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Abstract The chapter presents some advanced numerical methods based on Artifi-
cial Intelligence (AI) techniques applied to specific electrical engineering problems.
A theoretical description is done regarding the basic aspects of the nowadays most
commonly used Al techniques: Neural Networks, Fuzzy Logic, and Genetic Algo-
rithms respectively. The presented Al techniques are exemplified through two specific
electrical engineering application implemented by the authors in their previous
research projects. The first application consist in the identification of the optimal
equivalent horizontally layered earth structure by means of a Genetic Algorithm
according in site soil resistivity measurements. The second application provides
a Neural Network alternative two evaluate the impedance matrix that describes
the electromagnetic coupling between overhead powerlines and nearby under-
ground pipelines for different separation distances and various vertically layered
soil structures.
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EA Evolutionary Algorithms
FEM  Finite Element Method
FL Fuzzy Logic

FLS  Fuzzy Logic Systems
GA Genetic Algorithms
HVPL High Voltage Power Line
MGP Metallic Gas Pipeline
ML Measurement Location
NN Neural Networks

SM Surrogate Models

1 Introduction

The first definition for Al, which is still one of most accepted ones, was given in 1955
by McCarthy: “making a machine behave in ways that would be called intelligent if
a human were so behaving” [1].

The Al technics represents a class of heuristic methods for solving the last decade’s
issues, that were born from the desire of implementing a system with the capacity
to mimic the human mind. One of the most fundamental methods is the capacity
of learning with or without external help and even with the purpose of permeant
improvement. This method is usually used as a quick alternative for the old methods
that requires a high effort and a long time of calculus compilation.

The main Al techniques that are used nowadays are Fuzzy Logic (FL), Neural
Networks (NN), Genetic Algorithms (GA), Surrogate Models (SM) and Evolutionary
Algorithms (EA) [2].

The main purpose of this chapter is to highlight the basic theoretical aspects of the
most commonly used Al techniques (Genetic Algorithms, Fuzzy Logic and Neural
Networks) and to exemplify how they could be implemented in case of specific
electrical engineering applications.

Section 2 makes a brief introduction to the theoretical aspects regarding Genetic
Algorithms based optimization techniques, presenting their structure, different chro-
mosomal coding techniques and the basic GA operators. The next section describes
how Fuzzy Logic Systems (FLS) work and main implementation steps (fuzzification,
FL rule base interface and defuzzification respectively). Section 4 presents the basic
theoretical aspects regarding Neural Networks: the structure of an artificial neuron,
the main activation functions, the most commonly used NN architectures and training
techniques.

The first demonstrative application (Sect. 5) shows how a genetic algorithm could
be implemented to determine the optimal equivalent horizontal soil structure based
on soil resistivity measurements. The second application (Sect. 6) exemplifies the
implementation of Neural Networks in order to determine the inductive coupling
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matrix in case of electromagnetic interference problems between overhead power
line and nearby metallic pipelines.

2 Genetic Algorithms

Genetic Algorithms are part of the evolutionary computing strategies and represent
a series of adaptive heuristic techniques based on the principle of natural selection:
“The one who is best suited survives”. The idea of evolutionary calculus was intro-
duced in 1960 when several biologists began to use computers to simulate biological
systems [3, 4].

Usually, genetic algorithms are used to solve multi-criteria optimization, planning
or nonlinear search problems. They constitute a set of adaptive procedures that could
find the solutions of a problem through a mechanism of natural selection and genetic
recombination/evolution. The mechanism was introduced and analysed by J. Holland
[5], being characterized by the fact that only the species (the solutions) that are better
adapted to the environment (to the investigated problem) are able to survive and
evolve over generations, while the less adapted ones will disappear. The likelihood
of a species to survive and evolve over generations becomes greater as the degree of
adaptation grows, which in terms of optimization it means that the solution is getting
closer to an optimum.

2.1 Structure of a Genetic Algorithm

Genetic Algorithms start from an initial set of solutions, randomly generated or based
on prior knowledge, referred as “population” in the literature. In this population, each
individual represents a possible solution of the investigated problem and is defined
by its “chromosome” structure (its coding). Within the GA the starting population
is subjected to an iterative process, exemplified in Fig. 1, through which an optimal

Population Selection

Evaluation

Mutation Crossover

Fig.1 The structure of a genetic algorithm
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solution of the studied problem is determined. An iteration of this optimization/search
process is known in literature as “a generation” of the genetic algorithm.

The iterative process that underlies any genetic algorithm can be defined by the
following steps:

Step 1: Creation of a set of initial possible solutions (“individuals™) that will form
the starting population of the investigated problem;

Step 2:  Selection based on an objective (“fitness”) function of the individuals from
the current generation population, that have adapted best to the needs of the
problem that has to be solved;

Step 3: The selected individuals are subjected to genetic operators (such as
“crossover’” and “mutation”) to form the population of the next generation;

Step 4: Evaluate the degree to which the members of the new generation correspond
more adequately to the requirements of the studied problem;

Step 5: The population of old generation is abandoned, and the iterative process is
resumed from Step 2.

Such a cycle is repeated until the best solution of the problem is identified or a
predetermined number of generations/iterations has been reached [6, 7].

2.2 Chromosome Structure of an Individual

The chromosome structure of an individual defines how a candidate solution of
the investigated problem is represented within a genetic algorithm. This consti-
tutes the whole set of “genes”, the parameters of an individual that must be deter-
mined/optimized for the studied problem. The genes of an individual can be repre-
sented either in binary form (Fig. 2a), through a finite string of 0 and 1 values, or in
natural form (Fig. 2b) by a real value, generally in the range of O to 1.

In order to evaluate how each parameter (“gene”), that has to be optimized, corre-
spond to the requirements of the investigated problem, a cost function, f, has to be
defined, for each gene, g. The overall performance of an individual (possible solution)
regarding the problem in question is determined by the GA objective (or “fitness”)
function, that is given by the weighted sum of these cost functions, see Eq. (1):

1 n
F= ;-2@i~fc,~<g,~>> (1)
=
Gene A Gene B Gene C Gene A Gene B Gene C
Lof1fof1falafofa]o[1]1]0] [ 0333 | 087 | o400 |
a) b)

Fig. 2 Chromosome structure of an individual: a binary form, b natural form
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where: n is the total number of parameters, p; indicates the importance of the gene
gi,i=1.n.

Within the iterative process of optimizing the solution, a minimization or maxi-
mization of the fitness function must to be achieved according to the investigated
problem [8].

2.3 Selection Operator

The selection operator plays an important role in a genetic algorithm. This operator
decides which of the individuals of a population will be able to participate in the
formation of the next generation population. The purpose of the selection is to ensure
more chances of “survival” / “reproduction” for the best performing individuals in
a given population. The selection aims to maximize the performance of individuals
(possible solutions to the problem in question).

2.4 Crossover Operator

The crossover operator is the most important operator in the optimization process.
This operator applies to individuals in the current population for the purpose of gener-
ating individuals for the next generation, and thus ensuring the convergence of the
problem. The mechanism of the crossover operator is highly dependent on the gene
coding mode of the chromosome structure. Usually, the crossover operator applies to
two parents (possible solutions) from the current population and provides two descen-
dants (new solution configurations) for the next generation population. Descendants
obtained through the crossover operation, will have characteristics from both parents.
Due to its major importance, several crossing methods have been proposed in the
literature [9, 10].

2.5 Mutation Operator

The mutation operator has the role of maintaining the diversity of the search space
population by introducing individuals that could not be obtained through other
mechanisms. This operator consists in randomly changing the value of a single
gene/position in the chromosome structure of an individual. In the case of a binary
gene coding, the process of mutation implies the negation of a bit in a gene, while
in the case of natural form coding it implies a small variation of the value of a gene,
see Eq. (2):

genA = genA +§& 2)
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where: genA is the value of the parameter represented by gene A, and & is the applied
perturbation [11].

Mutation is a probabilistic operator. Considering a population of N individuals,
each one having n genes, the probability of a gene to undergo a mutation will be
Pm, m = 1..N n. According to GA implementation these probability values could be
equal or not equal for each gene.

There are several ways to apply a mutation operator. One of them would be the
change in formatting. In this case for each position in the chromosome structure of
an individual selected for mutation, a random number, g, is generated in the interval
[0,1]. If g > p,,, then the mutation operator is executed, for that chromosome position,
otherwise the position remains unchanged [10].

3 Fuzzy Logic

Fuzzy Logic (FL) offers an alternative, to classical linear equation-based methods, for
dealing with problems that describe system operations. It is used especially when the
connections between the input and output data of a system are too complex and cannot
be defined exactly, due to a significant level of uncertainty in the analysed problem.
In case of Fuzzy Logic Systems (FLS), conventional algorithms are replaced by a
set of rules of the form IF (premise) THEN (conclusion). This results in a heuristic
algorithm that takes into account operator’s experience in describing the investigated
system.

The basis of the fuzzy set theory was laid by L.A. Zahed in 1965 [12]. From a
mathematical point of view, the object of FL is to make a connection (application)
between the set of input data of a system and its output values. This connection is
made based on a set of IF—THEN type laws or reasoning. All the laws are evaluated
in parallel and their order do not affect the outcome values.

Fuzzy Logic Systems work only with linguistic/fuzzy values. Therefore, all the
input data must undergo a “fuzzification” process that transforms the actual values
into fuzzy sets, and the obtained results has to be subjected to a “defuzzification”
process for later use [13, 14], as in Fig. 3 can be seen.

‘wlipitd R1: IF ... THEN ... \

. : R2: IF ... THEN ... \ i
Rn:IF..THEN .. | \ \
M i |} ! M F | \

Input Data Fuzzification Fuzzy Rule Base Defuzzification Result
Process Process

Fig. 3 Operation of a fuzzy logic system
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3.1 Fuzzification

Fuzzification is the process by which the actual data provided at the input of a FL.S
block is transformed into linguistic variables defined by fuzzy sets. The notion of a
fuzzy set has been introduced as a generalization of the concept of binary membership
of an element to a set. Each fuzzy set is associated with a characteristic/membership
function that provides a value in the [0,1] range. This value describes the degree of
the belonging of an element to that fuzzy set [15], as in (3) is presented.

ua X — [0, 1] 3)

A fuzzy set is completely defined by its membership function. Most of the fuzzy
sets used practical applications have a membership function defined over the set of
real numbers. Therefore, is the most convenient way to express these membership
functions as analytical equations [15].

3.2 Inference

The most important component in describing a fuzzy logic system s set of rules (laws)
that are applied. The mathematical interpretation of these IFF — THEN sentences
is done through the inference process, which has several distinct parts. First, the
premises are evaluated, which involves providing the input data and applying the
fuzzy membership functions. Then the proper consequence of a fuzzy law is applied
to the output values, this operation is known as an implication. The premise of a
fuzzy rule can have several parts joined by fuzzy operators of “AND” or “OR” type
[16], like in (4):

IF x; isA AND x; is BTHEN y is V
IF x; is C AND x, is D THEN y is W 4@

where: x;, x, are input values; A, B and C, D are fuzzy sets for input data x; and x;
respectively; y is the FLS output and V, W are fuzzy sets corresponding to y.

Each part of the premise is evaluated separately, assigning a specific value to the
fuzzy operators. The way in which these “AND” / “OR” operators are mathematically
interpreted depends on the inference method adopted. The most commonly used
inference methods in the literature are the Max—Min, the Max-Product and the Sum-
Product respectively [15].
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3.3 Defuzzification

The result of the inference are fuzzy sets attached to the FLS output values. In order
to turn these fuzzy sets into real values, they must undergo a defuzzification process.
The task of this operation is to determine that unique value from a given range
belonging to each output data that best fits the resulting fuzzy sets.

Among the most common methods of defuzzification, in the literature, there are
the centre of gravity method, the centre of sums method and the height method
respectively [17].

4 Neural Networks

The most complex neural network in nature is the human brain, this inspired scientist
to try to mimic it by designing Artificial Neural Networks (ANN). As in nature,
ANN are constructed from smaller building blocks called neurons. The first attempt
to schematically represent the mathematic model of an artificial neuron was made in
the early 1940s by McCulloch and Pits [18].

As Fig. 4 shows, the architecture of an artificial neuron follows the structures
of the biological neuron, being a system with variable number of m input data x;,
k = 1..m, and a single output value y. The m input values of an artificial neuron
are multiplied by coefficients wy, called the weights, and then summed together.
The value thus obtained is added to a parameter b called bias value. The final sum,
denoted by £, is applied as argument to the transfer function of the artificial neuron.
This function is also known as activation function, f,, in the literature and can have
various mathematical implementations [19-21].

Thus, the output of an artificial neuron is generally described by Eq. (5):

y =fa(h) ®)

where:

—

LR b

Fig. 4 Structure of a biological (a) and artificial (b) neurons [22]
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m

h:Z(xk~wk)+b (6)

k=1

The weights and the bias of an artificial neuron are adjustable parameters, and
their values are determined during the neural network training process, in order to
obtain the desired network behaviour. Therefore, when using a neuron, the output
depends only on the set of input data and the used activation function.

4.1 Activation Functions

The activation function of a neuron is generally a bounded and monotony increasing
function, as in Eq. (7), with values between 0 and 1 or between —1 and 1:

[fuW| <M, M € (0, +00),£,(h) > 0 )

Each neuron of an artificial neural network can have its own activation function,
however, usually, the same activation function is used for all neurons that form a
layer. If back-propagation error technique is used to train the neural network, then
it is necessary to know the first derivative of applied activation/transfer functions. In
most application, for the output layer of neurons a linear transfer function is used
while for the intermediate (hidden) layer neurons sigmoid type transfer functions are
implemented.

4.2 Neuronal Networks Architecture

The output of a neural network is highly influenced by its architecture, how the
neurons that form it are interconnected. As a NN architecture we understand the struc-
ture, more precisely the number of layers, the activation functions and the number
of neurons used on each layer. A layer of neurons is formed by all the neurons that
work in parallel with the same input data and have the same destination for their
output data. Figure 5 shows the working configuration of a layer of neurons:

The weights of the neurons forming a layer can be grouped and placed in a matrix
of weights W, while the bias values could be collected in a vector B [20], see Eq. (8):

Wil Wi - Wiy b

Wa1 W22 - Wig

W: ,B: ... (8)

Wi, Wm,2 ** Wmn bm
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Fig. 5 Structure of a layer of neurons

Usually, the same activation function f, is used for all the neurons from a specific
layer. Therefore, the output values of a layer of neurons could be expressed as:

yi=fah)), i=1.n 9
with:

Zxk wei) +bi, i =l.n (10)

k=1

The matrix form of the above equation in given by:
[H] = [W]" - [x] + [B] (11

The architecture of a specific NN could contain one or several layers of neurons.
Output layer is called the layer of neurons that provides the final output data a neural
network. This layer cannot be missing from the structure of any neural network. The
neuron layers that interpose between the NN input data and the input values of the
output layer are called hidden layers. In some literature references the first layer of
neuros is called also as the input layer [21].

Figure 6 shows a simplified representation a feed-forward neural network with
one hidden/input layer and one output layer. The following notations are used in
Fig. 6: x;, k = I..m for the m NN input data values; v;, j = I..r for the r output
values of the hidden/input layer neurons; y;, i = I..n for the n output values of the
NN; and w/y;, respectively w?y; for the weights of the neurons in the two layers of
the presented network configuration.
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Fig. 6 Simplified diagram
of a multi-layer feed-forward
neural network [22]

X1 Y
2 Y2
x3 Y
Xm Yn

Based on this simplified representation the mathematical form of the output data
of a feed-forward neural network, with one hidden layer and one output layer, can
be easily deduced according to equations (9—11). Thus, the arguments of the hidden
layer neurons activation function are given by:

m

k=1

while the output values of the hidden layer neurons are obtained through:

v = £l () = 1, <Z (xk~w,i‘j)+b;>,j= Lr (13)

k=1

Therefore, the arguments of the output layer activation functions will be given by:

=3 (o) = D (1 k) 481) o 1=
j=1 j=1

k=1
(14)

Finally, the general NN output data could be evaluated with equation (15):

vi=f2(13) = f? i(ﬁ(i(xk.w,lgj)m})-wj%i>+b% Ji=1l.a (15)

j=1 k=1

Due to the above presented mathematical form, feed-forward neural networks
can approximate/replace any kind of function. By using multiple hidden layers of
neurons with sigmoid activation functions, a very good approximation could be
obtained even for nonlinear relations between the NN input and output data. Linear



104 L. Czumbil et al.

transfer functions applied on output layer neurons allows the network to provide any
kind of output values. On the other hand, if it is desired to limit the output values, a
sigmoid transfer function is advised to be used on the output layer [23].

A particular type of NN is the so-called radial basis neural network. This network
contains a single hidden layer of neurons that uses the exponential function as transfer
function. On the output layer, the linear activation function is used, similar to most
feed-forward neural networks.

Recurrent neural networks have been also developed. In this case, the neurons
from the hidden layers of the network, receive as input data and their own output
value or the output data of nearby neuron layers. Recurrent neural networks are
usually used in for the implementation of dynamic systems. For this reason, these
networks are also called sequential networks [24].

Howeyver, the most common network architecture remains the feed-forward one
due to the ease of implementation and training.

4.3 Training of Neural Networks

The process through which a neural network is taught to provide at its output the
values of a specific desired function is called training. During the training process, the
weights and bias values of the neurons are established so that the y outputs generated
by network for a set of x input data, would be as close as possible to the target y*
values. Figure 7 graphically presents the error backpropagation principle in the NN
training process.

Based to this principle the weights and bias values are continuously adjusted
through an iterative process according to the error between the actual NN output
values and the network desired ones. Several training algorithms were devel-
oped from this basic error backpropagation principle like: gradient descent algo-
rithms; conjugate gradient algorithms; quasi-Newton algorithms; and Jacobian based
Levenberg—Marquardt and Bayesian Regularization algorithms [24].

Usually, a large number of input/target output pairs (x, y*) are used to train a neural
network. The values of the weights and biases depend on the applied training algo-
rithm and error evaluation technique. The evaluation of the error between the provided
NN output data and the target values is done through a cost (“fitness”) function. Since

Fig. 7 Error
backpropagation principle
used to train neural networks

Neural
Network
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the cost functions express the deviation from the desired NN behaviour, these func-
tions are also called as quality indicators of the networks. The most commonly used
quality indicator is the mean square error [24], see Eq. (16).

1 t. 2

i=1

5 Identification of the Proper Equivalent Multi-layer Earth
Structure Through a Genetic Algorithm Based Al
Technique

5.1 Description of the Presented Application

Several electrical engineering applications like grounding grid design for power
substations or strategic buildings, cathodic protection design of underground metallic
gas or oil pipelines, design of lightning protection system require as a first step a
proper knowledge of the earth structure from an electrical (soil resistivity) point of
view. The following application meant to exemplify how genetic algorithm based
optimization techniques could be applied in electrical engineering.

In order to determine the equivalent multi-layer earth structure corresponding
to on site soil resistivity measurements the authors have developed an Al based
optimization technique [25, 26]. The implemented genetic algorithm identifies the
optimum value of the resistivity and the width of each soil layer considering hori-
zontal multi-layer earth model, in order to reconstruct the measured apparent soil
resistivity data.

The developed GA optimization will be applied to determine the proper multi-
layer soil structure for two different locations (ML1 and ML2) where on-site Wenner
type soil resistivity measurements were carried out. Obtained earth structure data are
compared to soil configurations provided by dedicated software applications (the
RESAP tool from the CDEGS software package [27]).

5.2 Implemented Genetic Algorithm

The implemented GA starts from a population of 30 individuals, randomly generated,
each of them representing a possible configuration of the multi-layered soil model that
has to be determined. The chromosome structure of each possible solution contains
the resistivity, respectively the thickness of the equivalent soil layers.
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To determine the optimal soil structure, the implemented GA uses a cost function,
Eq. (17), that evaluates the mean square error between the Wenner apparent resistivity
curve, obtained through soil resistivity measurements (see Fig. 8), and the apparent
resistivity curve, related to a possible multi-layer earth configuration:

n

1
MSQeyr = — 3 [pa(di) = pra(d) (17)

i=1

where: MSQg,, is the mean square error; n is the number of measurement points;
pa(d;)is the apparent soil resistivity value measured through the Wenner method; and
PEq(d;) s the apparent soil resistivity value corresponding to a horizontal equivalent
multi-layered earth model, numerically computed for a depth d;, i = 1..N.

For the numerical evaluation of the apparent soil resistivity, related to a possible
soil configuration, the following equation was adopted [28]:

PEa(d) = p1 - [1+2-F(d) — FL(2- d)] (18)

where the value of the F(d) function is given by the semi-infinite integral:

K - e*2~)vh1

————— - Jy(A-d) -dA 19
e D) 19)

FL(d)=2-d~/oo
0

with Jy(led) the first kind, zero order, Bessel function and K;; a coefficient
determined by:

k4K ee
- 1— k] . KL2 . e 2Mh

1 (20)

and

j=1.L—2 1)
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where K;;.; = k;.;, L being the number of horizontal layers, A; the thickness of
the jth layer and k; the reflection coefficient between layers j and j + I with soil
resistivity p; and pj,; respectively:

ko= P

(22)
Pj+1 + pj

5.2.1 The Iterative Optimization Process

To obtain the optimal equivalent earth horizontal model, the set of possible solutions,
from the initial GA population, is involved in an iterative process defined by the
following steps [25]:

Step 1: The cost function is evaluated for all the possible soil configuration from
the current GA population and the best suited ones are directly transferred
to the next GA generation;

Step 2: Two soil configuration are randomly selected and subjected to the crossover
operator to obtain two new equivalent soil configurations with lower cost
function values for the GA next generation;

Step 3: The previous step is repeated until the next GA generation will have the
same number of individuals (possible solutions) as the current one;

Step 4: In order to maintain solution diversity four soil configurations are randomly
selected and the mutation operator is applied on them;

Step 5: The iterative GA optimization process restarted form Step 1.

The maximum number of GA iterations was set to N = 2000, a value identified
by the authors to be high enough to obtain accurate soil configurations. This way,
the implemented GA identifies the optimal parameters of a specific multi-layer earth
structure, according to on site Wenner apparent soil resistivity measurements.

5.2.2 Chromosome Structure
Each possible soil configuration solution is represented in the GA optimization
process by its chromosome structure formed by the resistivity and thickness of each

soil layer scaled to [0,1] range, as in Eq. (23).

C={pi,h,p2,ha,...,p0} (23)
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5.2.3 Crossover Operator

During the crossover process, six new soil configurations are obtained from the
initial two solutions selected for crossover recombination, applying three different
crossover operators. The first two configuration (GA children) are obtained through
an arithmetic crossover operator, Eq. (24):

Cl=a-P 4+ (l—a) P,
Cy=a-Py+(1—a)-P (24)

where: o is a randomly determined scaling factor, ¢ denotes the rth parameter of an
equivalent soil model, C; and P; represent the ith GA child configuration and jth GA
parent soil configuration.

Another two new soil configurations are obtained using a Max—Min type crossover
operator, Eq. (25):

C} = min(P}, P})
C; = max(P}, P}) (25)

The last two GA child soil configurations are generated applying the classical
cut-point crossover operator [8], Eq. (26):

Csz(p: ...pllcp’2‘+1 ...pg)
C6=(P21-~~P'2‘ p’lf+1 p{) (26)

where k is a randomly selected cut point and r is the total number of chromosome
structure parameters.

From these six GA child configurations the best two ones with lower cost function
values are transferred the next GA generation population.

5.2.4 Mutation Operator

Within the mutation process, each parameter that has to be optimized from a possible
multi-layer earth configuration is subjected to a probabilistic test. If the test is passed,
then the value of the selected parameter is slightly changed through the following
arithmetic mutation operator:

C'=C'+05-—a)-M Q27)

with o a random value from the [0,1] range and M a predefined mutation
coefficient.
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5.3 Computed Equivalent Soil Models

The above presented GA optimization process was applied by the authors to deter-
mine the equivalent soil structure based on the on-site Wenner soil resistivity
measured at location ML1 and ML?2 (see measured apparent soil resistivity curves
from Fig. 8) considering a three horizontal layer earth structure. To validate the
obtained multi-layer earth configurations a comparison has been done with the
RESAP module of CDEGS software package (see Table 1).

Based on the layer resistivity and thickness values obtained through the imple-
mented GA optimization process and the RESAP module respectively (see Table
1, Fig. 9a and Fig. 10a) the apparent soil resistivity curves were generated according

Table. 1 Obtained equivalent three horizontal layer soil models

p1[82/m] hi[m] p2[82/m] hy[m] p3[2/m] h3[m]
ML1 CDGES 80.77 0.99 82.52 13.61 49.31 Inf
GA 83.84 5.25 101.18 4.63 51.78 Inf
ML2 CDGES 210.69 1.29 109.02 5.16 168.55 Inf
GA 178.678 1.29 112.34 6.67 174.99 Inf
Fig. 9 Obtained three-layer ® Meaz SoilRes  ++ oo+ CDEGSSoil Model = = GA Soil Model
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to equations (18-22) and compared to the on-site Wenner apparent soil resistivity
measurements (see Fig. 9b and Fig. 10b).

For measurement location ML 1, the average deviation from the measured apparent
soil resistivity curve is 7.66% for the equivalent three-layer soil structure provided
by the RESAP module of the CDEGS software package, while the average devia-
tion for the soil structure provided by the implemented genetic algorithm is 7.16%
(see Fig. 9b).

In case of measurement location ML2 the average deviation from the measured
apparent soil resistivity curve are 3.83% for RESAP and 3.30% with the implemented
GA optimization process (see Fig. 10b).

Similar comparisons have been carried out by the authors for uniform and two-
layer horizontal earth structures in [25] and [26]. Based on the obtained results it can
be concluded that the implemented GA provides an accurate alternative to evaluate
the equivalent multi-layer earth structure using to on-site apparent soil resistivity
measurements.

The above presented multi-layer soil structure GA optimization technique was also
applied by the authors at archaeological sites in order to identify and establish the
trajectory of buried walls, according to the obtained equivalent earth configurations
[29].
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6 Neural Network Implementation to Evaluate
the Inductive Coupling Matrix in Case of a HVPL
— MGP Electromagnetic Interference Problem

6.1 Description of the Studied Problem

Due to economic policies meat to limit construction costs and to environmental
regulations meant to protect wildlife and nature, the access of utility systems to
new right-of-ways is highly limited. Therefore, in many situations gas, oil or water
transportation metallic pipelines are forced to share the same distribution corridor
with high voltage power lines and/or AC electrical railway systems (see Fig. 11) and
to be exposed to induced AC currents and voltages [30, 31].

In case of underground or above ground metallic pipelines, the induced elec-
tromagnetic interferences produced by nearby high voltage power lines could be
dangerous on both the operating personnel (that may be exposed to electric shocks),
and to the structural integrity of the pipeline, due to corrosion phenomena [31].

Induced AC currents and voltages may appear as effect of inductive, conductive
or capacitive coupling mechanisms. However, during power line normal operating
conditions, only the inductive coupling, described by the self and mutual inductance
matric, has to be considered for underground pipelines. Conductive and capacitive
coupling may be, also, neglected when a phase to ground fault happens on the power
line far away from the common distribution corridor [30, 32].

To evaluate the self and mutual inductance between all the present conduc-
tors in the analysed problem geometry (phase wires, sky wires and pipelines) the
magnetic vector potential must be evaluated on the cross section of these conductors
as presented in [33, 34]. The longitudinal z-direction component of the magnetic
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Fig. 11 Common distribution corridor of multiple utilities
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vector potential A; and the total current density J, are described by the following
system of differential equations:

1 0%A,  0%A,
pot, | 9x2  9y?
—JjwoA; +Js. = J; (28)

//]st = Ii
Si

where o is the conductivity, w is the angular frequency, (i is the magnetic perme-
ability of free space (g = 4 - w - 1077 H/m), 1, is the relative permeability of the
environment, J, is the source current density in the z-direction and /; is the imposed
current on conductor i of S; cross section.

To solve this differential equation system, the finite element method (FEM) is
recommended to be used. Although the calculation process based on FEM, used in the
hybrid method presented in [34], provides accurate solution for the magnetic vector
potential, regardless of the complexity of the problem, the computation time of the
method increases with the complexity of the geometry, the size of the discretization
network, the characteristics of the material and the number of parameters being
evaluated.

Therefore, the authors have implemented a neural network solution to evaluate
the inductive coupling matrix for a specific electromagnetic interference problem
between a 220 kV/50 Hz overhead High Voltage Power Lines (HVPL) and under-
ground Metallic Gas Pipeline (MGP) [35], considering a stratified soil structure for
the common distribution corridor with three vertical layers (see Fig. 12).

:| —JjwoA; +J;; =0

Sz et D S
Py o Ps

Fig. 12 Interference problem HVPL-MGP with vertically layered earth
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6.2 Proposed Neural Network Solution

Once the proposed neural network solution will be trained it will have to be able to
instantly evaluate the self and mutual inductance matrix for any possible geometric
configuration of the investigated electromagnetic interference problem. Therefore,
to implement the proposed NN, the input and desired output data values must be
analysed. The following geometrical and electrical parameters of the studied problem
were chosen as input values:

d—HVPL-MGP separation distance (with variation in the 0—1000 m range);
p;—middle layer resistivity S1 (with variation in the 10-5000 €2 m range);
D—middle layer width S1 (with variation in the 20—1200 m range);

02, p3 (considering p, = p3;) —sideways layers resistivity S2 and S3 (with
variation in the 10-5000 €2 m range);

Tacking into the account that the inductance matrix is a symmetrical one, the
proposed NN should provide only the elements above the main diagonal. For the
investigated HVPL-MGP interference problem (three phase wires, one sky wire and
one underground pipeline) these inductance elements are: L;;, L2, L3, L4, L;s, Lo,
L3, Loyg, Los, L33, L3y, L3s, Ly, Lys, Lss, with L; representing the self-inductance
of conductor i (i = 1.0.3 for phase wires, i = 4 for the sky wire and i = 5 for the
underground pipeline) and L;; representing the mutual inductance between conductor
iandj.

Due to the large variation range of the inductance matrix elements value (the
self-inductance values are much higher than the mutual inductance values), it was
concluded to implement three different neural networks: NN1 for the self-inductance
values (L;;, L2, L33, Lyy, Ls55), NN2 for the MGP mutual inductances (L;s, L;s, L3s,
L4s) and NN3 for the remaining mutual inductances between HVPL conductors.
This way the complexity of the implemented NN will be reduced, so that the required
training time will also be reduced, and the obtained results accuracy will be increased.

6.3 Matlab Implementation of Proposed Neural Network

The Neural Networks toolbox from the MATLAB software package [24] was used to
implement, test and validate the proposed NN solution. A feed-forward architecture
with two hidden layers and an output layer was chosen (as in Fig. 13).

To identify the optimal configuration of the chosen NN architecture different
transfer functions and various number of neurons on the NN hidden layers were
tested. The number of neurons on each hidden layer was varied between 5 and 30
with a step of 5. The “tansig” (sigmoid tangent) and “logsig” (logarithmic sigmoid)
transfer functions were tested for the NN hidden layer neurons while the “purelin”
(linear) transfer function was used for the output layer neurons. To automatically
generate and test all these different possible NN configurations a Matlab code “.m”
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Hidden Layer1 Hidden Layer 2 Output Layer

et e

5+30 neurons 5430 neurons 4+6 neurons

Fig. 13 Implemented feed-forward architecture with two hidden layers and an output layer

file was implemented, using the feedforwardnet Matlab function [24]:

net = feedforwardnet(hiddenSizes, trainFcn) 29)

where: net is the created feed-forward neural network, hddinSizes is a vector of
values specifying the number of neurons used on each hidden layer and trainFcn is
a vector of strings defining the transfer function used on each NN layer.

To create a useful training database for the investigated HVPL-MGP electromag-
netic interference problem approximately 4000 inductance matrixes were determined
through FEM analysis for various problem geometries. The HVPL-MGP separation
distance was varied between 0 and 1000 m, the resistivities of the vertical soil layers
were varied between 10 € m and 5000 2 m while the width of the middle soil layer
was varied between 20 and 1200 m. Table 2 shows some of the HVPL-MGP problem
geometries used to train the proposed neural networks. different configurations used
to stimulate the NN.

The NN training process took between 1 and 25 min depending on the NN config-
uration complexity. The Levenberg—Marquardt training method (“trainlm”) was used
with a mean square error (“mse”) cost function on a i7-3632QM 2.2 GHz Intel Core

Table. 2 Different problem geometry configurations used for NN training

Ssse d D P1 02 03 ste d | D P1 2 03
[m] | [m] | [Q-m] | [Q-m]|[Q- m] [m] | [m] | [Q-m] | [Q-m]|[Q- m]

8 5 60 | 500 50 500 2134 |0 550 |50 250 50
104 100 |60 |150 250 150 2301 120 |550 |30 250 30
206 |20 60 |50 500 50 2532 | 100 | 550 | 100 500 100
373 | 100 |60 |500 750 500 2751 | 500 | 550 |30 100 30
481 | 150 |60 |500 250 500 2914 |5 1050 | 10 250 10
692 | 1000 | 60 | 750 50 750 3096 |20 | 1050 | 100 250 100
875 |20 120 | 750 100 750 3274 | 100 | 1050 | 500 1000 500
1064 | 50 120 | 750 1000 750 3545|750 | 1050 | 30 750 30
1231 | 500 | 120 | 100 30 100 3754 |5 1500 | 50 30 50
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Table.3 HVTL-MGP problem geometries used for the NN testing procedure

Case d D Case d D

P1 P2 P3 P1 P2 P3
no No

[m] | [m] | [Q-m] | [Q2-m] | [Q-m] [m] | [m] | [Q-m] | [Q2-m] | [Q-m]

1 310 | 800 |900 850 900 85 310 | 800 |900 850 900
13 105 | 1100 | 550 550 550 97 170 | 700 | 300 350 300
25 250 | 800 |150 150 150 109 | 240 | 500 |80 750 80

37 340 | 400 | 600 150 600 121 |420 | 100 |550 20 550
49 170 | 800 | 650 750 650 135 | 105 | 1200 | 250 950 250
54 |55 | 1000 | 900 400 900 148 |85 |400 |140 160 140
61 40 200 |600 800 600 176 |15 |300 | 140 700 140
73 120 {900 |750 350 750 198 |10 | 1000 | 200 750 200

PC, with a 64-bit operating system and 8 GB RAM memory. To train the implemented
NN configurations the train Matlab function was applied [24].

6.4 Obtained NN Results

In order to determine the accuracy of the generated NN architectures and to identify
the optimal NN configuration for each of the three implemented NN solutions (NN,
NN2 and NN3 respectively) an addition set of approximatively 200 randomly gener-
ated, testing HVPL-MGP problem geometries were used. These testing HVPL-MGP
problem geometries were not supplied to the implemented NN configuration during
the NN training process. Table 3 shows some of the testing HVPL-MGP problem
geometries.

To identify the optimal NN configurations the evaluation error of the provided
NN output data was analysed for both the training and testing data sets [35, 36]. To
obtain NN provided output data for the training and testing HVPL-MGP problem
geometries the sim Matlab function was applied.

For the neural network meat to evaluate the self-inductance values of the conduc-
tors (NN1 network) the best identified NN configuration was a feed-forward archi-
tecture with 15 neurons on the first hidden layer and 25 neurons on the second hidden
layers, with “tansig” transfer function on both hidden layers. The obtained average
evaluation errors are 0.064% for the testing geometries and 0.043% for the training
geometries. The maximum recorded evaluation error was 0.77%. Figure 14 presents
the evaluation error distribution on different error classes for both training and testing
HVPL-MGP problem geometries.

In case of the neural network implemented to compute the mutual inductance
values that define the electromagnetic coupling between MGP and the nearby HVPL
(NN2 network) the best NN configuration has 30 neurons on the first hidden layer
and 20 neurons on the second layer with “logsig” transfer function. The average
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evaluation error was around 0.060% for both testing and training data sets, while the
maximum recorded evaluation error was 2.67%. The evaluation error distribution
over the analysed error classes for the testing and training HVPL-MGP problem
geometries is presented in Fig. 15.

For the neural network used to compute the mutual inductance values between
HVPL conductors (NN3 network) the best NN configuration has 25 neurons, respec-
tively 15 neurons with “tansig” transfer function on the NN hidden layers. The
maximum recorded evaluation error is 2.56% while the average evaluation error is
around 0.030% for both testing and training data sets. Figure 16 shows the obtained
evaluation error distribution over different error classes:

The implemented NN configurations allow to evaluate the inductance matrix
values for any HVPL-MGP problem geometry. Table 4 shows the self and mutual
inductance values obtained for a HVPL-MGP problem geometry with a 30 m separa-
tion distance between HVPL and MGP; with p; =30 Q m, p; = p3 = 500 2 m and
a 20 m width for the middle earth layer. Using the self and mutual inductance values
provided by the implemented neural network configurations the equivalent electrical
circuit of the investigated HVPL-MGP electromagnetic interference problem could
be constructed according to [34, 37].

The InterfStud software application developed by the authors [38] automatically
creates the above-mentioned equivalent circuit model and evaluates the induced AC
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Table. 4 Obtained inductive coupling matrix through NN implementation

Self and mutual inductances [WH/m]

PhWA |PhWB |PhWC |SkyW | Pipe
PhW A 245 1.234 1.110 1.187 | 0.82
PhW B 1.234 2.45 1.100 1.073 | 0.84
PhW C 1.110 1.100 245 1.073 | 0.80
SkyW 1.187 1.073 1.073 8.74 0.79
Pipe 0.822 0.842 0.80 0795 |228

currents and voltages in the MGP. Figure 17 presents the obtained induced AC volt-
ages for the three different problem geometries [35], considering a 10 km long parallel
HVPL-MGP exposure, a 130 MVA power load on HVPL with a 0.94 power factor
(a 350 A symmetrical current load):

e Geom 01: A 30 m separation distance, with soil structure: p; =30 Q m, p, = p3
= 500 2 m, and 20 m middle layer width;

® Geom 02: A 50 m separation distance, with soil structure: p; = 10 Q m, p, =
100  m, p3 = 500 2 m, and 30 m middle layer width;

Fig. 17 Induced voltage in ——Geom01 — = -Geom 02 — -~ Geom 03
MGP for different
HVPL-MGP problem
geometries

Induced Voltage [V]

Pipeline Length [km]
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® Geom 03: A 150 m separation distance, with soil structure: p; = p, = 100 2 m
p3 = 1000 2 m, and 100 m middle layer width.

7 Conclusions

This chapter starts with a brief introduction to artificial intelligence (AI) based
advanced numerical methods applied in engineering, making a summary of the
most commonly used Al techniques (Genetic Algorithms, Fuzzy Logic and Neural
Networks, Sects. 2—4) and new approaches in the field (through two demonstrative
applications).

The first application (Sect. 5) presents a genetic algorithm implementation to
determine the equivalent horizontal soil structure based on Wenner on-site soil
resistivity measurements. A proper knowledge of the earth structure is required in
electrical engineering application like grounding grid design for power substations,
cathodic protection design of underground metallic gas or oil pipelines, design of
lightning protection.

The presented multi-layer soil structure GA optimization technique was also
applied by the authors at archaeological sites in order to identify and establish the
trajectory of buried walls, according to the obtained equivalent earth configurations.

In the second presented application (Sect. 5) a neural network based artificial
intelligence technique has been implemented to evaluate the inductive coupling
matrix of a specific HVPL-MGP electromagnetic interference problem. The proposed
neural network approach reduces considerably the required computation time. From
Figs. 14-16 it can be observed that the evaluation error produced by the identified
optimal NN architecture are usually less than 0.1% in comparison to the finite element
results considered as reference. Therefore, the implemented neural network solution
to evaluate the self and mutual inductance values is a very effective one, especially
if we take into account the fact that the solutions provided by neural networks are
obtained almost instantaneously and can be used to evaluate the induced currents
and voltages.
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