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Abstract Answering the question “what is the state in which conservative systems
consume less power or energy?” is fundamental. Therefore, multitudinous works
were dedicated to formulate the cvasi-stationary state of many domains such as
physical sciences (mechanics, thermodynamics, electromagnetic), chemistry, life
science (hydrology, meteorology, global climate) in power or energy terms. Based
on the variational principles in this chapter specific functionals expressed in terms of
power or energy for electric respectively magnetic circuits in cvasi-stationary state
are defined. The matrix equations of electro-magnetic circuits formulated in terms
of electric and magnetic potentials of nodes were used to calculate the power and
energy functionals. Further used advanced numerical methods the existence of func-
tional’s minimum were demonstrated and by imposing the minimization conditions
are obtained the first Kirchhoff’s law for electric currents respectively magnetic flux.
Several examples prove the theoretically and practically importance of the principles
of minimum consumed power and energy mainly for understanding of the power and
energy flow in electromagnetic systems.
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Nomenclature

A. Acronyms
DOF Degrees of Freedom
KCL Kirchhoff Current Law
KVL Kirchhoff Voltage Law
DC Direct Current
AC Alternating Current
NM Nodal Method
PMP Principle of Minimum Consumed Power
RLC Resistor Inductance Capacitance
PMARP Principle of Minimum Active and Reactive Power
ECAP Electric Circuit Analysis Program
KMVL Kirchhoff’s Magnetic Voltage Law
KMFL Kirchhoff Magnetic Flux Law
PMEM Principle of Minimum Consumed Energy for Magnetic

Circuits

B. Symbols/Parameters
pJ(r,t) The volume density of the instantaneous electromagnetic

power
E The vector of electric field strength
J The vector of electric conduction current density
dWem The variation of the electromagnetic field energy
PδΩdt The energy transferred through the domain boundary
dt The time interval
Wm The magnetic energy
We The electric energy
D The vector of electric flux density
B The vector of magnetic flux density
ε The absolute permittivity of the medium
μ The absolute permeability of the medium
S The Poynting vector
A The magnetic potential vector
σ The conductivity of conductors
� The magnetic flux
� The real set
H The Hessian matrix
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C1 The continuous functions of class one
�v The vector of branch voltages
i The vector of branch currents
u The vector of voltages at the branch resistances terminals
e The vector of voltage sources
Vi The potential of node i
V The reduced vector of the nodes potentials
C The reduced branch-to-node incidence matrix
G The branch conductance diagonal matrix
�(V) The power functional
Pcons The power consumed by all the resistances
2-D Two-dimensionales
�V k The k-branch complex voltage
Y The diagonal admittance matrix
Gk The conductance of k-branch
Bk The susceptance of k-branch functionals
�P The active power functional
� Q The reactive power functional
S The complex power
V i The complex potential of node i
Φ The fascicular flux through circuit branch
Rm The reluctance of the magnetic circuit branch
l The length of magnetic material
A The cross section area of magnetic material
Λ The permeance
θ The magnetomotive force
Vm The vector of the magnetic potential of circuit nodes
dim The dimension of matrix or vector
� The branch permeance diagonal matrix
�(Vm) The magnetic energy functional
Wm The consumed magnetic energy
nR The number of resistances
N The number of nodes
K The number of branches
PR(I) The power-current characteristic
E1; R1, R2;C2; L3;ω The number and values of AC circuit parameters (complex

voltage source, resistances, capacitance, inductance, angular
velocity)

M The number of turns
δ The air-gap of magnetic circuit
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1 Introduction

For many conservative systems as in thermodynamics, mechanics, hydrology, mete-
orology, electromagnetics is used the variational principle to formulate their quasi-
stationary state or equilibrium regime in energy and power parameters [1–3]. In this
respect specific power and energy functionals are defined and numerical methods are
used to find their extremum points.

For example in the classical mechanics two categories of principle are employed:
differential principles and variational (integral) principles [4]. First one as well as
d’Alembert and Gauss principles inspect the mechanical parameters at a given time,
whilst the variational principle like Maupertuis and Hamilton principles examine the
mechanical parameters within a finite time interval and space in order to determine
the parameters values that achieve particular integrals stationary.

In the classical thermodynamics specific thermodynamic potential are defined
in order to analyze the equilibrium state and to measure the properties of materials
[5, 6]. Pressure, temperature, volume and entropy are the thermodynamic parameters
that can be studied using the thermodynamic potentials. If the entropy and volume of
a closed system are kept constant, then the internal energy decreases to its minimum
value at steady-state. Such being the case the second principle of thermodynamics
is defined as the minimum energy principle.

In the case of intricate Earth system processes as hydrology, meteorology, global
climate, the principles of minimum and maximum entropy production have been
formulated to analyze the planetary energy balance [7, 8]. For linear system with
permanent boundary conditions and which has several degrees of freedom (DOF) the
minimum entropy principle is applied, to analyze the cases in which the disturbances
of the system are far from its equilibrium state. Instead for non-linear systems with
several degrees of freedom the maximum entropy principle is applied. In this case,
many steady states can take place, and it is feasible to choose one of the steady state
with maximum entropy production.

In the electromagnetic theory, if it is consider a domain � where exists electro-
magnetic field its energy can be turn into mechanical work, heat or other forms of
energy. This energy is, on the one hand, transformed into other forms of energy, and
the rest can leave the domain through its boundary. The energy conversion from the
electromagnetic form in other forms of energy and vice versa is established at every
point in domain by the conduction process law [9, 10]:

pJ = E · J (1)

where pJ(r,t) represents the volume density of the instantaneous electromagnetic
power a scalar function of position and time, E and J are the vector of electric field
strength respectively of electric conduction current density. In the domain � the
following equality between energies is true:
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∫

�

E · Jdvdt + dWem + P∂�dt = 0 (2)

where dWemis the variation of the electromagnetic field energy, and PδΩdt is the
energy transferred through the domain boundary. In the time interval dt, relation (2)
yields:

−
∫

�

E · Jdv = dWem

dt
+ P∂� (3)

The theoremof electromagnetic energy based onMaxwell’s equations and relation
(3) demonstrates the following relations [11]:

Wem =
∫

�

D2

2ε
dv +

∫

�

B2

2μ
dv = We + Wm (4)

We =
∫

�

D2

2ε
dv =

∫

�

DE
2

dv =
∫

�

εE2

2
dv (5)

Wm =
∫

�

B2

2μ
dv =

∫

�

BH
2μ

dv =
∫

�

μH2

2
dv (6)

whereWm andWe represents themagnetic respectively electric energy as component
of the electromagnetic field energy,D and B represents the vectors of electric respec-
tively magnetic flux density, ε andμ represents the absolute permittivity respectively
permeability of the medium. Another conclusion of the above mentioned theorem
states that the electromagnetic power transferred to the surroundings through domain
boundary is given by:

P∂� =
∮

�

(E × H)ndS =
∮

�

SndS (7)

where the vector S = E x H is named the Poynting vector.
In previous works, the authors have chosen the potentials of nodes as variables

whereas utilizing the matrix equation of the circuits. Further by imposing the mini-
mization conditions of the power functionals is obtained the Kirchhoff Current Law
(KCL).

In the second section, advanced numerical analysis is proposed to find the extreme
point of power or energy functionals for electric and magnetic circuits in the quasi-
stationary state. Lagrangemultipliers and thevariationalmethod inHilbert spacehave
demonstrated the existence of the minimum of the functionals. The third section of
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this chapter discusses the power flow in equilibrium conditions when the DC and
AC circuit consumes minimum power, considering all classical powers (active and
reactive).

Several examples implemented in PSPICE prove the theoretical principles of
minimum consumed power statute in the previous section. It also shows that the
transient regime of an electric circuit represents its passage between two quasi-
stationary states with minimum power consumption and the co-existence of the
fundamental theorem of maximum power transfer and the principles of minimum
consumed power.

Based on the equivalence between the linear magnetic and electric networks, in
section four, the minimum principle of consumed energy for magnetic circuits in the
cvasi-stationary state is presented. Several examples prove the theoretical principle
formulates by authors and put in evidence the applicability of this principle to the
calculation of the energy and forces in electromagnetic types of equipment.

In conclusion, theoretically it can be stated that the proposed principles together
with the Kirchhoff Voltage Law (KVL) determine an equivalent equations system to
the classical one consisting of the KCL and KVL equations for DC and AC circuits.
An analogous statement can also be concluded for the magnetic circuits in the cvasi-
stationary state. On the other hand, from a practical point of view, the principles of
minimum consumed power are very useful for the understanding of the power and
energy flow in electromagnetic systems.

The chapter ends with a broad up-to-date list of references.

2 Advanced Numerical Analysis Applied to Determination
of Power and Energy Functionals Extreme

2.1 Variational Method

In the classical analysis of electromagnetic field the variational equivalent formula-
tion in the Hilbert space is used. Starting from a differential mathematical model the
variational method establish a set of differential equations of the model complying
with the cvasi-stationary conditions as indicated in Chap. 1 of Part I of this book.

Generally speaking the functional associated of the phenomenon depict by the
scalar parameter V(x, y, z) is defined as [12]

� =
˚

�

f

(
x, y, z, V,

∂V

∂x
,
∂V

∂y
,
∂V

∂z

)
dxdydz +

¨




g(x, y, z)dS (8)

where f is a function specified by the know differential model of the phenomenon,
∂V/∂x, ∂V/∂y and ∂V/∂z are the partial derivatives of the state quantity and g is
a determined function on the boundary 
 of the domain �. The main idea of the
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variational method associated to a phenomenon take into consideration the mini-
mization of the expression (7) admitting that the differential equations of the model
are verifying by the state parameters and its limit conditions.

For example in case of one-dimensional problem (1-D), the state parameter V
depends only one coordinate, is defined in the domain [x1, x2] and satisfies the limit
conditionsV (x1)=V 1, V (x2)=V 2, and the second integral of the relation (8) doesn’t
exist, then the functional associated of the phenomenon is expressed as:

� =
∫

�

f (x, V,
dV

dx
)dx (9)

If it is consider Ṽ (x) the approximate solution and is noted with δV(x) the
infinitesimal variation of the exact solution δV(x) then the relation is true:

Ṽ (x) = V (x) + δV (x) (10)

By imposed the stationarity condition and the minimum value of the functional
(9) it is obtained for the functional variation δ � the relation:

δ� =
x2∫

x1

δ f · dx =
x2∫

x1

(
∂ f

∂x
δx + ∂ f

∂V
δV + ∂ f

∂V ′ δV
′
)
dx

=
x2∫

x1

(
∂ f

∂V
δV + ∂ f

∂V ′ δV
′
)
dx =0 (11)

where V ′ = dV
dx represents the derivative of V. Due to for the variation δf for a

given value of the variable x in relation (10) is δx = 0, and then by using the parts
integrating the last term of relation (11), results:

x2∫

x1

∂ f

∂V ′ δV
′dx =

x2∫

x1

∂ f

∂V ′ δ
(
dV

dx

)
dx =

x2∫

x1

∂ f

∂V ′
d

dx
(∂V )dx =

[
∂ f

∂V ′ δV
]x2

x1

−
x2∫

x1

d

dx

(
∂ f

∂V ′

)
dx (12)

The expression (11) becomes:

δ� =
x2∫

x1

[
∂ f

∂V
− d

dx

(
∂ f

∂V

)]
δVdx+

[
∂ f

∂V ′ δV
]x2

x1

= 0 (13)
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Considering the variation δV as an arbitrary one, than each term of relation (13)
must be null, so:

∂ f

∂V
− d

dx

(
∂ f

∂V

)
= 0 (14)

and
[

∂ f

∂V ′ δV
]x2

x1

= 0 (15)

If the values of the state parameter V(x) at the two limits x1 and x2 of the domain
are defined or, in other words, the Dirichlet conditions (forced limit conditions) are
accomplished i.e.

δV (x1) = 0 and δV (x2) = 0 (16)

and then relation (15) is fulfilled. Otherwise in case of the state parameter doesn’t
satisfy Dirichlet forced limit conditions, then the following condition, named natural
limit conditions, must be satisfied [13]:

[
∂ f

∂V ′

]
x1

=
[

∂ f

∂V ′

]
x2

= 0 (17)

The relation (15) is achieved also in the case in which the differential model
implies at the two limits different conditions, namely at one natural limit condition
and at the other one forced limit condition.

In the classical theory of the electromagnetic field the following functional of
associated to the domain � and the volume bounded is defined as:

� =
∫

�

[( E∫

0

D · E−
B∫

0

H · B) + (J · A − ρvV

)]
dxdydz (18)

where A is the magnetic potential vector ∇ × A = B and V is the electric potential
E = −∇V . Theminimization of the functional (18) implies theMaxwell’s equations
of the electromagnetic field, the physical properties of media, and the uniqueness
conditions of the solution.

Thus the functional associated of the one-dimensional (1-D) electrostatic field is
defined as:

�(V ) =
∫

�

ε

2

[(
∂V

∂x

)2

− ρvV

]
dx (19)



Power and Energy Flow in Cvasi-Stationary Electric and Magnetic Circuits 657

The cvasi-stationary electric field the associated functional is defined as

�(V ) =
∫

�

σ

2

[(
∂V

∂x

)2
]
dx (20)

and the particular set of Maxwell ‘s equations available for linear, isotropic and
homogenous media is

∇ × E = 0 (21)

∇ · J = 0 (22)

J = σE (23)

where σ is the conductivity of the conductors.
The cvasi-stationary magnetic field is governed by the particular set of Maxwell’s

equations

∇ × H = J (24)

∇ · B = 0 (25)

B = μH (26)

and is admit the associated functional

�(�) =
∫

�

μ

2

[(
∂�

∂x

)2
]
dx (27)

where � is the magnetic flux.
The functionals defined above (19), and (20), respectively (27) represent the power

functionals for linear electric circuits, respectively energetic functional for linear
magnetic circuits in cvasi-stationary state. In all these variationalmethods the electric
and magnetic potentials of nodes are considered as variables in the algorithm of
functionals minimization as will be further described in the following sections.
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2.2 Lagrange’s Method

Also the Lagrange method could be used in order to find the minimum or maximum
of the function that defines the electric power and magnetic energy viewed from
the perspective of an “objective-function” [14, 15]. If it is considered the objective-
function

f (x,y) :U → �,U ⊂ �2n (27)

of class C1 and if it is assume that, between the scalars x = (x1,x2, . . . ,xn), and
y = (y1,y2, . . . ,yn), exist m links

g1(x,y) = 0, . . . ,gm(x,y) = 0, gi : U → �, 1 ≤ i ≤ m (28)

then in order to compute the minimum or maximum points M(x0, y0) of function f
the numerical method of Lagrange multipliers can be applied. Thereby the following
function is defined

F = f (x,y) +
m∑
i=1

λi gi (x,y) (29)

where λ1,λ2, . . . ,λm are introduced as the Lagrange multipliers. In these conditions
the extreme points M(x0,y0) of function f represent the solutions of the non-linear
system

∂F

∂x j
= 0,

∂F

∂yk
= 0, gi = 0, 1 ≤ j, k ≤ n, 1 ≤ i ≤ m (30)

where the total number of unknown x, y, λ is 2n + m. The sign of the square
value (second order derivative)d2 f

∣∣
M
decides the maximum or minimum nature of

the extreme points M(x0, y0). Practically a numerical procedure of the eigenvalues
computation of f associate Hessian matrix i.e.

H =
[

∂2 f

∂x j∂yk
(x0,y0)

]
1≤ j,k≤n

(31)

yield information about the sign of square values: if the all the eigenvalues of
Hessian matrix are positive or negative then the square value is positively or nega-
tively defined, and implicitly the function f has a minimum or maximum at the
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point M(xo,yo). Because the matrix H is symmetrical, thus is has only real eigen-
values, consequently a critical point M(xo,yo) it can’t be a local extreme point for
function f .

Let us examine a DC circuit (stationary state), with N nodes and L branches. For
nR variables (resistances), the consumed power (the objective function) f (R,I ) :
�2nR → �+, is defined as

f (R,I ) =
nR∑
i=1

Ri I
2
i (32)

where the resistances and the currents of branches R = (R1,R2, . . . ,RnR ),I =
(I1,I2, . . . ,InR ) are scalars and verify L Kirchhoff’s current and voltage complete set
of relations (links)

g1 =
∑
lk∈N1

Ik = 0, . . . , gN−1 =
∑

lk∈NN−1

Ik = 0, . . . ,

gN =
∑
lk∈B1

Rk Ik − Ek = 0, . . . , gL =
∑

lk∈BL−N+1

Rk Ik − Ek = 0 (33)

There gj : �2nR → �, j = 1,..,L, and BL-N+1 = L-N + 1 are the independent
loops of the circuit. In these assumptions it defines the function

F = f (R,I ) +
L∑
j=1

λ j g j (R,I ) =
nR∑
i=1

Ri I
2
i +

L∑
j=1

λ j g j (R,I ) (34)

where λ1, λ2, . . . , λL are the unknown Lagrange’s multipliers. The unique solution
of the nonlinear system with 2nR + L unknown

∂F

∂Ri
= 0,

∂F

∂ Ii
= 0, gj = 0,i = 1, . . . ,nR; j = 1, . . . ,L (35)

coincides with an extreme point M(xo,yo) of consumed power function (32) if the
eigenvalues of the Hessian matrix are, in this point, real values and the same sign. If
the sign is positively f has a maximum, otherwise the function f has a minimum.

This numerical procedure to determine the extreme point of function f is rather
difficult because requires a lot of computing time and occupies a large memory
space. This statement is explained by the fact that the method needs to calculate the
m differentials of links relations, to solve a large nonlinear system, and to determine
the square value of function f.
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3 Equilibrium State of DC and AC Circuits and Minimum
Power Flow. Examples

In classical theory of electric circuits of “content and co-content”, the Hilbert space
properties for solving the electromagnetic field and the theorem of the minimum
power in the resistances for DC circuits are introduced [16–19].

Hereinafter the natural connection between the equilibrium state of DC and AC
circuits and the minimum power flow is demonstrated in terms of appropriate power
functionals defined for each category of circuit and the variational method is applied
to examine the extreme point of functionals.

3.1 Principle of Minimum Consumed Power for DC Circuits
and Variational Method

For a linear DC circuit that comprisesN nodes andK branches, with general structure
shown in Fig. 1, theK-dimensional vectors in�K of branch voltages�v and currents
i, the voltages at the resistances terminals u, and respectively the voltage sources e
are defined as [20, 21].

�v =

⎡
⎢⎢⎢⎢⎢⎢⎣

�V1

�V2

.

.

�VK

⎤
⎥⎥⎥⎥⎥⎥⎦

;i =

⎡
⎢⎢⎢⎢⎢⎢⎣

I1
I2
.

.

IK

⎤
⎥⎥⎥⎥⎥⎥⎦

;u =

⎡
⎢⎢⎢⎢⎢⎢⎣

U1

U2

.

.

UK

⎤
⎥⎥⎥⎥⎥⎥⎦

;e =

⎡
⎢⎢⎢⎢⎢⎢⎣

E1

E2

.

.

EK

⎤
⎥⎥⎥⎥⎥⎥⎦

(36)

The matrix relation

�v = C · V (37)

Fig. 1 General structure of a
DC circuit branch
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represents for k-branch the relation �Vk = Vi − Vj , where Vi and Vj are the

potentials of nodes i and j where the branch k is connected, V =

⎡
⎢⎢⎢⎢⎢⎢⎣

V1

V2

.

.

VN−1

⎤
⎥⎥⎥⎥⎥⎥⎦

is the

reduced N-1, vector of the nodes’ potential (there an arbitrary node is chosen with
zero potential VN = 0), and C = [cl,n] is the reduced K x (N-1) branch-to-node
incidence matrix. According to KVL it is obtain

i = Gu = G(� v + e) = G(CV + e) (38)

where G = diag(G1,G2, . . . ,GK ) is the branch conductance K x K- dimensional
diagonal matrix. In the Hilbert space the power functional �(V) : �N−1 → � is
defined, by considering as variables N-1 potentials of nodes, as

�(V) = uTi = Pcons (39)

where the superindex T indicates the transposition. As is presented in Fig. 1 the
same reference sense of the branch current and voltage the power functional (39) is
equivalent with the definition of power consumed (Pcons) by all the resistances of the
DC circuit. Taking into account relations (37) and (38) the power functional (39) can
be expressed as

�(V) = uTi = (�v + e)TG(�v + e) = (CV + e)TG(CV + e)

=
∑

k=1,K
i, j=1,N−1
i 
= j

Gk(Vk,i − Vk, j + Ek)
2 (40)

From relation (40) results that always power functional is a quadratic form
i.e.�(V)〉0 and, consequently in the interval (0,∞), �(V) has a minimum. After-
wards this minimum point corresponds to the solution of the system ∂�/∂ V = 0.
The first power functional derivative dependent on potential Vi can be written as

∂�
∂Vi

= ∂

∂Vi
(CV + e)TG(CV + e) = 2

∑
lk∈ni

clk ,ni Gk(Vi − Vj + Ek) = 0 (41)

where k = 1,…,K, i, j = 1,…,N-1, i 
= j. The last equality in relation (41) represents
even the formula of the nodal method (NM) expressed in node ni
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Fig. 2 DC circuit with three
branches and two nodes

∑
lk∈ni

clk ,ni Gk(Vi − Vj + Ek) = 0 (42)

and, by using (38), we’ll get

∑
lk∈ni

clk ,ni Ik = 0, i = 1, . . . , N − 1 (43)

that means even KCL for N-1 nodes of the circuit.
As a conclusion of the functional defined by (39) and from results obtained in

(42) and (43) the Principle of Minimum Consumed Power for DC Circuits (PMP)
can be stated in two equivalent forms: “In resistive DC circuits the condition of
minimum consumed power in the resistances is consistent with the NM and KCL”
or “In resistive DC circuit the branch currents and voltages have unique values such
that the consumed power in all the resistances of the circuit is minimum” [22].

Example 1 For the DC circuit presented in Fig. 2, with K = 3, and N = 2, the
structure is defined by the values R1 = 10�, R2 = 20�, R3 = 50�, E1 = 40 V
and E3 = 20 V. The vectors of currents and voltages at the resistance terminals
expressed in dependence with the potentials V 1 and V 2 of the nodes are written as.

i =
⎡
⎢⎣
I1
I2
I3

⎤
⎥⎦; u =

⎡
⎣V2 − V1 + E1

V1 − V2

V1 − V2 + E1

⎤
⎦; v =

[
V1

V2

]
. For this DC circuit the

branch-to-node incidence matrix is C =
[

−1 1 1

1−1−1

]
and the power functional

(power consumed by resistances) constructed according to (40), is �(V1,V2) =
Pcons(V1,V2) = G1(V2 − V1 + E1)

2 + G2(V1 − V2)
2 + G3(V1 − V2 − E3)

2. By
imposed the minimum of power functional results ∂�

∂v = C i = 0 and thus imply
KCL at each node n1 and n2:
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∂�
∂V1

=−G1(V 2−V 1 + E1) + G2(V 1−V 2) + G3(V 1−V 2−E3) = 0, involve KCL
in n1: −I1 + I2 + I3 = 0;

∂�
∂V2

= G1(V 2−V 1 + E1)−G2(V 1−V 2)-G3(V 1-V 2-E3) = 0, involve KCL in n2: I1
−I2 −I3 = 0.

Using the MAPLE software are obtained numerical values: V1 = 21.1765 V,
V2 = 0.0 V and �min = Pcons,min = 91.7647 W[23]. The 2-D dependence of power
functionals of potentials of nodes is illustrated inFig. 3. It is observe that theminimum
point is (21.1765 V; 0.0 V; 91.7647 W).

For this DC circuit, a SCAP - Symbolic Circuit Analysis Program and MAPLE
programs can be used to demonstrate that the functioning point of each resistance of
the circuit does not represent the maximum absorbed power point [24, 25]. Based on
the Thèvenin’s theorem, the variations of the absorbed powers in each resistances of
the circuit P1, P2, P3 depending on the currents I1, I2, I3 are calculated. The steps
of the SCAP algorithm are the following:

(i) Calculation of branch currents (I1, I2, I3) and voltages (Ub1, Ub2, Ub3),
respectively the voltages at the resistances terminals in full symbolic form are:

I1 =
E3 R2 + E1 R3 + E1 R2

R3 R2 + R1 R3 + R1 R2
I2 : = E1 R3 − 1.E3 R1

R3 R2 + R1 R3 + R1 R2

I3 =
E1 R2 + E3 R2 + E3 R1

R3 R2 + R1 R3 + R1 R2

Ub1 =
1.(E1 R3 - 1.E3 R1)R2

R3 R2 + R1 R3 + R1 R2
Ub2 : = 1.(E1 R3 - 1.E3 R1)R2

R3 R2 + R1 R3 + R1 R2

Ub3 =
(E1 R3 + 1.E3 R1)R2

R3 R2 + R1 R3 + R1 R2

UR1 =
R1(E3 R2 + E1 R3 + E1 R2)

R3 R2 + R1 R3 + R1 R2
UR2 : = (E1 R3 - 1.E3 R1)R2

R3 R2 + R1 R3 + R1 R2

Fig. 3 2-D dependence of
power functionals
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UR3 =
R3(E1 R2 + E3 R2 + E3 R2)

R3 R2 + R1 R3 + R1 R2

(ii) Calculation of open voltages URk0, k = 1, 2, 3 are computed by using the
relation URk0 = lim

Rk→∞ (URk) and it results:

UR10 =
E3 R2 + E1 R3 + E1 R2

R3 R2
UR20 : =E1 R3 − 1.E3 R1

R3 R1

UR30 =
E1 R2 + E3 R2 + E3 R1

R2 R1

(iii) Calculation of short-circuit currents Iksc, k = 1, 2, 3, are computed by formula
Iksc = Ik(Rk = 0), and results:

I1sc =
E3 R2 + E1 R3 + E1 R2

R3 R2
I2sc =

E1 R3 − 1.E3 R1

R1 R3

I3sc =
E1 R2 + E3 R2 + E3 R1

R1 R2

(iv) Calculation of equivalent resistance at the nodes of each branch R0_k , k = 1,
2, 3, is calculated as R0_k = URk0/Iksc. Then it is results:

R0_ 1 : =
R2 R3

R3 + R2
R0_ 2 : =

R1 R3

R3 + R1
R0_ 3 : =

R2 R1

R2 + R1

(v) Based on the Thèvenin’s theorem the dependence between the consumed
powers and the branch currents has the general formula

PThev_k = (URk0 − R0_k Ik)Ik, k = 1, 2, 3

For for each branch the symbolic expressions are obtained:

PThev_ 1 : = (E1 R2 + E1 R3 + E3 R2 - R2 R3 I1)I1

R2 + R3

PThev_ 2 : = (E1 R3 − 1.E3 R1 − 1.R1 R3 I1)I2

R1 + R3

PThev_ 3 : = (E1 R2 + E3 R1 + E3 R2 - R2 R1 I3)I3

R1 + R2

(vi) Used the theorem of maximum power transfer the powers delivered in the
three resistors are:

Pmax_ 1 : =0.25000000(E1 R2 + E1 R3 + E3 R2)2

(R2 + R3)R2 R3
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Pmax_ 2 : =0.25000000(E1 R3 − 1.E3 R1)2

(R1 + R3)R1 R3

Pmax_ 3 : =0.25000000(E1 R2 + E3 R1 + E3 R2)2

(R1 + R2)R2 R1

(vii) According to the Thévenin theorem the current is calculated as IIk_n =
URk0/(R0_k + Rk) and for each branch have the expression:

I1_ n : = E1 R2 + E1 R3 + E3 R3

R1 R2 + R1 R3 + R2 R3

I2_ n : = E1 R3 − 1.E3 R1

R1 R2 + R1 R3 + R2 R3
I3_ n : = E1 R2 + E3 R1 + E3 R2

R1 R2 + R1 R3 + R2 R3

For the above numerical values of circuit’s parameters by using a MAPLE
application it results:

I1_n: = 1.883 A
I2_n: = 1.053 A
I3_n: = 0.8253 A

P1_n: = 35.44 W
P2_n: = 22.42 W
P3_n: = 33.90 W

I1sc: 3.2000 A
I2sc: = 3.600 A
I3sc: = 7.000 A

I1_max: 1.600 A
I2_max: 1.800 A
I3_max: 3.500 A

PR_max: 36.78 W
PR_max: 27.01 W
PR_max: 81.66 W

The power-currentPR(I) characteristics are shown in Figs. 4, 5, and 6. It is remark-
able to observe that the real consumed power in each resistance has a value lower
than the maximum value.

P1_n = 35.44 W < PR1_ max = 36.58 W;

P2_n = 22.42 W < PR2_ max = 27.01 W;

P3_n = 33.90 W < PR3_ max = 81.66 W.

Fig. 4 The variation of PR1
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Fig. 5 The variation of PR2
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Fig. 6 The variation of PR3
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By used the ECAP - Electric Circuit Analysis Program software have been
obtained the same values of voltage and current branches, and of consumed and
generated power. The program is presented below:

Input file ex1_cap24.nln.
3
2
2 1 R1E1 r = 10,0 e = 40,0
1 2 R2 r = 20.0
1 2 R3E3 r = 50.0 e = 20.0
UNKNOWNS V1
EQUATION SYSTEM
+ (+G1 + G2 + G3)*V1 = + E1*G1-E3*G3
NODE POTENTIALS
V1 = 21.176471 V
V2 = 0 V
BRANCH CURENTS AND VOLTAGES
U1 = -21.176471 VI1 = 1.882353 A
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Fig. 7 Structure of AC
branch

U2 = 21.176471 VI2 = 1.058824 A
U3 = 21.176471 VI3 = 0.823529 A
BALANCE OF THE POWERS
Generated power: = 91.764706 W
Consumed power: = 91.764706 W

3.2 Principle of Minimum Consumed Power for AC Circuits
and Variational Method

A linear AC circuit in cvasi-stationary state, which includes N nodes and K branches
whose general structure shown in Fig. 7 it contains in its structure passive RLC
admittances and voltage sources. By analogy with the relation (36) the same quanti-
ties expressed as K-dimensional vectors in complex set CK are described below [26,
27]

�v =

⎡
⎢⎢⎢⎢⎢⎢⎣

�V 1

�V 2

.

.

�V K

⎤
⎥⎥⎥⎥⎥⎥⎦

;i =

⎡
⎢⎢⎢⎢⎢⎢⎣

I 1
I 2
.

.

I K

⎤
⎥⎥⎥⎥⎥⎥⎦

;u =

⎡
⎢⎢⎢⎢⎢⎢⎣

U 1

U 2

.

.

UK

⎤
⎥⎥⎥⎥⎥⎥⎦

;e =

⎡
⎢⎢⎢⎢⎢⎢⎣

E1

E2

.

.

EK

⎤
⎥⎥⎥⎥⎥⎥⎦

(44)

where the k-branch complex voltage is �V k = V i − V j .
Based on the interconnection properties of AC circuits branches the following

matrix relations are true

�v = C · V (45)

and KVL

i = Yu = Y(�v + e) = Y(CV + e) (46)

where the diagonal admittance matrix Y = diag
(
Y 1,Y 2, . . . ,Y K

)
, each Yk = Gk −

j Bk , k = 1,K. Fort inductive branch the sign of susceptance Bk it is considered
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positive respectively for capacitive branch it is negative. Under these conditions two
functionals are defined: the active power �P : �2(N−1) → �, and the reactive power
� Q: �2(N−1) → �, expressed as

�P = Re[uTi∗] = Pcons (47)

�Q = Im[uTi∗] = Qcons(gen) (48)

where the superindex * denotes the conjugate complex operator. Taking into account
the reference sense adopted for the AC circuit branch of Fig. 7 and the definition
of complex power S = uT i∗ = P + j Q, then the power functional (47) represents
the active power consummated by all the resistances of the circuit, while the power
functional (49) represents the reactive power consummated (or generated), by all the
reactive elements of the circuit.

Let’s suppose that theN-1 potentials of nodes are variables and the voltage sources
are constant, and for node i respectively for k-branch are expressed as

V i = Re[V i ] + jIm[V i ] = xi + j yi , i = 1, . . . , N − 1 (49)

Ek = Re[Ek] + jIm[Ek] = ak + jbk, k = 1, . . . , K (50)

Then the functionals (47) and (48) can be expressed as

�P(x, y) = Re[uTi∗] = Re[(�v + e)TY∗(�v + e)∗]
= Re[(CV + e)TY∗(CV + e)∗]
=

∑
k=1,K
i, j=1,N−1
i 
= j

Gk[(xi − x j + ak)
2 + (yi − y j + bk)

2] (51)

�Q(x, y) = Im[uTi∗] = Im[(�v + e)TY∗(�v + e)∗]
= Im[(CV + e)TY∗(CV + e)∗]
=

∑
k=1,K
i, j=1,N−1
i 
= j

Bk[(xi − x j + ak)
2 + (yi − y j + bk)

2]. (52)

From relation (51) results that because always Gk〉0, then �P is always strictly
positive (quadratic form)�P(x, y)〉0. Therefore the active power functional �P has a
minimum in the definition set (0,∞), and, consequently, the resistances of the circuit
consume minimum active power. The minimum point of active power functional is
fixed by the fulfillment of the conditions ∂�P /∂ xi = 0 and ∂�P /∂ yi = 0, for i =
1, … N−1, which can be expressed synthetically in relation to V i in the following
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form

∂�P

∂xi
= ∂

∂xi
Re[(CV + e)TY∗(CV + e)∗] = 2

∑
lk∈ni

clk ,ni Gk(xi − x j + ak) = 0

(53)

∂�P

∂yi
= ∂

∂yi
Re[(CV + e)TY∗(CV + e)∗] = 2

∑
lk∈ni

clk ,ni Gk(yi − y j + bk) = 0

(54)

for k = 1, …, K, i, j = 1, …, N−1, i 
= j, and where clk,ni are the coefficients of
reduced branch-to-node incidence matrix.

Afterwards analyzing relation (52) the value of � Q might be: (i) � Q > 0 (� Q is a
quadratic form) if all the branches of AC circuit are inductive, then the extreme point
of � Q is a minimum, and, consequently, the reactive power consumed is minimum;
(ii) � Q < 0 (−� Q is a quadratic form) if all the branches of AC circuit are capacitive.
In this case, by multiplication with (−1), the sign of the reactive power functional
has changed into a positive and can be formulated as the reactive power produced
(generated) has a minimum; (iii) � Q = 0 represents the particular case of resonance
condition, in which the AC circuit provides a null contribution to the consumed or
generated reactive power.

The first derivative of reactive power functional in terms on real and imaginary
part of potential V i can be written as

∂�Q

∂xi
= ∂

∂xi
Im[(CV + e)TY∗(CV + e)∗] = 2

∑
lk∈ni

clk ,ni Bk(xi − x j + ak) = 0

(55)

∂�Q

∂yi
= ∂

∂yi
Im[(CV + e)TY∗(CV + e)∗] = 2

∑
lk∈ni

clk ,ni Bk(yi − y j + bk) = 0

(56)

for k = 1, …, K, i, j = 1, …, N-1, i 
= j. The minimum of active and reactive power
functionals results from the system of 4(N−1) equations formed by relations (53),
(54), (55), and (56) as follows

∂�P

∂xi
=

∑
lk∈ni

clk ,ni Gk(xi − x j + ak) = 0; ∂�P

∂yi
=

∑
lk∈ni

clk ,ni Gk(yi − y j + bk) = 0

∂�Q

∂xi
=

∑
lk∈ni

clk ,ni Bk(xi − x j + ak) = 0; ∂�Q

∂yi
=

∑
lk∈ni

clk ,ni Bk(yi − y j + bk) = 0

(57)
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where k = 1, …, K, i, j = 1, …, N−1, and i 
= j. If in the equations system (57) the
relations ∂�P /∂ yi = 0 and ∂ � Q/∂ xi = 0 multiplied by j respectively –j are added
up, then results

∑
lk∈ni

clk ,ni Y k(V i − V j + Ek) = 0 (58)

that means, for i = 1, …, N−1, the equations of nodal method (NM) for all the N-1
circuit’ nodes. By using (46) relation (58) becomes

∑
lk∈ni

clk ,ni I k = 0 (59)

that represents the KCL equations.
Consequently, the Principle of Minimum Active and Reactive Power (PMARP)

can be stated in two equivalent forms: “In linear AC circuits the conditions of
minimum active consumed power and minimum reactive consumed (or produced)
power are consistent with the NM and KCL” or “In linear AC circuit the branch
currents and voltages have unique values such that the consumed active power and
the consumed (or produced) reactive power in all the admittances of the circuit is
minimum” [22].

Example 2 For the AC circuit shown in Fig. 8, with K = 3, and N = 4, the branches
contain passive linear elements (resistor, capacitor and inductance) and a voltage
source. The circuit parameters have the numeric values: E1 = 100.0; R1 = 10.0 �;
R2 = 20.0 �; C2 = 1.0e−04 F; L3 = 2.0e−04 H and ω = 314.0 rad/s. Let be the
AC circuit presented in Fig. 8 has K = 3, and N = 4. The real and imaginary parts
of potentials of nodes are considered as variables, and can be expressed as V1 = x1
+ jy1, V2 = x2 + jy2, respectively V3 = x3 + jy3.

The branches currents, the admittances’ voltages, and the potential of nodes are
described by the vectors:

Fig. 8 The AC circuit
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I =

⎡
⎢⎢⎣
I 1
I 2
I 3
I 4

⎤
⎥⎥⎦,u =

⎡
⎢⎢⎣
V 2 − V 1 + E1

V 1 − V 2

V 1 − V 3

V 3 − V 2

⎤
⎥⎥⎦;V =

⎡
⎣ x1 + j y1
x2 + j y2
x3 + j y3

⎤
⎦.

For this AC circuit the matrices C and Y are expressed as:

C =
⎡
⎣−1 1 1 0

1 −1 0 −1
0 0 −1 1

⎤
⎦,Y =

⎡
⎢⎢⎣
G1 0 0 0
0 jωC2 0 0
0 0 − j

ωL3
0

0 0 0 0

⎤
⎥⎥⎦.

By using relations (45) and (46) and assuming that E1 = a+ jb, where a, b are real
constants, then the complex power functional attached to overall complex consumed
power by the passive elements of circuit is defines as

�S = Scons = uT · I∗ = 1

R1
(−x1 + x2 + a + j(−y1 + y2 + b))2

+ jωC3(x1 − x2 + j(y1 − y2))
2 + j

ωL3
(x1 − x3 + j(y1 − y3))

2

+ 1

R3
(−x2 + x3 + j(−y2 + y3))

2.

The active power consumed by the resistors is expressed by the functional below:

Fr := − (ω2C2R1L3R3x1y1 − 2ω2C2R1L3R3x1y2 − 2C2R1L3R3x2y1

+ 2ω2C2R1L3R3x2y2 + 2ωL3R3x2x1 − 2ωL3R3x2a

+ 2ωL3R3x1a + ωL3R3y2y1 + 2ωL3R3y2b − 2ωL3R3y1b

+ 2R1ωL3x3x2 + 2R1ωL3y3y2 + ωL3R3b2 − R1ωL3x32

− R1ωL3x22 + R1ωL3y32 + R1ωL3y22 − 2R1R3x1y1 + 2R1R3x1y3

+ 2R1R3x3y1 − 2R1R3x3y3 − ωL3R3x22 − ωL3R3x12 − ωL3R3a2

+ ωL3R3y22 + ωL3R3y12)/(2R1ωL3R3)

Afterwards the reactive power consumed (or generated) is expressed by the
functional below:

Fi := − (ω2C2R1L3R3x12 + ω2C2R1L3R3x22 − ω22C2R1L3R3y12

− ω22C2R1L3R3y22 − 2ω2C2R1L3R3x2x2 + 2ω2C2R1L3R3y2y1

− 2ωL3R3ay1 − 2ωL3R3x1b + ωL3R3x2b − 2ωL3R3x1y2

+ 2ωL3R3x2y2 − 2ωL3y3x2y1 + 2ωL3R3ay2 + 2ωL3R3x1y1

+ 2ωL3R3ab + 2R1ωL3x3y3 − 2R1ωL3x3y2 − 2R1ωL3x2y3
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+ 2R1ωL3x2y2 + R1R3y32 − R1R3x12 + R1R3y12 − R1R3x32

+ 2R1R3x1x3 − 2R1R3y1y3)/(2R1ωL3R3)

To determine the minimum points of the active and reactive power functionals
the solutions of the system which contains 4 × 3 = 12 equations are computed, and
results:

∂FR

∂x1
= 0,

∂FR

∂y1
= 0,

∂FR

∂x2
= 0,

∂FR

∂y2
= 0,

∂FR

∂x3
= 0,

∂FR

∂y3
= 0,

∂Fi
∂x1

= 0,
∂Fi
∂y1

= 0,
∂Fi
∂x2

= 0,
∂Fi
∂y2

= 0,
∂Fi
∂x3

= 0,
∂Fi
∂y3

= 0

which, for the numerical values of theAC circuit shown in Fig. 8 have the solution:

Soluation :=
{x1 = 0.021099770, x2 = 63.860285 + x3, x3 = 0., y1 = 0.10026065 + y3, y2 = 13.439344, y3 = 0.}

Then: V1_min = 0.0211 + j0.10026 and V2_min = −63.8603 + j13.4393, and for
these values of potentials of nodes theminimumactive and reactive power are defined
as consumed.

4 Equilibrium State of Linear Magnetic and Minimum
Energy Flow. Example

The basic strategy of variational method applied to linear electric DC andAC circuits
exposed above can be extended to linear magnetic circuit in quasi-stationary state.
This is possible because between magnetic and electric circuits exists a well-known
analogy, which makes the construction of the functional and the analysis of its
minimum to be done in a similar way.

dl

H

B

dA
um

Cφ

θ

i M

Vm,i
Vm,j

Δum

Fig. 9 Structure of magnetic branch



Power and Energy Flow in Cvasi-Stationary Electric and Magnetic Circuits 673

For magnetic circuit branch presented in Fig. 9 a magnetic field generator is
considered withM turns crossed by the current i. Themagnetic voltage�um between
the terminals i and j can be calculated by using the Ampėre’s theorem [11, 28].

�um = Rmϕ − θ = ϕ/� − θ (60)

where ϕ is the fascicular flux through circuit branch; Rm = l/μA is the reluctance
of the magnetic circuit branch depending on the magnetic material properties: l the
length, A the cross section area andμ the permeability of the linear and homogenous
medium, then always Rm > 0; Λ = 1/Rm is the permeance defined as the inverse of
the reluctance; θ = Mi is the magnetomotive force. The relation (60) is also called
Kirchhoff’s Magnetic Voltage Law (KMVL) by analogy with KVL. Thereby the
analogous magnetic circuit branch defined by Eq. (60) is shown in Fig. 10.

Likewise to the matrices defined in the two previous sections for a linear magnetic
circuit in cvasi-stationary state with K branches and N nodes, the branch magnetic
voltages of branches �um = Vm,i − Vm, j defined as the difference between the
magnetic potentials of branches’ nodes, the fascicular fluxes, the magnetic voltages
of reluctances, and the magnetomotive forces are defined as K-dimensional vectors
in real set [29]

�um =

⎡
⎢⎢⎢⎢⎢⎣

�um,1

�m,2

.

.

�um,K

⎤
⎥⎥⎥⎥⎥⎦

; ϕ =

⎡
⎢⎢⎢⎢⎢⎣

ϕ1

ϕ2

.

.

ϕK

⎤
⎥⎥⎥⎥⎥⎦

;um =

⎡
⎢⎢⎢⎢⎢⎣

um,1

um,2

.

.

um,K

⎤
⎥⎥⎥⎥⎥⎦

; θ =

⎡
⎢⎢⎢⎢⎢⎣

θ1

θ2

.

.

θK

⎤
⎥⎥⎥⎥⎥⎦

(61)

By using the matrixC= [cl,n] that is theK x (N−1)-dimensional reduced branch-
to-node incidence matrix and if an arbitrary magnetic potential of circuit’s nodes is
chosen as null Vm,N = 0, then it can be written that �um = C ·Vm , where Vm is the
vector of the magnetic potential of circuit nodes, with dimVm = N−1.

The matrix equation expressing dependence between the fascicular fluxes of
branches and magnetic potentials of nodes has the following expression

ϕ = �um = �(�um + θ) = �(CVm + θ) (62)

Fig. 10 The analogous
magnetic circuit branch
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where the branch permeance matrix is � = diag(�1,�2, . . . , �K ), Vm is the
(N−1)-vector of the magnetic potential of circuit nodes (Vm,N = 0), and Ohm’s Law
for magnetic circuits is �um = C · Vm .

The functional �(Vm) : �N−1 → � expressed as [30]

�(Vm) = 1

2
uT
mϕ (63)

represents the magnetic energy consumed by the reluctances of the magnetic circuit
in cvasi-stationary state. If the−1magnetic potentials of circuit nodes are considered
as variables, the energetic functional can be expressed as

�(Vm) = 1

2
uTmϕ = 1

2
(�um + θ)T�(�um + θ) = 1

2

∑
k=1,K
i, j=1,N−1
i 
= j

�k(Vm,i − Vm, j + θk)
2

(64)

From (64) results that �(Vm)〉0 (i.e.�(Vm) is a quadratic form for any value of
the magnetic potentials of the nodes Vm). As consequently the extreme point of the
energetic functional �(Vm) is obtained by imposing the condition ∂�/∂ Vm= 0. It is
results

∂�
∂Vm,i

= ∂

∂Vm,i

1

2
(CVm + θ)T�(CVm + θ) = ∂

∂Vm,i

1

2

∑
k=1,K
i, j=1,N−1
i 
= j

�k(Vm,i − Vm, j + θk)
2

=
∑
lk∈ni

clk ,ni �k(Vm,i − Vm, j + θk) = 0 (65)

where k = 1, …, K, i, j = 1, …, N−1, i 
= j, and Vm,N = 0. The last equality of (65)
represents exactly the equations of NM for magnetic circuit’s i.e.

∑
lk∈ni

clk ,ni �k(Vm,i − Vm, j + θk) = 0 (66)

Similarly to the electric circuits, if it is rewrite (66) by using (62), we’ll get

∑
lk∈ni

clk ,ni ϕk = 0, i = 1, . . . , N − 1 (67)

so these equations mean the Kirchhoff Magnetic Flux Law (KMFL).
Considering the definition (64) and the relations (66) and (67) the Principle of

MinimumConsumedEnergy forMagnetic Circuits (PMEM) in cvasi-stationary state
can be stated in two equivalent forms: “In linear magnetic circuit the circumstance of
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minimum consumed energy in the branches reluctances (permeances) is equivalent
with the NM and KMFL” or “In linear magnetic circuits the branch fascicular fluxes
and magnetic voltages have unique values such that the consumed energy in the
reluctances (permeances) is minimum” [22].

Example 3 Let us consider the electrical transformer excited by currents i1 and i2,
which is presented in Fig. 11a. It is assumed that the transversal area A it is the same
everywhere, the ferromagnetic material is linear with the relative permeability μr ,
the two excitation coils hasM1 andM2 turns, and the width of the air-gap is δ. From
the geometrical dimensions indicated in Fig. 11a the permeances �1, �2 and �3 of
the magnetic circuit can be calculated. The analogous magnetic circuit with K = 3
branches and N = 2 nodes of this electrical transformer in cvasi-stationary state is
illustrated in Fig. 11b.
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Fig. 11 a The electrical transformer excited by two currents; b Analogous magnetic circuit of the
electrical transformer
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By considering the magnetic potential Vm,1 as variable and Vm,2 = 0, then the
energetic functional equivalent to the magnetic energyWm consumed by the circuit’s
permeances becomes

�(Vm,1) = Wm(Vm,1) = 1

2

[
�1

(−Vm,1 + θ1
)2 + �2

(
Vm,1 + θ2

)2 + �3
(
Vm,1

)2]

where the magnetomotive forces are θ1 = M1i1 respectively θ2 = M2i2.
By imposing the conditions (65) is obtained

∂�
∂Vm,1

= ∂

∂Vm,1

1

2

[
�1

(−Vm,1 + θ1
)2 + �2

(
Vm,1 + θ2

)2 + �3
(
Vm,1

)2]

= −�1
(−Vm,1 + θ1

) + �2
(
Vm,1 + θ2

) + �3
(
Vm,1

) = 0

where the last equality represents the NM expressed in node 1 of the analogous
magnetic circuit. Afterwards results KMFL in node 1:

−ϕ1 + ϕ2 + ϕ3 = 0.

5 Conclusion

The variational properties are applied to compute the extreme points of power and
energy functionals for electric andmagnetic circuits in stationary and cvasi-stationary
state. Advanced numerical methods prove that the power and energy functionals have
aminimumpoint thus the consumed power and energy by passive elements of electric
and magnetic circuits is minimum. The matrix expressions of minimum conditions
for power and energy functionals together with KVL for electric circuit and KMVL
for magnetic circuit imply, concurrent, the equations of NM and of KCL respectively
KMFL. Also the electric and magnetic potential of nodes were chosen as variables,
because only the currents, magnetic fluxes, voltages and magnetic voltages of the
branches are uniquely determined. The presented examples demonstrate each of
theoretical principles PMP, PMARP and PMEM enunciated.
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