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Abstract In this chapter are presented some aspects concerning the finite element
analysis of magnetic shielding for power applications. The investigation describes
the physical mechanisms of magnetic shielding the magnetic field in a cylindrical
shield using magnetic scalar potential and magnetic vector potential. A variational
and a Galerkin finite element formulation are described. The mitigation of an OHTL
magnetic field inside a shielded building placed near it is evaluated in the case study
of this chapter.
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MSP Vm Magnetic scalar potential Vm

MVP A Magnetic potential vector A
δ Skin depth
ω = 2π f Angular frequency
μ0 Vacuum magnetic absolute permeability
μr Relative magnetic permeability
σ Electric conductivity
H Magnetic field strength
E Electric field strength
k Propagation constant
B Magnetic flux density
J Current density
SLF Super low frequency
PDE Partial Differential Equation
Ni Shape functions

1 Introduction

The electromagnetic pollution progressed a lot in the last century. The diversity of
the electric and electronic systems has evolved in a tremendous way. Those devices
operate in different frequency ranges, concentrated on specialized spectral domains.

Some of the most common sources of low frequency magnetic fields are the
overhead transmission lines (OHTL), underground transmission cables (UGTC),
medium voltage/low voltage (MV/LV) substations and building’s electrical distri-
bution systems. Their magnetic fields can generate electromagnetic compatibility
problems caused the interference that affects technical features of the electrical and
electronic devices and also can represent potential hazards for the human health.

In order to evaluate the possibilities of mitigating the magnetic field of these
equipments and to compare the results with the reference values proposed by the
international scientific institutions some methods were proposed.

In [1] certain intrinsic and extrinsic methods are described. The first category
is referring to modifying the geometrical and electrical parameters of the magnetic
field source: layout and compaction, distance management, phase splitting and phase
cancellation. The second one comprises passive and active techniques depending on
the way in which they attenuate the magnetic field.

The passive solutions refer to the attenuation systems that are located near the
source of the magnetic field or in the neighborhood of the protected region.

Passive solutions include conductive and/or ferromagnetic shields and passive
loops.

Active solutions use external devices that generates magnetic field that attenuate
the incident magnetic field, having the same magnitude, phase and frequency. They
are used in so called active loops. These are complex and expensive devices that
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monitors and adjust the necessary current in order to obtain the proper counterpart
magnetic field [2].

In order to design and evaluate the effectiveness of the attenuation solution
generally computer aided engineering (CAE) software tools are used [3, 4].

Analytical solutions exist only for simple geometries and homogenous media.
Those programs use different numerical techniques in order to solve the specific

forms of Maxwell equations that describe the operating of the considered systems.
The most used methods are the finite difference method, the finite element method,
the boundary element method and the transmission line matrix method.

One of the most versatile numerical methods used to simulate electromagnetic
fields is the finite element method.

Modeling and simulation of the magnetic shields for power applications by the
finite element method is widely described in the literature.

In [5] a precise shielding factor computation, based on the Finite Element Method
(FEM) combined with the Jiles-Atherton model is presented, considering random
disturbances. In paper [6] the 3D magnetic field of the reactor is computed by the
method of edge-node finite element coupling.

In [7, 8] some numerical problems for magnetostatic and time harmonic 3D
magnetic shields are presented in [9] different types of magnetic potentials are used
for computing 3D magnetostatic shields effectiveness.

The effectiveness of the multilayer magneto static and time harmonic shields is
evaluated using finite element method in [10, 11].

In [12] one and two shells magneto static cylindrical shields were considered.
Applying the interface conditions at the discontinuity surfaces between themedia, the
symbolic algebraic systems of equations for those configurations were obtained and
solved. Structure of the system’s matrices were analyzed and their sparsity patterns
were visualized. Analytical and numerical transversal effectiveness of the cylindrical
shields were computed for different lengths.

Some numerical and experimental aspects concerning the electromagnetic
shielding in microwave range are presented in [13, 14].

Measured values of the electrical field for an open type air substation are compared
with numerical results obtained by finite element program Ansys in [15].

One of the new trends in computational electromagnetics is using the multicore
machines in order to improve the execution time. Aspects concerning this topic
applied for Comsol Multiphysics on a 3D magnetostatic problem are available in
[16–17].

In [18] analytic and numerical comparison between the magnetic stored energy
in cylindrical and toroidal coils considering the steady state superconducting state is
considered.

Numerical shielding solutions concerning the underground power cables, using
FEMM finite element software, are described in [19, 20]. In [21] a combination
of theoretical analysis and numerical simulations with the finite element method is
used to analyze the shielding properties of a passive and active shield developed for
a SERF co-magnetometer application.
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The progresses in the development of CAE programs that use finite element
method are presented in many scientific papers.

In [22] certain recent trends in computational electromagnetics for defense appli-
cations are presented. Numerical aspects referring to an a posteriori error estimate of
weak Galerkin (WG) finite element methods that can be applied to polygonal meshes
and to an ill-posed elliptic Cauchy problems are described in [23, 24].

In this chapter recent trends of using finite element method for the modeling
and simulation of passive shielding for low frequency field considering power
applications are described.

The structure of the chapter is as follows.
In Sect. 1 is the introduction. Section 2 is entitled Time harmonicmagnetic shields.

It has two sub sections: Basics magnetic shielding mechanisms and the factors that
determine the shielding effectiveness (SE) are described in Sect. 2.1. Solutions of
the transversal time harmonic magnetic field in cylindrical shields are obtained in
Sects. 2.2.1 and 2.2.2 using the magnetic scalar potential (MSP) and the magnetic
potential vector (MVP), respectively. In both cases the shielding effectiveness (SE)
was computed and analyzed.

The finite element method is described in Sect. 3, using two formulations.
A variational approach is presented for the magneto static field in Sect. 3.1 and

the Galerkin approach is used for the time harmonic magnetic field in Sect. 3.2.
In Sect. 4 a case study that evaluates de magnetic protection of a partially shielded

building to the magnetic field produced by an OHTL is presented, using the Ansys
finite element software.

The distribution of the magnetic shield inside the building, with and without the
shield is described and the maximum values are compared with the reference values
indicated by the international commissions.

2 Time Harmonic Magnetic Shields

2.1 Basics of Magnetic Shielding Mechanisms

This type of shields is used to protect some volumes against time variable magnetic
fields.

There are shields with closed and open geometries. The first type includes those
shields that separate completely the source field and the protected region: the infinite
extended plane, the infinite extended cylindrical and the spherical shields [2, 25–26].
For this type the magnetic field occurs in the shielded region by penetration.

For opened geometries (finite length plane shields and finite length cylindrical
shields) out of the penetration mechanism appears also the flux leakage.

Two different mechanisms are present in the shielding of low frequency magnetic
fields: magnetic flux shunting and magnetic flux attenuation by eddy currents.

The first mechanism is used also for dc magnetic fields [27].
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The magnetic flux flows mainly through high permeability magnetic materials,
that attract and shunt the flux lines. As a consequence, the magnetic flux lines are
concentrated in the shield and avoid the protected region. The shield behaves like a
magnetic field concentrator. The shielding effectiveness (SE) depends on thematerial
magnetic permeability, on the geometry (ratio of the thickness over the external
diameter multiplied with the magnetic relative permeability), on the shape of the
shield and on the thickness of it [25–26, 28, 29].

In the second case the shielding effect is based on the generation of eddy currents
in the metallic shells of the enclosure. Eddy currents are induced only in electrically
conducting materials. The eddy currents create magnetic fluxes that oppose to the
variation of the incident magnetic fluxes. As a consequence, the incident magnetic
field is rejected in the neighborhood of the shield [25, 30, 29]. This phenomenon is
encountered only in ac magnetic field.

The mechanism is valid no matter what is the value of the magnetic permeability.
Anyway, for materials that have high magnetic permeability the shielding is very

efficient. The level of shielding depends on the material permeability and conduc-
tivity, on the geometry (ratio of the thickness over the external diameter multiplied
with the magnetic relative permeability), on the thickness of the shield and on the
frequency of the field source [27].

The eddy current density depends on the frequency of the incident field and on
the electric conductivity of the material.

In Fig. 1 the distribution of the magnetic field lines is compared considering two
types of magnetic shields: a magneto static cylindrical ferromagnetic shield and a
time harmonic magnetic cylindrical shield. The thickness of the shield is 3 mm and
the external diameter is 56 mm. The relative magnetic permeability is μr = 1000
the electric conductivity σ σ = 1.45 · 106 S/m and is 50 Hz.

For electromagnetic shields there is an important parameter, called skin depth,
which influences the effectiveness of the shield. The expression of it is:

δ =
√

2

ωμ0μrσ
(1)

where ω is the angular frequency, μr and μ0 are the relative and absolute magnetic
permeability respectively and σ is the electric conductivity of the shield material.

The magnetic field decays in the shield over a distance of few skin depth lengths.
For the shield effectiveness is important the ratio between the thickness and the

skin depth g/δ.
If g �= δ high values of shield effectiveness could be obtained. If g = δ the eddy

currents have a uniform distribution in the shield thickness and the effectiveness of
the shield is less than in the previous case.

For the shields that attenuate the incident field by the mechanism of the eddy
current a good effectiveness can be obtained by increasing the maximum dimension,
such as the diameter, for a constant thickness.

For the flux shunting mechanism, the increasing of the diameter decreases the SE.
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Fig. 1 a Magneto static
shield as a magnetic field
concentrator. b Rejection of
the magnetic flux lines

a) 

b)

In order to increase the SE of the magnetic shields at low frequencies mate-
rials with high permeability should be used. But they are expensive and heavy. Mu-
Metal and Permalloy are examples of alloys with permeability of up to 100,000, by
comparison with ordinary steel that has only few thousands.

A solution to avoid the drawbacks of using those materials is to use a multi-
layer geometry, composed of combination of ferromagnetic and non ferromagnetic
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materials separated by a layer of air. The thickness of the air influences directly
the shield effectiveness. Also, two layer shields composed of steel-copper are very
efficient against variable magnetic fields. The copper, having high electric conduc-
tivity, generates high reflexivity and eddy currents. The steel having high magnetic
permeability is proper for low frequencies [21, 31, 32].

One of the new trends for shieldingmaterials is the usage ofmaterialswith noncon-
ventional electromagnetic properties, e.g. epsilon-, mu- and index-near-zero meta-
materials. They are artificialmaterialswith properties that are not found in nature, e.g.
negative permeability. Those materials are manufactured from repetitive structures
composed of composite materials such as metals and plastics. In [32] a longitudinal
mu-near-zero metamaterial is used to shield quasi-stationary magnetic fields.

2.2 The Cylindrical Shield in Transversal Time Harmonic
Magnetic Field

Solutions of the magnetic field equations in the cylindrical shield structure can be
obtained using magnetic scalar potential (MSP) or magnetic vector potential(MVP).
Both approaches will be presented in the next paragraphs.

2.2.1 Solution Using Magnetic Scalar Potential

The cylindrical and planar shields are mainly used to attenuate the SLF (super low
frequency) magnetic field.

In this section a cylindrical shield subjected to a transversal time harmonic
magnetic field is analyzed.

In Fig. 2 the cylindrical shield has an external diameter 2re, an inner diameter 2ri
and the thickness of the shell is g = rext − rint. The incident transversal magnetic
field is Hext = Hext j , oriented in the Oy direction. The shield is considered to be
very long and the end effects are neglected.

From the magnetic point of view there are three domains of interest: outside the
shield (region 1), inside the shield wall (region 2) and in the interior of the shield
(region 3).

(a) The electromagnetic field equations in domain 1 r > re

In this domain there are no current densities. The magnetic field strength can be
expressed using the MSP [25–26, 33–34]:

rot H = 0 (2)

H = −grad Vm (3)
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Fig. 2 Cylindrical shield subjected to a transverse time harmonic magnetic field

where Vm is the magnetic scalar potential.
Because div H = 0 it follows that:

div (grad Vm) = �Vm = 0 (4)

In cylindrical coordinates, neglecting the end effects, expression (4) becomes:

�Vm = ∂2Vm

∂r2
+ 1

r
· ∂Vm

∂r
+ 1

r2
· ∂2Vm

∂ϕ2
= 0 (5)

In order to solve Eq. 5 the method of separation of variables is used [30, 33–34]:

Vm(r, ϕ) = R(r) · φ(ϕ) (6)

The solutions obtained for R and φ are:

R(r) = C1 · rm + C2 · r−m (7)

φ(ϕ) = B1 · cos(mϕ) + B2 · sin(mϕ) (8)

and the general expression of the magnetic scalar potential is:

Vm(r, ϕ) =
∞∑

m=1

(
C1 · rm + C2 · r−m

)
(B1 cos(mϕ) + B2 sin(mϕ)) (9)

After considering the behaviour of the magnetic field far away from the shield,
the MSP expression (8) in the domain 1 becomes:
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Vm1 = −(
Hextr + C2r

−1
)
sin ϕ (10)

The magnetic field strength H has the following components:

Hr = −∂Vm

∂r
=

(
Hext − C2

r2

)
sin ϕ (11)

Hϕ = −1

r
· ∂Vm

∂ϕ
=

(
He + C2

r2

)
cosϕ (12)

(b) The electromagnetic field equations in domain 2 rint < r < rext

In this domain with electrical conductivity the electromagnetic Helmholtz
equationdescribes the field [30, 26, 33–35]:

�E − k2E = 0; k2 = jωμσ (13)

where k is the propagation constant for metals.
Because the electric field and the current density are oriented in the 0 z direction

we rewrite Eq. 13 in cylindrical coordinates, without vectorial notations:

∂2E

∂r2
+ 1

r

∂E

∂r
+ 1

r

∂2E

∂ϕ2
= k2E (14)

Using the separation of the variables the following equations are obtained:

d2E

dr2
+ 1

r

dE

dr
−

(
k2 + n2

r2

)
E = 0 (15)

d2E

dϕ2
+ n2E = 0 (16)

Their solutions are:

E(r) = D1 In(kr) + D2Kn(kr) (17)

E(ϕ) = D3 cos(nϕ) + D4 sin(nϕ) (18)

We obtain the general solution of (13) as follows:

E(r, ϕ) =
∞∑
n=1

(D1 In(kr) + D2Kn(kr))(D3 cos(nϕ) + D4 sin(nϕ)) (19)
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This solution comprises the modified Bessel functions, of order n, In(kr) and
Kn(kr).

This solution is proper when the thickness of the shield g = r2 − r1 is significant
by comparation with the radius rext .

For practical shields, the thickness verifies g << ri .
If the condition n2/r2 <<

∣∣k2∣∣ is fulfilled, then Eq. 15 becomes [30]:

d2E

dr2
+ 1

r

dE

dr
− k2E = 0 (20)

and have the solution:

E(r) = M1e
kr + M2e

−kr ; k = √
jωμσ (21)

The solution of electric field in the shield wall is:

E(r, ϕ) = (
M1e

kr + M2e
−kr

)
cosϕ (22)

(c) The electromagnetic field equations in domain 3

In this domain the magnetic field is described by similar equations similar with
(11) and (12) but without the terms C2/r2, because when r → 0 the magnetic field
goes to infinite [30, 26, 35, 36].

The expressions of the magnetic field components are:

Hr = Hext sin ϕ (23)

Hϕ = Hext cosϕ (24)

The shielding factor
In order to compute the shielding factor the interface conditions among those

three domains are used. The shielding factor SF is a complex number and is defined
by the ratio:

SF = Hint/Hext (25)

Interface conditions
At the border between the first and the second domains, for r = rext , the normal

component of themagnetic flux density and the tangential component of themagnetic
field strength are preserved.

As a consequence the following expressions are obtained:

Hext − C2

r2ext
= 1

jωμ0rm

(
M1e

krext + M2e
−krext

)
(26)
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Hext + C2

r2ext
= k

jωμ

(
M1e

kext r − M2e
−krext

)
(27)

At the boundary between the second and the third domain, for r = rint, from the
same conditions the next expressions follows:

H int = 1

jωμ0rm

(
M1e

krint + M2e
−krint

)
(28)

H int = k

jωμ

(
M1e

krint − M2e
−krint

)
(29)

From relations (26) to (29) the following unknowns C2, M1, M2, Hint are
obtained. After the calculation, the expression of the shielding factor is obtained:

Fe = Hint

Hext

= 1

cosh kg + 1
2

(
D + 1

D

)
sinh kg

(30)

where k is the propagation constant in metals:

k = √
jωσμ = 1 + j

δ
(31)

and D is:

D = krm
μr

(32)

and g = re − ri is the thickness of the shield.
Because g << ri the following approximation have been used: re ≈ ri = rm The

SE can be computed using the following expression:

SE =
∣∣∣∣ 1

SF

∣∣∣∣ =
√
Re2

(
1/Fe

) + Im2
(
1/Fe

)
(33)

The shield effectiveness SE increases with the thickness of the shield wall and
with the frequency of the incident field. Ferromagnetic cylindrical shields have higher
SE values, at the same thickness, magnetic permeability and frequency than those
manufactured from non ferromagnetic materials.

2.2.2 Solution Using Magnetic Potential Vector

The same problem can be solved in terms of the magnetic vector potential A in
a cylindrical reference coordinate system. The geometry is symmetrical and the
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magnetic vector potential is oriented in the z direction and it is independent of the z
coordinate. In domains 1 and 3 of the cylindrical shield, themagnetic vector potential
verifies theLaplace equation and in domain 3 the shield verifies the diffusion equation
[2, 30, 34]:

∇2Az = 0, r ≥ rext (34)

∇2Az − k2Az = 0, rint < r < rext (35)

∇2Az = 0, r ≤ rint (36)

where

∇2Az = (
∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2
∂2

∂ϕ2
)Az (37)

The current density is proportional to a cosϕ factor so the magnetic field potential
AZ is expressed as a product of a radial function and cosϕ [2, 36]. The following
expressions are obtained [2, 36]:

A1
z (r, ϕ) = μ0Hext cosϕ(r − c1

r
), r ≥ rext , (38)

A2
z (r, ϕ) = μ0Hext cosϕ[c2 I1(kr) + c3K1(kr)], rint < r < rext , (39)

A3
z (r, ϕ) = μ0Hext c4r cosϕ, r ≤ rint, (40)

where I1(·) and K1(·) are the first-order modified Bessel functions of the first and
second kind, respectively. The unknown coefficients c1, c2, c3 and c4 can be deter-
mined using the boundary conditionsat the interface of the cylindrical shells, in a
similar way as for the MSP. After solving the obtained algebraic linear system of
equations, the unknown coefficients are determined. Using them the expressions of
the magnetic vector potential in all of the three regions of interest can be obtained.

The shield effectiveness has the following expression [2]:

SE =
∣∣∣∣∣∣

rint
2rextμr

{[μrK1(krint ) − krintK
′
1(krint )]

[
μrI1(krext ) + krext I

′
1(krext )

]
−

[μrI1(krint ) − krint I
′
1(krint )][μrK1(krext ) + krextK

′
1(krext )]}

∣∣∣∣∣∣
(41)

where I
′
1(·) and K

′
1(·) are the first derivative of the first-order modified Bessel

functions of the first and second kind, respectively.
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The Eq. 41 has certain simpler forms for different conditions.
Considering the case when the radii of the shield are large compared to the skin

depth (i.e. rint , rext = δ) a much simpler expression is obtained:

SE =

∣∣∣∣∣∣∣
√
rint

8μr krext
√
rext

[k(rext + 8μr rint + 8μr g) cosh(kg)+(
kg + 4k2r2int + krint + 4k2rint g + 4μ2

r

)
sinh(kg)]

∣∣∣∣∣∣∣ (42)

For the case of a magnetic conducting thin shield, the following expression is
obtained:

SE;
∣∣∣∣cosh(kg) + 1

2

(
krm
μr

+ μr

krm

)
sinh(kg)

∣∣∣∣ (43)

Considering the low-frequency approximation case, for the case of power
applications (|kg| = 1) in (43), then the next expression is obtained:

SE; |1 + μr

2rm
g + rm

2μr
gk2| (44)

Considering the thick-shield approximation for the magnetic conducting cylin-
drical shell a different expression is derived, using the following approximations:

(|kg| = 1, rm = δ and rext ; rint = r0)

SE; | rmk
4μr

ekg| = rm

2
√
2μrδ

eg/δ (45)

3 Finite Element Formulations for Magneto Static
and Time Harmonic Magnetic Field

Problems of analysis of macroscopic electromagnetic field accept, out of the
differential formulation, an equivalent variational approach.

In order to create the mathematical variational model of the electromagnetic field
a variational principle (Lagrangian or Hemiltonian type) must be set. It must allow
generating from a stationary condition of a certain functional (generally with a signif-
icance of electromagnetic energy) the fundamental equations of the electromagnetic
field in material media [36, 37].

Numerical techniques convert the partial differential equations of the electro-
magnetic field in linear or non linear systems of algebraic equations. The solu-
tion of those systems generates an approximate solution of the electromagnetic
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field in a discrete number of points of the field domain called nodes. Different
approaches convert the PDEs that describe the field into a system of algebraic equa-
tions having as unknowns the values of the electric or magnetic potential. There
different discretization techniques: finite difference method, finite element method,
finite volume method, boundary element method.

The finite element method is recognized as a powerful and versatile method that
can be used to a large class of engineering and mathematical problems, including
those from electromagnetics.

The operation that named the method consists of discretization (mesh) of the 1D,
2Dor 3Dfield domain into some 1D elements (line segments), 2D elements (triangles
or quadrilaterals) and 3D elements (tetrahedrons, hexahedrons (bricks), as seen in
Fig. 3a–d.

a) b) 

c) d) 

Fig. 3 Finite element discretizations a 2D structured mesh with squares b 2D unstructured mesh
with triangle, c 3D non structured mesh with tetrahedrons, d 3D structured mesh with hexahedrons
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Meshing with triangles and tetrahedron is called unstructured mesh. When
quadrilaterals and hexahedrons (bricks) are used we are talking about structured
mesh.

Then the unknown electromagnetic potentials at an elemental level are expressed
as combinations of their values in the nodes of the mesh and a set of known functions
called shape functions [36–38].

There are cases when the energy functional is very difficult to obtain or doesn’t
exist (generally for non-self adjointpartial differential equations PDEs). In those
cases other techniques are used: the Ritz-Rayleigh and the Galerkin method.

They are not related with the minimization of a functional and can be used to
solve directly the PDEs with boundary conditions.

Themain computational steps that should be performed in order to solve a problem
by the finite element method are:

– Discretizing the solution region into small sub domains called finite elements
– Obtaining the governing equation for a certain element (obtaining the element

coefficient matrix)
– Assembling of all elements in the solution region (assembling all the elementary

matrix into a global matrix, named stiffness matrix)
– Solving the resulting system of equations
– Post processing the results.

3.1 Finite Element Analysis of Magneto Static Field Using
a Variational Formulation

We consider a plane-parallelmagnetostatic field, described by a Laplace equation, in
2D domain, having Dirichlet boundary conditionson the frontier 
2 [33–34, 36–39],
(Fig. 4):

Fig. 4 Electromagnetic field
domain
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∇2Az = 0 (46)

where AZ is the z component of the magnetic vector potential A, for this type of
field.

SolvingEq. (46) is equivalentwith obtaining the solution for a variational problem.
It consists in finding theminimumof a certain functional, that represents themagnetic
energy from the domain. This means that the distribution of the magnetic potential
that satisfies the Laplace equation minimizes the magnetostatic energy from the
domain.

The energy functional that corresponds to Eq. 46 has the following expression:

F(A) =
∫
V

1

2μ
∇2 AzdV (47)

This equation presents the energyof themagnetic field from the respective domain.
Solving the equation is simpler for plane-parallel or axisymmetricfields.

If we consider a parallel plane magnetic field in magnetostatic and assuming that
the depth is in the Oz direction, the perpendicular on the field plane, equal with the
unit, the functional. Using Eq. 47 can be written as a surface integral:

F(A) =
∫
S
2

1

2μ
∇2 AdS (47′)

Being applied for each element, this transformation decreases the computational
costs.

The application of the variational approach will be described as follows, consid-
ering a general electromagnetic media, described by parameters ε, σ and μ with
magnetization domain M and current sourcesJ (Fig. 4).

In the first step, the domain �2 is split in smaller sub domains, called finite
elements, with triangular shapes (Fig. 4). These elements can have different sizes,
depending on the domain configuration, with the mesh density increasing where the
field variation rate is higher. Let m be the total number of finite elements and n the
total number of resulting nodes. By dividing the domain in a finite element mesh the
functional Eq. 47 can be rewritten as the sum of the functionals corresponding to the
m finite elements [34, 36]:

� =
m∑
e=1

1

2μe

∫
Se

(∇Aze)
2ds (48)

Expression (48) indicates that the method can be used to solve the magnetic field
problems in heterogeneous domains that occur in practical situations.

Different finite elements can have different permeabilities (μre), the magnetic
medium in a single element being homogenous. Also relation (48) indicates that, for



Finite Element Solutions for Magnetic Shielding … 751

a linear media, the sum of the magnetostatic field energy from every finite element
equals the whole magnetostatic field energy from domain �2.

On the other hand, the use of the Eq. (48) instead of (47) should assume the
fulfilling of specific interface conditions for the magnetostatic field at the interface
between the adjacent finite elements.

For themagnetostatic field this means the continuity of themagnetic vector poten-
tialA and the preservation of the normal components of the magnetic flux density at
the interface between medium 1 and 2:

(Bn)|μr1 = (Bn)|μr2 (49)

Usually polynomial approximations are used (Lagrange, Hermite).
Considering the finite elements small enough it could be considered that the

magnetic vector potential (MVP) A(x, y) has a linear variation with x and y, and can
be described by a first degree algebraic polynom.

In Fig. 5 a current triangular finite element e, described by the nodes i, j, k with the
coordinates Pi (xi , yi ), Pj

(
x j , y j

)
and Pk(xk, yk) is presented. For a point P inside

the element (e), the MVP Az(x, y) can be written as follows [33, 40, 36]:

Aze = α1 + α2 · x + α3 · y (50)

or as a matrix:

Aze = [
1 x y

] ·
⎡
⎣α1

α2

α3

⎤
⎦ (51)

For each element three coefficients should be computed.
Because the aim of the computing is to obtain the values of the magnetic potential

in the nodes of the mesh then MVP Aze should be expressed as a function of the
magnetic potentials Azi , Azj , Azk from the nodes i, j, k of the finite element “e”, in

Fig. 5 First order triangular
finite element
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x 

(e) 

i 

j 

k 



752 D. Cazacu et al.

the following form:

Aze = Nei Azi + Nej Azj + Nek Azk (52)

or in a matrix form:

Aze = [
Nei Nej Nek

] ·
⎡
⎣ Ai

A j

Ak

⎤
⎦ = [N ] · [A] (53)

where the coefficients Nei , Nej , Nek are linear functions of x and y, called shape
functions. If the point P is in the node i the corresponding shape function has the
value 1 and in the other is 0

(
Nej = Nek = 0

)
.

This property can be described as Ni (xk, yk) = δik , where δik is the symbol of
Kronecker.

For two adjacent elements the value of the magnetic potential in the common
nodes is equal. In order to improve the precision, higher degree polynomials can be
used.

For example in Fig. 6, for each side another node has been added in a second
order polynomials approach. The magnetic potential has the following expression:

Ae = α1 + α2x + α3y + α4x
2 + α5xy + α6y

2 (54)

respectively:

Ae = Nei Ai + Nej A j + Nek Ak + Nea Aa + Neb Ab + Nec Ac (55)

For each element six coefficients should be computed. The precision is higher,
but the execution time increases.

Fig. 6 Second order
triangular finite element
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In order to increase the accuracy of the finite element solution usually three
strategies are used.

The first one is the h-version of the finite element that uses low polynomial degree
(i.e. p = 1, 2) and increases the mesh density. With this approach the approximation
error decreases algebraically versus the number of the unknowns.

The second technique is to maintain the mesh density and to increase the degree p
of the approximation polynomial. This is the p version of the finite element method.
For simpler cases, when the solution is smooth, this approach has an exponential
convergence versus the number of unknowns. For the practical cases the convergence
rate is algebraic. The exponential convergence can be reached again using the hp-
version of the finite element method.

The shape functions will be determined for a linear approximation. Writing the
Eq. 51 for nodes i, j, k the following matrix expression is obtained:

[A] =
⎡
⎣1 xi yi
1 x j y j
1 xk yk

⎤
⎦ ·

⎡
⎣α1

α2

α3

⎤
⎦ (56)

Solving the system in Eq. 56 we obtain the coefficients α1, α2, α3

⎡
⎣α1

α2

α3

⎤
⎦ =

⎡
⎣1 xi yi
1 x j y j
1 xk yk

⎤
⎦

−1

·
⎡
⎣ Azi

Azj

Azk

⎤
⎦ (57)

The vector of the shape functions is then:

[Ne] = [
1 x y

] ·
⎡
⎣1 xi yi
1 x j y j
1 xk yk

⎤
⎦

−1

(58)

The determinant of the second matrix from the r.h.s. is equal with 2Se where Se is
the area of the triangle e. The following relations for the shape functions are obtained
[33, 40]:

Nei = 1

2Se

(
x j yk − xk y j

) + (
y j − yk

)
x + (

xk − x j
)
y

Nej = 1

2Se
(xk yi − xi yk) + (yk − yi )x + (xi − xk)y

Nek = 1

2Se

(
xi y j − x j yi

) + (
yi − y j

)
x + (

x j − xi
)
y

(59)

After doing the calculation the following expression for the gradientof the
magnetic potential is obtained:
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grad Aze = i
∂Aze

∂x
+ j

∂Aze

∂y
= i

∂

∂x

(
Nei Azi + Nej Azj + Nek Azk

)+
j

∂

∂y

(
Nei Azi + Nej Azj + Nek Azk

) (60)

If we take into account Eq. 59 then Eq. 60 becomes:

grad Aze = i
1

2Se

[(
y j − yk

)
Azi + (yk − yi )Azj + (

yi − y j
)
Azk

]+
j
1

2Se

[(
xk − x j

)
Azi + (xi − xk)Azj + (

x j − xi
)
Azk

] (61)

Considering for each element that |grad V | = const then the functional Eq. 48
becomes [33]:

� =
m∑
e=1

μeSe
2

· (∇Aze)
2 (62)

and it be can be rewritten as:

� =
m∑
e=1

μe

8Se

{ [(
y j − yk

)
Azi + (yk − yi )Azj + (

yi − y j
)
Azk

]2
+[(

xk − x j
)
Azi + (xi − xk)Azj + (

x j − xi
)
Azk

]2
}

(63)

The functional Eq. 62 has been transformed into a function that has as variables
the magnetic potentials in the n nodes of the field domain.

Minimization of it is obtained imposing in each nodal point i that the derivative
in relation to Azi to be 0:

∂�
∂Azi

= 0, i = 1, 2, . . . , n (64)

and a systemwith n algebraic equations that has n unknowns, the magnetic potentials
in nodes i, is obtained:

[C][A] = [b] (65)

If the boundary conditions are of Dirichlet type, given the potentials in the nodes
of the domain frontier, the total number of variables is less than n, but even in this
case it is equal to the number of equations.

In many engineering applications matrix C, the stiffness matrix, is symmetrical
and sparse and band structured. The equation system is numerically solved, giving
the potential values for the nodes. For 2D problems direct solvers are used and for
3D problems iterative solvers are indicated.
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In the postprocessor module, for each finite element we can compute (grad Azλ)

as well as the field vector.
The finite element method is a discretization method for field computing, as is

the finite differences method, which is suitable to be compared with. While the finite
differencesmethod is basedon equation approximationwith partial derivates byusing
finite differences equations, the finite element method approximates the potential
function for a finite element. Both methods, as well as the boundary element method,
lead to an algebraic system of equations where the unknowns are the potentials of
the nodes. In the case of boundary elements method the resulting matrix is fully
populated.

The finite elementmethod has advantages in certain situations. Thus, it can be used
for complex geometrical configurations, for linear and non linear PDEs, for coupled
problems (electro-thermal, magneto-structuraland electromagnetic field electric
circuits), varying materials and boundary conditions and anisotropicmaterials.

3.2 Finite Element Galerk in Formulation a Time Harmonic
Magnetic Field

The time magnetic dependent field problems are also referred as eddy current
problems. They occur in the cases of the electromagnetic shields.

There are many situations that require solutions of the time harmonic problems,
such as: AC electric machines, electromagnetic shields, transformers, magnetic
brakes. In the quasi stationary regime, the density of the displacement current is
neglected in relation to density of the conduction current JD = ∂D

∂t = J = σ E .
The equation of the quasi stationary electromagnetic field for the magnetic vector

potentials [35, 38, 41] is the following:

∇ · 1

μ
∇A = σ

∂A

∂t
+ JS (66)

where JS is the excitation current and for the linear media:

�A = μσ
∂A

∂t
+ μJS (67)

For 2D problems the MVP A has only one component AZ that satisfies the
Coulomb gauge and the Eq. (66) becomes:

∇ · 1

μ
∇Az = σ

∂Az

∂t
+ Jsz (68)
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For the time harmonic steady state regime the complex representation of theMVP
A can be obtained using the exponential form:

A = Ae jωt (69)

where ω is the angular frequency and j is the imaginary unit.
If we substitute Eq. (69) in Eq. (67), we obtain [40, 34, 36–38]:

∇ · 1

μ
∇A − jσωA = JS (70)

The solution of Eq. 70 is defined into a finite domain D, subjected to boundary
conditions on the frontier 
. The most encountered boundary conditions require
either the normal or the tangential magnetic flux density to be zero respectively.

In terms of MVPA they are equivalent with the following homogenous boundary
conditions:

∂A

∂n
= 0 (71)

A = 0 (72)

We’ll apply the weighted residual methodto Eq. 70. In order to satisfy the compat-
ibility condition at the interface at two adjacent finite elements we’ll consider shape
functions with C0 continuity. After applying the first Green identity the following
relation is obtained [40, 36, 38]:

−
∫

�

∇wi
1

μ
∇Ad� +

∫



wi
∂A

∂n
d
 −

∫
�

wi ( jωσ A + JS)d� = 0 (73)

Using the basis functions, the magnetic vector potential can be expressed at
elemental level as follows:

A =
∑

Ni Ai (74)

where for triangular linear elements the shape functionsNi are:

Ni = ai + bi x + ci y

2A
(75)

where A is the area of an element with the nodes i, j and k.
If we set the shape functions to be the weighted functionswi = Ni , then the

weighted residual method becomes the Galerkin method. The discretized form of
Eq. 73, at elemental level, becomes:
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elem

1

μ

(
∂Ni

∂x

∂N j

∂x
+ ∂Ni

∂y

∂N j

∂y

)
dxdy − j

∫
elem

σωNi N jdxdy

]
· [Ai ] =[∫

elem
Ni JSdxdy

] (76)

The latter equation can be written in the form of an algebraic system of equations:

[
k
] · [

A
] = [

Q
]

(77)

For the linear triangular finite element elements, the coefficients matrix ki j can
be represented as [40]:

ki j = pi j + jqi j (78)

The real part pi j is described by:

pij = 1

4Aμ

(
bibj + cicj

)
(79)

and using the Holland- Bell formula [35–37]:

∫ Na
1 N

b
2 N

c
3d� = 2A

a!b!c!
(a + b + c + 2)! (80)

we obtain for qi j the following expression:

qij = −σμ

∫
elem

Ni N jdxdy = Aσω

12

⎡
⎣2 1 1
1 2 2
1 1 2

⎤
⎦ (81)

where A is the area of the triangular element.
In order to obtain the global matrix, the elemental matrices must be assembled.
The matrix from Eq. 77 is symmetric and the coefficients are complex. The extra

time needed to solve an eddy current problem by comparison with magnetostatics
case is due to the required time to perform the computations using complex numbers.

The Galerkin method is one of the most versatile methods used for the numerical
solution of the PDEs.
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4 Case Study: Determination of the Magnetic Field
Produced by a High Voltage Electrical Overhead Line
Near a Shielded Building Using Finite Element Method

The influence of overhead transmission lines represents a thematic of real interest
in the domain of transport of power because it is possible to have an impact on the
human body. This application proposes a calculation model of the magnetic field
in harmonic regime produced by the high voltage conductors of the transmission
systems of electricity using the finite element method. The numerical computation
of magnetic field in the vicinity of a high voltage 220 kV electrical overhead line
is analyzed. To calculate the magnetic field strength and the magnetic flux density
near the overhead power line and the shielded building, the ANSYS Multiphysics
software package is used.

The magnetic field strength at ground level depends on the distance to the line and
the currents intensity, which flows in the phase conductors. Unlike voltage, the inten-
sity of the electric current can vary very quickly during a day and depending on the
season. The intensity of this field depends also on the height and spatial distribution
of the conductors. There are other sources (on a small scale) that contribute to the
intensity of the magnetic field: currents from the neutral conductor, currents induced
in the protective conductors of overhead line, currents in the adjacent ground, in
the telecommunications circuits, in pipes or other metallic structures, which it was
parallel to the overhead line.

In the literature there are some studies containing an analytical calculation of
the magnetic field caused by high voltage power lines. Different techniques can be
applied for the calculation of the magnetic field produced by the electrical lines
supported by poles of unequal height, unequal distances between poles and or poles
whose arrangement is not linear [42]. In another paper, the authors set out to develop
a method of calculating the magnetic field generated by conductors arranged in
different geometries for single and double circuit electrical lines. For example, in
[43], a method of calculating the magnetic field in the vicinity of an electric line
called complex double numbers is developed for the following configurations: flat
and vertical power lines, lines with polygonal symmetry, delta power line, lines in
hexagonal arrangement. The attenuation of the magnetic field created by a double
circuit electrical line can also be achieved through an optimization of the arrangement
of the phase conductors that feed a railway station and a distribution station [44].

The numerical integration of the Biot-Savart law in differentiated form represents
the main analytical method for calculating the density of the magnetic flux [45]. The
magnetic field produced by electric power lines is usually calculated numerically
with the use of a computer. In [46] specific calculations of the magnetic field for an
110 kV overhead line are presented. In [47] the effect of harmonic components at
different electromagnetic frequencies is also taken into account. In [48] historical
load databases are used to take into account the relations between magnetic field and
electrical load patterns. In [49], 50 the magnetic field distribution is calculated and
measured in high voltage substations. To reduce the low-frequency magnetic field in
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a building near a high-voltage power line the building is screened with materials that
modify its distribution. The shielding factor depends on the permeability, geometry,
and thickness of the material [51, 52].

In this application, the magnetic field is calculated using finite elements method
(FEM) generated by the conductors of a high voltage electrical line in an area near a
building, located in the electric station. The six conductors of a 220 kV transposed
high voltage transmission line with double circuit are considered. Consider a system
consisting of 6 conductors (double circuit) with 3 conductors on each circuit. The
conductors are located at a height of 15 m from earth. Each conductor has a diameter
of 30mm and is located at a distance of 3.6m and 5m (central conductors) of the pole
of power line. The building is made of concrete with magnetic permeability 1, with
a length of 10 m and a height of 6 m, located at a distance of 15 m from the central
axis of the conductors. At the top of the building there is a steel screen. Two types
of steel with different magnetic permeability of 1000, 4000 and 10,000 respectively
were considered. The screen has a length of 11 m and a thickness of 5 mm. Figure 7
shows the physical model consisting of the six conductors and the shielded building
and in Fig. 8 is presented a detail that includes the shielded building. The building
is surrounded on the outside with a screen with a thickness of 3 mm and in addition
to the floor of the building there is a screen of 3 mm. Between the two screens in the
floor there is a 4 mm air gap.

The power lines are the conductors of Aluminum Conductor Steel Reinforced
(ACSR) type, having the magnetic permeability μr = 300 [53, 54]. The conductors
are crossed by currents of 375 A, phase shifted by 120° on the three phases. The
simulation was done in harmonic mode.

After creating the physical model and define materials, the next step in the prepro-
cessor phase is mesh generation and load applying upon the elements. The finite
element mesh of the system with six conductors is shown in Fig. 9. We used a mesh
with 314,548 nodes and 628,593 triangular elements. In Fig. 10 is presented the
discretization mesh for the shielded building. The boundary conditions and loads to

Fig. 7 The physical model
subjected to modeling
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Fig. 8 The physical model
comprising the shielded
building

Fig. 9 Finite element mesh

a 2D harmonic magnetic field analysis are applied, both on the plane model (key
points, lines, and areas) and on the finite element model (nodes and elements) [55].
The solution of magnetic field problems is commonly obtained using potential func-
tions. Depending on the problem to be solved, one of the two types of potential
functions, the MVPor the MSP, is used.

Figure 11 shows the distribution of the magnetic field around the six conductors
and shielded building. Themaximum value of themagnetic field intensity is obtained
around the conductors. In this region, the magnetic field intensity has a maximum
of 3403.14 A/m. Inside the building, the intensity of the magnetic field has values
between 8.35 and 3.25 A/m for the steel shielded building with magnetic perme-
ability 1000 and between 7.25 and 2.7 A/m for the steel shielded building with the
permeability 4000. These values are obtained at a distance of 1.8 m from the ground.
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Fig. 10 Finite element mesh (detail building shielded)

Fig. 11 Distribution of the magnetic field around the conductors and shielded building

Ata distance of 4.8 m from the ground, the maximum values of the magnetic field
intensity are 9.37 A/m for the shielded building, with 1000 magnetic permeability
steel and 9.06 A/m for the shielded building with 4000 magnetic permeability steel.

The distribution of magnetic flux density all over the surface is shown in Fig. 12
and the distribution of magnetic flux density around the conductor is presented in
Fig. 13. The two reference distances were chosen for the evaluation of the magnetic
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Fig. 12 The distribution of magnetic flux density around the conductors and shielded building

Fig. 13 The distribution of magnetic flux density around the conductor

sizes of 1.8 m and 4.8 m respectively, which means the distance at the head level for
the persons on the ground floor and respectively on the floor.

The magnetic induction has values between 9.23 and 2.19 μT for the screen
with the magnetic permeability 1000 and 3.64 and 1.09 μT for the screen with the
magnetic permeability 4000. These values were obtained on the contour drawn at a
distance of 1.8 from the ground.
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At a distance of 4.8 m were recorded values between 9.62 and 4.16μT in the case
of the screen with magnetic permeability 1000 and 4.74 and 2.12 μT in the case of
the screen with magnetic permeability 4000.

The maximum value of the magnetic flux density is obtained around the conduc-
tors. In this region, the magnetic flux density has a maximum of 1.282 T for the
conductors traversed by a current of 375 A.

In ANSYS there is a graphical program that displays the resulting fields in the
form of contour and density plots. The path for the displayed charts is chosen on a
contour consisting of two points placed symmetrical from the shielding building.

Figure 14 and Fig. 15 show the chart of the magnetic flux density inside the
building, at 1.8 m and 4.8 m above the ground, respectively. Screening is more
efficient when using a material with higher magnetic permeability. In Figs. 16 and
17 represented the values of the magnetic induction in the case of shielding with
ferromagnetic steel with magnetic permeability 10,000. It was considered the case

Fig. 14 Chart of magnetic flux density inside the building, at a distance of 1.8 m

Fig. 15 Chart of magnetic flux density inside the building, at a distance of 4.8 m
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Fig. 16 Chart of magnetic flux density inside the building, at a distance of 1.8 m

Fig. 17 Chart of magnetic flux density inside the building, at a distance of 4.8 m

of the screen only in the floor of the building (with screen Fe 10,000) but also the
complete screen outside the building and in the floor (with all screen Fe 10,000), for
those two distances. It is found that the screen only of the floor is not efficient, the
values of the magnetic field in this case being comparable with those existing in the
absence of the screen. The obtained values are within the limits imposed by ICNIRP
standards [56].

5 Conclusions

In this paper, we presented the calculation of the magnetic field produced by a
high voltage electrical overhead line in a nearby building located in the electrical
station. Screening is efficient when using multi-layer screens made of materials with
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the highest magnetic permeability. In the case of complete shielding with 10,000
ferromagnetic steel with magnetic permeability, magnetic induction values below 2
μT were obtained.

Differentmaterials andmulti-layer passive shieldswill be considered in the future.
Also, active shields will be considered.

The presented method can be useful in the design of a transmission power lines
for insulation distance estimation. Finite element numerical simulation approach can
be used to predict the magnetic field generated by high voltage overhead power lines.
It can also be used for evaluation of the shielding techniques used for SLF magnetic
flux mitigation.
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