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Abstract The experimental planning and design are important parts for successful
performance and result analysis in a project. Both for industry and academic settings,
there is the constant need to analyze the influence of many variables in the different
types of responses. Traditionally, the influence of different variables in the exper-
imental outcome has been analyzed by changing “one factor at a time”, which is
usually described as univariate or OFAT approach. However, unless all variables are
close to their optimum value, there is no guarantee that this approach will lead to the
best optimized outcome. Additionally, the OFAT approach can lead to the implemen-
tation of an excessive number of experiments, which usually increases the expenses
related to the project. Pursuing to analyze how the synergy between different vari-
ables can influence the experimental outcomes, there is the multivariate approach,
where two or more variables are changed simultaneously enabling the experimen-
talist to analyze the beneficial or antagonistic effect of this combination of variables
in the experimental outcome. Moreover, the multivariate approach may improve the
chances to find the best outcome possible with the conduction of a fewer number
of experiments. In this sense, this chapter introduces the concept of factorial design
of experiments, a multivariate approach based on choosing two or more levels for
multiple variables, calculating the effects of each variable individually and of each
possible combination of variables, obtaining a model from these results, applying
this model to predict untested conditions and judge the statistic significance of the
model. The examples presented in the chapter will all be focused on the prepa-
ration and performance of nanomaterials. For instance, how the concentrations of
different precursors can influence the particle size of colloidal silica nanoparticles.
Or how different variables, such as, time, temperature and reagents concentration
can influence the thickness of manganese sulfide (MnS) thin films. The chapter
begins providing the definition of the basic terms underlying the factorial design,
then, it presents examples from literature applying factorial designs starting with
the simpler ones, such as 23. Then, the chapter evolves presenting optimization and
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response surface methodologies factorial designs, for instance, central composite,
Box-Behken, and Doehlert designs. Finally, the chapter presents tables with refer-
ences from papers published in the period from 2015 to 2020. In each one of them, the
factorial design of experiments was used for the development of functional materials
applied in nanoparticles preparation, drug delivery and encapsulation, wastewater
remediation, and solar cells development. With this chapter, the author hopes to
introduce a powerful and underexplored statistical tool to scientists, engineers, and
all practitioners of nanomaterials science. Focus will be placed on how they can
benefit from the concepts and examples presented, and possibly adapt them for their
own projects, instead of relying on heavy mathematical notations and calculations.

1 Introduction

Thedevelopment of functionalmaterials requires accurate control of each step in their
production. In this sense, to be able to test a broader range of experimental conditions
by performing a lower number of experiments is desirable. So, the factorial design
of experiments is a set of statistical concepts intended to optimize specific properties
by taking advantage of a multivariate approach. In this approach, the interaction
between different factors is interpreted holistically. The design of experiments allows
the research to judge which factors are statistically significant by calculating their
effects on the property to be optimized. Moreover, empirical models can be obtained,
allowing the researcher to predict how that specific property will behave in untested
conditions.

The ability to predict results based on an empirical model opens up an array of
opportunities and saves time and resources from the researcher. So, this chapter aims
to show from the scientific literature examples how the factorial designof experiments
has widely been applied to the development and performance of functional materials.

This chapter is intended to fulfill the needs of readers with different knowledge
levels about the design of experiments, from the beginner to the experienced reader.

That being said, readers from different familiarity levels have the opportunity
to focus their attention on different parts of the chapter. For the beginner ones, it
is recommended to start reading the chapter from Sect. 2. Since in this part, the
essential concepts and terminology of factorial design are introduced. Then, a step
by step 23 factorial design is performed. This 23 factorial design is developed very
comprehensively, aiming that even a beginner reader can try to adapt the design
to their own experimental situation, without using black-box programs. This part
appreciates the statistical formalism whenever it is necessary. In such a way, it can
sound intimidating at first sight. However, with attention and persistence, the reader
can benefit from the knowledge.

Since Sect. 2 is very comprehensive. Consequently, it is also extensive. So, if a
reader is already familiar with all the terminology, structure, and calculations related
to factorial designs, he/she iswelcome to skip this full part and start straight onSect. 3.
There, the reader will find analyses of literature examples where the factorial design
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of experiments and response surface methodologies were applied to the context of
materials preparation and performance. This part appreciates a critical analysis of
each research paper by remarking the steps followed by the authors.

Finally, in Sect. 4, readers will find references from papers published in the period
from 2015 to 2020. In each one of them, the factorial design of experiments was
applied to the development of four types of functional materials. They are nanoparti-
cles preparation, drug encapsulation and delivery, wastewater remediation, and solar
cell development.

2 The Fundamentals and Statistical Basis of the Factorial
Design of Experiments

2.1 Factorial Design of Experiments: Initial Concepts
and Terminology

The experimental planning and design are essential parts for successful performance
and analysis of results in a project. Both for industry and academic settings, there
is a constant need to analyze the influence of many factors in the different types of
responses. Traditionally, the impact of different factors in the experimental outcome
has been analyzed by changing “one factor at a time,” which is usually described as
a univariate or OFAT approach.

For instance, suppose that a research group is aiming to maximize the yield of a
certain chemical reaction, and they know that the yield can be affected by factors such
as pH, temperature, and catalyst concentration. From previous literature knowledge,
the scientists figured out that this reaction has been described to occur in the following
ranges for each factor, as presented in Table 1.

According to the OFAT approach, they would perform a series of experiments
varying the pH and keeping temperature and catalyst concentration constant. For
instance, by fixing the temperature at 85 ◦C, the catalyst concentration at 5 × 10–4

mol L−1, and making the pH equal to 8, 10, 12, and 14 units.
Next, they would vary the temperature and keep the pH and catalyst concentration

constant. For instance, by fixing pH equal to 14, catalyst concentration at 5 × 10–4

mol L−1, and making the temperature equal to 25, 50, 70, and 85 ◦C.
Then, they would vary catalyst concentration and keep pH and temperature

constant. For instance, by fixing pH equal to 14, temperature at 85 ◦C, and making

Table 1 Matrix of
experiments showing the
factors and their respective
lower and upper limits

Factor Lower limit Upper limit

pH 8 14

Temperature (◦C) 25 85

Catalyst concentration (mol L−1) 1 × 10–4 5 × 10–4
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catalyst concentration equal to 1 × 10–4, 2.5 × 10–4, 3.5 × 10–4, and 5 × 10–4 mol
L−1.

There are potential flaws associated with this OFAT approach. The first one is
related to choosing the values for the factors that will remain fixed [1]. Notice that,
whenever fixing the pH and catalyst concentration, the researchers always chose to
fix them at the uppermost level possible. This choice could have been determined
by a preconceived idea that maximizing factor values always are going to lead to a
yield maximization, which is not always true.

Second, this OFAT approach could ignore potential effects related to the interac-
tion of two or more factors being varied at the same time [1]. For instance, the yield
could be maximized at pH 11, 30 ◦C, and catalyst concentration equal to 1.5 × 10–4

mol L−1. This condition was not performed in the OFAT approach adopted, so the
researchers would not be aware of the yield maximization at this set of conditions.

A third potential flaw could be related to the large number of experiments
performed [1]. In general, a higher number of experiments represent higher consump-
tion of chemicals, analysis time, production of waste, and, consequently, a higher
total cost. In this sense, an approach that offers useful trends and conclusions with
a lower amount of experiments is always preferred. So, in the next section, we will
see how this experimental approach could be redesigned according to the factorial
design of experiments. And how the factorial design could potentially decrease the
chance of each of these flaws to occur.

2.2 Planning According to the Factorial Design
of Experiments

Pursuing to analyze how the interaction between different variables can influence the
experimental outcomes, there is the multivariate approach. Where two or more vari-
ables are changed simultaneously, enabling the researcher to analyze the beneficial
or antagonistic effect of this interaction of variables in the experimental outcome.
Moreover, the multivariate approach may improve the chances to find the best result
possible with the conduction of a fewer number of experiments.

Before we start redesigning the series of experiments shown in the previous
section, we should define the terms commonly related to the factorial design of
experiments. The first term is factor. Factors, as seen in the previous section, are the
variables that would be varied across the experimental design. So, according to the
situation we are analyzing, three factors have been studied, they are pH, temperature,
and catalyst concentration.

The second term is the response variable, which is the response the researchers
are aiming to observe by performing the experiments. In the example presented, the
yield is the response variable. It is important to say that experimental designs can
have more than one response variable.
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The values each factor will adopt will be called levels. For instance, let’s suppose
that the temperature will be fixed in their lowest and highest values, so, respectively,
25 and 85 ◦C. In this case, 25 and 85 ◦C are called the levels of the temperature
factor. If only two levels are adopted for each factor, then the factorial design is
called a two-level factorial design. Now, supposing that the scientist had chosen
three levels for each variable, in that case, the factorial design would be called three-
level factorial design. The levels could either be quantitative or qualitative. In case
qualitative levels are chosen, it is necessary to consistently order them in such a way
that a certain level is defined as the lower level, and the other one is the upper level,
taking the two-level factorial design as an example.

The effects are how single factors or the interaction of two or more factors would
influence the value obtained for the response variable. For instance, among the three
factors studied, one of them, for instance, temperature,mayhave a higher influence on
the response variable. Whereas, other factors may be concluded to be insignificant to
change the response variable. The total number of possible effects will be dependent
on how many factors the experimental design has.

In the studied example, as there are three factors, each factor will have its indi-
vidual effect. Then, the design can have secondary effects, which will arise from
the interaction of two factors at a time. So, the secondary factors would be pH-
Temperature, pH-Catalyst Concentration, and Temperature-Catalyst Concentration.
Finally, in models having three or more factors, tertiary effects are predicted, which
are obtained by the combination of three variables at a time. In the studied example,
the only tertiary effect would be pH-Temperature-Catalyst Concentration. If the
design had four factors, it would have more tertiary effects and one quaternary effect.
In conclusion, this three-factor, two-level experimental design has three primary
effects, three secondary effects, and one tertiary effect.

A factorial design is the experimental design comprising all levels of each factor
studied varied in a multivariate manner, in such a way that allows the interaction
effects to be calculated. In general, the factorial designs are named according to how
many factors they have and how many levels each factor has. A common represen-
tation for the factorial design name is sk, where k is equal to the number of factors,
and s is how many levels each factor has. In the studied example, which has three
factors, and two levels for each one of them, this can be called to be a 23 factorial
design.

The sk representation also indicates the minimum number of experiments without
replicas to be performed to be considered a full sk factorial design. To figure out the
number of experiments it is necessary to solve the exponential equation shown in the
sk representation, for instance, a 23 factorial design would require a minimum of 23

= 8 different experimental conditions to be considered complete.
Another important concept is the coded levels. For calculating the effects and

their statistical significance, matrix calculations will be necessary. In this sense, each
level, whether it is quantitative or qualitative, should be normalized according to
a common scale. In general, this scale ranges from −1 to +1. In the case of two-
level factorial design, the lower limit is normalized as −1, and thus, the upper limit
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Table 2 The factors with
their respective limits
represented as coded (in
parenthesis) and uncoded
values

Factor Lower limit Upper limit

pH = A 8 (−1) 14 (+1)

Temperature (◦C) = B 25 (1) 85 (+1)

Catalyst concentration (mol
L−1) = C

1 × 10–4 (−1) 5 × 10–4 (+1)

Table 3 Matrix of
experiments

Exp. number pH Temperature Catalyst concentration

1 −1 −1 −1

2 +1 −1 −1

3 −1 +1 −1

4 +1 +1 −1

5 −1 −1 +1

6 +1 −1 +1

7 −1 +1 +1

8 +1 +1 +1

is normalized as +1. So, Table 1 could be improved to include the coded values
between parenthesis, as shown in Table 2.

Matrix of experiments is the matrix that describes each experiment to be
performed, according to the combination of the coded values for each factor. For
instance, for the example given, as shown in Table 3.

Translating thematrix of experiments from the coded values to the original values,
one can say that the experiment number 1 is performed with pH = 8, Temperature =
25 ◦C, and catalyst concentration=1×10–4 molL−1. Taking another example, exper-
iment 7 is performed at pH = 8, Temperature = 85 ◦C, and catalyst concentration =
5 × 10–4 mol L−1.

The matrix of results is the one that summarizes the values observed for the
response variable for each one of the experiments performed, as shown in Table 4.

Table 4 Matrix of results Exp. number Yield (%)

1 25

2 42

3 76

4 45

5 81

6 5

7 66

8 15
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After being introduced to the essential vocabulary and concepts about factorial
design, we are ready to start seeing how the factorial design is structured.

2.3 The Structure of the Factorial Design

Factorial Design starts with its planning. In the planning stage, the factors and
response variables to be studied should be defined. Then, within each factor is
necessary to identify the upper and lower levels.

When planning a factorial design, it is essential to understand that there is no “one-
size fits all” solution for all the scientific problems. However, there are some steps
that the researcher can follow to better planning the design. For instance, the factors,
their respective levels, and the response variables could be defined according to the
need of the process that the researcher is aiming to optimize. Scientific or technical
literature about the problem to be solved is a reasonable starting point. Also, the levels
can be defined according to the capabilities of the pieces of equipment available for
that experiment performance. The cost of using a specific piece of equipment or
technique could be another decisive factor while planning the design [2].

In summary, to plan a factorial design accordingly, it is necessary: (a) to be
familiar to the system to de studied, (b) to know the technical resources available,
(c) to have clear goals about what is the response variable to be optimized, and (d)
how the researcher is aiming to optimize this response variable, for instance, either
maximizing or minimizing its value [3].

The second step in the factorial design is the factor screening. Due to the prior
knowledge of the system, the researcher can identify variables that influence the
response variable he/she is interested in optimizing. So, at this point, the researcher
will perform a factor screening step. During factor screening, experiments will be
performed according to some 2k factorial design or some 2k−p fractional factorial
design. In either case, k is the number of factors to be studied. Then, all the experi-
ments necessary to complete the selected factorial design will be performed. These
experiments can be achieved with or without replicas, depending on the time and
resources available to the researcher.

After the experiments conclusion, the researcher will analyze the data and deter-
mine which factors have significant effects and which factors do not have significant
effects regarding influencing the response variable. At this point, the researcher
will be able to obtain a linear polynomial equation describing how the significant
factors quantitatively influence the response variable. For some situations, the model
described by this equation can be enough to answer satisfactorily the question asked
by the researcher. And the design can even be concluded on this point [3].

However, for other situations, the linear polynomial model obtained may not
accurately describe the situation faced by the researcher. In this case, the factorial
design will proceed to an optimization step. In this step, the insignificant factors
will be disregarded, and additional experiments will be performed, considering only
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Fig. 1 The four general steps of a factorial design of experiments

the significant factors. Also, in this step, in general, more than two levels will need
to be considered for every factor [3, 4].

As more than two levels will be considered for each factor, the optimization step
will allow the research to obtain a model described by a polynomial equation of
order higher than one, for instance, a quadratic polynomial equation. Also, as the
optimization is a refinement step, some factors may prove to be insignificant under
the new design conditions. Consequently, they will be excluded from the definite
model equation [4].

Most of the time, after one or a few optimization steps, the researcher will have
a model that describes with satisfactory precision the behavior of the system in the
study. Then, the next step is the conclusion of the design. In this step, the researcher
will interpret how the empiricalmodel obtained translates in the context of the studied
situation. Additionally, the researcher will be able to apply themodel to experimental
conditions initially untested and verify how the experimental result agrees with the
result predicted by the model.

The successful accomplishment of the four steps shown in Fig. 1 describes what
is required to complete a factorial design. In the next two sections, we will discuss
how the screening and optimization steps can be performed by using different types
of factorial designs and their particularities.

2.4 Screening the Factors

Depending on the complexity of the experimental problem to be solved, many factors
can influence the response variable. In this sense, it is necessary to have a screening
step, which will start with most of the factors that can hypothetically change the
response variable. Then, the significance of the effects of these factors will be judged
according to appropriate statistical tests, and the insignificant factorswill be excluded
from the optimization step. Besides deciding the significance of the effects, another
goal from the screening step is to obtain a first-order polynomial equation, describing
how the response variable varies according to changing the coded values of the
significant factors.

The main differences between 2 and 2k−p factorial designs are shown in Table 5,
as adapted from Candioti et al. [5].

The fractional factorial designs 2k−p are beyond the scope of this chapter. For
readers interested in learning more regarding this type of design, references number
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Table 5 Comparison of the features of the full factorial design (2k) and fractional factorial design
(2k−p)

Design Type of factors Type of
response
variable

Number of
factors

Minimum
number of
experiments

Number of
estimated effects

2k Quantitative or
qualitative

Quantitative Usually
between 2 and 5

2k 2k–1

2k−p Quantitative or
qualitative

Quantitative Usually higher
than 4

2k−p It depends on p
value and how
cofounded the
design is

[3] and [6] are good references to learn the essential concepts of fractional factorial
designs.

2.5 2k Factorial Designs

In Sect. 2.2, we first defined what 2k factorial designs are and howmany experiments
are necessary to complete the design according to the k value. A feature of a 2k

factorial design is that for each factor, only two levels are defined, a lower and an
upper level. This feature holds for 2k factorial designs used in the factors screening
steps. For more comprehensive steps, like the ones used for optimization steps, more
levels will be needed. In this section, we will see the particularities of a 2k factorial
design. For instance, we will discuss how to calculate the effects and the coefficients
of the equation describing the design model, and how to judge the significance of
these effects.

Beforewe start, it is important to say that to perform all the calculations and graphs
presented in this section does not require any specialized software. Any software
able to program matrix multiplication and graphical plotting, for instance, Microsoft
Excel, is enough to perform all the calculations. However, there are software packets
specialized to perform all of the design of experiments calculations, most of them
are paid packages. The readers more interested to know the names and capabilities
of these software packages are encouraged to read the review paper by Hibbert
[7], which contains a table listing the main commercial softwares used in design of
experiment calculations.

As shown in Table 6, the number of effects possible for a 2k factorial design is
equal to 2k − 1. In this sense, Table 6 explains how many and which are the effects,
according to the k value.

Each one of the effects can be calculated according to the Eq. 1, as exemplified
for Effect A [8]:
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Table 6 Number and type of effects according to the number of factors (k value) in a 2k factorial
design

k value Factors Number of effects Primary effects Interaction effects

2 A, B 3 A, B AB

3 A, B, C 7 A, B, C AB, AC, BC, ABC

4 A, B, C, D 15 A, B, C, D AB, AC, AD, BC, BD, CD,
ABC, ABD, ADC, BDC,
ABCD

E f f ect A =
∑

Y A
(+)

n/2
−

∑
Y A

(−)

n/2
(1)

where Y A
(+) are the values of the response variable for which A has coded value = +

1, Y A
(−) are the values of the response variable for which A has coded value = −1. n

is defined as the total number of experiments in the factorial design, for instance, n
= 8 for a 23 or n = 16 for a 24. Notice that the n value does not change if replicas are
performed. The only thing that changes in case replicas were performed is the fact
that each Y A

(+) and Y A
(−) should be taken as the average of the replicas.

A good way to understand the Eq. 1 is to think that the effect is the difference
between the average of the response variable when A has coded value = +1 and the
average of the response variable when A has coded value = −1.

To minimize the chances to be mistaken during the calculation of the effects, an
alternative to Eq. 1, is to use matrix multiplication for each one of the effects. In
Table 3, in Sect. 2.2, we introduced the concept of the matrix of experiments. Here,
we will expand that matrix to include the coded values for each one of the possible
interactions.

The coded value for each interaction was obtained by simply multiplying the
coded values of the factors giving rise to that respective interaction. We can convert
Table 7 in a square matrix (a matrix having the same number of columns and rows)
by adding a column where all entries will be +1, as the first column of the matrix.

Table 7 Matrix of experiments for the primary effects and interactions in a 23 factorial design

Exp. Number A B C AB AC BC ABC

1 −1 −1 −1 +1 +1 +1 −1

2 +1 −1 −1 −1 −1 +1 +1

3 −1 +1 −1 −1 +1 −1 +1

4 +1 +1 −1 +1 −1 −1 −1

5 −1 −1 +1 +1 −1 −1 +1

6 +1 −1 +1 −1 +1 −1 −1

7 −1 +1 +1 −1 −1 +1 −1

8 +1 +1 +1 +1 +1 +1 +1
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We can call this matrix as matrix (M1):

X =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

+1 −1 −1 −1 +1 +1 +1 −1
+1 +1 −1 −1 −1 −1 +1 +1
+1 −1 +1 −1 −1 +1 −1 +1
+1 +1 +1 −1 +1 −1 −1 −1
+1 −1 −1 +1 +1 −1 −1 +1
+1 +1 −1 +1 −1 +1 −1 −1
+1 −1 +1 +1 −1 −1 +1 −1
+1 +1 +1 +1 +1 +1 +1 +1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(M1)

The transpose matrix (Xt) of the matrix 1 can be written as matrix (M2)

Xt =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

+1 +1 +1 +1 +1 +1 +1 +1
−1 +1 −1 +1 −1 +1 −1 +1
−1 −1 +1 +1 −1 −1 +1 +1
−1 −1 −1 −1 +1 +1 +1 +1
+1 −1 −1 +1 +1 −1 −1 +1
+1 −1 +1 −1 −1 +1 −1 +1
+1 +1 −1 −1 −1 −1 +1 +1
−1 +1 +1 −1 +1 −1 −1 +1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(M2)

The matrix of results, shown in Table 4 can be written as matrix Y (M3):

Y =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

25
42
76
45
81
5
66
15

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(M3)

Multiplying the matrixes Xt and Y, as shown in Eq. 2, will be useful both for
calculating the effects and the coefficients:
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(
Xt

)
Y =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

355
−141
49

−21
−23
−113
−59
73

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2)

The effects can be calculated by the Eq. 3:

E f f ect (i) =
(
Xt

)
Y

n/2
(3)

The effects calculated are shown in Fig. 2.
From Fig. 2, one can notice that except for the effect of the of the factor B, and

the tertiary interaction ABC, all other effects had negative values. For the primary
effects A, B, and C a negative value means that moving from the lower to the upper
level of these factors, leads to a decrease in the response variable, in this case, the
yield. Similarly, a positive effect means that switching from the lower to upper level
leads to an increase in the response variable.

For the secondary effects, such as AB, AC, and BC, an increase in the effect means
that the response variable increases when the product between the levels of the two
factors switch from negative to positive. The interpretation is similar to the tertiary
effect, such as ABC.

Fig. 2 Graph showing the
effect value for each one of
the primary effects and
interactions possible for the
23 factorial design. The
effects were calculated
according to Eq. 3
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2.5.1 The Empirical Model

As previously told, a 2 k factorial model can produce a polynomial equation where
all the terms are linear; in general, the empirical model can be described by the Eq. 4:

y = b0 +
k∑

i=1

bi Xi +
k∑

1≤i≤ j

bii Xi X j + ξ (4)

where: b0 the independent term related to the average of the response of all experi-
ments, bi or bii are the coefficients for each term, the Xi or Xj are the coded values
of each factor, and ξ is the residual associated to the experiment.

For a factorial 2k, the empirical model contains 2k terms, being one term for each
one of the effects plus the independent term. The residual term ξ is not explicitly
written in the equation. In this sense, the empirical model equations for 22, 23, and
24 designs are shown, respectively, in the equations varying from 5 to 7:

y = b0 + bAXA + bB XB + bAB XAXB (5)

y = b0 + bAXA + bB XB + bC XC + bAB XAXB

+ bAC XAXC + bBC XB XC + bABC XAXB XC (6)

y = b0 + bAXA + bB XB + bC XC + bDXD + bAB XAXB + bAC XAXC

+ bADXAXD+bBC XB XC + bBDXB XD + bCDXC XD

+ bABC XAXB XC + bABDX AXB XD + bADC X AXDXC

+ bBDC X B XDXC + bABCDX AXB XC XD (7)

Each one of the bi or bii coefficients can be calculated by dividing the Eq. 2 by the
number of experiments; in other words, the coefficients can be calculated according
to Eq. 8:

b(i) =
(
Xt

)
Y

n
(8)

So, for the 23 factorial design, we are working on, the empirical model is shown
in Eq. 9:

Y ield(%) = 44.4 − 17.6XA + 6.1XB − 2.6XC − 2.9XAXB

− 14.1XAXC − 7.4XB XC + 9.1XAXB XC (9)
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2.5.2 Judging the Significance of the Effects to Refine the Empirical
Model

Equation 9 presents all the eight possible terms for the empirical model. However,
not all the terms will be significant. To judge which terms will be significant we have
to decide which effects are significant using statistical tests. The coefficients related
to the insignificant effects will be discarded from the model.

To have a rough estimate about which effects might be significant, the effects can
be squared, and then, divided by the summation of all values, and multiplying by
100%, as shown in the Fig. 3.

Figure 3 shows that effects A, AC, and ABC are the three bigger ones. The
summation of these three effects accounts for about 85% of all the effects. We can
affirm, almost unequivocally, that these three effects are significant. Contrastingly,
we can also claim that the effect C, which is smaller than 1%, is insignificant. But
how about the other four effects? Are they significant or not?

To answer this question, we need some statistical tests. One of the most popular
tests is critical t-student, which is shown in Eq. 10:

cri tical − t = sE f f ect × t (DoF; p) (10)

where sE f f ect is defined as the standard deviation of the effects and t (DoF; p) is
the value obtained from a t-Student table with the number of degrees of freedom
(DoF) fromwhich sE f f ect was calculated, and p is the probability. For instance, if the
desired probability is 95%, the researcher should look for the t-student value with p
= 0.05 in the t-Student table.

The sE f f ect can in principle be simply calculated as the square root of the variance
of the effects (sE f f ect

2), from Eq. 11 [9]:

Fig. 3 Graph showing the
percentage of effects
absolute value for each one
of the primary effects and
interactions possible for the
23 factorial design
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sE f f ect
2 = 4s2e∑n

i=1 ri
(11)

where s2e is an estimative of the variances, which can be calculated from Eq. 12, and
ri is the number of replicas. For instance, if each experiment was done twice, ri = 2

s2e =
∑n

i=1

[
(ri − 1)s2

]

∑n
i=1[(ri − 1)]

(12)

In fact, in Eq. 12 the term (ri − 1) is particularly the degrees of freedom used
in order to calculate the estimative of the variances, and s2 is the variance for each
experimental condition, as shown in Eq. 13:

s2 =
∑r

i=1

(

yi−
−
y
)2

(ri − 1)
(13)

where yi is each individual result of the replica,
−
y is the average of each individual

result from the replicas, and r is the number of replicas.
After calculating critical-t using Eq. 10, the critical-t value is compared to the

absolute value of each effect, and only the effects having absolute values higher than
the critical-t will be considered significant, in that probability level p.

The best way to obtain all the variances necessary to calculate the critical-t is by
performing all the experiments with replicas since it allows to calculate sequentially
s2, s2e , sE f f ect

2, from Eqs. 11, 12, and 13, respectively.
However, if no replicas were made for any of the experiments, it is still possible

to obtain the variances necessary to calculate t-value. Yet, there are distinct ways to
accomplish this task, a popular and prudent one is to perform additional experimental
with all the factors fixed at the central point.

For quantitative factors, the central point is defined as the average between the
lower and upper levels, and it has the coded value equal to zero. Table 8 is an
adaptation of Table 2, including the central point for each factor.

As such, the experiment at the central point was then performed in triplicate, and
the following results were obtained for the yield, as shown in Table 9.

Table 8 The factors with their respective limits and central points represented as coded (in
parenthesis) and uncoded values

Factor Lower limit Central point Upper limit

pH = A 8 (−1) 11 (0) 14 (+1)

Temperature (◦C) = B 25 (−1) 55 (0) 85 (+1)

Catalyst concentration (mol L−1) = C 1 × 10–4 (−1) 3 × 10–4 (0) 5 × 10–4 (+1)
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Table 9 Yield obtained for the experiments performed in the central point using triplicates

Factors Yield (%)

A B C Exp 1 Exp 2 Exp 3

0 0 0 41 47 50

Table 10 Average yield,
degrees of freedom,
variances, standard deviation
of the effect, tabled t-student
value and, the critical-t value
with 95% confidence
obtained for the experiments
performed in the central point
using triplicates

Parameter Value

Average yield 46

Degrees of freedom 2

Variance (s2 and se2) 14

Seffect2 18.67

Seffect 4.32

t(2; 0.05) 2.92

Critical-t 12.6

The values for average, degrees of freedom, and variance (s2 and se2), Seffect2,
Seffect, t-student (2; 0.05), and critical-t are shown in Table 10.

The graph shown in Fig. 4 is called Pareto chart, it is a bar graph where in the Y-
axis all the effects are categorized, and in the X-axis the absolute value of the effects
are presented. Then, a vertical line is fixed on the X-axis over the critical-t value.
From the Pareto chart we can see that the effects higher than the critical-t are the
pH (A), the secondary interaction between pH and catalyst concentration (AC), and
between temperature and catalyst concentration (BC), and the tertiary interaction
among the three factors (ABC). Notice that the Pareto chart confirmed the initial
guess based on Fig. 3 that the effects A, AC, and ABC are significant. Also, the

Fig. 4 Pareto chart showing
which effects are higher (if
so, significant) than the
critical-t
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Pareto chart was essential to confirm that BC is significant, whereas the effect B is
insignificant, although it is very close to the critical-t value.

Now that we decided which effects are significant, based on a statistical test. We
can exclude from themodel (Eq. 9) the coefficients related to the insignificant values.
So, the model describing the factorial design is given by Eq. 14:

Y ield(%) = 44.4 − 17.6XA − 14.1XAXC − 7.4XB XC + 9.1XAXB XC (14)

2.5.3 Assessing the Quality of the Model Using Analysis of Variance
(ANOVA) Table

Replacing the coded values for XA, XB, and XC on Eq. 14, it was possible to calculate
the yield (%) predicted by the model for each one of the experiments performed, as
shown in Table 11.

A standard method to assess the quality of the model by using three parameters
called the sum of squares (SS), they are: the sum of square (SS) for the mean, for the
regression, and for the residuals, and they are defined according to Eqs. 15–17:

SSmean =
∑ (

yi−
−
y
)2

(15)

SSregression =
∑ (

yi
∧− −

y
)2

(16)

SSresidual =
∑ (

yi − yi
∧)2

(17)

Table 11 Comparison between the yield (%) obtained experimentally and predicted by the model
represented by Eq. 14

A B C Experimental Predicted

−1 −1 −1 25 31.4

1 −1 −1 42 42.6

-1 1 −1 76 64.4

1 1 −1 45 39.2

−1 −1 1 81 92.6

1 −1 1 5 11

−1 1 1 66 59.6

1 1 1 15 14.4
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Table 12 Analysis of variance (ANOVA) Table for the 23 factorial design

ANOVA table

Source of variation Sum of square Degrees of freedom Mean squares

Mean 5603.88 7 800.55

Regression 5169.12 4 1292.28

Residual 421.40 3 140.47

R2 (SSregression/SSmean) 0.9224

MSregression/MSresidual 9.20

F-test for 4/3 degrees of freedom with 95% 5.39

where: yi is the value obtained experimentally, yi
∧

being value predicted according

to the model, and the
−
y is the average of all experimental values.

Note that each sum of squares has a certain number of degrees of freedom which
can be associated with them. It is known that for SSresidual the number of degrees
of freedom is found to be equal to the difference of the number of independent
experiments (8, in this example) and the number of parameters contained in the
equation describing the model (5, in this example), so SSresidual has 3 degrees of
freedom. For the SSregression the number of degrees of freedom is equal to the number
of parameters (5, in this example)minus 1, so the SSregression has 4 degrees of freedom.
Finally, the number of degrees of freedom of SSmean is equal to the number of degrees
of freedom for SSresidual plus SSregression, so 7 degrees of freedom.

Hence, the mean square (MS) for regression, residual, and mean was then calcu-
lated by dividing each sum of squares by its respective number of degrees of freedom.
So, Table 12 presents the complete ANOVA table for the example analyzed.

There are two criteria used to assess the model quality through the ANOVA
table. The first one is based on the coefficient of determination (R2), which is the
ratio between the SSregression and SSmean. An R2 as close as to 1 represents a better
quality of the model. In this example, an R2 equal to 0.9224 means that 92.24%
of the variation is explained by the model, whereas only 7.76% is explained by the
residuals.

The second parameter is the ratio between MSregression and MSresidual. This value
is in general compared to the F-test value with 95% of confidence, and the number
of degrees of freedom in the numerator as the same number of degrees of freedom as
MSregression. And the number of degrees of freedom in the denominator as the same
number of degrees of freedom as MSresidual. As the ratio MSregression/MSresidual (9.20)
is higher than the F-test with 95% confidence, and 4/3 degrees of freedom (5.39), we
can conclude that the model is appropriately fitted to the data.

For most of the researchers, the model described by Eq. 14 would have enough
quality, which eliminates the need to perform additional experiments for optimization
to obtain a model with quadratic terms, as the ones to be discussed in Sect. 2.6.
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2.6 Optimization Steps

Depending on the situation studied, an empirical model where all the terms in the
polynomial are linear may not be satisfying. In this sense, the researcher will have to
use experimental designs able to produce polynomials containing quadratic terms,
such as the one generically represented by Eq. 18:

y = b0 +
k∑

i=1

bi Xi +
k∑

i=1

bii Xi
2 +

k∑

1≤i≤ j

bii Xi X j + ξ (18)

Compare Eq. 18 with Eq. 4, and notice that there are no quadratic terms in the
Eq. 4.

In this section, we will be introduced to the basics of four designs able to produce
polynomial models containing quadratic terms. The four designs to be studied are
3k Factorial Design, Central Composite Design (CCD), Box-Behnken Design, and
Doehlert Design. In all these designs, all the factors are studied in more than two
levels.

The group formed by these designs is called Response Surface Methodology
(RSM), as the equations described by each model can be converted in a tri-
dimensional graph called response surface. In none of these models there will be a
detailed example, like the onewe presented for 2k factorial design. Readers interested
to have a more in-depth knowledge about any one of these designs are encouraged
read the references cited in this section or the ones in Sects. 3 and 4.

Also, specifically about RSM, the books: A Comprehensive Guide to Factorial
Two-level Experimentation by Mee [6], and Design and Analysis of Experiments by
Dean et al. [10] are good resources for readers avid for learning more about each one
of the RSMs.

2.6.1 Three Level Factorial Design (3k Design)

In the 3 k factorial design, all the factors have three levels (−1, 0, +1). Although the
3k design implementation is not so complicated due to its similarity to 2k designs, it
requires a relatively large number of experiments. For this reason, the 3k design is
used to study a few factors, generally, two or three [11].

2.6.2 Central Composite Design (CCD)

TheCentralCompositeDesign (CCD) ismade upby the combination of the following
features [3, 9]:

(i) A full 2k factorial design or a fractional factorial design 2k−p.



406 A. H. Pinto

Table 13 Matrix of
experiments for a 22 CCD
factorial design

22 factorial design

XA XB 22 factorial design

−1 −1

+1 −1

−1 +1

+1 +1

0 0 Central point experiment

−α 0 Axial point experiments

+α 0

0 −α

0 +α

Table 14 Matrix of
experiments for a 23 CCD
factorial design

23 factorial design

XA XB XC 23 factorial design

−1 −1 −1

+1 −1 −1

−1 +1 −1

+1 +1 −1

−1 −1 +1

+1 −1 +1

−1 +1 +1

+1 +1 +1

0 0 0 Central point experiment

−α 0 0 Axial point experiments

+α 0 0

0 −α 0

0 +α 0

0 0 −α

0 0 +α

(ii) Central point experiments, where all the factors have coded values equal to
zero.

(iii) Experiments in the axial points. In these experiments, one factor will have
coded value equal to ±α. These ±α values are located in the axes of the
coordinated system, and in distance ±α from the origin of the system.

Tables 13 and 14 show the matrix of experiments for a CCD design having a 22

and 23 factorial as screening designs [3].
From the matrix of experiments, one can conclude that the total number of

experiments for a CCD, disregarding any replicas, is equal to the Eq. 19:
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Table 15 Number of experiments at axial level, axial levels, and total number of experiments for
CCD factorial designs according to the number of factors

Number of factors (k) 2 3 4 5 5 6 6

p in 2k−p 0 0 0 0 1 0 1

Number of Experiments in axial levels (±α) 4 6 8 10 10 12 12

+α values 1.414 1.682 2.000 2.378 2.000 2.828 2.378

Total number of experiments 9 15 25 43 27 77 45

NumberofExperiments = 2k + CentralPoint + 2k (19)

where the 2k is the number of experiments related to the 2k factorial, the Central
Point is the experiment carried out in the central point, and 2k is the number of the
experiments related to the axial points ±α.

The coded values ±α can be figured out according to Eq. 20 [9].

α = 4
√
2k (20)

In the CCD, any coded value can be decoded according to Eq. 21. This equation
is also valid to convert the ±α to their respective decoded values [9]:

xi = zi− −
z

�z/2
(21)

where xi is the coded value for the factor i, zi is the decoded value for the factor i,
−
z

is the decoded value for the central point for the factor i, and the �z is the difference
between the upper (+) and lower (−) levels for the factor i.

Table 15 summarizes how many experiments should be made in the axial levels
±α, the value of α, and the total number of experiments according to the k value in
2k−p.

2.6.3 Box-Behken Designs

Similarly to the three levels factorial design the Box-Behken Desing (BBD) is a
three levels (−1, 0, +1) for all factors. The number of experiments to be performed,
disregarding replicas, according to the number of factors (k) is given by the Eq. 22
[12]:

NumberofExperiments = 2k(k − 1) + CentralPoint (22)
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The conversion between the coded and uncoded values in a BBD is given by
Eq. 23 [13]:

xi =
⎛

⎝ zi− −
z

�z

⎞

⎠ (23)

where xi is the coded value for the factor i, zi is the decoded value for the factor i,
−
z

is the decoded value for the central point for the factor i, and the �z is the difference
between the upper (+) and lower (−) levels for the factor i.

One advantage of theBBD is that there is no experimentwhere the factors are taken
all of them at the same time in the lower limit nor the upper limit. This fact avoids
that experiments are carried out at extreme conditions and may avoid unsatisfactory
or abnormal results to happen [14].

For more details about BDD matrix, readers are encouraged to read the review
paper by Ferreira et al. [14].

2.6.4 Doehlert Designs

A feature differing Doehlert Designs (DD) from CCD and BBD is that DD does not
have the same number of levels for all the factors. For instance, in a DD with k = 2,
one factor has three levels (with coded values equal to −8.666, 0, +8.666), and the
other has five levels (with coded values equal to −1, −0.5, 0, +0.5, +1). For a DD
with k = 3, one factor has five levels (with coded values equal to −1, −0.5, 0, +0.5,
+1), the second one has seven levels (with coded values equal to−0.866,−0.577,−
0.289, 0,+0.289,+0.577,+0.866), and the third factor has ‘three levels (with coded
values equal to −0.866, 0, +0.866) [11, 12]. In this sense, we can conclude that DD
requires the following number of experiments, disregarding replicas, according to k
value as shown in Eq. 24:

NumberofExperiments = k2 + k + CentralPoint (24)

The conversion between the coded and uncoded values in a DD is given by Eq. 25
[12]:

xi =
⎛

⎝ zi− −
z

�z

⎞

⎠α (25)

where xi is the coded value for the factor i, zi is the decoded value for the factor i,
−
z is the decoded value for the central point for the factor i, the �z is the difference
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between the upper (+) and lower (−) levels for the factor i, and α is the coded value
limit for the factor i.

For verifying examples about DD matrix, readers are encouraged to read the
review paper by Ferreira et al. [12].

2.6.5 Comparison Between the Different Response Surface
Methodologies

To compare the four RSMs presented in this section, we take advantage of the effi-
ciency parameter, which is defined by the ratio between the number of coefficients
present in the model of the RSM and the number of experiments necessary to accom-
plish that RSM [8]. Table 16 presents the number of coefficients, the number of
experiments, the efficiency, according to the number of factors for the four RSMs
presented.

From Table 16, regardless of the number of factors, the DD presents a lower
number of experiments and higher efficiency. Also notice that the 3k design is not
practical for n ≥ 4 [15].

3 Factorial Design of Experiments Applied
to Nanomaterials Production and Performance

Nanomaterials are recognized for presenting outstanding properties when compared
with their bulk-like versions. In this sense, it is necessary to develop syntheticmethods
able to precisely tune properties such as nanoparticle size, surface area, bandgap, and
photoluminescent emission. To be able to obtain a fine control over these properties,
usually, many factors need to be considered. Most of the time, a comprehensive
study would require a massive number of experiments. For making the production
process more efficient, the factorial design can be used to sort the significant factors.
Then, it can be used to derive models for predicting howmuch that response property
could be in a previously untested condition. In this section, we will see five examples
where the factorial design was applied to obtain as the response variables different
properties of nanomaterials.

3.1 Optimization of Copper (Cu) Nanoparticle Size Using 22

Factorial Design

The first paper of this section deals with the synthesis of copper (Cu) nanoparticles.
Granata and co-workers studied how different capping agents, such as cetyl trimethyl
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ammonium bromide (CTAB), sodium dodecyl sulfate (SDS), and polyvinylpyrroli-
done (PVP). And also, how different reducing agents, such as hydrazine and glucose,
can influence the mean particle size and the stability against oxidation of the Cu
nanoparticles [16].

By combining the three available capping agents with the two available reducing
agents, the authors designed six different 22 factorial designs. The response vari-
ables analyzed were the mean and standard deviation of the particle size of the Cu
nanoparticles as estimated by histograms counting 500 particles from scanning elec-
tron microscopy images. The authors were aiming to minimize the mean particle
size and standard deviation since smaller Cu particles are more likely to present the
surface plasmon resonance (SPR) phenomenon.

For all the designs, the temperature and initial pH were fixed at 85 °C and pH
equal to 10. The levels for the surfactant and reducing agent factor for each one of
the six 22 factorial designs are shown in Table 17 [16].

When glucose is used as the reducing agent, for design 1, only the glucose had
a significant effect, and this effect was around +11.6 nm. As this effect is positive,
it means that increasing glucose concentration from 0.2 to 0.5 mol L−1 led to an
increase of 11.6 nm in the size of Cu nanocrystals. For design 2, both the capping
agent and reducing agent had significant effects. The glucose had a negative effect,
whereas the CTAB had a positive effect. These results mean that the Cumean particle

Table 17 The six 22 factorial
designs used to analyze the
interactions between capping
and reducing agents—data by
Granata et al. [16]

Factor Lower limit (mol
L−1)

Upper limit (mol
L−1)

Factorial design 1

Capping agent SDS 0.1 SDS 0.2 mol L−1

Reducing agent Glucose 0.2 Glucose 0.5

Factorial design 2

Capping agent CTAB 0.1 CTAB 0.2

Reducing agent Glucose 0.2 Glucose 0.5

Factorial design 3

Capping agent PVP 0.1 PVP 0.2

Reducing agent Glucose 0.2 Glucose 0.5

Factorial design 4

Capping agent SDS 0.1 SDS 0.2

Reducing agent Hydrazine 0.2 Hydrazine 0.5

Factorial design 5

Capping agent CTAB 0.1 CTAB 0.2

Reducing agent Hydrazine 0.2 Hydrazine 0.5

Factorial design 6

Capping agent PVP 0.1 PVP 0.2

Reducing agent Hydrazine 0.2 Hydrazine 0.5
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size increased when the glucose concentration decreased or CTAB concentration
increased. Finally, for design 3, not only glucose and PVP presented significant
effect, but, the interaction between these two factors was significant as well. For all
cases, the effects presented were negative, which means that by increasing the level
of all variables from lower to the upper limit led to a decrease in the Cumean particle
size.

When hydrazine is used as the reducing agent, for design 4, only hydrazine
and SDS had significant effects, being the hydrazine positive and the SDS nega-
tive. So, the Cu particle size increased with increasing hydrazine concentration a
decreasing theSDSconcentration. For design 5, both hydrazine andCTABhad signif-
icant effects, both of them positive. These results mean that the Cu mean particle
size increased when the hydrazine or CTAB concentrations increased. Finally, for
design 6, hydrazine and PVP presented a significant effect, following the same trend
observed in design 4. Interestingly, for none of the designs, the interaction between
capping and reducing agents showed significant effects.

After calculating the significant effects for each factorial design, the authors did
not advance on using the factorial design to estimate a model for the mean particle
size or standard deviation for the nanoparticles. From effects estimation the authors
concluded that the PVPwas probably the best capping agent for their purpose, as it is
the capping agent that, for either reducing agents, had the highest effect on changing
the nanoparticle size.

To subdivide all the data in six smaller 22 factorial designswas awise decision, and
it simplified a lot of the data analysis.Although this simplification eliminated, to some
extent, the holistic character of the factorial design. To obtain a more comprehensive
model would require that each factor to have a different number of levels.

3.2 Optimization of Silica Microspheres Size Using a 23

Factorial Design a Linear Response Surface Model

Silica (SiO2) microspheres are multifunctional materials, having applications in
colloidal templating, photonic crystals, polymer encapsulation, to cite a few of them
[17]. SiO2 microspheres are prepared through the alkaline hydrolysis of silicon alkox-
ides in a water–ethanol solvent mixture. A common source of silicon is the tetraethyl
orthosilicate (TEOS), whereas the reaction is usually catalyzed by water. The diam-
eter of microspheres depends on an accurate control of the quantities of the reactants,
catalysts, and solvents, for instance, TEOS, NH3, and water. Considering that the
diameter of the microspheres can determine its possible applications, to be able to
control this feature systematically in a predictable way is a characteristic necessary
for the synthetic method [18].

Aiming to obtain precise control over the diameter of SiO2 microspheres, Arantes
et al. used a 23 factorial design to study the effect of the factors number of moles
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Table 18 The three factors and their levels in the 23 factorial designs used to control the size of
SiO2 microspheres—data by Arantes et al. [19]

Factor Lower level Upper level

NH3 (mol) 3.0 × 10–2 6.0 × 10–2

TEOS (mol) 2.0 × 10–2 4.0 × 10–2

H2O (mol) 0 1.0 × 10–1

of ammonia, tetraethyl orthosilicate (TEOS), and water in the particle size of SiO2

microspheres [19]. As such, the levels of each factor are shown in Table 18.
Only NH3 and H2O presented significant primary effects. The other significant

effect was the interaction between TEOS and H2O. After having concluded the
significant effects, the authors calculated the coefficients related to each one of them
and obtained a linear polynomial model to predict the SiO2 particle size out of the
initially performed experimental conditions, as shown in Eq. 26:

Y = 158.82 + 97.52X1 + 47.97X3 + 29.092X2X3 (26)

where X1 is the coded values for the number of moles of NH3, X2 is the number of
moles of TEOS, and X3 is the number of moles of water.

This model equation allowed the authors to plot a response surface graph by fixing
NH3 either in its lower (0.3 mol) or higher (0.6 mol) levels and varying the other two
factors, as shown in Fig. 5.

From Fig. 5, we notice that both graphs presented a similar behavior. In other
words, by increasing the amount of H2O and TEOS led to a maximization of the
particle size of the SiO2 microspheres. However, when NH3 is fixed on its upper
level, the SiO2 particle size predicted is much higher than ones predicted by fixing
NH3 on its lower level and varying H2O and TEOS.

Fig. 5 Surface responses a by fixing the NH3 molar amount in the level +1 (0.06 mol) and b by
fixing the NH3 molar amount in the level−1 (0.03 mol). Adapted from reference number [19], with
permission from Elsevier
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To confirm the quality of themodel, the authors calculated the analysis of variance
(ANOVA) table, and it revealed a coefficient of determination (R2) equal to 95%,
which means that 95% of the variation observed can in principle be explained by the
obtained model. Finally, to experimentally confirm the applicability of the model,
the authors performed an experiment where the coded values for NH3, TEOS, and
H2O were, respectively, equal to -1, 0, and 0.5. By plugging these values into Eq. 26,
it was predicted that the particle size should be around 85 nm. And in practice, the
result of the experiment performed revealed that the SiO2 particle size was very close
85 nm. This result showed a nice agreement in relation to the experimental data and
the values predicted by the model.

3.3 Optimization of Manganese Sulfide (MnS) Thin-Films
Thickness Using a 24 Factorial Design and Dohelert
Approach for Quadratic Response Surface

To be able to control thin film thickness is an essential property of a proper deposition
procedure. In this sense, Hannachi and co-workers used a 24 factorial to study the
effects of time, temperature, initial concentrations of manganese acetate and thioac-
etamide on the thickness of manganese sulfide (MnS) deposited via chemical bath
deposition onto glass substrates [20].

The levels were studied for each one of the factors, as shown in Table 19.
The authors found that the deposition time, temperature, and manganese acetate

initial concentration had significant primary effects. All these three factors had posi-
tive effects, which means that increasing either one of them from their lower to the
upper levels would lead to an increase in the film thickness. On the other hand, the
thioacetamide concentration effect was not significant. The secondary interactions
involving the deposition time, temperature, and manganese acetate initial concentra-
tion when taken at two by two at a time also were significant. Endly, the tertiary inter-
action combining the three significant factors was significant as well. After judging
the significance of the effects, the authors obtained the eight terms linear-polynomial
model describing the thin-film thickness:

Y = 483 + 204.3X1 + 159.5X2 + 189.4X3 + 98.3X1X2

+ 106.6X1X3 + 159.1X2X3 + 71.4X1X2X3 (27)

Table 19 The four factors
and their levels in the 24

factorial designs used to
control the MnS thin-film
thickness—data by Hannachi
et al. [20]

Factor Lower level Upper level

Time (h) 1 24

Temperature (◦C) Room temp 70

Mn acetate conc. (mol L−1) 0.5 2

Thioacetamide (mol L−1) 0.5 2
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where X1 is the coded values for the deposition time, X2 is deposition temperature,
and X3 is the concentration of manganese acetate.

The conclusions obtained in the 24 factorial design served as the foundation to
further optimize themodel using a Doehlert approach, studying only the three factors
thatwere significant in the 24 screening factorial design.ThisDoehlert design allowed
the authors to obtain a quadratic model (Eq. 28), and a set of response surface graphs.

Y = 349.0 + 136.5X2 + 119.2X3 − 129.0X2
1 − 187.0X2

2

− 124.0X2
3 + 98.2X1X2 + 148.5X2X3 (28)

where X1 is the coded values for the deposition time, X2 is deposition temperature,
and X3 is the concentration of manganese acetate.

The first response surface graph was plot fixing the thioacetamide concentration
at 0.5mol L−1 and varying the deposition temperature and time. The second response
surface graph was plot fixing the thioacetamide concentration at 0.5 mol L−1 and
varying the manganese acetate initial concentration and deposition time. Finally, the
third surface was plot fixing the thioacetamide concentration at 0.5 mol L−1 and
varying the manganese acetate initial concentration and deposition temperature. The
three response surfaces are shown in Fig. 6.

By analyzing the three response surface plots, it was concluded that theMnS thin-
film thickness was maximized (thickness around 330–400 nm), when the deposition
temperature was 60 °C, time was 20 h, manganese acetate concentration around
1.6 mol L−1, and thioacetamide concentration equal to 0.5 mol L−1.

To be able to indicate a narrow range of conditions thatwould lead tomaximization
of the thin-film thickness demonstrates how resourceful factorial design and response
surface methodologies are. This affirmation comes from the fact that none of the
conditions indicated as optimum were the same as the ones the authors initially used
as levels in the 24 factorial.

The authors deposited a thin-film under the conditions deemed to produce the
highest thickness. The structural characterization techniques indicated the MnS was

Fig. 6 Surface responses (left) varying time and temperature (middle) varying time andMn acetate
conc. (right) varying temperature and Mn acetate conc. Adapted from reference number [20], with
permission from Elsevier
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satisfactorily deposited onto the glass substrate. However, the authors failed to inform
the thin-film thickness, which makes the readers unable to infer if the model used to
produce the response surface graphs has a good agreement to the experimental data
or not.

3.4 Optimization of Cellulose and Sugarcane Bagasse
Oxidation Using a 23 Factorial Design with Full Central
Composite Design (FCCD)

The use of functional materials derived from natural sources or obtained fromwastes
is a procedure aligned with the Green Chemistry Principles, as long as the obtaining
of these materials does not cause any environmental harm [21]. In this sense, Martins
et al. studied the oxidation of cellulose and sugarcane bagasse by a simple procedure
[22]. The oxidation procedure is based on stirring either the cellulose (Cel) or the
sugarcane bagasse (SB) with phosphoric acid (H3PO4) and sodium nitrite (NaNO2)
for different time intervals.

To accomplish this goal, initially, the authors designed a 23 factorial design, where
the factors studiedwere the duration of the oxidation procedure (in hours), the volume
of H3PO4 (in mL), and the mass of NaNO2 (in g). The response variable was the
number of carboxyl groups per gram of material, represented by the symbol nCOOH
(in mmol/g), which can be taken as an indication of the successful oxidation of the
initial material.

The Pareto plot revealed that for Cel, all the primary effects were significant, with
the secondary effect between the volume of H3PO4 and the mass of NaNO2 also
being significant. For the SB, the Pareto plot revealed that only the primary effect
related to the mass of NaNO2 was significant. Additionally, the secondary effect
between the volume of H3PO4 and the mass of NaNO2 also was significant (Fig. 7).

Having concluded the significant factors for the oxidation of each one of the
materials studied, the authors started to optimize the model by doing a full central
composite design. This design was accomplished by a full central composite design
(FCCD). For each one of the materials studied, this FCCD was carried out by
performing the eight experiments predicted by the 23 design, without replicas. Plus,
the experiment in the central point, in triplicates, and six more experiments. Where,
each one of these six, one of the factors assumed a + α or −α, whereas the two other
factors were kept in the central point.

From the FCCD, the authors could obtain empirical models containing quadratic
terms. These empirical models were used to plot the response surface graphs by
fixing the reaction duration in 5 h, and varying the H3PO4 volume and NaNO2 mass,
as shown in Fig. 8.

The response surface graphs showed that, when the reaction duration is equal to
5 h, the nCOOH is maximized for H3PO4 volume between 11 and 19 mL, and NaNO2
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Fig. 7 Pareto charts for Cel (top) and SB (bottom). Adapted from reference number [22], with
permission from Elsevier

volume between 500 and 970 mg. This conclusion agrees with the results initially
obtained during the performance of the central point experiments.

After completing the full factorial design regarding the nCOOH, the authors used the
products of Cel and SB oxidation to remove the dyes auramine O and crystal violet
from simulated wastewater by adsorption. In general, the oxidated Cel presented
better performance than the oxidated SB, for the removal of either of the dyes.
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Fig. 8 Response surface graphs for Cel (top) and SB (bottom), by varying H3PO4 volume and
NaNO2 weight, the reaction duration was fixed at 5 h. Adapted from reference number [22], with
permission from Elsevier

3.5 25-1 Fractional Factorial Design with Box-Behnken
Optimization—Improving Reproducibility Between
Batches of Silver Nanoparticles Using an Experimental
Design Approach

Silver nanoparticles (Ag NPs) are very versatile materials since they can be applied
inmany different fields, such as catalysis, biological sensors, antimicrobial activities,
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DNA sequencing, surface-enhanced Raman spectroscopy, and information storage
[23].

Ag NPs can be produced by the reduction of Ag+ with gallic acid (GA, C7H6O5)
in alkaline pH, by stirring the reaction mixture in the dark, at room temperature.
However, this procedure lacks reproducibility since the AgNPs tend to have different
size distributions according to the reaction batch [24]. With the goal to decrease this
lack of reproducibility, Núñez et al. performed a two-level factorial design to study
the effects of NaOH, AgNO3, and GA molar concentrations, also the effects of the
reaction time and stirring speed [24]. So, the study had a total of five factors, with
two-levels each. The response variable studied was a parameter called ψ, which was
defined according to Eq. 29:

ψ = Amax

λmax × FWHM
(29)

In Eq. 29, Amax is the absorption intensity of the band corresponding to the surface
plasmon resonance (SPR), λmax is the wavelength of SPR band, and FWHM is the
full-width at half-maximum of SPR band. The bestψ values are obtained when Amax

is maximized, and λmax and FWHM are both minimized, in other words, the ψ is
better as it gets higher. And higher ψ means that Ag NPs were smaller and with a
narrower size distribution [25].

As five factors were studied, a full two-level factorial design would lead to the
performance of 32 experiments. To minimize the number of experiments to be done,
the authors opted to do a fractional factorial design (FFD). In general, an FFD is
symbolized as 2(k−p). Where k is the number of factors, and p is the number of
design generators. More specifically, in this paper, the authors carried out a 25–1

factorial design. The number 5 represents the five factors ([NaOH]=A, [AgNO3]=
B, [GA]= C, time=D, and speed= E), and 1 represents the generator I=ABCDE.

The FFD was made up of sixteen experiments plus five experiments with all the
factors in the central point. All experiments were performed with replicas. The lower
and upper levels of each variable were defined, as shown in Table 20.

The Pareto chart indicated that the significant primary effects were the [GA], the
reaction time, and [AgNO3]. As shown in Fig. 9.

Table 20 The five factors
and their levels in the 25–1

factorial designs used to
control the ψ in Ag NPs
preparation—data by Núñez
et al. [24]

Factor Lower level Central point Upper level

[NaOH] (μmol
L−1)

500 750 1000

[AgNO3] (μmol
L−1)

50 75 100

[GA] (μmol L−1) 5 12.5 20

Time (min) 10 30 50

Stirring speed 1 5.5 10
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Fig. 9 Pareto chart showing the effects of ψ in Ag NPs synthesis. Adapted from reference number
[24], with permission from Elsevier

After concluding the significant effects, the factorial designed continued by
performing an optimization using the Box-Behnken design (BBD). The BBD is
an incomplete three-level design to obtain a quadratic polynomial model. According
to the number of experiments conducted is equal to 2k(k − 1) + C0. Where k is the
number of factors, in this case, k = 3, and C0 is the number of experiments in the
central point, in this case, C0 = 5. In summary, 17 experiments were performed on
this BBD. For the BBD, instead of usingψ as the response variable, the authors used
Amax, λmax, and FWHM separately.

For each one of the response variables (Amax, λmax, and FWHM), quadratic poly-
nomial equations were obtained, and response surface graphs were plotted by fixing
either one of the factors ([AgNO3], [GA] and reaction time). For the Amax, it is maxi-
mized as [AgNO3], [GA], and reaction time increase. The λmax is minimized when
[AgNO3] increases, and [GA] decreases. And the FWHM became narrower when
[AgNO3] increased, and [GA] decreased. The response surface graphs are shown for
the λmax in Fig. 10.
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Fig. 10 Response surface graphs of λmax by varying a [AgNO3] and [GA], b [AgNO3] and time,
c [GA] and time. Adapted from reference number [24], with permission from Elsevier

4 Factorial Design of Experiments Applied
to Nanomaterials Production and Performance

The fields of Materials Science, Materials Chemistry, and Nanotechnology are all
very broad. That being said, it would be impossible to cover every single possible
application in a book chapter. In this sense, this part is intended to present some
references related to four areas of application in Materials Science and Nanotech-
nology. They are nanoparticles preparation and characterization, drug encapsulation
and delivery, wastewater remediation, and solar cell development.

For each one of these areas, around ten to twenty references, are presented clas-
sified according to the Factorial Design and Response Surface Methodology used
on each paper, and the goal set by the papers. Unlike Sect. 3, there will not be any
further detail about any paper. Instead, the readers are encouraged to read the tables
and figure out if they get interested in the statistical methods or the theme of the
paper. Then, they should feel free to consult these references independently. In order
to show the relevance and the insertion of the factorial design of experiments in the
current scientific literature, all examples presented were published between 2015 and
2020.



422 A. H. Pinto

4.1 Design of Experiments Applied to Materials Synthesis
and Characterization

See Table 21.

4.2 Design of Experiments Applied to Drug Encapsulation
and Delivery

See Table 22.

4.3 Wastewater Remediation

See Table 23.

4.4 Design of Experiments Applied to Solar Cells Design
and Performance

See Table 24.

5 Concluding Remarks

This chapter presented the theoretical bases of the factorial design and applications of
thedesignof experiments in different areas ofMaterials Science andNanotechnology.
The depth and extent of the technique open up the possibility for the optimization of
many experimental situations.

Hopefully, the knowledge brought by this chapter can motivate the readers to see
the usefulness of the factorial design of experiments and encourage them to apply
this knowledge to their own experimental situations.
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Table 21 List of papers related to materials synthesis and characterization

Experimental
situation and year of
publication

Factorial design RSM Goal Refs.

Synthesis of Ag
nanoparticles using
plant extract, 2020

N/A CCD for 5 factors Maximize the
intensity of SPR
peak

[26]

Synthesis of
AgInS2/ZnS in
aqueous media using
microwave heating,
2020

25–1 23-CCD Photoluminescence
emission peak and
lifetime, quantum
yield, and Ag:In:Zn
ratio

[27]

Functionalization of
amino-silane on
superparamagnetic
iron oxide
nanoparticles, 2020

N/A 22-CCD Atomic percentage
of Fe, N, and Si

[28]

Synthesis of Au
nanoparticles using
Coffea arabica
extract, 2019

25–1 32 Maximize yield,
monodispersity,
control shape and
size

[29]

Synthesis of ZrO2
nanoparticles using
plant extract, 2019

23 with replicas in
central point

N/A Maximize the
amount of
tetracycline
adsorbed in ZrO2.
Maximize the
percentage of
tetragonal ZrO2
phase. Particle size
control

[30]

Synthesis of Ni2P in
phosphonium-based
ionic liquid, 2019

26–3 DD Control particle size [31]

Synthesis of Au
nanoparticles using
plant extract by
sonochemical
method, 2019

N/A CCD for 4 factors,
and 5 levels per
factor

Control de
hydrodynamical
size

[32]

Synthesis of CdSe
quantum dots in
aqueous media, 2019

24 with central point DD for 4 factors Photoluminescence
peak intensity and
FWHM

[33]

Synthesis of Carbon
quantum dots from
chitin, chitosan, and
graphite via
hydrothermal
carbonization, 2019

N/A 32 Determination of
quantum dot
composition and
band gap

[34]

(continued)
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Table 21 (continued)

Experimental
situation and year of
publication

Factorial design RSM Goal Refs.

Synthesis of iron
oxide nanoparticles
from mineral coal
tailings, 2019

22 with central point N/A Control particle size [35]

Synthesis of cyano-
functionalized SiO2
nanoparticles, 2018

26–2 N/A Minimize particle
size and get narrow
particle size
distribution

[36]

Synthesis of
1-dimensional TiO2
via hydrothermal
method, 2018

N/A 33-BBD Control the band
gap energy and
crystalline phases

[37]

Synthesis of
multi-wall carbon
nanotubes by
chemical vapor
deposition, 2018

24 N/A Control the yield,
band gap and aspect
ratio of the carbon
nanotubes

[38]

Growth of highly
oriented Sb2Te3
thin-films by radio
frequency sputtering,
2018

25–1 with replicas in
central point

BBD Maximize the
degree of thin-film
preferred growth

[39]

Synthesis of
SrMoO4 using
EDTA-Citrate
complexation
method, 2018

23 with replicas in
central point

N/A Control SrMoO4
band gap

[40]

Synthesis of Au
nanorods by
reduction with
NaBH4 and ascorbic
acid, 2017

28–4 CCD Control SPR peak,
particle dimensions
and distribution,
yield, and shape
purity

[41]

Synthesis of
thiol-capped CdTe
quantum dots using
microwave heating,
2017

N/A 23-CCD Maximize
photoluminescence
quantum yield

[42]

Electrodeposition of
Cu2O thin-films by
tuning morphology
and optical
properties, 2017

24 N/A Deposition charge
and morphology
coverage degree

[43]

Synthesis of ZnO by
coprecipitation in
aqueous media, 2017

23 N/A Control the
crystallite size

[44]

(continued)



The Importance of Factorial Design of Experiments … 425

Table 21 (continued)

Experimental
situation and year of
publication

Factorial design RSM Goal Refs.

Synthesis of
curcumin-loaded
albumin
nanoparticles at
room temperature,
2017

24 N/A Control particle
size, yield, and drug
loading

[45]

Abbreviations: BBD Box-Behnken Design, CCD = central composite design, DD = Doehlert
Design, EDTA = Ethylenediaminetetraacetic acid

Table 22 List of papers related to drug encapsulation and delivery

Experimental situation
and year of publication

Factorial
design

RSM Goal Refs.

Design of SLN as
nanocarrier for the
anticancer drug
docetaxel, 2019

23 with replicas
in central point

N/A Control hydrodynamic
diameter, polydispersity
index, and zeta potential

[46]

Design of
curcumin-loaded SLN
for inhibition of
post-angioplasty
restenosis, 2019

24 with replicas
in central point

N/A Control entrapment
efficiency,
hydrodynamic
diameter, polydispersity
index, and zeta potential

[47]

Design of antiretroviral
drug ritonavir-loaded
SLN, 2019

N/A 32 Particle size
minimization,
entrapment efficiency
and zeta potential
maximization

[48]

Design of PLGA
nanoparticles for
co-delivery of
temozolomide and
O6-benzylguanine.
2019

25–2 with
replicas in
central point

N/A Control entrapment
efficiency,
hydrodynamic
diameter, polydispersity
index, and zeta potential

[49]

Design of furosemide
loaded SLN, 2018

N/A 32 Entrapment and
dissolution efficiencies
maximization; particle
size, polydispersity
index, and time elapsed
for 50% drug release
minimization

[50]

(continued)
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Table 22 (continued)

Experimental situation
and year of publication

Factorial
design

RSM Goal Refs.

Design of
PLGA-chitosan
nanoparticles loaded
with a HIV-1 fusion
inhibitor peptide, 2018

N/A 23 - CCD Control entrapment
efficiency,
polydispersity index,
and average particle
size

[51]

Design of HSA
nanoparticle for
entrapment of
anticancer agent
irinotecan, 2018

N/A 32 Control entrapment
efficiency,
polydispersity index,
particle size, and drug
loading percentage

[52]

Design of
chitosan-based nanogels
for controlled release of
the antibiotic
gentamicin, 2018

28–2 with
replicas in
central point

CCD Control particle size
and loading efficiency

[53]

Design of
poly-caprolactone
nanoparticles loaded
with the antipsychotics
olanzapine, 2018

N/A 32 Control particle size
and encapsulation
efficiency

[54]

Design of octanoyl
chitosan nanoparticles
for improved rifampicin
pulmonary delivery,
2018

N/A 32 Particle size
minimization and
entrapment efficiency
minimization

[55]

Design of SLN loaded
with the anti-cancer
drug citral, 2018

22 with replicas
in central point

N/A Control mean particle
size, polydispersity
index, and zeta potential

[56]

Design of PLGA loaded
with the anti-cancer
drug doxorubicin, 2017

N/A BBD Particle size,
polydispersity index,
and zeta potential
minimization;
entrapment efficiency
maximization

[57]

Design of SLN of
efavirenz for brain
targeting and enhanced
availability, 2017

N/A 32 Control mean particle
size, polydispersity
index, and entrapment
efficiency

[58]

Design of multiple
protein delivery for
cardiac repair, 2016

24–1 N/A Determine the ejection
efficiency

[59]

Design of
curcumin-loaded PLGA
nanoparticles for colon
delivery, 2016

23 N/A Control particle size,
zeta potential,
entrapment efficiency,
and in vitro release over
24 h

[60]

(continued)
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Table 22 (continued)

Experimental situation
and year of publication

Factorial
design

RSM Goal Refs.

Design of
levofloxacin-loaded
stearic acid SLN for
ocular delivery, 2016

N/A BBD with 3
factors and 3
levels

Control particle size
and entrapment
efficiency

[61]

Design of
PLGA/poloxamer
nanoparticles loaded
with zolmitriptan, 2016

24 N/A Control particle size,
entrapment efficiency,
and cumulative drug
release in 8 h

[62]

Design of
carvedilol-load SLN for
intranasal drug delivery,
2016

23 N/A Control particle size,
entrapment efficiency,
and amount of drug
permeated per unit area
in 24 h

[63]

Design of
paclitaxel-loaded
folate-conjugated
amphiphilic
cyclodextrin
nanoparticles, 2016

N/A 32 Control particle size,
polydispersity index,
entrapment efficiency,
zeta potential, and
paclitaxel amount per
polymer

[64]

Design of
methotrexate-loading in
chitosan nanoparticles,
2016

N/A 32 Control particle size,
polydispersity index,
entrapment efficiency,
and zeta potential

[65]

Abbreviations: BBD Box-Behnken Design, CCD central composite design, HAS human serum
albumin, PLGA poly(D,L-lactic-co-glycolic acid), SLN solid lipid nanoparticles

Table 23 List of papers related to wastewater remediation

Experimental situation
and year of publication

Factorial
design

RSM Goal Refs.

Removal of the dye
tartrazine by UV-light
photocatalytic
degradation using zinc
oxide (ZnO) nanorods
with different aspect
ratios, 2020

24 N/A Maximize removal
efficiency and
pseudo-first-order rate
constant

[66]

Central composite design
to mineralization of olive
mill wastewater by the
electro/Fe+2/persulfate
oxidation method, 2020

N/A 23-CCD Decrease chemical
oxygen demand in olive
mill wastewater

[67]

(continued)
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Table 23 (continued)

Experimental situation
and year of publication

Factorial
design

RSM Goal Refs.

Electrocoagulation for
treating Kraft paper mill
wastewater, 2020

N/A 22-CCD Maximize the removal
efficiency of color,
chemical oxygen
demand, biochemical
oxygen demand, and
tannin/lignin ratio. Also
to maximize the
biodegradability index

[68]

Microplastic pollution
reduction by a carbon
and nitrogen-doped TiO2
via visible light
photocatalytic
degradation, 2020

22 with
replicas in
central point

N/A Maximize high density
polyethylene mass loss in
microplastics

[69]

Removal of nickel and
COD from wastewater
from electroplating
industry using
Electrocoagulation and
AOP, 2020

23 Multiple 22

designs until
finding the
optimum value
for each level

Maximize the removal
efficiency and COD from
wastewater from
electroplating industry

[70]

Pesticide Diuron removal
from wastewater by
photo-electrochemical
oxidation with TiO2
Nanotubes, 2020

23 N/A Maximize the specific
rate of removal and
minimize the cell
potential

[71]

Graphene oxide/TiO2 for
visible light
photocatalysis to degrade
eight pharmaceutical
contaminants from water
and wastewater, 2020

N/A BBD with three
factors

Maximize the
mineralization
percentage of the
pharmaceutical
contaminants

[72]

Solar electrocoagulation
and adsorption processes
with granular oil palm
shell activated carbon for
Pb(II) removal from
aqueous solution, 2019

N/A 23-CCD Maximize the removal
efficiency

[73]

Performance of different
coagulants in the
coagulation/flocculation
process of textile
wastewater, 2019

N/A 32 Analyze the chemical
oxygen demand of the
coagulation/flocculation
process

[74]

Electrodisinfection of
real swine wastewater for
water reuse, 2019

22 N/A Maximize E. coli
inactivation

[75]

(continued)
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Table 23 (continued)

Experimental situation
and year of publication

Factorial
design

RSM Goal Refs.

L-Histidine (C, N)
codoped-TiO2-CdS
nanocomposite for
efficient visible
photo-degradation of
recalcitrant compounds
from wastewater, 2019

N/A CCD Maximize methyl orange
removal efficiency

[76]

Optimization of saline
wastewater treatment
using electrochemical
oxidation process, 2019

N/A 24-CCD Maximize COD and TOC
removal from saline
wastewaters using
electrochemical
oxidation process

[77]

Biological treatment of
wastewater containing a
mixture of polycyclic
aromatic hydrocarbons
using the oleaginous
bacterium Rhodococcus
opacus, 2018

23 N/A Maximize polycyclic
aromatic hydrocarbons
removal efficiency

[78]

Degradation of
paracetamol by an
UV/Chlorine advanced
oxidation process, 2018

N/A 24-CCD Maximize paracetamol
removal efficiency

[79]

Electrochemical
treatment of wastewater
from a bakery industry,
2018

23 N/A Maximize removal of
COD and minimize
turbidity

[80]

Sono–photo-Fenton
process for degradation
of phenol derivatives in
petrochemical
wastewater, 2018

N/A 33 Maximize the removal of
COD

[81]

Decolorization of
Reactive Blue 235 dye by
barium alginate
immobilized iron
nanoparticles synthesized
from aluminum industry
waste, 2017

N/A BBD with 4
factors and 3
levels

Maximize the Reactive
Blue 235 removal
efficiency

[82]

Carbon and CNT
fabricated carbon
substrates for TiO2
nanoparticles
immobilization for
continuous photocatalytic
elimination of dye
molecules, 2017

N/A 24-CCD Maximize the dye and
COD removal efficiency,
and minimize electrical
energy consumption

[83]

(continued)
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Table 23 (continued)

Experimental situation
and year of publication

Factorial
design

RSM Goal Refs.

Evaluation and
disposability study of
actual textile wastewater
treatment by
electro-oxidation method
using Ti/RuO2 anode,
2017

N/A BBD with 3
factors and 3
levels

Maximize the color and
COD removal efficiency,
and minimize electrical
energy consumption

[84]

Treatment of real
wastewater with
TiO2-films sensitized by
a natural-dye obtained
from Picramnia sellowii,
2016

23 N/A Maximize the color and
COD removal efficiency

[85]

Abbreviations: AOP advanced oxidative process, BBD Box-Behnken Design, CCD central
composite design, CNT carbon nanotubes, COD chemical oxygen demand, TOC total organic
carbon

Table 24 List of papers related to solar cells design and performance

Experimental situation and
year of publication

Factorial design RSM Goal Refs.

Doping of polyaniline to
prepare polymer electrolytes
for DSSC, 2020

N/A 32 Increase the efficiency of
the DSSC

[86]

Improving the properties of
indium tin oxide thin films by
the incorporation of carbon
nanotubes with
solution-based techniques,
2020

23 N/A Minimize the sheet
resistance of the thin-film

[87]

Optimization and
performance analysis of a
solar concentrated
photovoltaic-thermoelectric
hybrid system, 2020

N/A 24-CCD Increase the electrical
efficiency of the solar
concentrated
photovoltaic-thermoelectric
hybrid system

[88]

Ga-doped indium-zinc oxide
films obtained by magnetron
sputtering as transparent
conductors for visible and
solar applications, 2019

N/A BBD Control the chemical
composition, optical,
electrical, and structural
properties of the GIZO film

[89]

(continued)
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Table 24 (continued)

Experimental situation and
year of publication

Factorial design RSM Goal Refs.

Optimizing the optical
properties of a dye-based
luminescent down-shifter to
improve the performance of
organic photovoltaic devices,
2019

23 with replicas N/A Control the absorbance and
photoluminescence
quantum yield

[90]

Multistress testing of OPV
modules for accurate
predictive aging and
reliability predictions, 2018

23 N/A Study the degradation to
80% or 50% of the original
maximum efficiency value

[91]

Improve the properties of
Cu2ZnSnS4 films grown by
spray pyrolysis, 2017

N/A 23-CCD Improve the microstructural
properties of Cu2ZnSnS4
films

[92]

Modeling of organic solar
cell using response surface
methodology, 2017

N/A 23-CCD Improve the organic solar
cell performance

[93]

Systematic optimization of
boron diffusion for solar cell
emitters, 2017

24 N/A Control sheet resistance,
lifetime, surface
concentration, and junction
depth of the solar cell
emitter

[94]

Modeling of photogenerated
charge collection of
silver-based plasmonic
DSSC using CCD
experiments, 2017

N/A 25-CCD Improve the charge
collection

[95]

Systematic optimization of
phosphorous diffusion for
solar cell application, 2016

25 N/A Control the sheet resistance,
lifetime, and junction depth
of solar cell p–n junction

[96]

XPS analysis of the chemical
degradation of PTB7
polymers for organic
photovoltaics, 2016

23 N/A Control the stability of the
PTB7 polymer

[97]

Abbreviations: BBD Box-Behnken Design, CCD central composite design, DSSC dye-
sensitized solar cell, PTB7 Poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b’]dithiophene-2,6-
diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thio- phenediyl]],OPV organic photovoltaic
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