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Abstract. This paper investigates both the stability and H∞ perfor-
mance for a class of 2-D discrete systems with time-varying delays
described by Fornasini-Marchesini (FM) second model. A new sufficient
condition for asymptotic stability with H∞ performance of these sys-
tems is developed based on differences of Lyapunov functionals proposed
through introducing free weighting matrices. The findings are later tested
via linear matrix inequality (LMI) feasibility. A numerical example is
presented to demonstrate the effectiveness and benefits of the result
obtained in this study.
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1 Introduction

The 2-D systems are found in various practical and physical processes where
the information propagation occurs in two independent directions such as gas
absorption and water stream heating. During the last decade, the research on 2-
D systems both in practice and theory has enticed a large number of scholars due
to their extensive applications [16], for example, image data processing, circuit
analysis, transmission and other areas.

It has been well recognized that time-delay often occurs in practical sys-
tems, particularly in 2-D systems due to data transmission and finite speed
of information processing among various parts of the system [20]. In addition,
the reaction of realistic systems to external signals is seldom instantaneous and
always affected by time delays. The time-delay frequently degrades the system
performance and even causes the system instability [13]. Therefore, the explo-
ration of time-delay systems stability plays a key role in applied models which
has caused quite a stir in recent years.

The H∞ technique introduced in [9] has been in the spotlight in recent years
which attracted researchers, for example [5,7,8,12,17,22,23]. One of it many
advantages is that it is insensitive to the exact knowledge of the statistics of the
noise signals.
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In this paper, 2-D systems are described by Fornasini-Marchesini (FM) sec-
ond model [6,10,11] and based on the free-weighting matrix approach, proposed
in [14,15,21] and by constructing a Lyapunov functional [18], a delay-dependent
H∞ performance analysis is reached by keeping some useful terms from the
difference of Lyapunov functions.

This paper is adjusted to five sections: In Sect. 2, the problem under study is
formulated. In Sect. 3, new criterion is obtained in terms of LMI, which ensure the
asymptotic stability and the H∞ performance of 2-D discrete systems described
by the FM second model. Numerical examples are given to highlight the results
in Sect. 4. Finally, some conclusions are provided in Sect. 5.

Notations: Throughout the paper, Rp denotes the p-dimensional real Euclidean
space, Rp×q denotes the set of all p × q matrices. 0 and I represent zero matrix
identity matrix respectively. diag{...} denotes a block-diagonal matrix in sym-
metric block matrices or long matrix expressions. XT stand for the transpose
and the matrix X. Q > 0 (Q < 0) means that Q is real symmetric and positive
(negative) definite matrix. The notation ||x|| stands for the Euclidean norm of
the vector x.

2 Problem Formulation

We consider the 2-D system with time-varying delays described by the following
FM second model [10]:

x(s1 + 1, s2 + 1) = A1x(s1 + 1, s2) + A2x(s1, s2 + 1) + A1dx(s1 + 1, s2 − dj)
+ A2dx(s1 − di, s2 + 1) + B1w(s1 + 1, s2) + B2w(s1, s2 + 1)

z(s1, s2) = Cx(s1, s2) + Dw(s1, s2) (1)

where x(s1, s2) ∈ R
n is the state vector, z(s1, s2) ∈ R

m the signal to be esti-
mated, w(s1, s2) ∈ R

s is the disturbance input. A1, A2, A1d, A2d, B1, B2, C
and D are constant matrices with appropriate dimensions, di and dj are time
varying delays along horizontal and vertical directions, respectively, satisfying
τ1 ≤ dj ≤ τ2 and τ3 ≤ di ≤ τ4 where τ1, τ2, τ3 and τ4 are known positive
integers τv = τ2 − τ1 and τh = τ4 − τ3.
The boundary conditions for the system are specified as:

⎧
⎨

⎩

x(s1, s2) = ϕs1,s2 , ∀s1 � 0, s2 ∈ [−τ2, 0]
x(s1, s2) = ψs1,s2 , ∀s2 � 0, s1 ∈ [−τ4, 0]
ψ0,0 = ϕ0,0.

(2)

In what follows, the boundary conditions assumed to satisfy:
∑∞

s1=0

∑0

s2=−τ2
ϕT

s1,s2
ϕs1,s2 < ∞,

∑∞
s2=0

∑0

s1=−τ4
ψT

s1,s2
ψs1,s2 < ∞

By considering the zero initial conditions, the H∞ norm of the system in (1)
is given by:

||G(z1, z2)||∞ = supw1,w2∈[0,2π]σmax[G(ejw1 , ejw2)]
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where σmax denotes the maximum singular value of the corresponding matrix,
and

G(z1, z2) = C(z1z2I − A1z1 − A2z2 − A1dz1z
−dj

2 − A2dz
−di
1 z2)−1

(B2z2 + B1z1) + D

is the transfer function from the disturbance input w(s1, s2) to the output
z(s1, s2) for the system in (1).

To get the main results of this paper, the following definition and lemmas
are needed.

lemma1 [4] For given symmetric matrices

S = ST =
[

S11 S12

∗ S22

]

where S11 and S22 are square matrices, the following conditions are equivalent

1 . S < 0;
2 . S11 < 0, S22 − ST

12S
−1
11 S12 < 0;

3 . S22 < 0, S11 − ST
12S

−1
22 S12 < 0;

Definition 1. [24] The 2-D system given in (1) with zero boundary conditions
in (2) is said to have H∞ disturbance attenuation γ if it is asymptotically stable
and:

||z(s1, s2)||2 < γ||w(s1, s2)||2 (3)

For any nonzero w(s1, s2) ∈ L2{[0,∞), [0,∞)} where

z(s1, s2) =
[
zT (s1 + 1, s2) zT (s1, s2 + 1)

]T

w(s1, s2) =
[
wT (s1 + 1, s2) wT (s1, s2 + 1)

]T

3 Main Results

In this section, we consider the H∞ performance analysis problem of system (1).
For this case the following theorem holds.

Theorem 1. Given integers τ1 ≤ dj ≤ τ2 and τ3 ≤ di ≤ τ4 and scalar γ > 0 the
system (1) with time varying di and dj satisfying initial conditions given in (2)
is asymptotically stable for all nonzero w(s1, s2) ∈ L2{[0,∞), [0,∞)} and (3) is
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satisfied if there exist appropriately dimensioned matrices P = Pa+Pb = PT > 0,
for i = 1, 2, j = 1, 2, Qij = QT

ij > 0, Z1j = ZT
1j > 0, Z2j = ZT

2j > 0, for j = h, v

Xj =
[

X11j X12j

∗ X22j

]

≥ 0, Yj =
[

Y11j Y12j

∗ Y22j

]

≥ 0, Nj =
[

N1j

N2j

]

, Mj =
[

M1j

M2j

]

, Sj =
[

S1j

S2j

]

, for j = 1, 2 such that the following matrix inequalities

hold:

β =

⎡

⎢
⎢
⎢
⎢
⎣

β11 β12 β13 β14 β15

∗ β22 β23 β24 β25

∗ ∗ β33 β34 β35

∗ ∗ ∗ β44 β45

∗ ∗ ∗ ∗ β55

⎤

⎥
⎥
⎥
⎥
⎦

< 0 (4)

and

Ψ1j =

[
Xi Nj

∗ Z1j

]
≥ 0, Ψ2j =

[
Y i Mj

∗ Z2j

]
≥ 0, Ψ3j =

[
Xi + Y i Sj

∗ Z1j + Z2j

]
≥ 0, i = h, v, j = 1, 2

where

β11 = φ, β12 =
[√

τ4φ
T
1 Z11

√
τhφT

1 Z21

]
, β13 =

[√
τ2φ

T
2 Z12

√
τvφT

2 Z22

]

β14 =
[
φT

e1 φT
e2

]
, β15 =

[
φT
3 Pa φT

3 Pb

]
, β22 =

[−Z11 0
0 −Z21

]

β33 =
[−Z12 0

0 −Z22

]

, β44 =
[−I 0

0 −I

]

, β55 =
[−Pa 0

0 −Pb

]

βij =
[

0 0
0 0

]

for i = 2, 3, 4 , j = 3, 4, 5 and i 	= j

the zero matrix is appropriately dimensioned.

φ =

⎡

⎢
⎢
⎢
⎢
⎣

π1 π2 π3 π4 π5

∗ π6 π7 π8 π9

∗ ∗ π10 π11 π12

∗ ∗ ∗ π13 π14

∗ ∗ ∗ ∗ π15

⎤

⎥
⎥
⎥
⎥
⎦

π1 =
[

φv1 0
∗ φh1

]

, π2 =
[

φv2 0
∗ φh2

]

, π3 =
[

S12 −M12

0 0

]

, π4 =
[

0 0
S11 −M11

]
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π6 =

[
φv3 0
∗ φh3

]
, π7 =

[
S22 M22

0 0

]
, π8 =

[
0 0

S21 M21

]
, π10 =

[−Q12 0
∗ −Q22

]

π13 =

[−Q11 0
∗ −Q21

]
, π15 =

[−γ2I 0
0 −γ2I

]
, πl =

[
0 0
0 0

]
, for l = 5, 9, 11, 12, 14

with

φv1 = N12 + NT
12 + (τv + 1)Q32 + Q12 + Q22 + τ2X11b + τvY11b − Pb

φv2 = NT
22 − N12 + M12 − S12 + τ2X12b + τvY12b

φv3 = −N22 − NT
22 − S22 − ST

22 + M22 + MT
22 − Q32 + τ2X22b + τvY22b

φh1 = N11 + NT
11 + (τh + 1)Q31 + Q11 + Q21 + τ4X11a + τhY11a − Pa

φh2 = NT
21 − N11 + M11 − S11 + τ4X12a + τhY12a

φh3 = −N21 − NT
21 − S21 − ST

21 + M21 + MT
21 − Q31 + τ4X22a + τhY22a

also

φ1 =
[
A1 (A2 − I) A1d A2d 0 0 0 0 B1 B2

]

φ2 =
[
(A1 − I) A2 A1d A2d 0 0 0 0 B1 B2

]

φ3 =
[
A1 A2 A1d A2d 0 0 0 0 B1 B2

]

φe1 =
[
0 C 0 0 0 0 0 0 0 D

]

φe2 =
[
C 0 0 0 0 0 0 0 D 0

]

Proof. Let

η1(s1, s2) = x(s1 + 1, s2 + 1) − x(s1, s2 + 1) (5)
η1(s1, s2) = A1x(s1 + 1, s2) + (A2 − I)x(s1, s2 + 1) + A1dx(s1 + 1, s2 − dj) + A2dx(s1 − di, s2 + 1)

+ B1w(s1 + 1, s2) + B2w(s1, s2 + 1) (6)

xsys(s1, s2) =
[

xT (s1 + 1, s2) xT (s1, s2 + 1) xT (s1 + 1, s2 − dj) xT (s1 − di, s2 + 1)

.. xT (s1 + 1, s2 − τ1) xT (s1 + 1, s2 − τ2) xT (s1 − τ3, s2 + 1) xT (s1 − τ4, s2 + 1) ..

.. wT (s1 + 1, s2) wT (s1, s2 + 1)
]T

⇒ η1(s1, s2) = φ1xsys(s1, s2)

The same for the vertical direction:

⇒ η2(s1, s2) = φ2xsys(s1, s2)
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Choose a Lyapunov functional candidate to be

v(s1, s2) = v1(s1, s2) + v2(s1, s2) + v3(s1, s2) + v4(s1, s2)

v(s1, s2) = v11(s1, s2) + v12(s1, s2) + v21(s1, s2) + v22(s1, s2)

+ v31(s1, s2) + v32(s1, s2) + v41(s1, s2) + v42(s1, s2)

v11(s1, s2) = x
T
(s1, s2)Pax(s1, s2), v12(s1, s2) = x

T
(s1, s2)Pbx(s1, s2)

v21(s1, s2) =

0∑
θ=−τ4+1

s1−1∑
l=s1−1+θ

η
T
1 (l, s2)Z11η1(l, s2) +

−τ3∑
θ=−τ4+1

s1−1∑
l=s1−1+θ

η
T
1 (l, s2)Z21η1(l, s2)

v22(s1, s2) =
0∑

θ=−τ2+1

s2−1∑
l=s2−1+θ

η
T
2 (s1, l)Z12η2(s1, l) +

−τ1∑
θ=−τ2+1

s2−1∑
l=s2−1+θ

η
T
2 (s1, l)Z22η2(s1, l)

v31(s1, s2) =

s1−1∑
l=s1−τ3

x
T
(l, s2 + 1)Q11x(l, s2 + 1) +

s1−1∑
l=s1−τ4

x
T
(l, s2 + 1)Q21x(l, s2 + 1)

v32(s1, s2) =

s2−1∑
l=s2−τ2

x
T
(s1 + 1, l)Q12x(s1 + 1, l) +

s2−1∑
l=s2−τ1

x
T
(s1 + 1, l)Q22x(s1 + 1, l)

v41(s1, s2) =

1−τ3∑
θ=1−τ4

s1−1∑
l=s1−1+θ

x
T
(l, s2 + 1)Q31x(l, s2 + 1)

v42(s1, s2) =

1−τ1∑
θ=1−τ2

s2−1∑
l=s2−1+θ

x
T
(s1 + 1, l)Q32x(s1 + 1, l)

where P = Pa + Pb = PT > 0, Qij = QT
ij > 0, i = 1, 2, j=1,2, Z1j = ZT

1j > 0
j = 1, 2, Z2j = ZT

2j > 0 j = 1, 2 are to be calculated. Defining ΔV (s1 + 1, s2) =
V (s1 + 1, s2) − V (s1, s2) and ΔV (s1, s2 + 1) = V (s1, s2 + 1) − V (s1, s2) yields

Δv11(s1,s2) = xT
sys(s1 + 1, s2)φT

3 Paφ3xsys(s1 + 1, s2) − xT
sys(s1, s2)Paxsys(s1, s2)

Δv12(s1,s2) = xT
sys(s1, s2 + 1)φT

3 Pbφ3xsys(s1, s2 + 1) − xT
sys(s1, s2)Pbxsys(s1, s2)

Δv21(s1,s2) = x
T
sys(s1, s2)φ

T
1 (τ4Z11 + τhZ21)φ1xsys(s1, s2) −

s1−1∑
l=s1−di

η
T
1 (l, s2)Z11η1(l, s2)

−
s1−1−τ3∑
l=s1−di

η
T
1 (l, s2)Z21η1(l, s2) −

s1−1−di∑
l=s1−τ4

η
T
1 (l, s2)(Z21 + Z11)η1(l, s2)

Δv22(s1,s2) = x
T
sys(s1, s2)φ

T
2 (τ2Z12 + τvZ22)φ2xsys(s1, s2) −

s2−1∑
l=s2−dj

η
T
2 (s1, l)Z12η2(s1, l)

−
s2−1−τ1∑
l=s2−dj

η
T
2 (s1, l)Z22η2(s1, l) −

s2−1−dj∑
l=s2−τ2

η
T
2 (s1, l)(Z22 + Z12)η2(s1, l)

Δv31(s1,s2) = x
T
(s1, s2 + 1)(Q21 + Q11)x(s1, s2 + 1) − ξ

T
(s1 − τ3, s2 + 1)Q11x(s1 − τ3, s2 + 1)

− x
T
(s1 − τ4, s2 + 1)Q21x(s1 − τ4, s2 + 1)

Δv32(s1,s2) = x
T
(s1 + 1, s2)(Q22 + Q12)x(s1 + 1, s2) − x

T
(s1 + 1, s2 − τ1)Q12x(s1 + 1, s2 − τ1)

− x
T
(s1 + 1, s2 − τ2)Q22x(s1 + 1, s2 − τ2)
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Δv41(s1,s2) = (τh + 1)x
T
(s1, s2 + 1)Q31x(s1, s2 + 1) −

s1−τ3∑
l=s1−τ4

x
T
(l, s2 + 1)Q31x(l, s2 + 1)

< (τh + 1)x
T
(s1, s2 + 1)Q31x(s1, s2 + 1) − x

T
(s1 − di, s2 + 1)Q31x(s1 − di, s2 + 1)

Δv42(s1,s2) = (τv + 1)x
T
(s1 + 1, s2)Q32x(s1 + 1, s2) −

s2−τ1∑
l=s2−τ2

x
T
(s1 + 1, l)Q32x(s1 + 1, l)

< (τv + 1)x
T
(s1 + 1, s2)Q32x(s1 + 1, s2) − x

T
(s1 + 1, s2 − dj)Q32x(s1 + 1, s2 − dj)

From (5), we have
η1(s1, s2) = x(s1 + 1, s2 + 1) − x(s1, s2 + 1)
⇒

s1−1∑

l=s1−di

η1(l, s2) =
s1−1∑

l=s1−di

x(l + 1, s2 + 1) −
s1−1∑

l=s1−di

x(l, s2 + 1)

⇒

0 = x(s1, s2 + 1) − x(s1 − di, s2 + 1) −
s1−1∑

l=s1−di

η1(l, s2)

0 = x(s1 − di, s2 + 1) − x(s1 − τ4, s2 + 1) −
s1−di−1∑

l=s1−τ4

η1(l, s2)

0 = x(s1 − τ3, s2 + 1) − x(s1 − di, s2 + 1) −
s1−τ3−1∑

l=s1−di

η1(l, s2)

the same for vertical direction.
then the following equations are true for any matrices N1, N2, M1, M2, S1 and
S2 with appropriate dimensions for ΔV (s1, s2 + 1) :

0 = 2 × [xT (s1, s2 + 1)N11 + xT (s1 − di, s2 + 1)N21

× [x(s1, s2 + 1) − x(s1 − di, s2 + 1) −
s1−1∑

l=s1−di

η1(l, s2)] (7)

0 = 2 × [xT (s1, s2 + 1)M11 + xT (s1 − di, s2 + 1)M21

× [x(s1 − di, s2 + 1) − x(s1 − τ4, s2 + 1) −
s1−di−1∑

l=s1−τ4

η1(l, s2)] (8)
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0 = 2 × [xT (s1, s2 + 1)S11 + xT (s1 − di, s2 + 1)S21

× [x(s1 − τ3, s2 + 1) − x(s1 − di, s2 + 1) −
s1−τ3−1∑

l=s1−di

η1(l, s2)] (9)

The same thing for ΔV (s1 + 1, s2).
In the other hand, for any appropriately dimensioned matrices Xi = XT

i ≥ 0,
Yi = Y T

i ≥ 0, for i = h, v, the following equations are true:

0 = τ4ξ
T
1 (s1, s2)Xhξ1(s1, s2) −

s1−1∑

l=s1−di

ξT
1 (s1, s2)Xhξ1(s1, s2)

−
s1−di−1∑

l=s1−τ4

ξT
1 (s1, s2)Xhξ1(s1, s2) (10)

0 = τhξT
1 (s1, s2)Yhξ1(s1, s2) −

s1−τ3−1∑

l=s1−di

ξT
1 (s1, s2)Yhξ1(s1, s2)

−
s1−di−1∑

l=s1−τ4

ξT
1 (s1, s2)Yhξ1(s1, s2) (11)

0 = τ2ξ
T
2 (s1, s2)Xvξ2(s1, s2) −

s2−1∑

l=s2−dj

ξT
2 (s1, s2)Xvξ2(s1, s2)

−
s2−dj−1

∑

l=s2−τ2

ξT
2 (s1, s2)Xvξ2(s1, s2) (12)

0 = τvξT
2 (s1, s2)Yvξ2(s1, s2) −

s2−τ1−1∑

l=s2−dj

ξT
2 (s1, s2)Yvξ2(s1, s2)

−
s2−dj−1

∑

l=s2−τ2

ξT
2 (s1, s2)Yvξ2(s1, s2) (13)

ξ1(s1, s2) =
[
xT (s1, s2 + 1) xT (s1 − di, s2 + 1)

]T

ξ2(s1, s2) =
[
xT (s1 + 1, s2) xT (s1 + 1, s2 − dj)

]T

Then, if the terms of the right side of the Eqs. (7)–(13) are added to ΔV (s1, s2) =
ΔV (s1 + 1, s2) + V (s1, s2 + 1), we have:
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ΔV (s1, s2) + z
T
(s1, s2)z(s1, s2) − γ

2
w

T
(s1, s2)w(s1, s2) ≤ x

T
sys(s1, s2)(φ + φ

T
1 (τ4Z11 + τhZ21)φ1

+ φ
T
2 (τ2Z12 + τvZ22)φ2 + φ

T
e1φe1 + φ

T
e2φe2 + φ

T
3 (Pa + Pb)φ3)xsys(s1, s2)

−
s1−1∑

l=s1−di

ξ
T
3 (l, s2)Ψ11ξ3(l, s2) −

s1−τ3−1∑
l=s1−di

ξ
T
3 (l, s2)Ψ21ξ3(l, s2) −

s1−di−1∑
l=s1−τ4

ξ
T
3 (l, s2)Ψ31ξ3(l, s2)

−
s2−1∑

l=s2−dj

ξ
T
3 (s1, l)Ψ12ξ3(s1, l) −

s2−τ1−1∑
l=s2−dj

ξ
T
3 (s1, l)Ψ21ξ3(s1, l) −

s2−dj−1∑
l=s2−τ2

ξ
T
3 (s1, l)Ψ32ξ3(s1, l)

ξ3(l, s2) =
[
ξT
1 (s1, s2) ηT

1 (l, s2)
]T

ξ3(s1, l) =
[
ξT
2 (s1, s2) ηT

2 (s1, l)
]T

thus if Ψ1j , Ψ2j ≥ 0, Ψ3j ≥ 0 for j = 1, 2 and

(φ + φ
T
1 (τ4Z11 + τhZ21)φ1 + φ

T
2 (τ2Z12 + τvZ22)φ2 + φ

T
e1φe1 + φ

T
e2φe2 + φ

T
3 (Pa + Pb)φ3) < 0

which is equivalent to (4) by schur compliments, then

ΔV (s1, s2) + zT (s1, s2)z(s1, s2) − γ2wT (s1, s2)w(s1, s2) < 0

This ensures that (3) holds under zero-initial conditions for all nonzero
w(s1, s2) ∈ L2{[0,∞), [0,∞)} and a specified γ > 0 following the similar line
in [25]. On the other hand, (4) entails that the following matrix inequality
(14) holds, which guarantees ΔV (s1, s2) < 0, such that the system (1) with
w(s1, s2) = 0 is asymptotically stable.

β =

⎡

⎢
⎢
⎣

β11 β12 β13 β15

∗ β22 β23 β25

∗ ∗ β33 β35

∗ ∗ ∗ β55

⎤

⎥
⎥
⎦ < 0 (14)

where

φ =

⎡

⎢
⎢
⎣

π1 π2 π3 π4

∗ π6 π7 π8

∗ ∗ π10 π11

∗ ∗ ∗ π13

⎤

⎥
⎥
⎦

φ1 =
[
A1 (A2 − I) A1d A2d 0 0 0 0

]

φ2 =
[
(A1 − I) A2 A1d A2d 0 0 0 0

]

φ3 =
[
A1 A2 A1d A2d 0 0 0 0

]

This completes the proof. �
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Remarque: The terms
∑s1−di−1

l=s1−h̄1
ηT
1 (l, s2)Zs1η1(l, s2) and

∑s2−dj−1

l=s2−h̄2
ηT
2 (s1,

l)Zs2η2(s1, l) are kept in Theorem1 to overcome the conservativeness. On the
other hand, τ2 and τ4 are split into two parts like dj and τ2 − dj , di and τ4 − di,
for vertical and horizontal direction, respectively, in order to prove Theorem1
thus showing the benefits of the suggested method.

4 Numerical Example

In this section, we will give a numerical example to illustrate the applicability
of the proposed result.

Example 1. [19] Denote the design of 2-D delay-dependent H∞ performance and
filter for a stationary random field in image processing where the disturbances
are a random process (noise), using LMI approach proposed in (4), the 2-D
system can be converted to the 2-D FM model system (1) with the ensuing
parameters:

A1 =
[

0.3 0
0 0

]

, A2 =
[

0 0
1 0.2

]

, A1d =
[

0 −0.03
−0.08 0

]

, A2d =
[−0.03 0

0 0

]

B1 =
[

1 0
0 0

]

, B2 =
[

0 0
0 0

]

, C =
[
3 1

]
, D =

[
0 1

]

Given τ3 = 3, τ4 = 3, τ1 = 2, τ2 = 2 by solving the LMIs, the minimum H∞
norm bound for this example is γopt = 6.9671.

Fig. 1 shows the maximum singular values plot of the transfer function matrix
of the system (1). In the figure, the grids denote the obtained H∞ disturbance
attenuations and its maximum value is 6.3725, which is below 6.9671.

−4 −2 0 2 4

−4−2024
1

2

3

4

5

6

7

w
1

w
2

|G
(e

jw
1,
ej
w
2)
|

Fig. 1. Transfer function (Example 1).
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5 Conclusion

This paper has explored the problems of stability and delay-dependent H∞ per-
formance analysis for 2-D discrete systems with time varying delay described
by FM second model without ignoring any terms in the derivative of lyapunov
functional by considering the relationship between the delay and it upper bound.
The new criteria may be extended to systems with uncertainties.
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