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Abstract. The inertial sensors embedded in current smartphones are
being used in a variety of applications, including motion monitoring,
safe driving, panoramic roaming, Pedestrian Dead Reckoning (PDR),
etc. Since the performance of these sensors has significant influences on
these applications, it is of great value to comprehensively understand
how the measurements returned by these sensors are statistically dis-
tributed. Most existing studies assume white Gaussian noises in sensor
measurements, which is not experimentally confirmed in realistic and
dynamic scenarios with commercial off-the-shelf (COTS) smartphones.
In this paper, we study the statistical error characteristics of sensor mea-
surements through extensive experiments in practice. The experimental
results reveal that, when the device is stationary, the sensor measurement
errors fully obey the standard Gaussian distribution; when the speed of
smartphones increases, the sensor measurement errors begin rising, and
the discrepancy between its distribution and the Gaussian distribution
is enlarged. This paper establishes foundation for studying the statistical
characteristics of the measurement errors of smartphone inertial sensors.
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1 Introduction

With the explosive growth of mobile devices in the past decade, the application
scenarios based on smartphone sensors have become more and more widespread.
For example, a smartphone can exploit the direction sensor to identify its tra-
jectory to automatically control the moving direction of a game character, so
that users are provided with excellent gaming experiences; a smartphone is able
to improve its localization accuracy by inferring its user’s trajectory based on
PDR [7].

At present, by using the inertial sensors embedded in commercial off-the-
shelf (COTS) smartphones, i.e. accelerometer, gyroscope and magnetometer,
researches on smartphone sensors have achieved outstanding progress in human
motion, game development, panoramic roaming, safe driving, etc. [2,3,5]. In [4],
a variety of smartphone sensors were employed to design a monitoring algorithm
which detects the falling event of elders. In [15], an effective method was proposed
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to detect the movement of the user’s body and head with accelerometers and
gyroscopes to control the natural visualization of three dimensional game objects
in smartphones. In [6], the direction sensor embedded in smartphones was used
to realize the rotation and translation of the panorama. In [14], a smartphone
was employed to identify the driving status of a vehicle, such as going straight-
forward, turning and emergency braking, simply based on the accelerometer
embedded in a smartphone.

More importantly, different step counting algorithms were proposed to accu-
rately count pedestrian steps by only using an accelerometer. For instances, in
[8,11], gyroscope was employed to implement more accurate step counting algo-
rithms; in [16], pedestrian heading was estimated by efficiently fusing all the
three inertial sensors. In these application scenarios, sensor measurements are
often assumed to be corrupted by white Gaussian noises [5], which has not been
investigated in practice.

However, there are few studies in the literature on understanding the statis-
tical characteristics of sensor measurement errors in practical environments. In
order to enhance the feasibility of the existing studies relying on Gaussian dis-
tributed sensor measurements, we study the statistical characteristics of sensor
measurement errors by making the following contributions.

– We develop an APP, named Sensor Data Collector, to collect the real mea-
surements of various smartphone sensors.

– We employ the Xsens MTw to obtain the ground truth of sensor measure-
ments, so that we can evaluate the measurement errors of smartphone sensors.

– We process and analyze the sensor measurement errors by using MATLAB
Toolbox to obtain the statistical characteristics of different sensor errors.

– We conduct extensive experiments involving different smartphones under var-
ious scenarios, including stationary, low speed (i.e. smartphone is held by a
walking person) and high speed (i.e. smartphone is held by a running person).
The results reveal that, when the device is stationary, the sensor measure-
ment errors fully obey the standard Gaussian distribution; when the speed
of smartphones increases, the sensor measurement errors begin rising, and
the discrepancy between its distribution and the Gaussian distribution is
enlarged.

The rest of the paper is organized as follows. Section 2 introduces the work
related to calibration of inertial sensor measurements, as well as studies on off-
setting and compensating these sensor measurement errors. Section 3 presents
the design details of the Sensor Data Collector (SDC). Section 4 provides details
of the experiments in this paper, and gives a subtle analysis of the experimental
results. Finally, Sect. 5 gives a conclusion about the statistical characteristics of
the sensor measurement errors.



A Study on the Error Characteristics of Smartphone Inertial Sensors 121

2 Related Work

In this section, we mainly present some researches related to the calibration of
inertial sensor measurement errors, including accelerometer measurement errors,
gyroscope measurement errors and magnetometer measurement errors.

Researchers utilized noise sources to reduce the accelerometer measurement
errors. Yin et al. [17] proposed a comprehensive calibration scheme. They quan-
tified the random noise term through the Allan variance, and used the least
squares method to calculate a deterministic calibration coefficient to reduce
the interference of random noise. Zhang et al. [18] analyzed the error sources
of accelerometer through a large number of repetitive static experiments and
established a mathematical model of the error compensation that affects the
positioning accuracy of the navigation system.

Qiao et al. [12] utilized the Allan variance to identify the noise coefficient of
a gyroscope, and designed the Kalman filter for dynamic simulation on the basis
of the error model about the micro-machined gyroscope. The simulation results
showed that the exportable mean value of the gyroscope is significantly higher
than the original value and calibration value. Li et al. [9] proposed a posterior
compensation method for the gyroscope measurement errors. Firstly, the coning
compensation was calculated by using angle increment of a gyroscope to output
the compensation without error, and then compensating the output errors of the
gyroscope at the updating rate of coning compensation.

Li et al. [13] established the compass correction model to analyze the mea-
surement errors of a magnetometer, and derived a calculation formula of the
magnetic deviation coefficient. They reduced the heading errors of the magne-
tometer through some effective methods, such as elliptic hypothesis method,
constrained least squares method, etc. Liu et al. [10] proposed a real-time cali-
bration method based on the least square method and the “8” figure calibration
method to effectively solve the problem of magnetic interference in the method
of magnetometer calibration.

Undoubtedly, the work mentioned above has made outstanding contributions
to the research on the sensor measurement errors, and various methods proposed
by researchers have effectively decreased the impact of different sensor measure-
ment errors. However, researchers do not propose an unified and effective model
to explain the statistical characteristics of the sensor measurement errors in
practical environments. Hence, this paper studies the statistical characteristics
of the sensor measurement errors in depth and provides a theoretical basis for
future research.

3 Sensor Data Collector

In order to study the statistical characteristics of the measurement errors about
three sensors (i.e. accelerometer, gyroscope and magnetometer), we firstly need
to develop an Android APP to collect real measurements of various smartphone
sensors. In this section, we expound the architecture and implementation details
of the Android APP, named Sensor Data Collector (SDC).
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Fig. 1. The sensor invocation mechanism on the Android platform.

The Sensor Data Collector is able to collect X, Y, and Z triaxial measure-
ments of the three sensors and their detailed parameters in real time. These
parameters are device name, device version, device vendor, sensor resolution, and
minimum collection delay of the sensor. These parameters can help us determine
whether the range of different sensor measurement errors is reasonable. In these
parameters, the pervious three pieces of these parameters describe the hardware
information of a specific sensor. The sensor resolution represents the minimum
resolution of the measurements collected by a sensor, and the minimum delay
is related to the maximum sample frequency of the sensor. We choose Android
Studio as the development tool, and the specific process for calling a specified
sensor is shown in Fig. 1.

To be specific, the SDC should obtain management privileges by the
Sensor Manager class at first. And then, it registers the specified sen-
sor type (e.g. TYPE MAGNETIC FIELD, TYPE ACCELEROMETER and
TYPE GYROSCOPE) through the registerListener function. Next, it calls the
onSensorChanged function to collect real measurements from the specified sen-
sor. Finally, the specified sensor is logged out by the unregisterListener function.
We set the sensor sampling frequency of the SDC to 60 HZ, and store three kinds
of sensor measurements in a txt file.

4 Experimental Results

In this section, we find out the statistical characteristics of the sensor measure-
ment errors by using the toolbox in MATLAB.
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4.1 Experiment Setup

Our experiments are only carried out on the flat road. In the course of the experi-
ments, we ordered an experimenters to carry smartphones and xsens MTW to do
a standing motion, walking motion or running motion, these motions correspond
to the stationary scenario, the low speed scenario and the high speed scenario,
respectively. Smartphones used in our experiments are Nexus5 and Huawei P7.
Another device used in the experiments is Xsens MTw, an inertial-magnetic
motion tracker made by Xsens [1]. The Xsens MTw can collect highly accu-
rate and real-time 3D measurements with multiple sensors. We set all sensors
sampling frequency to 60 Hz and collect 10, 000 data in each motion.

Three different scenarios considered in the experiments include the station-
ary, low speed and high speed. Specifically, in the stationary scenario, the smart-
phones are placed on a table; in the low speed scenario, the smartphones are held
by a pedestrian who walks at a normal speed of around 1 m/s; in the high speed
scenario, the smartphones are held by a person who runs in the playground at
a speed of around 4 m/s.

In order to collect real and effective sensor measurements of smartphones and
the Xsens MTw, we firstly align one Xsens sensor with the smartphone, such
that their coordinate systems are overlapping, and then bind them together using
double-side adhesive tape. Finally, we process the sensor measurements obtained
by the two devices to calculate the sensor measurement errors used in the exper-
iments. In addition, the magnetometer measurement units about two devices are
inconsistent. The magnetometer measurement unit in a smartphone is μT, and
the magnetometer measurement unit in MTw is Gauss. According to the unit
conversion relationship between Tesla and Gauss, we reduce the magnetometer
measurement of the former by 100 times to make the two magnetometer units
consistent. Since two electromagnetic devices interfere with each other, we only
collect the magnetometer measurement errors under the stationary scenario in
a relatively non-magnetic interference environment.

4.2 Sensor Measurement Errors Under the Stationary Scenario

When a mobile device is stationary, we use the dfittool toolbox provided by Mat-
lab to check the statistical characteristics of the sensor measurement errors. Due
to the space limit, we have shown the probability density function plot of the
different measurement errors collected by two devices in Fig. 2. The horizontal
axis of Fig. 2 represents the range of sensor measurement errors, and the vertical
axis represents density. Density depends on the group spacing and frequency of
different elements. In Fig. 2, ‘hw’ and ‘n5’ respectively represent the HUAWEI
P7 and NEXUS5. Looking carefully at Fig. 2, we find that the probability density
function plot of sensor measurement errors conforms to the Gaussian distribu-
tion characteristics, and satisfies the boundedness, unimodality, symmetry and
compensation. These characteristics can be judged that the sensor measurement
errors obey the Gaussian distribution.
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To further illustrate this discovery, we use the normplot function provided by
MATLAB to draw some normal probability plots of various sensors, as shown
in Fig. 3 and Fig. 4. Therein, the horizontal axis denotes the measurement errors
and the red dashed lines measure the linear coincidence degree. It can be observed
that the sensor measurement errors nearly always obey Gauss distributions.
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Fig. 2. The probability density function plot in stationary scenario.

4.3 Sensor Measurement Errors Under the Low Speed Scenario

When a device moves in a low speed, the magnetometers in the smartphones
and Xsens MTw will interfere with each other, and affect the authenticity of the
observed magnetometer measurements. Therefore, in the low speed scenario, we
only study the statistical characteristics of accelerometer measurement errors
and gyroscope measurement errors. As shown in Fig. 5, we can still observe that
the probability density plots of various sensor measurement errors all conform
to the Gaussian distribution characteristics.

In addition, Fig. 6 and Fig. 7 illustrate the normal probability plots of various
sensor errors with respect to Nexus5 and HWP7, respectively. As can be seen,
the various sensor measurements errors also obey the Gaussian distribution in
most time, but there are also some outliers appearing in the head and tail of
the sensor measurement errors. Thus, it can be concluded that the errors of
accelerometer measurements and gyroscope measurements approximately obey
the Gaussian distribution in the low speed scenario.

4.4 Sensor Measurement Errors Under the High Speed Scenario

The method of verifying the statistical characteristics of the sensor measurement
errors in the high speed scenario is the same as the method mentioned before,
and the conclusions are consistent with the sensor measurement errors in low
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Fig. 3. The normal probability plot of various sensor measurement errors in Nexus5 in
the stationary scenario.
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Fig. 4. The normal probability plot of various sensor measurement errors in HUAWEI
P7 in the stationary scenario.
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Fig. 5. The probability density function plot in the low speed scenario.
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Fig. 6. The normal probability plot of various sensor measurement errors in Nexus5 in
the low speed scenario.

speed scenario. However, observing Fig. 2, Fig. 5 and Fig. 8, we can conclude that
the range of sensor measurement errors becomes larger with the increase of the
moving speed. It is noticeable that the approximation to Gaussian distribution
becomes degrading in the high speed scenario in comparison with the low speed
scenario.

Finally, we present a detailed list of the distribution results of different sensor
measurement errors under different scenarios and devices in Table 1, where μ
represents the sample mean of the sensor measurement errors, and σ represents
the sample standard deviation of the sensor measurement errors. ‘HW’ and ‘N5’
respectively represent the HUAWEI P7 and NEXUS5.
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Fig. 7. The normal probability plot of various sensor measurement errors in HUAWEI
P7 in the low speed scenario.
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Fig. 8. The probability density function plot in the high speed scenario.
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Fig. 9. The normal probability plot of various sensor measurement errors in Nexus5 in
the high speed scenario.
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Fig. 10. The normal probability plot of various sensor measurement errors in HUAWEI
P7 in the high speed scenario.

Table 1. The results of three sensors in different smartphones under different scenarios.

Results (μ/σ) HW standing HW walking HW running

ACC-X −0.323/0.015 −16.303/10.214 4.760/7.005

ACC-Y 0.881/0.016 1.128/7.941 −0.924/11.035

ACC-Z −0.363/0.053 −0.496/2.534 −0.525/4.101

GYRO-X −2e−5/0.007 0.004/1.118 −0.832/1.832

GYRO-Y −2e−4/0.005 −0.073/1.153 0.443/1.101

GYRO-Z 2e−4/0.006 0.021/4.556 −0.114/1.272

MAGN-X −0.364/0.005 – –

MAGN-Y 0.367/0.005 – –

MAGN-Z 0.474/0.007 – –

Results (μ/σ) N5 Standing N5 Walking N5 Running

ACC-X −0.159/0.018 −16.384/7.834 2.942/13.494

ACC-Y 0.399/0.019 −2.247/7.488 3.372/16.168

ACC-Z −0.600/0.056 −0.504/3.021 −0.742/6.846

GYRO-X 7e−4/0.001 0.085/0.931 −0.638/1.832

GYRO-Y −1e−4/0.001 −0.043/1.083 0.147/1.244

GYRO-Z −4e−4/0.001 0.002/3.735 −0.066/2.760

MAGN-X −0.315/0.007 – –

MAGN-Y −0.097/0.007 – –

MAGN-Z 1.265/0.009 – –
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5 Conclusion

In this work, we obtained the error characteristics of smartphone inertial sensors
by making the following contributions. First of all, we developed an Android
APP, named Sensor Data Collector, to collect the measurements of smartphone
inertial sensors. The measurements collected by the Xsens MTw was used as
the ground truth to evaluate sensor measurement errors. Finally, based on the
experiments carried out under different scenarios, the sensor measurement errors
were processed and analyzed by using the MATLAB Toolbox.

The experimental results show that the statistical characteristics of the sensor
measurement errors are dependent on the moving speed of smartphones. To be
specific, when the device is stationary, the sensor measurement errors fully obey
the standard Gaussian distribution; when the speed of smartphones increases,
the sensor measurement errors begin rising, and the discrepancy between its
distribution and the Gaussian distribution is enlarged. Our studies not only
confirm the assumptions of Gaussian distributed measurements of inertial sensor
in many existing algorithms, but also provide more accurate descriptions of
error characteristics of inertial sensor measurements in smartphones, which will
definitely benefit future researches.
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