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Abstract Finite difference methods are used as a numerical method in the time-
dependent and time-independent solution of partial differential equations commonly
encountered in many engineering problems. In this chapter the theoretical basics and
practical applications of these methods and limits their scope in terms of electrical
engineer applications are examined. This numerical method, which are commonly
used to solve problems of electromagnetic fields that cannot be solved by analytical
methods are described in detail. Among these methods, the Finite Difference Time
Domain (FDTD) method, which is widely used in the calculation of the electric and
magnetic fields in electrical engineering applications is concentrated and the results,
limitations and alternatives of this method for different applications are examined.
Using this numerical method, nonlinear material and structural characteristics in
engineering applications can be examined depending on time. Robust and accurate
analysis results can be obtained by using this method, which can also be integrated
with developed models and software.
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Acronyms/Abbreviations

CB Circuit Breaker
FDTD Finite Difference Time Domain
GIS Gas Insulated Substation
HV High Voltage
PD Partial Discharge
PT Power Transformer
UHF Ultra High Frequency

1 Introduction

The Finite Difference Time Domain (FDTD) method is one of the most widely
used calculation techniques in the analysis of electromagnetic phenomena since the
early 1990s. Although the first application in the use of this method for electromag-
netic wave problems dates back to 1966 [1], its prevalence has increased with the
development of computer technologies in the solution of numerical calculations [2].
This method used in the solution of partial differential equations is based on the
discretizing of Maxwell’s curl equations in time and space. At this stage, derivatives
are converged using finite difference equations.

The FDTD method algorithm is very popular for its simple implementation and
robust and accurate results in the analysis of electromagnetic fields [3]. Analytical
methods, that can be used in simple engineering applications, cannot calculate tran-
sient and permanent state responses in complex structures with sufficient accuracy
in terms of electrical and magnetic fields [4].

In the application stage of this method, first, the boundaries of the region to be
analyzed are determined. These borders should be wide enough to cover all of the
objects examined. In caseswhere suitable boundary conditions cannot be determined,
calculation can be made by determining artificial boundaries where the calculation
region is extended to infinity [5]. This region,whoseboundaries are defined, is divided
into cells according to the step intervals in the space and time. With finite difference
equations solved due to these time and space variables, electric and magnetic field
quantities can be calculated for a sufficient number of points in the solution region [6].
In this calculation stage, dielectric and magnetic material parameters of the design
in the region where the solution set is located should be defined for each discrete
region [5].

FDTD, which is a very simple and efficient alternative to solve Maxwell’s equa-
tions, can produce solutions in the analysis of many electrical engineering problems
[7]. Since spatially and temporally discretization is used, it allows the modeling of
three-dimensional inhomogeneous materials, analysis of designs involving planar
and non-planar volumes, containing multiple dielectric planes and ground layer,
and examination of non-ideal conductors and insulators [3]. This method, in which
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designs containing passive loads or active elements can also be modeled by adding
them to the initial equation, is used in simulation of many engineering applica-
tions such as antennas, high voltage (HV) insulation systems, partial discharge (PD)
imaging techniques and grounding systems [2, 7, 8].

In addition to these application areas, high frequency responses frequently encoun-
tered in high voltage and power system equipment could also be examined for some
modifications made in this model [2, 8]. The propagation of electromagnetic wave in
transient and non-transient modes can be examined in a wide frequency range. The
FDTD method is widely used for transient analysis [9].

In engineering applications, the experimental measurement of electric and
magnetic fields, which can be defined by many variables such as the size of the
design, the variety of the material, and the surge caused by switching, is not always
possible due to its complex nature and economic constraints [5]. In order to over-
come these limitations and to understand the electromagnetic behavior of engineering
designs, finite difference methods are used.

This chapter primarily examines the finite difference methods used in the solution
of engineering problems defined by differential equations in a conceptual framework.
Following this section, the application examples and results of the FDTD method,
which stands out with its widespread use in calculating electrical and magnetic fields
among these methods, are discussed. Researches on the limitations and alternative
modifications of the method are also examined in this section. In the final part of
the chapter, the advantages and disadvantages of FDTD, the basic modifications
proposed for eliminating these disadvantages and alternative application areas are
explained.

2 Finite Difference Methods for Time-Dependent Problems

2.1 Basic Concepts

A general initial problem for linear partial differential equations:

ut (x, t) = P

(
x, t,

∂

∂x

)
u(x, t)

ut (x, 0) = f (x) (1)

where x is a vector of s components: x = (x1, . . . , xs), u is a vector of p components:
u(x, t) = (

u1(x, t), . . . , u p(x, t)
)
and P is a polynomial ∂

∂x .
For computational convenience, the domain of the solution.
u(x, t) is restricted to a bounded region. On this bounded region, a grid of points

is constructed by discretizing both space and time. Step sizes are �t and �xi and
the grid points are



40 H. Duzkaya et al.

tn = n�t

x ji = ji�xi · · · i = 0, . . . , Ni (2)

Consider a two dimensional problem:

ut = ux + uy (3)

where u(x, y, t) is a real valued function. �x , �y and �t is positive and fixed
quantities. Finite difference scheme is

Un+1
i, j = 0.25

(
Un

i+1, j+1 +Un
i−1, j+1 +Un

i+1, j−1 +Un
i−1, j−1

)
+ �t

2�x

(
Un

i+1, j −Un
i−1, j

) + �t

2�y

(
Un

i, j+1 −Un
i, j−1

)
(4)

The shift operators are E1 and E2 so

Un+1
i, j =

(
0.25

(
E1 + E−1

1

)(
E2 + E−1

2

) + �t

2�x

(
E1 + E−1

1

)

+ �t

2�y

(
E2 + E−1

2

))
Un

i, j (5)

2.2 Properties of Finite Difference Schemes

u(x, t) is the initial value problem, S(t, t0) is the solution operator and the function
u is

u(x, t) = S(t, t0)u(x, t0) (6)

thus in particular

u(x, (n + 1)�t) = S((n + 1)�t, n�t)u(x, n�t) (7)

If the problem is autonomous, the operator P in Eq. 1 is independent of time, S is
a function of the elapsed (t − t0).

Scheme 1

Un+1
j = Un

j + �t

2�x

(
Un

j+1 −Un
j−1

)
(8)

This scheme is useless since it will never be stable. To investigate its accuracy:
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unj = u( j�x, n�t) (9)

The scheme can be rewritten in the form ut = ux

Un+1
j −Un

j

�t
= Un

j+1 −Un
j−1

2�x
(10)

Local truncation error is

τ n
j = un+1

j − unj
�t

− unj+1 − unj−1

2�x
= ut

(
x j , tn

) + O(�t) − ux
(
x j , tn

) + O
(
�x2

)
(11)

This scheme is accurate of second order in space and first order in time.

Scheme 2: Lax-Friedrichs Scheme

Un+1
j = 1

2

(
Un

j+1 +Un
j−1

) + �t

2�x

(
Un

j+1 −Un
j−1

)
(12)

This scheme is a first order accurate scheme. This scheme describes as (FTCS)
forward in time and centered in space [10].

The Lax-Friedrichs scheme has two-degree precision along space and one-degree
precision along time [11].

Scheme 3: Upwind Scheme

Consider one sided difference for the spatial derivative:

Un+1
j = Un

j + �t

�x

(
Un

j+1 −Un
j

)
(13)

This is a first order accurate scheme. The upwind differencing scheme is
conservative [12].

Scheme 4: Downwind Scheme

Consider the one-sided difference for the spatial derivative:

Un+1
j = Un

j + �t

�x

(
Un

j −Un
j−1

)
(14)

This is a first order accurate scheme. However, this scheme is also useless. The
domain of dependence is not included in the scheme stencil therefore such a scheme
is unstable [13].

Scheme 5: Leapfrog Scheme:

If the center difference is used for both time and spatial derivatives,
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Un+1
j = Un−1

j + �t

�x

(
Un

j+1 −Un
j−1

)
(15)

To find its accuracy, it is rewritten as

Un+1
j −Un−1

j

2�t
= Un

j+1 −Un
j−1

2�x
(16)

τ n
j = un+1

j − un−1
j

2�t
− unj+1 − unj−1

2�x
= ut + O

(
�t2

) − ux + O
(
�x2

)
(17)

This is a second order accurate scheme. The leapfrog method has good stability
when solving partial differential equations with oscillatory solutions [14].

Scheme 6: Lax-Wendroff Scheme

It is based on the Taylor series expansion u(x, t) given by

u(x, t + �t) = u(x, t) + �t ut (x, t) + 1

2
�t2utt (x, t) + O

(
�t3

)
(18)

using ut = ux reduces to

u(x, t + �t) = u(x, t) + �t ux (x, t) + 1

2
�t2uxx (x, t) + O

(
�t3

)
(19)

Using the centered difference, a scheme with order accuracy in both time and
space is obtained by

Un+1
j = Un−1

j + �t

2�x

(
Un

j+1 −Un
j−1

) + �t2

2�x2
(
Un

j+1 − 2Un
j +Un

j−1

)
(20)

The Lax-Wendroff scheme has two-degree precision along both space and time.
The Lax-Wendroff scheme gives more accurate solution than that of Lax- Friedrich
scheme since the Lax-Wendroff scheme has two-degree precision along time, while
the Lax-Friedrichs scheme has one-degree precision along time.

The Lax-Wendroff scheme needs more computational time than that of Lax-
Friedrich scheme since the Lax-Wendroff scheme need to calculate derivatives up to
4th order, while the Lax-Friedrichs scheme need to calculate derivatives up to 2nd
order [11].

Scheme 7: Crank-Nicolson Scheme

This is a second order accurate implicit scheme

Un+1
j = Un−1

j + �t

2�x

(
Un+1

j+1 −Un+1
j−1 +Un

j+1 −Un
j−1

)
(21)
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The Crank-Nicolson method is implicit scheme with second-order accuracy in
both time and space. This method is an unconditionally stable [15].

2.3 Von Neumann Stability

Stability of the scheme V n+1 = C(�t)V n can bewritten in terms of the amplification
matrix G(�t, k) as the following condition: t > 0

∥∥G(�t, k)n
∥∥ ≤ Keαt (22)

The condition must be satisfied for all multi-index k in order to establish stability
of the scheme.

The Von Neumann Condition
The amplification matrix of a stable scheme satisfies the condition

p[G(�t, k)] ≤ eγ�t = 1 + O(�t) (23)

where p[G(�t, k)] denotes the spectral radius (largest magnitude of eigenvalues) of
the matrix G(�t, k)

The Von Neumann stability condition is necessary but not sufficient for stability.
In most practical applications, turns out to be easily checked whether this condition
holds or not [16].

2.4 The Leapfrog Scheme

2.4.1 The One Way Wave Equation

The one-way wave equation shows significant computational efficiency for a range
of transmitted wave three-dimensional global, exploration and engineering scale
applications [17]. The leapfrog scheme is

Un+1
j = Un−1

j + �t

�x

(
Un

j+1 −Un
j−1

)
(24)

The periodic conditions imposed through the usual periodicity requirement,
Un

−1 = Un
N−1, U

n
N = Un

0
The vector can be defined as

V n
j =

(
Un

j

Un
j−1

)
(25)
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V n+1 = C(�t)V n (26)

and λ = �t
�x then

V n+1
j =

(
λ
(
E − E−1

)
1

1 0

)
V n
j (27)

where E and E−1 are the shift operations. V n
j = V

∧n

k e
ik j�x is the discrete fourier

transform of V n .

V
∧n+1

k eik j�x =
(

λ
(
E + E−1

)
1

1 0

)
V
∧n

k e
ik j�x (28)

and x j = j�x so

Eêik j�x V n
k = eik�xeik j�x V

∧n

k (29)

Eêik j�x V n
k = e−ik�xeik j�x V

∧n

k (30)

thus

V
∧n+1

k = e−ik j�x

(
λ
(
E − E−1

)
1

1 0

)
eik j�x V

∧n

k

=
(
2iλ sin(k�x) 1

1 0

)
V
∧n

k (31)

The explicit expression for the amplification matrix is

G(�x, k) =
(
2iλ sin(k�x) 1

1 0

)
(32)

The variable ξ = k�x restricted to 0 ≤ ξ ≤ 2π . The eigenvalues of the
amplification matrix G(�x, k) is

μ1(ξ) = iλ sin(ξ) +
√
1 − λ2 sin2(ξ) (33)

Case 1. If λ2 > 1, then for those values of k such that ξ = k�x = π
2

μ1
(
π

/
2
) = i

(
λ +

√
λ2 − 1

)
(34)
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so
∣∣μ1

(
π

/
2
)∣∣ > 1 yielding that the Von Neumann stability condition is not satisfied

by the amplification matrix. The leapfrog scheme is unstable when λ > 1.
Case 2. If λ2 ≤ 1, then

|μ1(ξ)|2 = λ2 sin2(ξ) + 1 − λ2 sin2(ξ) = 1 (35)

Then p[G] = 1 and the Von Neumann condition is satisfied. Nonetheless, this
does not imply that the scheme is stable for λ ≤ 1, and it is unstable for λ = 1.

The leapfrog scheme for ut = ux is stable for λ < 1.

2.4.2 The Two Way Wave Equation

Comparison of migration results for one-way and two-way wave-equation migration
shows that the two-way wave equation provides superior results [18]. The leapfrog
method (second order-centered difference for time and space derivatives) for the
two-way wave equation utt = uxx is

Un+1
j − 2Un

j +Un−1
j

�t2
= Un

j+1 − 2Un
j +Un

j−1

�x2
(36)

The simplified 1D Maxwell’s equations can be written as, Et = Hx , Ht = Ex

which is equivalent to Ett = Exx or Htt = Hxx

The FDTD method (second order centered difference for time and space
derivatives) is defined on staggered grid for H:

En+1
j − En

j

�t
=

H
n+ 1

2

j+ 1
2

− H
n+ 1

2

j− 1
2

�x
(37)

H
n+ 1

2

j+ 1
2

− H
n− 1

2

j+ 1
2

�t
= En

j+1 − En
j

�x
(38)

λ = �t/�x so (36) can be written as

Un+1
j = 2Un

j + λ2
(
E − 2 + E−1

)
Un

j −Un−1
j (39)

where E is the shift operator.

V n
j =

(
Un

j

Un
j−1

)
(40)

V n+1
j =

(
2 + λ2

(
E − 2 + E−1

) −1
1 0

)
V n
j (41)
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V n
j = V

∧n

k e
ik j�x so

V
∧n+1

k =
(
2 + λ2

(
eik j�x − 2 + e−ik j�x

) −1
1 0

)
V
∧n

k (42)

Thus

G =
(
2 + λ2(2 cos(ξ) − 2) −1

1 0

)
(43)

The eigenvalues of G are μ1 = a + √
a2 − 1 and μ2 = a − √

a2 − 1 with
a = 1 + λ2(cos(ξ) − 1).

If λ > 1 so cos(ξ0) < 1− 2
λ2 . Then a(ξ0) < −1 and |μ2(ξ0)| =

∣∣∣a − √
a2 − 1

∣∣∣ >

1. The Neumann stability is violated thus not stable.
If λ ≤ 1, then a2 − 1 ≤ 0 thus μ1 = a + i

√
1 − a2 and μ2 = a − i

√
1 − a2. So

|μi | = 1 and the Von Neumann stability is satisfied. On the other hand, G is not a
normal matrix and ‖G‖ > 1.

2.4.3 Convergence for the Two Way Wave Equation

Replace Un
j by u

(
x j , tn

)
in Eq. (36), the residue is the local truncation error

τ n = O
(
�t2

) + O
(
�x2

)
(44)

Second, replace Un
j by u

(
x j , tn

)
in Eq. (41), the residue is

�t2τ n = �t2
[
O

(
�t2

) + O
(
�x2

)]
(45)

Let V n+1 = C(�t)V n denote the leapfrog scheme. Suppose

V n+1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Un+1
0

Un
0

Un+1
1

Un
1
...

Un+1
N−1

Un
N−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(46)

Q�x is the sampling operator at the spatial grid points and two time steps.
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Q�xu(x, t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u(x0, t)
u(x0, t − �t)

u(x1, t)
u(x1, t − �t)

...

u(xN−1, t)
u(xN−1, t − �t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(47)

2.5 Dissipative Schemes

A finite difference scheme V n+1 = C(�t)V n is called dissipative of order 2τ if the
amplification matrix satisfies

ρ[G(�t, k)] ≤ 1 − δ|ξ |2τ (48)

where ξ = k�x for all �t , k and δ > 0 is independent of k and �t .

2.6 Difference Schemes for Hyperbolic Systems in One
Dimension

u(x, t) = (
u1(x, t), . . . , u p(x, t)

)T
(49)

ut (x, t) = ∂F(u(x, t))

∂x
(50)

F(u) is a function F
(
u1, . . . , u p

) = (
F1

(
u1, . . . , u p

)
, . . . , Fp

(
u1, . . . , u p

))T
∂F(u(x, t))

∂x
= ∂F(u)

∂u

∂u(x, t)

∂x
(51)

where ∂F(u)

∂u denotes the gradient matrix A(u) with components ai j (u) = ∂Fi (u)

∂u j
so

that the nonlinear system can be written in the form

ut = A(u)ux (52)

The above nonlinear equation is called weakly, strongly, symmetric or strictly
hyperbolic if for every u0 fixed, the corresponding linearized system:
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ut = A(u0)ux

is weakly, strongly, symmetric or strictly hyperbolic, respectively.
The Lax equivalence theorem states basically that an accurate scheme is stable

if and only if it converges, provided that the problem is strongly well posed. Weak
well posedness may give rise to instabilities.

2.6.1 First Order Schemes

Consider Friedrich’s scheme:

Un+1
j = 1

2

(
Un

j+1 +Un
j−1

) + �t

2�x

(
Fn
j+1 − Fn

j−1

)
(53)

where Fn
j+1 = F

(
Un

j+1

)
. This scheme is based on first order approximation of the

derivatives using Taylor expansion, and it can be easily shown that this scheme is
first order accurate. Linearizing the function F(u) around some arbitrary value to u0,
A(u) is replaced by a constant matrix A, so that the linearized problem is equivalent
to the original problem with F(u) = Au. Substituting in the Freidrich’s scheme, the
linearized form is obtained.

Un+1
j = 1

2

(
Un

j+1 +Un
j−1

) + �t

2�x
A
(
Un

j+1 +Un
j−1

)
(54)

The corresponding amplification matrix is given by

G(ξ) = I cos(ξ) + iλ sin(ξ) (55)

where ξ = k�x , and I is the p× p identity matrix. If the original problem is strongly
or strictly hyperbolic, then it follows that the matrix A = A(u0) is diagonalizable,
there exist a matrix T

T−1AT =
⎛
⎜⎝
a1 · · · 0
...

. . .
...

0 · · · ap

⎞
⎟⎠ (56)

where a1, . . . , ap are the real eigenvalues of A. Therefore:

T−1G(ξ)T = I cos(ξ) + iλ

⎛
⎜⎝
a1 · · · 0
...

. . .
...

0 · · · ap

⎞
⎟⎠ sin(ξ) (57)

and the eigenvalues are
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μk(ξ) = cos(ξ) + iλak sin(ξ) (58)

which implies that

|uk(ξ)|2 = cos2(ξ) + iλ2a2k sin
2(ξ)

= 1 − (
1 − λ2a2k

)
sin2(ξ) (59)

Therefore, if ρ(A) = maxk |ak | satisfies the inequality �t
�x ρ(A) ≤ 1 then Von

Neumann stability condition will hold and |uk(ξ)| ≤ 1 for k and ξ . It is an exercise
to prove under strict inequality of Von Neumann condition, the scheme is dissipative
of order 2.

Upwind schemes are motivated by the scalar equation ut = aux when p = 1.
If a > 0 the characteristics are straight lines moving to the left, and the scheme
constructed in order to “follow” the physical characteristics is:

Un+1
j = Un

j + �t

�x
a
(
Un

j+1 −Un
j

)
, a > 0 (60)

And the scheme is accurate and stable for 0 < aλ ≤ 1 for λ = �t
�x . On the other

hand, if a < 0, then the characteristics point to the right and

Un+1
j = Un

j + �t

�x
a
(
Un

j −Un
j−1

)
, a < 0 (61)

In this case, stability follows from the condition −1 ≤ λa < 0.

2.6.2 Second Order Schemes

A scheme for approximating the solution of ut = A(u)ux is called a Lax-Wendroff
scheme if under the assumption A(u) = A (or F(u) = Au is linear) the scheme
reduces to

Un+1
j = Un

j + �t

2�x
A
(
Un

j+1 −Un
j−1

) + 1

2

(
�t

�x
A

)2(
Un

j+1 − 2Un
j +Un

j−1

)
(62)

The above scheme is actually the only second order scheme for the linear problem.
Lax-Wendroff schemes arise from the idea of replacing time derivatives by space

derivatives, using the equation ut = F(u) and approximating the later by finite
differences. Using a Taylor expansion for u

u(x, t + �t) = u(x, t) + �tut (x, t) + �2

2
utt (x, t) + O

(
�t3

)
(63)

ut (x, t) = F(u(x, t)) in the linear case where F(u) = Au
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ut (x, t) = Aux (x, t) (64)

utt (x, t) = A2uxx (x, t) (65)

The amplification matrix of the linear form of the Lax-Wendroff scheme is

G(ξ) = I + iλA sin(ξ) + λ2A2(cos(ξ) − 1) (66)

ξ = k�t , λ = �t
�x and η = sin

(
ξ

2

)
,

G(ξ) = I + 2iλAη
√
1 − η2 − 2λ2A2η2 (67)

Any eigenvalue μ(η) of the amplification matrix

μ(η) = 1 + 2iλμ(A)η
√
1 − η2 − 2λ2A2η2 (68)

The eigenvalues μ(η) of the amplification matrix

|μ(η)|2 = 1 − λ2μ(A)2η4
(
1 − λ2μ(A)2

)
(69)

which holds for every eigenvalue of G(ξ). The spectral radius of G(ξ) is defined as
the maximum value of μ(η). μ∗ is the eigenvalue of A which maximizes the above
expression |μ(η)|

|ρ(G)|2 = 1 − λ2μ2
∗η

4
(
1 − λ2μ2

∗
)

(70)

Von Neumann condition will be satisfied if

λp(A) ≤ 1 (71)

which implies λμ(A) ≤ 1 for all eigenvalues of A. Furthermore, if λμ∗ < 1, then
the scheme given by (Eq. 62) is dissipative of order 4.

For the nonlinear case,

utt = [F(u)]xt = [F(u)t ]x = [A(u)ut ]x = [A(u)F(u)x ]x (72)

Substituting ut = F(u)x and using Taylor expansion,

u(x, t + �t) = u(x, t) + �t F(u)x + �t2

2
[A(u)F(u)x ]x + O

(
�t3

)
(73)

Un+1
j = Un

j + �t

2�x

(
Fn
j+1 − Fn

j−1

)
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+ 1

2

(
�t

�x

)2(
An

j+ 1
2

(
Fn
j+1 − Fn

j

) − An
j− 1

2

(
Fn
j − Fn

j−1

))
(74)

Fn
j = F

(
Un

j

)
so

An
j+ 1

2
= A

(
Un

j+1 +Un
j

2

)
(75)

Scheme Eq. 74 becomes rather inefficient in practical applications due to the
many computations involved at each time step iteration in order to evaluate A and
F. A modification of this scheme which is very popular considers approximating
derivatives at “half stages” of the iteration

u(x, t + �t) = u(x, t) + �tut

(
x, t + 1

2
�t

)
+ O

(
�t2

)
(76)

and it is known as the MacCormack scheme. Each iteration has two steps
corresponding to first order approximations of the solution at half steps.

The scheme is given by:

U ∗
j = Un

j + �t

�x

(
Fn
j+1 − Fn

j

)
(77)

Un+1
j = 1

2

(
Un

j +U ∗
j + �t

�x

(
F∗
j − F∗

j−1

))
(78)

where Fn
j = F

(
Un

j

)
, F∗

j = F
(
U ∗

j

)
.

This scheme is a two-stage which evaluates a “predictor” U ∗
j and a “corrector”

U ∗∗
j = U ∗

j + �t
�x

(
F∗
j − F∗

j−1

)
and then forms Un+1

j as the average
(
U ∗∗

j +U ∗
j

)
/2.

It is clear that in order to evaluateUn+1
j the scheme uses the same points in the grid

at time in as Lax-Wendroff scheme. The “efficiency” of a scheme is often related to
the cost in computer time of each iteration. In these terms, one can compere different
schemes. For the Lax-Wendroff scheme, Fn

j+1, F
n
j , F

n
j−1, A

n
j+ 1

2
and An

j− 1
2
need to

evaluate and performmatrix multiplications in each iteration, whereas MacCormack
Scheme requires only the evaluation of Fn

j+1, F
n
j , F

∗
j and F∗

j−1.
It only remains to prove the order of accuracy of MacCormack scheme. The local

truncation error of the MacCormack scheme is O
(
�t2

) + O
(
�x2

) + O(�t�x) in
which �t = O(�x). Thus it has a second order accuracy in space and time.

TheMacCormack scheme uses forward difference for the predictor and backward
difference for the corrector steps. It has second order accuracy as the Lax-Wendroff
method. It is much easier to apply, since it is no need to evaluate the second time
derivatives [19].
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Among the class of second order non-dissipative schemes is the leapfrog scheme.
For the general non-linear equation, the scheme is given by:

Un+1
j = Un−1

j + �t

�x

(
Fn
j+1 − Fn

j−1

)
(79)

This scheme is analyzed in detail for the linear case, found out that it is not dissipa-
tive but stable, provided that �t

�x ρ(A) < 1. The fact that Eq. 79 is accurate of second
order follows a straightforward calculation. This scheme is generally more efficient
than Lax-Wendroff schemes, although it needs roughly twice asmuchmemory due to
the dependence on two previous time stages to evaluate Un+1, therefore in practice,
must face the trade-off between efficiency and storage requirements. Since this is
a non-dissipative scheme, it will not give good approximations for nonlinear equa-
tions. A dissipative term is introduced to Eq. 79 to deal with problem. When adding
a dissipative term in the form of a small perturbation, care must be taken so that the
resulting linear scheme retains stability. Recall that in the linear case F(u) = Au,
the amplification matrix G(ξ) is a 2p × 2p matrix (A itself is a p × p matrix)

G(ξ) =
(
2iλA sin(ξ) I

I 0

)
(80)

where now each of the entries is itself a p × p matrix. In order to express the
eigenvalues μ(ξ) of G in terms of those of A, if A is diagonalizable by a matrix T,
then G possesses the same eigenvalues of G.

G
∧

(ξ) =
(
T−1 0
0 I

)(
2iλA sin(ξ) I

I 0

)(
T 0
0 I

)

=
(
2 i λT−1AT sin(ξ) I

I 0

)
(81)

Recall that T−1AT is a diagonal matrix with diagonal entries a1, . . . , ap. From
this expression, it follows that any eigenvalue μ(ξ) of the amplification matrix
satisfies:

μ2(ξ) = 1 + 2iλa j sin(ξ)μ(ξ), j = 1, 2, . . . , p (82)

If a dissipative term is added to the leapfrog scheme at time level n, this will cause
rise to instabilities.

ε
(
Un

j+1 − 2Un
j +Un

j−1

)
(83)

added to the scheme (Eq. 79) where ε is a small perturbation. Notice that any modi-
fication at time level n will affect the first block in the amplification matrix. The
modified amplification matrix will be of the form:
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G(ξ) =
(
2iλA sin(ξ) + ε sin2(ξ/2)I I

I 0

)
(84)

and therefore the eigenvalues will now satisfy:

μ2(ξ) = 1 + (
2iλa j sin(ξ) + ε sin2(ξ/2)

)
μ(ξ) (85)

E denotes the shift operator EUn
j = Un

j+1, adding a dissipative term at time level
n amounts to modifying Eq. 74 yielding the scheme:

Un+1
j = Un−1

j + �t

�x
A
(
Un

j+1 −Un
j−1

) + εP(E)Un
j (86)

where P(E) is a function of the shift operator
(
P(E) = E − 2I + E−1

)
. Since

P(E) approximates a second order derivative, its Fourier transform P
∧

(ξ) will be a
real function of ξ and thus the modified eigenvalues will in general satisfy:

μ2(ξ) = 1 +
(
2iλa j sin(ξ) + εP

∧

(ξ)
)
μ(ξ) (87)

for some eigenvalue at of A.
Let x1 and x2 are the solutions of the equation x2 − ax − 1 = 0. If both |x1| ≤ 1

and |x2| ≤ 1, then necessarily the coefficient α is purely imaginary.
Using exactly the same analysis, the leapfrog scheme gives rise to instabilities

when it is used to approximate parabolic equations. For the heat equation, this can
also be explained by the stability region of the leapfrog method, which is only on
the imaginary axis, while the centered finite difference used in approximating the
second order derivatives will give real eigenvalues.

In order to introduce the correct amount of dissipation, the dissipation term at
time level n − 1 should be added. The operator E1/2Un

j = Un
j+1/2 so the leapfrog

scheme Eq. 79 can be rewritten in the form:

Un+1
j = Un−1

j + �t

�x

(
E1/2 − E−1/2

)(
E1/2 + E−1/2

)
Fn
j (88)

in general form:

Un+1
j = Un−1

j + �t

�x

(
E1/2 − E−1/2

)(
E1/2 + E−1/2

)
Fn
j

− ε

16

(
E1/2 − E−1/2

)4
Un−1

j (89)

η = sin(ξ/2) the amplification matrix of the linearized scheme

G(ξ) =
(
2iλA sin(ξ)

(
1 − εη4

)
I

I 0

)
(90)
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and the eigenvalues hold the relations:

μ2(ξ) = 1 − η4 + 2iλμ(A) sin(ξ) sin(ξ)μ(ξ) (91)

for some eigenvalue μ(A) of A. Therefore:

μ(ξ) = iλμ(A) sin(ξ) ±
√
1 − |μ(A)| sin2(ξ) − εη4 (92)

And |μ(ξ)|2 = 1 − εη4 provided that

1 − |λμ(A)|2 sin2(ξ) − εη4 > 0 (93)

for all eigenvalues of A and ξ . Under this condition, the modified scheme Eq. 89 is
stable and dissipative. Remark, though, that in order for Eq. 93 to hold, whenever
add dissipation (ε > 0), and also must decrease the value of λ = �t

�x . This means
that for a fixed space grid, a large number of time steps must be evaluated to get an
approximate solution at some given time t.

3 Finite Difference Time Domain Applications in Electrical
Engineering

The FDTD method used in the solution of Maxwell’s equations allows to analyze
the electric and magnetic fields and interactions with medium. Maxwell’s equations,
which have differentials in time and space dimensions, are solved by using the future
and past values of time and space [20]. In the solution of this discrete set of space
and time, the electric and magnetic fields are resolved interconnectedly and the value
obtained in each step becomes the first value for the next step [21]. The relationship
between these two parameters is described in Fig. 1.

This method is used in many different applications since it is a very powerful
tool for solving partial differential equations. These applications include many engi-
neering problems such as the percussion instrument model, where different sampling
frequencies are used to reduce the simulation time, the grounding characteristics of
wind turbines in low resistive soil, the propagation of partial discharge signals in HV
current transformers, and the analysis of electromagnetic interaction currents flowing
in the power cables of DC-DC converters [20, 22, 23]. Since the examination of all
these application areas is beyond the scope of this chapter, the applications of the
FDTD method in the power system and high voltage industry are discussed.

Electromagnetic transient and non-transient simulations become an important tool
for planning, operation and fault analysis in electrical power systems [8]. These simu-
lations concentrate on transient state analyzes that occur in power system equipment
such as circuit breakers (CBs), lightning arrestor, overhead and underground cables,
ultra-high frequency (UHF) sensors and power transformers (PTs) [8, 9, 24, 25].
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Fig. 1 Time and special
discretization in FDTD
method [21]

Determination of lightning induced voltage and current caused by lightning
discharges, one of the major sources of fault in power systems, is critical for the
protection of power system equipment [26]. Aodsup and Kulworawanichpong [24]
examined the propagation and reflectionof the lightning strike in the lightning arrester
with silicon carbide (SiC) andmetal oxid varistor (MOV)by adapting theTelegraphist
equations to the FDTD method. According to the simulation results, MOV arrester
reflects and transmits the impulse surge smooter than SiC arrester [24]. Nagarjuna
and Chandrasekaran [21] adapted the transmission line approach to FDTD equations
to examine the current and voltage characteristics of the horizontal ground electrode
at high impulse currents. Izadi et al. [26] calculated the electric and magnetic fields
in different time and space using Maxwell’s equations and 2nd order FDTD while
advancing of the lightning channel in the power system, and the proposed algorithm
showed a good agreement with the measurement results.

Analyzing the electromagnetic behavior of overhead and underground cables,
one of the important parts in power system transmission and distribution, improves
system design. These cables, consisting of multiple layers with different characteris-
tics between the cable core and the shell, can be successfully modeled by the FDTD
methodwith a high spatial discretization [27]. In addition, frequency-dependent FDT
models are numerically unstable or computational time is excessive. Additionally,
underground cable applications of these models are very limited. To overcome these
limitations, the FDTD method can be developed by taking into account distributed
fixed parameters such as skin effect and imperfect earth in overhead lines [27]. It
is an important problem to analyze the transient state responses of electromagnetic
fields in underground cables, which are used more and more for environmental,
political and technical reasons in high voltage applications. Barakou et al. [28] used
the universal line model (ULM) and FDTD method to model these lines. While the
FDTD method provides very high accuracy for slow front surge, these results are
distorted by temporary fluctuations for fast front surges. Either way, simulation times
are almost six times the ULM and are quite slow [28].
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As a result of the operation of power system equipment such as disconnectors or
CBs in gas-insulated substations (GISs), switching pulses called very fast transient
(VFT) may occur in the frequency range from several MHz to more than 100 MHz
[9]. Calculated the transient electromagnetic disturbances caused by these frequen-
cies using FDTD and EMTP and found that the results obtained by the FDTD are
less oscillating. Shakeri et al. [25] examined the effect of VFTs on power trans-
formers, one of the most important equipment in power systems, by adapting the
multi-conductor transmission line theory to the FDTD method and observed the
effect of electromagnetic waves. In order to increase the accuracy of this model, the
winding capacity matrix is calculated by FEM analysis, and the simulation results
are obtained with a certainty to confirm the experimental results [25].

FDTD method is also used in the electromagnetic modeling stage to understand
the behavior and improve the performance of UHF sensors used to detect partial
discharges that can be dangerous for power systems and transformers [6]. Ishak
et al. [22], using the FDTD integrated UHF sensor developed for this purpose,
achieved agreement results with experimental results in a wide frequency range
of 500–1500 MHz. Another proposed approach to determine the behavior of the
UHF based test system used as a PD sensor in high voltage cables and to investigate
the PD coupling process is the combination of the FDTD method and the transfer
function theory [2]. This proposed approach has been applied to 11 kV XLPE cable
by Hu et al. [2]. In another application where the amplitude and charge of the partial
discharge current in gas insulated switches are examined, the data obtained with a
voltage probe placed on the outer surface of a three-phase gas-insulated switch in
the 84 kV-class are verified by simulation results obtained by the three-dimensional
FDTD method [29].

Busbar structures commonly used in high voltage transmission are also affected by
electromagnetic fields radiated from switching operations. These analyzes become
evenmore important for highvoltage equipment located close to switching equipment
and electronic circuits of these [4]. The FDTD method is successfully used in the
modeling of busbar structures in high voltage air-insulated substations [5].Musa et al.
[4] modeled transient electromagnetic fields as a result of switching operations in a
400 kV air insulated substation using simply specifying their constitutive parameters
with this method.

Grounding behavior, which is one of the important parameters to ensure system
reliability in transmission and distribution systems, can also be examined with the
FDTD method. In this context, the soil ionization phenomenon, which reduces the
ground electrode resistance, has been investigated by the FDTD method and applied
to a typical high voltage substation of 500/220 kV [7].

Finite element and difference methods are also widely used in high voltage tech-
nique to calculate the breakdown characteristics of gas dielectrics [30]. The electron
drift velocity, mean energy, ionization and attachment coefficients of dielectric gases
such as SF6, CF4, CHF3, and argon, which are frequently used in the insulating
gas industry, can be calculated by using the finite difference method for solving
Boltzmann equations [31–33].
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Despite this widespread use of the FDTD method, there are also limitations such
as defining the uncertainties they have due to the nature of electromagnetic fields,
and the excessive computation time needed in the analysis of large objects [9, 34].

In the calculation of electromagnetic fields, the properties of the object, such
as geometric properties, electrical parameters, material characteristics and input
sources, can increase randomness and thus uncertainty [35]. The uncertainty in these
input parameters is reflected in the electromagnetic fields, which are the output
parameters, and a parametric uncertainty appears in the resulting components [36].
Identifying these uncertainties, which are very important in some engineering prob-
lems, is also a major research topic in the analysis of electromagnetic fields [35].
As an alternative to the Monte Carlo method used to identify parametric uncertain-
ties, there are many methods and approaches combined with FDTD. In this context,
methods such as stochastic, polynomial chaos, control variations, and the method of
moments are combined with the FDTD method and defined the uncertainties in the
calculation of electromagnetic fields [35–38].

Chen [34] used the hybrid implicit explicit approach in combination with the
FDTD method to overcome the problem of electromagnetic modeling in very
fine structures. This proposed method is applicable for many boundary condi-
tions including connect boundary, absorbing boundary and periodic boundary. In
order to overcome the computation time problems encountered in the electromag-
netic modeling of electrically large objects, Shi et al. [39] proposed FDTD method
combined with Internet of Things, in which multiple processors are connected in
parallel.

Another important problem of the FDTD method is the increased response time
at high frequencies and the decrease in the accuracy of the analysis results [27].
In order to overcome this disadvantage, alternative models and software combined
with FDTD method are used in the analysis of high frequency transient situations
frequently encountered due to switching and lightning in high voltage equipment,
especially cables [2, 27].

4 Conclusions

In this chapter, the time-dependent finite difference method, which is widely used in
the solution of engineering problems defined by differential equations, is examined in
the theoretical framework and application examples. In order to limit the examination
in terms of engineering applications, the use of the finite difference method in the
analysis of electric andmagnetic fields in power systems and high voltage equipment
is concentrated. The limitations of the finite difference method are defined and how
these limitations can be overcome by combining them with different methods and
approaches are discussed. Finite difference method, which is an important tool in
robust and accurate calculation of electromagnetic fields, has been used more widely
in transient analysis as well as in steady state analysis.



58 H. Duzkaya et al.

References

1. Yee K (1966) Numerical solution of initial boundary value problems involving maxwell’s
equations in isotropic media. IEEE Trans Antennas Propag 14(3):302–307. https://doi.org/10.
1109/TAP.1966.1138693

2. HuX, SiewWH, JuddMD,ReidAJ, ShengB (2019)Modeling of high-frequency current trans-
former based partial discharge detection in high-voltage cables. IEEE Trans Power Delivery
34(4):1549–1556. https://doi.org/10.1109/TPWRD.2019.2910076

3. Gedney SD (1996) The application of the finite-difference time-domain method to EMC anal-
ysis. In: Proceedings of symposium on electromagnetic compatibility, Santa Clara, CA, USA,
pp 117–121. https://doi.org/10.1109/isemc.1996.561212

4. Musa BU, Siew WH, Judd MD, Wang T, Li QM (2013) Application of finite difference time
domain method to high voltage substations: switching transient fields. Int J Eng Sci Innovat
Technol (IJESIT) 2(5):20–29

5. Musa BU, Siew WH, Judd MD (2010) Computation of transient electromagnetic fields due to
switching in high-voltage substations. IEEE Trans Power Delivery 25(2):1154–1161. https://
doi.org/10.1109/TPWRD.2009.2034008

6. Li T, Wang X, Zheng C, Liu D, Rong M (2014) Investigation on the placement effect of UHF
sensor and propagation characteristics of PD-induced electromagnetic wave in GIS based on
FDTD method. IEEE Trans Dielectr Electr Insul 21(3):1015–1025. https://doi.org/10.1109/
TDEI.2014.6832244

7. Ghania SM (2019) Grounding systems under lightning surges with soil ionization for high
voltage substations by using two layer capacitors (TLC) model. Electric Power Syst Res
174(105871). https://doi.org/10.1016/j.epsr.2019.105871

8. Noda T (2018)A study of an FDTD-based frequency-dependent linemodel for electromagnetic
transient simulations. Electr Eng Jpn 202(2):33–42. https://doi.org/10.1002/eej.23038

9. Ametani A, Xue H, Natsui M, Mahseredjian J (2018) Electromagnetic disturbances in gas-
insulated substations and VFT calculations. Electr Power Syst Res 160:191–198. https://doi.
org/10.1016/j.epsr.2018.02.014

10. DuChateau P, ZachmannDW(2002)Applied partial differential equations. Dover Publications,
New York. ISBN: 978-0-486-41976-3

11. Sheikh MAA, Andallah LS, Kowser MA (2014) A comparative study of finite difference
scheme for Burger’s equation. Gazi Univ J Sci GU J Sci 27(4):1045–1052

12. Versteeg HK, Malalasekera W (2007) An introduction to computational fluid dynamics, 2nd
edn. Pearson Education Limited. ISBN: 978-0-13-127498-3

13. Zhang X, MA615 numerical methods for PDEs, spring 2020 lecture notes. Math Dept, Purdue
University

14. Shampine L (2009) Stability of the leapfrog/midpointmethod. ApplMath Comput 208(1):293–
298. https://doi.org/10.1016/j.amc.2008.11.029

15. Sun C, Trueman CW (2003) Unconditionally stable Crank-Nicolson scheme for solving two-
dimensionalMaxwell’s equations. Electron Lett 39(7):595–597. https://doi.org/10.1049/el:200
30416

16. Käppeli R, Balsara DS, Chandrashekar P, Hazra A (2020) Optimal, globally constraint-
preserving, DG(TD)2 schemes for computational electrodynamics based on two-derivative
Runge-Kutta time stepping and multidimensional generalized Riemann problem solvers—
a von Neumann stability analysis. J Comput Phys 408:109238. https://doi.org/10.1016/j.jcp.
2020.109238

17. AngusDA (2014) The one-waywave equation: a full-waveform tool formodeling seismic body
wave phenomena. Surv Geophys 35:359–393. https://doi.org/10.1007/s10712-013-9250-2

18. Mulder WA, Plessix RE (2004) A comparison between one-way and two-way wave-equation
migration. Geophysics 69(6):1491–1504. https://doi.org/10.1190/1.1836822

19. Ching MH, Deiwert GS, Inouye M (2002) The MacCormack method—historical perspective.
Front Computat Fluid Dyn 45–59. https://doi.org/10.1142/9789812810793_0003

https://doi.org/10.1109/TAP.1966.1138693
https://doi.org/10.1109/TPWRD.2019.2910076
https://doi.org/10.1109/isemc.1996.561212
https://doi.org/10.1109/TPWRD.2009.2034008
https://doi.org/10.1109/TDEI.2014.6832244
https://doi.org/10.1016/j.epsr.2019.105871
https://doi.org/10.1002/eej.23038
https://doi.org/10.1016/j.epsr.2018.02.014
https://doi.org/10.1016/j.amc.2008.11.029
https://doi.org/10.1049/el:20030416
https://doi.org/10.1016/j.jcp.2020.109238
https://doi.org/10.1007/s10712-013-9250-2
https://doi.org/10.1190/1.1836822
https://doi.org/10.1142/9789812810793_0003


Analysis of Partial Differential Equations … 59

20. Fontana F, Bozzo E, Novello M (2015) Decimation in time and space of finite-difference time-
domain schemes: standard isotropic lossless model. IEEE Trans Signal Process 63(20):5331–
5341. https://doi.org/10.1109/TSP.2015.2453139

21. Nagarjuna K, Chandrasekaran K (2019) Analysis of horizontal grounding electrode in trans-
mission line approach. In: 2019 international conference on communication and electronics
systems (ICCES). Coimbatore, India, pp 267–272

22. Ishak AM, Ishak MT, Jusoh MT, Syed Dardin SF, Judd MD (2017) Design and optimization
of UHF partial discharge sensors using FDTD modeling. IEEE Sens J 17(1):127–133. https://
doi.org/10.1109/jsen.2016.2628035

23. LaourM, TahmiR,Vollaire C (2017) Experimental evaluation and FDTDmethod for predicting
electromagnetic fields in the near zone radiated by power converter systems. Turk J Elec Eng
Comp Sci 25:1460–1471. https://doi.org/10.3906/elk-1506-278

24. Aodsup K, Kulworawanichpong T (2017) Analysis of surge propagation with lightning arrester
using FDTD for 25 kV-AC transmission line. Int J Eng Appl Sci 4(4):66–70

25. Shakeri J, Abbasi AH, Shayegani AA, Mohseni H (2010) FDTD simulation of voltage
distribution in transformer winding under VFTO Phenomena. Int Rev Electr Eng 5(1):130–137

26. Izadi M, Ab Kadir MZA, Gomes C, Wan Ahmad WF (2010) An analytical second-FDTD
method for evaluation of electric and magnetic fields at intermediate distances from lightning
channel. Prog Electromag Res 110:329–352. https://doi.org/10.2528/pier10080801

27. Kaloudas CG, Chrysochos AI, Papagiannis GK (2014) FDTD analysis of multiphase power
cable systems using distributed constant parameters. In: MedPower 2014, Athens, pp 1–8.
https://doi.org/10.1049/cp.2014.1711

28. Barakou F, De Silva HMJ, Wouters PAAF, Steennis EF (2018) Evaluation of FDTD model for
transient studies with complicated cable configurations. In: 2018 power systems computation
conference (PSCC), Dublin, pp 1–7. https://doi.org/10.23919/pscc.2018.8442741

29. Tanaka H, Tanahashi D, Baba Y, Nagaoka N, Okada N, Ohki H, Takeuchi M (2016) Finite-
difference time-domain simulation of partial discharges in a gas insulated switchgear. High
Volt 1(1):52–56. https://doi.org/10.1049/hve.2016.0006

30. Duzkaya H, Dincer MS, Hiziroglu HR (2009) Calculation of partial discharge inception volt-
ages in ultradilute SF6 +N2 gas mixtures. In: Conference on electrical insulation and dielectric
phenomena, Virginia Beach, VA, USA, pp 531–534. https://doi.org/10.1109/ceidp.2009.537
7903

31. Tezcan SS, Akcayol M, Ozerdem OC, Dincer MS (2010) Calculation of electron energy distri-
bution functions from electron swarm parameters using artificial neural network in SF6 and
argon. IEEE Trans Plasma Sci 38(9):2332–2339. https://doi.org/10.1109/TPS.2010.2049588

32. Tezcan SS, Duzkaya H, Dincer MS, Hiziroglu HR (2016) Assessment of electron swarm
parameters and limiting electric fields in SF6 + CF4 + Ar gas mixtures. IEEE Trans Dielectr
Electr Insul 23(4):1996–2005. https://doi.org/10.1109/TDEI.2016.005435

33. Duzkaya H, Tezcan SS (2019) Boltzmann analysis of electron swarm parameters in CHF3 +
CF4 mixtures. Turk J Electr Eng Comp Sci 27:615–622. https://doi.org/10.3906/elk-1804-187

34. Chen J (2018) A review of hybrid implicit explicit finite difference time domain method. J
Comput Phys 363:256–267. https://doi.org/10.1016/j.jcp.2018.02.053

35. Zygiridis TT (2017) A short review of FDTD-based methods for uncertainty quantification
in computational electromagnetics. Mathemat Prob Eng (9247978). https://doi.org/10.1155/
2017/9247978

36. Edwards RS, Marvin AC, Porter SJ (2010) Uncertainty analyses in the finite-difference time-
domain method. IEEE Trans Electromagn Compat 52(1):155–163. https://doi.org/10.1109/
TEMC.2009.2034645

37. Gu Z, Zhang X, Sood N, Sarris CD (5) Efficient multi-parametric uncertainty quantification
methods for EMC/EMI applications. In: 2015 IEEE symposium on electromagnetic compati-
bility and signal integrity, Santa Clara, CA, pp 361–364. https://doi.org/10.1109/emcsi.2015.
7107715

38. GantaSS,VanVeenBD,HagnessSC (2017)On the accuracyof polynomialmodels in stochastic
computational electromagnetics simulations involving dielectric uncertainties. IEEE Antennas
Wirel Propag Lett 16:2594–2597. https://doi.org/10.1109/LAWP.2017.2733543

https://doi.org/10.1109/TSP.2015.2453139
https://doi.org/10.1109/jsen.2016.2628035
https://doi.org/10.3906/elk-1506-278
https://doi.org/10.2528/pier10080801
https://doi.org/10.1049/cp.2014.1711
https://doi.org/10.23919/pscc.2018.8442741
https://doi.org/10.1049/hve.2016.0006
https://doi.org/10.1109/ceidp.2009.5377903
https://doi.org/10.1109/TPS.2010.2049588
https://doi.org/10.1109/TDEI.2016.005435
https://doi.org/10.3906/elk-1804-187
https://doi.org/10.1016/j.jcp.2018.02.053
https://doi.org/10.1155/2017/9247978
https://doi.org/10.1109/TEMC.2009.2034645
https://doi.org/10.1109/emcsi.2015.7107715
https://doi.org/10.1109/LAWP.2017.2733543


60 H. Duzkaya et al.

39. Shi Q, Zou B, Zhang L, Liu D (2019) Hybrid parallel FDTD calculation method based on MPI
for electrically large objects. Wireless CommunMobile Comput (7309431). https://doi.org/10.
1155/2019/7309431

https://doi.org/10.1155/2019/7309431

	 Analysis of Partial Differential Equations in Time Dependent Problems Using Finite Difference Methods and the Applications on Electrical Engineering
	1 Introduction
	2 Finite Difference Methods for Time-Dependent Problems
	2.1 Basic Concepts
	2.2 Properties of Finite Difference Schemes
	2.3 Von Neumann Stability
	2.4 The Leapfrog Scheme
	2.5 Dissipative Schemes
	2.6 Difference Schemes for Hyperbolic Systems in One Dimension

	3 Finite Difference Time Domain Applications in Electrical Engineering
	4 Conclusions
	References




