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Abstract Classically, the solution to contour problems in electromagnetism was
based on analytical techniques, looking for closed solutions. The solution, whether
computational or analytical, of electromagnetic problems is extremely important for
analyzing the interactions of wave emitting and receiving devices among themselves
and with their environment, including both inanimate dispersing objects and living
beings. There aremany applications in various areas: radio frequency antennas, radar,
optics, wireless communications, imaging in bioengineering, nanotechnology and
metamaterials, electrical substations, etc. Such analytical or computational solutions
are particularly useful to increase productivity in all these well-established areas, to
provide procedures to improve existing designs before actual implementations and
to facilitate the design of new processes and devices. Typically, electromagnetism
problems can be formulated using Maxwell equations. However, the Maxwell equa-
tions only admit an analytical solution for some dispersing or emitting objects with
canonical geometric shapes, such as the sphere, the infinite plane, elemental antennas,
etc. Numerical methods broaden the spectrum of known solutions which, while to
be considered approximate, in many cases can be selected to what level of precision
the calculated results describe the physical reality being analyzed. In recent decades,
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driven by the availability of increasingly powerful computers, the area of computa-
tional electromagnetics (CEM) has experienced a remarkable increment as an area of
research. Mathematical formulations of physical electromagnetic problems produce
systems of equations that can now be solved numerically by computers. Thanks to
advances in computational technology and increasingly sophisticated mathematical
algorithms of electromagnetic modeling, it is a reality to simulate radiation or scat-
tering problems containing arbitrary and complex structures for which there is no
analytical solution to the Maxwell equations. There are various methods of compu-
tational electromagnetism and various classifications. Depending on the geometric
model used by their formulations to characterize the dispersers, they can be clas-
sified into three types: ray tracing, surface discretizations, and volume discretiza-
tions. Depending on the precision achieved in the results and the field of appli-
cation, they are classified into full-wave and asymptotic methods, also called low
and high-frequency methods. Methods based on volumetric discretizations, such as
finite-difference time-domain (FDTD) and frequency domain finite-element method
(FEM), have the advantages that they allow for easy modeling of non-homogeneous
media, and their associated 3D mathematical formulations are relatively simple.
However, they suffer from the fact that the resulting system of linear equations has
a number of unknowns proportional to the simulated volume, so the computational
demand grows very rapidly as the electrical dimensions considered in the simulation
increase. The methods based on discretizations of surfaces present characteristics
that make them computationally more efficient than the volumetric ones. The formu-
lations used in surface methods are based on surface integral equations (SIE) which,
unlike volumetric formulations, are mathematically more difficult to implement in
a computational code, partly due to the various types of singularities of the Green
function. Another disadvantage of this type of methods is the impossibility of simu-
lating general non-homogeneous means, although they have the great advantage
that they only require discretizing the interfaces, that is to say, the two-dimensional
surfaces that delimit the dispersing objects. Among the surfacemethods, themethod-
of-moments (MoM) and its computational optimizations stand out, in exchange for
introducing a controllable numerical error on the results of the pure MoM, known as
fast multipole method (FMM) and multilevel fast multipole algorithm (MLFMA).
The physical optics (PO) is also considered as a surface method based on SIEs since
it is based on surface discretizations, although using approximations valid only for
electrically large objects. The PO supports a correctionmethod to include diffraction,
called physical theory of diffraction (PTD), although this correction is only appli-
cable to perfect electric conductors (PEC). In this chapter, we will analyze some of
the numerical methods used in electromagnetism.

Keywords Numerical analysis · Electromagnetic fields · Electromagnetism ·
Computational electromagnetics · Surface integral equations
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Abbreviation/Acronyms

CEM Computational electro magnetics
CFIE Combined field integral equation
EFIE Electric field integral equation
FDTD Finite-difference time-domain
FE Finite elements
FEM Finite-element method
FMM Fast multipole method
GMRES Generalized minimal residual algorithm
GTD Geometrical theory of diffraction
HF High frequency
MECA Modified equivalent current approximation
MFIE Magnetic field integral equation
MLFMA Multi level fast multipole algorithm
MoM Method of moments
PEC Perfect electric conductors
PO Physical optics
PTD Physical theory of diffraction
RWG Rao Wilton Glisson
SIE Surface integral equations
TE Transverse-electric wave
TM Transverse-magnetic wave
ε Permittivity
σ Conductivity
μ Permeability
�E Electric field
�H Magnetic field
�J Electric surface current
�M Magnetic surface current

η Impedance
L, K Integral-differential operators
G(�r , �r ′) Green scalar function

1 Introduction

Electromagnetic problems have a multitude of applications in our lives, in industry
and particularly in engineering and they can be very different in nature. This wide
range of possibilities in which to apply computational electromagnetics (CEM) and
the great variety of types of problems that we can find have led scientists to create
a large number of different algorithms to deal with this type of problems. However,
nowadays, there is no algorithm that stands out from the rest for any situation and
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problem that we are going to face. In other words, there are algorithms that are more
suitable for one type of problem or conditioning and others are more suitable for
another type [1–3].

The classification of these algorithms is usually done into the low frequency
algorithms (or accurate algorithms) and high frequency algorithms (or approximate
algorithms). Often, electromagnetic problems are also classified on the basis of the
working domain: time domain or frequency domain.

Briefly, the main or most used algorithms to solve electromagnetic problems are
the following [4], remembering that they are not the only ones and that they can exist,
and exist, other algorithms that for certain particular problems can have an advantage
of calculation on the ones mentioned here.

1.1 Low Frequency Methods

Some algorithms solve Maxwell’s equations without hidden approximations and are
generally applied to small electrical problems due to calculation times and system
memory limitations: these algorithms are the low frequency methods. Although
computers are becoming increasingly powerful and solving more and more prob-
lems, it is likely that this concept of limitation, related to the computers, can become
obsolete in the medium future.

Within this type of methods, we will cite the three most used, without the order
in which they appear presupposes their better or worse applicability.

1.1.1 The Finite Difference Time Domain Method

TheFiniteDifferenceTimeDomainmethod (FDTD)uses thefinite differencemethod
in order to solve Maxwell’s equations in the time domain. The implementation of
the FDTD method is generally quite simple [5–8]: a solution domain is usually
subdivided in small rectangular or curvilinear elements, with a “jump” in the time
used to calculate the electric and magnetic fields.

FDTD works normally very well in the analysis of non-homogeneous and non-
linear media, but it requires very high quantity of dedicated memory in the computer.
It is due to the discretization process of the solution of the entire domain. Usually, it is
not recommended for dispersion or scattering problems. FDTD is used in waveguide
packaging techniques and issues, as well as in wave propagation studies.

1.1.2 Finite Element Method

The Finite ElementMethod (FEM) is a method used to solve the problems of electro-
magnetic, with boundary values, in the frequency domain [9–12]. As FDTDmethod,
it tries to solve Maxwell’s equations in a differential way.
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Although the name of the FEM has been established in the last decades of the
last century, the concept has been used for several centuries. The use of temporal
and spatial discretizing methods, and also numerical approximation procedures, to
obtain solutions to engineering or physical problems has been known since ancient
times. The concept of “finite elements” is based on this idea.

The development of finite elements as they are known today has been linked to
structural calculation primarily in the aerospace field. In the 1940s, Courant [13]
proposed the use of polynomial functions for the formulation of elastic problems in
triangular sub-regions, as a special method of the Rayleigh-Ritz variational method
to approximate solutions. It was Turner, Clough,Martin and Topp [14]who presented
FEM in the form accepted today. In their work, they introduced the implementation
of simple finite elements (bars and triangular plates with loads in their plane) to
the analysis of aeronautical structures [15], using the concepts of discretization and
functions of form.

The books by Przemieniecki [16] and Zienkiewicz and Holister [17] present the
MEF in its application to structural analysis. The book by Zienkiewicz and Cheung
[18] or Zienkiewicz and Taylor [19] presents a broad interpretation of FEM and its
application to any field problem. It demonstrates that FE equations can be obtained
using a residual weight approximation method, such as the Galerkin method or the
least squares method.

It is considered as a frequency domain algorithm.

1.1.3 Method of Moments

The publication in 1968 of the work “Field Computation byMoment Methods” [20],
byHarrington, allowed the systematic formulation of the existing numerical methods
by means of a very general concept denoted by theMethod of Moments. The method
of moments is one of the most widely used numerical techniques today to determine
the fields emitted or received by radiant structures.

The method of moments allows the solution of the problem of Poisson in its
integral version and, in particular, to find the distribution of load on the surface of a
system of conductors, known the potential to which each one of them is found. From
the load distribution is obtained directly, the field and potential at any point in space.

The Method of Moments (MoM) is a technique used in the frequency domain.

1.2 High Frequency Methods

Large electromagnetic problems have set out long before the existence of computers
and also some one or two decades ago, when thesemachines currently could not solve
them. Common examples of larger problems are the prediction of the radar cross
section and the calculation of the radiation pattern of an antenna when mounted on a
large structure (typical use for telephony). Many approximations have been made to
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the radiation and scattering equations to make these problems manageable. Most of
these treat the fields at the asymptotic or high frequency (HF) boundary and employ
ray optics and edge diffraction. When the problem is very large from the electrical
point of view, many asymptotic methods produce results that are sufficiently accurate
by themselves or can be used as a “first or previous step” before applying a more
precise but computationally demanding method.

1.2.1 Theory of Geometric Diffraction and Physical Theory
of Diffraction

One of the first methods for the calculation of electromagnetic diffraction was the
Geometrical Theory ofDiffraction (GTD) [21, 22] introduced byKeller. Thismethod
is also based on ray tracing, such as geometrical optics, but introduces diffracted rays
at the edges.

When a ray hits a conductive wedge, a diffraction is observed forming a reflection
angle with the same edge as the incidence. In this case, unlike what happens in
flat surfaces where there is only one direction of reflection, infinite directions are
observed that form with the edge an angle equal to the angle of incidence.

These directions form the so-called Keller cone [23].
The physical theory of diffraction (PTD) [24, 25], developed in parallel with

Keller’s theory, obtains equivalent results avoiding some problems. The result of
PTD is finite and contains only the diffraction of the edge, so the fields reflected
in the superficies, calculated for example by the approximation of Physical Optics
(PO), must be added to it [26]. The physical theory of diffraction (PTD) is a means
of complementing the PO solution by adding the effects of non-uniform currents at
the diffraction edges of an object [27, 28]. PTD is commonly used in high-frequency
radar cross section and scatter analysis [29].

1.2.2 Physical Optics

The method of Physical Optics (PO) consists in the fact that the currents induced on
the parts of the object not illuminated, for example by a radar, are very small compared
with those produced in the illuminated areas [30, 31]. In fact, the approximationmade
by this method consists in annulling them. For the other surfaces, the calculation will
be made by obtaining the equivalent currents that would exist in a tangent infinite
plane at each point of the surface.

1.2.3 Shooting and Bouncing Beams

The ray tracing is a method similar to the previous one that also takes into account
the possible multiple reflections of the field reflected by the object, but its complexity
is greater [32, 33].
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The first reflection of the form commented in the PO method is obtained, later it
is calculated if the direction of the reflection returns to intersect with some surface of
the object. If so, the diffracted field that produces this new reflection is recalculated.

The calculation ends when there are nomore reflections accumulating the value of
all reflections. To carry it out, a large number of rays are released. These are reflected
in the object according to geometric optics (Snell Law). Finally, the contributions of
the rays that return to the initial position are added [34, 35].

2 Surface Integral Equations

Wehave focused on computational electromagnetics (CEM)based on surface integral
equations (SIEs) because it provides great versatility when analyzing homogeneous
and isotropic objects that occupy electrically large volumes [36]. In addition, these
methods have been developed mainly since 1990.

The present chapter deals with different computational methods based on SIEs
applicable to homogeneous and isotropic general media, i.e. not limited only to
perfect electrical conductors (PEC) as is the case in an important part of the previous
literature on EMF. Physical optics (PO) belongs to the so-called high frequency
methods and allows fast predictions with a limited level of accuracy proportional to
the electrical size of the objects. On the contrary, the so-called full wave methods
such as the method-of-moments (MoM) allow very precise predictions of dispersed
field, but their computational cost makes their application in volumes whose elec-
trical sizes extend several wavelengths totally unfeasible. Among the techniques for
accelerating MoM, the fast multipole method (FMM) [37] and its multilevel exten-
sion, based on a hierarchical multilevel partition of geometries, known as MLFMA
(multilevel fast multipole algorithm) [38], stand out. In this chapter we have opted
for the development of both full wave techniques (MoM, FMM, MLFMA) and high
frequency (PO for penetrable media). Even hybridization between full wave and high
frequency techniques could be implemented in other fields, such as radiation [39]
and wave propagation [40].

This fully realistic approach, not limited to a few CEM techniques, is justi-
fied by the fact that many real problems are not fully addressable—not even using
current supercomputers—but by high-frequency techniques, or by hybridizations
where these operate.

3 Method of Moments

The Method of Moments (MoM) is a full wave method, introduced in CEM by R.
F. Harrington in 1967. His book, currently re-published by the IEEE [20], remains
a fundamental reference. The complexity of this method is of the order O(N2) in
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memory and O(N3) in time in case of using to solve the system of resulting equations
a direct method such as LU decomposition.

We remember that the order of a method is given by the number p which means
the number of terms used in the weighted average used in that method.

Formally, the definition of the order of a method can be enunciated as follows:
Let’s be p ≥ 0. It is said that a method is of order ≥p if for all sufficiently regular

solution of a problem of initial values, we have

max
0≤n≤N−1

|σn| ≤ C hp

for some constant C (where C can depend on the solution x). Note that if a method
has order ≥ p with p > 0, then it is consistent.

This last complexity can easily be reduced toO(N2) by replacing the directmethod
with an iterative method, according to Kim et al. [41], as the Generalized Minimal
Residual algorithm, GMRES method [42].

MoM is a numerical method that allows solving a discretization of a surface
integral equation (SIE). As a previous step to explain MoM’s own discretization, we
will briefly introduce the concept of SIE for a single dispersing object.

3.1 Using Surface Integral Equations for MoM

Let’s be a penetrable homogeneous dispersant surrounded by an unlimited homoge-
neousmedium.Let us denote byR1 the region corresponding to the unlimitedmedium
fromwhich the incident wave proceeds. Next, wewill denote byR2 the limited region
related to the dispersing object. From now on, we will associate a subscript i = 1
for all the quantities related to R1 and another subscript i = 2 for the amounts of R2.
Each medium, for i = 1, 2, is characterized by its constitutive parameters, that we
can resume as the following: the complex permittivity εi = εr,i · ε0 (which includes
the effects of conductivity σi ) and the complex permeability μi = μr,i · μ0. Respec-
tively, εr,i ∈ C and μr,i ∈ C are the complex relative permittivity and the complex
relative permeability of the medium in the region R1. ε0 and μ0 are the constitutive
parameters of the vacuum.We assume a harmonic time dependence e jwt that we will
omit in the use of the SIE. The process starts with an incident field ( �Einc, �Hinc), and
we want to calculate a scattered field ( �E1,scatt , �H1,scatt ) for the region R1 external to
the disperser, and another scattered field ( �E2,scatt , �H2,scatt ) for the internal region R2.

Applying the first principle of equivalence, or Love’s equivalence principle
(according to Medgyesi-Mitschang et al. [43]), it is possible to formulate an equiv-
alent problem in R1, where we will have �E2,scatt = 0 and �H2,scatt = 0 and it is

necessary to impose electric surface currents �J1 = n̂1 × �H1,scatt

∣
∣
∣
S
and magnetic

surface currents �M1 = −n̂1 × �E1,scatt

∣
∣
∣
S
on the surface S of the dispersant. This is
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an equivalent problem, valid only for region R1. In the same way, it is possible to set
out an equivalent problem for R2.

In order to deduce the generic form of an SIE,we start from theMaxwell equations
for∇× �E1,scatt and for∇× �H1,scatt , and we apply again the nabla operator in order to
get two new equations of the following form:∇ ×∇ × �E1,scatt , and∇ ×∇ × �H1,scatt .
Finally, we use mathematical tools. First, the vector Green theorem in these two
equations on the surface S of the disperser (Poggio and Miller developed this vector
theorem in a rigorous description [44]). Second, together with the previous theorem,
these following four equals (two equals for fields and other two equals for currents),
deduced, on the one hand, with the currents of the Love principle and, on the other
hand, imposing tangential contour conditions:

(1)

If the reader wants to deepen in the mathematical development of the previous
procedure, he or she can find more information in the references of Medgyesi-
Mitschang [43] and Ylä-Oijala et al. [45].

This procedure produces a tangential integral equation for the electric field and for
each medium (T-EFIE, tangential electric field integral equation) and, by applying a
cross product by the normal towards R1, a normal integral equation for the electric
field and for each medium (N-EFIE, normal electric field integral equation). Simi-
larly, we can obtain the T-MFIE and the N-MFIE for the magnetic field. The eight
tangential (T) and normal (N) equations of EFIE andMFIE for each medium depend
on the surface currents, normal currents and the incident field, and are summarized
as the following:

T-EFIE1, medium 1:
T-EFIE2, medium 2:

�Einc(�r)
∣
∣
∣
tan

= L1 · �J (�r)
∣
∣
∣
tan

− K1 · �M(�r)
∣
∣
∣
tan

− 1

2
�M(�r) × n̂(�r) (2)

�0 = L2 · �J (�r)
∣
∣
∣
tan

− K2 · �M(�r)
∣
∣
∣
tan

+ 1

2
�M(�r) × n̂(�r) (3)

T-MFIE1, medium 1:
T-MFIE2, medium 2:

�Hinc(�r)
∣
∣
∣
tan

= K1 · �J (�r)
∣
∣
∣
tan

+ 1

η2
1

L1 · �M(�r)
∣
∣
∣
tan

+ 1

2
�J (�r) × n̂(�r) (4)

�0 = K2 · �J (�r)
∣
∣
∣
tan

+ 1

η2
2

K2 · �M(�r)
∣
∣
∣
tan

− 1

2
�J (�r) × n̂(�r) (5)
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N-EFIE1, medium 1:
N-EFIE2, medium 2:

n̂(�r) × �Einc(�r) = n̂(�r) ×
[

L1 · �J (�r) − K1 · �M(�r)
]

− 1

2
�M(�r) (6)

�0 = n̂(�r) ×
[

L2 · �J (�r) − K2 · �M(�r)
]

+ 1

2
�M(�r) (7)

N-MFIE1, medium 1:
N-MFIE2, medium 2:

n̂(�r) × �Hinc(�r) = n̂(�r) ×
[

K1 · �J (�r) + 1

η2
1

L1 · �M(�r)
]

+ 1

2
�J (�r) (8)

�0 = n̂(�r) ×
[

K2 · �J (�r) + 1

η2
2

L2 · �M(�r)
]

− 1

2
�J (�r) (9)

In these eight equations, �J (�r) ≡ �J1 and �M(�r) ≡ �M1 denote the surface equivalent
currents for region R1, a priori unknown. �J (�r) and �M(�r) are vector functions of an
arbitrary point �r on the surface of the dispersant. The vector n̂(�r) ≡ n̂1 corresponds to
the normal to the surface pointing to the outer region R1. Moreover, ηi = (

μi
/

εi
)1/2

is the impedance intrinsic of the medium in Ri. The integral-differential operators Li

and K i in these equations are defined as:

Li · �X(�r) =
¨

S

[

jwμi · �X(�r ′) + j

wεi
∇

(

∇′ · �X(�r ′)
)]

· Gi (�r , �r ′) · dS′

Ki · �X(�r) = P.V .

¨

S

�X(�r ′) × ∇Gi (�r , �r ′) · dS′ (10)

The P.V. notation is used in the definition of the K i operator to indicate that the
integration is taken as a Cauchy principal value integral (that is, when we have an
improper integral, normally, a contour integral of a complex-valued function). The
integration surface S alludes to the separation interface between R1 and R2. The term
in Gi (�r , �r ′) in the Eq. (10) is the Green scalar function for the region Ri, defined as:

Gi (�r , �r ′) = e(− jki |�r−�r ′|)
4π |�r − �r ′| (11)

In the last two equations, (10) and (11), the vector �r ′ refers to a source point and
�r denotes an observation point. In addition, ki = w(εiμi )

1/2 is the wave number in
Ri.

A generic SIE formulation can be established by combining different EFIEs and
MFIEs in (2)–(9).
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Table 1 Parameters to obtain the SIE formulations

SIE ai for i = 1, 2 bi for i = 1, 2 ci for i = 1, 2 di for i = 1, 2

PMCHWT ηi 0 0 1
/

ηi

JMCFIE 1 1 1 1

CTF 1 0 0 1

CNF 0 1 1 0

MNMF 0 μi
/

(μ1 + μ2) εi
/

(ε1 + ε2) 0

We perform a general combination of these eight equations using the same sign
criteria as Ergül in [46]:

a1
η1

(T − EF I E1) + a2
η2

(T − EF I E2)+
+ b1(N − MF I E1) − b2(N − MF I E2) = �0
− c1(N − EF I E1) + c2(N − EF I E2)+
+ d1η1(T − MF I E1) + d2η2(T − MF I E2) = �0 (12)

There are infinite values that can be assigned to the complex scalar parameters
ai , bi , ci , di ∈ C for i = 1, 2 in order to obtain valid and stable formulations. The
parameters in (12) that allow to obtain some types of SIEs can be found in Table 1.

The SIE formulations in the table are well known and well reported for the
case of dispersers isolated in free space. These formulations are known as Poggio-
Miller-Chang-Harrington-Wu-Tsai (called by the acronym PMCHWT) [44, 47–49],
combined tangential formulation (CTF) [42, 46], combined normal formulation
(CNF) [45, 49], modified normal Müller formulation (MNMF) [45], and electric
and magnetic current combined-field integral equation (JMCFIE) [50–54]. Other
references incorporating other known stable formulations are [55, 56].

3.2 Discretization of SIE Formulations

To resolve such a SIE formulation of the form (12), the current densities �J (�r)
and �M(�r), in our case unknown variables, are approximated in terms of linear
combinations of known vector base functions �fn , with n = 1, 2, …, N, such as

�J (�r) =
N

∑

n=1

Jn · �fn , �M(�r) =
N

∑

n=1

Mn · �fn (13)

where Jn andMn, with n = 1, 2, …, N, are the unknown complex coefficients in the
expansions of the Eq. (13). These coefficients are the unknowns determined in MoM
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by solving a system of linear equations. Usually, in MoMwe choose some functions
�fn , with n = 1, 2, …, N, known as RWG bases (Rao-Wilton-Glisson) [57, 58], due
basically to their simplicity to implement them in code.

From this point forward, we will always use the base functions of type RWG to
represent �fn(�r ′) ≡ �fn . Each RWG base is associated with the side n = 1, 2, 3 of
a triangle and is defined for the two triangles of the discretization that share that
side. One of the triangles will be assigned with a “ + ” label and a “−”label will be
assigned to the other side/triangle. These RWG functions fulfill the following:

�fn(�r ′) = �ρ ′±ln
2A±

n
and ∇′ · �fn(�r ′) = ± ln

A±
n

(14)

where the value A+
n (and/or A−

n ) denotes the area of the triangle + (or −), and ln is

the length of the side. In addition, �ρ ′+ = �r ′ − �p+ ( �ρ ′− = �p− − �r ′) represents the
vector that joins the node �p+ ( �p−) opposite to the considered side of the triangle up
to (from) the source point �r ′ on the triangle + (or −).

Applying the so-called Galerkin procedure, each side of the triangle is assigned
a weighting function (also called a test function) denoted as �fm(�r) ≡ �fm , which has
the same vector expression as the corresponding base function �fn(�r ′) ≡ �fn assigned
to the same side. For simplicity, the weighting operation, or test operation, using a
function �fm(�r) ≡ �fm to weight a generic vector �vn(�r), we will denote as:

〈 �fm, �vn
〉

=
¨

Sm

�fm(�r) · �vn(�r ′) · dS (15)

where the dot operator within the integral represents an inner product, and Sm is the
area of integration over which �fm is defined.

Substituting (14) in (13) and weighting with functions �fm , with m = 1, …, N,

finally we find a linear equation system �̄Z · �I = �V of dimensions 2 N x 2 N:

�̄Z · �I = �V , �̄Z =
⎡

⎣
�̄Z J,(T−EF I E,N−MF I E) �̄ZM,(T−EF I E,N−MF I E)

�̄Z J,(T−MF I E,N−EF I E) �̄ZM,(T−MF I E,N−EF I E)

⎤

⎦ (16)

The inputs for the five sub-matrixes N×N are given by the following expressions
for m = 1, …, N and n = 1, …, N:

�̄Z
J,(T−EF I E,N−MF I E)

m,n =
〈

�fm,

(
a1
η1

L1 + a2
η2

L2

)

�fn
〉

+

+
〈 �fm, n̂m × (b1K1 − b2K2) �fn

〉

+

+ b1 + b2
2

〈 �fm, �fn
〉

(17)
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�̄Z
M,(T−EF I E,N−MF I E)

m,n = −
〈

�fm,

(
a1
η1

K1 + a2
η2

K2

)

�fn
〉

+

+ 1

2

(
a1
η1

− a2
η2

)〈 �fm, n̂m × �fn
〉

+

+
〈

�fm, n̂m ×
(
b1
η2
1

L1 − b2
η2
2

L2

)

�fn
〉

(18)

�̄Z
J,(T−MF I E,N−EF I E)

m,n =
〈 �fm, n̂m × (−c1L1 + c2L2) �fn

〉

+
+

〈 �fm, (d1η1K1 + d2η2K2) �fn
〉

−

− d1η1 − d2η2
2

〈 �fm, n̂m × �fn
〉

(19)

�̄Z
M,(T−MF I E,N−EF I E)

m,n =
〈 �fm, n̂m × (c1K1 − c2K2) �fn

〉

+ c1 + c2
2

〈 �fm, �fn
〉

+

+
〈

�fm,

(
d1
η1

L1 + d2
η2

L2

)

�fn
〉

(20)

We can write the �I vector, which contains the unknowns (coefficients of the RWG
bases) of the linear system, as the following:

�I = (J1, J2, . . . , JN , M1, M2, . . . , MN )T (21)

And the �V excitation vector of the lineal system is:

�V =
[ �V (T−EF I E,N−MF I E)

�V (T−MF I E,N−EF I E)

]

=

=(V
(T−EF I E,N−MF I E)

1 , . . . , V
(T−EF I E,N−MF I E)

N , V
(T−MF I E,N−EF I E)

1 , . . . , V
(T−MF I E,N−EF I E)

N )T

(22)

where the coefficients are the following;

V
(T−EF I E,N−MF I E)

m = a1
η1

〈 �fm, �Einc(�r)
〉

+ b1
〈 �fm, n̂m × �Hinc(�r)

〉

para m = 1, . . . , N

V
(T−MF I E,N−EF I E)

m = −c1
〈 �fm, n̂m × �Einc(�r)

〉

+ d1η1
〈 �fm, �Hinc(�r)

〉

para m = 1, . . . , N

(23)

Once the linear system is resolved, the current densities �J (�r) and �M(�r), calculated
at each point, can be determined with (14). The electric field scattered at any point
in space, inside and outside the disperser, can be calculated directly with �J (�r) and
�M(�r), using the following two expressions:
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�E1,scatt (�r) = −L1 �J (�r) + K1 �M(�r)
�E2,scatt (�r) = L2 �J (�r) − K2 �M(�r) (24)

The above expressions for scattered field can be derived by following the theo-
retical development to Eq. (1), but without applying the equalities in (1) to the field
vectors. It is important to note that the field equations in (24) are valid for any point
of the space and they do not impose any restrictions on the size of the dispersers.

Typically, (24) is known as “near field expressions”. For far-field, these expres-
sions are also valid, but it should be much more computationally efficient to use a
simplified expression.

Sometimes, the implementation of MoM in computers requires some extra proce-
dures. For example, the integrals of the operators Li and K i in (10) can be calculated
numerically by a rule of Gaussian quadrature consisting of seven points per triangle,
as describedGibson [4]. In this same reference, some theoretical procedures to extract
the singularities that occur in integrals when the source point and the observation
point are close to each other,

∣
∣�r − �r ′∣∣ → 0, can be found.

4 Physical Optics

Physical optics (PO) is a computational technique of high frequency used to calculate
the electromagnetic dispersion coming from complex and electrically large PEC
(perfect electric conductor) structures [59, 60]. Unlike so-called full-wave methods,
for example the method of moments (MoM), the PO does not require high amounts
of computational resources to solve dispersion problems with acceptable levels of
precision and, above all, with a high efficiency. In this way, simulations that normally
take hours with the method of moments, typically are resolved in just a few seconds
or minutes with the PO.

4.1 MECA Method

The MECA (modified equivalent current approximation) method [61, 62], has
extended PO to dielectric materials with losses characterized by complex effective
permittivity. InMECA, the equivalent magnetic and electrical currents are calculated
based on the incidence of a locally plane wave on the surface of the dispersant. The
MECA equations are derived using a decomposition of the incident field into TE
(transverse-electric wave) and TM (transverse-magnetic wave) components, rela-
tive to the incident direction and to the normal vectors of each triangular facet in
which the surface of the dispersant is discretized. Contrary to what happens in other
generalizations of the PO for dielectric media [63–65], MECA takes into account
the differences between the TE and TM components, with the consequent increase
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in accuracy. In addition, unlike previous approaches, the current distribution on each
facet has a uniform amplitude and a distribution of phase that is linear. Therefore, the
radiation integral can be resolved in an analytic way and, thus, some difficult prob-
lems for a full-wave simulation, especially at very high frequencies, are successfully
modelled with MECA.

In the MECA method, the equivalent current densities, magnetic and electrical,
are calculate at the barycenter of each facet using the following two equations,
respectively:

�Mi0 = Ei
T E (1 + RT E )(êT E × n̂i ) + Ei

T M cos(θinc)(1 + RTM) êT E

∣
∣
Si

�Ji0 = Ei
T E

η1
cos(θinc)(1 − RT E )êT E + Ei

T M

η1
(1 − RTM) (n̂i × êT E )

∣
∣
Si

(25)

where η1 is the impedance in the medium of incidence, and RTE (and RTM) is the TE
(TM) reflection coefficient. The expressions of these two coefficients can be found
in work of Meana et al. [62].

As shown in Fig. 2.1, �Ei
T E = Ei

T E êT E and �Ei
T M = Ei

T M êT M are the TE and
TM components of the incident electric field at the barycenter of the triangle Si. In
addition, p̂i is a unit vector pointing in the direction of propagation of the incident
wave, θinc is the angle of incidence, and n̂i is the unit normal vector with outgoing
direction of the Si triangular facet. The first medium is characterized by its constitu-
tive parameters: permittivity ε1, permeability μ1 and conductivity σ1. Similarly, the
second medium is characterized by (ε2, μ2, σ2). The reflection coefficients RTE and
RTM depend on all these constitutive parameters. A reflection coefficient is defined
for an incidence medium and for a dispersing medium (Fig. 1).

Fig. 1 Oblique incidence on a Si triangular facet
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The theoretical calculation of the reflection coefficientsRTE andRTM is performed
by assuming a locally specular reflection and imposing contour conditions. Ideally,
the MECA method would be accurate if the dispersing object were an infinite and
homogeneous semi-space. This method, therefore, presents two main sources of
error for the TE polarization (analogous for TM, replacing the electric field with the
magnetic one). One of the sources of error is in the lack of modeling of diffraction
phenomena in the formulation. The other source of error is that multiple reflections
are not considered, although this second type of error can be mitigated by iteratively
applying coefficients of reflection on discontinuities.

After obtaining the current densities �Mi0 and �Ji0, an analytical solution can be
derived for the radiation integral corresponding to the observation point �rk , which
is located in the far field of each of the triangular facets. The scattered electric field
�Es
k in �rk , due to the contribution of all i facets of a given mesh, can be obtained,

according to Balanis [66], as:

�Es
k = j

2λ

∑

i

e− jk1rik

rik
( �Ea

ik − η1 �Ha
ik × �rik) (26)

where λ is the wavelength in the medium of incidence, k1 is the wave number in the
medium of incidence, and �rik = rikr̂ik is the position vector from the barycenter �ri
of the ith facet to the observation point �rk . The Eq. (26) is valid when k1|�rk | 
 1.
Figure 2.2 summarizes all notation for the position vectors involved in all the scatter
calculations that we have used (Fig. 2).

Fig. 2 Si facet, observation point �rk and corresponding position vectors. �r ′′
i denotes a variable

vector from the barycenter �ri to any point on Si
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Assuming that currents have a constant amplitude and a phase variation that is
linear and depends on the propagation direction of the incident wave, p̂i , the vector
values �Ea

ik and �Ha
ik of the Eq. (26) can be calculated, according to Meana [60], as:

�Ea
ik = (r̂ik × �Mi0)Ii (r̂ik) (27)

�Ha
ik = (r̂ik × �Ji0)Ii (r̂ik) (28)

where �Mi0 and �Ji0 are the current densities given in Eqs. (25), and Ii (r̂ik) is an integral
given by:

Ii (r̂) =
¨

Si

e jk1(r̂− p̂i )·�r ′′
i d Si (29)

where �r ′′
i is a variable vector from the barycenter �ri of the ith facet to the points

placed on the Si triangular surface, as it is shown in Fig. 3.
These current distributions make possible to carry out a modelling with facets

bigger than those used in other high-frequency methods. This fact implies a
computational cost reduction in terms of both time and memory.

The integral of Eq. (29) always admits an analytical solution, according to the
procedure described by Arias-Acuña et al. [67]. The method to solve analytically is
briefly summarized below.

Fig. 3 Triangular facet with barycenter �ri and vertices �P1, �P2, and �P3
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First, it is considered a plane triangular facet (as shown in Fig. 3). The i triangle
is defined by three points: �P1, �P2, and �P3. And �ri is a reference point located in the
barycenter (�ri = ( �P1 + �P2 + �P3)/3).

We define �vmn as a vector such that �vmn = �Pn − �Pm , m, n ∈ {1, 2, 3}. The
vector n̂, normal to the i triangle, is defined so that �v12 × �v13 = 2Ai n̂, as shown in
Fig. 2.3, being Ai the area of that triangle.

Finally, we use a coordinate system with two scalar variables (u, v) such that any
point �r ′′

i of the surface of the triangle can be described as:

�r ′′
i = �P1 − �ri + u · �v12 + v · �v13 (30)

The integral (29) is given by:

Ii (r̂) = 2Aie
− j α+β

3

u=1∫

u=0

v=1−u∫

v=0

e j (αu+βv)dvdu (31)

and its solution is:

Ii (r̂) = 2Aie
− j α+β

3

[
αe jβ − βe jα + β − α

αβ(α − β)

]

(32)

where

α = k1�v12(r̂ − p̂i ) (33)

β = k1�v13(r̂ − p̂i ) (34)

The expression (32) has the following four eigenvalues:

α = 0, β �= 0 ⇒ Ii (r̂) = 2Ai e
− j β

3
1 + jβ − e jβ

β2
(35)

α �= 0, β = 0 ⇒ Ii (r̂) = 2Ai e
− j α

3
1 + jα − e jα

α2
(36)

α = β �= 0 ⇒ Ii (r̂) = 2Ai e
j α
3
1 − jα − e− jα

α2
(37)

α = β = 0 ⇒ Ii (r̂) = Ai
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5 Comparison Between Method of Moments and Modified
Equivalent Current Approximation

In this section, we do to a graphical comparison that allows to easily show the
difference between PO and MoM in terms of accuracy level. Figure 2.4 shows the
monostatic radar cross section (RCS) of a sphere, defined as the following:

RCSmono = lim
r→∞

(

4πr2
∣
∣
∣ �E1,scatt (r, θinc, φinc)

∣
∣
∣

2
/

∣
∣
∣ �Einc

∣
∣
∣

2
)

(38)

where a is the radius of the sphere and 2π
λ

is the wave number in the medium of
incidence. In case, �Einc is a uniformplanewave.Twocases are included inFig. 4: PEC
sphere and dielectric sphere with losses simulated with MECA for the parameters
shown in the Table 2.

Fig. 4 Comparison between PO (MECA) and MoM solutions for scattering due to a sphere of
radius a with different constitutive parameters

Table 2 Parameters used in
the simulation of Fig. 4

εr μr RCS

MECA 1.8 1.5 10wε0

MoM 1.8 1.5 10wε0
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6 Conclusions

Techniques to solve classical electromagnetism problems have evolved over time.
At first, the analysis and design of electromagnetic devices and structures was
done experimentally, achieving their characterization; this result was used for the
development of new technologies. Subsequently, analytical models emerged where
closed form solutions are obtained, that is, solutions that model and describe the
electromagnetic phenomenon through a simplified algebraic equation under ideal
situations.

At present, the numerical solution is arrived at using computational algorithms, in
which various numerical analysis techniques are used that describe the phenomena
in time and space of electromagnetic problems that previously could not be solved
analytically. In fact, many numerical analysis techniques have been developed in
recent years, leading to advances in this area, referred to as computational electro-
magnetism (CEM). Similarly, the wide range of electromagnetic problems has led
to the development of different algorithms in computational electromagnetism, each
with its advantages and limitations.

Numerical solutions to three-dimensional electromagnetic dispersion problems
are generally found on the formulation of surface integral equations, such as the
electric field integral equations (EFIE) and the similar magnetic field integral equa-
tions (MFIE), or even the less used combined field integral equation (CFIE). The
moment method (MoM) is, at present, one of the most commonly used numerical
method to solve these type of equations. In the solution of this method, the induced
electric current and magnetic current are unknown variables. Moreover, the surface
is generally partitioned into small flat patches. In these patches, the currents are
approximately calculated by some appropriate basic functions.

These patches have simple shapes to be easier implemented and for doing calcula-
tions in also easier way. The most commonly used forms for this partition or division
are triangular and rectangular patches. If the size of these subdivisions (patches)
is small enough, then we could approximate the induced surface currents by the
triangular (or rectangular) functions of the ceiling. The application of these type of
functions using themethod of moment in order to solve the surface integral equations
has the consequence of the evaluation of double integrals with single cores.

The Method of Moments (MoM) is a numerical technique used to convert the
integral equation into a linear system, which can be solved using a computer.

The main reasons why researchers select this method are:

• It solves the Maxwell equations without implicit approximations.
• It presents greater numerical stability in the discretization of integrals versus

derivatives.
• It allows to exclude themedium that is around the structure and therefore facilitates

the analysis of open structures.
• It analyzes the problem in a rigorous and precise way, taking into account most of

the physical phenomena that occur in the structures, so that the analysis is valid
in principle for any frequency.
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This method allows the systematic formulation of the problem through the
discretization of the electric field integral equation (EFIE), and calculates by numer-
ical methods the densities of unknown currents. However, it presents a disadvantage,
which is given from restricting it to problems of small electrical size due to limitations
in memory and time in the computational process.
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