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Abstract. The percutaneous surgery needs to know the soft tissue deformation in
real time, but the existing prediction model cannot solve the problem. As a statis-
tical interpolation method, kriging can effectively characterize the transformation
of discrete point information into continuous facial information, so it can alleviate
this problem. The tissue displacement of each identifying point in chronologi-
cal order is obtained through the image processing of the experiment, and the
spatial-temporal variogram function is selected to adapt the properties of soft tis-
sue deformation in the needle insertion process. The permanent of spatial-temporal
kriging is obtained based on the variogram function model of space and time, and
the average error is 0.5 mm. The correlation of time and space is considered in
spatial-temporal kriging, so the accuracy is higher. The kriging model compared
with the data of another group of experiments, the average deviation is 0.2 mm.
The feasibility and practicability of the model are verified.
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1 Introduction

Needle puncture surgery is a common treatment in medicine. Puncturing into the soft
tissue reach the target to achieve diagnosis, treatment, sampling, stimulation and other
purposes. Most of these puncture points are concentrated in organs, the common clini-
cal application of tissue biopsy, local anesthesia, blood routine examination and others
[1, 2]. In this process, the main causes of puncture error are: imaging equipment reso-
lution limit, image coordinate deviation, target positioning error, human error, as well
as the tissue deformation and needle deflection brought about by the target motion error
[3–5]. In order to improve the accuracy of puncture and reduce the error, it is necessary
to master the biological characteristics of soft tissue. The establishment of a soft tissue
prediction model for real-time interaction between soft tissue and needle is of great
significance for improving puncture accuracy and reducing puncture error [6].

Okamura et al. [7] put forward the empirical puncture force model, the puncture
force is divided into three parts at first: stiffness forces, friction force and cutting. Stiff-
ness forces is produced before the puncture of the membrane, and the friction force and

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2020
Published by Springer Nature Switzerland AG 2020. All Rights Reserved
W. Li and D. Tang (Eds.): MOBILWARE 2020, LNICST 331, pp. 3–18, 2020.
https://doi.org/10.1007/978-3-030-62205-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62205-3_1&domain=pdf
https://doi.org/10.1007/978-3-030-62205-3_1


4 L. Wang et al.

cutting are caused by the puncture of the membrane. The stiffness forces is fitting to
a quadratic polynomial model, the friction force is represented by a modified Karnopp
model, and the cutting power is a constant value. Podder et al. [8] considered the influ-
encing factors of puncture force for the first time, and deduced a statistical model to
estimate the maximum puncture force. The puncture force data were obtained by liv-
ing experiments, and the statistical model of estimating maximum puncture force was
verified based on individual parameters (such as body mass index, Gleason Fraction,
pre-treatment, prostate volume) and specific treatment methods (such as puncture nee-
dle model, maximum puncture speed). Asadian [9] is based on the puncture force model
proposed by Okamura, a modified LuGre model is used to simulate the acupuncture
force, and the hysteresis characteristics of friction in the puncture process are analyzed
and verified, and the dynamic process of friction is described in a complete description.
Hing et al. [10] through linear elastic finite element analysis to develop the operating
system to predict soft tissue deformation and puncture force. Misra [11] studied the
mechanism of tissue fracture, the linear or nonlinear elasticity of tissue, and the effect
of puncture needle deflection angle on the axial force and transverse force of needle.
Using the contact and soft melt belt model, the finite element analysis is used to infer
that the deflection angle of the smaller needle and the elasticity of the larger tissue will
increase the stress of the needle tip. DiMaio and Sakcydean [12] explored the relation-
ship between puncture force and tissue deformation for the first time. The axial force
distribution of the needle is divided into two parts: the friction force between the needle
and the tissue evenly distributed along the axial axis, and the peak power at the tip of
the needle. Experiments show that the friction force of unit length increases with the
increase of injection speed, and the peak at the tip of the needle is hardly changed with
the speed of injection. Carra [13] studied the puncture force model of multi-layer tissue,
in which the Hunt-Crossley model was used in the stiffness force of the membrane, and
the use of the Dah friction model was adopted, and the cutting was a specific constant
value corresponding to a particular tissue. In the whole puncture process, the puncture
force is expressed by superposition principle and segmented function. Maurin [14] com-
pared the puncture force between artificial and robotic operation during the biopsy of
porcine living liver, and analyzed two types of puncture: one is direct puncture (other
anatomical layers are removed), and the other is percutaneous puncture. Experiments
show that the contribution of other anatomical layers to puncture force in percutaneous
puncture is larger, and the puncture force of robot operation is relatively small. For the
first time, Mahvash [15] analyzed the mechanical properties of acupuncture soft tissue
by means of fracture mechanics, and the puncture membrane was described as the strain
energy at the tip of the needle that exceeded the fracture toughness, prompting the crack
to expand suddenly, and thus punctured the membrane. It is proved that increasing the
feed speed of needle can reduce the peak of puncture force and tissue deformation. Sun
Yinshan [16] of Harbin Institute of Technology and others put forward the generalized
needle force model, which decomposes the stiffness forces into two parts using the
Maurin model and the Simone model respectively. And put forward the robot assisted
needle strategy: First, the needle into the liver moment, the robot automatically stops
the needle, until the soft tissue back to relaxation, and then to halve the speed of the
puncture; second, after the needle into the liver, if the puncture force exceeds a specific
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threshold, the robot immediately stops the needle. Xuan Xinxiang [17] of Aeronautics
and Astronautics and others based on the puncture force model proposed by Okamura,
the modified Karnopp model was applied to the study of the mechanical properties of
needle into corneal tissue. Gao Dedong [18], Tsinghua University, and others proposed
a quasi-static finite element method for the analysis of soft tissue deformation, and a
two-dimensional quasi-static finite element model of soft tissue deformation was created
by using overlapping element method in ANSYS.

Researchers have carried out a lot of experimental research on acupuncture soft
tissue, using experiments to observe the corresponding experimental phenomena (such
as needle and tissue deformation, failure mechanism, etc.) and verify the accuracy of
calculation or simulation results. Experimental platforms are often assisted by puncture
robots, biological soft tissues (or imitation of soft tissues), imaging equipment, and
control equipment. Okamura and Simone [19] using bovine liver as the experimental
object, the deformation of liver tissuewasmeasured by CT, and the stiffness of tissue, the
resistance of the back membrane, the friction force and shear forces were measured, and
the effect of needle deflection angle and needle diameter on puncture force was verified.
Maurin et al. [14] took pig kidneys and liver as the research object, studied the change
law of acupuncture into living tissue, and compared the difference between manual and
robot. Considering the laboratory experimental conditions, it is not possible to scan the
real biological tissue by CT and MRI, so many scholars use alternative materials with
good transparent optical properties as the research object, and measure the deformation
of the tissue and needle through high-speed cameras. DiMaio and Salcudean [20] used
PVC material as the experimental object, implanted the regular calibration point in the
gel, and then used high-speed camera to measure and analyze the tissue deformation.
Jiang Shan et al. [21] have prepared transparent PVA materials with similarities in
microstructure, mechanical properties and biological tissues, and have been used in
puncture experimental research.

This paper is to study the deformation model of flexible needle puncture soft tissue.
Based on the soft tissue puncture experiment, the identification object was set in the
corresponding soft tissue (pork in this experiment), and the position coordinates of the
flexible needle in the puncture soft tissue were recorded by B-ultrasound. Based on the
image acquisition experiment, the image processing of flexible needle into soft tissue
images was carried out to obtain the deformation of flexible needle and soft tissue in
the process of injection. Combined with kriging model and soft tissue deformation are
analyzed. In the previous soft tissue model, it was not good to solve the contradiction
between accuracy and real-time, and often sacrificed another attribute for one attribute.
In order to improve the contradiction between the two, this paper proposes a soft tis-
sue prediction method based on spatiotemporal kriging method, which can effectively
simplify the computation amount and improve the real-time performance of the model
under certain precision. It can greatly simplify the calculation and improve the accuracy
of the model under ensuring certain precision. In order to reduce the puncture error and
improve the accuracy of the puncture to provide a reference.
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2 Spatial-Temporal Kriging Model

2.1 Kriging Preliminaries

The idea of the kriging model was originally proposed by South African engineer Krige
in his 1951master’s thesis and used this method to find a goldmine for the first time [22].
Then, in 1963, the method was systematized by the French mathematician Matheron,
which formed a complete theory and model and named the method kriging [23], and
was widely used in the field of ground statistical analysis. In the 1981, Professor Sacks
et al. [24] once again promoted the kriging model, from the geological, hydrological,
meteorological and other natural science fields to aerospace, automotive engineering
and other fields of engineering science.

2.2 Spatial-Temporal Kriging Model

Commonly used kriging models include, ordinary Kriging (OK), simple Kriging (SK),
and so on. They are widely used as an excellent interpolation algorithm in all walks
of life, but they are spatial kriging models only can be depicted in a certain space at
a specific time of the situation does not describe the process of continuous changes in
space transactions. The puncture process of the puncture needle is a continuous process,
and the doctor needs to know at all times what part of the needle is in the patient and
the deformation of the soft tissue around the needle. The commonly used kriging model
can no longer accurately describe the puncture process. And spatiotemporal Kriging not
only takes into account the influence of space factors, but also adds the time factor, so
that it can describe a continuous process, it can describe the deformation of soft tissue
in the puncture process.

This paper extends on the basis of ordinary kriging and adds time parameters on the
basis of ordinary Kriging.

Z∗(s0, t0) =
n∑

i=1

λiZ(si, ti) (1)

In the formula, Z∗(s0, t0) is the estimate of space-time point, (s0, t0) and λi is the
weighted coefficient of the adjacent observation value Z(si, ti). The kriging interpolation
is based on the variogram function as the basic premise, in formula (1), the weighted
coefficient λi is determined by the spatiotemporal variogram function. The calculation
formula for the introduction of Lagrange coefficient μ to get parameter λi is:

n∑

i=1

λiγ [(si, ti) − (sj, tj)] + μ = γ [(sj, tj) − (s0, t0)], j = 1, . . . , n

n∑

i=1

λi = 1

The weighted coefficient λi and Lagrange coefficient μ can be obtained from the
above two-style.
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2.3 Stationary Hypothesis

Hypothesis Z(s, t) is a space-time stochastic process defined on Rk × T , where Rk

represents a k-dimensiona space, T represents time, an arbitrary sample point (si, ti),
i = 1, . . . , n position in space-time field, and hs is a spatial distance between sample
points and ht is a time distance. If Z(s, t) of the expectations are constant m, and the
covariance functionCov[Z(s, t),Z(s+hs, t+ht)] depends only on hs and ht independent
of the specific position (s, t), then Z(s, t) satisfies the second order stationary hypothesis,
if the variance Var[Z(s, t) − Z(s+ hs, t + ht)] is limited and depends only on hs and ht ,
then Z(s, t) satisfies the intrinsic hypothesis.

Therefore, when Z(s, t) satisfies the second order stationary hypothesis or the
intrinsic hypothesis, its covariance function can define

C(hs, ht) = Cov[Z(s + hs, t + ht) − Z(s, t)] (2)

The variogram function is:

γ (hs, ht) = 1

2
E[Z(s + hs, t + ht) − Z(s, t)]2 = σ 2 − C(s, t) (3)

σ 2 is the variance of Z(s, t).

2.4 Variogram

Variogram function is the most important step in constructing kriging model, and its
function selection directly affects the interpolation accuracy of the model. The selec-
tion of the theoretical model of variogram function is mainly based on the relationship
between distance and variation value, as well as the professional theory or experience
to determine the appropriate theoretical model, but also can use scatter plot to speculate
the appropriate theoretical model [25]. The area variables that are two points apart in
space are recorded as z(si + hs, ti + ht) and z(si.ti) respectively, the spatial spacing is
hs, and the variogram function of N (hs, ht) of the time interval ht is [26]:

γ ∗(hs, ht) = 1

2N (hs, ht)

N (hs,ht)∑

i=1

[z(si + hs, ti + ht) − z(si, ti)]2 (4)

At present, the basic variogram function model is spherical model, exponential
model, Gaussian model, power function model, pure nugget gold model and so on,
and many new variation function models can be obtained by linear combination or
multiplication of existing models [27, 28].

The parameters such as nugget, partial sill, sill and range of variogram function
represent the spatial variation and correlation degree, and the strength of spatial corre-
lation can be reflected by the partial sill/sill, if the greater the value, the stronger the
spatial correlation. According to the theory of variogram function, the values of the two
points in the same position should be equal, and with the increase of the distance (h),
the numerical difference between the two points increases, until the sill value is tended,
and the interval distance between the sampling points is range.
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Due to the sampling error and spatial variation, two points are very close but there
is also a nugget with a variogram function value of not zero. The discontinuity of the
variogram function at the origin is called the Nugget Effect, and the data values of the
adjacent two samples tend to vary greatly, the properties of the material change greatly
in a very short distance. The nugget/sill is called the substrate effect, which is used to
represent the variation characteristics between samples, and can also reflect the correla-
tion, if the larger the value indicates more variation between samples caused by random
factors. When the ratio of the nugget to the sill is ≤25%, the variable autocorrelation
degree is strong, and if the ratio is between 25% and 75%, it is a medium autocorrelation
level, and if the ratio is ≥75%, it is a weak autocorrelation level.

The soft tissue is mostly homogeneous material, so the nugget effect is weak, the
nugget is very small so that the substrate effect is also very small, has a strong spatial
correlation. Needle puncture surgery requires continuous, uniform and stable puncture
process, in order to ensure the success of the puncture and reduce the patient’s pain, so
the time is also continuous and there is no variation, the nugget effect is weak and has a
strong time correlation. The kriging interpolation method is based on the correlation of
random variables in time and space.

3 Experimental Materials and Methods

3.1 Materials and Equipment

The choice of biological soft tissuematerial is a long about 25 cm,wide about 10 cm, thick
about 5 cm of a shape of the regular pig legmeat. Themeat in this area is evenly thick and
easy to process into shape rules to facilitate the insertion of identifiers. Pork leg meat has
typical soft tissuemechanical characteristics of anisotropy, and its mechanical properties
in the direction of fiber and vertical fiber are different. Its mechanical properties can be
obtained by SHPB experiment [29], in the case of strain rate of 0.02/S, the direction of
the fiber is 121.00 ± 28.76 kPa, the ultimate strength is 63.73 ± 18.53 kPa, the damage
strain is 0.934 ± 0.189; vertical fiber direction modulus is 47.60 ± 19.30 kPa, limit
strength is 22.94± 3.63 kPa, damage strain is 1.077± 0.111 [30]. The identifier uses an
iron nail with a diameter of about 2.3 mm and is arranged at a 1.5 cm distance interval.

The meat container is a custom U-type acrylic fixture, transparent colorless material
easy to observe the placement of the meat, U-shaped adjustable shape can firmly fix the
position of the meat. The needle is implemented by a three-axis puncture system, which
can complete the movement of the XY plane and the rotation around the x axis, used
to puncture the soft tissue of the needle and can adjust the posture and the position of
the needle. The collection of pictures is completed by a medical B-ultrasound machine,
the highest resolution of the B-ultrasound machine is 1 mm and provides two different
probes of lower frequency convex and linear array, for experimental accuracy and image
processing considerations, the test uses linear array probe to collect images.

The meat with the identifier is placed on the special fixture, and the puncture system
is used to carry out the puncture experiment, and the B-ultrasound image is collected by
the ultrasonic probe frame on themeat. Because of the limitation of the scanningwidth of
the linear array ultrasonic probe, the internal situation of the whole organization cannot
be observed at once, so the B-ultrasound image collected must be integrated in turn. The
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stitched image is generally JPG format, which is not convenient for direct image pro-
cessing. The general use of PS to convert its format to BMP format in image processing.
UsingMatlab to binarization it, improve the contrast of the image to reduce the difficulty
of subsequent processing, corrosion removal of small, discrete, large area of noise in
the image, expansion is that identifier image to amplify the recovery, noise reduction
to remove the large noise spots, the marker marks the centroid of the remaining image
and sends its coordinates to the specified location, and finally converts the coordinate
units on the image from pixels to millimeters. The position of the identifier in the soft
tissue can be obtained. The displacement of the identifier in the puncture process can
be obtained by comparing the coordinate position of the image with different puncture
depth.

Fig. 1. B-ultrasonic image of needle into soft tissue.

Fig. 2. Position of identifiers.

Figure 1 is a B-ultrasound image when the needle puncture is completed, the needle
trajectory can be clearly seen, and because it is a flexible needle, deflection occurs in the
soft tissue. The white spot area in the figure is the identifier in the tissue, because the
B-ultrasound is ultrasonic reflection imaging, so in the distance from the B-ultrasound
probe near the upper part, the image is clearer and because the distance is too close to a
certain of lateral elongation. But because the centroid of the image is finally extracted
from the image processing process, the lateral image elongation does not affect the
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position of the centroid. So the distortion in the B-ultrasound image has less effect on
the coordinates of the identified points. The image after Matlab processing is shown in
Fig. 2, the middle slender image is connected to the trajectory of the needle, and the
small white square around the needle is the identifiers after treatment. The black dots
in the figure are the centroid of each image and the coordinates of the identifiers in the
soft tissue. The position of the identifier in the soft tissue to be obtained through a series
of steps in images processing. Due to various reasons such as device resolution limit
and parameter setting in image processing, the identifier is not fully identified in the
image processing at last. The displacement of 37 markers can be obtained by comparing
it with the B-ultrasound image when the puncture is not carried out. Using the puncture
needle progress as the time data, each puncture into the 1 cm to collect a B-ultrasound
image. The final needle into the soft tissue about 16 cm, coupledwith the image collected
when not puncture can be processed to obtain a total of 17 sets of data, a total of 629
displacement data.

3.2 Spatial-Temporal Variogram Model

The spatial-temporal variogram function is extended by the spatial variogram function,
and the time domain data has been added on the basis of the spatial domain. There are
many differences between spatial domain and time domain. There exist many differences
of parameters’ properties in the spatial domain and time domain, such as the unit and
the amount of data. Therefore, this paper uses the space-time model to fit the changes
of soft tissue [27]. The structure is as follows:

Cst(hs, ht) = k1Cs(hs)Ct(ht) + k2Cs(hs) + k3Ct(ht) (5)

γst(hs, ht) = (k1Ct(0) + k2)γs(hs) + (k1Cs(0) + k3)γt(ht) − k1γs(hs)γt(ht) (6)

In the formula, Cst is spatiotemporal covariance, Cs is spatial covariance, Ct is
time covariance, γst is spatiotemporal variogram function, γs is spatial variogram func-
tion, γt is time variogram function, Cst(0, 0), Cs(0), Ct(0) are corresponding sill values
respectively.

From the (5) formula,

Cst(0, 0) = k1Cs(0)Ct(0) + k2Cs(0) + k3Ct(0) (7)

According to the derivation of reference [31], k1, k2 and k3 can be solved by the
following formula,

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

k1 = Cs(0) + Ct(0) − Cst(0, 0)

Cs(0)Ct(0)

k2=Cst(0, 0) − Ct(0)

Cs(0)

k3 = Cst(0, 0) − Cs(0)

Ct(0)

(8)
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The fitting data is the spatial data of 37 identifiers after image processing, and 17
groups of time data, and the variogram of the space domain is calculated by the curve
fitting and the variogram of the time domain and fitted by the curve. As shown in Figs. 3
and 4.
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Fig. 3. Variogram of space.
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Fig. 4. Variogram of time.

The discrete block is the sample semi-variance, the curve is the corresponding fit-
ting variogram function model, the relative spatial variogram function and the time
variogramfunction are respectively,

γ (hs) = 0.0001 + 0.3121(
3

2
· hs
23.7

− 1

2
· h3s
23.73

) (9)

γ (ht) = 0.0001 + 0.2281(1 − e
− h2t

0.672 ) (10)
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Simultaneous formula (7) and formula (8), solvable k1 = 11.4448,k2 = −1.6117,
k3 = −2.5731, and formula (9) and formula (10) together with the formula (6) can get
the spatiotemporal variogram function

γst(hs, ht) = (0.0001 + 0.3121(
3

2
· hs
23.7

− 1

2
· h3s
23.73

)) + 0.9999(0.0001 + 0.2281(1 − e
− h2t

0.672 ))

−11.4448(0.0001 + 0.3121(
3

2
· hs
23.7

− 1

2
· h3s
23.73

))(0.0001 + 0.2281(1 − e
− h2t

0.672 ))

As shown in Fig. 5, the model fuses spatial variogram functions and temporal
variogram functions, while preserving the characteristics of their trend changes.

Fig. 5. Spatial-temporal variogram model.

The variation function will be obtained into the formula (1), the corresponding spa-
tiotemporal kriging model is calculated. Unlike the spatial kriging model, adjacent sam-
ple points in space and time are involved in estimationwhen spatiotemporal interpolation.
Therefore, the spatial-temporal kriging model is more granular and has continuity.

4 Results and Discussion

The spatiotemporal interpolation of the previously collected puncture data is carried
out by using the variogram model described above, and the interpolation results are
verified by cross-verification method. The interpolation results are in agreement with
the actual situation, and the Fig. 6 is a prediction diagram of soft tissue deformation
in different depths of puncture, in which the warmer the color represents the larger the
displacement, and the colder the color represents the smaller the displacement. As can
be seen from Fig. 6 that when the puncture needle first enters the soft tissue, the needle
tip displacement is huge and the influence range is huge. This is because the needle tip
has just stabbed into the soft tissue, the soft tissue is still glued to the needle tip area,
resulting in the needle tip site displacement range beyond the normal impact range, in
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the figure shows that the displacement into a wave forward reduction. When stabbed
into 6 cm, the needle tip affects the range to restore to the normal range of influence.
It is about an elliptical area of 2 cm in length and 1 cm in width, and the displacement
starts from the center of the needle and gradually decreases from the middle to the sides.
When puncture acupuncture into 12 cm, it can be obvious that the puncture needle has
a downward offset phenomenon. The puncture needle is a beveled flexible puncture
needle caused by the influence of the cutting force of the needle tip. In the last picture,
the puncture needle was inserted into the 16 cm, almost completely inserted into the soft
tissue, the needle body began to deflect downward, the impact range of the needle was
extended to the sides by about 1.5 cm from the center of the needle. This is in line with
the actual situation.

Puncture into 3cm soft tissue Puncture into 6cm soft tissue

Puncture into 9cm soft tissue Puncture into 12cm soft tissue

Puncture into 16cm soft tissue

Fig. 6. Soft tissue deformation at different depths.

Cross-validation uses all data to estimate trends and autocorrelation models. It
removes one data location at a time, and then predicts the associated data value. Com-
pares the predicted value of the ellipsis position with the actual value,then repeat this
procedure for the second point, and so on. Cross-validation compares the measured
and predicted values for all points. After cross-validation is complete, if there are large
errors in some data locations, those locationsmay be shelved as exceptions, and the trend
model and autocorrelation model need to be redrafted. Cross-validation includes mean,
root-mean-square, mean standardized, root-mean-square standardized, average standard
error five evaluation indicators, in which the mean and root-mean-square are closer to
zero, the better the average standard error and the mean standardized are as small as
possible, the more the root-mean-square standardized is closer to 1 the better. Because
the spatial interpolation scale range of this paper is very small, the average standard error
and the root-mean-square error of each point are the main precision evaluation indexes,
combined with the mean, the mean standardized error, the root-mean-square standard-
ized error and so on. As you see from Table 1, the difference accuracy of spatiotemporal
kriging is maintained at a high level. As the average standard error of the main measure,
the value has a high precision level below 0.1.
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Table 1. Analysis of interpolation accuracy.

Type Depth Mean Root-Mean-Square Mean
Standardized

Root-Mean-Square
Standardized

Average
Standard
Error

Spatiotemporal
model

16 cm 0.0121 0.3387 0.0913 1.0658 0.4177

Space model 16 cm −0.0152 0.4496 0.0691 1.3439 0.4529

1

2

3

4 5

6

Fig. 7. Error distribution.

Most of the errors in Fig. 7 are below 0.5 mm, the error is small, and the interpolation
accuracy is higher. The areas with large error are mainly distributed in the needle tip area
and the needle body. Needle into the soft tissue, needle tip site deflection is the largest,
in order to prevent the needle, hit the identifier to affect the measurement accuracy, so
the needle tip area identifier setting is less. The needle is designed to allow enough area
to allow the needle to pass through and thus less of the markers. The identifiers in these
areas are sparse, the spatial information that can be interpolated is scarce, and the closer
the kriging interpolation method is, the higher the accuracy, so the error of these sparse
regions is larger.

The spatiotemporal Krigingmodel is compared with the simple space krigingmodel.
Spatial kriging interpolation uses the data when puncture into 16 cm, regardless of the
time factor, the comparison results are shown in Table 1. It is found that in the five criteria
for measuring interpolation accuracy, the accuracy of the remaining four spatiotemporal
models is higher than that of the spatial model, except for the mean standardized. This
indicates that the spatial-temporal kriging model has higher accuracy and its interpo-
lation results are closer to the actual value. Selecting 6 identification points for error
comparison, the results are shown in Table 2, no matter where the space-time model
accuracy is better than the spatial model accuracy, the error is reduced by an average of
20%. Identification points 1–5 are selected in areas where the Identification points are
dense), spatial information is more abundant, so the accuracy of the improvement is not
improved, about 10%–20%. And the identification point 6 is empty around, with very
few identification points. At this time, the interpolation results of the spatial model have
a large error, and the space-time model is adopted, considering the lack of spatial infor-
mation supplemented by the information of the adjacent point of view, the interpolation
accuracy has been significantly improved, and the far exceeding the average value has
been increased by 34%.
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Table 2. Comparison the accuracy of spatial-temporal kriging and spatial kriging.

Number Spatial-temporal kriging Spatial kriging Improvement of accuracy (%)

1 0.2194 0.2832 22.5501

2 0.1672 0.1906 12.2954

3 0.2104 0.2624 19.8415

4 0.1556 0.1967 20.9028

5 0.2201 0.2541 13.3873

6 0.4769 0.7242 34.1481

Fig. 8. The Identifier coordinates of the test.

In order to verify the feasibility of the model, another set of test data is selected
for verification. Select the experimental data for the puncture 16 cm data, after image
processing and other steps, the final results as shown in Fig. 8. From the Fig. 8, it can
be seen that the middle bending part is still the needle, around the spread of the white
square as the identifier, and 24 points are selected as the verification point. These points
are distributed on both sides of the needle body and are covered with the entire image.
The 2,4,7,12,15 and other points are close to the needle body, and the 1,5,8,9 points is
far away from the needle body and runs through the image, while the 3,6,11 and other
points are distributed under the needle body. The selected points are distributed across
parts of the image and are far closer to the distance of the needle body. The above results
analysis can verify that the spatiotemporal Kriging model has predictive power for each
location.

The data predicted by the spatiotemporal krigingmodel are comparedwith the data of
the verification test itself and plotted into a scatter plot, as shown in Fig. 9. Themaximum
deviation occurs at the 12th verification point is 0.64 mm, the minimum deviation is
0.01 mm at the 1th verification point, and the average deviation is 0.2 mm. It is proved
that the interactionmodel of needle and soft tissue constructed by spatiotemporal kriging
interpolation method is fully satisfied with the requirement of millimeter grade accuracy
of needle puncture operation, and the accuracy is higher to meet the needs of operation.
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Fig. 9. Comparison the identification displacement of spatial-temporal kriging model and test.

5 Conclusions and Future Work

The needles puncture soft tissue is a continuous process. The displacement of soft tissue
in the puncture process is not only strongly correlated in space, but also closely related
to the depth (time). In the estimation, therefore, considering the measurement value near
the point in time can effectively improve the interpolation accuracy, and the process of
needles puncture can be restored as much as possible. The suitable variogram model is
an important foundation of high precision kriging interpolation, and the this paper using
kriging model product by spatiotemporal variogram model which combines spatial and
time model, so that it retains the changing trends of each other. Experimental results
show that the model has high accuracy, which is better than the simple spatial kriging
interpolation, both in the description of the puncture process and the accuracy of the
model, and also realizes the prediction in the future [31]. However, the time factor
added to the model, the amount of data in the experiment is greatly increased, which
also increases the calculation and the difficulty of the variogram function, so it is very
important for the spatiotemporal model to choose the sampling frequency and data
processing method.

Kriging model compares with the traditional soft tissue model, such as mass-spring
model and finite element model, the advantage of spatiotemporal kriging model is that it
can greatly simplify the calculation under the condition of ensuring high precision, so the
real-time performance is greatly increased. The spatiotemporal variogram model used
in this paper extends the time parameters on the basis of ordinary kriging interpolation,
but in the actual process, many factors can affect the deformation of soft tissue, such as
different soft tissues have different parameters. In the subsequent research, more factors
of soft tissue, such as elastic modulus, will be considered to optimize the variogram
function and improve the spatiotemporal kriging accuracy.
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