security
is an obvious example of such a discipline where there are human actors with competing
interests. The interests and objectives of an attacker seeking to obtain secrets, disrupt
services, track users, etc., conflict with those of a defender such as system adminis-
trators, software engineers, security guards and others professionals that protect our
society both online and offline.

It should be of no surprise that there are immediate parallels between argumentation
and methods developed for modelling the relationships between the actions of attack-
ers and defenders in security, notably attack-defence trees [1] and defence trees [2]. In
this work we show that it is possible to provide directly a semantics for attack-defence
trees by building on models of abstract argumentation. However, on the surface, there
are a few differences in modelling styles in argumentation compared to attack-defence
trees. Notably, in argumentation, various types of relations can be reduced to a single
attack-relation tree formed of attack relations, whereas established semantics for attack-
defence trees based on multisets collapse such trees of layers of attacks, defences,
counter-attacks, etc., to a two-layer structure where there is only one layer of attacks,
some of which are countered by a layer of defences. We develop bipolar argumenta-
tion frameworks [3] that incorporate a notion of support [4] and hence are capable of

c© Springer Nature Switzerland AG 2020
H. Eades III and O. Gadyatskaya (Eds.): GraMSec 2020, LNCS 12419, pp. 143–165, 2020.
https://doi.org/10.1007/978-3-030-62230-5_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62230-5_8&domain=pdf
https://doi.org/10.1007/978-3-030-62230-5_8

144 D. M. Gabbay et al.

modelling in styles favoured by both the argumentation and security communities. This
enables us to translate added value in both directions.

From Security to Argumentation. Traditionally, arguments are modelled in a fairly
binary fashion: if an argument is attacked by another argument that is not attacked then
it is out, hence cannot be an acceptable argument. The source of potential confusions
arises in argumentation when there are loops, for example loops may be created in legal
arguments where witnesses attack each other. In security, the sources of uncertainty are
quite different. They come from the fact that many attacks take resources such as secu-
rity guards, networking equipment, or botnets, which have associate costs, capacities
and likelihoods of success. There may be other factors such as the risk of exposing the
identity of the attackers leaving them open to prosecution (the feeling of impunity), bal-
anced against the motives of a profile of attacker. For such reasons, semantics proposed
for attack-defence trees typically take into account quantities and qualities in various
attribute domains that indicate the capability of attacker and defenders to fulfil their
actions. This quantitative aspect we translate from the attack-defence trees to argumen-
tation frameworks by making explicit a notion of abstract “weapons” that represent the
actions and resources that an attacker or defender can use to perpetrate attacks or hold
out against them.

From Argumentation to Security. As mentioned above, much of the attention in the
argumentation community revolves around resolving disputes when there are cycles in
arguments. Thus the graph structures considered in argumentation are more flexible
than the trees stratified into layers of attacks and defences, that form attack-defence
trees. While it may be useful for security to incorporate loops, in this work, we take a
clearer and simpler first step in that direction. We allow not only trees, but also directed
acyclic graphs to appear. Such an extension of attack-defence trees is useful for making
explicitly when multiple instances of nodes representing actions of an attacker are in
fact the same attack, hence we need not kill all instances to counter that attack, but only
the one instance of that action, which of course impacts the resource sensitive analysis
[5]. A more adventurous aspect of the modest liberalisation of attack-defence trees that
we propose is to forget about the distinction between attacks and defences. We simply
have arguments that attack each other, and need not explicitly indicate that the argument
is an attack tree associated with an attacker or defender. This allows the modelling of
scenarios where two actions of an attacker may be in conflict, for example, enabling a
DDoS attack may blow the cover for a stealthy attacker gathering private information
from inside the system. Furthermore, a defensive action, such as installing a hypervi-
sor, for separating processes sharing the same underlying hardware may mitigate attacks
exploiting vulnerabilities in inter-process communication in software, but may support
cache timing side channels at the hardware level. Going further, some nodes may not
even be attackers or defenders, they may be engineering requirements such as proto-
col standards or legal requirements such as clauses of the GDPR regulation that are
impacted by a successful attack or by adopting a particular defensive strategy.

Table 1 provides an overview comparing the security and argumentation domains
from which this paper draws. Considering the above observations, since these domains
were already close we believe that a relatively small step is required to build a general
framework accommodating the needs of both communities—in one way we move from

Attack-Defence Frameworks: Argumentation-Based Semantics 145

Table 1. Comparison between argumentation and security domains

Argumentation frameworks Attack-defence trees

Argumentation is a well-developed area
with a community formed over 50 years

Strong security community using methods
inspired by fault trees which have been in
use for over 50 years

Have a range of semantics May benefit from improved semantics

Mainly concerned with loops May benefit from handling loops, or at
least more general acyclic graphs

Semantics focus on evidence for claims,
i.e., proof certificates

Could benefit from more proof theory

Trees are a well-behaved case for this area Mainly concerned with trees with a
stratified structure, formed by alternating
layers of attacks and defences

Emphasises attack relations, allowing
arbitrary alternations between moves of
attackers and defenders in their underlying
games

Reduces counter-attacks to a single layer
of attacks countered by defences, by using
support relations

trees to more general graphs and in the other direction we bring in resource consid-
erations. For example, it is reasonable that the legal domain may have some resource
consideration, e.g., whether an argument stands may take into account the number of
witnesses and their credibility. In the security domain, it is reasonable to lift some con-
straints on patterns of attacks and defences.

We develop these ideas as follows. In Sect. 2, we provide background on the tra-
ditional notion of an argumentation framework and make explicit obvious parallels
and differences compared to attack-defence trees. In Sect. 3, we close the gap between
the models by introducing the notion of attack-defence framework, firstly by defining
what it means for one attack tree to attack another attack tree, and, secondly, by pro-
viding an algorithm accommodating the notion of support. In Sect. 4, we discuss the
argumentation-based model introduced in juxtaposition with key examples of attack-
defence trees, and highlight extension and directions enabled.

2 Preliminaries Drawing from Argumentation

We briefly summarise mathematical tools of argumentation on which we build. An
argumentation framework is a pair consisting of a set of arguments S and a relation
� Ď S ˆ S called the attack relation. Argumentation traditionally defines set theoreti-
cally or algorithmically two subsets for an argumentation framework (S ,�).

– The in set E` Ď S , which is a maximal (with respect to subset inclusion) conflict-
free set such that: if z is such that ∀y.(y � z ⇒ ∃y′ P E s.t. y′ � y) then z P E.
I.e., any argument attacking an element of E is attacked by another element of E.
By conflict-free, we mean that no two x, y P E are such that x� y.

146 D. M. Gabbay et al.

– The out set E− =
{
y | ∃x P E` s.t. x� y

}
.

If we restrict to acyclic graphs these sets partition the set of arguments, i.e., we have
E` X E− =H and E` Y E− = S .

In the acyclic setting, the above sets can be generated algorithmically from (S ,�)
by calculating E` =

⋃
i E

`
i and E− =

⋃
i E
−
i , where E

`
i and E−i are defined inductively

as follows. We say x is not attacked in S i if ¬∃y P S i s.t. y� x.

1. Base case: Let S 0 = S , E`
0 =H and E−0 =H.

2. Inductive case: Let S n`1 = S n \ (Eǹ Y E−n).
Let E`

n`1 = {x P S n`1 | x is not attacked in S n`1}.
Let E−n`1 =

{
x P S n`1 | ∃y P E`

n`1s.t. y� x
}
.

Physical Security

Break In

Lock

Defeat Lock

Reinforce Security Guard

Defeat Guard

Video Cameras

Fig. 1. An argumentation framework which is
also an attack-defence tree.

Consider the example argumentation
framework in Fig. 1. The argumentation
framework depicted is also an attack-
defence tree [1], where, in attack-defence
tree terminology, the attack relations are
countermeasures, where an action of an
attacker is defeated by an action of
a defender, or an action of defender
is defeated by a counter-attack of an
attacker. In the figure, attack relations
are represented by dotted double-headed
arrows in order to align with the dotted
line notation of attack-defence trees. This
notation, at the same time, makes explicit
the direction of the attack, as attack
relation � indicates. The colours are
not necessary for argumentation frame-
works; they simply allow ease of reading
when there is a clear alternation between
two actors the proponent and opponent,
i.e., the actions of the attacker and defender.

For the example in Fig. 1, the in set and out set are as follows.

E` = {Video Camera,Defeat Lock,Reinforce, Security Guard,Physical Security}
E− = {Defeat Guard,Break in,Lock}

Thus we say Physical Security is an acceptable argument with respect to E`, since
any argument that attacks it (i.e., Break In) is defeated by some element of E`, (e.g.,
Security Guard). We note that E` is a maximal admissible set, which, in argumentation
terminology is called the preferred extension. Thus the algorithm used to generate E`
emphasises that the preferred extension is easy to compute in the acyclic setting.

In addition to the notion of attack, we require also a notion of support in order to
provide an argumentation-based semantics for attack-defence trees. In order to accom-
modate support—e.g., the act of supporting a security goal of a system with a range

Attack-Defence Frameworks: Argumentation-Based Semantics 147

of network and physical security measures, as is possible using attack-defence trees—
we take a step towards a more general model. We would like to define acyclic bipolar
argumentation frameworks, that is a pair of relations on a set of arguments S :

(S ,�,→) ,where� Ď S ˆ S ,→ Ď S ˆ S and� Y→ is acyclic

The first relation x� y indicates that x attacks y. The second relation x→ y represents
that x supports y. These bipolar argumentation frameworks accommodate conventions
from both argumentation and security.

Fig. 2.Modelling counter-defence “Strong Password” as an attack or as a support.

Argumentation Convention: Most argumentation approaches reduce support to attacks
(i.e., eliminate support). This is achieved by reducing y → b to y � β � b by making
use of auxiliary node β. Thus y supports b by defending against an attacker. See for
example, the bipolar argumentation framework (which happens to be also an attack-
defence tree) to the left of Fig. 2. In that example, the Strong Password y, attacks the
Dictionary Attack β, in order to support the Password b.

Security Convention: One might argue that the above approach drawing directly from
argumentation is not quite the right viewpoint, since the Strong Password does not
actively attack the Dictionary Attack. What really happens is that the Strong Password
strengthens the password to make it more resistant to the Dictionary Attack. This idea
is reflected in the existing multiset semantics for attack-defence trees [1] that elimi-
nates counter-attacks by reducing them to supports. Under such semantics for attack-
defence trees, an argumentation framework with relations as depicted to the left of Fig. 2
might more accurately be modelled, as depicted in the example on the right of Fig. 2. In
that diagram, instead of employing Strong Password as a counter-attack for Dictionary
Attack we employ it as a support for access control.

The use of the support relation from the bipolar argumentation frameworks allows
the fact that the Strong Password really is supporting the Access Control mechanism
rather than attacking the Dictionary Attack to be made explicit. It is a modelling choice
which presentation better respects the situation, a semantics based on argumentation
that accommodates support (to be developed in the next section) would likely distin-
guish these scenarios, i.e., the diagrams in Fig. 2 may be distinguished by their “in sets”

148 D. M. Gabbay et al.

(which should be a suitable generalisation of preferred extensions). To get a feeling of
the intuition behind why this should be the case, observe that in the diagram on the right
of Fig. 2 nobody attacks the Dictionary Attack so it should be declared “in” by default,
that is β P E`; whereas in the diagram on the left the Dictionary Attack is out by default,
since it is attacked by a Strong Password that is not attacked by anyone, hence is in by
default. Thus in an extended algorithm accommodating support we expect y P E` and
β P E− for the attack-defence tree on the right of Fig. 2.

In contrast, instead of “Strong Password”, consider employing an anti-bruteforcing
defensive mechanism, such as a CAPTCHA, against a Dictionary Attack. This could
be considered to be more accurately modelled as an attack on the Dictionary Attack
denoted by β rather than in terms of supporting the Access Control goal. This is a
modelling choice for the security expert.

Fig. 3. The dictionary attack here attacks both the password and strong password.

Going further, the diagram in Fig. 3 is an attack-defence tree. This is different from
the support relation to the right of Fig. 2, since by attacking directly the access control
argument we suggest that both the Password and Strong Password are killed by the
dictionary attack. In order to interpret such scenarios, we require richer structure than
provided by traditional argumentation frameworks à la Dung [6]. In order to formally
present such a semantics, further machinery is defined in the next section.

3 Attack-Defence Frameworks: Trees Attacking Trees

Fig. 4. A joint attack relation as an attack-
defence tree.

The semantics in this section are built
out of those in Sect. 2 and finite sets of
multisets of weapons, where weapons are
“actions” in attack-defence tree termi-
nology. We start with defining enhanced
argumentation frameworks with joint
attacks (S ,R), where S is viewed as a
set of weapons (the atomic actions that
appear at the leaves of attack trees), and
R is more general than just a binary rela-
tion over S : we allow the source of the
attack to be a multiset of elements of S .
Thus R is a relation between finite multisets built from S , say Multiset(S), and elements
of S , i.e., R Ď Multiset(S) ˆ S . We use the notation a ∗ b ∗ c to represent the multiset
with three elements, the weapons a, b and c.

Attack-Defence Frameworks: Argumentation-Based Semantics 149

Allowing multisets of weapons to attack weapons, allows us to model scenarios such
as o ∗ k R g, as depicted in Fig. 4, using an auxiliary node, labeledOverpower. Note that
while such scenarios are not expressible using traditional argumentation frames, they do
appear in several richer models of argumentation, where such attack relation are called
joint attacks [7,8]. In the attack-defence tree notion in Fig. 4, the fact that multiple
actions/weapon/resources must be used together is depicted using an arc between the
arrows, which is a conjunctive refinement in attack tree terminology [9].

We will use argumentation frameworks with joint attacks to define a semantics for
another argumentation framework with more structure, which we call an attack-defence
framework, since it will generalise attack-defence trees to more general graphical struc-
tures, in the spirit of argumentation frameworks.

We denote attack-defence frameworks as a quintuple:

(S,�,→, S ,�) where� Ď S ˆ S,→ Ď S ˆ S, and� Ď S ˆ Set(Multiset(S)).

Its arguments m P S, denoted in bold, are mapped by functional relation � to sets of
multisets of weapons drawn from the set S (the set of weapons of the argumentation
frame with joint attack above). Think of the resources assigned to arguments as basic
AND-OR attack trees in the original sense of Schneier [9]. I.e., each node is part of an
attack-defence tree consisting of only the actions of the attacker or those of the defender
(the connected green or red components only in the example figures). Attack trees allow
for actions to be:

– conjunctively refined, requiring several actions to be performed to realise the action
refined, as denoted using multisets of actions,

– or disjunctively refined, where one of the possible actions in the disjunction suffices
to realise the action refined, as denoted using the sets of multisets

Thus we take the viewpoint that elements of our attack-defence frameworks rep-
resent attack trees, more precisely sets of multisets of weapons regarded as AND-OR
attack trees flattened after applying the standard mapping to multisets [10] that reduces
the attack tree to a disjunctive normal form. From an argumentation perspective we are
essentially assuming that arguments are attack trees. These attack trees represent agents
carrying each a variety of weapons, where each of these weapons are elements of S and
the sets of multisets represent a choice between a number of combination of weapons
that may be employed. Note this viewpoint does not distinguish between agents that are
attackers or defenders, agents playing any role maybe be equipped with weapons in this
manner.

3.1 Interpreting the Attack Relation of Attack-Defence Frameworks

We first explain how to interpret the attack relation only, for attack-defence frame-
works. Consider the following example of an attack tree denoted as a set of multisets:
m � {(a1 ∗ a2) , b1, b2}, where a1, a2, b1, b2 P S . The above example may be regarded
as the attack tree in Fig. 5, where a node denoted with an arc represents conjunctive
refinement, and a node without an arc represents disjunctive refinement.

150 D. M. Gabbay et al.

Fig. 5. An attack tree denoted by
{(a1 ∗ a2) , b1, b2}. The resources accu-
mulated at each node are indicated in
brackets.

We now explain the meaning of m.
We are relying in underlying argumentation
frameworks with joint attacks of the form
(S ,R) in order to provide a semantics for the
attack relation.

*1) The meaning of m is a collection of
three weapons. The first weapon is a
composite weapon built up of two com-
ponent weapons a1 and a2 denoted by
a1 ∗ a2. Note that ∗ is used to denote a
multiset consisting of two elements a1
and a2. The second weapon is b1 and the
third is b2.

*2) So, if we want to attack m we need to
attack all three components’ weapons and leavem without weapons. This comple-
ments that perspective that, ifm were to be used to attack another attack tree, there
are three options for executing the attack and hence, if it is not the case that all
three attack options are defeated, then the attack may be perpetrated.

Expressions like {(a1 ∗ a2), b1, b2} are understood as resource weapons, which can
be used for attack or for defence. (a1 ∗ a2) is a composite weapon which has two com-
ponents. So to neutralise the composite weapon (a1 ∗ a2) we need to kill at least one of
its components, and to attackm we must attack each of its weapons.

So, if n � {(α1 ∗ α2 ∗ α3), δ1, δ2} is the set of weapons of another argument, say
Mercenary 2, keen to attack m, say Mercenary 1, then for n to attack m it must attack
each of n’s weapons. This scenario may be represented using the attack-defence tree in
Fig. 6.

Fig. 6. An attack tree attacking another attack tree.

Attack-Defence Frameworks: Argumentation-Based Semantics 151

*3) So, we have:

n� m iff n� (a1 ∗ a2)
and n� b1
and n� b2

So for n to attack any single weapon x (such as one of the weapons inm), we need
a weapon in n to attack x. So we follow rule *4):

*4) We interpret disjunctive attacks [11] and attacks on multisets as follows.

{z, y}� x iff def. zRx _ yRx
u� z ∗ y iff def. uRz _ uRy

where z ∗ y is a weapon with two components. So, for example

u� {(z ∗ y),w} iff (u� (z ∗ y) and uRw) iff ((uRz _ uRy) ^ uRw).

Therefore we have
*5) {(α1 ∗ α2 ∗ α3), δ1, δ2}� x iff [δ1Rx or δ2Rx or (α1 ∗ α2 ∗ α3)Rx], and
*6) n� {(a1 ∗ a2), b1, b2} iff n� (a1 ∗ a2) and n� b1 and n� b2.

Fig. 7. Two possible joint attack relations realising the attack in Fig. 6.

This gives a full meaning to n� m in terms of the underlying argumentation frame
with joint attacks that can realise the attack relations indicated, where the attack relation
is restricted to a multiset of weapons attacking individual weapons.

Thus for the above example in Fig. 6, one such underlying argumentation framework
generated from n� m is the following relation R1.

δ1 R1 a2 δ1 R1 b1 δ1 R1 b2

Another example that would also realise the attack n� m would be relation R2 defined
as follows.

α1 ∗ α2 ∗ α3 R2 b1 α1 ∗ α2 ∗ α3 R2 a1 δ2 R2 b2

152 D. M. Gabbay et al.

These two possible joint attack relations realising the attack in Fig. 6 are depicted
by the respective diagrams in Fig. 7, as indicated by the overlaid attack relations from
multisets of weapons in attack tree n to weapons inm. Obviously, this is not an exhaus-
tive list of joint attack relations; indeed there are 54 such joint attack relations realising
the attack between the trees in this example. It is sufficient for one of those joint attack
relations to be realisable in practice, in order for the attack n � m to be realisable in
practice.

Following the method illustrated above, it is clear that we can give a semantics for
the attack relation on attack-defence frameworks, where trees may attack trees in terms
of a set of argumentation frameworks with joint attacks.

For a further example consider Fig. 8. Here we have, according to our weapon inter-
pretation the following.

b � {b1, b2} β � {α1, α2} x � {x1, x2}.
We get {b1, b2}� {α1, α2}� {x1, x2}.
α1, α2 are used as weapons to kill {x1, x2}. So the meaning of {α1, α2} � {x1, x2} is

(α1Rx1 ^ α1Rx2) _ (α1Rx1 ^ α2Rx2) _ (α2Rx1 ^ α2Rx2) _ (α2Rx1 ^ α1Rx2).
The meaning of {b1, b2}� {α1, α2} is similar, namely (b1Rα1 ^ b1Rα2)_ (b1Rα1 ^

b2Rα2) _ (b2Rα1 ^ b2Rα2) _ (b2Rα1 ^ b1Rα2).

Fig. 8. A variation on Fig. 3, where each node has a choice of weapon to employ.

Putting the above together, an argumentation framework that realises the above con-
straints is depicted in Fig. 9. That is, we have an attack relation R such that:

b1 R α1 b1 R α2 α1 R x1 α2 R x2

Attack-Defence Frameworks: Argumentation-Based Semantics 153

Fig. 9. An example of an argumentation frame-
work realising the attack relations in Fig. 8.
Notice that the argumentation framework gener-
ated need not be a tree.

For the argumentation framework
defined by R it is clear that we can ask
traditional argumentation questions such
as: what is the preferred extension, i.e.,
the in set E`, for the realisation of the
attack-defence framework in Fig. 8, as
given in Fig. 9. The preferred extension
is of course the following set.

E` = {b1, x1, x2}
Notice that, since x � {x1, x2}, for x to be
acceptable it is sufficient that x1 or x2 is
an acceptable argument. Thus since x1 and x2 both happen to be acceptable with respect
to E`, we can claim that x is acceptable with respect to E`. Similarly, since b � {b1, b2}
and b1 is acceptable with respect to E` we have b is acceptable with respect to E`
(recall sets represent a disjunctive refinement in attack trees, i.e., a choice of possible
attacks, so it is sufficient for one multiset in the set of multisets to be acceptable). In
contrast, since β � {α1, α2} and neither α1 nor α2 is acceptable with respect to E`
(equivalently they are both in E−), β is not an acceptable argument with respect to E`.

In summary, in this example b and x are “in” and β is “out”. This is exactly as
expected for the traditional argumentation frame, in the sense described in Sect. 2,
where we take b, β and x to be atomic arguments and define the attack relation as
b � β � x. The reason, or evidence for the admissibility of x is however now more
fine grained, reflecting the more fine grained nature of the arguments. Since for each
underlying argumentation framework E` is unique in this acyclic setting, it is suffi-
cient to say “x is an acceptable argument with respect to the argumentation framework
defined by R”, where one such R is depicted in Fig. 9.

3.2 Interpreting the Support Relation

But what about support? Here we explain support and provide a semantics in terms of an
algorithm rewriting the attack-defence frameworks introduced in this work, inspired by
the traditional algorithm for argumentation frameworks at the top of Sect. 2. We make
use of the attack tree in Fig. 10 to guide the development of an algorithm suitable for
both the security and argumentation communities. The example features Cloudbursting,
which is the practice of scaling a service temporarily to the Cloud, so as to cope with
spikes of demand and to sit out distributed denial of service attacks (DDoS) [12].

In our algorithm, we make use of the concept of a belt. A belt (a maximal anti-chain)
for a bipolar argumentation frame is a set B Ď S such that:

– For no x, y P B does x� y or x→ y hold. Hence B is conflict free.
– every z P S is either below or above or in B.

To understand the terminology “maximal anti-chain” used above observe the fol-
lowing. A maximal chain in (S ,�) is a maximal sequence x1, x2, . . . xn such that for

154 D. M. Gabbay et al.

all i = 1, . . . n − 1, xi � xi`1. Thus every maximal chain containing an argument z
intersects a belt B in exactly one point.

The idea is that we start with the belt consisting of all arguments that are not attacked
or supported, i.e., the sources of the graph. We then move forwards across the attack-
defence framework to another belt reachable by realising the attack and support relation
of a node in that belt.

Fig. 10. A bipolar argumentation framework involving support.

We firstly illustrate what our algorithm should do on the attack-defence framework
in Fig. 10. To be precise, we specify this attack-defence framework as the following
quadruple defined in the bullet points below.

– The abstract arguments, i.e., the nodes of the graph:

{
Service Availability, In-house Servers,Server 1,Server 2,Cloudburst,DDoS

}

– The attack relation:
DDoS� In-house Servers

– The support relation:

In-house Servers→ Service Availability Cloudburst→ Service Availability

Server 1→ In-house Servers Server 2→ In-house Servers

– The (initial) resource assignment:

Service Availability �H
In-house Servers �H

Server 1 � {s1}
Server 2 � {s2}

Cloudburst � {c}
DDoS � {d}

Remark 1. Observe that Service Availability and In-house Servers are initially assigned
no resources, as indicated by the empty set. This is because these arguments have no
resources inherently, by themselves, instead they inherit their resources via support rela-
tions from the arguments Server 1, Server 2, and Cloudburst. Thus if we consider the

Attack-Defence Frameworks: Argumentation-Based Semantics 155

argumentation frame without the DDoS node, we could represent this scenario using
the attack tree consisting of the single node Service Availability, assigned the resources
{s1, s2, c}. The advantage of using explicit support relations rather than a single node is
that we can employ more fine-grained precision indicating that the in-house servers are
affected by the DDoS attack, but Cloudbursting is not affected by a DDoS attack.

Observe also that the sub-framework consisting of “In-house Servers”, “Server 1”
and “Server 2” could alternatively be modelled by a single node “In-house Servers” with
resource assignment {s1, s2}. That modelling decision would not changing the meaning
of the tree, since the DDoS attack takes out both servers indiscriminately.

We propose an algorithm that executes as follows on Fig. 10.

Initialisation: The initial belt (those nodes that are not attacked or supported by any
other node) is defined as follows:

{Cloudburst,DDoS,Server 1,Server 2}
Note all of these arguments should correspond to leaves of some attack-defence tree
and hence should have resources assigned to them, which is indeed the case for this
example.

Step 1:We consider some belt reachable from the initial belt by taking at most one step
away from the initial belt, with respect to the attacks and supports. For this example,
there is only one choice: the following belt, which is reachable by the attack and support
relations in one step:

{Cloudburst, In-house Servers}
Notice that argument Cloudburst does not advance, if it were to advance we would
not have a belt. Firstly, we update the attack-defence framework to reflect the support
relations resulting in the attack defence framework where the resources assigned to
“Server 1” and “Server 2” are sent to “In-house Servers”—resulting in the new annota-
tion {s1, s2} for that node.

Secondly, we apply the construction from the previous section to generate an argu-
mentation framework (with joint attacks) based on the weapons given by the resource
assignment. I.e., we interpret d � {s1, s2}, thereby generating the relation R1 consisting
of d R1 s1 and d R1 s2.

Step 2: As with Step 1 above, we progress to the next belt:

{
Service Availability

}

This belt is reachable by two supports from the nodes of the previous belt Cloudburst
and In-house Servers, hence we update the resources, assigned to “Service Availability,”
by sending the resources from “In-house Servers” and “Cloudburst,” resulting in the
annotation {s1, s2, c} for the node “Service Availability.”

Since there are no attacks for this iteration of the algorithm R2 = R1.

156 D. M. Gabbay et al.

Output of Algorithm: The result of running the algorithm is an updated resource
assignment as follows:

Service Availability � {s1, s2, c}
In-house Servers � {s1, s2}

Server 1 � {s1}
Server 2 � {s2}

Cloudburst � {c}
DDoS � {d}

This is accompanied by the argumentation framework on weapons, with relation R
defined as.

d R s1 d R s2

Note that, in general there could be a set of argumentation frameworks with joint attacks
generated; but, in this case, there is only a single choice of argumentation framework.

Analysis: Consider the output of the algorithm and observe that, since nothing attacks
d or c in R they are both elements of preferred extension E`. Hence c is acceptable with
respect to E` in the conventional sense of the argumentation framework defined by R2.
Going further, since the argument Service Availability of the updated attack-defence
framework has resource annotation {s1, s2, c} and c is acceptable with respect to E`, we
can say that “Service Availability is an acceptable argument with respect E`.”

We reinterpret the above from the perspective of security. The preferred extension
says that if a DDoS attack is active and the option to Cloudbursting is available then we
have Service Availability.

3.3 An Algorithm for Attack-Defence Frameworks, in Its General Form

We now distil the general algorithm from the above worked examples.

The input: An attack-defence framework (S,�,→, S ,�). I.e., a bipolar argumenta-
tion framework (S,�,→) with a resource assignment � mapping arguments to sets of
multisets of weapons built from the atoms in S .

Remark 2. The attack-defence framework may be generated from an attack-defence
tree, by assigning a singleton atomic weapon to each action and the empty set of
resources to each node in the attack-defence tree. However, more general acyclic graphs
of relations and more detailed resource assignments are also permitted.

The initialisation: We define the initial mapping �0, belt B0 and set of joint attack
relation R0 as follows.
– �0=�
– B0 = {x : x P S and there is no y P S such that y� x or y→ x}
– R0 = {H}

Attack-Defence Frameworks: Argumentation-Based Semantics 157

The inductive step: Let Bn`1 be a belt (not necessarily uniquely defined) such that
Bn`1 � Bn and for all y P Bn`1 there exists x P Bn such that x = y or x � y or x → y,
i.e., every element of Bn`1 is either in Bn or reachable from Bn. Notice there must be
some progress forwards, since at lest one element of Bn`1 must not be in Bn.

The assignment of sets of multisets of weapons to arguments is updated as follows.

y �n`1 S n Y
⋃
{T : ∃x P Bn s.t. x→ y ^ x �n T } where y �n S n.

The set of relation
{
Ri
n`1

}
is then updated by using the set of joint attack relations

on weapons generated by each x � y where x P Bn, x P Bn`1, Recall, that joint attack
relations map mutisets of weapons to single weapons. More precisely, we have Rn`1 is
defined as follows, where � is point-wise union of sets of relations:

Rn`1 = Rn � {R : ∀x P Bn,∀y P Bn`1 s.t. x� y ^ x �n`1 S ^ y �n`1 T^
∀m P T,∃w P m s.t. ∃n P S s.t. n R w }

The above defines more formally the joint attack relations generated as described in
Sect. 3.1.

The output: Assuming the attack-defence framework is finite and acyclic, the algo-
rithm eventually terminates, returning the assignment and set of joint attack relations at
that iteration of the algorithm.

Remark 3. This is just one possible algorithm. Note, some security assessments may
require more annotations and different algorithms for advancing from one belt to the
next, for interpreting the attack relation, and for interpreting the joint attack relation.
We return to this point in our discussion of this model, which occupies the remaining
sections of the paper.

4 Reorientation from the Perspective of Attack-Defence Trees

Let us motivate and explain what we are doing in this paper in a Socratic fashion starting
bottom up with the security requirements driven by examples of attack-defence trees.
This approach enables us to compare existing treatments of attack-defence trees in the
security area, with existing treatments of such frameworks in the argumentation area.
This enables us to export ideas and technical tools from the argumentation area into the
security area.

We take as a starting point an attack-defence tree in Fig. 1 of reference [1], repro-
duced in the Appendix (Fig. 17). We study this figure and compare it, bit by bit with
argumentation frameworks, and try to see how to understand it in a new improved more
detailed point of view. Viewed as a bipolar argumentation framework (i.e., a graph
formed from attack and support relations) Fig. 17 has the following characteristics.

1. The graph has no cycles. (The handling of cycles is still an open problem in the
attack-defence tree context, while it is more central in the argumentation context.)

2. The graph has a single top node (let us call it the goal g) to be defended and it is
layered as a tree with layer 1 defending/protecting g and each layer n ` 1 attacking
the previous layer n and or defending layer n − 1.

158 D. M. Gabbay et al.

3. The graph uses joint attacks and joint supports
4. The nodes have internal meaningful contents. They are not atomic letter nodes. This

should be taken into account when offering semantics for the tree

There are several ways of looking at Fig. 17.

1. As a traditional formal argumentation framework. This works only for limited exam-
ples, such as Fig. 1.

2. As a graph for a game between two players (the defender/protector of g and the
attacker of g) the levels/layers are moves and countermoves of the players. This
view is better but still not exactly right. We shall also discuss this. The graph can be
flattened to a mini-max matrix. All defences can put forward in layer 1—consisting
of all possible best strategic defensive moves—and the attacker can attack all possi-
ble defensive strategies and the net result is the solution. The problem with this view
is that we need to address more features of the application, for example the temporal
evolution of moves, the availability and cost of resources and the local reasoning
and aim of each player and, prospectively, the treatment of cycles.

3. As action counter action temporal sequence between two agents, the one protecting
g and the other in principle attacking g. This is a much better view but it needs to be
fine-tuned to various applications.

We now ask how do we proceed, and where do we find the connection and use of
argumentation in the attack-defence trees context? We start with examples from both
areas and step by step, using a Socratic method, add components that converge towards
our target theory.

Let us now look at formal argumentation frameworks and find a framework to the
formal argumentation community, (Fig. 11) which may be, on the face of it, similar to
what Fig. 17 seems to be. We then continue our analysis of Fig. 17. Consider Fig. 11. In
this figure we use a single arrow for support “→” and a double arrow for attack “�”.
To start our comparison, the nodes in Fig. 11 are explained and exemplified by nodes in
Fig. 17 in parentheses below.

Explanation of the nodes of Fig. 11:

Fig. 11. A scenario with goals, attacks and
defences, in terms of attack relations and as
an attack defence tree.

Fig. 12. A subtree of Fig. 17, where some
attacks defeat and others weaken.

Attack-Defence Frameworks: Argumentation-Based Semantics 159

– g is the goal to protect (Data Confidentiality)
– a, b are supports (Physical Security, Network Security, etc.)
– α, β, γ attack the support (Break In, Dictionary Attack, Corruption)
– x, y, z support a, b, c by attacking the attacks (Security Guard, Strong Password, etc.).

Comparing Fig. 17 and Fig. 11, let us make some observations.

Observation 1. In Fig. 17, consider the subpart of the figure represented by Fig. 2. In
this figure the node y does not attack β in the sense of “killing” β but makes b stronger
so that it can withstand the attack of β.

In other words, the part of the figure (namely the formal attack and defence sub-
figure to the left of Fig. 2) can be transformed to the bipolar argumentation framework
to the right of Fig. 2.

Figure 2 represents a bipolar argumentation framework, that is a framework with
attack and defence (in argumentation terminology). One of the interpretations of such
frameworks, from the argumentation point of view, is that to attack and kill a node b,
we need also to kill all of its supporters (i.e., we need to attack y as well). Adopting
established terminology [13], the set {b, y} forms a support group. Indeed this is also
the security view of the attack and defence in Fig. 17, in that the attacks must continue
on node y = Strong Password. Indeed in Fig. 17, y = Strong Password is attacked by
“Strong Password Attacks” (i.e. Find Note, Same Password Different Accounts).

Observation 2. On the other hand, the part of Fig. 17 depicted in Fig. 12 consisting of
b, β, y with the additional options, u and w, is different. It has the additional feature
that it the security guard is attacked in two possible ways: bribing, which weakens the
guard and may be ineffective, and killing, which removes the guard.This observation
departs from mainstream argumentation. In argumentation, if a node x attacks a node
y (i.e. x � y), then if x is alive then the attack on y is always successful and x kills
y and y is dead. There is no intermediate result such as weakening y, which might be
accommodated in a more resource sensitive model.

From the perspective of security, a limitation of lifting directly from argumentation
without reworking the semantics is that resource considerations remain limited—all
arguments are either “in” or “out” with respect to some joint attack relation. For attack-
defence trees, when determining whether an argument such as “data confidentiality” is
maintained we consider the resources assigned to an attacker profile. Resources may
be specialised equipment or expertise, a budget or time; while profiles of attackers may
include cybercriminals, rogue states, script kiddies or cyberterrorists. Only by combin-
ing such viewpoints can we estimates the vulnerabilities a system is exposed to and
priorities mitigating those attacks with limited security resources.

Instead of calculating whether nodes are in or out we may wish to calculate quan-
tities that remain after being attacked. For instance in Fig. 10, for some attacker and
defender profiles, there may not be sufficient budget for the defender to use Cloudburst-
ing, but there is not sufficient motive for the attacker to perpetrate the DDoS attack any
way. Bringing in such resource considerations from security would be a contribution to
the area of argumentation.

160 D. M. Gabbay et al.

Fig. 13. Scenario where a defensive action
supports a new attack.

Fig. 14. Scenario with multiple goals, and
goals that are not necessarily security
related.

Observation 3. Consider the framework in Fig. 13. This is an acyclic graph rather than
a tree. There is no attack-defence node distinction: a “green” node can support a “red”
node (colours are meaningless in this model, they simplify making connection with
established attack-defence tree notations).

Scenario for Fig. 13: A company with a limited cyber security budget may not have
the resources to defend against sophisticated attackers using in house security solu-
tions. Their solution to defeat these sophisticated cyber attacks is to outsource part
of their infrastructure to a secure Cloud environment. The dedicated expertise and tools
behind the Cloud-based security solution does reduce the risk of the company becoming
exposed to certain sophisticated attacks on their in-house infrastructure; however, this
move does leave open the organisation to new attacks. Thus, a side-effect of employing
Cloud-based security is that new attacks that exploit the fact that certain operations are
occurring over a WAN are enabled. Thus the use of certain defences may support new
attacks.

Notice that, while we do not have side effects in Fig. 17, it is possible to add exam-
ples of side effects. In Fig. 12, killing the guard may activate a Murder Investigation as
a side effect and we might not want that.

Observation 4. The scenario in Fig. 14 presents multiple goals, which would not be
permitted if we restrict to trees. The privacy goal is to ensure ePassport holders cannot
be linked from one session to the next, which is called unlinkability. There are attacks
on unlinkability, involving relaying messages to remote readers [14]. Note furthermore,
that such attacks do not completely compromise unlinkability, e.g., ePassport holders
cannot be tracked forever, only in a limited time window, so there are resource consid-
erations here.

The effectiveness of these relay attacks on ePassport unlinkability could be reduced
by encrypting error messages that leak information. The added dimension is that the
defensive action of encrypting an error message attacks a second goal, which is to
satisfy the ICAO specification for ePassports so that the ePassport is compatible with
ePassport readers internationally. Thus there may be multiple goals, and not all goals
need be security related.

Attack-Defence Frameworks: Argumentation-Based Semantics 161

Fig. 15. Diagrammatic representation of the
argumentation framework generated algorithmi-
cally in Sect. 3.2, which forms a disconnected
acyclic graph with no single root node.

An additional reason for permitting
multiple goals and even disconnected
acyclic graphs is illustrated in Fig. 9.
That figure depicts a graph with multiple
sinks which is an attack relation realising
that realises another attack relation that
formed a tree. Thus by permitting general
acyclic graphs we can use graphical nota-
tion to depict both attack-defence trees,
where arguments may be attack trees,
and its semantics given by a set of joint
attack relations where the target of each
attack is an atomic action or weapon. To see why such acyclic graphs need not be
connected, observe that the joint attack relation generated by the running example in
Sect. 3.2 can be depicted as in Fig. 15. Recall that nothing attacked the Cloudburst argu-
ment whose resources were denoted by the weapon c.

Observation 5. In formal argumentation frameworks, a node x attacking several targets
attacks all of them in the same way. There is no option for different attacks for different
targets. This is not the case in Fig. 17, “defeat lock” attacking the back door is most
likely not the same as the one attacking the front door. The attacks are directional.

Observation 6. In Security, there is a stress on resources, hence the use of linear logic
in semantics for attack trees [15,16]. Formal argumentation is based on classical logic.

Observation 7. The structure of an attack-defence framework could be taken further, to
provide a still finer semantics for attack-defence trees, by introducing an explicit con-
junctive support relation. For example, consider the first attack-defence tree in Fig. 16.

Fig. 16. A case for conjunctive support with two variations.

Existing semantics for attack-defence tree in the literature, and also the semantics
in this paper, are not sensitive to the fact that the reason that Overpower is countered
is that people were searched upon entry to the building. Indeed, the existing semantics
would assign the same meaning to the first tree in Fig. 16 and the two other scenarios.

In terms of the semantics provided, Overpower will be assigned the attack tree
denoted by {o ∗ k} and a set of two attack relations, say {R1,R2}, will be generated, where

162 D. M. Gabbay et al.

s R1 k and s R2 o. Thus the semantics are currently indiscriminate about which weapons
or actions are countered by the argument Search—it is not necessarily the Knives, as
the first attack-defence tree in Fig. 16 might intuitively suggest. As, explained above,
established multiset semantics in the literature [1] would also not make it explicit that
only the argument Knives is attacked.

The above limitation of the semantics could be resolved by an explicit conjunctive
support, which is interpreted in the algorithm by extending the weapons in the nodes
supported, using multiset union, by using the resources available to the source node.
This would enable the three scenarios in Fig. 16 to be distinguished, since the generated
attack relations would be {R1}, {R2} and {R1,R2} respectively.

A further advantage of breaking down all nodes in an attack-defence tree into argu-
ments is that we can refer explicitly to sub-goals of attackers, not just the roots of trees.
That is, we can ask questions, such as whether a sub-goal is an acceptable argument
with respect to some preferred extension. Recent work on attack trees, has argued for
the value of giving sub-goals an explicit status [17].

Remark 4 (Summary of discussion in Sect. 4). We summarise the points learnt from
our discussion in this section. To give good argumentation like semantics for Fig. 17
describing a security scenario, we need to enrich argumentation with the following
features:

1. And/or attacks and defence (this we have already in argumentation).
2. Allow converting attack to support and support to attacks (this has been done previ-

ously [18], but for only the numerical case).
3. Allow for weakening attacks (as well as attacks which fail) in a directional way.

(This means that for the same live x and different targets, say for example, x �
y1, x � y2, and x � y3, it is possible that the attack of x on y1 will succeed, the
attack on y2 will fail and the attack on y3 will only weaken y3. Compare this with
numerical attacks which change the strength of the target by a numerical factor.)

4. Deal with side effects in the formal argumentation level, because in practice for
example when you hack into a server you may cause side effects.

5. We need one more principle: Consider below, where we have nodes a1, . . . , an sup-
porting g. To make sure we successfully kill g we need to kill all of a1, . . . , an. This
is for the case where all the ai are independent supports.

g

ana1 . . .

This is not like how it goes in logical and legal argumentation. If we have a1 	
g, . . . , an 	 g, then attacking or falsifying all ai does not mean that g is false. There
may be some new x 	 g.
In the model introduced in this paper, we embody this principal by assigning argu-
ments representing intermediate nodes in an attack tree no resources initially. Since
such nodes inherit all their resources from their supports, killing all their supports
kills the intermediate argument.

Attack-Defence Frameworks: Argumentation-Based Semantics 163

Fig. 17. An ADTree for protecting data confidentiality from reference [1]

164 D. M. Gabbay et al.

6. Running Global Side effects. Each node costs money. Guards need to be paid, Keys
need to be acquired, etc. We have a global budget node which needs to be treated as
a special weapon node.

7. Local support. This principle has to do with supporting local nodes in the middle of
the tree. We note that in Fig. 17 all the support nodes actually support the security of
the data. There is a sequence of nodes:

acquire keys� lock door� break in through door.
So let us add support to acquire key the support we add is “increase budget to buy
keys”. This support is not for server security, it supports locally the attack of acquire
keys.

5 Conclusion

This position paper proposes attack-defence frameworks, defined in Sect. 3, which build
on concepts in argumentation so that we may assess the acceptability of arguments in
security scenarios described by attack-defence trees. Attack-defence frameworks bor-
row from some more recent developments in argumentation, namely:

– bipolar argumentation frames that incorporate support as well as attack,
– joint attacks for describing scenarios where multiple resources must be used together
to execute an attack,

– and disjunctive attacks allowing multiple possible ways of realising an attack.

In addition, attack-defence frameworks take into account resource considerations, by
annotating arguments with sets of multisets of weapons or actions, which are essen-
tially attack trees. This semantics generates multiple possible ways of realising attacks,
which can, in turn, be used to explain why arguments such as Data Confidentiality or
intermediate goals such as Physical Security, or Lock Doors are acceptable arguments.

The development of attack-defence frameworks has been guided by examples from
the security domain. However, this model has been developed with other fields in mind
such as legal argumentation (think lawyers attacking each other), ecology (think of
species competing with and supporting each other) and medical sciences (think of the
side effect of taking medicine along the lines of Fig. 13), hence may be broadly applied.
For security specifically, a key added value of this work is the notion of evidence for
an argument, as given by preferred extensions for example, which is a central notion
in the various semantics investigated in the argumentation domain. The model admits
general graphical structures to be described thus we are not restricted to trees, nor are
we restricted to asking question about a goal represented by a root node.

References

1. Kordy, B., Mauw, S., Radomirović, S., Schweitzer, P.: Attack-defense trees. J. Logic Comput.
24, 55–87 (2012)

2. Bistarelli, S., Fioravanti, F., Peretti, P.: Defense trees for economic evaluation of secu-
rity investments. In: First International Conference on Availability, Reliability and Security
(ARES 2006), vol. 423 p. 8 (2006)

Attack-Defence Frameworks: Argumentation-Based Semantics 165

3. Cayrol, C., Lagasquie-Schiex, M.C.: On the acceptability of arguments in bipolar argumen-
tation frameworks. In: Godo, L. (ed.) ECSQARU 2005. LNCS (LNAI), vol. 3571, pp. 378–
389. Springer, Heidelberg (2005). https://doi.org/10.1007/11518655 33

4. Boella, G., Gabbay, D.M., van der Torre, L.W.N., Villata, S.: Support in abstract argumenta-
tion. In: Baroni, P., Cerutti, F., Giacomin, M., Simari, G.R., (eds.): Computational Models of
Argument: Proceedings of COMMA 2010 of Frontiers in Artificial Intelligence and Appli-
cations., Desenzano del Garda, Italy, 8–10 September 2010. vol. 216, IOS Press pp. 111–122
(2010)

5. Wideł, W.: Formal modeling and quantitative analysis of security using attack-defense trees.
PhD thesis (2019)

6. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artif. Intell. 77, 321–357 (1995)

7. Gabbay, D.M.: Semantics for higher level attacks in extended argumentation frames part 1:
overview. Stud. Logica. 93, 355–379 (2009)

8. Nielsen, S.H., Parsons, S.: A generalization of dung’s abstract framework for argumentation:
arguing with sets of attacking arguments. In: Maudet, N., Parsons, S., Rahwan, I. (eds.)
ArgMAS 2006. LNCS (LNAI), vol. 4766, pp. 54–73. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-75526-5 4

9. Schneier, B.: Attack trees. Dr. Dobb’s J. 24, 21–29 (1999)
10. Mauw, S., Oostdijk, M.: Foundations of attack trees. In: Won, D.H., Kim, S. (eds.) ICISC

2005. LNCS, vol. 3935, pp. 186–198. Springer, Heidelberg (2006). https://doi.org/10.1007/
11734727 17

11. Gabbay, D., Gabbay, M.: Theory of disjunctive attacks, part I. Logic J. IGPL 24, 186–218
(2016)

12. Armbrust, M., et al.: A view of cloud computing. Commun. ACM 53, 50–58 (2010)
13. Gabbay, D.: Logical foundations for bipolar argumentation networks. J. Logic Comput. 26,

247–292 (2016)
14. Filimonov, I., Horne, R., Mauw, S., Smith, Z.: Breaking unlinkability of the ICAO 9303

standard for e-Passports using bisimilarity. In: Sako, K., Schneider, S., Ryan, P.Y.A. (eds.)
ESORICS 2019. LNCS, vol. 11735, pp. 577–594. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-29959-0 28

15. Horne, R., Mauw, S., Tiu, A.: Semantics for specialising attack trees based on linear logic.
Fundam. Inform. 153, 57–86 (2017)

16. Eades III, H., Jiang, J., Bryant, A.: On linear logic, functional programming, and attack trees.
In: Cybenko, G., Pym, D., Fila, B. (eds.) GraMSec 2018. LNCS, vol. 11086, pp. 71–89.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-15465-3 5

17. Mantel, H., Probst, C.W.: On the meaning and purpose of attack trees. In: 2019 IEEE 32nd
Computer Security Foundations Symposium (CSF), pp. 184–199 (2019)

18. Barringer, H., Gabbay, D.M., Woods, J.: Temporal, numerical and meta-level dynamics in
argumentation networks. Argument Comput. 3, 143–202 (2012)

https://doi.org/10.1007/11518655_33
https://doi.org/10.1007/978-3-540-75526-5_4
https://doi.org/10.1007/978-3-540-75526-5_4
https://doi.org/10.1007/11734727_17
https://doi.org/10.1007/11734727_17
https://doi.org/10.1007/978-3-030-29959-0_28
https://doi.org/10.1007/978-3-030-29959-0_28
https://doi.org/10.1007/978-3-030-15465-3_5

A Diagrammatic Approach to Information
Flow in Encrypted Communication

Peter M. Hines(B)

University of York, York, England
peter.hines@york.ac.uk

Abstract. We give diagrammatic tools to reason about information
flow within encrypted communication. In particular, we are interested
in deducing where information flow (communication or otherwise) has
taken place, and fully accounting for all possible paths.

The core mathematical concept is using a single categorical diagram to
model the underlying mathematics, the epistemic knowledge of the par-
ticipants, and (implicitly) the potential or actual communication between
participants. A key part of this is a ‘correctness’ or ‘consistency’ crite-
rion that ensures we accurately & fully account for the distinct routes by
which information may come to be known (i.e. communication and / or
calculation).

We demonstrate how this formalism may be applied to answer ques-
tions about communication scenarios where we have the partial informa-
tion about the participants and their interactions. Similarly, we show how
to analyse the consequences of changes to protocols or communications,
and to enumerate the distinct orders in which events may have occurred.

We use various forms of Diffie-Hellman key exchange as an illustra-
tion of these techniques. However, they are entirely general; an extended
version of this paper [8] provides similar analyses of other protocols.

1 Introduction

This paper is about using categorical diagrams to study (or rather, reconstruct)
the flow of information in encrypted communication; it is not about the difficulty
of solving mathematical problems on which security is based.

1.1 Key Aims

The main aim of this paper is to introduce tools, based on diagrammatic repre-
sentations, to ensure that we have fully accounted for information flow and routes
to calculating values in communication generally, and cryptographic protocols
specifically. Of course, we do not expect to find within the cryptographic liter-
ature examples of protocols where the designers have failed to do this! Rather,
we use existing protocols (various forms of Diffie-Hellman key exchange, as a
well-understood example) in order to motivated and test our tools.

c© Springer Nature Switzerland AG 2020
H. Eades III and O. Gadyatskaya (Eds.): GraMSec 2020, LNCS 12419, pp. 166–185, 2020.
https://doi.org/10.1007/978-3-030-62230-5_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62230-5_9&domain=pdf
https://doi.org/10.1007/978-3-030-62230-5_9

A Diagrammatic Approach to Information Flow 167

The utility comes when we use such techniques to reason about incomplete,
rather than complete, descriptions of encrypted communication. We analyse sit-
uations where – for example – one participant becomes aware of some additional
information (say, a secret key, in order to systematically deduce the additional
routes to calculating values that this implies. This is considered in Sect. 6.3.

Alternatively, we wish to work backwards – we know that some private infor-
mation has become more widely known, but no single individual is in a position
to have shared this. We show in Sect. 7 how we may fully account for all possible
routes by which this information became known.

1.2 Tools Used

Our starting point is the common category-theoretic technique of expressing
algebraic identities via commuting diagrams. Drawing such diagrams for the
algebra behind cryptographic protocols makes the structure of the underlying
mathematics clear (see, for example [14]); this paper also extends such diagrams
to represent the participants, and their knowledge.

Mathematically, we do this by moving beyond commuting diagrams, and
recovering both the information flow between participants, and distinct routes
by which significant values may be computed, as 2-categorical structure.

Based on this, we give a ‘correctness’ criterion that ensures that potential or
actual information flow within the diagram is modelled correctly – i.e. nothing
has been ‘left out’ and we have not overlooked any route by which a participant
may come to know some information.

2 Bipartite Diffie-Hellman, Diagramatically

We use, as illustration, the basic bipartite D-H protocol [5,12]; this is very well-
known, and summarised in Table 1.

Table 1. A concise summary of D-H key exchange

Alice Public Bob

Public prime p

Public root g ∈ Zp

Selects private Selects private

a ∈ Zp b ∈ Zp

Computes ga
Announces ga

��

Announces gb
�� Computes gb

Computes:
(
gb

)a
Computes: (ga)b

By elementary arithmetic, these are equal.
(
gb

)a
= gab = (ga)b

Alice, Bob, Eve

g, ga, gb

Alice & Bob
gab

���
���

���
�

���
���

���
��

Alice
a

Bob
b

Nobody
ab

�����������

�����������

The tabular presentation simply distinguishes public and private informa-
tion; by contrast, a fine-grained description of the knowledge of the participants

168 P. M. Hines

(Alice, Bob, and some putative evesdropper1 Eve) is given in lattice form, by
‘tagging’ each algebraic element by a member of the power set lattice 2{A,B,E}

of participants.

2.1 Expressing Algebraic Identities Diagrammatically

A core category-theoretic practice is giving identities as commuting diagrams.

Definition 1. A diagram over a category C is a directed graph with nodes
labeled by objects. Each edge is labeled by an arrow whose source/target is given by
the labels on the initial/final nodes. A diagram commutes when the composites
along all paths with the same starting/finishing node are equal.

Commuting diagrams provide a very efficient and visually appealing way to
express algebraic identities. In Fig. 1 we express the identies from Table 1 as a
commuting diagram over the following category:

Definition 2. Given prime p ∈ N, we define the category DHp to have two
objects: a singleton object {∗} and the set Zp = {0, . . . , p − 1}. For all x =
0, . . . , p − 1, we have the following arrows:

– The selection arrows [x] : {∗} → Zp, defined by [x](∗) = x ∈ Zp.
– The modular exponentiation arrows ()x : Zp → Zp, defined in the usual

arithmetic manner.

Fig. 1. Bipartite Diffie-Hellman key exchange

Remark 1 (Interpretation). The arrows of the above category should be though
of as operations that may reliably be performed by participants. When we say
that “Bob knows gab”, we mean that Bob is able to select gab from the whole of
Zp. This is the interpretation of the ‘selection arrows’.

1 Although it is standard to assume that Eve is an adversary to Alice and Bob, the
tools themselves take a more agnostic approach. Our aim is to study information
flow generally; we may be more concerned about information flow to Eve, but the
models themselves treat her equally to the other participants.

A Diagrammatic Approach to Information Flow 169

2.2 Combining Algebraic and Epistemic Data

We now combine the algebraic and epistemic aspects of the D-H protocol into
a single categorical diagram (Fig. 2), by ‘tagging’ each arrow by the subset of
participants that are able to perform that operation. By treating 2{A,B,E} as
a monoid with composition given by intersection we consider Fig. 2 to be a
categorical diagram over the product category DHp × 2{A,B,E}. Note that this
categorical diagram fails to commute. We discuss the significance of this in Sect. 3
below, but first provide some much-needed clarification on what, precisely, is
being modeled by these diagrams.

Fig. 2. The Algebraic-Epistemic diagram for Diffie-Hellman key exchange

2.3 What is Being Modeled by A-E Diagrams?

The interpretation of the epistemic tags in an A-E diagram is that an algebraic
component (e.g. a private key, public message, shared secret, etc.) is labeled by
some representation of ‘who knows this value’. What has not been included is
how or when they came to know this. There is therefore no in-built notion of
‘event’, ‘message’, ‘time-ordering’, ‘causality’ or even ‘communication’.

Rather, the information in the diagram simply tells us that a given partic-
ipant became aware of a given value at some point. It may be seen as a retro-
spective view of some communication protocol. Once the process has completed,
who has become aware of what?

This is intentional. We show how, given this restricted information, we may
nevertheless reconstruct possible scenarios of how this state of affairs may have
arisen (via communications between participants, and participants using the
result of these communications to calculate new values). For a well-designed cryp-
tographic protocol, this will be unique, at least up to some inessential re-ordering
of events (such as well-known variations of the steps in tri-partite Diffie-Hellman
key exchange of Sect. 5). Of more interest is the situation where there is some
ambiguity, or simply where something has gone wrong! We may wish account
for all routes by which some information became public knowledge (Sect. 7), or

170 P. M. Hines

to analyse the consequences of some individual having more a priori knowledge
than we had anticipated (Sect. 6.3).

3 Information Flow as Failure of Commutativity

The failure of commutativity in Fig. 2 is obvious. Our claim is that this is a
feature rather than a bug: non-trivial information flow becomes obvious in this
graphical form. Precisely, the points at which commutativity fails are those where
either 1/ a public announcement has taken place, or 2/ there exists more than
one route to calculating the same result.

Fig. 3. Announcements as failure of commutativity in D-H key exchange

Fig. 4. Failure of commutativity via distinct paths to the same result

Consider the subdiagram of Fig. 2 given in Fig. 3. This fails to commute
because (()a, {A}) ([g], {A,B,E}) = ([ga] , {A}) �= ([ga] , {A,B,E}). Similarly,(
()b, {B}) ([g], {A,B,E}) =

([
gb

]
, {B}) �= ([

gb
]
, {A,B,E}).

The underlying cause in both cases is the public announcements: we would
see the label ([ga] , {A}) = (()a, {A}) ([g], {A,B,E}) in the case where Alice
had raised the publicly known root to her secret key, but kept the result to
herself. Similarly, we see an edge labeled by

([
gb

]
, {A,B,E}), rather than([

gb
]
, {B}) =

(
()b, {B}) ([g], {A,B,E}) because Bob has publicly shared the

result of his computation.
Communication between participants clearly causes failure of commutativity;

however, there is another significant reason why a diagram may fail to commute.
Figure 4 gives another subdiagram of Fig. 2 that also fails to commute, since

A Diagrammatic Approach to Information Flow 171

(
()b, {B}) ([ga], {A,B,E}) =

(
[gab], {B}) �= (

[gab], {A,B}). In a similar way,
(()a, {A})

(
[gb], {A,B,E}) =

(
[gab], {A}) �= (

[gab], {A,B}).
However, no announcements have taken place in this part of the protocol.

Rather commutativity fails because Alice and Bob have separately arrived at
the same information (i.e. their shared secret gab) via two distinct paths. The
fact that they both know it (and only they know it) is accounted for by the fact
that the label on shared secret is the join of the labels of the two paths with the
same source and target.

4 Algebraic-Epistemic Diagrams, and a Correctness
Condition

The above considerations apply generally, and motivate the following definitions:

Definition 3. We define an Algebraic-Epistemic or A-E diagram to be
a categorical diagram giving a representation of the algebraic components of a
communication protocol or scenario, together with tags representing who becomes
aware of what information.

Remark 2. This paper uses Diffie-Hellman key exchange as illustration because it
is simple and well-understood. The techniques used are general. Other examples
are given in [8], with the same interpretations and correctness criteria.

4.1 A Correctness Criterion for A-E Diagrams

We now introduce a general ‘correctness’ criterion on A-E diagrams.

Definition 4. A category C is poset–enriched when each homset C(X,Y) has
a partial ordering ≤XY compatible with composition, so f ≤ a ∈ C(X,Y) and
g ≤ b ∈ C(Y,Z) implies gf ≤ ba ∈ C(X,Z). (It is common to omit the object
subscripts; these are generally clear from the context).

Every category is enriched over the partial order given by equality on homsets.
The product of two poset-enriched categories is also enriched over the product
partial order: (a, b) ≤ (c, d) iff a ≤ c and b ≤ d. Thus we may assume the
category DHp × 2{A,B,E} used in Sect. 2.2 to be poset-enriched.

We now give a condition on diagrams over poset–enriched categories that we will
claim as a ‘correctness criterion’ for Algebraic-Epistemic diagrams.

Definition 5. A diagram D over a poset-enriched category C satisfies the infor-
mation flow ordering (IFO) condition, or is an IFO diagram when:

1. The underlying diagraph of D is acyclic.
2. For any edge e and path p = pk . . . p1 with the same source and target node,

the label on p is ≤ the label on e.

172 P. M. Hines

Remark 3 (The general setting). Poset-enriched categories are a very special case
of 2-categories, where as well as objects and arrows between objects, we have
‘higher-level’ notion of 2-morphisms between arrows. We refer to [15] for a good
exposition of the general theory, and the diagrammatics we now use.

It is standard to draw 2-morphisms in categorical diagrams as “two-cells”,
or morphisms between paths; for example, condition 2. is drawn as follows:

e ��

p1

�� ��

pk

��

≤

��

This implies that any pair of edges with the same source and target have the same
label; we therefore assume there is at most one edge with a given source/target.

Remark 4 (The IFO condition as a correctness criterion). This ‘correctness’ is
simply about about accurately accounting for information flow between partici-
pants, and what this enables them to calculate. Our claim is that if we find that
the IFO condition is not satisfied, we have failed to account for one of these.

4.2 Justifying the IFO Condition

An A-E diagram D is drawn over a category of the form C × L, where C is
the algebraic setting for the protocol, and L is a meet-semilattice (generally
the powerset-lattice 2P of the participants in the protocol). C is enriched over
the equality relation, so the product category C × 2P is then enriched via the
product partial ordering.

The projection onto the first component π1 (D) is an acyclic commuting
diagram over C expressing the relationships between operations performed by
participants. By construction, this commutes, and therefore trivially satisfies
the IFO condition. The additional lattice labels in D itself are ‘tags’ giving the
subset of participants that are able to perform the operation on that edge.

Based on this generic description, the interpretation of the IFO condition is
straightforward. Consider (a fragment of) the A-E diagram for some protocol
consisting of one edge and one path between nodes H and K, as follows:

• a2,P2 �� . . .
an−1,Pn−1

�� •
an,Pn

��

H

a1,P1

��

b,Q
�� K

The IFO condition in this simple case states that
∧n

j =1 Pj ≤ Q; this is an
axiomatisation of the triviality that any individual who is able to perform each
of the operations a1, . . . , an is also able to perform their composite anan−1 . . . a1.

A Diagrammatic Approach to Information Flow 173

Conversely, consider some diagram consisting of a single edge from node H
to node K, and multiple paths {Π1, . . . Πn}with the same source and target,
where the meet of the labels along Πk is denoted Rk, as follows:

H b,Q ��

b,R1

��
��
�� �	

� �
�� ��
�� �� ��

��

��

�� �� �� ! "# $% &' () *+ ,-
./
01

b,R2

23 �	

� �
�� 45
�� �� ��

67 ��

��

�� 89 �� ! "# :; $% &' () *+ ,-b,Rn<= <= �� �� >? >?
��

@A @A �� �� BC BC K

...

The interpretation of the IFO condition is again straightforward. Every member
of R1, R2, . . . , Rn is able to perform b; thus Rj ≤ Q for all j = 1..n. Using the
additional lattice operations of 2P we may also write this as

∨n
j =1 Rj ≤ Q.

However, the possibility that additional communication / announcements have
also taken place prevents us from writing

∨n
j =1 Rj = Q; indeed, failure of this

condition is a clear signal that additional communication has taken place.

Remark 5 (The IFO condition and deadlock-freeness). A further consequence
of the IFO condition is deadlock-freeness; for example, it rules out the situation
where Alice is waiting for a communication from Bob before she may continue,
whilst simultaneously, Bob is waiting for a communication from Alice before he
may take his next step.

This is not ruled out by the acyclicity of the underlying graph; communication
appears as arrows between the edges of this graph (the partial order relations,
drawn as 2-cells) – it is these that we need to ensure do not form closed loops.

This follows from the IFO condition; deadlock would appear as a ‘closed loop’
of distinct labels on edges, such as a < b, b < c, and c < a. The anti-symmetry
axiom x ≤ y & y ≤ x ⇒ x = y for partial orders then implies that a = b = c.
This contradicts the assumption that a, b and c are distinct labels!

5 Tripartite Diffie-Hellman Key Exchange

We now use diagrammatic methods to compare and contrast two approaches to
tripartite secret sharing based on Diffie-Hellman key exchange. Multi-partite gen-
eralisations of Diffie-Hellman key exchange are well-established (see, for exam-
ple, [11]). We consider the case where three participants construct a single shared
secret, and where each pair of the three participants has a distinct shared secret.
We refer to these as

(
3
3

)
Diffie-Hellman and

(
3
2

)
Diffie-Hellman respectively.

They are of course special cases of the situation where there are n partic-
ipants, and each subset of k participants constructs a distinct shared secret –
what we refer to as the general

(
n
k

)
Diffie-Hellman protocol. This, including its

diagrammatics, is considered in [8].

Definition 6 (
(
3
3

)
Diffie-Hellman key exchange). Let us assume partici-

pants {Alice,Bob, Carol, Eve} where Eve is the evesdropper, and Alice, Bob,
and Carol will construct a mutual shared secret. Alice, Bob and Carol choose

174 P. M. Hines

private keys a, b, c ∈ Zp respectively, and their shared secret gabc = gbca = gcab

is constructed as follows:

1. Alice computes ga and communicates the result to Bob.
2. Bob computes gb and communicates the result to Carol.
3. Carol computes gc and communicates the result to Alice.

4. Alice computes (gc)a = gca and communicates the result to Bob.
5. Bob computes (ga)b = gab and communicates the result to Carol.
6. Carol computes

(
gb

)c = gbc and communicates the result to Alice.

7. Alice computes
(
gbc

)a = gabc.
8. Bob computes (gca)b = gabc

9. Carol computes
(
gab

)c = gabc.

It is of course assumed that Eve is party to all communication. We have made a
slight break with convention, simply in order to test the formalism, and assumed
that for whatever reason, Carol is not party to the communications between Alice
and Bob, etc.

The Algebraic-Epistemic diagram for this is given in Fig. 5, and – should it
be needed – a step-by-step description of how this diagram is derived is given
in [8]. It may be verified that this diagram satisfies the IFO condition, and it is
also unambiguous who has communicated what information to whom.

An obvious alternative to three participants calculating a single shared secret
is the scenario where each pair of participants has a distinct shared secret via
the standard Diffie-Hellman protocol.

Definition 7. (The
(
3
2

)
Diffie Hellman protocol) We again assume partic-

ipants {Alice,Bob, Carol, Eve} where Eve is the evesdropper. Alice, Bob and
Carol choose private keys a, b, c ∈ Zp, and each pair, Alice-Bob, Bob-Carol, and
Carol-Alice uses the bipartite D-H protocol to construct a shared secret.

– Alice, Bob, and Carol compute ga and gb and gc respectively. They publicly
announce their results.

– Alice computes gba (shared with Bob) and gca (shared with Carol).
– Bob computes gcb (shared with Carol) and gab (shared with Alice).
– Carol computes gac (shared with Alice) and gbc (shared with Bob).

We jump straight to the A-E diagram for the above protocol, given in Fig. 6.
This uses the same colour-coding as above.

Remark 6 (Ordering of steps in tripartite Diffie-Hellman). A notable difference
between the step-by-step descriptions of Definitions 6 and 7, and the A-E dia-
gram of Figs. 5 and 6, is that in the tabular description the order of steps is
fixed. In the categorical diagrams, it becomes clear how this particular ordering
of steps is not essential; rather, the only real restrictions are that a participant

A Diagrammatic Approach to Information Flow 175

Fig. 5. Algebraic-Epistemic diagram for
(
3
3

)
Diffie-Hellman

Fig. 6.
(
3
2

)
Diffie-Hellman

176 P. M. Hines

can only communicate a value after she has calculated it, and a value can only
be calculated once the pre-requisites for this calculation have been received.

Based on the diagram we may consider alternative orderings of the steps
given in Definition 6; it may be verified that these correspond to alternative, but
operationally equivalent, presentations multipartite Diffie-Hellman protocols.

6 A-E Diagrams as Graphical Tools for Protocols

Although a diagrammatic approach may give a path to intuitive descriptions of
protocols via pictures, we also wish to show how these pictures provide concrete
tools for deducing & reasoning about information flow.

A diagrammatic calculus allows us easily to answer certain questions such as,
‘how much information does a given participant have?’, ‘what are the routes by
which an evesdropper may become aware of a given secret?’, and ‘what are the
consequences of this particular value becoming known?’. We first illustrate this
using various forms of Diffe-Hellman key exchange, then give general techniques
for finding implicit or hidden information via diagrams.

6.1 Manipulating A-E Diagrams

We make some straightforward definitions that will have useful interpretations
when applied to A-E diagrams. A key concept is ordering categorical diagrams.

Definition 8. Let (C,≤) be a poset-enriched category, and let H,K be diagrams
(not necessarily commutative) over C. We say H ≤ K iff the underlying directed
graph of H is a subgraph2 of the underlying digraph of K, and for all edges of
H, the label in H is less than or equal to the label of the same edge in K. It is
immediate that this a partial order on diagrams over C.

The above is of course applicable to IFO diagrams. Of particular interest is
the poset of IFO diagrams that are above an arbitrary diagram, and whether
this poset has a bottom element. In general there may not be a unique minimal
IFO diagram above an arbitrary diagram.

6.2 Participants’ Views of Protocols

A natural example of the ordering of diagrams is given by taking the A-E diagram
for a given protocol, and erasing all edges whose ‘tag’ does not include some
participant, or set of participants.

In Fig. 7, we consider the A-E diagram for the
(
3
3

)
Diffie-Hellman protocol,

given in Fig. 5, and do this for for the subsets {A}, {A,B}, {A,B,C} and {E}.
This gives a convenient graphical illustration of the information available to
Alice, Alice and Bob, Alice and Bob and Carol, and the evesdropper respectively.
2 We assume an implicit, fixed, embedding in order not to have to consider the graph

embedding or graph isomorphism problem. In practice, this embedding is immediate
from the interpretation.

A Diagrammatic Approach to Information Flow 177

Fig. 7.
(
3
3

)
Diffie-Hellman as seen by various sets of participants

It is immediate that these subdiagrams also satisfy the IFO condition, and
similarly that taking any A-E diagram satisfying the IFO condition, and erasing
all edges according to a similar criterion, will result in a diagram that again
satisfies the IFO condtion. In particular, it is simple to take the diagram of

178 P. M. Hines

Fig. 6 and erase all edges not accessible to some (non-evesdropper) participant,
to recover the A-E diagram for bipartite D-H key exchange given in Fig. 1.

6.3 Updating A-E Diagrams Based on Additional Information

We now consider the more interesting case of when a diagram is modified to
reflect some additional information. The resulting diagram may fail to satisfy
the IFO condition.

Under these circumstances, the partial ordering of diagrams becomes a useful
practical tool: given a diagram D that does not satisfy the IFO condition, we
consider the poset of diagrams above it that do satisfy this condition. Under
very light assumptions, this will have a bottom element — we may analyse this
to establish the consequences of this additional information.

We illustrate this by a rather simple example; we take both the
(
3
3

)
and

the
(
3
2

)
Diffie-Hellman protocols and update them both with some additional

information: Eve has become aware of the private key of one of the
participants.

To analyse the
(
3
3

)
protocol, we modify the diagram of Fig. 5 to replace every

ocurrence of ()a, {A} by ()a, {A,E}. This will result in the diagram on the lhs
of Fig. 8.

Fig. 8. Eve knows Alice’s private key!

A Diagrammatic Approach to Information Flow 179

This diagram does not satisfy the IFO condition; it is missing either some
communication or some route to participants calculating a given value. Fortu-
nately, the poset of IFO diagrams above this has a smallest element, given on
the rhs of Fig. 8.

This particular case is straightforward; the lhs diagram has failed to satisfy
the IFO condition because of the following single subdiagram:

{∗}

[gabc],{A,B,C}

��

[gbc],{C,A,E}

		��
���

���
���

��

Zp

()a,{A,E}

��
��
��
��
��
��
��
��

Zp

whereas the smallest IFO diagram above this is given by replacing the edge
labelled

[
gabc

]
, {A,B,C} with an edge labelled by

[
gabc

]
, {A,B,C,E}. This

single change corresponds to the observation that Eve now has a route to calcu-
lating Alice, Bob and Carol’s shared secret.

By contrast, let us now assume that Eve is in fact aware of Bob’s secret
key in the

(
3
2

)
version of D-H key exchange. We modify the diagram of Fig. 6

to take this into account; we replace each ocurrence of ()b, {B} by ()b, {B,E}
and find the minimal A-E above the result. This gives the diagram of Part (i)
of Fig. 9. Using the techniques of Sect. 6.2, we then consider Eve’s view of the
result, giving part (ii) of Fig. 9. It is clear from the diagrams that Eve now has
knowledge of the shared secrets of Alice & Bob, and Bob & Carol. However, she
is not able to discover the shared secret of Alice & Carol.

Remark 7. Both the above results are course immediate to anyone even slightly
familiar with Diffie-Hellman key exchange. The intention is to demonstrate the
reliability of the formalism, before moving on to demonstrate its utility.

7 Ambiguity, Incompleteness, and Algorithmics

In the above diagrammatic manipulations, information about which participant
has made a particular announcement is not explicitly included in the A-E dia-
gram for a protocol; this is as described in Sect. 2.3. A key point of this formalism
is that it nevertheless may be deduced from the context.

We now move on to situations where we have ambiguous or incomplete infor-
mation. This is not relevant for analysing existing protocols, which are of course
carefully designed to avoid ambiguity, and more applicable to real-world situa-
tions involving partial information about public and private communications.

180 P. M. Hines

Fig. 9. When Eve knows Bob’s private key

Definition 9. Let D be a diagram satisfying the IFO condition. We say that D
is triangulated when every non-identity 2-cell is decomposed into composites
of identity two-cells, and non-identity two-cells whose source is a path of length
two and whose target is a single edge, such as:

• ��

��
����

•

•

�� ��							

We say that a triangulation of a diagram D is a triangulated diagram T with
the same nodes as D, that contains D as a sub-diagram.

No ambiguity can exist about communication/announcements in a triangulated
diagram (beyond the inherent ambiguities given in the original data, such as,
‘Both A and B know the values x and y; one of them subsequently announces the
composite xy.’). For algorithmic purposes the notion of forming triangulations
of a given diagram is useful.

Consider the situation described by the following diagram:

•
c,P3

��
��

��
��

�

•

b,P2

��							 •
d,P4

��•
a,P1

��

dcba,�
�� •

It is inaccurate to declare that, based on this information, some individual or
collection of individuals, in

∧4
j =1 Pj must have publicly announced the result

of the composition dcba. A counterexample is given by taking P1 = {V,W},
P2 = {W,X}, P3 = {X,Y }, and P4 = {Y,Z}, so

∧4
j =1 Pj = ⊥.

A Diagrammatic Approach to Information Flow 181

Instead, when analysing who has shared what information with whom, we
require additional edges in that diagram that provide additional epistemic data
but do not add anything to the underlying algebraic structure.

Diagrams D1 and D2 below give two possible ways in which the composite
dcba came to be public knowledge:

D1 • b,P2 �� • c,P3 ��

dc,�

•

d,P4

��

•
c,P3

��
��

��
��

��
D2

•

b,P2

����������
cb,� �� •

d,P4

��•

a,P1

��

dcba,�
��

ba,�

��

• •
a,P1

��

dcba,�
�� •

Diagram D1 is triangulated; we see that W has publicly announced the composite
ba and Z has publicly announced dc, resulting in any participant being able to
compute dcba.

However, D2 is still not triangulated; although we can see that X has publicly
announced cb there still remains some ambiguity about how dcba came to be
public knowledge. To resolve the ambiguity in D2, note that it is a sub-diagram
of both the following triangulated diagrams:

D3 •
c,P3

��
��

��
��

��
•

c,P3

��
��

��
��

��
D4

•

b,P2

����������
cb,� �� •

d,P4

��

•

b,P2

����������
cb,� ��

dcb,�
���

���

����
���

�

•
d,P4

��•
a,P1

��

dcba,�
��

cba,�������

��������

• •
a,P1

��

dcba,�
�� •

In D3, we see that either V or W has announced cba, then either Y or Z has
announced dcba. Alternatively, in D4, we see that either Y or Z has announced
dca followed by either U or V announcing dcba.

The diagrams D1,D3,D4 are of course not the only routes by which dcba
may have come to be public knowledge. The two remaining possibilities are left
as a straightforward exercise. In general, it is a simple, and easily automated,
task to take an A-E diagram and derive the possible ways (if any!) in which
communications amongst the participants which may have lead to this situation.

Remark 8. We should be aware that simply drawing such diagrams reflects our
own epistemic beliefs; when we tag an edge with the pair (x, {U, V }) we are mak-
ing the assumption that, for example, neither U nor V has publicly announced
the value x. Triangulating a diagram is a method of making deductions about
what actions participants may have taken, based on a priori assumptions.

For deducing additional information of which we are not aware (e.g. partic-
ipant U has communicated the value of x to another participant W), we must

182 P. M. Hines

combine the above notion of triangulating diagrams with the tools derived from
considering the poset of diagrams above or below a given diagram.

8 Comparisons and Interactions with Other
Diagrammatic Tools

The intention throughout has been to develop tools that are complementary,
rather than competitive, to other graphical or categorical approaches to secu-
rity. The objective has been deliberately restricted to the setting where we take
the ‘retrospective’ view described in Sect. 2.3, and use this to reconstruct infor-
mation flow – considered generally as both communication, and routes to calcu-
lating values. One perspective is that we are trying to reconstruct, from minimal
information, the starting point of a model such as [4] that deals with notions of
‘sites’, ‘channels’, and ‘connections’.

From this viewpoint, it is worthwhile analysing similarities and differences,
and potential interactions with other related tools and formalisms. We consider
categorical and graphical settings seperately, although there is of course signifi-
cant overlap between the two.

The closest approach to this current paper – from both a categorical and
a graphical viewpoint – is undoubtedly D. Pavlovic’s work ‘Chasing diagrams
in cryptography’ [14]. The categorical technique of replacing equations by com-
muting diagrams is both widespread & powerful, and any category theorist who
considers a cryptographic question would naturally start by drawing such dia-
grams (whether or not they made it into the final work).

The most substantial difference is that [14] uses such diagrammatics to reason
about (for example) the difficulty of the underlying algebraic problems on which
security is based, and (entirely appropriately for this question), the communica-
tion between participants and paths they take to solve problems are explicit from
the beginning. It is not hard to imagine some synthesis of his approach and ours,
but considering the algebraic problems that must be solved by an attacker would
require revisiting the motivation of Footnote 1, that the distinction between a
participant and an adversary is sometimes not all that clear.

It is also worth noticing that our notion of ‘a route to calculating a significant
value’ is entirely binary, and something that an participant either does, or does
not have. In the long term, this needs to become a more fine-grained notion, and
the route to calculating a value must be quantified in terms of its cost in terms
of time or resources – something else that is a key concept of [14].

A significant precursor to much modern category theory in security is C.
O’Halloran’s 1994 DPhil. Thesis, ”Category Theory Applied to Information Flow
for Computer Security” [13]. This brings in yet another strand of category the-
ory into the security world, by finding interpretations of core concepts such as
freeness and universal properties. Although not immediately related, it is surely
indirectly connected to both this current paper and other category-theoretic
works in the field, and is definitely worth revisiting in light of more modern
developments in category theory & security.

A Diagrammatic Approach to Information Flow 183

A particular curiosity is that categorical/graphical methods seem more firmly
established with regard to quantum-mechanical, rather than classical, protocols.
The starting point for this is undoubtedly the ‘string diagrams’ of Abramsky &
Coecke’s ‘A categorical semantics for quantum protocols’ [2], along with a great
deal of subsequent work. These ‘quantum protocols’ certainly include crypto-
graphic protocols3.

The use of graphical, rather than specifically categorical, methods in security
is much better-established. It is therefore not possible to give a complete account,
but it is still worthwhile to give an overview of particularly popular or similar
approaches. One of the best-established must be the notion of ‘Attack Trees’ [16]
or ‘Threat Trees’ [3]. At first sight, these appear completely orthogonal to the
approach we take – they are decidedly goal-oriented, and provide a systematic
route achieving this goal by splitting it up into smaller steps, then subdividing
these, etc. This appears to be in stark contrast to our approach where we have
not even specified a goal – rather, we take a retrospective view of ‘who knows
what’, and attempt to deduce all possible paths by which this may have occurred.

However, taking a more goal-oriented view may become essential as we
attempt to scale to larger problems. In a real-world setting, we are unlikely
to be interested in all the details of all possible scenarios that lead to some A-E
diagram; instead we would wish to concentrate on some subset of paths that lead
to (for example) a crucial shared secret becoming public knowledge. In the long
term, this will require a hierarchical approach, and systematic ways of mapping
from models of systems to models of threats such as [10].

Another notable feature of attack trees is that it is commonly to label non-
leaf nodes with logical operators – conjunction when all subtasks are required in
order to achieve a goal, or disjunction when any single one of them will suffice.
This is of course a blunt tool that fails to take into account the cost of achieving
a sub-goal, or questions of concurrency & parallelism. A more sophisticated
approach is given by considering resource-sensitive logics, such as variations on
linear logic [9]. More fundamentally, [6] describes attack trees themselves as
formulæ of a form of linear logic, and the notion of specialisation as a form of
linear implication.

At this stage, we are left in the rather unsatisfactory situation of having a
close connection between models, with no similarly obvious connection between
what they model. The categorical models of quantum protocols given in [2]are
directly based on categorical models of linear logic (precisely, the multiplicative-
exponential fragment from Girard’s Geometry of Interaction program [7]) found
in [1]. This current paper also acknowledges its origins in categorical models of
linear logic, although the connection is not as direct.

It is perhaps worth observing that the boolean lattice ordering of participants
used throughout this paper is of course a model of a very primitive (boolean)

3 I would like to thank various members of the Oxford school for the folklore that
the ‘classical communication’ in these protocols – although often implicit – should
properly be thought of as 2-categorical structure. It is pleasing to be able to claim
that the same applies to implicit communication in classical protocols!.

184 P. M. Hines

logic, and the crucial partial ordering is the implication of this logic. The con-
nection is likely to become clearer when a more sophisticated notion of labeling
and implication is used.

9 Future Directions

Although it is visually appealing to be able to draw A-E diagrams for protocols,
the intention is also to develop concrete tools. We have taken the view that
they must first be shown to be well-founded, which is why this is a purely
theoretical paper. The next question is whether they are both accurate and
useful. So far, we have demonstrated that they give the expected (& indeed, well-
established) answer to questions we may pose about communication involving
D-H key exchange & other simple protocols.

The next step must be to apply the formalism & tools developed to a wider
range of more complex situations, arising from real-world examples, as a step
towards validation. Anything but the simplest cases involve non-trivial algo-
rithmics, so a key part of this will involve automating the types of deductions
illustrated in this paper, which is work in progress. As our tools are designed
for deriving implicit knowledge from incomplete information, testing them on
real-world examples seems an essential next step.

Acknowledgements. I have had the good fortune to encounter several crypto-
graphically-minded category theorists, and category-curious cryptographers. Thanks
are due to Chris Heunen (Edinburgh), Delaram Kahrobaei (York), Dusko Pavlovic
(Hawaii), and Noson Yanofsky (New York). Thanks are also due to Morgan Hines, for
help in finding the regular polyhedra in three or more dimensions associated with the
protocols in [8].

References

1. Abramsky, S.: Retracing some paths in process algebra. In: Montanari, U., Sassone,
V. (eds.) CONCUR 1996. LNCS, vol. 1119, pp. 1–17. Springer, Heidelberg (1996).
https://doi.org/10.1007/3-540-61604-7 44

2. Abramsky, S., Coecke, B.: A categorical semantics of quantum protocols. In: Pro-
ceedings of the 19th Annual IEEE Symposium on Logic in Computer Science (LICS
2004), pp. 415–425. IEEE Computer Society Press (2005)

3. Amoroso, E.: Fundamentals of Computer Security Technology. Prentice-Hall Inc,
USA (1994)

4. Barwise, J., Gabbay, D., Hartonas, C.: On the logic of information flow. Logic J.
IGPL 3(7), 7–49 (1998)

5. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theor.
22(6), 644–654 (1976)

6. Eades III, H., Jiang, J., Bryant, A.: On linear logic, functional programming, and
attack trees. In: Cybenko, G., Pym, D., Fila, B. (eds.) GraMSec 2018. LNCS,
vol. 11086, pp. 71–89. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
15465-3 5

https://doi.org/10.1007/3-540-61604-7_44
https://doi.org/10.1007/978-3-030-15465-3_5
https://doi.org/10.1007/978-3-030-15465-3_5

A Diagrammatic Approach to Information Flow 185

7. Girard, J.-Y.: Geometry of interaction 1. In: Proceedings Logic Colloquium 1988,
pp. 221–260. North-Holland (1988)

8. Hines, P.: A diagrammatic approach to information flow in encrypted communica-
tion (extended version). arxiv.org/abs/2008.05840 (2020)

9. Horne, R., Mauw, S., Tiu, A.: Semantics for specialising attack trees based on
linear logic. Fundamenta Informaticae 153(1–2), 57–86 (2017)

10. Ivanova, M.G., Probst, C.W., Hansen, R.R., Kammüller, F.: Transforming graphi-
cal system models to graphical attack models. In: Mauw, S., Kordy, B., Jajodia, S.
(eds.) GraMSec 2015. LNCS, vol. 9390, pp. 82–96. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-29968-6 6

11. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptog-
raphy. CRC Press, Boca Raton (1996). Discrete Mathematics and Its Applications

12. Merkle, R.: Secure communications over insecure channels. Commun. ACM 21(4),
294–299 (1978)

13. O’Halloran, C.: Category theory applied to information flow for computer security.
PhD thesis, Oxford University Computing Laboratory (1994)

14. Pavlovic, D.: Chasing diagrams in cryptography. In: Casadio, C., Coecke, B.,
Moortgat, M., Scott, P. (eds.) Categories and Types in Logic. Language, and
Physics: Essays Dedicated to Jim Lambek on the Occasion of His 90th Birthday,
pp. 353–367. Springer, Berlin Heidelberg (2014)

15. Power, J.: 2-categories. Technical report NS-98-7, B.R.I.C.S., p. 18 (1998)
16. Schneier, B.: Attack trees: modeling security threats. Dr. Dobb’s J. Softw. Tools

24(12), 21–29 (1999)

http://arxiv.org/abs/org/abs/2008.05840
https://doi.org/10.1007/978-3-319-29968-6_6
https://doi.org/10.1007/978-3-319-29968-6_6

Contextualisation of Data Flow Diagrams
for Security Analysis

Shamal Faily1(B) , Riccardo Scandariato2, Adam Shostack3, Laurens Sion4 ,
and Duncan Ki-Aries1

1 Department of Computing and Informatics, Bournemouth University, Poole, UK
{sfaily,dkiaries}@bournemouth.ac.uk

2 Chalmers and University of Gothenburg, Gothenburg, Sweden
riccardo.scandariato@cse.gu.se

3 Shostack and Associates, Seattle, USA
adam@shostack.org

4 imec-DistriNet, KU Leuven, Leuven, Belgium
laurens.sion@cs.kuleuven.be

Abstract. Data flow diagrams (DFDs) are popular for sketching sys-
tems for subsequent threat modelling. Their limited semantics make rea-
soning about them difficult, but enriching them endangers their simplic-
ity and subsequent ease of take up. We present an approach for reasoning
about tainted data flows in design-level DFDs by putting them in con-
text with other complementary usability and requirements models. We
illustrate our approach using a pilot study, where tainted data flows were
identified without any augmentations to either the DFD or its comple-
mentary models.

1 Introduction

Data Flow Diagrams (DFDs) are useful as a sketch that explores how a system
and its elements might be exploited; their simplicity makes it possible for differ-
ent people with different levels of expertise to contribute to the security analysis
of a system as it is evolves.

As DFDs become more critical to security design practices, so too is the need
to reason about their properties using software tools. Limitations around cog-
nitive ability, expertise and time constrain the effectiveness of modellers when
scaling up or making decisions around DFDs [16]. However, their limited seman-
tics makes reasoning with DFDs alone difficult; this leads to an inherent trade-off
between using easy to adopt notations and those that afford automated reasoning
but are more elaborate [17].

Data flows are analogous with information flows. Information flow analysis
(like taint analysis) is a long established technique for reasoning about the inter-
actions of data within entities, and their impact on security as the data flows
through the system [4,23]. Unfortunately, visual inspection alone is insufficient
for spotting potential issues with data inside data flows. Formal policy specifi-
cations and binary instructions provide the context necessary to reason about
c© Springer Nature Switzerland AG 2020
H. Eades III and O. Gadyatskaya (Eds.): GraMSec 2020, LNCS 12419, pp. 186–197, 2020.
https://doi.org/10.1007/978-3-030-62230-5_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62230-5_10&domain=pdf
http://orcid.org/0000-0002-2859-1143
http://orcid.org/0000-0002-8126-4491
http://orcid.org/0000-0001-8114-2737
https://doi.org/10.1007/978-3-030-62230-5_10

Contextualisation of Data Flow Diagrams for Security Analysis 187

tainted information flows, but DFDs lack this level of precision. The options are
either (i) adding additional information to the diagram itself, or (ii) providing
context via other models aligned with DFDs. In the related work, the first route
has been extensively explored [19,20], so this paper takes the less followed second
path. Usability models could play a particularly important role in providing such
context. For example in [7], usability models describe the main tasks performed
by a software system, and the roles associated to those tasks. The models relate
to the overall goals and requirements of the system. Just as DFDs provide early
insights into how systems might be exploited, usability models indicate where
interaction problems might subsequently facilitate exploitation. These different
models might be produced independently and, with inter-operable tools, we can
reason about the security impact these models have on DFDs, and vice-versa.

Contribution. In this short paper, we present an approach for identifying poten-
tial taint in design-level DFDs. Our guiding principle is that, to encourage adop-
tion, DFDs should be no more graphically complex than they currently are.
Instead, we should leverage the alignment between DFDs and other usability
and requirements models. We present the related work upon which our app-
roach is based in Sect. 2 before presenting the key concepts and algorithms in
our approach in Sect. 3. We illustrate our approach in Sect. 4 by using it to iden-
tify pre-process and post-process taint in a critical infrastructure pilot study,
before discussing the implications of this work in Sect. 5.

2 Related Work and Background

2.1 Reasoning About Data Flow Diagrams in Threat Modelling

Data Flow Diagrams (DFDs) graphically model flows of information (data flows)
between human or system actors external to a system (entities), activities that
manipulate data (processes), and persistent data storage (data stores) [24]. This
notation is often extended with trust boundaries: dotted boxes encompassing
DFD elements operating at the same level of privilege. Trust boundaries help
identify data flows that cross privilege levels [15].

DFDs have overlapping functions. Diane (a diagram creator) creates a DFD
that diagrammatically represents her mental model. On viewing the DFD, Elaine
(an engineer) internalises this mental model and requests changes. Dialogue
around their differences subsequently brings both mental models closer together.
Francis (a formal modeller) crafts a structured representation of a system, from
which subsequent reasoning can be performed. This relationship between a men-
tal model, a diagram, and a formal model has not been well explored.

Tuma et al. [21] first examined the potential of using information flow analysis
to reason about DFDs. They extended the DFD notation by labelling data flows
with assets and their security properties, indicating the source and target of
assets, including domain properties and assumptions from the KAOS modelling
language [12]. In later work, Tuma et al. [19] further illustrate the potential
for using DFDs for design-level information flow analysis. In their approach, a

188 S. Faily et al.

domain specific language is used to model DFDs annotated with security labels.
The model is subsequently rendered as a graph and statically analysed.

Antigac et al. [1] examined how certain properties of a DFD can be hotspots
for further investigation. For example, a usage hotspot corresponds with 3 DFD
elements: data flow d into process p, process p, and data flow d ′ from p. Anti-
gac et al. showed how such hotspots bridge the gap between different models,
and provide a basis for subsequent model transformation without fundamentally
changing the visual semantics of DFDs.

2.2 Security and Software Design Meta-Models

Meta-models specify how model concepts are associated. In doing so, they guide
analysts in collecting and analysing model data, and guide tool builders in con-
structing tools to support them. The software engineering community has exam-
ined the relationship between software and requirement modelling approaches
and security, as summarised by [14]. These approaches do not, however, account
for the role played by usability data and models. The IRIS (Integrating
Requirements and Information Security) meta-model was devised to pro-
vide guidance on how early-stage design concepts from usability as well as secu-
rity and requirements engineering might be aligned [7]. A sub-set of the IRIS
concepts relevant to this paper is provided in Fig. 1.

Fig. 1. A UML class diagram showing the IRIS concepts related to threat modelling
(red), usability (blue) and requirements modelling (grey). (Color figure online)

Coles et al. [2] demonstrated how use cases and assets provide the concepts
necessary to threat model with data flow diagrams, and how – in addition to
modelling system goals – the KAOS modelling language [12] is also suitable for
modelling attack trees as obstacles. To make attacker assumptions more explicit,

Contextualisation of Data Flow Diagrams for Security Analysis 189

IRIS supports the specification of attackers. Attackers need not be intrinsically
malicious, but they will have some motivations as drivers for carrying out an
attack, and capabilities that provide the knowledge and resources necessary to
mount and sustain any threat. IRIS draws its taxonomy of motivations from
[13], and capabilities from [10]. An additional motivation of productivity was
also added to better reflect non-malicious attackers who intentionally or unin-
tentionally commit harm to get their job done.

To leverage the outputs of user research in security design, two popular
usability modelling concepts are supported by IRIS. Personas are specifications
of archetypical user behaviour [3]; they not only capture user goals and expec-
tations, but their construction and usage helps elicit security requirement [8].
Tasks are narrative scenarios that describe both the personas and the broader
system – including use cases – in context.

3 Approach

Our approach focuses on how tainted data flows cast doubt on the safety of the
data they carry. Unlike traditional taint analysis on program source code, the
origins of data flow taint in our approach could be human error resulting from
human entities and processes, or issues resulting from the DFDs and associated
specifications. These problems could have an indeterminate impact on affected
endpoints, thereby warranting further investigation. Aligning DFDs with usabil-
ity and requirements models provides context to assist such an investigation.

Assuming the pre-requisite models exist, our approach validates them using
the analysis checks described in Sect. 3.2. Because of its alignment with the
DFD concepts as shown in Fig. 1, our approach relies on the IRIS meta-model.
DFD processes are analogous with use cases, and actors in use cases could be
human or system entities. DFDs directly link to usability models because use
cases, as processes, put tasks in context. DFDs are also indirectly linked because
roles constituting use case actors are also fulfilled by personas – who interact in
tasks – putting these roles in context.

3.1 Dataflow Specification

DFDs are graphs, but can be specified as a set of data flow types. In our approach,
a data flow consists of a label, names of the DFD elements data flows from and
to, and the types of these elements, where NODE is either an entity , a process,
or a datastore. Data flows also specify the information assets (as DATA) they
carry. Using Z [22], we can express a data flow formally, where the predicate part
of the schema contains the well-formedness constraints:

190 S. Faily et al.

DataFlow

label, from, to : STRING

fromType, toType : NODE

assets : PDATA

assets �= ∅

((fromType = entity) ∧ (toType = process)) ∨
((fromType = process) ∧ (toType = entity)) ∨
((fromType = datastore) ∧ (toType = process)) ∨
((fromType = process) ∧ (toType = datastore)) ∨
((fromType = process) ∧ (toType = process))

3.2 Pre-process and Post-process Analysis

For each entity in the DFD, our approach first visits the entity’s data flows using
the dataFlows recursive graph traversal function described in Algorithm 1. The
function populates a persistent array of unique data flow sequences (allSeqs),
and a persistent set of previously visited DFD elements (visited).

Algorithm 1: Identification of data flows
Input : currentNode - NODE , prefix - seqDataFlow
Data: allSeqs - seq(seqDataFlow), visited - PNODE , nodeFlows - ranNode ↔ DataFlow

1 Function dataFlows(currentNode, prefix) is
2 visited.add(currentNode);
3 dfs ← nodeFlows currentNode;
4 if dfs = ∅ then
5 if prefix.length > 0 then
6 allSeqs.append(prefix);
7 end
8 else
9 while df ← dfs do

10 newPrefix ← prefix ;
11 newPrefix .append(df);
12 if df .to ∈ visited then
13 allSeqs.append(newPrefix);
14 else
15 dataFlows df .to newPrefix ;
16 end
17 end
18 end
19 return;
20 end

Each sequence in allSeqs is then enumerated to identify and log potential
data pre-process and post-process taint as described in Algorithm 2. The types
mentioned in the algorithm can be found in Fig. 1, with the exception of VALUE ,
where VALUE ::= Low | Medium | High.

Contextualisation of Data Flow Diagrams for Security Analysis 191

Algorithm 2: Taint analysis
Input : dfSeq - seqDataFlow
Data: contextualisedTask - ran UseCase ↔ Task , taskAsset - ran Task ↔ Asset,

personaRoles - ran Persona ↔ Role, taskPersonas - ran Task ↔ Persona,
roleAttackers - ran Role ↔ Attacker , allAttackerRoles - ran roleAttackers∼,
attackerMotivation - ranAttacker ↔ Motivation, attackerCapability -
ranAttacker ↔ Capability, taskDemand - ranTask ↔ Value, goalConflict -
ranTask ↔ Value, processExceptions - ranUseCase ↔ Obstacle, obstructedGoals -
ranObstacle ↔ Goal, obstacleAssets - ranObstacle ↔ Asset, nameToProcess -
String
→ UseCase, logPreProcessTaint - logs taint to process resulting from named
task, logPostProcessTaint - logs taint to process resulting from named obstructed goal

1 Function analyseDataFlows(dfSeq) is
2 while df ← dfSeq do

/* Check for pre-process taint */
3 if df .fromType = entity ∧ df .toType = process ∧ df .fromName ∈ Role then
4 while t ← contextualisedTask (nameToProcess df .toName) do
5 if df .assets ∩ taskAssets t then
6 while r ← (personaRoles (taskPersonas t) ∩ allAttackerRoles) do
7 while a ← roleAttackers r do
8 if (Productivity ∈ attackerMotivation a) ∧ (Low Time ∈

attackerCapability a) ∧ ((taskDemand t ∩
{Medium,High}) ∨ (goalConflict t ∩ {Medium,High}))
then

9 logPreProcessTaint (nameToProcess df .toName) t;
10 end
11 end
12 end
13 end
14 end
15 end

/* Check for post-process taint */
16 if df .fromType = process then
17 while o ← processExceptions df .fromName do
18 if (obstacleAssets o ∩ df .assets) �= ∅ then
19 while g ← obstructedGoals o do
20 if isObstacleObstructed o = true then
21 logPostProcessTaint (nameToProcess df .fromName) g;
22 end
23 end
24 end
25 end
26 end
27 end
28 return;
29 end

Pre-process taint checks (lines 3–15) identify instances where means, motives,
and opportunity are present for human errors and violations. The checks are per-
formed on data flows going from human entities to processes contextualised as
tasks; these processes are use cases linked to tasks as indicated in Figure 1. Tasks
become a possible source of human error when three conditions hold. First, roles
fulfilled by personas in a task are shared with roles fulfilled by attackers. Second,
attackers have a non-malicious motive and are constrained in the means avail-
able; we define such attackers as motivated by productivity and, as a capability,
a limited amount of time. Finally, affected tasks are demanding to the affected
personas, or in tension with their personal goals.

192 S. Faily et al.

Post-process taint checks (lines 16–26) identify instances where exceptions
resulting from processes are unresolved, and these exceptions impact information
flowing from processes. Exceptions are modelled as obstacles obstructing one or
more system goals operationalised as the affected processes. An obstacle impacts
an out-going data flow if assets associated with the obstacle intersect with infor-
mation assets in the data flow. An exception is unresolved if these obstacles are
not resolved by another goal, as determined by the isObstacleObstructed func-
tion defined in Algorithm 3. It begins by determining whether the input obstacle
has been resolved by another goal. After evaluating whether the obstacle has
been resolved, the check enumerates both obstacles that are or-refined and and-
refined. In the case of or-refined obstacles, an obstruction on any of the refined
obstacles is enough to consider the obstacle obstructed. Conversely, in the case
of and-refined obstacles, an obstruction is present only if all refined obstacles
are obstructed.

Algorithm 3: isObstacleObstructed check
Data: resolvedObstacles - ranObstacle ↔ Goal, orRefinedObstacles -

ranObstacle ↔ Obstacle, andRefinedObstacles - ranObstacle ↔ Obstacle
Input : o - the obstacle name
Output: isObstructed - indicates if obstacle o is obstructed

1 Function isObstacleObstructed(o) is
2 ros ← resolvedObstacles o;
3 if ros �= ∅ then
4 isObstructed ← false;
5 else
6 obs ← orRefinedObstacles o;
7 while oro ← obs do
8 isObstructed ← isObstacleObstructed oro;
9 if isObstructed = true then

10 break;
11 end
12 end
13 obs ← andRefinedObstacles o;
14 while aro ← obs do
15 isObstructed ← isObstacleObstructed aro;
16 if isObstructed = false then
17 break;
18 end
19 end
20 end
21 return isObstructed;
22 end

3.3 Implementation

We have demonstrated the feasibility of our approach by implementing it in
CAIRIS release 2.3.3. CAIRIS (Computer-Aided Integration of Requirements
and Information Security) is an open-source software platform for eliciting, spec-
ifying and validating secure and usable system specifications [6] developed as an
exemplar for IRIS tool-support.

CAIRIS models, once imported into the platform, are implemented as rela-
tional databases. Graphical models in CAIRIS are automatically generated using

Contextualisation of Data Flow Diagrams for Security Analysis 193

a pipeline process, where a declarative model of graph edges is generated by
CAIRIS; this is processed and annotated by graphviz [5] before being subse-
quently rendered as SVG. SQL stored procedures implement a suite of security
and privacy model validation checks. Algorithms 1–3 were implemented as SQL
stored procedures; these are executed during a normal model-validation check.
No changes were made to pre-existing visual models and the IRIS meta-model.

4 Pilot Study: Modifying Telemetry Outstation Software

We used our approach to identify process taint in a partial specification of a
software repository for industrial control software. While based on a hypothet-
ical water treatment company, this anonymised specification is drawn from a
more complete specification model created for a UK water treatment company.
The CAIRIS model1 of this partial specification consists of 1 attacker, 1 role, 1
persona, 1 task, 1 use case, 28 goals, 17 obstacles, 58 goal and obstacle associa-
tions, 11 assets, 11 asset associations, and 7 data flows. Creation of the model is
not the subject of this paper, but further details of how the broader model was
created are provided in [9].

The specification captures the system goals and complementary model ele-
ments associated with modifying software running on telemetry outstations. Such
outstations provide the means for remotely monitoring and controlling physical
infrastructure such as water pumps. Malicious tampering of such outstations
contributed to the well publicised Maroochy Water Breach [18].

Table 1. Dataflows and assets

Dataflow Assets

job Job
software (to
Sandbox)

Telemetry
Software File

software (from
Sandbox)

Telemetry
Software File

updated
software

Telemetry
Software File

current
software

Telemetry
Software File

alarm Alarm
update Software

Change

Table 2. Dataflow sequences and results
of pre-process and post-process taint
checks

Id Sequence Pre-Proc. Post-Proc.

1 〈job, alarm〉 ✗ ✗

2 〈job, update〉 ✗ �
3 〈job,updated

software,
current
software 〉

✗ �

4 〈job,software,
software〉

✗ �

5 〈current
software〉

� �

Our pilot study considers the impact of human error by an overworked techni-
cian focusing on the intricate task of updating software on telemetry outstations
1 Available from https://doi.org/10.5281/zenodo.3872071.

https://doi.org/10.5281/zenodo.3872071

194 S. Faily et al.

(Outstation update). This task puts in context the use case Modify Telemetry
Software as shown in Fig. 2 (top), which is carried out by an instrument techni-
cian persona (Barry). Details of how the persona and tasks were constructed are
described in more detail in [8]. The task model provided the context necessary
to model the DFD generated by CAIRIS in Fig. 2 (bottom). Table 1 specifies the
assets carried in each data flow.

Fig. 2. Usability model (top) and DFD (bottom) of Modify Telemetry Software gen-
erated by CAIRIS

Not shown in the visible models is an attacker (Unintentional Barry). This
attacker’s motivation and resources are specified as ‘Productivity’ and ‘Low
Resources/Personnel and Time’ to reflect non-malicious intent and a busy sched-
ule. The task model also indicates the assets that Barry directly or indirectly
interacts with in completing this task. The relationship between these and other
assets associated with the specification are shown in Fig. 3 (right).

Contextualisation of Data Flow Diagrams for Security Analysis 195

Fig. 3. Complementary KAOS goal model (left) and UML class diagram-based asset
(right) model generated by CAIRIS

On performing a model validation check, five unique sequences of data flows
were generated as shown in Table 2. The check indicates pre-process taint associ-
ated with sequences 1, 2, 3, and 4 resulting from the flow between the technician
and the process. This was due to the job flow carrying alarm information associ-
ated with the task and the potential for error. The task narrative describes how
Barry needs to raise an alarm to validate the setup is correct; the alert draws
attention to the implications of not safeguarding this information asset.

The model validation check also indicates post-process taint associated with
Sequence 1; this outgoing process flow carries alarm information. An exception is
associated with the second step of the process, where the system sends a change
alarm. As a cut of the goal model in Fig. 3 (left) shows, the associated obstacle
remains unresolved and, although not visible, the obstacle is concerned with the
alarm asset carried in job.

5 Discussion and Conclusion

This short paper showed how, by putting DFDs in context, we can identify pro-
cess taint without changing any DFD semantics. CAIRIS demonstrates the feasi-
bility of our approach, but it could be adapted to any inter-operable combination
of tools. Solutions for resolving the problems are not prescribed besides changing
the attacker model and tasks, or resolving exceptions. However, by indicating
otherwise invisible problems, our approach sheds light on why problems exists,
and how a system or its context of use might need to change to address them.
This approach is contingent on specifications containing the concepts in Fig. 1
that might be created before, during, or after DFD creation. Small or poorly
resourced teams may lack the resources to maintain such models given the user
research investment required. However, this approach does allow human factor

196 S. Faily et al.

experts to become more engaged with threat modelling. We are currently work-
ing with system engineering teams with such expertise to evaluate the impact
this approach has on increasing such engagement.

A threat to validity is the small size of the pilot study specification. However,
we have also evaluated our approach using a more complex military medical
evaluation system model described in [11] consisting of 10 attackers, 14 roles, 9
personas, 12 tasks, 29 use cases, 46 goals, 25 obstacles, 167 goal and obstacle
associations, 82 assets, 388 asset associations, and 134 data flows. No differences
in model validation performance were noted for this larger model, but a detailed
evaluation of this and other larger models will be the subject of future work.

Our approach only considers non-malicious attackers engaging in difficult
tasks. However, Algorithm 2 can be extended to consider alternative attacker and
task attributes corresponding with different means, motives, and opportunities.
For example, an inside attacker might be motivated by improved esteem or thrill
seeking, and participate in tasks with differing levels of goal conflict.

Acknowledgements. This paper resulted from discussions at Dagstuhl Seminar
19231: Empirical Evaluation of Secure Development Processes.

References

1. Antignac, T., Scandariato, R., Schneider, G.: Privacy compliance via model trans-
formations. In: Proceedings of the 2018 IEEE European Symposium on Security
and Privacy Workshops, pp. 120–126, April 2018

2. Coles, J., Faily, S., Ki-Aries, D.: Tool-supporting data protection impact assess-
ments with CAIRIS. In: Proceedings of the 5th International Workshop on Evolving
Security & Privacy Requirements Engineering, pp. 21–27 (2018)

3. Cooper, A., Reimann, R., Cronin, D., Noessel, C.: About Face: The Essentials of
Interaction Design. John Wiley & Sons, Hoboken (2014)

4. Denning, D.E.: A lattice model of secure information flow. Commun. ACM 19(5),
236–243 (1976)

5. Ellson, J., Gansner, E., Koutsofios, L., North, S.C., Woodhull, G.: Graphviz—
open source graph drawing tools. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD
2001. LNCS, vol. 2265, pp. 483–484. Springer, Heidelberg (2002). https://doi.org/
10.1007/3-540-45848-4_57

6. Faily, S.: CAIRIS web site. https://cairis.org (April 2018)
7. Faily, S.: Designing Usable and Secure Software with IRIS and CAIRIS. Springer,

Cham (2018). https://doi.org/10.1007/978-3-319-75493-2
8. Faily, S., Fléchais, I.: Barry is not the weakest link: eliciting secure system require-

ments with personas. In: Proceedings of the 24th BCS Interaction Specialist Group
Conference, pp. 124–132. BCS 2010, British Computer Society (2010)

9. Faily, S., Fléchais, I.: Towards tool-support for usable secure requirements engi-
neering with CAIRIS. Int. J. Secure Softw. Eng. 1(3), 56–70 (2010)

10. Jones, A., Ashenden, D.: Risk Management for Computer Security: Protecting your
Network and Information Assets. Elsevier, Oxford (2005)

11. Ki-Aries, D., Faily, S., Dogan, H., Williams, C.: Assessing system of systems secu-
rity risk and requirements with OASoSIS. In: Proceedings of the 5th International
Workshop on Evolving Security & Privacy Requirements Engineering, pp. 14–20
(2018)

https://doi.org/10.1007/3-540-45848-4_57
https://doi.org/10.1007/3-540-45848-4_57
https://cairis.org
https://doi.org/10.1007/978-3-319-75493-2

Contextualisation of Data Flow Diagrams for Security Analysis 197

12. van Lamsweerde, A.: Requirements Engineering: from system goals to UML models
to software specifications. John Wiley & Sons (2009)

13. Van der Linden, M.A.: Testing Code Security. Auerbach Pub, Boca Raton (2007)
14. Matulevičius, R.: Secure system development. Fundamentals of Secure System

Modelling, pp. 199–207. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-61717-6_12

15. Shostack, A.: Threat Modeling: Designing for Security. John Wiley & Sons, Indi-
anapolis (2014)

16. Simon, H.A.: Rational decision making in business organizations. Am. Econ. Rev.
69(4), 493–513 (1979)

17. Sion, L., Yskout, K., Van Landuyt, D., van den Berghe, A., Joosen, W.: Security
threat modeling: are data flow diagrams enough? In: Proceedings of IEEE/ACM
42nd International Conference on Software Engineering Workshops (ICSEW 2020).
IEEE (2020). to Appear

18. Slay, J., Miller, M.: Lessons learned from the maroochy water breach. In: Goetz,
E., Shenoi, S. (eds.) ICCIP 2007. IIFIP, vol. 253, pp. 73–82. Springer, Boston, MA
(2008). https://doi.org/10.1007/978-0-387-75462-8_6

19. Tuma, K., Scandariato, R., Balliu, M.: Flaws in flows: unveiling design flaws via
information flow analysis. In: Proceedings of the 2019 IEEE International Confer-
ence on Software Architecture (ICSA), pp. 191–200 (2019)

20. Tuma, K., Kalikli, G., Scandariato, R.: Threat analysis of software systems: a
systematic literature review. J. Syst. Softw. 144, 275–294 (2018)

21. Tuma, K., Scandariato, R., Widman, M., Sandberg, C.: Towards security threats
that matter. In: Katsikas, S.K., Cuppens, F., Cuppens, N., Lambrinoudakis,
C., Kalloniatis, C., Mylopoulos, J., Antón, A., Gritzalis, S. (eds.) Cyber-
ICPS/SECPRE -2017. LNCS, vol. 10683, pp. 47–62. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-72817-9_4

22. Woodcock, J., Davies, J.: Using Z: Specification, Refinement, and Proof. Prentice
Hall (1996)

23. Yin, H., Song, D., Egele, M., Kruegel, C., Kirda, E.: Panorama: capturing system-
wide information flow for malware detection and analysis. In: Proceedings of the
14th ACM Conference on Computer and Communications Security, pp. 116–127.
Association for Computing Machinery (2007)

24. Yourdon, E., Constantine, L.L.: Structured design: Fundamentals of a Discipline
of Computer Program and Systems Design. Prentice Hall, USA (1979)

https://doi.org/10.1007/978-3-319-61717-6_12
https://doi.org/10.1007/978-3-319-61717-6_12
https://doi.org/10.1007/978-0-387-75462-8_6
https://doi.org/10.1007/978-3-319-72817-9_4

Author Index

Andres, Florian 3

Ekstedt, Mathias 67
Eliasson, Per 67

Faily, Shamal 186

Gabbay, Dov M. 143

Hacks, Simon 67
Haga, Kristian 111
Hines, Peter M. 166
Horne, Ross 143

Ibrahim, Amjad 3

Jacobsson, Joar 67
Johnson, Pontus 67

Katsikeas, Sotirios 67
Ki-Aries, Duncan 186

Lagerström, Robert 67
Lalande, Jean-François 127
Lê Cong, Sébastien 24

Mauw, Sjouke 143
Meland, Per Håkon 111

Pape, Sebastian 45
Pinchinat, Sophie 24
Pretschner, Alexander 3

Rehwald, Simon 3

Scandariato, Riccardo 186
Scemama, Antoine 3
Schmitz, Christopher 45
Schwarzentruber, François 24
Sekulla, André 45
Shostack, Adam 186
Simon, Mathieu 127
Sindre, Guttorm 111
Sion, Laurens 186
Snekkenes, Einar 87
Szekeres, Adam 87

van der Torre, Leendert 143
Viet Triem Tong, Valérie 127

Wällstedt, Max 67

	Preface
	Organization
	Safety Versus Security: Why Have They Not Married Yet? (Abstract of Invited Talk)
	Contents
	Attack Trees
	Causal Model Extraction from Attack Trees to Attribute Malicious Insider Attacks
	1 Introduction
	2 Preliminaries
	2.1 Foundations of Attack Trees
	2.2 Actual Causality
	2.3 Malicious Insider Example

	3 Attack Trees to Causal Models
	3.1 Suspect Attribution
	3.2 Attributed Attack Tree Transformation
	3.3 Adding Preemption Relations
	3.4 Tool Support

	4 Evaluation
	4.1 The Efficiency of the Extraction
	4.2 The Validity of the Approach
	4.3 The Effectiveness of the Model

	5 Related Work
	6 Conclusions and Future Work
	References

	Library-Based Attack Tree Synthesis
	1 Introduction
	2 Related Work
	3 Attack Trees and Their Trace Semantics
	3.1 Attack Trees
	3.2 Traces and Operations on Sets of Traces
	3.3 Synchronized Concatenation
	3.4 Parallel Composition
	3.5 Trace Semantics of Attack Trees

	4 Libraries
	5 Attack Tree Synthesis
	5.1 A Detour on the Packed Interval Covering Problem
	5.2 NP-Hardness of the Synthesis Problem
	5.3 NP-Membership of the Synthesis Problem
	5.4 Libraries with Bounded-Arity AND-Rules

	6 Conclusion
	References

	Asset-Centric Analysis and Visualisation of Attack Trees
	1 Introduction
	2 Background and Related Work
	2.1 Attack Trees
	2.2 Attack Graphs

	3 Asset-Centric Analysis of Attack Trees
	3.1 Scenario Description
	3.2 Annotation of Attack Trees with Assets
	3.3 Transformation of Attack Trees into Asset-Centric Attack Graphs
	3.4 Security Metrics

	4 Asset-Centric Visualisation of Attack Graphs
	4.1 Requirements
	4.2 Metrics Visualisation
	4.3 Usability and Scalability Features

	5 Prototype Implementation and Evaluation
	5.1 Implementation
	5.2 Evaluation of the Visualisation Requirements

	6 Conclusion and Future Work
	References

	Attacks and Risks Modelling and Visualisation
	An Attack Simulation Language for the IT Domain
	1 Introduction
	2 Related Work
	3 MAL
	4 CoreLang
	4.1 System
	4.2 Vulnerability
	4.3 User
	4.4 IAM
	4.5 Data Resources
	4.6 Networking

	5 Example Model
	6 Validation and Discussion
	7 Conclusion and Future Work
	References

	Representing Decision-Makers in SGAM-H: The Smart Grid Architecture Model Extended with the Human Layer
	1 Introduction
	1.1 Conflicting Incentives Risk Analysis (CIRA)
	1.2 Smart Grid Architecture Model (SGAM)
	1.3 Problem Statement and Motivation

	2 Related Work
	2.1 Variants of SGAM
	2.2 Approaches for Modeling Humans
	2.3 Summary of Related Work

	3 Methodology
	4 Human Layer
	4.1 Case Study: DSO Risks
	4.2 Evaluation of the Human Layer

	5 Discussion
	6 Conclusions
	7 Further Work
	References

	Breaking the Cyber Kill Chain by Modelling Resource Costs
	1 Introduction
	2 Background
	2.1 The Cyber Kill Chain
	2.2 Attack Tree Cost Modelling
	2.3 Cybercriminal Profiling

	3 Method
	4 Results
	4.1 The Resource Costs Model
	4.2 The IRCM Tool

	5 Discussion
	6 Conclusion
	A Tool screenshots
	B Cybercriminal profiles
	References

	GroDDViewer: Dynamic Dual View of Android Malware
	1 Introduction
	2 Related Work
	3 Material Collection
	4 Visualizing Malware Execution
	4.1 Overview
	4.2 System Flow Graph
	4.3 Interactions Frequency
	4.4 Control Flow and Bytecode Views
	4.5 User Interface Navigation
	4.6 Dynamic Replay

	5 Use Case
	5.1 Static Analysis
	5.2 Dynamic Analysis

	6 Conclusion
	References

	Models for Reasoning About Security
	Attack-Defence Frameworks: Argumentation-Based Semantics for Attack-Defence Trees
	1 Introduction
	2 Preliminaries Drawing from Argumentation
	3 Attack-Defence Frameworks: Trees Attacking Trees
	3.1 Interpreting the Attack Relation of Attack-Defence Frameworks
	3.2 Interpreting the Support Relation
	3.3 An Algorithm for Attack-Defence Frameworks, in Its General Form

	4 Reorientation from the Perspective of Attack-Defence Trees
	5 Conclusion
	References

	A Diagrammatic Approach to Information Flow in Encrypted Communication
	1 Introduction
	1.1 Key Aims
	1.2 Tools Used

	2 Bipartite Diffie-Hellman, Diagramatically
	2.1 Expressing Algebraic Identities Diagrammatically
	2.2 Combining Algebraic and Epistemic Data
	2.3 What is Being Modeled by A-E Diagrams?

	3 Information Flow as Failure of Commutativity
	4 Algebraic-Epistemic Diagrams, and a Correctness Condition
	4.1 A Correctness Criterion for A-E Diagrams
	4.2 Justifying the IFO Condition

	5 Tripartite Diffie-Hellman Key Exchange
	6 A-E Diagrams as Graphical Tools for Protocols
	6.1 Manipulating A-E Diagrams
	6.2 Participants' Views of Protocols
	6.3 Updating A-E Diagrams Based on Additional Information

	7 Ambiguity, Incompleteness, and Algorithmics
	8 Comparisons and Interactions with Other Diagrammatic Tools
	9 Future Directions
	References

	Contextualisation of Data Flow Diagrams for Security Analysis
	1 Introduction
	2 Related Work and Background
	2.1 Reasoning About Data Flow Diagrams in Threat Modelling
	2.2 Security and Software Design Meta-Models

	3 Approach
	3.1 Dataflow Specification
	3.2 Pre-process and Post-process Analysis
	3.3 Implementation

	4 Pilot Study: Modifying Telemetry Outstation Software
	5 Discussion and Conclusion
	References

	Author Index

