
Self-tuning Yaw Control Strategy
of a Horizontal Axis Wind Turbine Based
on Machine Learning

Aitor Saenz-Aguirre, Ekaitz Zulueta, Unai Fernandez-Gamiz,
Jose Antonio Ramos-Hernanz, and Jose Manuel Lopez-Guede

Abstract The design procedure of a Machine Learning (ML) based yaw control
strategy for a Horizontal Axis Wind Turbine (HAWT) is presented in the following
chapter. The proposed yaw control strategy is based on the interaction of three
different Artificial Intelligence (AI) techniques to design a ML system: Reinforce-
ment Learning (RL), Artificial Neural Networks (ANN) and metaheuristic optimiza-
tion algorithms. The objective of the designed control strategy is to achieve, after
a training stage, a fully autonomous performance of the wind turbine yaw control
system for different inputwind scenarioswhile optimizing the electrical power gener-
ated by the wind turbine and the mechanical loads due to the yaw rotation. The RL
algorithm is known to be able to learn from experience. The training process could
be carried out online with real-time data of the operation of the wind turbine or
offline, with simulation data. The use of an ANN to store the data of the matrix
Q(s, a) related to the RL algorithm eliminates the large scale data management and
simplifies the operation of the proposed control system. Finally, the implementation

A. Saenz-Aguirre (B)
Nuclear Engineering and Fluid Mechanics Department, University of the Basque Country, Eibar,
Spain
e-mail: aitor.saenz@ehu.eus

E. Zulueta · J. M. Lopez-Guede
Automatic Control and System Engineering Department, University of the Basque Country,
Vitoria-Gasteiz, Araba, Spain
e-mail: ekaitz.zulueta@ehu.eus

J. M. Lopez-Guede
e-mail: jm.lopez@ehu.eus

U. Fernandez-Gamiz
Nuclear Engineering and Fluid Mechanics Department, University of the Basque Country,
Vitoria-Gasteiz, Araba, Spain
e-mail: unai.fernandez@ehu.eus

J. A. Ramos-Hernanz
Electrical Engineering Department, University of the Basque Country, Vitoria-Gasteiz, Araba,
Spain
e-mail: josean.ramos@ehu.eus

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
N. Mahdavi Tabatabaei and N. Bizon (eds.), Numerical Methods
for Energy Applications, Power Systems,
https://doi.org/10.1007/978-3-030-62191-9_32

879

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62191-9_32&domain=pdf
mailto:aitor.saenz@ehu.eus
mailto:ekaitz.zulueta@ehu.eus
mailto:jm.lopez@ehu.eus
mailto:unai.fernandez@ehu.eus
mailto:josean.ramos@ehu.eus
https://doi.org/10.1007/978-3-030-62191-9_32

880 A. Saenz-Aguirre et al.

of ametaheuristic optimization algorithm, in this case a Particle SwarmOptimization
(PSO) algorithm, allows calculation of the optimal yaw control action that responds
to the compromise between the generated power increment and the mechanical loads
increase due to the yaw actuation.

Keywords Wind turbine control · Yaw control · Reinforcement learning ·
Artificial neural network · Optimization · Pareto front

Abbreviations and Acronyms

ML Machine Learning
HAWT Horizontal Axis Wind Turbine
AI Artificial Intelligence
RL Reinforcement Learning
ANN Artificial Neural Network
PSO Particle Swarm Optimization
LCOE Levelized Cost of Energy
MLP-BP MultiLayer Perceptron with Back Propagation
MDP Markov Decision Process
DP Dynamic Programming
MC Monte Carlo
TD Temporal Differences
PoF Pareto optimal Front
PID Proportional Integral Derivative
FAST Fatigue, Aerodynamics, Structure and Turbulence
NREL National Renewable Energies Laboratory
MSE Mean Squared Error
DM Decision Making

Nomenclature

θwind Direction of the wind
θnacelle Orientation of the nacelle
θyaw Yaw angle
�yaw Yaw rotational speed
s State of the RL algorithm
a Action of the RL algorithm
r Immediate reward of the RL algorithm
γ Discount factor
Q(s, a) Expected long-term reward matrix in RL algorithm
Q_P(s, a) Expected long-term power gain reward matrix in RL algorithm

Self-tuning Yaw Control Strategy … 881

Q_M(s, a) Expected long-term mechanical moment reward matrix in RL
algorithm

Q_P(s(t), a(t)) Expected long-term power gain reward function in RL algorithm
Q_M(s(t), a(t)) Expected long-term mechanical moment reward function in RL

algorithm

1 Introduction

The gradual depletion of the fossil fuels and the atmospheric pollution originated by
their combustion have brought an important growth of the renewable energy gener-
ation systems. Nowadays, the most important renewable energy generation source
is the wind energy. Many studies showing the positive tendency of the wind energy
can be found in the literature. For example, according to some studies presented
by Rosales-Asensio et al. [1], the sustainable power production with wind origin
in Denmark achieved a 40% of the power produced in the country in 2015. This
same value was quite smaller in Spain, with a 17% in 2015, but having raised from a
10.4% in 2007. More recent studies elaborated byWindEurope [2] show remarkable
increments in the wind energy installed power in 2018 especially in four countries:
a 29% in Germany, a 16% in the United Kingdom, a 13% in France and a 6% in
Sweden.

The power generation increase in wind energy systems is tightly related to the
investigation work carried out to reduce the Levelized Cost of Energy (LCOE) of the
wind turbines, which encourages capital investment in the sector, as explained in the
work of Nyanteh et al. [3]. Onemain topic of this researchwork is the development of
advanced control strategies to optimize the performance of the wind turbines [4–9].

In this chapter, the design procedure of a yaw control system of a Horizontal
Axis Wind Turbine (HAWT) based on Machine Learning (ML) is presented.
The objective of the ML based control strategy developed in this chapter is to
achieve a fully autonomous performance of the yaw system of the wind turbine
based on its own experience, which could be acquired via an offline training,
i.e., when the wind turbine is paused, or an online training, i.e., during opera-
tion of the wind turbine. An offline training process is proposed in this chapter.
However, a continuous online training process with real data acquired during
operation of the wind turbine to continuously learn from experience could be
implemented as well. The MLP-BP is used to store the data of the matrices
Q(s, a) related to the RL algorithm andmanage them as continuous functions,Q(s(t),
a(t)). This process avoids quantification and large data management problems. The
combination of an RL strategy and an ANN is widely known as Deep Reinforce-
ment Learning [10, 11]. As observed in the works of Saenz-Aguirre et al. [5, 8], an
increment of the power generated by the wind turbine with a considerable reduction
of the mechanical loads due to the yaw rotation is expected to be achieved.

882 A. Saenz-Aguirre et al.

This chapter is structured as follows: the objectives and applications of the
proposed yaw control strategy are presented in Sect. 2. Section 3 details the theoret-
ical basis of the different Artificial Intelligence (AI) techniques used to design the
ML system. The design procedure of the yaw control system based onML is exposed
in Sect. 4. Finally, Sect. 5 presents the conclusions.

2 Objectives and Applications

The main factor that determines the power output of a wind turbine is the wind
incident to its rotor. However, the wind is originated as a result of very complex
meteorological processes, which, as stated by Bivona et al. [12], are very complex
to model, and can, thus, suffer from unpredictable important variations. Some wind
gusts can even exceed the safe wind speed operation range of the wind turbine and
endanger its correct performance. To avoid this issue, a control system is implemented
in the wind turbines.

The control system of a wind turbine is formed by different strategies aimed to
regulate the rotational speed of the rotor in the whole range of operating points of the
wind turbine. As a result of these strategies, the power output of the wind turbine is
predefined for the whole range of wind speed values in which the turbine operates.
The curve that relates the power output of the wind turbine with the wind speed
is known as the power curve. The power curve of the NREL 5 MW wind turbine,
presented in the work of Jonkman et al. [13], is illustrated in Fig. 1.

The main control objective in the partial power zone, plotted in blue color in
Fig. 1, is to maximize the power the wind turbine extracts from the wind, which can
be expressed as in Eq. (1).

Fig. 1 Power curve of the NREL 5 MW wind turbine

Self-tuning Yaw Control Strategy … 883

Popt = 1

2
· ρ · CP · A · v3[W] (1)

where ρ [kg/m3] is density of the air, CP [-] is the power coefficient, A [m2] is the
area covered by the rotor and v [m/s] is the wind speed.

However, in order to express the real power the wind turbine extracts from the
wind, the misalignment between the incident wind and the rotor must be considered,
commonly known as the yaw angle. The expression is shown in Eq. (2).

P = Popt · cos3(θyaw
)
[W] (2)

where θyaw [deg] is the yaw angle.
As it can be observed in Eq. (2), a correct alignment of the wind turbine with the

direction of the incident wind can make the power generated by the wind turbine
increase considerably. The control system that allows a correct alignment of the wind
turbine with respect to the incident wind is the yaw control. A detailed explanation
about the yaw control system of a 5 kW wind turbine is introduced in the work of
Yücel and Özder [14].

On the other hand, as a result of the high inertia values of the mechanical compo-
nents that participate in the yaw rotation, remarkable mechanical loads arise in
different elements of the wind turbine. The physical effect that explains these loads is
known as the gyroscopic effect. An study of possible control strategies aimed to atten-
uate the high mechanical loads resulting from the gyroscopic effect are presented in
[15, 16].Additionally, an analysis of themechanical loads generated as a consequence
of the yaw rotation is presented in the work of Shariatpanah et al. [17].

As a result, an adequate design of the yaw control strategy allows not only maxi-
mization of the power generated by the wind turbine, but also reduction of the
mechanical loads in several elements of the wind turbine, and, thus, to increment
its lifetime.

The objectives of the proposed yaw control strategy are:

– Achieve a fully autonomous and self-tuning yaw control strategy to be imple-
mented in the wind turbine.

– Design a control strategy based on ML that can continuously learns from its own
experience.

– Selection of the optimal yaw control action (maximal power and minimal loads
possible) for every possible scenario of the wind turbine operation.

The main applications of the designed yaw control strategy are:

– Increment of the power produced by the wind turbine, with the consequent
enhancement of its efficiency, and the reduction of the LCOE.

– Reduction of the mechanical loads originated as a result of the yaw rotation, with
the consequent increment of the lifetime of the mechanical components of the
wind turbine, and the reduction of the LCOE.

884 A. Saenz-Aguirre et al.

3 Machine Learning and Artificial Intelligence Techniques

The AI is the science that studies the projection of the human intelligence in techno-
logical machines. In other words, the AI is the science that analyses the possibility
to develop smart behavior patterns in technological machines. Nowadays, with the
technological advances in the field of the informatics and the existence of very large
amounts of data to be processed, the AI is on the focus of the research work.

The field of the AI is composed by numerous different techniques, which, in
general, have been developed to emulate the human intelligence or decision making
capability, as it is explained in the work of Wang et al. [18]. The most important AI
techniques are the RL, ANNs, Fuzzy Logic, bio-inspired or metaheuristic optimiza-
tion algorithms and Bayesian Networks. Each AI technique serves to a determined
goal and could be used individually or in interrelation with other AI techniques.

One of the most important features that offers the AI is the capability of the
systems to learn automatically. This feature of self-learning is commonly known as
ML, as it is explained in detail in the work of Fadlullah et al. [19]. The ML has
undergone an important boom after the development of the ANNs, which are able
to continuously learn from very large amounts of data. RL is another type of ML, in
which the systems learns to make the best decisions in a given environment by using
its own experience.

With the technological boom and the increasing processing capability of the
processors a new learning method known as Deep Learning [19] has been born,
in which new and amplified configurations of ANNs are used for the ML process. In
the same way, the Deep Reinforcement Learning [19] method has also been created,
which combines the use of the RL algorithm and ANNs to store the matrix Q(s, a)
related to the RL algorithm.

The self-tuning ML based yaw control strategy presented in this chapter makes
use of three different AI techniques: RL, ANN and metaheuristic optimization algo-
rithms. This section is structured as follows: the theoretical background of the RL is
explained in Sect. 3.1. Section 3.2 analyses the theory behind the ANNs. And, finally,
the theoretical basis of the optimization algorithms is introduced in the Sect. 3.3.

3.1 Reinforcement Learning

RL [10, 20–22] is an AI technique, corresponding to a type of ML, in which a
determined system learns from the experience of its own interaction with the envi-
ronment in which it is placed. As it is stated in the work of Jagodnik et al. [20], the
training process of a RL algorithm is achieved by trial and error with the objective
of maximizing a reward function defined numerically and by mapping of situations
to actions.

A pipeline with the basic operating principle of a RL algorithm is presented in
Fig. 2. A defined agent which is in a determined environment receives information of

Self-tuning Yaw Control Strategy … 885

Fig. 2 Basic pipeline of a RL algorithm [5]

its state (s ∈ S) and decides to take the action (a ∈ A). As a result of this action, the
agent receives information of its new state and the immediate reward of the action
(r ∈ R). The objective of the RL algorithm is to find a map of states to actions,
known as policy, to maximize the long-term reward in different situations. In other
words, the RL controller selects the future actions with regard to the experiences
of a whole range of actions in predefined states. The experiences are obtained by
trial and error by interaction with a dynamic environment, as exposed in the work of
Kaelbling et al. [23].

The main elements of a RL algorithm are:

– State (s ∈ S): Defines the state of an agent that is placed in a determined
environment.

– Action (a ∈ A): Defines the action taken by an agent that is in a defined state
(s ∈ S) in a determined environment.

– Reward (r ∈ R): Defines the immediate reward received by an agent that takes
a certain action (a ∈ A) in a given state (s ∈ S).

– Policy (π): It is a mapping of the actions (a ∈ A) to the states (s ∈ S). Thus, it
defines the behavior of the agent.

– Long-term reward (Rt): Indicates the long term reward received by the agent if
a certain action (a ∈ A) in a given state (s ∈ S) is taken. The long-term reward is
the value to be maximized.

The long-term reward Rt of a RL algorithm can be numerically calculated in
different ways. The most widely-used expression is based on the addition of the
immediate rewards (r ∈ R) received by the agent during a determined period of time
and using a discount factor γ , as it is shown in Eq. (3).

Rt =
t+T∑

k=t

γk · rt+k+1 (3)

where the discount factor γ is set to 0 < γ < 1.
From now on, in order to refer to the function that indicates the long-term reward

Rt expected by the agent a new expression is shown in Eq. (4).

886 A. Saenz-Aguirre et al.

E

(
t+T∑

k=t

γk · rt+k+1

)

(4)

One important aspect related to theRL algorithms is that the environment inwhich
the agent is placed is defined as a Markov Decision Process (MDP). This means that
the environment transitions are independent on past states and exclusively depend
on the current state (s ∈ S) and the action taken (a ∈ A). Therefore, the expressions
of the state and reward transitions are presented in Eq. (5) and Eq. (6), respectively.

pass ′ = p
{
st+1 = s ′|st = s, at = a

}
(5)

Ra
ss ′ = E

{
rt+1|st = s, at = a, st+1 = s ′} (6)

The policy π followed by the agent defines the mapping of actions to states and,
thus, dictates the criteria to take determined actions. Hence, the policy π defines
the probability to select each action (a ∈ A) in each determined state (s ∈ S). As a
result, the expected long-term reward with respect to the current state (s ∈ S) and the
policy π followed, known as V π (s), and the expected long-term reward with respect
to the current state (s ∈ S), the current action (a ∈ A) and the policy π followed,
known as Qπ (s, a), can be numerically calculated as shown in Eq. (7) and Eq. (8),
respectively.

V π (s) = Eπ {Rt |st = s} = Eπ

{
t+T∑

k=t

γk · rt+k+1|st = s

}

(7)

Qπ (s, a) = Eπ {Rt |st = s, at = a} = Eπ

{
t+T∑

k=t

γk · rt+k+1|st = s, , at = a

}

(8)

The optimal values of both V π (s) and Qπ (s, a) can be expressed as in Eqs. (9)
and (10).

V (s) = max(V π (s)) (9)

Q(s, a) = max(Qπ (s, a)) (10)

The objective of the RL algorithm is to find the optimal mapping of actions to
states so that the value of the Q(s, a) expressed in Eq. (10) is maximized for each
par of state (s ∈ S) and action (a ∈ A). To that end, there are 3 different methods
to solve a MDP process: Dynamic Programming (DP), Monte Carlo (MC) method
and Temporal Differences (TD). In the following lines an explanation on each one
of them is introduced.

Self-tuning Yaw Control Strategy … 887

– Dynamic Programming

The DP method, explained in detail in the works of Bertsk et al. [24–26], is based
on the knowledge of a model of the environment in which the agent is placed. That
means that the state transitions pass ′ , see Eq. (5), and the reward transitions Ra

ss ′ , see
Eq. (6), can be calculated analytically. As a result, the value of V π (s) and Qπ (s, a)

can also be represented analytically using Bellman equations, as shown in Eqs. (11)
and (12).

V π (s) =
∑

a

π(s, a)
∑

st+1

pass ′ · [Ra
ss ′ + γ · V π (st+1)] (11)

Qπ (s, a) =
∑

a

π(s, a)
∑

st+1

pass ′ · [Ra
ss ′ + γ · Qπ (st+1, at+1)] (12)

The numerically calculated values of V π (s) and Qπ (s, a) are used to perform an
iterative algorithm in which every action (a ∈ A) of every possible state (s ∈ S) is
considered and the policies π that maximize the value of Q(s, a) are to be found.

One of the biggest drawbacks of this method is the computational cost, since for
the calculation of each policy π calculations related to a great number of states and
actions have to be performed.

– Monte Carlo method

TheMCmethod [27, 28] is based on the assumption that a model of the environment
is unknown, and thus, its performance depends on the experimental data. Since the
model is unknown, the values of the state transitions pass ′ , see Eq. (5), and the reward
transitions Ra

ss ′ , see Eq. (6), and as a result, the values of V π (s) and Qπ (s, a) cannot
be analytically computed, so they are calculated as an average of the experimentally
obtained reward values.

The objective is to try to calculate the value of Qπ (s, a) for all the state-action
pairs and find the policies π that maximize the value of Q(s, a). To that end, usually
stochastic policies that have probabilities greater than 0 to consider each state (s ∈ S)

and action (a ∈ A) are implemented.

– Temporal Differences

The TD method is a combination of DP and MC methods having the advantages
associated to each one of them. It is based on analytical calculation, like the DP
method, but, like theMCmethod, it does not dependon amodel of the environment. In
this method, the calculations to continuously learn are performed between successive
predictions insteadof betweenpredictions and thefinal value.Hence, the convergence
is faster and the computational cost is remarkably reduced. The two principal TD
based algorithms are Q-Learning, explained in detail in the works of Watkins et al.
[29, 30], and SARSA, introduced in the work of Adam et al. [31].

The principal difference between both methods is the calculation of the values
of Q(s, a). In the Q-Learning algorithm the state and actions are quantified and a

888 A. Saenz-Aguirre et al.

matrix is obtained as a result of mapping a Q(s, a) value to each state-action par.
However, in SARSA, the function Q(s, a) is considered as an exponential moving
average continuous function.

The calculation of the Q(s, a) in SARSA algorithm can be expressed as shown in
Eq. (13).

Q(st , at) = Q(st , at) + α · [
r + γ · Q(st+1, at+1) − Q(st , at)

]
(13)

The calculation of theQ(s, a) in Q-Learning algorithm can be expressed as shown
in Eq. (14).

Q(st , at) = Q(st , at) + α · [
r + γ · maxaQ(st+1, at+1) − Q(st , at)

]
(14)

3.2 Artificial Neural Networks

ANNs correspond to a branch of the AI intended to mimic the performance of a
biological brain. Biological brains are composed bymillions of neurons distributed in
layers and widely interconnected between them. Through these interactions between
neurons the information flow from one neuron to another occurs. Furthermore, the
information flow happens always in one direction, which can be either forwards or
backwards. ANNs [32–34], which try to emulate this behavior, are digital systems
with a variable number of neurons distributed in a structure similar to that of
biological networks and with a similar functionality.

According to the work of Yang [35], the first standard artificial neuron design
was introduced by W. McCulloch and W. Pitts in 1943 and, after that, they have
undergone an important development. Nowadays they are very precious especially
for their good performance in parallel processing, distributed memory alongside the
number of neurons and the adaptability to the environment and the generalization
capability.

ANNs are a compound of a variable number of neurons distributed in different
ways and with a different type of interconnections. An individual neuron, shown in
Fig. 3, is the smallest element of an ANN and presents the following structure:

The main elements of an artificial neuron are:

– Inputs (x j): Define the inputs to the neuron.
– Input weights (wj): Define the weights of each input to the neuron.
– Propagation rule (hi): It defines the combination of the different inputs of the

neuron before the activation function. The most common propagation rule is the
linear combination of the product of each input and its weight. Moreover, usually
another parameter commonly expressed as θ is added. Therefore, the propagation
rule can be mathematically expressed as shown in Eq. (15).

Self-tuning Yaw Control Strategy … 889

Fig. 3 Neuron of an ANN

h
(
x1, . . . , x j ,w1, . . . ,wj

) =
n∑

j=1

wj · x j − θ (15)

– Activation function (fi): The activation function defines the activation state of the
neuron. Additionally, it represents the output of the neuron.

If it is an on/off neuron, the activation function of the neuron can be expressed as
in Eq. (16).

y =

⎧
⎪⎪⎨

⎪⎪⎩

1 i f
n∑

j=1
wj · x j ≥ θ

0 i f
n∑

j=1
wj · x j < θ

(16)

However, when a continuous output of the neuron is desired, usually a sigmoid
function [36] is used as the activation function, as shown in Eq. (17).

f (x) = 1

1 + e−β · x (17)

where the value associated to the exponential factor is β > 0.
ANNs are formed by compound of a variable number of neurons in different

structures and interconnection patterns. The neurons are divided in layers., usually
in a standard ANN there are 3 different neuron layers: The input layer (contains the
input neurons, which are in number the same as the inputs of the ANN), the hidden
layer (contains the processing neurons) and the output layer (contains the output
neurons, which are in number the same as the outputs of the ANN). The number of
hidden layers and the number of neurons in each hidden layer is adaptable and can
be modified by the designer of the ANN.

The training algorithms of the ANNs are the responsible for making the ANN
learn from its input values. There are two main ANN training method groups: The
supervised learning and the unsupervised learning. As it is exposed in the work of
Chen et al. [32], the supervised learning adjusts the values of the weights related

890 A. Saenz-Aguirre et al.

to the interconnection between neurons with the objective of minimizing the error
existent between the output of the ANN and the reference output. Themost important
application of the supervised learning is for regressions or modelling of systems
and one of the most used examples of supervised learning is the BackPropagation
algorithm. The unsupervised learning does not need an output reference and the
ANN is trained with numerous input patterns to explore the relation between them
and categorize them. The most important application of the unsupervised learning
is the clustering of data. A combination of supervised and unsupervised learning
methods in a hybrid learning strategy is also possible.

3.3 Optimization Algorithms

Optimization algorithms are techniques designed and aimed to find the
maximum/minimum or optimal solution of a determined function or problem. First
optimization algorithms were introduced in the twentieth century. Nowadays, opti-
mization algorithms are applied to a grand variety of applications. As it is explained
in the work of Yang et al. [35], one of the biggest application fields of the optimiza-
tions algorithms is the industrial engineering world, where the reduction of costs,
the increment of the efficiency and the optimization of the industrial processes have
become of capital importance.

An important group inside the optimization algorithms is the bio-inspired ormeta-
heuristics algorithms, which are inspired in natural processes to solve optimization
problems. The metaheuristic algorithms [37–39] have been widely studied in the
literature. In the following lines the metaheuristic optimization algorithm used in the
design process exposed in this chapter and themultivariable optimization is explained
in detail.

– Particle Swarm Optimization

The PSO [40] algorithms are metaheuristic optimization algorithms inspired in the
behavior of a group of particles, referred as swarm, in a search space and evolving
towards an optimal solution. As it is explained in the work of Khan and Singh [38],
this algorithm is widely used due to its high robustness, small number of tunable
parameters and its easy implementation.

As introduced in the work of Khan and Singh [38], each particle is a possible
solution to the optimization problem, and is associated with a position vector xi,t and
a velocity vector vi,t . Exactly as in the case of the GAs, in a PSO algorithm there
must be a fitness function that evaluates the specification fulfillment of each particle
and provides them with a fitness values.

Self-tuning Yaw Control Strategy … 891

The velocity and position update of each particle is calculated with the following
expressions presented in Eq. (18) and Eq. (19), respectively.

vi,t+1 = H · vi,t + ϕ1 · (
x_opti,t − xi,t

) + ϕ2 · (
x_global_opti,t − xi,t

)
(18)

xi,t+1 = xi,t + vi,t+1 ·
t (19)

where H [kg m2] is the inertia constant of the system, ϕ1 [-] is the exploitation factor,
ϕ2 [-] is the exploration factor, x_opti,t [m] is the best solution of the particle and
x_global_opti,t [m] is the best solution of the whole swarm.

As it can be observed in Eq. (18), the velocity of each particle is computed with
regard to the personal best fitness obtained by that particle and the global best fitness
obtained by the whole swarm. By modifying factors ϕ1 [-] and ϕ2 [-] the exploration
and exploitation capability of the algorithm can be configured. Furthermore, the
inertia constant H [kg m2] defines the movement capacity of the particles.

The execution of a PSO could be summarized in the following 5 steps:

(1) Initialization. The swarm population is randomly formed.
(2) Evaluation. The fitness of each individual particle is evaluated.
(3) Modification. The best position of each particle, the best position of the whole

swarm and each particle’s velocity are computed.
(4) Update. Move each particle to the new position.
(5) Termination. Steps 2 to 4 are repeated until a termination condition has been

satisfied.

– Multiobjective optimization. Pareto optimal Front

Amultiobjective optimization [41–43] problem is that in whichmore than one objec-
tive is to be optimized. In contrast to single-objective optimization problems, in
multiobjective cases there is not only one unique optimal solution, but a set of
optimal solutions that respond to the trade-off or compromise necessity between
the objectives to be optimized.

The concept of optimization of multiobjective problems was generalized in the
work of Pareto [44] in 1896. In these type of problems a solution is dominated if
there is any other solution that has a better (higher or lower depending on the context
of the optimization problem) fitness value for all the objectives to be optimized. If
there is no such a solution. The set of non-dominated solutions is known as the Pareto
optimal Front (PoF). A PoF of a double-objective optimization problem is illustrated
in Fig. 4.

892 A. Saenz-Aguirre et al.

Fig. 4 PoF of a
double-objective
optimization problem

4 Machine Learning Based Wind Turbine Yaw Control

An adequate alignment of the wind turbine rotor with respect to the incoming wind
by means of the yaw system of the wind turbine enables increment of the power
generation at cost of an increase of the mechanical loads in different elements of the
wind turbine, especially the yaw bearings. Hence, an adequate design and tuning of
the yaw control system is of great importance to both optimize the power generation
of the wind turbine and ensure its safe operation.

Usually, classical control structures based on PIDs have been used for the design
of the yaw control strategy of the wind turbine [17, 45]. However, these classical
control structures show some drawbacks in form of “wind up” of the integral action
and posterior big oscillations, which can result in an undesired increment of the
mechanical loads. As a result, some advanced control strategies for the yaw angle
control of a wind turbine are proposed in the literature [5, 8, 46–48].

In this chapter, with the objective of achieving an improved performance of the
yaw control system of a wind turbine, a ML based wind turbine yaw control system
is exposed. A block diagram of the proposed ML based yaw control strategy is
presented in Fig. 5.

The proposed yaw control system is based on the following AI techniques:

– A RL algorithm that learns from its own experience and enables the wind turbine
to select the optimal decision in each scenario of its operation.

– An ANN to store the data of the matrix Q(s, a) of the RL algorithm.
– A PSO and PoF based optimization algorithm to select the set of optimal actions

that respond to the compromise necessity between the power increment and the
mechanical loads associated to the yaw rotation.

This section is structured as follows: the design procedure of the RL algorithm
applied to the ML based yaw control is explained in Sect. 4.1. Section 4.2 presents
the structure and design process of the MLP-BP neural network. The design of the

Self-tuning Yaw Control Strategy … 893

Fig. 5 Pipeline of the proposed ML based yaw control

PSO and PoF based algorithm is explained in Sect. 4.3. Finally, the DecisionMaking
(DM) algorithm is exposed in Sect. 4.4.

4.1 Yaw Control RL

The RL algorithm developed for the yaw control of a HAWT presents multiple state,
action and immediate reward variables. The objective of the multivariable structure
is an improved characterization of the system in the most accurate way possible. To
that end, 2 state variables, 2 action variables and 2 immediate reward variables are
considered in the proposed RL algorithm.

The states s are:

– StateYawA [deg]: This state defines the orientation difference between the wind
incident to the rotor and the nacelle of the wind turbine is shown in Eq. (20).

θyaw = θwind − θnacelle (20)

– StateWindS [m/s]: This state defines the wind speed value incident to the rotor.

The actions a are:

– ActionYawK [-/s]: This action defines the proportional gain associated to the yaw
rotational speed controller. The expression to calculate the yaw rotational speed
is shown in Eq. (21).

�yaw = ActionYawK · θyaw (21)

894 A. Saenz-Aguirre et al.

– ActionYaw [deg]: This action defines the limit associated to the yaw rotation. In
some cases, due to mechanical actuator problem or safety issues, the yaw rotation
of the nacelle is limited to a certain value. The expression to note the rotation
range allowed by this action is shown in Eq. (22).

θyaw ∈ [−ActionYaw , ActionYaw] (22)

The immediate rewards r are:

– RewardP [%]: This immediate reward defines the power gain achieved by the
wind turbine when a certain yaw action is performed. The expression to compute
this immediate reward is shown in Eq. (23).

RewardP = P_control − P_no_control

P_no_deviation
· 100 (23)

As it can be observed in Eq. (23), in order to calculate the power gain 3 different
scenarios related to the yaw actuation of the wind turbine are considered. The
scenario P_control refers to the scenario in which the yaw control of the wind
turbine is active and the nacelle of the wind turbine rotates to the yaw command
provided by the yaw control and at the provided yaw speed value. The scenario,
P_no_control refers to the scenario in which the yaw control of the wind turbine
is not active, and, thus, the orientation of the wind turbine nacelle is fixed. Finally,
the scenario P_no_deviation refers to the scenario in which the nacelle of the wind
turbine is perfectly aligned with the direction of the wind incoming to the rotor.

– RewardM [N m]: This immediate reward defines the value of the mechanical
moment in the yaw bearings. The value of this immediate reward has been defined
with the mechanical moment in the yaw bearings because it has been found as the
most critical mechanical load when performing a yaw rotation. Different mechan-
ical load values, or even a weighted average of them, could be considered as
the immediate reward to be considered by the proposed ML based yaw control
algorithm.

As it was stated in Sect. 3.1 of this chapter, in a RL algorithm the calculation
of the values Q(s, a) for each state-action par is associated to the long-term reward
considering a discount factor γ , see Eq. (3). In the RL algorithm proposed in this
chapter there are 2 different immediate rewards r. Therefore, 2 different matrices
Q(s, a) will result in the algorithm. The expression to calculate the matrices Q(s, a)
using the immediate rewards r is shown in Eq. (24).

Q(s, a) =
i=T∑

i=0

rt+i · γ i (24)

The expression in Eq. (24) is applied to both the immediate rewards r considered
in the ML based yaw control algorithm presented in this paper and the expression of

Self-tuning Yaw Control Strategy … 895

both matrices Q(s, a) are obtained and presented in Eqs. (25) and (26). The discount
factor γ is set to 1 in both cases because it is considered that all the values in the
time horizon are equally important.

Q_P(s, a) =
1
T ∫t+T

t (P_control − P_no_control) · dt
1
T ∫t+T

t P_no_deviation · dt · 100[%] (25)

Q_M(s, a) = t+T∫
t

RewardM(t) · dt[N · m] (26)

After definition of the states s, actions a, immediate rewards r and the expressions
of the matricesQ_P(s, a) andQ_M(s, a), simulations of the performance of the wind
turbine to obtain data for the training process of the RL algorithm are carried out. The
simulations are carried out with the aeroelastic code FAST [49] and the wind turbine
model NREL 5 MW, presented in the work of Jonkman et al. [13], both designed by
the National Renewable Energies Laboratory (NREL) in the USA.

The objective of the training process of the RL algorithm is to obtain the data
related to all possible actuation scenarios associated to the yaw control of the wind
turbine. Thus, in the design process presented in this chapter, an offline training
process of the wind turbine with all the possible considered wind speed values and
the yaw control actions is proposed. Thus, simulations with StateWindS = 3:1:17
[m/s], StateYawA= −90:10:90 [deg], ActionYawK= 0.1:0.1:1 [-/s] and ActionYaw
= −90:10:90 [deg] have been carried out with the aeroelastic code FAST. The values
of the matrices Q_P(s, a) and Q_M(s, a) are calculated with the data obtained from
the simulations, see Eqs. (25) and (26).

4.2 Yaw Control MLP-BP

A MLP-BP neural network is designed to store the data of the matrices Q_P(s, a)
and Q_M(s, a) corresponding to the RL algorithm. The objective of storing these
matrices as continuous functions Q_P(s(t), a(t)) and Q_M(s(t), a(t)) is to eliminate
the necessity of large amount of data management, which could result problematic in
the implementation of the control strategy in the control system of the wind turbine,
due to memory issues. Additionally, with the use of an ANN to store the data of
the RL algorithm, the replacement policy of the RL algorithm is incorporated, since
the ANN learns from the new calculated values. This aspect is of great importance
if an online training of the RL algorithm during operation of the wind turbine is
implemented. In that case, the ANN continuously learns from new calculated values
and the accuracy of the functions Q_P(s(t), a(t)) and Q_M(s(t), a(t)) increase.

The selected topology of theANNdesigned to store the data of thematricesQ_P(s,
a) and Q_M(s, a) is a MLP-BP. The designed MLP-BP neural network presents 4
inputs and 2 outputs. A pipeline with the input and outputs of the designed MLP-BP
neural network is presented in Fig. 6. Internally, the MLP-BP presents a structure

896 A. Saenz-Aguirre et al.

Fig. 6 Input and outputs of the MLP-BP designed for the ML based yaw control strategy

with one input layer with 4 neurons, two hidden layers with 75 neurons and 25
neurons respectively and one output layer with 2 neurons.

The learning rate for the training process of the MLP-BP has been set to 1 · 10–50.
The training ratio, validation ratio and test ration have been set to 90%, 5% and 5%,
respectively. After the training process, correlation coefficients of 0.9999 and Mean
Squared Error (MSE) of 1.62 · 10–6 are obtained. The high value of the correlation
coefficient and the low value of the MSE are indicators of a correct training process
and that theMLP-BP is good enough to be used in theML based yaw control strategy
proposed in this chapter.

4.3 Yaw Control PSO and PoF

As it was stated in Sect. 2 of this chapter, the yaw actuation of a wind turbine allows
alignment of the rotor of thewind turbinewith the direction of the incomingwind and,
thus, the power generated by the wind turbine can be maximized in some scenarios.
Nevertheless, this power gain is achieved at cost of high mechanical loads in several
components of the wind turbine, especially the yaw bearings, which could endanger
the safe operation of the wind turbine or reduce its lifetime.

The objective of the PSO and PoF based optimization algorithm designed in this
paper is to obtain a set of optimal yaw actions, ActionYawK [-/s] and ActionYaw
[deg], that respond to the compromise necessity betweenRewardP [%] andRewardM
[N m].

The output of the PSOandPoFoptimization algorithm is a set of optimal solutions,
known as PoF, that respond to the compromise necessity between the power gain and
the mechanical loads due to the yaw rotation. To calculate this PoF the optimization
algorithm makes use of the functions Q_P(s(t), a(t)) and Q_M(s(t), a(t)) as the
fitness functions. The states of the system, StateYawA [deg] and StateWindS [m/s],
are defined and the fitness value of different set of actions, ActionYawK [-/s] and
ActionYaw [deg], is evaluated. The final optimal solutions are the solutions in which
one of the fitness values cannot be increased without degrading the other one.

Self-tuning Yaw Control Strategy … 897

4.4 Yaw Control DM

The DM algorithm selects one of the optimal actions proposed as the result of
the PSO-PoF optimization algorithm. The DM algorithm proposed in this chapter
considers themechanical loads as the limiting factorwhen selecting the yawactuation
and it could be summarized as follows:

– The solutions that suppose a value of the function Q_M(s(t), a(t)) higher than a
predefined threshold are not taken into consideration due to safety issues.

– From the set of solutions that are taken into consideration, the one with the highest
value of the function Q_P(s(t), a(t)) is selected.

Other different approaches for the selection of the yaw optimal actuation based
on more complex principles could also be evaluated and implemented.

5 Conclusions

The design procedure of a ML based yaw control algorithm for a HAWT based
on AI techniques has been presented in this chapter. The proposed yaw control
strategy is aimed to improve the performance of classical yaw control strategies
by means of the use of AI techniques, which emulate the performance of natural
processes to provide digital systems with intelligence and self-learning capability.
The self-learning capability is the main characteristic of the ML.

The proposedML based yaw control strategymakes use of three different AI tech-
niques for the development of the control strategy. The RL algorithm maps actions
to states and thus allows the development of a policy in the wind turbine that selects
the best actions in different wind turbine operation scenarios. The ANN provides a
very important learning capability and allows a continuous learning process in the
wind turbine, as well as, a simplified datamanagement by storage of large amounts of
data as continuous functions. Finally, the PSO and PoF based optimization algorithm
allows to select the actions that maximize the power output of the wind turbine and
minimize the mechanical loads generated as a result of the yaw rotation.

The most important capability of the proposed ML based yaw control strategy is
the self-tuning.As a result of the self-learning capability of theML system, there is no
need for tuning a closed loop for the yaw angle control of thewind turbine. Therefore,
the risk associated to a possible inadequate tuning of this control loop is erased. In
fact, an inadequate control tuning could cause considerable power generation losses
or high mechanical loads that could endanger the safe operation of the wind turbine.

Simulations of the proposed ML based yaw control strategy with the aeroelastic
code FAST show promising results in comparison to other more simple controllers
based on the classical control theory. The most visible improvements are increased
generated power values and considerable mechanical load reductions in the yaw
bearings of the wind turbine for different wind scenarios.

898 A. Saenz-Aguirre et al.

Acknowledgements The authors are grateful to the Government of the Basque Country and
the University of the Basque Country UPV/EHU through the SAIOTEK (S-PE11UN112) and
EHU12/26 research programs, respectively.

Funding: This research was partially funded by Fundation VITAL Fundazioa.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Rosales-Asensio E, Borge-Diez D, Blanes-Peiro J, Perez-Hoyos A, Comenar-Santos A (2019)
Review of wind energy technology and associated market and economic conditions in Spain.
Renew Sustain Energy Rev 101:415–427

2. WindEurope (2019) Wind energy in Europe in 2018. Trends and Statistics
3. Nyanteh Y, Schneider N, Netter D, Wei B, Masson PJ (2015) Optimization of a 10 MW

direct drive HTS generator for minimum levelized cost of energy. IEEE Trans Appl Supercond
25(3):1–4

4. Kim Y (2016) Robust data driven H-infinity control for wind turbine. J Franklin Inst
353(13):3104–3117

5. Saenz-Aguirre A, Zulueta E, Fernandez-GamizU, Lozano J, Lopez-Guede JM (2019)Artificial
neural network based reinforcement learning for wind turbine Yaw control. Energies

6. Saenz-Aguirre A, Fernandez-Gamiz U, Zulueta E, Ulazia A, Martinez-Rico J (2019) Optimal
wind turbine operation by artificial neural network-based active gurney flap flow control.
Sustainability 11:2809

7. Aramendia I, Fernandez-Gamiz U, Zulueta E, Saenz-Aguirre A, Teso D (2019) Parametric
study of a gurney flap implementation in a DU91W(2)250 airfoil. Energies

8. Saenz-Aguirre A, Zulueta E, Fernandez-Gamiz U, Ulazia A, Teso D (2019) Performance
enhancement of the artificial neural network based reinforcement learning for wind turbine
Yaw control. Wind Energy

9. Fernandez-Gamiz U, Zulueta E, Boyano A, Ansoategui I, Uriarte I (2017) Five megawatt wind
turbine power output improvements by passive flow control devices. Energies 10(6):742

10. Zhang D, Han X, Deng C (2018) Review on the research and practice of deep learning and
reinforcement learning in smart grids. CSEE J Power Energy Syst 4(3):362–370

11. Yang Z, Merrick K, Jin L, Abbass HA (2018) Hierarchical deep reinforcement learning for
continuous action control. IEEE Trans Neural Netw Learn Syst 29(11):5174–5184

12. Bivona S, Bonanno G, Burlon R, Gurrera D, Leone C (2010) Stochastic models for wind speed
forecasting. Stochas Models Wind Speed Forecast 52(2):1157–1165

13. Jonkman JM, Butterfield S, Musial W, Scott G (2009) Definition of a 5MW reference wind
turbine for offshore system development. National Renewable Energy Laboratory (NREL)

14. Yücel M, Özder S, Design and efficiency of 5 kW wind turbine without gearbox, controlled by
Yaw and pitch drivers. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi
4 (1):74–87

15. Ahrens M, Kucera L, Larsonneur R (1996) Performance of a magnetically suspended flywheel
energy storage device. IEEE Trans Control Syst Technol 4(5):495–502

16. Zheng S, Yang J, Song X, Ma C (2018) Tracking compensation control for nutation mode of
high-speed rotors with strong gyroscopic effects. IEEE Trans Ind Electron 65(5):4156–4165

17. Shariatpanah H, Fadaeinedjad R, Rashidinejad M (2013) A new model for PMSG-based wind
turbine with Yaw control. IEEE Trans Energy Convers 28(4):929–937

18. WangX,LiX,LeungVCM(2015)Artificial intelligence-based techniques for emerging hetero-
geneous network: state of the arts, opportunities, and challenges. IEEE Access 3:1379–1391

Self-tuning Yaw Control Strategy … 899

19. Fadlullah ZM, Tang F, Mao B et al (2017) State-of-the-art deep learning: evolving machine
intelligence toward tomorrow’s intelligent network traffic control systems. IEEECommunSurv
Tutor 19(4):2432–2455

20. Jagodnik KM, Thomas PS, Bogert AJvd, Branicky MS, Kirsch RF (2017) Training an actor-
critic reinforcement learning controller for arm movement using human-generated rewards.
IEEE Trans Neural Syst Rehabilitat Eng 25(10):1892–1905

21. Mongillo G, Shteingart H, Loewenstein Y (2014) The misbehavior of reinforcement learning.
Proc IEEE 102(4):528–541

22. Sutton RS, Barto AG (1998) Reinforcement learning: an introduction. MIT Press, Cambridge,
MA, USA

23. Kaelbling LP, Littman ML, Moore AW (1996) Reinforcement learning: a survey. J Artif Intell
Res 4(1):237–285

24. Bertsekas DP (2013) Abstract dynamic programming. Athena Scientific, Belmont, MA, USA
25. Bertsekas DP (2012) Dynamic programming and optimal control: approximate dynamic

programming, no 2. Athena Scientific, Belmont, MA, USA
26. Bertsekas DP (2017) Value and policy iterations in optimal control and adaptive dynamic

programming. IEEE Trans Neural Netw Learn Syst 28(3):500–509
27. Kao K, Wu I, Yen S, Shan Y (2013) Incentive learning in Monte Carlo tree search. IEEE Trans

Comput Intell AI Games 5(4):346–352
28. Coulom R (2006) Efficient selectivity and backup operators in Monte-Carlo tree search. In:

Proceedings of 5th international conference computer games, pp 72–83
29. Watkins CJCH (1989) Learning from delayed rewards. PhD thesis, King’s College, Cambridge,

UK
30. Watkins CJCH, Dayan P (1992) Q-learning. Mach Learn 8(3):279–292
31. Adam S, Busoniu L, Babuska R (2012) Experience replay for real-time reinforcement learning

control. IEEE Trans Syst Man Cybernet Part C (Appl Rev) 42(2):201–212
32. Chen SH, Jakeman AJ, Norton JP (2008) Artificial Intelligence techniques: an introduction to

their use for modelling environmental systems. Mathemat Comput Simul 78:379–400
33. Yao X (1999) Evolving artificial neural networks. Proc IEEE 87(9):1423–1447
34. Oong TH, Isa NAM (2011) Adaptive evolutionary artificial neural networks for pattern

classification. IEEE Trans Neural Netw 22(11):1823–1836
35. Yang XS (2013) Optimization and metaheuristic algorithms in engineering. In: Yang XS,

Gandomi AH, Talatahari S, Alavi AH (eds) Metaheursitics in water, geotechnical and transport
engineering. Elsevier, pp 1–23

36. Jain AK, Mao J, Mohiuddin KM (1996) Artificial neural networks: a tutorial. Computer
29(3):31–44

37. Wang L, Shen J (2017) A systematic review of bio-inspired service concretization. IEEE Trans
Serv Comput 10(4):493–505

38. Khan B, Singh P (2017) Selecting ameta-heuristic technique for smart micro-grid optimization
problem: a comprehensive analysis. IEEE Access 5:13951–13977

39. Bala A, Ismail I, Ibrahim R, Sait SM (2018) Applications of metaheuristics in reservoir
computing techniques: a review. IEEE Access 6:58012–58029

40. Kennedy J, EberharRC (1995) Particle swarmoptimization. In: Proceedings IEEE international
conference on neural network. Perth, WA, Australia, pp 1942–1948

41. Ehrgott M, Gandibleux X (2000) A survey and annotated bibliography of multiobjective
combinatorial optimization. OR-Spektrum 22(4):425–460

42. Durillo JJ, Nebro AJ, García-Nieto J, Alba E (2010) On the velocity update in multi-objective
particle swarm optimizers. In: Coello CA, Dhaenens C, Jourdan L (eds) Advances in multi-
objective nature inspired computing. Springer BerlinHeidelberg, Berlin, Heidelberg, pp. 45–62

43. Coello Coello CA, Dhaenens C, Jourdan L (2010) Multi-objective combinatorial optimization:
problematic and context. In: Coello CA, Dhaenens C, Jourdan L (eds) Advances in multi-
objective nature inspired computing. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 1–21

44. Pareto V (1896) Cours D’Economie Politique, F. Rouge, Lausanne, I(II)

900 A. Saenz-Aguirre et al.

45. Karakasis N, Mesemanolis A, Nalmpantis T, Mademlis C (2016) Active yaw control in a
horizontal axis wind system without requiring wind direction measurement. IET Renew Power
Gener 10(9):1441–1449

46. SongD, FanX, Yang J, Liu A, Chen S, Joo YH (2018) Power extraction efficiency optimization
of horizontal-axis wind turbines through optimizing control parameters of yaw control systems
using an intelligent method. Appl Energy 224:267–279

47. SongD,Yang J, FanXet al (2018)Maximumpower extraction forwind turbines through a novel
yaw control solution using predicted wind directions. Energy Convers Manage 157:587–599

48. Bharani R, Jayasankar KC (2015) Yaw control of wind turbine using fuzzy logic controller.
Power Electron Renew Energy Syst 326:997–1006

49. NREL NWTC FAST version 7. Available online: https://nwtc.nrel.gov/FAST7/. Accessed 21
Oct 2018

https://nwtc.nrel.gov/FAST7/

	 Self-tuning Yaw Control Strategy of a Horizontal Axis Wind Turbine Based on Machine Learning
	1 Introduction
	2 Objectives and Applications
	3 Machine Learning and Artificial Intelligence Techniques
	3.1 Reinforcement Learning
	3.2 Artificial Neural Networks
	3.3 Optimization Algorithms

	4 Machine Learning Based Wind Turbine Yaw Control
	4.1 Yaw Control RL
	4.2 Yaw Control MLP-BP
	4.3 Yaw Control PSO and PoF
	4.4 Yaw Control DM

	5 Conclusions
	References

