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Abstract In this chapter the unconstrained and constrained optimization algorithms
for numerical methods are envisaged. The numerical solutions to the fundamental
problems in energy systems are provided. The recent heuristic methods used in
power systems are highlighted, and the specific algorithms are proven by simulations.
The selection of the best solution is one of the authors’ concern. Therefore, the
optimization algorithms along with numerical examples are delivered in this chapter.
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Nomenclature

BFGS Broyhen-Fletcher-Goldfarb-Shanno
CD Conjugate Directions
CNO Constrained Nonlinear Optimization
DFP Davidon-Fletcher-Powell
FR Fletcher–Reeves
GA Genetic Algorithms
HA Heuristic Algorithms
LQR Linear Quadratic Regulator
MINLP Mixed Integer Nonlinear Programming
MMCG Modified method of conjugate gradients
NM Newton method
NO Nonlinear Optimization
NRM Newton-Raphson method
PR Polak–Ribiere
PS Power Systems
PSO Particle Swarm Optimization
OC Optimal Control
TSP Travelling salesman problem
TR Trust region
SA Simulated Annealing
SCUC Security-Constrained Unit CommitmentUnit Commitment
SIP Semi-infinite programming
SDP Semi-defined programming
UC Unit Commitment
UNO Unconstrained Nonlinear Optimization
VC Variational Calculus

Symbols

C convex set
dk descent direction
� distance
F convex function
f (x) real function of variable x
f ′(x) first derivative
grad( f (x∗)) gradient of the multivariable function
∇ f (x∗, y∗) the gradient of function f at the minimum point (x*, y*)
∇2 f (xk) = D2 fk Hessian matrix
K (x, t) integral cost
K (xf, tf) final cost
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J(u) performance index
L(x, u, τ ) Lagangian
p Lagrange multiplier
pCi Cauchy point
x unknown vector
s∗(�) steepest descent direction
‖s‖ = � norm
span linear combination operator

1 Introduction

Optimization offers the best solution, out of themany possible solutions to a problem,
according to a performance criterion imposed, respecting or not certain constraints.
In the optimization problems, the performance criterion is chosen according to the
proposed objectives, observing certain constraints or not. Multivariable functions
are used in variational calculus (VC). VC deals with the functionals, the solution
being obtained more often by minimizing the functional. By taking into account the
Sect. 1.1 of this book, the evolution of the VC is optimal control (OC). OC is a result
of the functional cost minimization, the control being dependent by the state feeback
product of the system, the cost function, and a weighting matrix.

The problem of determining the shortest possible route between two points is the
oldest optimization problem, the well-known solution being a straight line segment.

Greek mathematicians Zenodorus and Poppus studied the problem of Princess
Dido (Elisa) from Tiria or the isoperimetric problem, inspired by the historical story
of Vergilius (70-19 BC), Eneida, about the formation of Carthage (850 BC): to find
a plane-generated curve of a given straight segment, covering the largest possible
area. The Greeks knew the solution (the circle), but it was only in the 29th century
rigorously demonstrated.

Heron of Alexandria gave another interpretation of the shortest path possible, in
the paper Katoprika (Principles of optics), noting that if a light source emits a light
beam reflected in a mirror; it will follow the shortest possible path from source to
observer.

The origins of variational calculus date from 1662 with the Fermat principle the
fastest path of a light beam which passes through a single optical environment is that
of minimum time.

The first minimum time problem formulated and demonstrated was in
1697 (“brachystochrone problem”–“βραρχιστoζ-Short, χρoνo-time”), by Johann
Bernoulli. In this way the optimal command appeared.

Modern optimal control

The practical point ov view of OC was discovered by Riccati (1676–1754). Jacopo
Riccati had obtained a scalar solution of the nowadays linear quadratic problem.
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Kalman (1960),Athans andFalb (1966), push forward the development of themodern
optimal control.

Dynamic programming and the principle of maximum

Dynamic programming orginated from Bellman (1950s), takes into account the
nonlinear optimal command. The main disadvantage of its solution is the large
memory requiremnts. The principle of maximum, developed by Pontryagin and
the Soviet school, is a natural consequence of Weierstrass’s necessary condition
with limited command functions. To determine the shortest route, the optimal
control maximizes the Hamiltonian within the boundary of definition. Themaximum
principle is normally found in dynamic programming.

The nonlinear problem of determining optimal trajectories was addressed in 1919,
by Robert H. Goddard (1882–1945). Using variational calculus, in 1927 Hamel
formulates the nonlinear problem, the analytical solution being found by Tsien and
Evans in 1951.

The modern optimal control deliver a more robust solution (in frequency domain)
through H∞ and H2 approaches. The robustness of the modern control is related to
the systems with structural uncertains, and unmodelled dynamics.

Research in the field of optimization is on-going by using artificial intelligence,
Genetic algorithms and metaheuristics approaches.

The objective of this chapter is to provide a methodology to solve the specific
problems in power system applications. Moreover, due to the high importance of
energy production, the solutions should be the best one. Therefore, the optimization
algorithms are also taken into account. In order to facilitate the understanding of
some algorithms, the authors provide numerical exmaples.

In this chapter the formulation of the optimization problems are presented. The
Sect. 3 contains the classification of the optimal problems. Different types of the
optimizations are included in Sect. 4. Unconstrained and constrained optimization
algorithms for numerical methods are provided in Sects. 5–13. The recent heuristic
methods and the specific algorithms are shown in Sect. 14. The Sect. 15 provides
an overview of the genetic algorithms. In Sects. 16–19, different nature inspired
optimization algorithms (metaheuristics) are found: ant colony optimization, Simu-
lated Annealing, Particle Swarm Optimization, Bee Swarm, and Firefly model. The
last Sects. (20, 21) are dedicated to very large scale neighborhood search, and
security-constrained unit commitment. The chapter ends with the conclusions.
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2 Formulation of the Optimization Problem

In order to formulate a problem of optimization of a dynamic system, the following
steps must be taken into account: (1) the initial and final conditions; (2) the dynamics
of the system; (3) the control limits; (3) the objectives of the problem; (4) perfor-
mance criterion. The optimal solution will be an admissible control delivered by
minimization of the peformance criterion [1].

Implementation of the optimal solution

With the analytical or numerical determination of the optimal solution, the natural
problem of implementing this solution found for the considered dynamic system is
posed.

In the references [1, 2] the optimal command was obtained either by solving a
Riccati differential matrix equation (for problems with fixed final time), or from an
Riccati algebraic matrix equation (for problems with infinite horizon or final free
time). Riccati equations require a reverse integration in time (from the final step to
the initial step) and the storage of specific coefficients on this interval, following the
application of the optimal command in the direct sense of time (from the initial step
to the final step). This procedure requires a large volume of calculus and is sensitive
to the variation of the dynamic system parameters. The solutions that eliminate the
mentioned disadvantages are presented in the technical papers [1, 2] are described
modernmethods of implementing the solutionswithinmodern electric drive systems.

Types of constraints

Constraints are applying to control and states of the dynamic system under consider-
ation. At the level of the relations, they must be within an allowable range (inequality
constraints), and at the state level, as a result of the existence of differential equa-
tions that must be solved, their initial and final values (equality constraints) must be
known. Another variable to consider is time. Therefore, the initial and final time are
all equality constraints.

Performance index

The performance index (cost function) is designed by the designer to meet the objec-
tives set. It usually includes a final cost and an integral cost, corresponding to the
stationary and dynamic regimes. From a systemic point of view, the performance
index contains system errors or states, and commands. For a system of order n (n
states) with m inputs (m ≤ n), the performance index is defined by the final cost K
(x, t) and the integral cost:

J (x0, t0,u, x, t) = K (x, t) +
∫ t

t0

L(x(τ ),u(τ ), τ )dτ (1)

or by knowing the final time, t f, it becomes:
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J (x0, t0,u) = J
(
x0, t0,u, x f , t f

) = K
(
x f , t f

) +
∫ t f

t0

L(x(τ ),u(τ ), τ )dτ, (2)

where

– J (x0, t0,u) is the value of the system performance index for the command u
applied,

– t f the final time,
– x f final state,
– K (x f, t f) terminal cost.

The performance index can stretch to infinity if no command exists to bring the
system to a specified end state:

J (x0, t0,u) → ∞. (3)

It is noted with:

J (u) = J (x0, t0,u) (4)

if the initial state x0 is known at time t0.
Solving the optimal control problem leads to the determination of the optimal

regulator. The regulator will minimize the chosen performance index.
Example: If the energy absorbed by a dynamic system should be minimized, then

the instantaneous quantities of the absorbed current and the supply voltage will be
included in the performance index, and the controller will drive the system so as to
minimize the energy absorbed from the power source.

Remarks:

1. Any solution to the optimal driving problem is called optimal control;
2. In the optimization problems, the poles of the system are not directly imposed,

but result from the minimization of the chosen performance index;
3. Only the determination of the minimum of the performance index can be consid-

ered, because the problem of determining the maximum is similar to finding the
minimum of the negative function.

3 Classification of the Optimal Problems

Optimal problem with quadratic functional applied to linear systems are well
known as linear quadratic regulators (LQR) [2]. The LQR problems minimizes
the consumed energy into system. LQR problems can be classified as:

– the problem of adjustment according to the state;
– the problem of the adjustment according to the output.
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The linear quadratic optimal driving problems lead to solving different types of
the Riccati equations: algebraic, differential (smooth case) or in differences (discrete
case), solution that acts as a gain factor on the state feedback of the system.

The solution which minimizes the functional cost is named optimal control (OC).
OC can be with or without constraints, with fixed or free time problems.

Particular cases:

(1) The tracking problem, when a certain trajectory becomes an objective to be
achieved;

(2) The problem of optimal control with fixed time,when it is constraint to the final
time tf. The performance index becomes:

J (u) = K (T ) +
∫ T

t0

L(x, u, τ )dτ (5)

(3) The problem of controlwith final state fixed, free final time,when a desired state
is required, xf .

(4) The adjustment problemwhen the fixed end point satisfy:x∗ = lim
t→∞ x(t), i.e. x *

is a state of equilibrium of the system.

4 Types of Optimizations

Continuous optimization

Models with continuous variables that can take any real value are problems of
continuous optimization

Discrete optimization

The variables into the discrete optimization problems are included into a set of the
discrete values.

Optimization without constraints—the constraints do not found on model
variables.

Optimization with constraints—the constraints are presented on the model
variables.

Optimization problems with constraints can be reduced to problems without
constraints by replacing them with penalty terms in the chosen objective function.

The types of the optimization problems with constraints can be found by taking
into account both the nature of the constraints and property of the functions (differ-
entiable; non-differential). The constraints could be linear, nonlinear, or convex
type.

Optimization problems without objective function

In practice there are problems without a special optimization objective, e.g. to find
the variable values by satisfying the imposed model constraints.
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This type of problem is named the feasibility problems

Optimization problems with objective functions

Usually, the one objective function into the optimization problems can be found.
Moreover, there are special cases with multiple objective functions.

Problems of complementarity and variational inequalities are ubiquitous in engi-
neering field, combined or not with economic field. The main objective is to satisfy
the conditions of complementarity by the deducted solution.

The optimization problem with multi-objective functions occurs in logistics, or
enginnering combinedor notwith economics. In these types of optimizationproblems
the solution is a compromise of the goals conflict.

However, problemswithmultiple objectives can be reformulated as a single objec-
tive problem by forming a weighted combination of the functions objectives, or
changing part of the function objectives by the adequate constraints.

Deterministic optimization

In this type of optimization, it is supposed that the required data to solve the problem
is precisely known. Many times in practice, the data is missing (the often case is that
there are errors in measurements, or for forecasting problems the future data cannot
be known accurately).

Stochastic optimization

There are problems with the uncertain parameters into the used model in which the
optimization stage is necessary. The robust control field takes into account these type
of the processes conducting to a robust optimal solution. The robustness character
is justified by controlling the process within a certain limits, but without knowing
the all process data (structural uncertains). In stochastic problems, the advantages of
knowing the probability distributions of the problem data are used; the objective is
to find a solution to optimize the model performances for any data inputs.

Combinatorial optimization

The study of the arrangements of the elements of a finite set, according to a given
structure, leads to combinatorics. In combinatorial problems, priorities are problems
related to existence (there is a particular type of arrangement) and counting (the
number of arrangements that can be formed):

The characteristic of combinatorial problems is that the number of these
arrangements is finite.

The combinatorial optimization principle involves comparing the arrangements
based on a criterion and selecting the best arrangement according to that criterion. The
purpose of combinatorial optimization is to solve specific problems, i.e. to develop
methods and algorithms for effectively finding the most suitable “arrangement” from
the finite set of all possible arrangements.

Travelling salesman problem (TSP) is one of the combinatorial optimization
problem.
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Travelling salesman is located in town 0must visit in localities 1,2,…,n and finally
returning from where he left off. Knowing the distances between localities (or the
costs of traveling between them) the solution to find the route with the minimum total
length (or the minimum total cost) is a concern. It can be easily deduced that the total
number of the possible routes is n!, a route being perfectly determined by the order
in which the ones will be visited in the localities. Once this order is established, the
calculation of the length or costs of the corresponding route is a simple operation of
summing the lengths or costs of the sections that make up the route.

The mathematical model of the TSP

By consider 0,1, …, n the set of the towns, in which 0 is the town from which the
travel salesman depart and arrive at the end of the travel. Is denoted by cij cost of
displacement from the locality i to the j 	= i. If there is not direct connection between
the i and j or in the case of i = j then cij → ∞. A route will be described using the
bivalent variables: if the route starts from city i directly to city j, i 	= j then xi = 1,
otherwise, xi = 0 (or if i = j).

In these conditions the following function is defined

f =
n∑

i, j=0

ci j xi j . (6)

The constraints of the problem are given by the relations (7–8):

n∑
j=0

xi j = 1, i = 0, 1, . . . , n (7)

and taking into account that from any city i the traveling salesman should straighten
to the another single location,

n∑
i=0

xi j = 1, j = 0, n (8)

and at any time the travel salesman comes from a place previously visited.
Equations (6)–(8) represent the mathematical model of the minimum tour

problem.

Heuristic methods for solving TSP

Usually, the optimal solutions of a TSP is very hard to find (if not impossible to find)
if the number of the visiting cities are higher than of 50. To determine an accept-
able solution more heuristic procedures have been developed. These procedures are
attractive from two points of view:

• Can give a “guarantee certificate” for the obtained solution in the sense of the
possible evaluation of the “maximum exceeds” from the optimal solution;
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• The approximately solution can be found with a moderate computational effort
into a reasonable time, that it meant those two parameters are polynomial
dependent from the size of the problem (i.e. the number of the cities);

The heuristic methods builds a solution by trial, by making at each iteration the
best possible choice. Unfortunately, this scheme does not usually lead on the best
globally solution.

Next, several heuristics are presented to solve the Euclidean problem of the travel
salesman, i.e. of the problem in which cij j are distances satisfying both symmetry
conditions: cij = cji, and triangle inequality cik ≤ cij + cjk.

Heuristics—nearest neighbor

• Departure from the town 0 to the nearest town;
• From the last visited village bows by the nearest unmarked village; in case that

there is no longer single location to be visited, returns in place of departure;

Most combinatorial optimization problems are modeled using graph theory. Most
of them can be described alternatively by linear programs with integer variables,
especially bivalents, hence the close link between combinatorial optimization and
integer programming.

Among the problems of combinatorial optimization are:

• the problem of the minimum path value between two nodes of a graph;
• the problem of maximum flow;
• the problem of minimum tour.

Another heuristic problem is the problem of the minimum cost tree: a number
of “points” must be connected to facilitate the transmission of a certain service.
Between points there are “potential links” whose realization involves a certain cost.
The problem that arises is to see what connections will actually be made in such a
way that any two points will be connected—directly or indirectly—in order to use
the service, and the sum of the costs of the connections made will be minimal.

5 Unconstrained Optimization Problems

Overview

Numerical methods for solving unconstrained optimization problems are applied to
the objective functions of one or more variables and aim to determine the global
extremum point of the function.

From the calculated values point of view, the methods of solving the optimal
problems without constraints can be classified in [3–8]:

• Direct methods—no derivatives of the objective function are required;
• Indirect methods—the derivatives of the objective function are used.
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The difference between the direct and indirect methods is mainly based on the
presence of the derivatives of the objective function. In the direct methods, there are
no objective function derivatives.

The methods that use derivatives calculus have the advantage of a high conver-
gence speed, but the volume of calculations increases, and errors can occur.

Depending on the used principle, the methods are divided into:

1. Exploration methods
2. Removal methods
3. Search methods (first order, second order)

1. The first two methods (exploaration, and removal) are used to find the domain
in which the extremum of the function is located, but are used more in the case
of functions of two or maximum three variables, since they are difficult to apply
to functions of several variables for one-dimensional extremities.

2. Removal Methods.

The objective function must satisfy the unimodality hypothesis (there is only one
extreme point on the definition domain).

Principle: the considered area is divided into two parts by a (segment) separation
plan; the value of the function is tested in the two sub-domains by a specific procedure
and the one that is not of interest is eliminated; the procedure is continued for the
remaining domain by dividing with a separation plan, etc., until a sufficiently small
domain is reached, depending on the accuracy required.

3. First order methods. Linear search methods

They are the most efficient methods of solving unconstrained problems.
The principle of these methods consists in the iterative approximation of the

extremum point, the procedure ending when the stop criterion is satisfied.
The general calculation formula is:

xi+1 = xi + θi h
i

where
hi—is the direction of travel
θi—is a scalar that represents the step of movement in the hi direction.

3.1 Indirect Searchmethods or gradient methods apply for derivable functions f (x)
in relation to all arguments.

Methods of the II-nd order, in which the derivatives of the I-st order of the function
are used:

xi+1 = xi − θ∗
i r

i , r i = ∇ f (xi ).



196 M. Gaiceanu et al.

The step can be constant, variable (decreasing) or optim (optimal gradientmethod
or Cauchy method).

3.1.1 Methods Based on Conjugate Directions Let x0 the starting point of the
algorithm and x* the minimum point

x∗ = x0 + xs,

xs ∈ R
n , unknown vector.

xs is expressed in a base by using the conjugate directions.
Starting from x0 and making successive steps along the axes of this base, there is

the possibility that in n steps x* to be reached.
The conjugate directions (CD) method can be regarded as an intermediate method

between the gradient and the Newton algorithms. The gradient method has access
to the values of the first derivatives order. In the Newton method, the second order
derivatives are used. The CD method aims to accelerate the slow convergence rate
of the gradient method and at the same time avoid the use of Hessian as in the
Newton method. The particular case of the conjugate directionsmethod is the conju-
gate gradients method, which was initially developed for quadratic problems. By
approximation, this technique has been extended to general optimization problems
because it can be argued that near a local minimum point the objective function is
approximately quadratic.

This method consists of the following steps:

(a) r0 = ∇ f (x0), and d0 = −∇ f (x0);

(b) xk+1 = xk + αkdk for any k ∈ [0, n − 1], with αk = − rTk dk
dT
k ∇2 f (xk )dk

;

(c) dk+1 = −∇ f (xk+1) + βkdk , where βk = rTk+1dk∇2 f (xk )

dT
k ∇2 f (xk )dk

;
(d) at each iteration i, the variable x0 is replaced by xi. The above mentioned

procedure repeats at each iteration.

This method has the following two main disadvanteges:

– requires the calculation of the Hessian objective function for each iteration,
– is not convergent for the general case.

3.1.2 Modified Method of Conjugate Gradients (MMCG) This method attempts to
correct the disadvantages of the conjugate gradient method listed above. In this case,
αk it is calculated by using another method (ideal,Wolfe conditions or backtracking),
and βk is calculated with one of the two formulas proposed below:

– Fletcher–Reeves (FR): βk = rTk+1rk+1

rTk rk
,

– Polak–Ribiere (PR): βk = (rTk+1−rk)
T
rk+1

rTk rk
.

The PR method behaves better than the FR method.
Thus, for MMCG problems without constraint, the following steps are followed:
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(a) r0 = ∇ f (x0) and d0 = −∇ f (x0);
(b) xk+1 = xk + αkdk , for any k ∈ [0, n − 1], with αk calculated with Wolfe

conditions or backtracking;
(c) dk+1 = −∇ f (xk+1) + βkdk, where βk is calculated using one of the FP or PR

methods.
(d) at each iteration k, replace x0 with xk and repeat the process described above.

3.2 Second Order Methods

I. Newton Methods

I.1 N method (NM)

The NM (1669) is part of the second order optimization method category. The condi-
tions of sufficient optimality of the second order are: if there is an x* which satisfies
the (a, b) conditions simultaneously:

(a) ∇ f (x∗) = 0,

(b) ∇2 f (x∗) > 0,

then x* can be considered as a local minimum.
An important aspect of this method is that the descent direction, dk(k > 0), can

be considered if Hessian matrix is positive definite:∇2 f (xk) = D2 fk > 0.
For each iteration of the algorithm, the following recursive equation (quadratic

approximation deducted from Taylor series expansion of the objective function)
should be taken into account:

xk+1 = xk − θk(D2 fk)
−1D1 fk, D1 fk = ∇ f (xk),

with step θk = 1, and descent direction dk :

dk = −(D2 fk)
−1D1 fk .

If the starting point x0 is not placed into the small perturbations arround of the
point x* interval, the NM cannot guarantee the convergence of the method. This is
the main disadvantage of the NM. Another disadvantage of the Newton method is
that at each iteration the Hessian and its inverse should be calculated.

Therefore, an improvement has beenmade by choosing the steps θk 	= 1 in optimal
manner, resulting so-called Newton‘s variable step method.

I.2. Quasi-Newton method

To overcome the above mentioned disadvantages, the quasi-Newton method is used,
in which the inverse of Hessian (D2 fk)

−1 is replaced with an approximated matrix
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Hk . This matrix can be calculated much easier, and at the same time keeps the fast
convergence speed of the NM.

The principle of the Newton methods consists in the successive approximation of
the Hessian matrix or its inverse by appealing only to the first order derivatives of
the objective function.

I.2.1 Davidon-Fletcher-Powell (DFP) method

Let B be the matrix that approximates the inverse of the Hessian matrix.
Initially, a point x0 is chosen and a symmetrical matrix B0 > 0 (usually B0 = I).
Then, ∇ f (xi ) and optimal step θi in the travel direction hi = −Bi∇ f (xi ) are

computed.
It is calculated xi+1 = xi + θi hi .
Check if the stop criterion is met.
If it is yes, then stop the algorithm,
otherwise, Bi+1 = Bi + Mi + Ni is computed.
It follows the next iteration.

I.2.2 Broyhen-Fletcher-Goldfarb-Shanno Method (BFGS)

Initially, a point x0 is chosen and a symmetrical matrix B0 > 0 (usually, B0 = I).
Following this, ∇ f

(
xi

)
and optimal step θi on the travel direction hi = -Bi∇ f

(
xi

)
are computed.

It is calculated xi+1 = xi + θi hi .
Check if the stop criterion is met, and if it yes, stop the algorithm. An update of

the Hessian matrix value is delivered.
Continue with the next iteration.
Comparatively, the BFGS algorithm is less affected by the errors in the optimal

step calculation than the DFP algorithm. As regards the numerical stability, BFGS is
considered themost stablemethod. From the ones presented so far, it can be observed
that quasi-Newton methods only require first order information (only gradient type
calculations are used).

The NM is a good choice for the multi-variable equation systems solving, and
to find the polynomials complex roots. Newton wanted to determine the solution of
an “algebraic” given problem: F(x, y) = 0, in which the variable y is expressed as a
series of powers in x.

III. Newton-Raphson methods (NRM)

The NRM supposes the determination of the second order derivatives of the objec-
tive function. The NRM has the main disadvantage the requirement of a large
amount calculus, but this is compensated by the speed of convergence. The Raphson
procedure is equivalent to the linear approximation. The first analysis of the NM
convergence had been done in 1820 by the Cauchy, and Fourier [3, 7, 9].

III.1. Newton-Raphson method

The method is based on the linear approximation of the objective function by the
Taylor series expansion. The general recurrence relationship is:
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xi+1 = xi − H−1
i ∇ f

(
xi

)

where
Hi -the Hessian matrix of the objective function at iteration i
There are some disadvantages of the recurrence formula in this form: the method

can converge to a saddle point or to an extremely relative point. Thus, the recurrence
relation can be modified, eliminating the mentioned problems by moving at the
optimum pace on the direction of movement. The relationship becomes:

xi+1 = xi − θ∗
i H

−1
i ∇ f

(
xi

)

For quadratic functions, the extremum point is reached in one step. For the other
functions, the extreme point is not found in a single step, but convergence is fast.

Even with this new recurrence relation, the method cannot be used in the case of
objective functions of many variables, since:

• nxn dimensional matrix is stored at each iteration
• Each iteration is calculated H−1

i ∇ f
(
xi

)
• In certain situations it is impossible to calculate the elements of theHessianmatrix
• At each iteration, the inverse of the Hessian matrix is calculated.

III.2 The Marquardt method

It combines the advantages of the optimal gradient method (safe convergence and
rapid decrease of the function value for the case of choosing the starting point far
from the minimum point) and the Newton-Raphson method (rapid convergence if
the starting point is near to the minimum point).

IV. Trust region method (TR)

In this method, based on the information gathered about the objective function f an
objective function Ti is so built, that near the point xi, it behaves just like function
f . Since objective Ti is not always the best approximation of f we have to force the
search for a minimizer of Ti to a certain area around xi. In this regard, the step s is
search such that the next subproblem will be solved by approximation:

min
s

Ti (xi + s),

in which (xi + s) is placed in the TR.
If the solution obtained does not lead to a significant decrease in f , it means that

the TR is overgrown; therefore we reduce the step and proceed again to solve the
above mentioned subproblem.

The procedure of applying TR method consists of:

1. Maximum distance �i , i.e. the radius of the TR, is chosen;
2. Search for a direction d with a step s such as the maximum decreasing rate is

obtained;
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3. If the obtained result is unsatisfactory, proceed to the choice of a smaller�i , and
repeat the algorithm from step 1.

By considering the first two terms of the quadratic model of the function Ti, and
the first two terms of the f Taylor’s series expansion around xi that are identical for
each iteration xi, the following relationship can be deducted:

Ti (s) = fi + sT∇ fi + 1

2
sT Bks,

with symmetric matrix Bk .
At the same time, by applying Taylor’s theorem for a continuous and differentiable

function f ţhe approximation function around s point can be written:

f (xi + s) = fi + sT∇ fi + 1

2
sT∇2 f (xi + ts)s,

with t ∈ (0, 1), a scalar number.
In this way, the following approximation Ti is adopted:

Ti (s) = fi + sT∇ fi + O(‖s‖2).

The difference between Ti and f (xi + s) it is just O(‖s‖2). The approximation
error is small if s is small.

As a consequence, the following problem should be solved: norm

minTi (s) = fi + sT∇ fi + 1

2
sT Bks, with norm ‖s‖ ≤ �i , (9)

�i > 0 being the trust-region radius.
Three strategies are described for identification of approximate solution, based

on which at least one reduction of Ti is obtained, as well as the reduction obtained
using the Cauchy point. This point is actually a Ti minimizer along the direction that
offers the steepest descent—∇f i within the TR.

V. The Cauchy Point

In the line search methods, the approximation is sometimes coarse from an optimal
length of the step. However, this does not affect global convergence. In order to
simplify the calculations, the same methods can be used in trust region methods. In
other words, instead of finding an optimal solution to (8.93), to identify an approx-
imate solution si is a better approach. Therefore, to achieve global convergence,
this approximate solution should be placed within the trust region, and to provide a
satisfactory reduction of the objective function.

The satisfactory reduction is obtained using the Cauchy point pCi which can be
defined by using the following algorithm.

Algorithm:
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– Looking for a vector pS
i which is a linear solution of the (8.93) problem

pS
i = arg min

s∈Rn
fi + sT∇ fi , ‖s‖ ≤ �i

– The τi > 0 scalar is determined such that Ti (τpS
i ) is minimized, i.e.

τi = arg min
τ>0

Ti (τp
S
i ), for

∥∥τpS
i

∥∥ ≤ �i ;

– Set

pCi = τi p
S
i ,

results:

pCi = −τi
�i

‖∇ fi‖∇ fi ,

in which

τi = 1, for∇ f Ti Bi∇ fi ≤ 0,

otherwise

τi = min(‖∇ fi‖3/(�i∇ f Ti Bi∇ fi ), 1).

Always taking the Cauchy Point as the step of the method gives the abrupt descent
method. For example, this is not the case for steepest descent method even if an
optimal step size is chosen at each iteration.

Because the matrix Bi is used only to calculate the step length, the Cauchy point
has a lower dependence on it.

A fast (superlinear) convergence is obtained if Bi is exactly Hessian ∇2f (xi) or a
quasi-Newton approximation. ThematrixBi is used for both the direction calculation,
and the step length.

The dogleg method is one way to find the solution to the problem (9). Another
ways, are to use Steihaug method, or two-dimensional subspace minimization.

In order to increase the clarity, the problem (9) can be simplified by considering
the following single iteration problem:

min
s∈Rn

T (s)
de f= f + qT + 1

2
sT Bs, ‖s‖ ≤ � (10)

having the solution s∗(�).
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VI: Dogleg method

TheDoglegmethod is used to find a two line segments approximate solution instead
of a curve path for s∗(�). The origin is the initial value of the first path segment to
the unconstrained minimizer with the steepest descent direction defined by:

sU = − qT q

qT Bq
q.

The second path segment starts from the point sU to the point sB having a trajectory
defined by d(τ ):

d(τ ) =
{−τ sU , 0 ≤ τ ≤ 1
sU + (τ − 1)(sB − sU ) , 1 ≤ τ ≤ 2

with τ ∈ [0, 2].
If the norm

∥∥sB∥∥ � �, then the path d(τ ) crosses the boundary of the TR,
‖s‖ = �, at one point (Fig. 1).

VII. Two-dimensional subspace minimization

By extending the search to the entire surface covered by sU and sB(two-dimensional
subspace), a simplification of the dogleg method is obtained.

In these conditions, when matrix B > 0, has the positive eigenvalues, the sub-
problem (10) becomes:

min
s

T (s)
de f= f + qT s + 1

2
sT Bs, ‖s‖ ≤ �, s ∈ span[q, B−1q], (11)

Fig. 1 Illustration of the Dogleg method
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in which the span operator means the possible linear combinations set between
vectors q and B−1q.

The problem (11) can be solved relatively easy. The optimal solution to this
subproblem: pCi —the Cauchy point.

In case of B < 0, the sub-problem (10) is changed to:

span[q, (B + k I )−1q] , for k ∈ (−λ1,−2λ1], (12)

where λ1 indicates the most negative value of the eigenvalue of the matrix B.
The value of k is chosen such that B + kI is positively defined.
In case of

∥∥(B + k I )−1q
∥∥ ≤ �, the new step is defined as:

s = −(B + k I )−1q + a

with value of a chosen such that the condition aT (B + k I )−1q ≤ 0 is satisfied.

VIII. Steihaug’s approach

The above presented two methods (dogleg, two-dimensional subspace minimization)
assume a linear system whose solutions depend on B or (B + aI). But solving this
system when B is big becomes costly. Therefore, in practical situations other tech-
niques must be identified to find a solution to the subproblem (12) that does not
depend on the exact solution of the linear system, but which nevertheless leads to an
Cauchy point improvement.

In this regard, Steihaug proposed a method similar to the conjugate gradient
algorithm (as it is previously described).

The main difference between the standard conjugate gradient algorithm and Stei-
haug’s approach is that the algorithm is finalized when either the limits set by the
trust region ‖s‖ ≤ � are exceeded or when a negative curvature direction is reached
in B.

In the Newton trust region method, the B matrix is chosen to be exactly Hessian
∇2f (x) (or approximations thereof). These methods have very good local and global
convergence properties.

Unlike the line search methods where a fixed direction di and at each iteration
a length of step αi, is determined, in the trust region, firstly a radius of this region
is chosen in the form of a maximum distance �i , and, secondly, to both direction
and step are explored such that the best improvement is possible. If the result is not
satisfactory, the distance �i is reduced, and a new minimizer should be determined.
In general, as the radius of the trust region changes, the direction of the step changes.
Very important at each stage is the magnitude of the trust region. Often, the size of
the trust region is based on the previous obtained results (if the result is satisfactory)
from the iteration algorithm. If the region is not big enough, the algorithm passes a
good opportunity to take an increased step that will position the results much closer
to the objective function minimizer. If it is too large, the model minimizer may be far
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from the objective function minimizer in the region and the size of the TR is reduced
(repeat the algorithm).

IX. Generic TR Method

In order to establish the border of the TR, a maximum radius should be chosen �max

> 0.
Similiarly, the distance �0 ∈ (0, �max), and a fixed η within (0, 1/4) interval, the

starting point x0 ∈ Ri within the TR Ri, B0, ε > 0 should be initiated.
While ‖∇ f (xi )‖ norm is larger or equal than ε, do
Compute yi+1 as the approximate minimiser of xi+1 ≈ argmin

x∈Ri

Ti (x);

Determine xi+1:

xi+1 = yi+1, if
f (xi ) − f (yi+1)

Ti (xi ) − Ti (yi+1)
> η,

xi+1 = xi otherwise;
Compute �i+1:

�i+1 = �i

4
, if

f (xi ) − f (yi+1)

Tki (xi ) − Ti (yi+1)
<

1

4
,

�i+1 = min(2�i ,�max), if
f (xi ) − f (yi+1)

Ti (xi ) − Ti (yi+1)
>

3

4
;

�i+1 = �i , otherwise;
Build a new model function Ti+1(x).

i ← i + 1

end.

3.2. Direct Search Methods

These methods are also used in the case of non-divisible functions for determining
the values of the objective function. As disadvantages, convergence is slow, based
on simple calculations at each iteration.

Direct search methods can be—iterative methods—points are getting closer and
closer to the minimum.

As algorithm methods can be mentioned:

– Gauss-Seidel,
– Nelder-Mead
– downhill simplex, or amoeba method,
– Rosenbrock and Powell,
– SIMPLEX and COMPLEX.
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3.2.1. Nelder-Mead [10]

This optimization method takes part from the direct search optimization methods.
By considering a quadratic function defined by the user as:

function y = fnm (x)
y = 0

for k = 1 : size (x, 2) - 1
y = y + 68 * (x (k + 1) - x (k)) ˆ 2 + (1 - x (ik)) ˆ 2 - x (k) * x (k + 1);
end
endfunction

the problem is to find the optimal value through the Nelder-Mead method.
The optimal searching method is based on construction of new solutions by using

a simplex structure and a transforming series. This method does not require the
deduction of the gradients.

The detailed optimal structure solution can be found as:

opt = optimset (“Display”, “iter”);

The structured solution is composed by three elements: number of iteration, the
function count, and the minimum value of the function at each iteration. The method
can be used to improve the evolution of the optimization process.

Results: theminimumvalue of the quadratique function is found after 12 iterations
as in the following structure (Fig. 2).

Iteration Func-count min f (x)

0 3 0

1 3 0

2 7 0

3 11 0

4 15 0

5 19 0

6 23 0

7 27 0

8 31 0

9 35 0

10 39 0

11 43 0

12 47 0

3.2.2. Rosenbrock Method [10]

The problem is to find the optimum value of the nonlinear function of two
variables, f : R × R → R:
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Fig. 2 Nelder Mead method for solving a quadratique function [10]

f (x1, x2) = (2 − x1)
2 + 68

(
x2 − x21

)2

near to [−1.2 1.0].
The multivariable function mentioned above is known is Rosenbrock function.
This optimization problem takes part of the nonlinear optimization without

constraints.
The optimum value is find by using the three basic methods:

(i) Quasi-Newton BFGS,
(ii) Quasi-Newton BFGS with limited memory;
(iii) QN for non-diferentiable objective function (local optimization without using

the derivatives).

(i) Quasi-Newton BFGSmethod is a local optimization based method, and uses the
specification of the first derivative respect to each variable.

The software implementation of the above mentioned optimization problem
supposes:
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– The definition of the index function:
f = 60 *(x(2) – x(1)ˆ2)ˆ2 + (2 – x(1))ˆ2;

– The first order derivative respect to x1(1) = D1(1):
D1(1) = –272. * (x(2) – x(1)ˆ2) * x(1) -2. * (2. –x(1));

– The first order derivative respect to x1(2) = D1(2):
D1(2) = 136. * (x(2) – x(1)ˆ2).

After definition of the cost function and its first derivatives, the starting point of
the optimization algorithm: in this example the initial point is placed at [−1.2 1.0]
blue mark in Fig. 3a. The initial estimate of the solution coordinates should be also
be provided: the initial guess is placed at [1.0 1.0] (red point on the Fig. 3a).

Contours of the particular Rosenbrock function of two variables (a = 2, b = 68)
are plotted on the Fig. 3a, the optimization process is depicted on the Fig. 3b, and by
using the QN-BFGS algorithm the minimum value of the objective function is found
at [x1min,x2min] = [2, 4], having the scalar value fmin(x1, x2) = 0.

The optimum function value fopt, for the initial guess × 0 can be find as:

fopt1 = 0

placed at the optimum coordinates [x1min,x2min] = xopt1

xopt1 = [2. 4.]

(ii) By using the quasi-Newton method based on Broyden-Fletcher-Goldfarb-
Shanno (BFGS) with limited memory, the same values are found. This method
is applied to large number of variables (more than 100):

fopt2 = 0

at the [x1min,x2min] = xopt2

xopt2 = [2. 4.].

(iii) By using the third method, for non-differentiable functions, an approximation
of the optimal solution is obtained as:

fopt3 = 0.0004828,

the optimum value of the nonlinear multivariable function being placed at,

xopt3 = [1.9866225 3.9487826].

In order to find the optimal value of the cost function,
The optimization based on the Nelder-Mead search method does not use the

information about the gradient of the function. The function value evolution during
the unconstrained optimization process can be plotted for the above known function.

In Fig. 3c the dynamic of the optimization process is shown As can be seen, the
last half of the iterations maintain the cost function value is almost maintained at the
constant value. The optimal value of the cost function is 1.389381e-10 (Fig. 3c).
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Fig. 3 a Contours of the particular Rosenbrock function of two variables (a = 2, b = 68). b Plot
the initial guess of the optimum variables [x1min,x2min] = [1] and the evolution of the optimization
process. c Cost value: the evolution of the minimization process through the used Nelder-Mead
algorithm
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The dynamic of the transformations at each iterate, as well as the applied
optimization procedure at each step can be viewed:

Iteration Func-count min f(x) Procedure

0 3 23.4048

1 3 20.5828 initial simplex

2 5 10.054469 expand

3 7 9.6029493 reflect

4 9 9.6029493 contract outside

5 11 9.4738768 contract inside

6 13 9.31917 contract inside

7 15 9.2507973 reflect

8 17 9.2507973 contract inside

9 19 9.1980872 expand

10 21 9.0477781 expand

11 23 8.8547479 expand

12 25 8.3861285 expand

13 27 8.1417887 expand

14 29 7.4969757 reflect

15 31 7.4969757 contract inside

16 33 7.4288297 expand

17 35 6.3523046 expand

18 37 5.3708076 expand

19 39 5.3708076 contract inside

20 40 5.3708076 reflect

21 42 5.2331712 reflect

22 44 4.8457422 reflect

23 45 4.8457422 reflect

24 47 4.1618679 reflect

25 49 4.1618679 contract inside

26 51 4.1442689 reflect

27 53 3.2469009 expand

28 55 3.2469009 contract inside

29 57 3.2469009 contract outside

30 59 2.6898366 expand

31 61 2.6898366 contract outside

32 63 2.6898366 contract outside

33 65 2.334585 expand

34 66 2.334585 reflect

35 68 1.8784037 expand

(continued)
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(continued)

Iteration Func-count min f(x) Procedure

36 70 1.8784037 contract inside

37 72 1.5530071 expand

38 74 1.5530071 contract outside

39 76 1.3613402 reflect

40 77 1.3613402 reflect

41 79 1.1890049 reflect

42 81 1.1890049 contract inside

43 83 0.9850215 expand

44 84 0.9850215 reflect

45 86 0.6400976 expand

46 88 0.6400976 contract inside

47 90 0.6400976 contract outside

48 92 0.6241326 reflect

49 94 0.435756 expand

50 96 0.435756 contract inside

51 98 0.435756 contract outside

52 100 0.3462121 expand

53 102 0.2962515 reflect

54 104 0.2115731 reflect

55 106 0.2115731 contract inside

56 108 0.1905142 expand

57 110 0.1339536 reflect

58 112 0.0576853 expand

59 114 0.0576853 contract inside

60 115 0.0576853 reflect

61 117 0.0548968 reflect

62 119 0.043614 contract inside

63 121 0.026894 reflect

64 123 0.026894 contract outside

65 125 0.0176597 contract outside

66 127 0.0176597 contract inside

67 129 0.0158285 contract outside

68 130 0.0158285 reflect

69 132 0.0134937 reflect

70 134 0.0133218 contract inside

71 136 0.0114001 reflect

72 138 0.0114001 contract inside

(continued)
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(continued)

Iteration Func-count min f(x) Procedure

73 140 0.0094043 expand

74 142 0.0073118 expand

75 144 0.0034168 expand

76 145 0.0034168 reflect

77 147 0.0003337 expand

78 148 0.0003337 reflect

79 149 0.0003337 reflect

80 151 0.0003337 contract inside

81 153 0.0003007 contract outside

82 155 0.0000446 contract inside

83 157 0.0000446 contract inside

84 159 0.0000178 contract outside

85 161 0.0000071 contract inside

86 163 0.0000058 contract inside

87 165 0.0000028 contract inside

88 167 0.0000006 contract inside

89 169 0.0000006 contract inside

90 171 0.0000005 contract inside

91 173 7.754D-08 contract inside

92 175 7.754D-08 contract inside

93 177 6.537D-08 contract outside

94 179 7.641D-09 contract inside

95 181 7.641D-09 contract inside

96 183 7.641D-09 contract outside

97 185 1.573D-09 contract inside

98 187 1.573D-09 contract inside

99 189 1.325D-09 contract inside

100 191 8.792D-10 reflect

101 193 1.389D-10 contract inside

102 195 1.389D-10 contract inside

103 197 1.389D-10 contract inside

The procedure contract inside means that the problem has a solution, and the
termination criteria has been attained. In order to check the optimization progress, at
each iterate there is a warning message regarding the convergence evolution of the
algorithm. If the problem converges to the optimal solution, the following message
could be viewed: Optimization terminated.
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The variables x satisfies the termination criteria using OPTIONS.TolX of
0.0001 (tolerance) and cost function F(x) satisfies the convergence criteria using
OPTIONS.TolFun of 0.0001.

By using Nelder-Mead method, the optimal variables pair is obtained,

xopt4 = [2.0000022 4.0000102],

conducting to an optimal cost function of:

fopt4 = 1.389D-10.

6 Nonlinear Optimization Without Constraints

The canonical form of nonlinear programming problems is [7] to find the
optimal solution vector x∗ = (x∗

1 , x
∗
2 , . . . , x

∗
n ) such that the index function z =

f (x1, x2, . . . , xn) is minimized, having the gi (x1, x2, . . . , xn) ≤ 0, as constraints,
with i = 1, 2, . . . ,m, and nonnegative conditions x1 ≥ 0 , x2 ≥ 0 , . . . xn ≥ 0.

The canonical form can be synthesize as:

⎧⎨
⎩
min f (x), x ∈ Rn;
gi (x) ≤ 0, i = 1,m;
x ≥ 0

In case of the linear programming problem, both the index function, z, and the
constraints, gi, are linear. Therefore, there is (at least) a general method of solving—
for example the simplex method−in the nonlinear case there is no such method.
However, substantial progress has been made in some special cases by imposing
conditions on the functions f and gi.

The non-linearity of the objective or some of the constraints leads to complicating
the task of determining the optimum.

(1) From the beginning we will emphasize that in nonlinear programming—with
a few exceptions—the methods of solving “theoretically” obtain the optimal
solution as the limit of a series of solutions. Thus, a concrete process of nonlinear
optimization is finished not due to the structure of the problem but by the user’s
will that limits the number of steps according to awhole series of factors such as:
complexity of calculation, time available, performance of computing equipment,
etc.

(2) it is possible that the objective function in (P) has more local minima on the set
of admissible solutions A.

The possibility of the existence of several local minima of the objective function
represents a serious difficulty in solving a nonlinear program. Indeed, in the formu-
lation itself, such a problem requires the determination of the global minimum of the
objective. However, all known non-linear optimization methods fail to determine at
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most a local minimum, with no guarantee that it coincides with the global minimum
sought.

As we will see, if A is convex and the objective function is convex and minimized
then it has at most a local minimum which - if any - is automatically global.

(3) Even though the constraints in (P) are linear but the objective remains nonlinear
but convex, the optimal solution, although it is on the border of A, is not
necessarily a peak.

(4) it is possible that the optimal solution is located inside the set A.

Classes of nonlinear problems

6.1 Unconstraint Optimization Problems

Unconstraint optimization problems have the general form:
determine x* ∈ Rn n which minimizes the value of the function

z = f (x1, x2, . . . , xn),

the minimum being taken after all x ∈ Rn n where function f is defined.

6.2 Optimization Problems with Linear Constraints
and Nonlinear Objective Function

In this class a special attention should be on the quadratic programming problems.
The index function is a polynomial of the second degree in its variables:

f (x1, x2, . . . , xn) = c0 +
∑
i=1,n

ci xi +
∑

(i< j)=1,n

ci xi x j

The problems of quadratic programming are important for the following reasons:

• the fact that it models many practical situations with sufficient accuracy;
• it is solved by methods derived from the simplex method in a finite number of

steps;
• solving many problems with linear constraints and nonlinear objective function

can be reduced to solving a sequence of quadratic programming problems whose
objective functions increasingly approximate the original nonlinear objective.



214 M. Gaiceanu et al.

7 The Problems of Convex Programming

The problems of convex programming are characterized by:

• convex objective (index) function if it isminimized (equivalent: concave objective
function if it is maximized);

• gi (x) ≤ 0, the inequality constraints are of the form gi (x) ≤ 0 in case of convex
function g (equivalent gi (x) ≥ 0, in case of a concave function g);

• equality constraints are linear, a requirement motivated by the fact that linear
functions are the only simultaneously convex and concave functions.

Convex problems have the following fundamental properties:

• the set of admissible solutions is convex;
• the objective function admits at most an optimal (minimum or maximum) local;

automatically this will be a global optimum and will represent the optimal of the
problem;

• if the free (unconstrained) optimal of the objective function is not an admissible
solution then the constrained optimal is necessarily located on the boundary of
set A.

The importance of this class of problems is very high due to the following reasons:
Convex programming includes linear programming;

• In this area, the greatest research effort was made and the strongest theoretical
results (such as nonlinear duality theory, Kuhn - Tucker optimality conditions)
and practical (optimization methods and algorithms) were obtained;

• The whole mathematical formalism of modern economic theory is based on
convexity assumptions.

8 The Problems of Separable Programming

The problems of separable programming are characterized by the fact that the index
function f as well as the constraints gI are separable within the meaning of the
following definition:

The separable function f (x1, x2, . . . , xn) should satisfy the following relation:

f (x1, x2, . . . , xn) =
n∑

i=1

fi (xi ).

Separability is important because it facilitates optimization. For example, the
optimization of a separable functionwithout constraints is reduced to the independent
optimization of terms.
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9 The Problems of Non-convex Programming

The problems of non-convex programming bring together all the problems that do
not satisfy the convexity hypotheses. These problems have several local minima.
The current methods can cause such an optimum. However, these problems cannot
guarantee that the solution is the global optimum. Fortunately, there are several
types of non-convex problems, useful in practice that can be solved without special
difficulties by special methods, added via fractional programming problems.

Sets and convex functions

By considering C as a set of the real n- dimensional space (C⊆ Rn), the set is convex
if for two containing points the segment joining them is inside of the C.

Mathematically,
C is a convex set if (∀) x, y ∈ C, for any λ ∈ [0, 1], the following relation is

true (1 − λ)x + λy ∈ C .
Supposing C is a convex set, and f a numerical function defined at all points of

the set C, f is a convex function if:
(∀) x, y ∈ C, for any λ ∈ [0, 1], the following relation is true

f [(1 − λ)x + λy] − (1 − λ) f (x) + λ f (y) ≤ 0

Oppositely, the concave function should satisfy the folowing:

f [(1 − λ)x + λy] − (1 − λ) f (x) + λ f (y) ≥ 0.

For any different two points, x, y, with (∀)x, y ∈ C , and (∀)λ ∈ (0, 1), the func-
tion f is named strictly convex (strictly concave) if the abovementioned relationships
are strictely.

10 Nonlinear Optimization Without Constraints. The
Convex Case

The general optimization problem:
(P) Find x* ∈ A ⊆ Rn with the property that the function value f(x*) satisfy the

relation inf {f(x), x∈ A},

for any x from the admissible solutions (A) set of the problem (P), A is defined by a
set of constraints:

gi(x) ≤ 0, i ∈ M = {1, 2, . . . ,m}.

In order to simplify the explanation, any conditions of non-negativity xj≥ 0 were
included in the restriction block in the following form: –xj≤ 0.
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Suppose the functions f and g1, g2 …, gm are defined entire the space Rn, n are
convex and differentiable, and at least one of them is non-linear. In this way, the
problem (P) is a programming convex problem.

Recall that in this context:

• A is a closed and convex set;
• any local minimum of function f on the set A it is a global minimum.

11 Optimization Methods with Constraints

Techniques for nonlinear software problems with constraints are superior to those
without constraints.

If the constraints are linear, the algorithms are based onmethods of optimizing the
case without constraints. The basic approach for solving a multivariate constrained
nonlinear problem is to reformulate it into a succession of related problems, so that
each problem can be solved by simpler methods. As an example, Newton‘s methods
for unconstrained problems based on a local quadratic approximation of the objective
function can be developed for the unconstrained problem by restricting the region
in which the quadratic model is valid. This constraint is, in principle, similar to the
trust region method.

These optimization techniques are splitted in three categories:

(1) methods of gradient—based on the adaptation of the unconstrained general
optimization scheme in case of constraints.

(2) methods based on penalty functions: solving the main problem reduces to more
unconstrained optimized problems.

(3) methods based on the plane sections; its principle, thesemethods “approximate”
by polyhedral set (a set that can be described by a system of linear inequalities);
solving the problem is reduced to a sequence (infinite) of linear optimization
problems made using the simplex algorithm.

11.1 Convex Programming. Kuhn—Tucker Optimality
Conditions

Formulation of the conditions

It is considered the canonical form of a convex programming:
(P) Find the x* ∈ Rn n with the property that the value of the function f (x*) is

minimal:

f (x∗) = min f (x).

The minimum value is determined for any x ∈ Rn by fulfilling the constraints:
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qi (x) ≤ 0, i = 1,m

and the non negativity conditions:

x ≥ 0, x j ≥ 0 j = 1, . . . , n.

It is assumed that the functions f is defined in the space Rn, and qi (q1, q2,…, qm)
is also defined. Morevover, both of the functions are differentiable.

For each restriction qi(x) ≤ 0 corresponds to a variable single nonnegative single
ui. Thus, the Lagrangian of the problem is constructed based on:

L(x,u) = f (x) +
∑
i=1,m

uiqi (x),

where u = u1, um are called Lagrange multipliers components.
If u ≥ 0 (u ∈ R

m), then L is a convex function and differentiable.
Assuming that the conditions of regularity Slater [11], the set of the admissible

solutions is within the relatively non-empty, the Kuhn - Tucker theorem is as
follows: the necessary and suffiecient conditions such that x*∈Rn be the minimum
value of the problem (P) is to exist u* ∈Rm such that the pair (x*,u*) check theKuhn
- Tucker optimality relationship:

∂ L
∂ x j

≥ 0, j = 1, n; x j · ∂ L
∂ x j

= 0, respect with xj ≥ 0,
∂ L
∂ ui

≤ 0, i = 1,m; ui · ∂ L
∂ ui

= 0, respect with ui ≥ 0.
Constrained optimization. Sufficient conditions for minimum point
Taken into consideration two continuously differentiable real-valued functions f ,

g1, g2, …, gm, if there are vectors x0 ∈ Rn, λ0 ∈ Rm, such that:

∇L(x0, λ0) = 0

and the positivity condition is respected:

(−1)m

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂2L
∂x21

(x0, λ0) · · · ∂2L
∂x1∂xp

(x0, λ0)
∂q1
∂x1

(x0) · · · ∂qm
∂x1

(x0)

· · · · · · · · · · · · · · · · · ·
∂2L

∂xp∂x1
(x0, λ0) · · · ∂2L

∂x2p
(x0, λ0)

∂q1
∂xp

(x0) · · · ∂qm
∂xp

(x0)
∂q1
∂x1

(x0) · · · ∂q1
∂xp

(x0) 0 · · · 0

· · · · · · · · · · · · · · · · · ·
∂qm
∂x1

(x0) · · · ∂qm
∂xp

(x0) 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

> 0

for p = m + 1,…,n, then the stricttly local minimum of the function f is the vector x0

qi (x0) = 0, i = 1,m;
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if p = n, the bordered Hessian matrix is obtained from the above last mentioned
matrix.

11.2 Semi-defined Programming (SDP)

Semi-infinite programming problems (SIPs) or SDPs are components of the
optimization family having an infinite number of variables or of constraints.

A SDP problem is linear if two conditions are fulfilled: (1) there is a linear
objective function f ; (2) there are affines constraint functions g(t), for any t ∈ T.

A SDP problem is convex if the following two conditions are respected: (1) the
objective function f is convex, (2) the constraint g (., t) is concave for all t ∈ T. In
this case the considered set is feasible.

The function F is convex

F = {x ∈ Rn : g(x, t) ≥ 0 for all t ∈ T }.

In this case, at the same time the local and the global minimum are the same.
Semi-defined programming involves second order cone programming (SOCP),

because SOCP constraints can be written as linear matrix inequalities.
SDP is a generalization of linear programming (LP). SDP is reduced toLPproblem

only in case of the diagonal matrices [8].

12 Mixed Integer Nonlinear Programming (MINLP)

The variables in the most used optimization problems are integer or discrete form.
These can be modeled as MINLPs. The modeling variables can be integers (number
of buildings), or binary (0 or 1) type (decision modelling). In addition, there may be
continuous variables that may represent, for example, speed or torques. The nonlin-
earities can be found in the mathematical model of the studied process (the hysteresis
of the magnetic materials), or in the decision variables. The objective function of the
MILPs can be the costs minimization or the profits maximization.

13 Heuristic Methods

Heuristic Methods (HM) are faster than traditionally optimization algorithms
Classification of the metaheuristic algorithms (MA) for local and global search:

(a) The general structure of the local optimization algorithms
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(b) Deterministic for local search. There are two mainly types of searching
algorithms: Pattern, and Nelder Mead, respectively;

(c) Random local search: Matyas, and Solis-Wets, respectively;
(d) MA for global search: Local search with restarting; Local iterated search, and

Simulated Annealing.

The use of the HM in MINLP

The HM is recommended to be used instead of the large computational burning
time of the deterministic algorithms. Many times, these methods cannot guarantee
that the solution can be found. However, HM are much faster than the conventional
algorithms and simplify the optimization problems. Many of the HM mimic the
known continuous methods.

Recently, there are many developed HM aimed to solve the practical problems of
MINLP. These HM include procedure for rounding [12] and an attempt to generalize
a method SQP [13, 14] the method of gradient descent [15–18], penalty function
method [19, 20] and adaptive random search [21].

There are two mainly factors to succeed a HM: speed and reliability to find the
suboptimal solution. The term of the suboptimal solution is used for any solution very
closed to the optimal solution. This type of solution is very attractive in practice. From
the NLP relaxationmethod a satisfable solution can be determined. The simplest HM
are based on rounding. The method of solving the MINLP problem is based on the
NLP technique combinedwith the relaxation of all the integer constraints. Finally, the
value of the solution is rounded to a near integer point. There are two disadvantages
of using thi method: 1. the value of the solution cannot be feasible, and 2. the obtained
value for the objective could be too far from the value obtained in the deterministic
case. In the paper [12] a “smart rounding” procedure was developed and a discrete
line layout scheme was proposed. Recently, the developed smooth landings methods
becomes very attractive. In the paper [15], for example, the authors generalize the
ablest method of descending with theMINLP problem line search. They reformulate
the optimization problem by using an inverse barrier function to obtain the MINLP
problem without constraints.

Local optimization

Local optimization methods search the optimal solution x* in the vicinity of the
studied point V (x*), i.e.

f
(
x∗) ≤ f (x + e), with ε > 0, sufficiently small.

Remark: the initial approximation of the optimal solution should be known
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The solution can be found in discrete space or in continuous space.
In the first case, the neighbourhood of an element is a finite set that can be

thoroughly explored.
In the second case, there are two derived branches, function of the derivability

property of the objective function:

(a) in case that the derivability feature is fulfilled by the objective function, two
basic methods can be used: gradient, and Newton.

(b) in case that the derivability feature is not fulfilled by the objective function,
the direct search methods (e.g. Nelder Mead), or the methods based on small
random perturbations are recommended.

Global optimization:

• identifying the global optimality of a function: for a minimization problem, the
following property should be attained f (x∗) ≤ f (x), x* is considered the global
minimum value if the above mentioned property is true for all x;

• by using local search methods, if there are local optimimum points, the minimum
value of the objective function can be blocked into the local optimum point.

14 Genetic Algorithms (GAs)

Genetic algorithms are some of the most popular evolutionary computing strate-
gies. Among other applications, these have been successfully used for difficult opti-
mization problems, with multimodal, discontinuous and non-differential objective
functions [22]. Traditional optimization algorithms often fail in such cases.

Algorithm

Generate the initial population: N random individuals
while stop criterion not fulfilled,

Selection stage of the individuals fittest for the next stage
Reproduction stage: by applying crossover and mutation operators, new

individuals are created
Recombination stage: new population are created
end while
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15 Ant Colony Optimization

Inspiration from the intelligence of the colonies led to some very successful
optimization algorithms.

– Ant colony optimization—a way to solve optimization problems based on the
way ants communicate indirectly with each other.

Ant colony optimization algorithms.
Ants are agents that [23]:

– move along the nodes in a graph
– ants choose where to go based on the power of pheromones.

The path of an ant is a specific solution of the candidate.
When an ant has finished a solution, the pheromone is placed in its path, depending

on the quality of the solution.
This pheromone pathway affects the behavior of other ants through “stigmergy”

Optimization methods

1. Differential evolution (DE)

The general algorithm from the GAmethod has been applied in the case of DE. After
population initialisation, the generation of descendant population through crossover
and mutation is obtained (the first step is the reproduction). The next step is the
selection of the best element in the population. By using DEmethod, a new candidate
is building. As evolutionary strategy, the multi-modal test function has been used.

Taking 2 elements in the population having the size n = 1 for each element,
considering 50 generations, choosing [−0,5 0] the domain of the function to be
minimized with crossover probability of 0.55, the Differential evolution algorithm
provides the minimum function value (Fig. 4).

2. Particle cluster optimization
3. Clonal selection
4. Ant colony-type optimization
5. Hill climbing and simulated riding

Hill climbing algorithm

Ideas similar to the ascending gradient method if the objective function is maximized

– They start from a randomly selected point in the search space p0
– Current point pc ← p0
– One or more neighboring points are generated, pv
– If the objective function in a neighboring point is better than the current one, then

pc ← pv;
– Choose the first best neighbor (Greedy, Simple HC)
– The best neighbor is chosen (Steepest Ascent HC)
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Fig. 4 Graphical representation of the function and elements of the population. Displaying the
value of the best element in the population [10]

16 Simulated Annealing (SA)

Stochastic algorithm inspired by metallurgical quenching. Heating and then
controlled cooling of a material increases the size of the crystals and reduces defects.

SA algorithm
Suppose a minimization problem, with the objective function E

– If the neighbor is better (Ev< Ec), then pc ← pv
– If the current state is better than the next one, the neighbor (Ev> Ec), then �E is

caluclated;
– The difference of the objective functions is calculated: � E = Ev – Ec
– It is considered the current temperature T, high at the beginning and decreasing

in time.
– Probability of accepting the transition to the lower state is: P = exp (–� E/T )

Example: The function to optimize is the Rastrigin function by using SA method.
In Figs. 5–6, by taking two parameters of Rastrigin function, A = 1, n = 2, the

dynamic process of the optimization, and the contour plot of the Rastrigin function
during SA optimization are shown (Fig. 5).

The dynamic process of the optimization by using SA.
The intial random initialisation:
×0 = −0.0060798 0.0412484
y0 = 0.0358653.
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Fig. 5 Contour plot of the Rastrigin function during SA optimization and the dynamic process of
the optimization process evolution (red line) [10]

After 2000 number of iterations, by using SA method of optimization (Fig. 7),
the coordinates of minimum function obtained at (0.0023824 −0.0028886), corre-
sponding value by Rastrigin function is 0.0002908 (Fig. 6).

By choose a large number of iterations more than 2000), the function has a global
minimum at x = (x1, x2) = (0,0), and the value f(x) = 0.

17 Particle Swarm Optimization (PSO)

Swarm intelligence [24] domain that includes intelligent techniques based on the
collective behavior of systems with self-organization and without centralized control

Model of the particle assembly

The Particle Swarm Optimization (PSO) [4, 25] technique was proposed by James
Kennedy and Russell Eberhart for nonlinear function optimization (1995).

The source of inspiration: the behavior of bird flocks, fish banks, and bees swarms,
these are assimilated to a set of particles that move in the search space to identify the
optimum [25].
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Fig. 6 The dynamic process of optimization (red line) in the specified [−0.5, 0.5] interval

It uses a set of particles whose positions are in the field of objective function and
which are modified by an iterative process.

At each iteration, the new position of each particle is determined according to:
the current position of the particle.

The best position encountered by the particle is the local best solution
Best position found by the whole is the global best.

PSO Algorithm:

Initialization of particle positions

REPEAT

speed calculation
update positions

UNTIL < stop condition>

The PSO algorithm is applied to the Rastrigin function.
The same significance of the optimization process (for Rastrigin function) results

are obtained as in SA method, discussed above (Figs. 8, 9, 10).
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Fig. 7 Optimization process of Rastrigin function of two variables

18 The Model of the Bee Swarm

The source of inspiration: the intelligent behavior of bees in the process of identifying
food sources (nectar)

It uses a population of “bees” consisting of three categories: Bees “allocated” to
a food source (workers)

Observer bees
Scorpion bees

The model of the bee swarm
Step 1: Initialize the locations in the search spacewhere theworker bees are placed
Step2:How long the continuation condition is satisfied:Theworkingbees transmit

information about the quality of the locationwhere they are to the observer bees; each
bee observer selects a location; the selection is based on a probability distribution
determined by the values of the associated scores;

Working bees explore the vicinity of their location and move to another neigh-
boring location if it is better; if a worker bee does not discover a better configuration
in a limited number of steps then it is relocated to a position determined by a bee
researcher. Scorpion bees randomly change their position.
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Fig. 8 Contour plot of the Rastrigin function during PSO optimization and the dynamic process
of the optimization process evolution (red line) [10]

19 The Firefly Model

Firefly algorithm [26]

The source of inspiration: interactions between firefly based on the light signals they
emit.

Main idea of implementation

• Each element of the population corresponds to the position of a firefly
• Each degree of firefly is associated with a degree of brightness (correlated with

the value of the objective function associated with the corresponding element in
the population).

• Themovement of the firefly is guided both by the distance between their positions
and the value of the brightness

– Position xi is shifted to position xj (if xj has higher brightness) using the specific
parameters (alpha, beta and gamma are control parameters and epsilon is a random
value with normal distribution)
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Fig. 9 The PSO dynamic process of optimization (red line) in the specified [-0.5, 0.5] interval [10]

Conclusions:

– Differential evolution has the same genetic operators as classical evolutionary
algorithms, but their order and mode of operation is different

– There are many other optimization algorithms inspired by nature
– Particle cluster optimization is inspired by the behavior of birds
– The clonal selection is inspired by the immune system
– Ants colony-type optimization is inspired by the way they search for food
– The simulated ride is inspired by metallurgy.
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Fig. 10 Particle Swarm Optimization process of Rastrigin function of two variables. Convergence
of the optimization process [10]

20 Very Large Scale Neighborhood Search

The main cause of generating complicated difficulties in solving real optimization
problems is the dimension: such a problem complicated is too high. In mathemat-
ical programming the size of the problem is relatively, depending on the following
parameters:

• Number of variables and the number of constraints;

– Complexity of the function expressions and the constraints;
– Performance of the numerical calculus equipment: hardware and software

In principle, methods for solving large scale problem divides into:

• DirectMethods: they specializes a general procedure to the specifics of a particular
class of optimization problems.

Let take into consideration he case of a linear program with upperr bounded
variable:
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

n∑
j=1

ai j x j = bi , i = 1, .m

0 ≤ x j ≤ u j , j = 1, .n

(max) f =
n∑
j=1

c j x j

The classical solution method involves the transformation of the upper conditions
in equality:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

n∑
j=1

ai j x j = bi , i = 1, .m

x j + xn+ j = u j , j = 1, .n
x j ≥ 0 ,

(max) f =
n∑
j=1

c j x j

The result consists of the programwith m+ n restriction and 2n variables of those
bases were of the order m + n matrices.

• Indirect methods, based on the decomposition large problem into smaller, inter-
connected sub-problems. Subproblems may be solved independently (and if
it is even possible at the same time), but the fact that the subproblems inter-
acts involves existence of a coordination mechanism. Thus, solving the original
problem is made in two levels.

• at the First level—lower—subproblems are solved and the results are commu-
nicated:

• Second level—higher—which analyzes the results and transmit the new
parameters to the lower level.

At level one there is a resumption of calculations (re-optimization); new results
sent to the upper level for analysing, so on.

Important is the fact that this iterative process converges.
The nonlinear-optimization (NO) is divided into: Unconstrained (UNO) and

Constrained (CNO).
The algorithms used to solve Nonlinear programming problems in Very Large

Scale Systems are as follows:

• Augmented Lagrangian Methods
• Sequential Quadratic Programming
• Feasible Sequential Quadratic Programming
• Reduced-Gradient Methods
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Constrained Nonlinear Optimization

Constrained nonlinear optimization problems can be solved by using one of the
following algorithms:

• Interior-point (IP). The method is used for large-scale problems.
The IP algorithm estimates the Hessian matrices by using:

• BFGS (dense)—Limited-memory Broyden Fletcher Goldfarb Shanno
• Limited memory BFGS
• Hessian-multiply function
• Current Hessian (sparse or dense)
• Finite difference of gradients. This case does not require the knowledge of

sparsity structure

• SQP algorithm.
This algorithm is specified to general nonlinear optimization problem.

• The trust-region reflective (TRRA) algorithm can be succesfull used in case of
the bound constrained problems or linear equals only.

For the TRRA, the Hessian matrices can be obtained by using:

• Finite difference of gradients, sparsity structure of the Hessian
• Current Hessian (sparse or dense)
• Hessian-multiply function

Both methods, the IP and TRRA use lower memory usage.

21 Security-Constrained Unit Commitment (SCUC)

The Unit Commitment (UC) problem is based on the optimization algorithms and
it used in power sytems. The idea is to coordinate a set of the electrical generators
such that the energy demand with minimal costs is attained, or maximize the profits
from energy production.

Coordination of generating units is a difficult task for several reasons:

– there are a large number of units;
– the costs of the energy production from different type of generators can varying.

At the same time, different constraints conditions for each generator can be met
(due to the different technologies of energy production);

– the generators are spread over a large area into a country. For this reason, the
response capacity of the electrical network should be considered. The complex
power flow data should be determined to assure the load demand.

SCUC commitment consists of two components, system security and economic
dispatching. The objective of the problem is focused exclusively on the economic
dispatch of generators with tender segments, without loading costs, starting costs
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and other costs incurred during operation. The lowest cost is desired depending on
the system operators.

22 Conclusion

The complexity of the mathematical problems into the power systems is very high.
Different methods should be used to find the adequate solution.

The class of the numerical methods is very usefull to increase the speed of finding
the solution with high precision.

To facilitate the development of numerical problems, the need to establish proce-
dures is stringent, this leads to algorithms development. However, the solution
involves the following steps; modeling, choice of numerical methods, operation,
results, and interpretation of the obtained results. In power systems, power is known
rather than current; thus, the equations resulting in power term are more appropri-
ately. This type of equations (power flow equations), are nonlinears. The solution of
them is obtained by using iterative techniques from the numerical algorithms.

The authors of this chapter made an incursion in optimization problems and their
solution through the numerical methods. In order to implement the optimization
algorithms different programming languages have been used, as Matlab [27], and
Scilab [10] Starting with the formulation of the optimization problem, the authors
gives different solutions to the exposed topics: optimization of a real variable func-
tions, the extremes of the functions defined over an interval, extremes of functions for
which the derivative does not exist, the method of small pertutbations (variations),
extremes of the multivariable functions, the minimum of a function of two vari-
ables with constraints, the Lagrangemultiplier method for determining theminimum
of a constraint function, types of optimizations, unconstrained optimization prob-
lems, nonlinear optimization without constraints, optimization problems with linear
constraints and nonlinear objective function, the problems of convex programming,
the problems of separable programming, the problems of non-convex program-
ming, optimization methods with constraints, Mixed Integer Nonlinear Program-
ming (MINLP), Very Large Scale Neighborhood Search, Security-Constrained Unit
Commitment (SCUC).

Advanced optimization algorithms are introduced and the simulation results
are provided (Genetic Algorithms, Particle Swarm Optimization, and Simulated
Annealing).
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