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Abstract This chapter describes the linear stability investigation of the incompress-
ible viscid flow between the two concentric counter-rotating vertical cylinders. The
parallel flow assumption was considered for the base flow, and hence it is varying
in the radial direction only. The flow is a shear driven, and hence the pressure
gradient is zero in the stream wise direction. The Governing stability equations
for the disturbance flow quantities are derived in cylindrical polar coordinates by
coupling the energy equation with the Navier-stokes formulas. The stability formulas
are discretized using CSCmethod. The discretized stability formulas, combined with
appropriate boundary conditions, form a general Eigenvalues problem (EVP). The
full spectrum of the eigenvalue problem is computed for the different Reynolds
numbers under the effect of viscous heating, different radius ratio, and buoyancy.
The axial and radial wave numbers, β and α are taken as π/2 and zero, respectively.
The effect of viscosity variation due to temperature is introduced by Nahme number
(Na) and Brinkman number (Br) and effect of buoyancy by Grashof number (Gr).
The acute value of Re of the flow is computed for isothermal and non-isothermal
Ta–Co flow including the effect of viscid heating and buoyancy at different radius
ratio (η). The viscous heating and buoyancy effect destabilize the flow.
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Nomenclature

T Temperature
μ Viscosity
ρ Density
Cp Specific Heat
d Diameter of Cylinder
g Gravitational Acceleration
η Radius Ratio
Pr Prandtl number
Gr Grashof number
Re Reynold’s Number
Rcr Critical Reynolds number
Na Nahme Number
Br Brinkmen Number
α Azimuthal wave number
β Axial wave number

Abbreviations

ODE Ordinary Differential Equation
PDE Partial Differential Equation
EVP Eigenvalue Problem
FDM Finite Difference MethodFinite Difference Method (FDM)
FEM Finite element MethodsFinite Element Method (FEM)
CSC Chebyshev Spectral Collocation
Ta–Co Taylor–Couette flow

1 Introduction

The (PDEs) and its applications are important in the field of applied mathematics.
These are a basic form of equations in the number of applications of physics, natural
science and finance. They are used to describe the local properties of the function in
the three-dimensional fluid flow problems.

The concept of discretization is the easiest set of rules to approximate the solution
of PDEs. In this process, the PDEs are represented as the determinate dimensional
problem. At the same time, replacing the Partial differential equation by a distinct
model is not insignificant at all, and more often, the choice of the determinate dimen-
sional model to be used depends on the properties behind the mathematical model
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itself. The Recent advances in computer technologies have made it easier to deter-
mine accurate solutions of the PDEs efficiently, even in the most critical cases of
very large systems of PDEs.

The FDMandFEMmethods are often used for themathematical solution of PDEs.
However, in the computations of the spatial derivatives, these methods essentially
require a massive number of nodal points to provide an accurate numerical solution.
The Spectral and Pseudo-spectral methods have been developed as an alternative
solution to it in recent years. The spectral methods are different from the FDM and
FEMmethods, in spectral methods global information is integrated in the calculation
of a spatial derivative. The spectralmethods canprovide greater accuracy for a smooth
solution with the use of a very less number of nodes and, therefore, less calculation
time as compared to FDM and FEM.

The spectral procedures are widely used for the flow simulations due to higher
accuracy.However, it is very difficult to apply it to complexgeometries, andgenerally,
it is used for simple geometries. The method of collocation is a numerical solution
method for the ODE, PDE and integral equations. In the collocation method, a finite-
dimensional space of solution is chosen (most often polynomials), and a number of
collocation points are also chosen. Then a solution is selected such that it fulfills the
condition of a given equations at the association positions. The orthogonal collocation
on finite elements is also used to solve a PDE from Fluid Dynamics. Association
locations are selected as the roots of orthogonal polynomials gave better results
because of a few striking characteristics of these polynomials.

The main objective of the authors is to study the Spectral collocation method
using Chebyshev polynomial and to demonstrate its application for the numerical
solution of fluid flow problem. The stability examination of the incompressible flow
passing between the two rotating cylinders having same axis of rotation (Ta–Co flow)
has been carried out to demonstrate the application of Spectral collocation method.
Sections 1 and 2 presents basic introduction, mathematical background and relevant
literature review. The governing stability equations, boundary conditions and numer-
ical solution of then eigenvalue problem is discussed in Sect. 3. Section 4 presents
solution of base flow temperature profile under the effect of variable viscosity. The
validation of the computed results and effect of radius ratio, viscous heating and
bouncy on the stability of Ta–Co flow have been discussed in the Sects. 5 and 6.

2 Chebyshev Method

The CSC method is used in discretizing the governing equations and group more
grid point at the boundary of a domain. The CSC Method is Global in Nature. In
this method Computation at any point depends on information from whole domain.
TheChebyshevSpectral CollocationMethod provides exponential Convergence rate.
This method provides precise results with moderate number of grid points.
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Let us consider one ODE,
y′(t) = f (t, (y(t)), y(t0) = y0

The equation is

required to be resolved in the interim [t0, t0 + Ckh]. Choose Ck from 0 ≤ c1 <
c2 < ··· < cn ≤ 1. The compliant polynomial association method come close to the
result y by the polynomial p of degree n this solution contents the primary condition
qt (0) = y0, it also satisfies the variance equation

q ′(t0 + h) = f (t0 + h, q(t0 + h))

y1 = q(t0 + h)

q ′(tm) = f (tm, q(tm)) at all association points tm = (t0 + Cmh) for m = 1, 2, …
n. This results in n + 1 conditions, which equals the n + 1 constraints needed to
identify a polynomial of degree n. The association methods used here are implied
“Runge Kutta methods”. The constants Cm in the “Butcher stand of a Runge Kutta
method” are the association points. It may be important to understand that not all
implied Runge–Kutta methods are association methods. The association method can
be explained with following case. Let us consider two association points C1 = 0 and
C2 = 1.

The association conditions are

qt (0) = y0 (1)

q ′ = f (t0, q(t0)) (2)

q ′(t0 + h) = f (t0 + h, q(t0 + h)). (3)

Above mentioned three conditions are used in collocation method, this indicates
that p has to be a polynomial of second degree. We can also write the function q as:
q(t) = α(t − t0)2 + β(t − t0) + γ this will help us to reduce the calculations. The
coefficients are evaluated by using collocation conditions.

α = 1

2h
= f ((t0 + h, q(t0 + h) − f (t0, q0)), β = f (t0, p0), γ = y0 (4)

The collocation method is now given by

y1 = q(t0 + h) = y0 + 1

2
h( f (t0 + h), y1) + f (t0, y0)) (5)

where, y1 = q(t0 + h) is approximate solution at t = (t0 + h).
The Chebyshev method is used to calculate number of collocation points in a

domain. Following figure shows the distribution of collocation points in the given
domain.
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Fig. 1 Chebyshev point
distribution

It is evident from the Fig. 1 that Chebyshev locations are placed at equal distance
on to the upper half of the unit circle but its projection on to the x-axis are not equally
spaced. There are more grid locations which are present at the extreme points in
comparison with the center or we can say that there is clustering of grid points at the
extreme points in comparison with to the center, it is also observed that the space
between grid points at ends is less in comparison to space between grid points at
the center so there is finer mesh at the boundary, which will help to have better and
accurate results. CSC methods support to characterize a function in best possible
way with the help of few representative points.

Periodic Function: The sample points which are evenly spaced throughout the
interval are selected to describe a periodic function over an interval. These sample
points are selected using N function samples, and they form a trigonometric inter-
pellant comprising of a sum of N sinusoids. This methodology produces merger in
N for integration, differentiation, and interpolation.

Non-periodic functions: ANon-periodic function over an interval is characterized
with the help of N function examples, the interval is mapped into [−1, 1]. The
sample points are chosen based on Chebyshev criteria and a polynomial interplant
comprising of a sum of N Chebyshev polynomials is created by the selected points.
This method offers convergence exponential in N for integration, differentiation, and
interpolation.

Comparison of the Chebyshev Spectral Collocation Method with Analytical
Method:
The comparison of CSC Methods is done by using derivative of the Sin (X) with the
help of analytical method as well as by CSC method.

The Square in the Fig. 2 represents the results using Analytical Method and star
represents the results using spectral method. The results depict that the CSC method
provides closely accurate to analytical solution points.

Chebyshev differentiation:
If a vector feven is trajectory of function models considered at equally spaced points
in an interval [a, b] i.e. if
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Fig. 2 CSC and analytical method results

feven =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

f (a)

f (a + �)

f (a + 2�
.

.

f (b)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(6)

Then, the vector of derived values at choose points can be presented in the form
of a centered FDM calculation it will be in the form of a matrix vector product of
f ′
even = DCFD

Where,

DCFD = 1

2�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 · · · 0 0
−1 0 1 0 · · · 0 0
0 −1 0 1 · · · 0 0
0 0 −1 0 · · · 0 0
...

...
...

...
...

...
...

0 0 0 0 0 0 1
0 0 0 0 0 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(7)

This approximation will converge like 1/N2. In Chebyshev spectral method we
just need to construct theN th Chebyshev approximant

∫
approx (x)) to f(x) and differ-

entiate the variable of approximation and considering this as an approximation to the
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derivative. The N th Chebyshev approximation to f(x) is

∫
approx (x) =

N∑
m=0

CmTm(x) (8)

Differentiating we get

f ′approx (x) =
N∑

m=0

CmT ′m(x) (9)

Now when we calculate the results of this equation at the (N + 1) Chebyshev
points: Xn = cos nπ

X Where n = 1, 2, … N, we achieve vector f ′cheb. The entries of
this vector are estimated values of the derivative of fcheb at the Chebyshev points,
and it is related to the vector C of Chebyshev coefficients via a matrix-vector product
relationship:

NGn = μ0U 2∞
k�T0

;Re = ρU∞d

μ
; Pr = μ0Cp

k
;Gr = gρ2β�T0d3

μ2
0

(10)

f ′
cheb = T ′C where T ′ is (N + 1) x(N + 1) dimensional Matrix.

If we consider the relation C = Λ fcheb We receive f ′cheb = T′Λ fcheb where
Dcheb = T ′Λ matrix that functions on a vector of models at Chebyshev points to
produce a vector of f0 samples at Chebyshev points.

2.1 Application of Spectral Collocation Method in Fluid
Dynamic Problems

The bounded flows through channels and other simple geometries are simple in
configurations. However, they are too important from the scientific and techno-
logical aspects. The vortices generated at corners and in the flow direction, flow
transition, and turbulence can be analyzed in the same bounded configurations. To
study two-dimensional and three-dimensional flow problems, one can use an arith-
metical result of the Na-S equations. The primitive variable and vortices-Stream
function approached are used to study viscous fluid flow problems. In the first
variable approach, a coupling of pressure and velocity is challenging to satisfy the
incompressibility condition.

In the case of a vortices-stream function approach, such a problem, the pressure
term is eliminated from the equations. However, the order of the derivative increases
in this formulation. In a two-dimensional fluid flow problem, this approach is widely
used.However, a straight forward extension of it for three-dimensional flow is not that
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easy due to the increased order of derivatives. Thus, the primitive variable approach
is more suitable for 3D problems [1].

The non-iterative methods like estimate method and small step method have been
developed to prevent the coupling of pressure-velocity difficulty of the primitive
variable approach. In the methods mentioned above, no special memory storage is
required, and they are suitable for the solution of unsteady flow problems. These
methods use the prediction-correction method in which pressure is predicted from
the projected velocity in the divergence-free velocity field.

The higher-order temporal scheme with the spectral method is used to improve
accuracy by incorporating a variation of the projection method with the pseudo-
spectral method. A semi-implicit projection system with second-order accuracy in
temporal discretization gives good numerical stability in spectral collocation form.
The diagonalization is performed, which is an effective and efficient direct method of
solution. This combination of a temporal scheme with spectral-spatial discretization
is giving a very fast solution in comparison to the iterative solution procedure. The
combination of the two higher order of accurate methods has been validated using
square opening flow at Re = 10,000 and backward-facing step in channel flow at Re
= 875 [1].

Taylor–Couette flow is a drag driven flow inwhich flow is produced by the relative
circular motion of the cylinders. Therefore, the outside compelling by a pressure
gradient is not present [2]. It is an ideal case for studying the flow instability of
Newtonian and Viscoelastic fluids. Couette and Mallock are the first to investigate
the stability analysis of the viscous incompressible flow [3]. The first mathematical
representation of the flow between two concentric, infinite long cylinders having
rotary motion in three dimensions was successfully developed by G. I. Taylor and
obtained a result that was similar to the experimental results [4]. The work started
by Taylor continues the study of two-dimensional flow between the cylinders, which
is Taylor’s classical problem [5]. There are many theories available to analyze the
stability of the flow i.e. energy gradient theory, classical linear theory, Non-linear
theory, etc. The majority of the study has been performed on the steadiness of Ta- Co
flowwithout viscid heating effect. Ali andWeidman (1990) theoretically investigated
the effect of the temperature gradient in the radial direction on the volatility of the
Ta–Co flow [6].

They show that for a given Prandtl number (Pr), the subordinate flow is symmet-
rical about the axis, and the perilous value of Re surges with the increase in Gr.
The resilience force has a steadying result except for large value Pr number fluids.
However, the subordinate flow becomes asymmetric about the axis for larger Gr, and
Rcr number decreases with increasing Gr [7]. Kolyshkin and Vaillancourt (1993)
studied effect of energetics on isothermal Ta–Co flow for a radius ratio from 0.4 to
0.95 and Pr from 1 to 100. They found that the disturbances which are symmetric
about an axis are most hazardous turbulences, and flow is disrupted as Pr and Gr
increases [8]. The thermal buoyancy effect on the instability was examined by Dah-
ChyiKuo andK. S.Ball (1997). The critical value ofRe for the finite annulus is almost
equal to the forecast based on linear stability results for continuous length for the
isothermal case. The Rcr number for non-isothermal flow is slightly less as compared
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to that of isothermal Ta–Co flow [9]. The majority of the research is performed on
the steadiness of the Couette flow with the rotary motion of either inside or outside
cylinder or withmotion about the axis of the inner cylinder depending upon the appli-
cation [10]. The stability of the channel flow, pipe flow, Couette, and boundary layer
flow with viscous heating has been examined by several authors [11, 12]. The exper-
iment of the stability isothermal Ta–Co flow with viscid heating of Newtonian fluid
has been studied byWhite andMullar [13]. They admitted that the uncertainty of flow
is resulted due to a connection between viscid indulgence encouraged temperature
stratification and inertial forces. In the case of viscous heating of thefluid, the property
viscosity is used the temperature-dependent, and Nahme type viscosity-temperature
rise is used to analyze the effect of temperature on the viscosity. Al-Mubaiyedh,
Sureshkumar&Khomami (1999) per-formed instability analysis to analyze the effect
of viscid indulgence on the Ta–Co flow instability. They considered liquids of high
viscidness and large initiation energy with temperature-dependent viscosity [14]. Na
provides the degree of thermal compassion of the fluid. Al-Mubaiyedh et al. (2002)
studied in detail the thermal influence on the distribution of pressure and kinematics
also unevendisturbances to know theflowdisruptionmechanismdue to viscid heating
[15]. They predicted a new mode of instability due to viscous heating effect in the
absence of buoyancy effect with higher Pr (11000). At high Pr as Na increases, the
coupling between radial disturbances and temperature gradient enhances centrifugal
instability [16]. In the case of the instability of the Ta–Co flow, the effects of non-
isothermal are the result of viscid indulgence and not because of a forced temperature
gradient, which has not been studied significantly [17, 18]. In this chapter, we have
presented the study of the effect of viscid heating and buoyancy on the stability char-
acteristics of the Ta–Co flow for different radius ratios of the cylinders with uniform
i.e., isothermal and non-uniform wall heating i.e., Non-isothermal.

3 Problem Formulation

The incompressible and Newtonian fluid with viscous heating is considered among
two concentric rotating cylinders. The walls of the cylinder are kept at the same
temperature in the matter of isothermal Ta–Co flow and different invariable temper-
atures for non-isothermal Taylor–Couette flow. The governing stability equations
(Linearized Navier-Stoke equations) are derived using the standard procedure. The
space between the two rotating cylinders is very small in comparison to the radii of the
inside cylinder. The Reynolds number based on the spaced = (R2 − R1)/2) between
inside and outside cylinder is considered, where R1 and R2 are the inside and outside
radii of the cylinder, respectively. The radius of the cylinders is normalized by the gap
(d). The base flow is changing in the radial direction only. However, the disturbances
are three dimensional. Both the cylinders are rotating in opposite directions with
the same angular velocity. Viscid indulgence is encompassed in the energy equa-
tion through generation number (NGn), which is described as the maximum change
of temperature due to viscid heating regulated by the controlled wall temperature,
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which is known as Nahme number (Na) and Brinkman number (Br) for isothermal
and non-isothermal Taylor–Couette flow respectively [6]. The following relation is
used to determine the variation of viscosity with the change in temperature [19].

μ = μ0 exp

[
β
T − T0
T0

]
(11)

μ0 is the reference viscidness at temperature T0 and it is a non-dimensional initi-
ation energy parameter that characterize the change in viscosity with reference to
temperature variation; where β is a positive number for the liquids. The Generation
number (NGn), Reynolds Number (Re), Prandtl number (Pr) and Grashof number
(Gr) are defined as,

NGn = μ0U 2∞
k�T0

;Re = ρU∞d

μ
; Pr = μ0Cp

k
;Gr = gρ2β�T0d3

μ2
0

(12)

where,�T0 is the reference temperature difference,β is thermal expansion co-effcient
at reference temperature T0. The disturbances are assumed to be in normalmode form
with the amplitudes are the functions of a radial coordinate only

Ur =0 + ur ;U θ = Uθ + μθ ;Uz = 0 + uZ ; P = P + p;μ = μ + μ′ (13)

q(r, t) = q
∧

(r)e[i(αθ+βZ−ωt] (14)

where q = [ur , μθ , μφ, P], Q = [Ur,Uθ,Uφ, P], r is radial coordinate, z is axial
coordinate, θ is azimuth coordinate, ω is circular frequency, α is azimuth wave
number, and β is axial wave number.

∂u

∂r
+ Uθ

r

∂ur
∂θ

− 2Uθ

r
uθ = −∂P

∂r
+ 1

Re

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2μ
∂2ur
∂2r

+ 2
∂u

∂r

∂ur
∂r

+ 2
μ

r

∂2ur
∂2r

+
μ

r

(
∂uθ

∂r∂θ

− 1

r

∂uθ

∂θ

+ 1

r2

∂2ur
∂2θ

)
+

1

r

μ

θ

(
∂uθ

∂r

uθ

r

)
− 2

μ

r2

(
∂uθ

∂θ
+ ur

)
+

(
μ

(
∂2uz

∂r∂z
+ ∂2ur

∂z2

))
− Gr

R2
e

T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(15)

∂uθ

∂t
+

(
∂uθ

∂r
+ uθ

r

)
ur + uθ

r

∂uθ

∂r
= −1

r

∂P

∂θ
+ 1

Re
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂u

∂r

(
∂uθ

∂r
− uθ

r
+ 1

r

∂ur
∂θ

)
+ μ

⎛
⎜⎜⎝

∂2uθ

∂r2
− 1

r

∂uθ

∂r
+ uθ

r2

+1

r

∂2ur
∂θ∂r

− 1

r2
∂ur
∂θ

⎞
⎟⎟⎠+

μ

(
∂uθ

∂r2
+ uθ

r2
− 1

r

∂uθ

∂r

)
+ 2μ

r

(
2

r

∂ur
∂θ

− uθ

r
+ ∂uθ

∂r
+ 1

r

∂2uθ

∂θ2

)

+2μ

r

( u
θ

∂r
− u

θ

r

)
+ μ

(
∂uθ

∂z2
+ ∂2uz

∂θz

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(16)

∂uz

∂t
+ uθ

r

∂uz

∂θ
= ∂P

∂θ
+ 1

Re

⎡
⎢⎢⎣

∂u

∂r

(
∂uz

∂r
+ ∂ur

∂z

)
+ μ

(
∂2uz

∂r2
+ ∂2uz

∂z∂r

)
+

μ

r

(
∂uz

∂r
+ ∂ur

∂z

)
− Gr

Re2
T

⎤
⎥⎥⎦ (17)

∂T

∂t
+ ur

∂T

∂r
+ uθ

r

∂T

∂θ
+ uz

∂T

∂z
= 1

RePr

∂2T

∂r2
+ 1

r

∂T

∂r
+ 1

r2
∂2T

∂θ2
+ ∂2T

∂z2
+

NGn

Re Pr
μ

(
∂uθ

∂r
− uθ

∂r

)
∂uθ

∂r
− 1

r

(
∂uθ

∂r
− uθ

∂r

)
(18)

∂ur
∂r

+ ur
r

+ 1

r

∂uθ

∂θ
+ ∂uz

∂z
(19)

3.1 Boundary Conditions

At inside and outside wall of the cylinders, the boundary conditions assumed are
that there is no slip and there is no penetration for each disturbance velocity compo-
nents. At the wall, all disturbance velocity components are zero. Another boundary
condition taken into account is that at wall pressure do not exists.

ur = (x, rout ) = 0; u0 = (x, tout ) = 0; uz = (x, rout ) = 0 (20)

ur = (x, rout ) = 0; u0 = (x, tout ) = 0; uz = (x, rout ) = 0 (21)

Though, the compatibility regulations resulted from the Linearized N-S equations
have been collocated at the solid wall.

1

R

[
2μ

∂2ur
∂r2

+ 2
∂u

∂r

∂ur
∂r

+ 2u

r

∂ur
∂r

]
− 1

Re

[
iαu

r

∂uθ

∂r

]
− 1

Re

[
iβu

∂uθ

∂r

]
+ ∂P

∂r
(22)
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The CSC technique is used to discretize the governing stability equations [17].
This discretizationmakes the non-uniform nature of the distribution of the grid points
with a greater number of grids towards the end. For boundary value problems, it is
a favorable arrangement.

rcheb = cos

(
π i

n

)
where i = 1, 2, 3 . . . n (23)

where n = Total number of collocation points.
The stability equations together with the boundary conditions forms a general

EVP of the form,

⎡
⎢⎢⎢⎢⎢⎣

A11 A12 A13 A14 A15

A21 A22 A23 A24 A25

A31 A32 A33 A34 A35

A41 A42 A43 A44 A45

A51 A52 A53 A54 A55

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

ur
uθ

uz

p
T

⎤
⎥⎥⎥⎥⎥⎦

= iω

⎡
⎢⎢⎢⎢⎢⎣

B11 B12 B13 B14 B15

B21 B22 B23 B24 B25

B31 B32 B33 B34 B35

B41 B42 B43 B44 B45

B51 B52 B53 B54 B55

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

ur
uθ

uz

p
T

⎤
⎥⎥⎥⎥⎥⎦

(24)

[A][φ] = iω[B][φ] (25)

where, A and B are real matrices of size 5 × n , iω is an eigenvalue and ϕ is the
eigenvector. The QZ algorithm is employed for the solution of the EVP.

4 Base Flow Solution

The fully-developed steady and parallel incompressible base flow is considered
between the concentric rotating cylinders in opposite directions. The base is varying
along the radial direction only. The thermal stratification is also considered in the
radial direction. Thus, the viscosity is varying and it is dependent on the temperature
of the fluid. The energy equation is coupled with the Navier-Stokes equation and the
reduced non-dimensional equations for the base flow are as follow,

1

r

∂

∂r

(
r
∂T

∂r

)
+ NGnμ

[
r

∂

∂r

(
Uθ

r

)]2

= 0 (26)

1

r

∂

∂r

(
r
∂T

∂r

)
+ NGnμ

[
r

∂

∂r

(
Uθ

r

)]2

= 0 (27)

The conditions (28) and (29) are co nsidered for the solution of above equations.

u
θ
(x, rin ) = +1, T (x, rin ) = rt1 (28)
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uθ (x, rout ) = −1, T (x, rout ) = rt2;where rt1 = T1 − T0
�T0

; rt2 = T2 − T0
�T0

(29)

Stream wise (azimuth) velocity, temperature and viscosity respectively. The base
flow equations for constant viscosity are simple and solved analytically and it is not
presented here because the variation in the base flow velocity profile is very small.
The Eqs. 28 and 29 are solved with the help of series solution up to second order
accuracy [6, 15].

Figure 3a shows the effect of non-dimensional temperature (rt) on the tempera-
ture profile of the flow. The rt = 0 is the isothermal flow in which the inside and
outside cylinder ramparts are maintained at equal temperature. Figure 1b presents
the temperature profile for various values of Na. It shows that the increase in Na,
increases the variation in temperature. The escalation in Brinkman number (Br) also
surges the temperature variation for non-isothermal flow.

5 Code Validation

The results obtained for the present computations are compared with the results of
P. Schmid and L. Tuckerman (2002) for η = 0.5 and η = 0.99 without viscid heating
effect. The azimuthal (α) and axial (β) wave numbers are 0 and π/2. The eigen
spectrum shown in Fig. 2a, b are very similar to the results of Schmid et al. [18].
Thus, the code is validated against the results of P. Schmid et al. (2002) (Fig. 4).

6 Results and Discussions

In the present stability analysis, two cylinders are revolving in contrary directions,
and hence the speed ratio 1 is as −1. The range of different values of η is changing
from 0.5 to 0.99. The radial length and the velocities are controlled by the space, d
= (R2 − R1) and 1R1 respectively. The magnitude of α and β are zero and unity
respectively. The stability analysis for the Ta–Co flow is with the variable viscosity
due to the viscous heating effect. The generation numbers like Nehme (Na) number
and Brinkman (Br) numbers are defined to incorporate the variation of viscosity and
temperature on the steadiness representative of the Ta–Co flow.

6.1 Effect of Radius Ratio (η)

In the case of the adiabatic wall conditions, the fluid viscosity remains constant. The
Eigenvalues problem is solved to compute the least stable Eigenvalue and associated
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Fig. 3 Effect of
a temperature (rt), b Nahme
number (Na) and c Brinkman
number (Br) on temperature
profile for radius ratio η =
0.5 speed ratio Ω1

Ω2
= −1
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Fig. 4 Eigen spectrum for
a η = 0:5 and Re = 125 b η

= 0:99 and Re = 350. The
α, β and speed ratio are 0, π

2
and −1

Fig. 5 Effect of radius ratio
η on the Rcr

Eigenfunctions for different values of η. The perilous value of Re is determined for
the range of various values of radius ratio.
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Figure 5 shows the change in the value of the criticalReynolds number for different
radius ratio η. It shows that Rcr number reduces as η increases from 0.2 to 0.7, it is
nearly constant in the range of η 0.7 to 0.8 and beyond 0.8 it increases.

6.2 Effect of Viscous Heating

To study the viscid heating effect on the instability characteristic of Ta–Co flow, two
different cases are considered. In the first case, the inside and outside boundaries
of the cylinders are maintained at a fixed temperature of 25 °C, and so it is called
isothermal Ta–Co flow. The viscosity of the fluid is variable due to the heating effect.
The Rcr number is computed for η = 0.5 and η = 0.99.

Table 1 shows the assessment of the critical value of Re for η = 0.5 and η = 0.99
for adiabatic and isothermal wall conditions of the rotating cylinders. The critical
value of Re is lower for isothermal Ta–Co flow compared to adiabatic wall of the
cylinders. This indicates that Taylor–Couette flow becomes unstable with the viscous
heating effect at a lower Reynolds number.

Figure 6 shows the change in the value of critical Re for different Nahme numbers.
Na introduces the viscous heat dissipation. The increase in the speed of rotation
increases the heat dissipation effect. The Na number is varied by increasing the
rotating speed of the wall of both the cylinders. It has been found that the critical
value of Re reduces with the rise in Na Number. Thus, the increase in Nahme number
has destabilizing effect on the Taylor–Couette flow. Table 2 shows a comparison of
Rcr number for isothermal Ta–Co flow for η = 0.5 and η = 0.99. It shows that the
Rcr number reduces with the viscid heating effect. This, in turn, proves that viscous
heating has a destabilization effect on the disturbances. In the second case, the inside
and outside walls of the cylinders are maintained at different values of constant
temperature. The temperature gradient is present in the radial direction. The viscous
heating effect is introduced in this case using Brinkman’s number. The Brinkman
number reduces with the increase in temperature difference of cylinder walls. The
variation of critical Re against Br is shown in Fig. 4b. It shows that the critical value of
Re raised with the rise in the value of Br. Thus, an increase in the Brinkman number
stabilizes the flow. Table 3 shows the critical value of Re for different values of �T0
for non-isothermal Taylor–Couette flow. It shows that as the �T0 rises, the critical
value of Re decreases. It is also witnessed that the critical Re for non-isothermal
Taylor–Couette flow is smaller than that of isothermal Taylor–Couette flow.

Table 1 Assessment of the
Rcr for isothermal Ta–Co flow

Radius ratio Critical Rcr1 Critical Rcr2

0.5 153 130

0.99 366 312
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Fig. 6 Effect of a Nahme
number, Na and b Brinkman
man number, Br on the Rcr
number for η = 0:5 and
speed ratio Ω1

Ω2
= −1

Table 2 Assessment of Rcr
number for isothermal Ta–Co
flow with buoyancy effect

Radius ratio Critical Rcr1 Critical Rcr2

0.5 130 128

0.99 312 310

Table 3 Comparison of Rcr
number for non-isothermal
Ta–Co flow with buoyancy
effect. Here �T0 is the
temperature difference of
walls of inner and outer
cylinders

Radius ratio Critical Re1 Critical Re2

0.5 −0.2 131 128

0.5 120 118

1.0 103 100

0.99 −0.2 320 310

0.5 304 300

1.0 296 292
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Fig. 7 Variation of Rcr
number versus temperature

6.3 Effect of Buoyancy

The effect of buoyancy is studied for isothermal and non-isothermal Ta–Co flow. The
effect of buoyancy is combined in the governing equations using Gr number.

From the above results, we observe that in isothermal Ta–Co flow with buoyancy,
with the increase in radius ratio from 0.5 to 0.99 there is an increase in Rcr.

Figure 7 shows the variation of the Rcr number with the reference temperature
difference. It is found that the buoyancy effect reduces the critical Re for the same
temperature difference for η = 0.5 and η = 0.99.

7 Conclusions

The local temporal Eigenmodes are computed using linear stability theory for Ta–Co
flow. The effect of viscid heating and buoyancy are studied on the steadiness char-
acteristics of Ta–Co flow. To study the effect of viscid heating for isothermal and
non-isothermal Taylor–Couette flow Nahme and Brinkman numbers are introduced.
The general Eigenvalue problem is solved to determine the least stable Eigenmode.
For adiabatic wall conditions, it is found that the critical value of Re reduces with the
increase in radius ratio up toη= 0.8, beyondwhich critical value of Re increases. The
isothermal and non-isothermal Taylor–Couette flow is studied by introducing gener-
ation number like Nahme and Brinkman number. The critical value of Re increases
with the rise in Nahme number while reduces with the increase in Brinkman number.
The critical value of Re reduces with the increase in the temperature difference of
cylinder walls. It is also observed that the flow becomes unstable at a lower Reynolds
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number in case of a non-isothermal flow. The critical value of Re with the buoy-
ancy effect is found smaller for isothermal and non-isothermal. Thus, buoyancy has
a stabilizing effect on the disturbances.

References

1. Martinez JJ et al (2007) A Chebyshev collocation spectral method for numerical simulation of
incompressible flow problems. J Braz Soc Mech Sci Eng

2. Thomas DG (2004) Thermo-mechanical instabilities in Dean and Taylor–Couette flows
mechanisms and scaling laws. J Fluid Mech

3. Drazin P, Raid WH (2004) Hydrodynamic stability. Cambridge University Press. https://doi.
org/10.1017/CBO9780511616938

4. Taylor GI (1923) The spectrum of turbulence. Roy Soc London, Ser Math Phys Sci 223:289
5. Belotserkovskii OM, Oparin AM et al (2016) Coherent hydrodynamic structures and vortex

dynamics. Math Model Comput Simuls, Math Phys 135–148
6. White JM,Muller SJ (2002) Experimental studies on the stability of Newtonian Taylor–Couette

flow in the presence of viscous heating. J Fluid Mech
7. Ali M, Weidman PD (1990) On the stability of circular Couette flow with radial heating. J

Fluid Mech 53:220
8. Kolyshkin AA, Vaillancourt R (1997) Convective instability boundary of Couette flow between

rotating porous cylinders with axial and radial flows. Phys Fluids 5:3136
9. Kuo DC, Ball KS (1997) Taylor–Couette flowwith buoyancy: Onset of spiral flow. Phys Fluids

9:2872
10. Renardy Y, Joseph D (1985) Couette flow of two fluids between concentric cylinders. J Fluid

Mech 150:381
11. Mosta S, Sinbanda P (2010) A novel numerical technique for two-dimensional laminar

flow between two moving porous walls. In: Mathematical problems in engineering Hindawi
Publication

12. Papathanasion TD (1968) Thermomechanical coupling in frictionally heated circular Couette
flow. Int J Thermo-Phys 18:825

13. White M, Mullar J (2000) Viscous heating and the stability of newtonian and viscoelastic
taylor–couette flows. Am Phys Soc 84:5130

14. Al-Mubaiyedh UA, Sureshkumar R (1999) Influence of energetics on the stability of
viscoelastic Taylor–Couette flow. Phys Fluids 11:3217

15. Al-Mubaiyedh UA, Sureshkumar R et al (2002) The effect of viscous heating on the stability
of Taylor–Couette flow. J Fluid Mech 46:111

16. Dou H, Khoo B, Yeo K (2008) Instability of Taylor–Couette flow between concentric rotating
cylinders. Int J Therm Sci 46:262

17. Johnny de Jesús Martinez (2007) A Chebyshev collocation spectral method for numerical
simulation of incompressible flow problems. J Braz Soc Mech Sci Eng 29:3

18. Schmid P, Tuckerman L (2002) Transient growth in Taylor–Couette flow. Phys Fluids 14:3474
19. White JM (2000) Viscous heating and the stability of newtonian and viscoelastic Taylor–

Couette flows. Phys Rev Lett

https://doi.org/10.1017/CBO9780511616938

	 Theoretical Approach to Chebyshev Spectral Collocation Method and Its Mathematical Implementation
	1 Introduction
	2 Chebyshev Method
	2.1 Application of Spectral Collocation Method in Fluid Dynamic Problems

	3 Problem Formulation
	3.1 Boundary Conditions

	4 Base Flow Solution
	5 Code Validation
	6 Results and Discussions
	6.1 Effect of Radius Ratio (η)
	6.2 Effect of Viscous Heating
	6.3 Effect of Buoyancy

	7 Conclusions
	References




