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Abstract The nonlinear description has continuously been crucial in awide range of
disciplines to provide an accurate prediction of a natural phenomenon. Thus, finding
a reliable solution method for these nonlinear models is of significant importance
since, in most real-life applications, direct solution methods are not feasible, even
in linear cases. Moreover, an inefficient method is likely to take additional compu-
tational cost and effort. This chapter attempts to provide a fundamental descrip-
tion of various iterative methods for solving nonlinear discretized equations. In the
first part, a theoretical account of nonlinear systems with different types of iterative
methods are depicted. The second part deals with both one-point and multi-point
iterative methods; this includes a description of the method, mathematical formula-
tions, and the weak and strong points. Different iterativemethods to solve a system of
nonlinear equations are then described. Some discussed methods include the family
of conjugate gradient, multi-step, and Newton-like. This part also identifies intrica-
cies regarding a system of nonlinear equations, offering different remedies to solve
these issues. Finally, a comparative study of the discussed methods and their appli-
cations in solving conventional equations are outlined in brief. The iterative methods
mentioned in this chapter can be useful not only in solving nonlinear problems but
also in linear problems and optimization.
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Nomenclatures

A. Acronyms
IVP Initial Value Problems
BVP Boundary Value Problems
ODEs Ordinary Differential Equations
PDEs Partial Differential Equations
FE Finite Element
FV Finite Volume
FD Finite Difference
CO Convergence Order
LU Lower–Upper

B. Symbols/Parameters
x Unknown value(s)
i Iteration index
x* Actual root
E.I. Efficiency index
ρ Convergence order
n Total number of function evaluation
[a, b] Specific interval
f (x) Nonlinear function
f ′ First derivative of the nonlinear function
f ′′ Second derivative of the nonlinear function
x(0) Initial approximation of the zero of the function
C Computacional cost
J (i) n-dimensional Jacobian matrix
F(x) Column vector of nonlinear functions
∂
∂x Partial derivative with respect to the unknown x
J Jacobian matrix
h Incriminate value
∇F Gradient of F(x)
T Transpose sign
H(x) Hessian matrix
λ Damping parameter
η(i) Forcing term
S(i) Inexact newton step
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1 Introduction

There is a wide range of natural phenomena, as well as numerous practical appli-
cations that can be accurately simulated through mathematical analysis. The formu-
lation of a real phenomenon in a format of the system of equations endows many
benefits, such as validating the results of physical experiments and demonstrating
a reliable relationship among variables explaining the features of a phenomenon or
a system. A problem modeled in a frame of mathematical equations can be either
linear or nonlinear. Linear problems are more straightforward to solve than nonlinear
problems, with respect to computational cost and implementation. The linear anal-
ysis may be applied for nonlinear problems when errors are too small, or they can be
tolerated; but in some problems, according to the required accuracy for a problem and
the target of analysis, employing the nonlinear analysis is necessary and unavoidable.
Some examples demonstrating the importance of a nonlinear description include the
design of components for some special usage such as aerospace and nuclear engi-
neering, obtaining an accurate understanding of a phenomenon, or simulating the
behavior of some materials. Hence, complex nonlinear equations, in spite of intri-
cacies stemming from solving them, should be employed to provide a perception of
the behavior of these phenomena as well as present a realistic approximation of the
response [1, 2].

Nonlinear equations can be either one-variable equations (scalar equations) or
multi-variable equations (the system of nonlinear equations). A nonlinear equation
can be represented as an equation that does not follow the superposition principle,
and the output and input of the system are not directly proportional to each other.
Regarding the system of nonlinear equations, it is a set of n simultaneous equa-
tions with n unknowns that consists of only one or more nonlinear equations [3]. In
contrast to scalar nonlinear equations, the system of nonlinear equations due to their
complexity has received less attention.

Solving a nonlinear equation is an intractable task; besides, the uniqueness and
existence of the nonlinear solution may also be challenging. To solve these nonlinear
problems, there are two numerical and analytical methods. Albeit the analytical
method provides high accuracy without much computational cost and effort, in most
cases, finding a closed-form solution for a nonlinear system is not feasible; these
solutions are restricted to some simplified and exceptional cases and are not suitable
for real applications. On the other hand, the growing knowledge and improvements
of computer technology have made the use of complicated numerical methods an
easy task for analyzing physical systems; by writing new programs or using the
existing computer packages. Therefore, during the last decades, researchers have
been stimulated to develop new computationally efficientmethods to find a numerical
method approximating a solution for nonlinear initial value problems (IVP) and
boundary value problems (BVP) [1, 4, 5].

Nonlinear equations governing a system can take different forms of alge-
braic, differential– ordinary differential equations (ODEs), partial differential equa-
tions (PDEs)—and integral equations. Regarding differential or integral equations,
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initially, one of the well-known numerical methods such as Finite Element (FE),
Finite Volume (FV), Finite Difference (FD), or other discretization methods may
be employed to convert nonlinear equations to nonlinear algebraic equations. These
discretization techniques provide a weakly nonlinear system of equations. Then, an
iterationmethod should be adopted to solve thisweakly systemof nonlinear equations
[1, 6].

In iterationmethods, by an initial guess, a particular process like a generalized rule
should be followed for every newestimation of the final response until the termination
criterion meets. Termination criterion is a condition determining an acceptability
level for the final allowable error that should be satisfied to terminate to an iteration
process. The termination criterion for a small value ε, and the approximated values
x with the iteration index i can be defined in different ways. Three commonly used
of these criteria are as:

(1) Two last responses are very close together:

∣
∣x (i+1) − x (i)

∣
∣ < ε (1)

(2) The relative difference of two last responses are small:

∣
∣
∣
∣

x (i+1) − x (i)

x (i)

∣
∣
∣
∣
< ε (2)

(3) The final response is sufficiently small [2, 7, 8]:

∣
∣ f (x (i))

∣
∣ < ε (3)

The value of ε can be varied according to each problem and the final goal of
that problem. As a numerical method provides an estimate of the exact response, the
termination criterion is an important factor defining the accuracy and reliability of
results. Moreover, this criterion can significantly affect the time of the process.

According to Traub [9], iterative methods to solve nonlinear equations can be
divided into two categories viz one-point andmulti-point iterativemethods, regarding
the fact that whether they employ new data from different points or not. These two
methods are also divided into multi-point methods with memory or without memory
and one-point methods with memory or without memory based on whether old
information is reused or not. In one-point methods without memory, the value of
a new estimation, say xi , is computed only based on the information at xi . In this
method, the only way to enhance the convergence of the problem is by increasing
the derivative order. For example, to achieve a method of convergence order i , one
should employ the (i − 1)th derivative of a function. Some examples of this method
are Newton, Halley, and Cauchy methods. A method is named a one-point method
with memory when the next approximation is obtained based on the information of
older points such as x (i−1), x (i−2), ..., x (1) as well as x (i) to estimate the value of x (i).
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One well-known example of this case is the Secant method. This type of iterative
methods mostly includes derivative-free algorithms.

Regardingmulti-point iterative methods, they use the new information at different
points, which results in a more computationally efficient method in comparison to
one-point methods. These methods can increase the order of convergence without
any need to employ a higher-order derivative as well as provide a wider region of
convergence [10].

To select an iterative numerical method for a nonlinear problem, there are some
criteria that should be considered to ensure the efficient performance of a solver in
providing an accurate result. In the first step, the convergence order (CO) should be
measured to identify the speed of a numerical method to obtain the final response.
According to Eq. (4), for ρ ≥ 1 and K > 0, if a function with the actual root of
x∗ satisfies this relationship, it is said that the method converges to x∗ with order ρ.
This relationship can be calculated based on either n-dimensional Taylor expansion
or the matrix approach.

lim
n→∞

∣
∣x (i+1) − x∗∣∣ ≤ K

∣
∣x (i) − x∗∣∣ρ (4)

In addition, if ρ = 1 and K = 1, it is said that the method is super-linearly
convergent, which is faster than linearly convergent [11].

With respect to the convergence, iterative methods can be either locally conver-
gent or globally convergent methods. In the locally convergent method, the order of
convergence is greater than 1. Moreover, to ensure the convergence to the accurate
root, this method requires an initial guess sufficiently close to the root. In contrast,
a globally convergent method is not restricted to a good initial approximation to
converge, but the convergence order of these methods is often lower than locally
convergent methods. For example, the Newton method is a second-order locally
convergent method highly sensitive to the initial guess; whereas the bisectionmethod
linearly converges even for a poor initial approximation [12].

The number of call functions or function evaluations required at each step can also
determine the efficiency and the CPU time (running time of an algorithm) required
for a process; this can be determined by the number of times that goal function
and its supporting functions computed during the process. In a system of nonlinear
equations along with the number of function evaluations, other operations such as
matrix-vector multiplications, matrix-matrix multiplications, Jacobian evaluations,
and Jacobian inverses calculation are deemed factors determining the efficiency of
a method. These factors are important since they may cause a very time-consuming
process, in particular, in temporal problems in engineering disciplines, which require
the repetition of a lengthy iterative procedure to solve the system of nonlinear equa-
tions per time step. Another factor is the radius of convergence that is often ignored
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since it is difficult to calculate. Lastly, theCPU timeused for a process can again deter-
mine the efficiency and speed of a method, in particular, for a large nonlinear system.
Obviously, a process with less CPU time is a better method. All factors mentioned
above can affect each other; for example, to obtain more accuracy, a method should
use more function evaluations [7, 13, 14]. On the other hand, considering all these
factors for each problem is intractable; therefore, regarding each problem, some of
these criteria may be ignored; for example, to reach a higher accuracy, one may have
to employ more function evaluations. Hence, it is of great importance to identify
various numerical methods and their characters so that the most suitable one can be
opted according to the circumstances.

To this aim, the rest of the chapter depicts a fundamental description of various iter-
ative methods for solving nonlinear algebraic equations originating from discretized
partial and ordinary derivative or integral equations. In the following parts, initially,
both on-point and multi-point iterative methods to solve scalar equations are
described; they are compared from a computational viewpoint. Then, different
commonly-used methods to solve a system of nonlinear equations are described.
Advantages and drawbacks of each method are mentioned, and some alternative
methods to overcome their weaknesses are represented. Finally, the application of
the methods together with a comparative study are provided, in the last part.

2 One-Variable Nonlinear Equations

In this part, a description of different methods to solve one-variable nonlinear equa-
tions is presented. Although nonlinear scalar equations are only employed to some
limited cases, a knowledge of them can assist researchers in comprehending possible
solutions for a system of nonlinear equations more straightforward. Furthermore,
basic ideas of some methods to solve one-variable problems can also be used for
nonlinear multi-variable problems.Methods depicted in this part consist of one-point
and multi-point methods.

In order to evaluate the efficiency of various scalar iterative methods and compare
different offered methods with each other, the efficiency index E .I. can be defined
as a function of the convergence order ρ and the total number of function evaluation
n as E .I. = ρ

1
n . The higher efficiency index means that a method is of higher speed

with lower computationally cost.

2.1 One-Point Methods

One-point iterative methods are the simplest methods for solving scalar nonlinear
equations that are not often adopted for complicated problems. These methods can
be used either as a base for more complicated methods, such as the Newton and
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Steffensen methods, or as a starting method for locally convergent methods like
bisection method.

I. Bisection Method

By assuming f as a continuous scalar function at a specific interval, say [a, b], in
which the sign of f (a) and f (b) are opposite, the bisection method determines that
there is at least one root in this interval based on the intermediate value theorem.
This method computes the value of f at the midpoint of the domain c = a+b

2 . Then,
according to the sign of the f (c), the value of c is replaced with either a or b. As a
result, a new smaller subinterval around the root of the equation can be established
for the next step. This procedure recurs until the termination criterion meets [15].

One of the advantages of the halving method is that it only uses one function
evaluation per iteration, except for the first step, it employs two functions that can
be overlooked by the final number of functions used at the end of the process. This
method also unconditionally converges to the actual root provided that the nonlinear
function is continuous in the whole of the domain. Moreover, the number of itera-
tions for a specified accuracy can be obtained in advance; for example, the error after
n iteration will be less than

∣
∣ b−a

2n

∣
∣. Nevertheless, this method is not widely used for

complicated nonlinear equations due to the low rate of convergence (linear conver-
gence) for the same accuracy in comparison with other methods. Additionally, for
a function with multiple roots in an interval, this method may not work accurately,
since the sign of endpoints may be the same. Therefore, it is proposed to employ
this method to find a rough estimate of a function for other faster methods requiring
a proper approximate initial value; that is, for the first iterations, this method can
be applied to obtain an approximation sufficiently close to the root, and for the next
iterations, other faster methods can be used to accelerate the speed of the calculation
[8, 15].

II. Fixed-Point Method

This method is a simple and stable method that can be employed to solve continuous
functions. This method initially converts the function of f (x) = 0 to g(x) − x = 0.
Then, to find the root of f (x), it addresses the iteration equation as x (i+1) = g(x (i));
in each iterate, the response of the function is set as the new point. As the bisection
method, this method is also linearly convergent.

The rate of convergence of this method may change for a different arrangement,
and even for some arrangement, it either may not converge or converge to a false root.
There is not a general rule to determine what arrangement is the best; nevertheless,
based on the previous research, it can seem that the slope of the curve of the function
g(x) can affect the speed of the algorithm [8, 15].

III. Muller Method

In contrast with previous methods, this method approximates the function f (x) by a
quadratic polynomial as ax2 + bx + c, which can increase the speed of the method.
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By using three points of x0 and x2 as endpoints and x1 between two endpoints, near
the zero of the function, the coefficients of this quadratic polynomial can be obtained.
In the next step, the nearest root to the middle point, x1, is set as the new point. The
resulting value is assigned as a new point for the next approximation along with the
two points that are closer to the root.

Muller’s method can be used to obtain complex root if the starting point is a
complex number. In addition, except for the first iteration that requires three function
evaluations, this method only employs one function evaluation per iteration [8, 15].

IV. Newton Method

The well-known Newton method approximates the roots of a nonlinear functions on
the basis of the first two terms of the Taylor polynomial expansion of the nonlinear
function f (x) expanded about the actual root of the equation x∗ as:

f (x∗) = f (x (0)) + f (x∗ − x (0)) f ′(x (0))

+ (x∗ − x (0))2

2
f ′′(x (0)) (5)

where f ′ and f ′′ are the first and second derivative of the f (x), respectively, and x (0)

is the initial approximation of the zero of the function, which is sufficiently close to
it. Since f (x∗) = 0 and

∣
∣x∗ − x (0)

∣
∣ is small enough, the terms with higher order can

be ignored, and the iterative method for n > 1 iteration can be shown as:

x∗ ≈ x (i+1) = x (i) − (x (i+1) − x (i))
f (x (i))

f ′(x (i))
(6)

According to the above equation, the new point, x (i+1), is considered as the
x-intercept of the tangent line to the graph of f (x) at the current approximation
xn .

This method is a highly efficient method that converges quadratically. Addition-
ally, it can work even for complex roots, providing that the initial guess be a complex
value. It should be pointed out that this initial root should be sufficiently close to the
actual root to avoid this method from being trapped in an endless loop. In compar-
ison with previous methods, this method employs two function evaluations at each
step. Additionally, this method requires the second derivative of the nonlinear equa-
tion, which may be either unavailable for some problems or burdensome to calcu-
late. Therefore, concerning these potential hurdles, some alternative methods have
existed to overcome some. In the following, a number of these methods are presented
[16, 17].

V. Secant Method

The secant method is a quasi-Newton method in which the derivative of the function
is estimated with the finite-difference approximation. The iteration algorithm of this



Numerical Methods for Solving Nonlinear Equations 129

method can be shown as:

x (i+1) = x (i) − f (x (i))
(x (i+1) − x (i))

f (x (i+1)) − f (x (i))
(7)

This formulation offers a derivative-free method at the expense of decreasing the
convergence order to super linearly convergence. As theNewtonmethod, thismethod
requires to combine with other methods such as the bisection method since this
method still requires two good starting points of the zero of the function. The method
of False Position can be suggested to prevent this algorithm fromdiverging. Although
this method is of slow convergence and requires more calculations, it always ensures
that during the iteration process, the new estimation is always bracketed; that is, the
function f (x) changes signs at two x-values [8, 15].

VI. Steffensen Method

Unlike previous method, Steffensen method offers a convergence identical to the
Newton method; whereas, it does not involve the derivatives of the function. Using
divided difference, this derivative-free method offers a proper one-point algorithm
for non-differentiable problems as below [18]:

x (i+1) = x (i) − f 2(x (i))

f (x (i) + f (x (i))) − f (x (i))
(8)

VII. Chebyshev–Halley Methods

The well-known Chebyshev–Halley methods are improved versions of the Newton
method, offering a higher convergence order for the iterativemethod using the second
derivative of the function. This method can be shown as:

x (i+1) = x (i) −
(

1 + L f (x (i))

2(1 − βL f (x (i)))

)
f (x (i))

f ′(x (i))
(9)

L f (x
(i)) = f ′′(x (i)) f (x (i))

( f ′(x (i)))2
(10)

For different values of β this formulation includes three well-known methods as:
Chebyshev method for β = 0, Halley method for β = 1

2 , and Super-Halley method
for β = 1.

As the Newton method, these methods still require a good initial guess in the
neighborhood of the root. These well-known methods provide cubic convergence
order; however, they are not suggested to use since they require second-order deriva-
tive. Generally speaking, in most problems, it is attempted to avoid higher-order
derivative because of some potential challenges concerning them. As stated before,
methods in which higher-order derivatives are required may be cumbersome to deal.
This issue can even be more problematic about a system of nonlinear equations with
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multi variables. In these problems, some additional problems such as the calculation
of the Jacobian matrix and the difficulty thereof may arise. Hence, the enhance-
ment of the convergence order at the expense of the employing higher derivative
is often deemed to be impracticable. As an alternative solution to obtaining higher
convergence, multi-point methods can be offered. These methods can improve the
convergence order without any need to employ a higher derivative. In the next part,
this method is represented [19, 20].

2.2 Multi-point Methods

Allmethods discussed so farwere based on the one-point iterativemethods.As stated,
these methods are of a lower convergence order; hence, to improve their conver-
gence, multi-point methods are presented. These methods are mainly proposed to
enhance the convergence order of existing methods, such as the Newton and Stef-
fensen methods, by adding one or more steps along with employing more variables,
without using higher-order derivative.

It should be noted that thesemethods requiremore function evaluations; therefore,
although every added step can increase the convergence, it may not be computation-
ally efficient. In otherwords, it can be said that everymulti-stepmethod is not suitable
to use since some of them result in the same efficiency as other existing methods with
lower computational efficiency. Therefore, as stated in previous part, the efficiency
index E .I. is used to determine the performance of a method; that is, the number
of function evaluations used is whether or not proportional to the corresponding
accuracy.

As an example of a multi-point method, consider the following algorithm based
on the Newton method in three steps.

⎧

⎪⎪⎨

⎪⎪⎩

y(i) = x (i) − f (x (i))

f ′(x (i))

z(i) = y(i) − f (y(i))

f ′(y(i))

x (i+1) = z(i) − f (z(i))

f ′(z(i))

(11)

At first sight, it may seem an efficient method since it increases the conver-
gence order of the Newton method to eight; but, this algorithm requires six func-
tion evaluations—three functions and three derivatives of the function—that results
in 81/6 = 1.414efficiency index, which is as equal as the Newton method [10,
21]. Therefore, it should be attempted to employ or offer multi-step methods with
optimum convergence order; for example, the Ostrowski method is as an improved
Newton method in two steps by adding more variable as:

{

y(i) = x (i) − f (x (i))

f ′(x (i))

x (i+1) = y(i) − f (y(i))(x (i)−y(i))

f (x (i))−2 f (y(i))

(12)
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This method increases the convergence order of the Newton method to four with
employing only three function evaluations at each iteration—two functions and one
first derivative evaluation. There are many other methods providing higher optimum
accuracy in more steps, such as three-point methods with eighth-order convergence
[22, 23] or four-point method with sixteenth-order convergence [24]. To obtain such
optimum convergence order, appropriate weight functions can be employed. These
weight functions can not only effectively increase the convergence order but also
can be used for non-smooth functions. A through discussion of the different weight
functions are beyond the scope of this text. Nevertheless, avid readers can find more
detailed description in [25, 26].

There are also a number of multi-point iterative methods using the Steffensen
method as the base method that may be appropriate for non-differentiable functions.
Some of these derivative-free multi-point methods are given in studies [27, 28].

3 System of Nonlinear Equations

In previous parts, iterative methods for solving one-variable problems were
described, but, in most real problems, one encounters more complex problems with
more than one variable; in these cases, a system of nonlinear equations should be
solved, which requires a different approach to one-variable problems. For example,
in one-variable problems, attempts are made to provide a higher convergence order
with lower function evaluations; whereas, in multi-variable problems, the goal is
preventing the Jacobian matrix from being singular or ill-condition, or decreasing
the computational evaluation concerning Jacobianmatrix. Hence, regarding a system
of nonlinear equations, to define the optimal convergence order, besides the number of
function evaluations and convergence order, other factors such as Jacobian inversions,
vector-vector, matrix–matrix, and matrix-vector multiplications should be consid-
ered as options affecting computational cost. Table 1 demonstrates the effect of these
parameters on the total cost.

Therefore, the efficiency index of a system of nonlinear equations with n iteration
can be defined in terms of the computational cost, C, as E .I. = ρ

1
C [29].

Of previous methods to solve scalar nonlinear equations, only Newton and fixed-
point methods can be extended for multi-variable nonlinear equations since the nota-
tions of other one-variable methods cannot be defined for this type of problems. In
this part, other commonly-usedmethods such asNewton-like andmulti-stepmethods
are also proposed.
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Table 1 Computational cost
attributed to various
operations used for solving a
system of nonlinear equations
[29]

Operations Computational cost

LU-factorization

Multiplications n(n−1)(2n−1)
6

Divisions n(n−1)
2

Total cost n(n−1)(2n−1)
6 + 3 n(n−1)

2

Solution of lower and upper triangular systems

Multiplications n(n − 1)

Divisions n

Total cost n(n − 1) + 3n

Scalar-vector multiplication n

Point-wise vector-vector
multiplication

n

Matrix-vector multiplication n

3.1 Gauss–Seidel Method

As the simplest technique for solving nonlinear equations, in this method, instead of
solving n nonlinear equations simultaneously, each nonlinear equation is assigned
to one of the unknowns and solved to find that unknown separately. In other words,

using an initial guess, say x (0) =
[

x (0)
1 , x (0)

2 , . . . , x (0)
n

]T
, each equation f j (x (i)) is

considered as a one-variable equation for each variable x (i+1)
j , then it is solved using

one of the on-variable methods. The procedure of this method can be shown as:

f1(x
(i+1)
1 , x (i)

2 , x (i)
3 , . . . , x (i)

n−1, x
(i)
n ) = 0

f1(x
(i+1)
1 , x (i+1)

2 , x (i)
3 , . . . , x (i)

n−1, x
(i)
n ) = 0

...

f1(x
(i+1)
1 , x (i+1)

2 , x (i+1)
3 , . . . , x (i+1)

n−1 , x (i+1)
n ) = 0 (13)

If the new variables are not updated for the successive equations, the method
converts to Gauss-Jacobi algorithm.

Generally, there are no scheme explaining which sequence should be considered
for each equation andvariable; nonetheless, it is preferable that if an equation contains
only one variable, that equation and variable be considered as the first one. Both
methods converge considerably slower than othermethods. Additionally, thismethod
may not work efficiently if the system is not diagonally dominant or positive-definite
[30].
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3.2 Fixed-Point Method

As the one-dimensional fixed-point method, initially, each equation is assigned to
one variable; then, every equation is split and solve for that assigned variable.

x (i+1)
1 = g1(x

(i)
1 , x (i)

2 , x (i)
3 , . . . , x (i)

n )

x (i+1)
2 = g2(x

(i)
1 , x (i)

2 , x (i)
3 , . . . , x (i)

n )

...

x (i+1)
3 = g3(x

(i)
1 , x (i)

2 , x (i)
3 , . . . , x (i)

n ) (14)

To simply accelerate the convergence order of this method, each new estimation
from previous functions should be replaced in the next functions [8, 30].

It should be stressed that both fixed-point and Guess-Seidel methods neither
require the derivative of a function nor involve high-computational complexities;
besides, these methods can provide a good rough estimation for complicated prob-
lems. However, these methods can be applied for simple problems since these
methods give a low convergence order. In other words, if one encounters prob-
lems demanding lengthy calculation of functions per iteration, the following faster
methods are suggested in order to obtain the final result in fewer iteration [8, 30].

3.3 Newton Method

As the one-dimensionalNewtonmethod, by usingmulti-variable Taylor series expan-
sion, the well-known Newton method for a system of nonlinear equations can be
gained in a matrix form as:

F(x (i+1)) = F(x (i)) + J (x)(x (i+1) − x (i)) (15)

in which J (i) is the n-dimensional Jacobian matrix for n-dimensional column vector
of F(x) and x is the column vector of the unknowns as:

x (i) = [x (i)
1 , x (i)

2 , . . . , x (i)
n ]T (16)

F(x) = [ f1(x), f2(x), . . . , fn(x)]T (17)

J (i) =

⎡

⎢
⎢
⎣

∂
∂x1

f (i)
1 · · · ∂

∂xn
f (i)
1

...
. . .

...
∂

∂x1
f (i)
n · · · ∂

∂xn
f (i)
n

⎤

⎥
⎥
⎦

(18)
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where ∂
∂x is the partial derivative with respect to the unknowns of the problem.

As stated previously, despite being quadratically convergent, this method has
many drawbacks, even more than the one-dimensional case. This method is too
costly since numerous function evaluations, and the derivative thereof should be
calculated at each iteration, in particular, for nonlinear systems with a large matrix.
More importantly, the evaluation of the Jacobian matrix J per iteration can be a
challenging task with an excess amount of time for each process; during the process,
the Jacobianmatrixmay become ill-conditioned or singular, which cause the iteration
procedure to diverge and influence the stability of this method. Another problem
concerning this method is that the iteration process is highly sensitive to an accurate
initial approximation to ensure convergence and control progress path towards the
root of the function, even more than a one-variable case. Hence, this method may
deem to be an expensive method to employ. Keeping this in mind, there are many
remedies proposed to overcome some obstacles regarding these issues and enhance
the efficiency of this method. In the next parts, the most important ones are discussed
[31, 32].

3.4 Quasi-Newton Method

To release difficulties regarding the calculation of the Jacobian matrix for each iter-
ation, quasi-Newton methods have been developed to estimate the Jacobian matrix
at each iteration based on the previous steps.

The Broyden technique as a generalized secant method for multi-variable prob-
lems is a quasi-Newton method that can be used as an alternative method with
a less computational cost. This method employs the Jacobian matrix for only the
initial guess. Then, using the current approximation of the Jacobian matrix Jn−1, this
method updates it at each iteration by the Eq. (19):

J (i+1) = J (i) + F (i) − J (i)x (i)

∣
∣x (i)

∣
∣
2

∣
∣x (i)

∣
∣
T

(19)

where�x (i) = x (i+1)−x (i) and�F (i) = F (i+1)−F (i). In the next step, the successive
approximation of the solution can be obtained by substituting the new estimate of the
Jacobian matrix in the Newton method. This approximation significantly decreases
the computational cost andprovides a superlinear convergence [33].Moreover, unlike
the Newton method, these methods are not self-correcting; that is, round-off errors
are accumulated during successive iterations.

This technique, using the approximation of the Jacobian matrix instead of the
actual value of it, has been developed by other researchers; the correlation method,
Davidon-Fletcher-Powell formula, and Broyden-Fletcher-Goldfarb-Shanno method
for example, are another method to estimate the Jacobian matrix instead of directly
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calculate it. To obtain more insight into these methods, interested readers are referred
to [34–36].

3.5 Steepest Descent Method

An effective way to solve a system of nonlinear equations is by transforming a root-
finding problem to an optimization problem so that the global optimization methods
can be used to solve the problem [37]. One of the well-known methods based on this
idea is the first-order steepest descent method or gradient ascent method that ensures
convergence even with a poor initial guess for a system of nonlinear equations. This
method converts the system of nonlinear equations to a problem of minimizing the
sum of the square of all nonlinear functions, G(x), as:

G(x) =
m

∑

n=1

f 2n (x) (20)

To calculate the minimum of the function G(x), or zeros of nonlinear functions,
this method moves in a direction in which the value of G(x) decreases. To deter-
mine this direction, the property of the gradient of a function and the extreme value
theorem—the maximum of a function occurs when is parallel to ∇G are employed.
Accordingly, thismethod computes−∇G as the direction inwhich themost decrease
in the value of nonlinear functions occurs. Additionally, per Eq. (21), to increase the
efficiency of the method, it is attempted to add and select the best value for α, which
can improve the speed of the method towards the root.

x (i+1) = x (i) − α
(∇G

(

x (i)
))

(21)

To find the best value for α resulting in faster convergence, readers are referred
to the Ref. [8].

The speed of this algorithm is still slow. On the other hand, the calculation of
the gradient of the sum of the square of nonlinear functions is a costly process for
each iteration. As a consequence, thismethodmay not be served as a computationally
efficient method since it does not reduce the amount of calculation. Nevertheless, this
method is suggested to use in combination with other methods, which are sensitive
to the starting point, since it does not depend on the initial guess and can provide a
good rough initial guess. As in the one-dimensional case, this method is similar to
the bisection method used for a scalar equation [38].
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3.6 Leven-Marquardt Method

Like the previous method, the Leven-Marquardt method is used to optimize the
sum of the square of nonlinear functions, to find zeros of the system of nonlinear
equations; except, it estimates the functions in terms of their Taylor expansion. In
this method, firstly, the function of S in terms of the sum of the square of nonlinear
functions is defined as:

S2(x) =
m

∑

n=1

[ f (x)]2 (22)

By using the Taylor expansion (Eq. (16)) of the function f (x), the value of S2

can be yielded as:

S2(x) = F(x)T F(x) − 2FT (x)J (x)h + J T (x)J (x)h2 (23)

where h is the incriminate value equals h = x (i+1) − x (i). Therefore, the minimum
value of S2 can be obtained by setting the derivative of the square of the nonlinear
functions with respect to h equal to zero as:

∂

∂h
S2(x) = −2FT (x)J (x) + 2hT J T (x)J (x) = 0 (24)

where J T (x)J (x) and J T f (x) is the Hessian matrix, H(x), and the gradient of
F(x),∇F , respectively. Thus, by rewriting the Eq. (24), the Gauss–Newton iteration
algorithm can be gained as:

x (i+1) = x (i) + H−1(X)∇F (25)

The above-mentioned equation, which is called Gauss-Newton method, can only
be used when the initial guess is in the vicinity of the roots of the system of nonlinear
equations. Therefore, to resolve this issue, the Levenberg–Marquardt method can be
replaced.According toEq. (26), by addingλ as a damping parameter varying between
0 and 1, this method can interpolate between twomethods of steepest descent method
and Gauss–Newton method. In other words, if the current solution is far from the
actual response, the algorithm becomes slow like the steepest descent method and the
value ofλ is set to be large;while,when the approximated solution is near the accurate
response, the speedof the algorithm increases, approaching aGauss–Newtonmethod.
In this case, the value of λ is set to be small.

x (i+1) = x (i) − [H(x) + λI ]−1∇F (26)
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Note that, in the Levenberg algorithm, if the value of the damping factor becomes
large, the Hessian matrix is never used. To avoid this problem, the process of scaling
can be done based on the curvature of equations so that where the gradient is small
(low curvature), a small value for the damping parameter should be selected to
provide a larger movement. The improved Levenberg algorithm, Eq. (27), connects
the movement to curvature as [39–41]:

x (i+1) = x (i) − [H(x) + λdiag(H(x))]−1∇F (27)

The great advantage of thismethod over theNewtonmethod is finding all potential
roots of a nonlinear system without any requirement for a good initial guess.

3.7 Multi-step Method

This method is an efficient and rapid technique with wide applications in curve-
fitting, approximating the derivative and integral of a function, and solving nonlinear
equations. Generally speaking, in multi-step methods, the information of previous
methods is retained to approximate the value of the next step. Regarding solving
nonlinear equations, multi-step methods are of a more prominent place since it
can lead to a significant decrease in computational time and effort emanating from
computing Jacobian matrix per iteration.

Thebasic idea behind thismethod is using the Jacobianmatrix obtained in previous
steps for the successive steps. As a consequence, the time-consuming process of
calculation of the Jacobian matrix and the lower-upper (LU) factorization in each
iteration is simply removed by following a method without updating the Jacobian
matrix at every single step, which is called the frozen Jacobian method. It can be
stated that this technique can convert an existing one-point iterative method without
memory, like the Newton method, to a multi-step method with memory.

Multi-step iterative techniques comprise two parts, namely base part and multi-
step part. In the base part, the Jacobian matrix and its LU-factorization are calculated
and kept for the next part. By reusing the information of the base-part, multi methods
solve a system of linear equations. For example, the multi-step Newton method is
shown as [42–44]:

Base Newton Method

⎧

⎨

⎩

y0 initial guess
F ′(y0

)

x (i+1) = F
(

y(i)
)

y(i+1) = y(i) − x (i+1)

Multistep Newton Method

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

for i = 1 : m − 1
F ′(y0

)

x (i+1) = F
(

y(i)
)

y(i+1) = y(i) − x (i+1)

end
y(0) = y(m)

(28)
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In the multi-step Newton method, for m ≥ 1 steps, the convergence order of
the Newton method is increased to m + 1, which means that every additional step
increases the convergence order by one. This algorithm may not seem cost-efficient,
but, only one evaluation of the Jacobian matrix for one cycle can justify the wide-
application of this method, in particular, for a large nonlinear system with sparse
matrix. In contrast, for scalar nonlinear equations, this method is not recommended
since it does not have the optimal convergence order [6, 45].

Some improvements concerning increasing the convergence of multi-step
methods have been made. In these methods, it has become feasible to obtain higher
convergence order than m + 1 by using the idea of multi-variable iterative methods.
More details on these algorithms are given in studies [46, 47].

It has been demonstrated that this method, in spite of being efficient from a
computational viewpoint, still requires the derivative of the function, which is not
available for every problem. Hence, in such cases, derivative-free methods, which
are represented below, can be adopted.

3.8 Picard Method

The main idea of the Picard or direct iteration method is splitting the nonlinear
equations into two linear and nonlinear parts to reduce the size of computational
work. In this case, the expensive operator of LU decomposition is only applied to
the linear part. Picard method is a derivative-free technique of the decomposition
technique for solving a system of nonlinear algebraic equations in engineering disci-
plines containing large scale problems. This method arranges the system of nonlinear
equations as:

K (x)x = F (29)

In which x is the vector column of unknowns, K and F are nonlinear coefficient
matrix and the column vector of constants of nonlinear equations, respectively. The
simple iterative method to solve this equation is as:

{x}i = {

K ({x}(i−1))
}−1{F} (30)

However, according to the above formulation, as all nonlinear equations are solved
simultaneously, the coefficient matrix containing nonlinear part should be inversed at
each iteration, which is computationally expensive. Therefore, to solve this issue, the
decomposition technique can be effectively used by splitting the coefficient matrix
into two parts of linear KL and nonlinear KN (x) as:

K (x) = KL + KN (x) (31)
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Instead of inverting of K (x) in Eq. (30), the alternative Eq. (32) can be followed.
In this equation, the operation of inverse is only applied to the linear part. As a
consequence, the computational time can considerably decrease.

{x}(i) = (KL)
−1[F − KN ({x}(i−1)).{x}(i−1)] (32)

To accelerate the convergence of this method, an auxiliary relaxation parameter
γ , which varies between 0 and 1, can be added. By using this parameter, the new
estimation can be substituted by a weighted average of the last two approximations
as [2]:

{x}(i) = γ {x}(i−2) + (1 − γ ){x}(i−1) (33)

It should be pointed out that in this method, this method is of a slow speed;
besides, it is likely that the decomposition process results in the non-singularity of
the coefficient matrix.

3.9 Newton–Krylov Method

Inexact Newtonmethods are practical methods to approximate the resulting equation
of Newton method, instead of exactly solving it. The algorithm of this method can
be shown as:

∥
∥J (x (i))s(i) + F(x(i))

∥
∥ ≤ η(i)

∥
∥F(x (i))

∥
∥ (34)

where η(i) is the forcing term of the i-th iteration varying between [0, 1) and S(i) is the
inexact Newton step (x (i+1) = x (i) + S(i)). In this method, initially, a suitable value
for η(i) is selected; then, the linear equation is approximately solved for S(i). Some
conventional methods to solve the resulting linear equations are classical splitting
methods or the modern Krylov subspace methods. If widely-used Krylov subspace
iteration methods are employed for solving the inexact Newton step, this method is
called the Newton–Krylov subspace method [48].

The determination of forcing term in this method is of great importance that
directly affects the accuracy and convergence of the method as the right-hand side
expression is both a linearmodel of the systemand the residual of theNewtonmethod.
Therefore, a suitable choice of η(i) results in a reduction in the norm of the model
along with an increase in the accuracy of the model. For example, for i = 0 inexact
Newton method converts to the quadratically convergent Newton method [48–50].
To explore some strategies for finding the best value for η(i), readers can be referred
to [51, 52].

In comparison with the previous method, this method is deemed the most efficient
tool for solving a system of nonlinear equations with a large sparse matrix. This



140 N. Mohammadi et al.

method only involvesmatrix–vector products instead of expensive operations like the
inverse Jacobianmatrix andLUdecomposition thereof.Hence, thismethod decreases
the computational cost regarding these operations. In various studies, it is shown that
for small size problems, although thismethod cannot competewith other higher order
Newton methods; for problems with large sparse matrix, this method considerably
decreases the computational cost. Note that, as the Newton method, this method
is locally convergent and require a globalization method. One effective method to
enhance the global convergence of this method is using the backtracking technique—
shortening the interval for an unsatisfactory step.

A downside of this method can be attributed to the calculation of the Jacobian
matrix. Hence, for problems in which constructing the Jacobian matrix is difficult,
the Jacobian free Newton–Krylov method can be replaced. By contrast with other
methods mentioned in previous parts, this method does not calculate or store the
Jacobian matrix, even for the initial approximation; instead, an approximation of
Jacobian-vector product is constructed using the finite difference method. The step
of this finite difference method can significantly affect the accuracy of the Jacobian-
vector product [53, 54].

4 Discussion

In this part, an overall comparative explanation of the described methods, as well
as some examples of the practical usage of these methods in different disciplines,
are presented. As stated previously, the numerical methods for solving scalar equa-
tions can be described in two separate parts: one-point methods and multi-point
methods. Accordingly, one-point methods are the most straightforward methods
offering lower convergence together with ease of implementation. Among different
one-point methods, Newton and Steffensen methods are two one-point methods,
which are the basis of more advanced approaches, with the optimum convergence
order. As these methods require a good initial guess, it is proposed to combine
these methods with other globally convergent methods such as the bisection method.
Chebyshev and Halley methods are other one-variable methods offering the cubic
convergence order by employing the second derivative of a function; however, owing
to somedifficulties for computing a higher-order derivative,multi-pointmethodsmay
be better alternatives increasing the convergence order. Using auxiliary variables in
more steps, multi-point techniques present higher accuracy for the existing methods.
It should be pointed out that every multi-point method with a higher convergence
rate cannot deem an efficient method since need more function evaluations with the
same efficiency as the previous methods.

Regarding the nonlinear system of equations, Gauss–Seidel, and fixed-point
methods as derivative-free algorithms are just suitable for simple problems since
they have slow convergence speed. The well-known Newton method is another
method with quadratic rate of convergence. This method has some limitations, such
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as needing a good initial guess, the time-consuming process of matrix–matrix eval-
uation, and the evaluation of the Jacobian matrix and its inverse. Nevertheless, this
method has widely incorporated with a lot of mathematical software and computa-
tional simulation. One of the main problems in using Newton methods is the costly
evaluation of the Jacobian matrix per iteration. To overcome such an issue, the esti-
mation of this matrix, instead of directly computing, is suggested by Quasi-Newton
methods for problems in which the derivatives of the function are not available, or
the calculation of them is time-consuming. The quasi-Newton methods have also
been used to solve Maxell’s equations and Navier–Stokes equations [5].

Multi-step methods with frozen Jacobian are another technique that can be a
remedy to the costly evaluation of the Jacobianmatrix per iterationwith increasing the
convergence order. As scalar equations, the multi-point techniques can also enhance
the convergence and effectiveness of these methods. Multi-step methods have also
successfully been adopted for solving nonlinear Poisson, heat conduction, and wave
equations [29, 42, 43]. Another way to solve multi-variable nonlinear equations
is using global optimization methods to find all zeros of a nonlinear system, even
with a poor initial guess. Despite being efficient, most of these methods require the
computation of derivatives of the functions. These methods are also popular methods
that have extensively incorporated in mathematical software. Picard method based
on the decomposition technique is also defined as a derivative-free and straightfor-
ward method; it, though, may show instability for complex problems. As one of the
commonly-usedmethods, theNewton-likemethods can provide lower computational
time for problems with a large sparse matrix. Of various techniques, Newton–Krylov
method, as a Newton-like method, may be the best option in solving a complicated
nonlinear system.The Jacobian-freeNewton–Krylovmethodhas also been employed
to solve a wide range of problems, including radiation diffusion, Bratu, Navier–
Stokes, and Maxwell’s equations [49, 50]. Moreover, this method has been incorpo-
rated inmany computational and simulation software. For the sake of comparison, the
numerical characteristics of these numerical methods are also given in the Table 2.
To the best of our knowledge, this chapter reviewed some general iterative tech-
niques to solve nonlinear equations. However, there are other numerous developed
techniques that are an improved version of the existing methods or a combination of
them.

There are also some tangible cases displaying the application and importance
of the discussed methods in real-world applications. As some notable examples,
the fixed-point method has been extensively employed for solving the magnetic
hysteresis field problems [56, 57]. The gradient-family methods have also been used
in microwave imaging applications [55, 58, 59]. In the application of piezoelectric
material as an energy harvester, the Newton and Picard method is also adopted to
address the nonlinear behavior of structures with piezoelectric material actuators
[60, 61]. In computational plasma physics, the Newton–Krylov methods are also
employed to solve many diverse cases; these applications are all given in a study by
Knoll and Keyes [49]. It should be pointed out that the aforementioned examples are
only a limited number of cases demonstrating broad applications of iterativemethods
in energy applications. Obviously, given the potential capability of each technique,
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Table 2 A comparative study of numerical methods for solving a nonlinear system of equations

Methods Derivative free Convergence
speed

Globally
convergent

LU factorization

Gauss–Seidel Yes Slow No 0

Fixed point Yes Slow No 0

Newton No Fast No Number of
iterations

Quasi-Newton Noa Slow No 0

Steepest descent No Slow Yes Number of
iterations

Leven-Marquardt No Fast Yes Number of
iterations

Multi-Step Noa Fast Yes/Nob ≥1

Picard Yes Slow No 1

Newton–Krylov Noa Fast No 0

aThe derivative is only needed for the initial guess
bIt depends on the algorithm

these iterative methods can be adopted for solving other types of applications and
equations.

5 Conclusion

Nonlinear analysis is an essential part of every discipline. In some applications,
nonlinear solutions should be unavoidably employed to address some nonlinear
phenomena, such as the dynamic behavior of wind turbines, the analysis of the
damage within the structures, or the behavior of some novel materials. Keeping
the leading role of the nonlinear solution methods in mind, this chapter provides an
overview of some fundamental numerical methods and their attributes for solving the
nonlinear discretized equations. Having dealt with some iterative numericalmethods,
in this part, this chapter is enclosedwith concise results gained through this investiga-
tion, as well as some comments on future and ongoing directions in the development
of iteration methods for solving nonlinear discretized problems.

To sum up, it may be concluded that for selecting a proper method for solving
nonlinear equations, the equations themselves and the final accuracy always should
be examined in selecting a method since employing some complex solution methods
may seem unnecessary. On the other hand, there are some general factors specifying
the best efficient technique for a problem. In dealing with scalar nonlinear equations,
the number of call functions, convergence order, initial guess, and smoothness are
determining factors in selecting amethod. Regarding a system of nonlinear equations
together with the above factors, other criteria should be considered, in particular, if
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one is dealing with a complex system of nonlinear equations. For example, matrix–
matrix operation, vector–matrix operation, the evaluation of Jacobian matrix and its
inverse are other factors that are critical in choosing the best method.

Further development of more efficient and robust methods for nonlinear equations
can be directed in the following way. Regarding scalar iterative methods, more effi-
cient methods can be developed by establishing multi-point iterative methods with
optimum convergence. Many ongoing researches are focusing on finding a suitable
weight function or involved free parameter for the existing method that provides
optimum convergence order.

With respect to iterative methods for solving the nonlinear system of equations,
these solution methods have a prominent place in the foreseeable future due to the
extensive application of them in advanceddesign and research aswell asmany intrica-
cies regarding these methods. For example, concerning multi-step methods, there are
still numerous continuing researches offering the optimal and higher convergence
order. Moreover, developing some techniques to smooth or globalize the existing
method and prevent them from diverging is the area of interest in this field. Another
promising place can be related to Newton–Krylov methods. According to the merits
and potential applications of these methods, a considerable number of researches
during the very recent years have been focused on this topic; this area is still in
progress. As the last remark, the combination of methods can assist researchers
in enjoying the positive attributes of each method, as many techniques have been
developed only by combining different existing methods.
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23. Thukral R, Petković MS (2010) A family of three-point methods of optimal order for solving

nonlinear equations. J Comput Appl Math 233(9):2278–2284
24. Sharifi S, Salimi M, Siegmund S et al (2016) A new class of optimal four-point methods with

convergence order 16 for solving nonlinear equations. Math Comput Simul 119:69–90
25. Zafar F, Cordero A, Torregrosa JR (2019) Stability analysis of a family of optimal fourth-order

methods for multiple roots. Numer Algorithms 81(3):947–981
26. Artidiello S, Cordero A, Torregrosa JR et al (2015) Design of high-order iterative methods for

nonlinear systems by using weight function procedure. Abstr Appl Anal. https://doi.org/10.
1155/2015/289029

27. Soleymani F (2012) Optimized Steffensen-type methods with eighth-order convergence and
high efficiency index. Int J Math Math Sci. https://doi.org/10.1155/2012/932420

28. Zheng Q, Li J, Huang F (2011) An optimal Steffensen-type family for solving nonlinear
equations. Appl Math Comput 217(23):9592–9597

29. Qasim S, Ali Z, Ahmad F et al (2016) Solving systems of nonlinear equations when the
nonlinearity is expensive. Comput Math Appl 71(7):1464–1478

30. Sadiku MN (2000) Numerical techniques in electromagnetics. CRC press
31. Ahmad F, Tohidi E, Carrasco JA (2016) A parameterizedmulti-stepNewtonmethod for solving

systems of nonlinear equations. Numer Algorithms 71(3):631–653
32. Nili Ahmadabadi M, Ahmad F, Yuan G et al (2016) Solving systems of nonlinear equations

using decomposition technique. J Linear Topol Algebra 5(03):187–198
33. Kelley CT (1995) Iterative methods for linear and nonlinear equations. Siam
34. Shademan A, Farahmand AM, Jägersand M (2010) Robust Jacobian estimation for uncali-

brated visual servoing. In: 2010 IEEE International conference on robotics and automation,
Anchorage, AK, USA, May 2010. IEEE, p 5564

35. Lapresté JT, Jurie F, DhomeM et al (2004) An efficient method to compute the inverse Jacobian
matrix in visual servoing. In: 2004 IEEE International conference on robotics and automation,
New Orleans, LA, USA, USA, April 2004. ICRA’04, vol 1. IEEE, p 727

36. Mansard N, Lopes M, Santos-Victor J et al (2006) Jacobian learning methods for tasks
sequencing in visual servoing. In: 2006 IEEE/RSJ International conference on intelligent robots
and systems, Beijing, China, October 2006. IEEE, p 4284

37. Tsoulos IG, Stavrakoudis A (2010) On locating all roots of systems of nonlinear equations
inside bounded domain using global optimization methods. Nonlinear Anal Real World Appl
11(4):2465–2471

https://doi.org/10.1155/2015/289029
https://doi.org/10.1155/2012/932420


Numerical Methods for Solving Nonlinear Equations 145

38. Johnson R, Zhang T (2013) Accelerating stochastic gradient descent using predictive variance
reduction. In: Advances in neural information processing systems, vol 26. Neural information
processing systems, Lake Tahoe, Nevada, December 2013, p 315

39. Ranganathan A (2004) The Levenberg-Marquardt algorithm. Tutoral LM Algorithm
11(1):101–110

40. Shukla PK (2010) Levenberg-Marquardt algorithms for nonlinear equations, multi-objective
optimization, and complementarity problems. Dissertation, Dresden University of Technology

41. Moré JJ (1978) The Levenberg-Marquardt algorithm: implementation and theory. Numerical
analysis. Springer, Heidelberg

42. Ilyas I, Ali Z, Ahmad F et al (2017) Multi-step frozen Jacobian iterative scheme for solving
IVPs and BVPs based on higher order Fréchet derivatives. J Math 49(1):125–137

43. Kouser S, Rehman SU, Ahmad F et al (2018) Generalized newton multi-step iterative methods
GMN p, m for solving system of nonlinear equations. Int J Comput Math 95(5):881–897

44. Shah FA, Noor MA (2015) Some numerical methods for solving nonlinear equations by using
decomposition technique. Appl Math Comput 251:378–386

45. KungHT, Traub JF (1974) Optimal order of one-point andmultipoint iteration. J ACM (JACM)
21(4):643–651

46. Alzahrania EO, Al-Aidarousa ES, Younasa AM et al (2016) A higher order frozen Jacobian
iterative method for solving Hamilton-Jacobi equations. Convergence 1000:1

47. Montazeri H, Soleymani F, Shateyi S et al (2012)On a newmethod for computing the numerical
solution of systemsof nonlinear equations. JApplMath. https://doi.org/https://doi.org/10.1155/
2012/751975

48. Shin BC, Darvishi MT, KimCH (2010) A comparison of the Newton-Krylov method with high
order Newton-like methods to solve nonlinear systems. Appl Math Comput 217(7):3190–3198

49. Knoll DA, Keyes DE (2004) Jacobian-free Newton-Krylov methods: a survey of approaches
and applications. J Comput Phys 193(2):357–397

50. An HB, Wen J, Feng T (2011) On finite difference approximation of a matrix-vector product
in the Jacobian-free Newton-Krylov method. J Comput Appl Math 236(6):1399–1409

51. An HB,Mo ZY, Liu XP (2007) A choice of forcing terms in inexact Newton method. J Comput
Appl Math 200(1):47–60

52. Gomes-RuggieroMA, LopesVLR, Toledo-Benavides JV (2008)A globally convergent inexact
Newton method with a new choice for the forcing term. Ann Oper Res 157(1):193–205

53. Eisenstat SC, Walker HF (1994) Globally convergent inexact Newton methods. SIAM J Optim
4(2):393–422

54. Chen Y, Shen C (2006) A Jacobian-free Newton-GMRES (m) method with adaptive precondi-
tioner and its application for power flow calculations. IEEETrans Power Syst 21(3):1096–1103

55. Mojabi P, LoVetri J (2009) Overview and classification of some regularization techniques
for the Gauss-Newton inversion method applied to inverse scattering problems. IEEE Trans
Antennas Propag 57(9):2658–2665

56. Dlala E, Arkkio A (2008) Analysis of the convergence of the fixed-point method used for
solving nonlinear rotational magnetic field problems. IEEE Trans Magn 44(4):473–478

57. Dlala E, Belahcen A, Arkkio A (2007) Locally convergent fixed-point method for solving
time-stepping nonlinear field problems. IEEE Trans Magn 43(11):3969–3975

58. Rubæk T, Meaney PM, Meincke P et al (2007) Nonlinear microwave imaging for breast-
cancer screening using Gauss–Newton’s method and the CGLS inversion algorithm. IEEE
Trans Antennas Propag 55(8):2320–2331

59. De Zaeytijd J, Franchois A, Eyraud C et al (2007) Full-wave three-dimensional microwave
imaging with a regularized Gauss-Newton method—theory and experiment. IEEE Trans
Antennas Propag 55(11):3279–3292

60. Komijani M, Reddy JN, Eslami MR (2014) Nonlinear analysis of microstructure-dependent
functionally graded piezoelectric material actuators. J Mech Phys Solids 63:214–227

61. Yang J, Kitipornchai S, LiewKM (2004) Non-linear analysis of the thermo-electro-mechanical
behaviour of shear deformable FGM plates with piezoelectric actuators. Int J Numer Methods
Eng 59(12):1605–1632

https://doi.org/
https://doi.org/10.1155/2012/751975

	 Numerical Methods for Solving Nonlinear Equations
	1 Introduction
	2 One-Variable Nonlinear Equations
	2.1 One-Point Methods
	2.2 Multi-point Methods

	3 System of Nonlinear Equations
	3.1 Gauss–Seidel Method
	3.2 Fixed-Point Method
	3.3 Newton Method
	3.4 Quasi-Newton Method
	3.5 Steepest Descent Method
	3.6 Leven-Marquardt Method
	3.7 Multi-step Method
	3.8 Picard Method
	3.9 Newton–Krylov Method

	4 Discussion
	5 Conclusion
	References




