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Foreword

The demand for energy is steadily growing, in spite of the efforts made to reduce
industrial and domestic consumption. Expanding the use of Variable Renewable
Energy (VRE) technologies, such as wind and photovoltaic, in power systems is vital
for reducing pollutant emissions and limiting the impact on climate change while
continuing to meet this demand. With their costs constantly reducing, these sustain-
able energy technologies, which are strongly supported by governmental policies,
have been more and more widely deployed in recent years. However, the inherent
variability of wind and solar PV energy resources represent a major challenge for
power systems operators and regulators. The use of distributed generation in inter-
connected microgrids is the best way to meet the variable energy demand. Optimal
solutions should be found for the allocation of such distributed energy sources and
associated storage devices, as well as for the interconnection of the microgrids.

The aim of this book is to present the appropriate numerical methods that could
be used to address this kind of novel challenges that power engineers and scientists
have to face, and that cannot be solved by known exact formulas. Thus, the book
provides the reader with both basic and advanced knowledge about the techniques
of modeling, simulation, design, control, and optimization of the sustainable energy
systems of the future.

Numerical methods are able to promptly provide approximate solutions to the
mathematical problems associated with the design, control, and optimization of an
energy system. The most widely used numerical methods in the literature are intro-
duced in the first part of the book. By reading the nine chapters of this part, Ph.D.
students, as well as the engineers and scientist less familiar with the field, will quickly
gain the necessary knowledge on the algorithms and the numerical approximation
strategies generally used in engineering, and more specifically in the study of electric
power systems.

The eight chapters of the second part of the book address the specific problems of
advanced energy systems. The advantages and disadvantages of different numerical
methods are comparatively highlighted so that to enable the specialists in the field
to select the most appropriate one for a specific energy application.

vii



viii Foreword

The last part of the book includes 18 chapters that exemplify the application of
the numerical methods discussed in the first part for the study of the energy systems
presented in the second part.

The 35 chapters of the books are structured in three parts for pedagogical reasons.
The readers who master the numerical methods and the principles of electric systems
can skip the first and second parts, while the others will appreciate the possibility of
gradually acquire the expertise needed for solving their specific problems.

All those who contributed to this book are recognized experts in the various fields
of power engineering. They ensured the high-quality content of each chapter they
wrote. Not only master and Ph.D. students, young researchers, and engineers but also
senior practitioners will find this book useful for their studies or professional activities
related to the modeling, control, and optimization of modern energy systems.

Angouleme, France Prof. Dr.-Ing. Habil. Sci. mDHC Lucian Dascalescu
August 2020 IEEE Fellow



Preface

Energy demand has increased exponentially in recent years due to industrialization
and population growth and is one of the main indicators showing the level of economic
and industrial growth for a country. Consequently, more attention must be paid to how
energy is generated and transmitted to the consumers. Because fossil fuel reserves
are limited and energy production based on these resources is polluting, sustainable
energy development based on renewable energy is needed, which in the next decade
will help reduce pollutant emissions and the impact on climate change.

The purpose of this book is indirectly related to the issue mentioned above because
the book’s chapters address the energy applications that engineers, specialists, and
scientists face every day using numerical methods to solve these mathematical prob-
lems in energy when they cannot be solved by known exact methods. So the book will
address numerical calculation methods in general but will exemplify how they apply
especially to energy systems. Thus, reading the book, the reader will gain knowledge
about the techniques of modeling, simulation, design, control, and optimization of
energy systems.

Any of the techniques mentioned above (modeling, simulation, design, control,
and optimization) can be approached by numerical methods that provide a quick
approximation solution for the defined mathematical problem in the case of an energy
application. Although the result obtained is not exact but close to the exact solution,
the algorithms specific to numerical methods are continuously improved to obtain
an imposed error even in real-time applications. In addition, computing power has
increased and allows the implementation of these complex algorithms based on a
complete and clear set of rules and procedures that estimate computable errors. So,
current energy systems (classified into mini-grids, micro-grids, nano-grids, and pico-
grids according to power level, complexity, and connectivity) include high-speed
digital computers that allow real-time communication between them, thus making it
possible to obtain optimal or suboptimal solutions for many complex problems that
could not be solved efficiently in centralized energy systems.

The numerical examples included in this book’s chapters show that we need
these numerical methods to solve some problems that are not analytically solvable.
The obtained results prove that the algorithms proposed in the literature work in a
remarkable way so that the unsolvable problems can quickly become solvable.
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The comparative analysis of the most well-known numerical algorithms offers the
readers of this book (whether Ph.D. students or specialists) a strong background on
high-performance numerical algorithms and an up-to-date perspective on numerical
approximation strategies generally used in all fields of engineering. The numerical
examples presented in this book range from simple ones (which introduce numerical
methods to be understood) to advanced ones that are addressed especially to special-
ists in the field of energy systems. Thus, potential solutions are offered for many
practical problems that require more or less complex numerical methods.

Therefore, going through and understanding the techniques presented in this book
will help doctoral students to prepare thoroughly, giving them the necessary knowl-
edge to identify when it is necessary to use a certain numerical method to solve an
energy application, taking into account the specifics of this problem (which can be
control, optimization, etc.) and its complexity.

Certainly, the specialists will find in the 35 chapters of the book the solutions they
need to solve many of the problems encountered in their daily work, which otherwise
they would have had to look for in many other books and journals.

For pedagogical reasons, the approach is gradual and it is recommended for
doctoral students to read the chapters in order, starting with those in part I, which
lay the foundations of Advanced Numerical Methods.

The numerical examples in Part II address specific Advanced Energy Systems
problems using numerical methods from simple to complex, in order to compara-
tively highlight the advantages of the latter, or methods based on different numer-
ical calculation algorithms (in principle equally competitive), in order to highlight
comparatively why one method or another does not work well for a specific energy
application, which is very important from the point of view of a specialist.

The numerical examples in Part III exemplify how the application of the methods
discussed in Part I for Energy Systems to few selected energy applications considered
representative for understanding. So, this book comprises 35 chapters structured in
three parts as mentioned above.

The first part called Advanced Numerical Methods introduces in nine chapters
the main numerical methods used in engineering and physical science in general,
highlighting the advantages and disadvantages of each class of methods, and the
recommended fields of application. A short introduction for readers on the content
of the nine chapters will be presented below.

Chapter “Advanced Numerical Methods for Equations, Systems Equations
and Optimization” presents an overview of advanced numerical methods sustained
with many examples in Matlab to help understand these methods and the errors
offered by each of them in a finite number of epochs.

The analysis of partial differential equations in time-dependent problems using
Finite Difference Methods (FDM) is performed in Chapter “Analysis of Partial
Differential Equations in Time Dependent Problems using Finite Difference Methods
and the Applications on Electrical Engineering,” where it is highlighted that these
old and simple numerical methods are still used successfully in solving differential
equations encountered in boundary value problems, zero-stability and convergence of
initial value problems, absolute stability of boundary value equations, stiff ordinary
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differential equations, diffusion equations, and parabolic problems. So, this chapter
presents the theoretical and practical approaches of the finite difference method based
on electrical engineering energy applications.

A deep theoretical analysis of the Finite Element Method (FEM) is approached in
Chapter “Theoretical Approaches of Finite Elements Method (FEM),” highlighting
that the procedure to use the FEM is different from that for FDMs. The differ-
ences between the two FEM methods called Galerkin and Ritz methods, which
are usually used in numerical electrostatics and magnetostatics analysis, AC anal-
ysis, transient analysis, and 2D or 3D geometry analysis, are highlighted with clear
examples included in this chapter.

Chapter “Advanced Numerical Methods Based on Artificial Intelligence”
approaches the numerical methods based on artificial intelligence and tests a Genetic
Algorithm-based method in determining the optimal horizontal model of equivalent
soil and a Neural Network—based method for the evaluation of the impedance matrix
regarding stratified soil with three vertical layers, which is necessary, for example,
to evaluate the inductive coupling between overhead high-voltage transmission lines
and metallic gas transmission pipeline.

Different iterative methods to solve a system of nonlinear equations are described
and discussed methods in Chapter “Numerical Methods for Solving Nonlinear Equa-
tions,” including the class of conjugate gradient methods, multi-step methods, and
Newton-like methods, which are usually used to provide an accurate prediction of a
natural phenomenon or a good and real-time optimization of systems, at relatively
low computational costs and effort involved.

It is worth mentioning that the numerical methods such as FEM and FDM, or
other numerical methods are based on the predefined topological map, generally
called “mesh,” such as Finite Volume Method (FVM) and Boundary Value Method
(BVM), are very eminent for solving the physical problems in the engineering and
science, but the problems with mesh-based methods are as follows: (i) they require
the qualitative mesh, which is somewhat tedious, time-consuming and messy task;
(i1) meshing and re-meshing for a large computational domain is time-consuming,
tedious, and costly task also requires the skills; (iii) in very complex computational
domains, the mesh-based method fails in terms of accuracy; (iv) glass hour and shear
locking phenomena generally found in traditional FEM. So, Chapter “Theoretical
Approach to Element Free Galerkin Method and Its Mathematical Implementation”
presents a new class of numerical methods known as mesh-free methods, such as
Element Free Galerkin (EFG) method. The advantages of EFG method with mesh-
based methods are highlighted on two elastostatic numerical problems: 1D problem
of bar with body forces and 2D Timoshenko cantilever beam with traction at tip. The
numerical results have been evaluated and compared with exact results as well.

Theoretical approach of Chebyshev Spectral Collocation (CSC) method and
its mathematical implementation are detailed in Chapter “Theoretical Approach
to Chebyshev Spectral Collocation Method and Its Mathematical Implementation.”
The stability analysis of the incompressible viscous flow between the two concentric
counter-rotating vertical cylinders is selected as a representative example to apply
the CSC method. The governing stability equations for disturbance flow quantities
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are derived in cylindrical polar coordinates by coupling the energy equation with
the Navier-Stokes equations, discretized using CSC method, modeled with appro-
priate boundary conditions form as a general eigenvalues problem, and analyzed for
different Reynolds numbers, taking into account the effect of viscous heating, radius
ratio, and buoyancy functionality.

In Chapter “Advanced Numerical Methods Based on Optimization” the uncon-
strained and constrained optimization algorithms for numerical methods are analyzed
for fundamental problems in energy systems. Recent heuristic algorithms used in
power supply systems have been presented and implemented, helping the reader to
understand these optimization methods.

The ill-posed inverse electromagnetic and power engineering problems are intro-
duced in Chapter “Ill-Posed Inverse Problems in Electrical Engineering Applica-
tions,” both theoretically and applied, by detailing the numerical solution of case
studies for several regularization techniques of energy systems.

The second part called Advanced Energy Systems makes in eight chapters a presen-
tation of energy systems based on an advanced concept such as energy hubs, multi-
energy sources, smart systems, and so on, respectively, the numerical analysis of
energy systems used in different industrial sectors. The content of the eight chapters
will be briefly presented below.

Chapter “Advanced Energy Systems Based on Energy Hub Concept” explains the
concept of energy hub and makes a comprehensive overview of different applications
of energy hubs in different energy consumption sectors, including residential, indus-
trial, agricultural, and commercial. By integrating energy systems such as electricity,
natural gasoline thought an energy hub, more benefits appears in optimal planning,
control, and management of the energy sources.

Therefore, there has been a rapid movement toward multi-energy sources that
have approached in Chapter “Sustainable Energy Systems Based on the Multi-energy
Sources,” where some examples of sustainable energy systems with different energy
sources are given as well.

Smart homes can be also a good example of sustainable energy systems oper-
ating with different energy sources. Modeling, control, optimization, and technical-
economic analysis of a smart home are presented in Chapter “Modeling of Energy
Systems for Smart Homes.”

One energy source that is recently used as a backup energy source in hybrid power
system based on variable multi-energy sources such as Renewable Energy Sources
(RES) is the fuel cell system, which is an electrochemical device that generates
energy and water based on air and hydrogen. To analyze the phenomena of inter-
ests (fluid flow, heat and mass transfer, chemical reactions, etc.) in order to obtain
optimized geometries and adequate operating parameters for different materials, the
Finite Volume Method (FVM) is proposed in Chapter “Finite Volume Method Used
for Numerical Investigations of Electrochemical Devices” to improve the perfor-
mance of the electrochemical device. The chapter provides a general overview of
the Finite Volume Method and Computational Fluid Dynamic (CFD), being applied
to electrochemical devices used in energy systems in order to give insights into
understanding the influence of different configurations (channel patterns, width and
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depth, layer thickness), of operating conditions (flow rate, pressure, temperature), and
of material characteristics and properties (catalyst microstructure, porosity, perme-
ability) on the performance and durability. The numerical model has been experi-
mentally validated revealing that the FVM is a useful tool that can lead to technology
optimization and costs reduction.

Chapter “Night Operation of a Solar Chimney Integrated with Spiral Heat
Exchanger” presents another energy application using the CFD commercial soft-
ware package ANSYS Fluent. The study focuses essentially on the effects of the
geometrical parameters of the collector, the meteorological conditions as well as
the effectiveness of the heat exchanger on the air mass flow rate, the temperature
rise within the collector, and the overall performance of the solar-geothermal hybrid
power system. A geothermal heating device is used as a backup energy source to
guarantee a continuous and stable operation during night hours.

Thus, the stable operation of energy systems is approached in Chapter “Incorpo-
rating of IPFC in Multi-machine Power System Phillips-Heffron Model” incorpo-
rating of Interline Power Flow Controller (IPFC) in Multi-Machine Power System
Phillips-Heffron Model.

Note that the IPFC and Unified power flow controller (UPFC) are embedded
devices of the latest generation from class of Flexible AC Transmission Systems
(FACTS) devices used to improve the transfer capacity and controllability of energy
systems. The numerical results obtained with MATLAB for the dynamic simulations
of the energy system show improved stability by using IPFC.

If a backup power source is not available or is not used due to excessive costs of
using it, then an energy storage system (ESS) must be used to ensure stable operation
of the energy system by compensating energy flow balance for variable RES power.
Chapter “Techno-Economical Analysis of Energy Storage Systems in Conventional
Distribution Networks” presents a technical-economic analysis of energy storage
systems in conventional distribution networks. The ESS management is performed
in order to minimize the total cost of daily energy loss and energy supply of the
system. For this, the optimization function includes as variable energy price, storage
utilization duration, amount of load demand, power loss of the system, costs, limits
and characteristics of storage system.

Proton Exchange Membrane Fuel Cell (PEMFC) is currently used in stationary
and mobile applications. FC vehicles operate under high dynamic load conditions,
so the energy management strategy must be validated using a mathematical model
from Simulink/MATLAB in the Real Time (RT)-LAB platform such as OPAL-RT
technology. The advantages of real-time numerical simulation are highlighted in
Chapter “OPAL-RT Technology Used in Automotive Applications for PEMFC.”

The third and last part, called Numerical Energy Applications highlights in 18
chapters the application of numerical methods for the control, optimization, and
protection of energy systems. A brief presentation of the applications covered by
each of the 18 chapters will be presented below.

Chapter “Theoretical Techniques for the Exploration of Piezoelectric Harvesters”
analyzes the design and optimization of piezoelectric harvester systems using Finite
Element Analysis (FEA) and time integration techniques from MatLab toolbox and
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Maxwell 3D package. Readers are provided with useful information to create original
and efficient harvesters based on the magnetostatic and magnetodynamic relations
presented in this chapter.

In general, the electromagnetism problems can be formulated using Maxwell
equations, but analytical solutions are easily obtained only for some objects with
standard geometric shapes, such as sphere, infinite plane, elementary antennas, etc.
Chapter “Numerical Analysis of Electromagnetic Fields” presents the numerical
methods that can accurately estimate the imposed electromagnetic field for practical
problems. These methods can be classified into three types: ray-tracing, surface
discretization, and volume discretization. Depending on the achieved precision,
these methods are classified into full-wave and asymptotic methods, also called
low and high-frequency methods. Methods based on volumetric discretization, such
as Finite-Difference Time-Domain (FDTD) and frequency domain finite-element
method (FEM), have the advantages of easy modeling of non-homogeneous media.
The methods based on the discretization of surfaces using Surface Integral Equations
(SIE) are computationally more efficient than the volumetric ones. The optimized
variant of the method-of-moments (MoM) such as fast multipole method (FMM)
and multilevel fast multipole algorithm (MLFMA) and the physical optics (PO) are
analyzed in this chapter by numerical examples.

Wireless Energy Transfer or Wireless Power Transfer (WPT) is a new tech-
nology, which transfers energy through electromagnetic field to inaccessible places
or distributed systems, so at lower costs, because wiring is eliminated. Chapter
“Optimization Methods for Wireless Power Transfer” analyses the efficiency of three
types of WPTs (radiant transfer, inductive transfer, and resonant coupling transfer),
that strongly depends on the resonator parameters (L—self-inductance, M—mutual
inductance, C—parasitic capacitance, and R—Ohmic resistances) of the two magnet-
ically coupled coils, placed at different distances and angles in assemblies with
several configurations. The mutual inductances computed with MATLAB utilizing
the integration, the numerically calculated ones using ANSYS Q3D Extractor, and
respectively those obtained through measurements show close values, indicating a
consistency regarding all three methods of parameter determination.

Numerical Assessment of Electromagnetic Energy and Forces in Non-Destructive
Measurement Devices is analyzed in Chapter “Numerical Assessment of Electromag-
netic Energy and Forces in Non-destructive Measurement Devices.” It is known that
non-destructive testing is vital to ensure that pieces of a particular structure perform
their specific functions for a predetermined amount of time. The specialists in the
non-destructive testing field have created and implemented tests to characterize the
materials or to detect, localize, and measure the flaws (defects), which can cause
plane crashes, nuclear power plant explosions, dam breakage, train derailment, fires,
and other less visible events, but with dangerous consequences and high impact.

Optimal integration of electric vehicles in smart grid energy flow is approached
in Chapter “Optimal Integration of Electric Vehicles in Smart Grid Energy Flow,”
including modeling, simulation, and result comparison.

Numerical Approaches of Biomass Plants Efficiency are discussed in Chapter
“Numerical Approaches of Biomass Plants Efficiency.” The chapter includes a
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description of the three distinct phases of the technological process of producing
energy from biogas, starting with the type and quantities of the raw materials used
and how much energy the Cogeneration Power Plant (CPP) can produce. The data
acquisition system is part of a sophisticated automated system called “DIANE,”
which permanently monitors, coordinates, and controls all the operations in the
cogeneration power plant. Following the measurement of many parameters of the
electricity production process due to each generator, the relationship between elec-
tricity production and biomass consumed in the form of polynomial functions was
obtained.

The answer to the question “what is the state in which conservative systems
consume less power or energy?” is approached in Chapter “Power and Energy Flow
in Cvasi-Stationary Electric and Magnetic Circuits,” where power and energy flow
in cvasi-stationary electric and magnetic circuits is analyzed. Therefore, advanced
numerical analysis is proposed to find the extreme point of power or energy func-
tionals for electric and magnetic circuits in the quasi-stationary state, where energy
functional is the total energy of a certain system, as a functional of the system’s state.
Lagrange multipliers and the variational method in Hilbert space have demonstrated
the existence of the minimum of the functionals. Several examples implemented in
PSPICE prove the theoretical result of minimum consumed power principle (PMCP).

Chapter “Numerical Methods for Analysis of Energy Consumption in Drying
Process of Wood” presents general aspects regarding the electromagnetic field in
radio frequency and microwaves, the thermal field, mass problems in radio frequency
drying, and the numerical analysis of high-frequency drying using FEM-BEM.3D-
RFmove_term_masa software in radio frequency field and Comsol Multiphysics in
microwave field.

After the optimization and control of PEMFC system shown in chapters “Finite
Volume Method Used for Numerical Investigations of Electrochemical Devices” and
“OPAL-RT Technology Used in Automotive Applications for PEMFC,” the design
and energy efficiency analysis of a Fuel Cell Hybrid Electric Vehicle (FCHEV) is
presented in Chapter “Design and Energy Analysis for Fuel Cell Hybrid Electric
Vehicle.” FCHEV combines the advantage offered by PEMFC as the main energy
system by using an efficient energy management strategy (EMS) for the hybrid
battery/ultracapacitor ESS to operate the PEMFC system safely. The FCHEV perfor-
mance obtained in simulation using standardized load cycles is validated by taking
into account a real experimental speed profile and numerical analysis of the acquired
data. The efficiency obtained by FCHEV and the electric vehicle (using only battery)
is presented as well.

Chapter “Finite Element Solutions for Magnetic Shielding Power Applications”
presents the applications of the Finite Element Method (FEM) to magnetic shielding
for cables in power energy applications, including FCHEVs. The topic is important
from an electromagnetic compatibility point of view as well as for people health
hazards. It is known that energy systems such as power lines, underground cables,
low/medium voltage substations, and building electrical distribution systems are
electromagnetic noise sources. Therefore, in order to comply with the standards for
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maximum permissible magnetic field levels, the use of shielding devices is required
and the harmonic level must be monitored continuously.

Also, the decision-making in the electric distribution systems is based on data
collected from consumers and the various measurement points located in the network
(transformer substations, supply points, branch points, etc.) through the Supervi-
sory Control and Data Acquisition (SCADA) system. Chapter “Regression Analy-
sis-Based Load Modelling for Electric Distribution Networks” proposes a regression
analysis-based load modeling for electric distribution networks based on available
data that help the Distribution Network Operator (DNO) to accurately estimate the
state of the supervised system. The approaches refer to estimation of the active and
reactive powers from the LV/MV (low voltage/medium voltage) electric substations
with a mixt load structure (residential, commercial, and industrial) at the peak load
of the system and the required load of residential consumers which represent the
highest percentage from the load structure fed from the LV/MV electric substations.
The proposed approaches were tested in real operation conditions of MV distribution
networks from Romania.

It is known that the Overhead High-Voltage Power lines (OHVPLSs) are major
sources of extremely low frequency electric and magnetic fields, which can induce
electric currents in the human body. The Finite Element Method (FEM) is proposed
in Chapter “Finite Element Analysis of Electromagnetic Fields Emitted by Overhead
High-Voltage Power Lines” to compute and analyze—from the perspective of public
exposure—both electric and magnetic fields associated with typical configurations of
OHVPLs used in the Romanian power system. Compliance with the exposure limits
established by the International Commission on Non-Ionizing Radiation Protection
(ICNIRP) for the general public is obtained in all cases: the calculated magnetic
fields being below the ICNIRP limit of 100 wT, while the electric field levels exceed
the ICNIRP limit of 5000 V/m only in limited areas beneath the 400 kV lines.

The Finite Element Method (FEM) is also proposed in Chapter “Design and Finite
Element Analysis of Permanent Magnet Synchronous Generator for Wind Turbine
Application” to Design and optimize a permanent magnet synchronous generator for
wind turbine application.

The Modified Tellegen Principle is proposed in Chapter “Power and Energy
System Modeling Based on Modified Tellegen Principle” to model the energy
systems. The instantaneous calculation of power for real linear and nonlinear systems
allows obtaining results that are correct both mathematically and physically.

The design procedure of a Machine Learning (ML)-based yaw control strategy for
a Horizontal Axis Wind Turbine (HAWT) is presented in Chapter “Self-Tuning Yaw
Control Strategy of a Horizontal Axis Wind Turbine Based on Machine Learning.”
The proposed yaw control strategy is based on the interaction of three different Arti-
ficial Intelligence (AI) techniques to design an ML system: Reinforcement Learning
(RL), Artificial Neural Networks (ANN), and metaheuristic optimization algorithms.
The implementation of a metaheuristic optimization algorithm, in this case, a Particle
Swarm Optimization (PSO) algorithm, allows calculation of the optimal yaw control
action that responds to the compromise between the generated power increment and
the mechanical loads increase due to the yaw actuation.
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Various algorithms of Gauss-Seidel, Newton-Raphson, Fast-Decoupled Load
Flow are presented in Chapter “Numerical Methods of Electric Power Flow in Inter-
connected Systems” for interconnected power systems in different case of buses
(load, voltage controlled, and slack buses) and various scenarios: with PQ buses,
with PV (generators) buses, with PV buses, taking into consideration the limitation
of the generated reactive power and so on.

Numerical Methods in Selecting the Location of Distributed Generation in
Energy Network is presented in Chapter “Numerical Methods in Selecting Location
of Distributed Generation in Energy Network.” The advantages and disadvantages
of using Distributed Generators (DGs) in a distribution network are highlighted.
DG placement methods based on intelligent algorithms and numerical optimization
methods are analyzed. The obtained results highlight a better performance of numer-
ical optimization methods in terms of execution time and reduction of power losses,
so their use in high dimensional networks is recommended.

Beside the Interline Power Flow Controller (IPFC) analyzed in chapter “Incor-
porating of IPFC in Multi-machine Power System Phillips-Heffron Model,” other
Flexible AC Transmission Systems (FACTS) such as Static VAR Compensator
(SVC), Thyristor Controlled Series Compensation (TCSC), and Unified Power Flow
Controller (UPFC) are analyzed in Chapter “Numerical Methods for Power System
Analysis with FACTS Devices Applications.” First, the mathematical modeling of
SVC, TCSC, and UPFC devices are described. Then, applications of FACTS devices
to improve transient stability, small-signal stability, voltage profile, and reduce power
losses and inrush currents caused by transformers are presented.

Firstly, the mathematical modeling of SVC, TCSC and UPFC devices is described.
Then, applications of FACTS devices to improve the transient stability, small signal
stability and voltage profile, and reduce power losses and inrush currents caused
by transformers are presented. Simulations performed on the IEEE 14 bus system
using Newton Raphson method to solve equations of the optimization functions
confirm that the optimal placement of FACTS devices improves most power system
specifications.

In conclusion, the book includes enough funds to understand the modeling of an
energy application and selecting the most appropriate method from the set of possible
numerical methods to solve it, presenting one or more numerical methods for solving
the energy applications included in the book and providing many numerical examples
to understand the proposed method. As a large number of electrical engineers have
participated in the writing of this book, we are confident that it will be helpful for
young electrical researchers and practitioners working in or for energy systems to
optimize the operation of these systems.

Tabriz, Iran Naser Mahdavi Tabatabaei
Pitesti, Romania Nicu Bizon
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equations and system equations, numerical methods for computing eigenvalues and
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Nomenclatures

A. Acronyms

Matlab Matrix Laboratory

oS Operating Systems

Mac OS X Macintosh Operating System
B. Symbols/Parameters

X The approximate value

X The true (unknown) quantity

€ The error

le| The absolute error

& The relative error

fix) The function of real variable x
A The Vandermonde matrix

tk The k-moment of time

p The p-step of numerical algorithm
xr The exact solution

X0 The first solution

N The real set

T The matrix of the coefficient
X The vector the unknowns

G The column vector of free terms
detT The determinant of matrix T

1 Introduction

The challenge of this first chapter of the book is to synthesize in a few pages thou-
sands pages of research and studies. More problems from different domains as all
fields of engineering sciences, medicine, physics sciences (meteorology, pollution,
astronomy, etc.), chemistry, civil engineering, life and social sciences, business, arts,
etc. can be evaluated and approximated by mathematical model. In modeling, simu-
lation, design and optimization procedures the numerical analysis and methods have
the most important contribution. Also, the data acquisition systems and forecasting
methods are based on evolved numerical algorithms. Starting from mathematical
principles and from the development of computer sciences the numerical methods
give correct solutions to many real and difficult problems.

Generally numerical methods can be classified in direct methods which compute
the solution in a specified number of iterations and deliver the correct solution when
they were performed in infinite arithmetic precision, respectively the more common
iterative methods that, start from an initial state, develop successive steps of approx-
imations which converge to the correct solution as a limit of a sequence of values
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obtained from iterations. The study of errors represents an important part of numer-
ical analysis. Thus the generation and propagation of errors in numerical approaches
are presented in first section of chapter.

The significant growth both of hardware architectures and programming
languages has led to the development of advanced numerical methods. It deals with
the approximation of functions and provides the different methods for solving linear
and nonlinear equations and systems, calculation of eigenvalues and eigenvectors,
determination of optimum point of a defined objective function. Therefore in Sect. 2
the approximating functions are defined. The theoretical basics of polynomial inter-
polation, numerical differentiation and numerical integration are presented, and, as
a natural sequel, for each method some examples are given.

Another important part of advanced numerical methods that can be applied to
real-world problems is represented by methods for solving equations and systems
equations. Numerical methods for linear and nonlinear equations and system equa-
tions, numerical methods for computing eigenvalues and eigenvectors are discussed
and examples are given.

Optimization methods solve more practical in various areas such as engineering
sciences, financial, aeronautical and terrestrial routs, and environmental pollution.
Starting from defining an objective functions which satisfy some constraints, the
main goal of these methods is to find the maximum or minimum of the objective
function by using linear or nonlinear programming as shown and exemplified in
Sect. 5.

Section 6 refers to Matlab as being the most widely used programming envi-
ronment in which numerical algorithms are implemented. Several examples put in
evidence the easy-to-use and attractiveness of this popular software.

The main conclusions and the bibliographic references are presented in the last
two sections of the chapter.

2 Generation and Propagation of Errors

Any measuring procedure for determining an arbitrary quantity is subjected errors,
so the numerically measured or determined value does not represent its true or exact
value. Therefore, the errors appear and are defined in the measurement processes
and in the numerical computation procedures, which, often, can be implemented in
the same computation system [1].

In general, if we denote by X the approximate value of the true (unknown) quantity
x, then the error € of determination by measurement and/or by numerical computation
of it is defined as [2]:

eE=x—2X (1)
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It is obvious that in relationship (1) it is known, by measurement or by numerical
computation, only X such that for a precise determination very close to the reality,
of the true quantity x, an upper limit of the error must be specified. This limitation
of the error gives mathematical meaning to the relationship (1).

The absolute error || is defined as:

le] = |x — X| @)

and the relative error ¢, is the ratio between the absolute error and the approximate
value module:

el k=R

3)

r= T = p
X1 x|
The errors that appear in the measurement processes and in the numerical

computation procedures are classified as follows [3]:

— rounding errors which are due to floating point computation performed by the
computer;

— inherent errors that occur as a result of the measuring process and the accuracy of
the measuring instrument, errors of the reading and data entering into the computer
(these are random errors characterized by the normal or Gaussian distribution
function) or error resulting from the necessity of representing in the computer a
value using a finite number of digits (for example the numbers w =3.14192654....,
V2 =141421356...,e =2.73......... are approximated using a finite number of
digits although they contain an infinite number of digits);

— truncation errors which are the result of the used numerical calculation algorithm,
such as, for example, stopping (truncating) the development of a Taylor power
series at a certain term for computing numerically the function in a specified point.

In numerical computational methods, the errors propagate naturally. This is
because, as shown above, the numerical determination of an arbitrary quantity x
is done with a certain error and then, obviously, each of the classical operations: (+),
(=), (x) and (/) performed by the computer introduce errors, which are propagated
by applying them on several operands. There are proved [4] propagation formulae
for each type of error as they are defined in the relationships (1), (2) and (3).

For example, let us consider two random quantities, of the same physical type and
having the dame unit of measure, x and y, whose approximate values are X and y, with
absolute and relative errors &, &, , respectively ¢,, &, ,. Under these conditions, using
the relationship (2) in which, for simplification, it is considered that all the values are
positive, the absolute error, obtained when one uses the addition operation between
two numbers, propagates as the sum of the absolute errors of determination of the
two quantities, i.e. [5, 6].
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lerl=er=lx+)—E+NI=C&+y) —@x+)) =&+ “4)

In a similar manner, for multiplication operation, the error propagation is given
by the following relationship:

lexl=ex =[x xy) —(@E xPl=xxy) =X xy) =&y+ex (S

where it was considered the product ¢,&, ~ 0, taking into account that the upper
imposed limits for the two absolute errors must be as small as possible, for a better
computation accuracy. As follows, using the relationships (3) and (4) it is determined
the propagation error, relative to the addition operation of two operands, which is:
~|8+|~ _ ~8+ = X P y ¢,
xX+y x+Yy xX+y xX+y

y (6)

If the relationships (3) and (5) are used, then the propagation of the error relative
to the multiplication operation becomes:

l&x| Ex
Erx = == = = ~ = &Erx +5r,y (7)
Ixy Ixy

The two examples of computing the propagation of the absolute and relative errors
for two essential arithmetic operations in numerical calculation, show, on one hand
the necessity of using measuring equipment with as small as possible inherent errors
and, on the other hand, the necessity of implementing some efficient numerical
methods which uses symbolic algorithms, with few calculations, but also modern
computers with high computation power.

3 Approximating Functions

3.1 Polynomial Interpolation

The interpolation problem consists in determining some functions which allow the
evaluation of a function defined by tables of values in any point of the definition
domain, not only in the network’s nodes [7-9].
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Fig. 1 The difference y
between function A
interpolation and fitting

interpolation

-¥- fitting

» X

Unlike interpolation, function approximation or function fitting consists in estab-
lishing some analytical expressions for approximating, as well as possible, the
behaviour of a function defined by its values, without imposing the restriction that
the function must pass through all the points in which the given function is defined
(Fig. 1). These kinds of problems are encountered in practice in establishing some
empirical formulae for approximating some experimentally defined functions. The
solution of such problems in not unique, it depends on the functions’ class in which
a solution is sought, as well as for the error estimation criteria.

As follows, only interpolation problems will be addressed.

Consider a real function y = f{x) of real variable x, defined by the distinct values:

X X0 X1 X3 . Xn

y Yo Y1 Y2 Yn

It is required to estimate f{x) for other values of variable x than those from the
table of values. This can be realized by determining a function g(x) that satisfies the
interpolation conditions, i.e. to pass through the given points:

gxi) =yi,i=0,....n ®)

The problem solution is not unique. For this reason, to the interpolation function
g(x) some supplementary conditions are imposed. It is suspected that, from here,
many approaches can be followed, function of the specific conditions. In principle,
the interpolation function can be represented as follows:

n

g(x) =Y crgi(x) ©)

k=0
where ¢ (x) are n + I independent linear functions, that define a base. There are two
main interpolation method classes:

1. Global interpolation, by which it is determined only one interpolation function
for the entire function definition domain.
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2. Interpolation on portions, by functions defined on each of the interval defined by
the nodes. These functions are connected such that the certain continuity condi-
tions must be fulfilled. Beside the continuity of the values, which is an explicit
condition, supplementary conditions can be imposed, such as the continuity of
the 1st order derivatives (the connection does not create “corners”), etc.

An essential aspect must not be forgotten: the functions defined by experimental
values can be affected by errors, but the precision of the given values cannot exceed
some practical limitations. Therefore, it should not be exaggerated to present results
that suggests greater accuracy than the one given by the available data (for example,
the presentation of the results with many significant digits, although in practice 3
digits are reasonable).

3.1.1 Global Interpolation
In global interpolation, all base functions ¢ (x) are explicitly defined, by only one
expression, for the whole function definition domain. Function of the choice of the

base, there are various interpolation methods. In most cases, these functions are
polynomial type.

(i) Direct polynomial interpolation
The functions ¢, (x) are chosen of the following type:
o(x)=x5k=0,...,n (10)

Therefore, the polynomial interpolation function is:
glr) =) et (11)
k=0

The problem is reduced to the determination of the coefficients ¢y, imposing the
interpolation condition (8). In this respect the obtained system of n + 1 equation
becomes:

g) =Y axf=y,i=0,...n (12)
k=0

The matrix expression of the system is:
Ac=y (13)

in which:
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1 xo x5 ...x0 a N
2 n C
A — I oxp xp ...x] D= 2 Ly = Y2 (14)
1 x, x,% R Cn Vi

The matrix A, called Vandermonde matrix, is non-singular, if the values x; are
distinct.

This method is uninteresting, because it requires a significant computational effort
(solving a system of order n), and the matrix A is, in general, ill-conditioned, which
can lead to big errors.

(i) Newrton interpolation

The functions @i (x) are chosen to have the following form:

polx) =1
(15)

(X)) =@ —x0)(x —x1)...(x = x),1)sk=1,...,n

By imposing the interpolation condition, it results the following system of
equations:

g(xo0) = Yo = cp
g(x1) = y1 =co+ ci(x1 — xo)
g(x2) = y2 = co + c1(x2 — x0) + c2(x2 — x0) (X2 — x1) (16)

g(xy) = yu = co +c1(xp — x0) + c2(x, — X0) (x5 — X1)

This is lower-triangular type system, whose solution is easily determined:

Co = Yo
c1 = (y1 —co)/(x1 — x0) = (y1 — Yo)/(x1 — X0) a7
c1 = (2 —co— ci(x2 — x0))/(x2 — x0) /(X2 — x1)

Newton method presents a series of advantages. First, the determination of the
coefficients implies a reduced computation effort, the system is relatively well-
conditioned, new points can be added, with the possibility of partial recovery of
the old results, etc.

(iii) Lagrange interpolation. Lagrange interpolation of a function defined on the
following interval:

X0 <X < oot <X < ... <Xy (18)
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Is based on the Lagrange polynomials:

lk(x)zl_[x_);i;k:O,...,n (19)

It is found that these polynomials have the properties:

L) = 8 = {(1) i;i (20)

3.1.2 Interpolation on Portions

Global interpolation can lead to results far from those expected in case of functions
with a more specific behaviour.

In such situations, it is advisable to use some methods of interpolation on portions,
on which are sought different expressions of the interpolation functions on the inter-
vals defined by the network of the definition points of the function to be interpolated.
In principle, this can be done by adopting a base function ¢(x) distinct on the
intervals defined by the definition network of the function to be interpolated.

(1) Linear interpolationon portions

Under this name it is hidden the most trivial interpolation method, which consists
in adopting an interpolation function defined by straight segments which pass through
the definition points of the function to be interpolated (Fig. 2).

In these points the considered interpolation function is continuous, but not
derivable.

From the formal point of view, one can define a set of base functions of Lagrange
polynomial type, defined on sintervals, according to the relationships (Fig. 3):

Fig. 2 Linear piecewise I(x)
interpolation A

v

x

Xy X2 Xk Xk Xk+1 Xn
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Fig. 3 Lagrange

1 fals t X~ X
polynomials type )= xe [xbxz]
1X)=3x—x
0 X € [x1,X,]
xX—x
k-1
x€ [xp_y,x;]
Xk — X

L) =320 e fuxy ] k=2,n—1

X =™ Xkl
0 X [Xpps Xpi
X _xn_l

—— x€e[x,_,x,]
[ (%) =9 x = x4y

0 xe[x,_;,x,]

(ii) Interpolation using Hermite polynomials

If it is necessary for the interpolation function to be not only continuous, but also
derivable, the interpolation on portions using Hermite polynomials can be adopted.
It is considered an interval in the definition domain of the function to be interpolated

y(x):

Xp <x<xak=1,...,n—1 21
and a local variable:
s=x—xx €0, shy =xp01 —xik=1,...n—1 (22)
It is also defined (Fig. 4):

k1 — Yk

S By P S| (23)
Xp+1 — Xk hy

- )

Ok

It is considered as auxiliary quantities the values of the derivatives of the
interpolation polynomials in the extremities of the segments on which they are
defined:

dp = P'(xy) (24)
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Fig. 4 Polynomial A
interpolation on portions

el

—
N

<

z

v

Most often, the interpolation is done using cubic polynomials (of degree 3),
which offer enough flexibility to impose suitable interpolation conditions. Such a
polynomial is (there for simplicity, we denoted & = hy):

3hs? — 253 h3 — 3hs? 4+ 253 s2(s — h)
P() ="y + + di

s(s — h)?
d
P + k

h3 Yk h2 +1 h2

(25)
It can be verified that this polynomial satisfies the interpolation conditions:

s=0= P(xy) = n
s=h= POs1) = Y (26)

To determine these polynomials (Hermite) it is necessary to know the derivatives

dy in the extremities of the segments. The derivative of a polynomial (as function of
s) is:

6hs — 652 —6hs + 652 3s2 — 2sh 352 — 4sh + h?
= + /B Wt =3 k+1 + % dk
27

Consequently:

s=0= P(x;) =dy
s =h= P'(x11) = dia (28)

But these values of the derivatives in the interpolation points are not given, and
they must be determined by using a supplementary procedure, that must ensure,
besides the continuity of the interpolation function (which results implicitly), also
the continuity of order 1 and eventually order 2 derivatives.
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Fig. 5 Drawing a curve
using the spline

S

A first variant consists in “spline” interpolation. The name of this method comes
from an instrument used to draw curves (Fig. 5).

As follows, from the great variety of possibilities, only cubic spline functions
will be treated. The second order derivative of the interpolation polynomial on the
considered segment is:

(iii) Spline interpolations

(6h — 125)8; + (65 — 2h)dis1 + (65 — 4h)d,

P’(x) = 2 (29)
The values in the two extremities are:
x=x =>s5s=0=P'(x}) = 681{_262(“ — 4dy
k
¥ = x o s =y = PGy = 4::*‘ 24y (30)

We denote by P”(x;*), respectively by P”(x4+;~ ) the left, respectively the right
limit value of the 2nd order derivative in the two extreme points of the interval. In a
similar manner, we proceed for the interval (x;_;, x;). It results:

—0668)_ 44, 2d;_
P'(x) = k 1-:”( 1k-|- k—1 31)

To ensure the continuity of the 2nd order derivative in the point x; it is necessary
that:

=63, + 4dyy1 + 2dy —60;_1 + 4d; + 2d;

P// + — P// — — 2
() () = I e (32)

It result the following equations:

hidi 1 +2(hy + hyy ) + hadiyr = 31 + hy_ 18k =2,6,n—1 (33)
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To determine the » unknown values d;, two more equations must be added. These
equations can be obtained by imposing supplementary conditions in the two extremi-
ties of the definition interval (x;, respectively x,,). A first approach consists in adopting
only one interpolation polynomial on the first interval x € [x;, x3], respectively the
last one x € [x,.2, x,], method called not a knot end condition. Another possible
approach, which defines the so-called natural spline functions, consists of adopting
null values for the 2nd order derivative in the extremities of the segment, equivalent
to adopting null curves in these extremities (suggested also in the Fig. 5). In this
approach:

P"(x}) =0 = 2d) +dp = 35, (34)

P'(x7) =0 = dy_y + 2d, = 38,_, (35)

To preserve the symmetry property of the matrix A, the two conditions are
multiplied with convenient coefficients, obtaining:

P”(x,j') =0 = 2d; +d> =381)("hy) = 2hyd; + hady = 3h,8, (36)

P//(x,;) =0= (dn—] +2d, = 35n—1)(*hn—2) = hn—ldn—] + 2hn—]dn = 3hn—28n—]
(37

The following system of equation is obtained:
Ad=g (38)

The coefficients matrix A is three-diagonal and symmetrical.

3.2 Numerical Differentiation

In principle, the derivative of a function x(¢) at moment #; can be expressed func-
tion of the previous values (already known at moment #;) of the variable, by using
relationships of the type:

—x(t) Zanx(rk ) (39)
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Fig. 6 The approximation 4

of the derivative X , P~
1

X ! 1 1 1

“r-- | | 1 |

| 1 |

) 1 )

] 1 ]

] 1 ]

T 1 ]

v

p previous points

The coefficients are determined, in principle, by approximating the previous
behaviour of the function by using suitable functions, most often by using
polynomials with a convenient degree, as presented in Fig. 6.

For a constant discretization step (%), the previous formulae become:

d t
Ex()

1< 1 1<
= — " t*i = — 1 — n t*i 40
hg”(" )= X(0) +4 ) o X)) (40)

173 i=1

unknown known

explicit method

implicit method

These formulae present the following particularities.

e They define a method with «p steps», or of order p, because there are used the
already known values of the function in (p) steps of previous computation, to
determine the new value x(1 ).

e The methods with 1 step (order 1) present the advantage of an easy start, because
they do not require supplementary information other than those provided by the
initial conditions.

e The method is «implicit», because the value yet unknown x(7;) also appears in
the right member of the approximation formula.

e The method can be transformed into an explicit one, if the lower limit of the
summing index (i) is 1 instead of 0. In this way, the unknown value x(7;) no
longer appear in the approximation formula of the derivative at moment #;, such
that the derivative will be computed function of the previous (known) values of
the function.
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4 Numerical Methods for Solving Equations and Systems
Equations

4.1 Numerical Methods for Solving Equations

Algebraic equations, of order higher than four, and the transcendent ones belong
to the nonlinear equations’ category that requires for their computation numerical
solving methods. Numerical methods are exclusively iterative, and the solutions of
theses equations are obtained as limits of some convergent strings. As follows, we
briefly present a few of the newest numerical methods [10-12].

(1) Bisection method or half interval method
This is one of the simplest method for solving, in the interval (a, b), the nonlinear

equation f{x) = 0. If f(a) - f(b) < 0 then compulsory exists the unique solution x
of the equation in the interval (a, ), [3]. The first iteration is computed:

a+b
2

Xm0 = X0 = (41)

the half of the interval [a, b]. If x( is not a solution of the equation, then the
verification can be done by comparing

|f(xo)l <& (42)

and then it is evaluated among the two sub-intervals (a, x¢) and (xo, b), the one
which contains the solution as it is shown in Fig. 7. The evaluation takes place
according to the sign of the product of the function’ values at the ends of the sub-
intervals, i.e.:

fla)- fxo) <0 (43)

If the inequality (43) is satisfied, then the solution is searched in the interval (a,
Xo), the algorithm continuing by halving the interval:

a—+ xp
2

Xml = X1 =

(44)

If the inequality (43) is not satisfied, then the solution is in the interval (xg, b),
and as a consequence the algorithm will continue by halving the interval:

X0+ b
2

(45)

Xml = X1 =
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Fig. 7 The first iteration f(x)
from the half interval method A

v

The series of the successive values of the halves of the sub-intervals: xg, X1, Xm2,
... 1s convergent to the exact solution x,. The iterative halving algorithm stops when
the length of the sub-intervals obtained in the iteration becomes smaller than the
value of the imposed error &:

|bn - anl <Eé& (46)

The half interval method is easy to use and is surely convergent, but it requires a
big number of function evaluations.

(2) Secant method (proportional parts method).

This method solve the equation f(x) = O in interval (a, b) when f(a) - f(b) < O,
by dividing the considered interval in two proportional parts with | f ()| and | f (b)|.

So, in a first approximation, it is determined the abscise corresponding to the
intersection between the chord which connects the points of coordinates (0, f(a))
and (b, f (b)) with Ox-axis:

xlza-f(b)—l%f(a) 47

fb) = fa)

The iterative inverse of proportional division of the interval continues, function
of the position of the chord with respect to the figure. If the chord is placed to the
left of the figure (Fig. 8), i.e. if:

fl@)- flx1) <0 (43)
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Fig. 8 First iterations of the f(x)
secant method 4

.

then the sub-interval (a, x;) is again divided in proportional parts and the
approximate solution for the next step is:

o LS = f@) )

fx) = fla)

In this case, the starting point of the approximation is the point a = x, the point
b remains fix and the movement of the successive approximations takes place form
left to right. It the chord is to the right of the graphic, i.e.:

f&x) - fb) <0 (50)

then the sub-interval (x;, b) is again divided in proportional parts and the
approximate solution for the next step is:

L n SO b [
2 f(b) — fx)

(S

In this case, the starting point of the approximations is the point b = xy, the point a
remains fix and the movement of the approximations takes place from the right to the
left. Finally, the value x; is the solution of the given equation, so f(x;) < &, where
¢ is the error-imposed value. The convergence condition (called Fourier condition)
f(x0) - f"(x0) < 0leads to the optimal choice of the starting point x of iteration.

(3) Newton method

This method is based on the linearization procedure, in which there are retained only
the first two terms from the function expansion f(x), f : [a, b] — N, continuous on
[a, b] in Taylorseries around the point x(. Therefore, the initial f(x) = 0 is replaced
by the linear equation:

f(xo) = (x —x0) - f'(x0) =0 (52)
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Fig. 9 First iterations in f (x)
Newton- Raphson method

a _x
1
whose solution is:
S (xo0)
X1 = X0 — <o — (53)
S (x0)

From geometrical point of view (Fig. 9), in Newton method, x; represents the
abscise of the intersection point of tangent to the f(x) graphic and the point of
coordinates (xg, f(xo)) with Ox-axis. It results the recursive relationship for the
approximation of the solution k + 1:

fOa)
SO

Xkl = Xg — 54

Similarly to the above secant method the optimal choice of the initial point xg
leads to a good convergence of Newton method. In this case the condition is f(xg) -
f"(xp) > 0 which leads to the determination of the order two derivative of the
function. More, at each step of the iteration, the first order derivative of the function
must be evaluated. This implies a huge computation effort.

4.2 Numerical Methods for Solving the System of Equations

The computation of the algebraic systems is one of the main problems in the numer-
ical methods. Many problems are being reduced, finally, to systems of algebraic
equations whose number of equations can be very big, which leads to a significant
computational effort [13-16].
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(1) Gauss elimination method

Gauss method is used to solve the linear equation systems that have non-singular
square matrix (detT # 0), using an algorithm of successive elimination of the
unknowns. Therefore, if the first equation of the system is multiplied

TX =G (55)

one at a time with the factors —7;; /T, fori = 2, N and then it is added to the equation
with number ; so, the unknown x; will be eliminated from each equation, obviously
excepting the first equation. The following equivalent system is being obtained:

TuXi+ TipXo +.. +TinXy G
Ty Xo 4. +T) Xn | _ | GY 56)
TS X) +.. +Tyn Xy GY

where we used the following notations: T is the matrix of the coefficient and is a
matrix of dimension N*N, X is the vector with N elements of the unknowns, G is
the column vector of N elements with free terms, and the new coefficients obtained
in this first computation step are indicated by the upper index (V. Also, it is obvious
that, in the first equation of the system, the coefficients do not modify. The algorithm
continues by multiplying the second equation of the system with —7;,/ Ty, for i =
3, N and then by adding at each iteration i of the equation, the unknown x, will be
eliminated. The following equivalent system will be obtained:

ThwXi+ TinX, +.. 4. +TinXy Gy
TyXo 4. +.+TwXy | | G -
Ty X3 +.. +Tan Xy | ©7

TOX) 4. +TS Xy GY

The elimination procedure of the unknowns continues until the system becomes:

ThXi+ TieX, +.. +.. +TinXn Gy
)Xo +. +. +TowXy | | GY s
TS Xo +.. +T0 Xy | %)

) e

that represents the conversion of T to an upper triangular matrix, then the system
becomes:
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T+ T +.. +.. +Tin X Gy
7Y +. +. +T% || X2 | [ 6 5
TS +. 4T3 B &
) ey

where the upper indices indicate the step in which the respective element was
obtained. This step of transforming the matrix T to a triangular shape is called elimi-
nation or triangularization, and each of the elements Tj;, with i = 1, N from the main
diagonal is called pivot. The unknowns are determined after (N — 1) elimination
steps, one at a time, starting from the last one:

G\
Xy = 7D
nn
) _
X _ Gg\llvfl)_TA]/vflz‘XN
N—-1 — T(N_Z)
N-1,N—1
. N .
6 - $rx,
j=i+ L
Xi= T(i_l) ,]_N—Z,...,2
ii
N
j=2
X = (60)
T

This step of eliminating the unknowns is called retro-substitution. The two steps
can be cumulated, if the coefficients matrix is extended with a supplementary column,
which contains the free terms of the system (eventually, by adding supplementary
columns, one can solve simultaneously more equation systems with same coefficients
but various free terms, as in the example presented below).

It is obvious that, along the algorithm, in order to operate, all the pivots must be
non-zero. More, to reduce the rounding errors, it is recommended that the value of
the pivot, in module, to be as big as possible. To solve these two requirements, the
pivoting procedure is used, that is the permutation (change) of the lines (or of the
lines and of the columns). The pivoting from a certain computation step does not
modify the terms already obtained in the matrix T.

(2) Gauss-Jordan method

This method represents a modification of Gauss algorithm. It is applied to the

extended matrix by adding the free term column, respectively by adding the free

terms columns, in case of simultaneous computation or more systems with same coef-

ficients, or of a unity matrix, to determine the inverse of the coefficients matrix [17].
The method has two steps.

e The matrix is brought to the “staircase” shape:



Advanced Numerical Methods for Equations ... 23

lxx.xx|xx..
Ol x xx.|xx..
Te:>Te(1)= 001 xx|xx..
0001 x|xx..
00001(0x..

(61)

= R R R o=

All the coefficients from the diagonal of the initial matrix are set to the value 1,
and the ones under the main diagonal are cancelled. The procedure is similar to one
form Gauss method, the only difference coming from the diagonal coefficients.

e The matrix is brought to the reduced “staircase” shape: (62)

10000|yy..
01000.|yy..
TW=>TP=100100yy..
00010|yy..
00001/0x..

(62)

e e e e

All coefficients from the initial matrix diagonal are set to the value 1, and the
other are cancelled. The procedure is similar to the retro-substitution from the Gauss
method. Finally, the extended part of the matrix will contain, depending on the case:

— The solution of the system, for the case when the coefficients matrix has been
extended with the free terms vector.
— The inverse coefficients, when the matrix was extended with a unity matrix.

5 Optimization Methods

The totality of the methods and techniques of determining and practical implementa-
tion of the best solutions is called optimization. The problem of optimization has met
several development stages, marked by the emergence of some research areas. The
problem of optimization is initiated from antiquity, continuing in the Renaissance
period (in which remarkable progress was made in the development of the optimiza-
tion problem by the appearance of the variational calculus, respectively its extension
by the optimal command), culminating with the theory of optimal control of L. S.
Pontryagin (1956). L. Euler provides the necessary conditions (of the first order),
for determining a stationary solution of finding the minimum, leading to the equa-
tions called today, the Euler—Lagrange equations. A. M. Legendre first dealt with
the second variation in 1786. At the basis of the dynamic programming developed
by Bellman is the Hamilton—Jacobi equation (1838) [18-21].

The variational calculus deals mainly with the optimization of the problems having
the following standard form:
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b
functional minimization I = / L(q, q,t)dt
where, the end conditions g (@) = g and g(b) = ¢ (63)

or the form:

b
min [ = / L(g (@), u(t),t)dt, whereq(a) = ¢, q(b) = gand q(t) = u(z),

for a<t<b (64)

The fundamental feature of these problems is that the index minimization (63)
replaces the problem of minimization in the space of all curves, L being the
lagrangean of the problem.

In optimal control problems there are at least two objects that give the problem
structure: the dynamics f* and the functional /. The optimal solution is obtained by
minimizing the functional /. The problem of Bernoulli’s minimum time, published
in Acta Eruditorum (1697, Groningen), is a real problem of minimum time such as
those present, from the theory of optimal control. Bernoulli named the solution as
the fastest way to find the minimum time. Moreover, this is the first problem that
involves a dynamic system, with the explicit requirement of finding the optimal
path. The optimal control of a dynamic system involves the synthesis of the solution
candidates directly resulting from the first order derivation of the functional cost.

The following types of optimization can be highlighted:

A. depending on the state of process operation:

A.l—stationary, to which the selected performance criterion is not associated
with a dynamic (the method of the least squares, gradient methods, etc.), so the
operating state is the stationary one. It could be divided as follows:

A.1.1 open loop—when the mathematical model of the process is precisely known,
neglecting the perturbations influence,

A.1.2 closed loop—when the parameters are varying in time.

A.2—dynamic—with infinite final time, it enters into the stabilization problems;

— with finite final time, involves the use of either the Hamilton—Jacobi-Bellman
formalism governing optimal closed-loop control, or the Euler—Lagrange varia-
tional formalism.

Dynamic optimization can be:
A.2.1—open loop—appears as a solution of the optimization problem with
constraints: temporal, control, evolution along a trajectory.
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A.2.2—closed loop—is an optimal feedback control type behavior according to
the state. This is the most used case because it reduces the sensitivity of the system
to the variations of the parameters and to the access regarding the state of the system.

B. depending on the imposed restrictions:

— Problems without constraints or free problem with reference to control. In
reality the signals are limited.

— Problems with constraints regarding the system situation require the knowl-
edge of the initial situation, and the candidates for the optimal adjustment
problems can only be the commands that generate the trajectories that are in
the set of permissible states.

— Problems with free time are to achieve a set target moving state space at any
point of time in the range of interval definition.

Conditions for optimum

The problem of determining and characterizing the extremes begins with the deter-
mination of the extremes for monovariable function, multivariable functions, of
the functional extremes, until the presentation of the necessary optimal conditions
derived from the Pontryagin minimum principle.

Based on some tools, such as Lagrange’s perturbation (or variation) method and
the variational calculation method, the minimum point is investigated, then based
on sufficiently optimal conditions in terms of the Hamilton—Jacobi equation the
minimum points will be separated from the maximum points.

Possible candidates for the optimal solution are provided by using the necessary
conditions. By using sufficient conditions the optimal solution can be found.

Weierstrass’s theorem ensures that a continuous function over a closed interval
reaches its maximum and minimum at this interval and/or at the end of the interval.

The extremes of functions

The problem of determining the extremes of a function is to determine the corre-
sponding minimum and/or maximum points. The problems raised in this subchapter
are related to the existence of a minimum, its uniqueness, as well as the possibility
of investigating a minimum point.

Let’s consider a function defined on the set of real numbers (Fig. 10) with values
in the set of real numbers. From the graphical representation it is observed that with
the increase of the abscissa on the interval (—oo, M), the ordinate values increase,
in the interval (M, m) the ordinate values decrease and in the interval (m, M>),
the ordinates increase monotonically. The point xyy; is a local maximum, because
in a conveniently chosen neighborhood, the f(x) values, for any x other than xy,
are smaller than f(xys). The values f(x) taken by the function for the x—axis of
a conveniently chosen neighborhood of a minimum point, x,,;, are all greater than
f(xp1). It is said that the function admits at point x,,; is a local minimum. The
mathematical transposition of the two conclusions is carried out as follows.
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Fig. 10 Extreme points Representation of extremesforsingle variable functions
representation for a real B . . \ . —
function o ‘Ya= )

(x)

Local minimum. Global minimum

A point x* from the real space definition domain M is called the local minimum of
the function f if there is a small number ¢ > 0, so that for any x located near of x5,
that is:

|x - x*| <& (65)
F£(x") does not exceed the value of f(x): f(x*) < f(x).
In real set N, x* is called the global minimum (absolute) of f if it meets the

condition

f(x*) < f(x) forall x from M. (66)

Local maximum. Global maximum

A point x* from the real space definition domain \ is called the local maximum of
the function f if there is a small number € > 0, so that for any x in the vicinity of x5,
that is:

o —x*| < (67)

£(x) does not exceed the value of f(x): f (x*) > f(x).
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Annulment of the first order derivative

f(x)

Fig. 11 Vanishing of the first order derivative of a real function

In real set R, x* is called the global minimum (absolute) of f if it meets the
condition

f(x*) = f(x) forallxind. (68)

Necessary and sufficient conditions for determining an extreme point

Itis known that the first order derivative of a continuous function after passing through

an extreme point changes its sign (Fig. 11). Thus, for the maximum point M, the

function is increasing monotonically for x < x,;, the first derivative being positive

to the left of the maximum point: XLIIAI} f'(x) > 0, and decreasing for x > x;1, the
-

first order derivative becoming negative to the right of this point: lirﬂgll f'(x) <O.
X—> M+

Analogously, for a minimum point, 7], the function is decreasing monotonically
for x < x,,, the first order derivative being negative to the left of the minimum
point: lim f’(x) < 0, and descending monotonically x > x,1, the derivative being

xX—>mj_
positive to the right of this point: lim f’(x) > 0.

X—>mi4
In conclusion, the derivative of the first order must be canceled when passing

through the points of local maximum or minimum local (Fig. 11):

f'(My) = f'(My) =0
flmy) = f'(m2) =0 (69)
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The relation (69), which is only the condition of vanishing of the first order
derivative, represents the required condition for the presence of an extreme point.
The values of the abscissa at the extreme points (Fig. 11) are as follows:

X1 =
—5.47 for M,
—1.70 for m,
1.80 for M,
5.47 for m,.
The values of the ordinates corresponding to the extreme points are as follows:

fx) =

5.47 For M,

—1.69 for m;

1.69 For M,

—5.47 for m,.

For a real variable function (Fig. 10) the variation of the first order derivative
is studied with the help of the derivative of the second order. If the derivative of
second order is negative when passing the function through an extreme point, then
the extreme point (xpyp) is a maximum (Fig. 12), f"(xp1) < 0.

If the derivative of second order is positive when passing the function through an
extreme point, then the extreme point (x,,) is a minimum (Fig. 12), " (x,,2) > 0.

The above inequalities represent the sign of the second order derivative, and are
used to separate the extreme points into maxima and minima being the sufficient

Annulment of the second order derivative

fx)

Fig. 12 Vanishing of the second order derivative
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conditions, guaranteeing the existence of a maximum or a minimum when they are
fulfilled.

In conclusion, for the case where the first order derivative exists in all points of
the domain N:

— the point x,,, is a local minimum of the f(x), if the necessary and sufficient
conditions are fulfilled;

— the point x,,» este un minim global, is a global minimum, if for any other x, x,,, is
the smallest local minimum: f(x,;2) < f(x).

Implementation in the Matlab language:

Example 1. Matlab program for determining the minimum of the components of
avector[032—-15-9965—124].

Solution:

Minimal components.

vectort =[032—-15-9965—124];

(a) minimal vector.

Enter the Matlab command line:
data_min = min(vectort).
Follows as:

data_min =

—99

(b) Ifitis desired to extract the minimum of a positive element of the given vector,
type the following into Matlab command line:

data_min = min(vectort (vectort > 0)).
Follows as

data_min =

2

(c) Ifitis desired to extract the minimum of a negative element of the given vector:

data_min = min(vectort (vectort < 0)).

Results

data_min =

—-99

Example 2. Computing the minimum of a real function.
Let’s consider the function p(x) = x> 4+ 3x — 4.
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a) functieminscript.m function is created
functieminscript.m
% To minimize the function:
%%%%%%%%%%%
%  p(x)=x"2+3x-4
%%%%0%%%%%%%
%p={13 4];
function p = functieminscript(x)
p=x."2+3*x-4
b) the built function:
functiemin.m
% has the role of both displaying the function and determining the minimum.
% p(x)=x"2+3x-4
p=[13 -4];
x=[-5:.1:5];
px=polyval(p.x);
plot(x,px)
xlabel('x")
ylabel('p=f(x)")
title('The minimum of a single variable function ')
%tinding minimum value over an interval (-5,5)
xvec = fminbnd('functieminscript',-5,5)
% Function value at the minimum point
p=functieminscript(xvec)
xvec =
-1.5000

-6.2500

Results are shown in Fig. 13.

Fig. 13 The minimum of a Minimum of a one variable function
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6 Application to Matlabs

Matlab represents the reference software for studying the numerical methods and
for solving some practical problems [21-25]. It is available on the classic operating
systems (OS) Windows, Linux, Mac OS X. As examples of the numerical methods
presented in the previous sections, implemented in Matlab, we will present Newton-
method for finding the solutions of the equations and the Gauss method for solving
the systems of equations.

(i) Newton method implemented in Matlab

function x=zeronewton(f, fprim, x, xprev)
% Solving the equation f(x)=0
% NewtonRaphson method
% f(x) = function
% fprim(x)= derivative of f(x)
% x = initial value
% xprev= initialization
trace=true;
if trace
figure;
fplot(f, [x xprev])
hold;
plot([x xprev],[0 0],'--")
disp ("*** Newton-Raphson Method');
disp ('it---x: X-Xprev: ")
end
%Algorithm:
k=0;
while abs(x - xprev) > eps*abs(x)
Xprev = x;
x =X - f(x)/fprim(x);
if trace
disp(sprintf('%3d %15.12f %15.12f, k, x, x-xprev))
plot([xprev x] , [ f(xprev) 0],":1r", [x x], [0 f(x)],":b")
end
k=k+1;
end
if trace plot([x x], [f(x) f(x)],'or"), end
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Fig. 14 Solving the equation x> — 2=0 using the Newton-Raphson method

Computation example: it is considered the numerical computation of the equation
x?> — 2 = 0 and the results are presented in Fig. 14.

>> x=zeronewton(@(x)x."2-2,@(x)2.0¥x, 10, 0)
*** Newton-Raphson Method
it---x X-Xprev:
0 5.100000000000 -4.900000000000
1 2.746078431373 -2.353921568627
2 1.737194874380 -1.008883556993
3 1.444238094866 -0.292956779513
4 1.414525655149 -0.029712439717
5 1.414213596802 -0.000312058346
6 1.414213562373 -0.000000034429
7 1.414213562373 -0.000000000000

As aremark, Newton method has a rapid square convergence and for the first step
there are necessary two values for the independent variables x, respectively the start
value x and a value xprev (in the presented examples, this value was considered to
be zero). For the graphical representation, the initial limits [x, xprev] were adopted.
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(i) Gauss method implemented in Matlab

function T=gauss(T)
% transforming the matrix T into an upper triangular form
% Solving the system of equation
% Simplified algorithm — no pivoting
[nlin, ncol]=size(T);
for i=1:nlin-1
% Next lines passing
for k=i+1:nlin
% Treating the remaining elements
% Cancel the elements from the lines (i+1,nlin)
% and from the column (i+1)
% Tii is the pivot
cki=T(k,1)/T(i,i);
% Line(k) = line(k)-line(i)*cki:
for j=i:ncol
T(k,j)=T(k,j)-T(i,j)*cki;
end
end
end
% If there are extra lines (free term)
% solve the system.
% The solution will be in the last columns
if ncol>nlin
%]Inverse passing — retro-substitution
for j=nlin+1:ncol
T(nlin,j)=T(nlin,j)/T(nlin,nlin);
for i=nlin-1:-1:1
s=0;
for k=i+1:nlin
s=s+T(1,k)*T(k,j);
end
T(Aj)=(TA))-s)TED;
end
end
end



34 H. Andrei et al.
Computation example: solve the system matrix T*X = G where.

% The coefficients matrix (3*3:
>>T=[135;378;814]
T =
1 3 5
3 7 8
8 1 4
>>G=[2;3;8];
% The extended matrix with the free terms column:
>>B=[[T] G]

1 3 5 2
3 7 8 3
8 1 4 8
% Gauss Method:
>> Bg=gauss(B)
Bg=
1.0000 3.0000 5.0000 0.7753
0 -2.0000 -7.0000 -0.5843
0 0 44.5000 0.5955
% The solution is on the last column:
>> X=Bg(:,4)
X =

0.7753
-0.5843
0.5955
%Verification:
>> T*X-G
ans =
1.0e-014 *
0
0.0888
0.1776
% Or :
>> X=T\G
x=
0.7753
-0.5843
0.5955

7 Conclusion

In this chapter an overview of advanced numerical methods is presented. After errors
are defined, the readers are initiated with the principles of approximating functions,
numerical methods for solving equations and systems equations and optimization
methods. Finally an introduction in Matlab is done to put in evidence the easy-to-use
and attractiveness of this popular software. Each method is accompanied by examples
to help understanding.
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Acronyms/Abbreviations

CB Circuit Breaker

FDTD Finite Difference Time Domain
GIS Gas Insulated Substation

HV High Voltage

PD Partial Discharge

PT Power Transformer

UHF  Ultra High Frequency

1 Introduction

The Finite Difference Time Domain (FDTD) method is one of the most widely
used calculation techniques in the analysis of electromagnetic phenomena since the
early 1990s. Although the first application in the use of this method for electromag-
netic wave problems dates back to 1966 [1], its prevalence has increased with the
development of computer technologies in the solution of numerical calculations [2].
This method used in the solution of partial differential equations is based on the
discretizing of Maxwell’s curl equations in time and space. At this stage, derivatives
are converged using finite difference equations.

The FDTD method algorithm is very popular for its simple implementation and
robust and accurate results in the analysis of electromagnetic fields [3]. Analytical
methods, that can be used in simple engineering applications, cannot calculate tran-
sient and permanent state responses in complex structures with sufficient accuracy
in terms of electrical and magnetic fields [4].

In the application stage of this method, first, the boundaries of the region to be
analyzed are determined. These borders should be wide enough to cover all of the
objects examined. In cases where suitable boundary conditions cannot be determined,
calculation can be made by determining artificial boundaries where the calculation
region is extended to infinity [5]. This region, whose boundaries are defined, is divided
into cells according to the step intervals in the space and time. With finite difference
equations solved due to these time and space variables, electric and magnetic field
quantities can be calculated for a sufficient number of points in the solution region [6].
In this calculation stage, dielectric and magnetic material parameters of the design
in the region where the solution set is located should be defined for each discrete
region [5].

FDTD, which is a very simple and efficient alternative to solve Maxwell’s equa-
tions, can produce solutions in the analysis of many electrical engineering problems
[7]. Since spatially and temporally discretization is used, it allows the modeling of
three-dimensional inhomogeneous materials, analysis of designs involving planar
and non-planar volumes, containing multiple dielectric planes and ground layer,
and examination of non-ideal conductors and insulators [3]. This method, in which
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designs containing passive loads or active elements can also be modeled by adding
them to the initial equation, is used in simulation of many engineering applica-
tions such as antennas, high voltage (HV) insulation systems, partial discharge (PD)
imaging techniques and grounding systems [2, 7, 8].

In addition to these application areas, high frequency responses frequently encoun-
tered in high voltage and power system equipment could also be examined for some
modifications made in this model [2, 8]. The propagation of electromagnetic wave in
transient and non-transient modes can be examined in a wide frequency range. The
FDTD method is widely used for transient analysis [9].

In engineering applications, the experimental measurement of electric and
magnetic fields, which can be defined by many variables such as the size of the
design, the variety of the material, and the surge caused by switching, is not always
possible due to its complex nature and economic constraints [5]. In order to over-
come these limitations and to understand the electromagnetic behavior of engineering
designs, finite difference methods are used.

This chapter primarily examines the finite difference methods used in the solution
of engineering problems defined by differential equations in a conceptual framework.
Following this section, the application examples and results of the FDTD method,
which stands out with its widespread use in calculating electrical and magnetic fields
among these methods, are discussed. Researches on the limitations and alternative
modifications of the method are also examined in this section. In the final part of
the chapter, the advantages and disadvantages of FDTD, the basic modifications
proposed for eliminating these disadvantages and alternative application areas are
explained.

2 Finite Difference Methods for Time-Dependent Problems

2.1 Basic Concepts

A general initial problem for linear partial differential equations:

u;(x,t) = P(x, t, i)Lt()c, 1)
0x

ur(x,0) = f(x) (1)
where x is a vector of s components: x = (xy, ..., Xs), 1 is a vector of p components:
ulx,t) = (ul(x, 1), ..., up(x, t)) and P is a polynomial %

For computational convenience, the domain of the solution.

u(x, t) is restricted to a bounded region. On this bounded region, a grid of points
is constructed by discretizing both space and time. Step sizes are Ar and Ax; and
the grid points are
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t, = nAt
x,-,-:j,-Ax,----i:O,...,N,- (2)

Consider a two dimensional problem:
Uy = uy + 1y (3)

where u(x, y,t) is a real valued function. Ax, Ay and At is positive and fixed
quantities. Finite difference scheme is

1
Uir,l}— = 0'25(Uin+l,j+1 + Uinfl,jH + Ui,iH,jfl + Uinfl,jfl)

At \ At
= — U

A 1)+ (Ul = U) (4)

+ 2Ay

(Uier,j

The shift operators are E; and E; so

n — _ At _
Uit = (0.25(E1 +E Y (Ex+ Ey') + E(E1 +E
At - .
+_2Ay (Ez + E, 1))Ul.’j (5)

2.2 Properties of Finite Difference Schemes

u(x, t) is the initial value problem, S(¢, #y) is the solution operator and the function
uis

u(x, 1) = S(t, to)u(x, to) (6)
thus in particular

ulx,(n+ DHAt) = S((n+ D) At, nAt)u(x, nAt) @)

If the problem is autonomous, the operator P in Eq. 1 is independent of time, S is
a function of the elapsed (t — 1y).

Scheme 1

At
n+1 n n n
Uit =Uj + AT (U, —ULY) (8)

This scheme is useless since it will never be stable. To investigate its accuracy:
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u’]’ =u(jAx,nAt) )

The scheme can be rewritten in the form u, = u,

n+1 n n n
At 2Ax
Local truncation error is
A R
T = —
J At 2Ax
= u,(x;, tx) + O(AD) —uy(xj, 1,) + O(Ax?) (11)

This scheme is accurate of second order in space and first order in time.

Scheme 2: Lax-Friedrichs Scheme

. 1, " At n
Uit = E(Uj+l +Uj) + E(Um —UjL) (12)

This scheme is a first order accurate scheme. This scheme describes as (FTCS)
forward in time and centered in space [10].

The Lax-Friedrichs scheme has two-degree precision along space and one-degree
precision along time [11].

Scheme 3: Upwind Scheme
Consider one sided difference for the spatial derivative:

A
n+l n
Uim =Ui+

t n n
~ Ui = Uj) (13)

This is a first order accurate scheme. The upwind differencing scheme is
conservative [12].
Scheme 4: Downwind Scheme

Consider the one-sided difference for the spatial derivative:

At
Uit = Ui+ (U} - Uj) (14)

This is a first order accurate scheme. However, this scheme is also useless. The
domain of dependence is not included in the scheme stencil therefore such a scheme
is unstable [13].

Scheme 5: Leapfrog Scheme:

If the center difference is used for both time and spatial derivatives,
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n n— At n n
vttt =ur 4+ Ui —Uj) (15)

To find its accuracy, it is rewritten as

Ur_l+1 _ Ur'lfl n U
J J _

= (16)
2At 2Ax
n+1 n—1 n n
u'. —Uu' u' —u'
n_ J jtl j-1 _ 2 2
T = N, — A =u; + O(At ) — Uy + O(Ax ) a7

This is a second order accurate scheme. The leapfrog method has good stability
when solving partial differential equations with oscillatory solutions [14].

Scheme 6: Lax-Wendroff Scheme

It is based on the Taylor series expansion u(x, t) given by

u(x,t+ A1) =u(x,t) + Atu(x, 1) + %Atzu,,(x, H+o0(Ar)  (18)
using u, = u, reduces to

u(x,t+ At) = u(x,t) + At ue(x, 1) + %Atzu”(x, N+ 0(AP)  (19)

Using the centered difference, a scheme with order accuracy in both time and
space is obtained by

2
U = U7 4 e U~ V) 4 5a (U —20 101 @0

The Lax-Wendroff scheme has two-degree precision along both space and time.
The Lax-Wendroff scheme gives more accurate solution than that of Lax- Friedrich
scheme since the Lax-Wendroff scheme has two-degree precision along time, while
the Lax-Friedrichs scheme has one-degree precision along time.

The Lax-Wendroff scheme needs more computational time than that of Lax-
Friedrich scheme since the Lax-Wendroff scheme need to calculate derivatives up to
4th order, while the Lax-Friedrichs scheme need to calculate derivatives up to 2nd
order [11].

Scheme 7: Crank-Nicolson Scheme
This is a second order accurate implicit scheme

At
Ut = U (U - U U - L) 1)



Analysis of Partial Differential Equations ... 43

The Crank-Nicolson method is implicit scheme with second-order accuracy in
both time and space. This method is an unconditionally stable [15].

2.3 Von Neumann Stability

Stability of the scheme V! = C(At) V" can be written in terms of the amplification
matrix G (At, k) as the following condition: ¢ > 0

IGAr, "] < Ke* (22)

The condition must be satisfied for all multi-index & in order to establish stability
of the scheme.

The Von Neumann Condition

The amplification matrix of a stable scheme satisfies the condition

pIG(At, k)] < e’ =14 0(Ar) (23)

where p[G(At, k)] denotes the spectral radius (largest magnitude of eigenvalues) of
the matrix G (At, k)

The Von Neumann stability condition is necessary but not sufficient for stability.
In most practical applications, turns out to be easily checked whether this condition
holds or not [16].

2.4 The Leapfrog Scheme

24.1 The One Way Wave Equation

The one-way wave equation shows significant computational efficiency for a range
of transmitted wave three-dimensional global, exploration and engineering scale
applications [17]. The leapfrog scheme is

At
U 1 l;nfl un uU"
.iJr =Y Ax( Jj+1 jfl) 24

The periodic conditions imposed through the usual periodicity requirement,

Uty =Uy ., Uy = Uy
The vector can be defined as
unr
V;’ = ’ (25)
J Uj—l
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vl = Cc(AnHV" (26)

and A = % then
X

-1
vt = <A(E —1 E7Y) é)vf Q27)

oo v . .
where E and E~' are the shift operations. Vi= V,e'tA% is the discrete fourier
transform of V".

V:Jrleiijx _ <A(E —Ii E’l) é)i}:eiijx (28)

and x; = jAx so
E&itidvyn — ik pikisx (29)
Eéikidryn — gmikds jikix P (30)

thus

~n+1 . —_ g1 NN}
Vk+ :e—tk/Ax<)‘(E 1E )é)etijka

_ (21A sml(kAx) (1))9: 31)

The explicit expression for the amplification matrix is

(32)

G(Ax. k) = <2ik sin(kAx) 1)

1 0

The variable £ = kAx restricted to 0 < & < 2m. The eigenvalues of the
amplification matrix G(Ax, k) is

[1(€) = irsin(€) +4/1 = A2 sin’(§) (33)

Case 1. If A2 > 1, then for those values of k such that E=kAx = %

wi(r/2) = i(wm/ﬂ — 1) (34)
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SO ] Ui (71 / 2)] > 1 yielding that the Von Neumann stability condition is not satisfied
by the amplification matrix. The leapfrog scheme is unstable when A > 1.
Case 2. If A2 < 1, then

1 ()17 = A sin®(§) + 1 — A?sin?(§) = 1 35)

Then p[G] = 1 and the Von Neumann condition is satisfied. Nonetheless, this
does not imply that the scheme is stable for A < 1, and it is unstable for A = 1.
The leapfrog scheme for u, = u, is stable for A < 1.

2.4.2 The Two Way Wave Equation

Comparison of migration results for one-way and two-way wave-equation migration
shows that the two-way wave equation provides superior results [18]. The leapfrog
method (second order-centered difference for time and space derivatives) for the
two-way wave equation U, = U,y i

Uit —2up + Ut URL, - 205+ UG 6)
Ar? Ax?

The simplified 1D Maxwell’s equations can be written as, £, = H,, H, = E,
which is equivalent to E;;, = E,, or H;, = H,,

The FDTD method (second order centered difference for time and space
derivatives) is defined on staggered grid for H:

n+s n+3i
n+l _ pn H. ]2 —H 2
El El — Jt3 /_% (37)
At Ax
Hn+% an%
i+ T B T Ej
= (38)
At Ax
A = At/Ax so (36) can be written as
n+1 n 2 -1 n n—1
Uitt =207 + 2*(E -2+ E7")U} - U] (39)
where E is the shift operator.
u”
Vi= J 40
; (U) o)

2+1(E—-24E7") -1
n+l __
Vit = ( : 0 )V (41)
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P T
VIi= Vet s0

2( ikjAx —ikjAx
VZ+1_<2+)»(@ JAY 2 4 e /A)—1>An

42
1 0 Vi (42)
Thus

G:<2+A2(200s(§)—2) —1) (43)

1 0

The eigenvalues of G are | = a + +/a*> — 1 and u; = a — +/a? — 1 with
a =14 A%(cos(&) — 1).

If 3 > 150cos(€) < 1 — 2. Thena(&) < —1 and o (&)| = (a _JaZ 1>
1. The Neumann stability is violated thus not stable.

IfA<1,thena®> —1<O0thus u; =a+iv1—a?and ur =a —iv/1 —a?. So
;] = 1 and the Von Neumann stability is satisfied. On the other hand, G is not a
normal matrix and |G| > 1.

2.4.3 Convergence for the Two Way Wave Equation
Replace U ;7 by u(x I t") in Eq. (36), the residue is the local truncation error
" = 0(Af?) + O(Ax?) (44)
Second, replace U‘;l by u(xj, t") in Eq. (41), the residue is
Ar*T" = A?[0(Ar%) + O(Ax?)] (45)
Let V"1 = C(At)V" denote the leapfrog scheme. Suppose
n+1
Ut
Uy
n+l
Ut

yrtl=| U} (46)

n+1
UN—I

n
UN—l

QO Ay 1s the sampling operator at the spatial grid points and two time steps.
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u(xp, t)
u(xg,t — At)
u(xy, t)
Opctt(x, 1) = | ulxi,t — A1) (47)

u(xy_1,1)
u(xy_1,t — At)

2.5 Dissipative Schemes

A finite difference scheme V"' = C(At)V" is called dissipative of order 27 if the
amplification matrix satisfies

plG(AL, k)] <1 —8|&|*" (48)

where £ = kAx for all Az, k and § > 0 is independent of k and At.

2.6 Difference Schemes for Hyperbolic Systems in One

Dimension
T

u(, 1) = (ur(x, 1), ..., up(x, 1)) (49)

oF Lt
(e, 1y = 2L D) (50)

ox
F(u) is a function F(uy, ..., up) = (Fi(ur, ..., up), ..., Fp(us, ...,up))T
0F (u(x,t)) _ 0F (u) ou(x,t) 51)
0x ou 0x

where % denotes the gradient matrix A(u) with components a;; (1) = %u(/”) )

that the nonlinear system can be written in the form
ur = A(u)uy (52)

The above nonlinear equation is called weakly, strongly, symmetric or strictly
hyperbolic if for every ug fixed, the corresponding linearized system:
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ur = Auo)ux

is weakly, strongly, symmetric or strictly hyperbolic, respectively.

The Lax equivalence theorem states basically that an accurate scheme is stable
if and only if it converges, provided that the problem is strongly well posed. Weak
well posedness may give rise to instabilities.

2.6.1 First Order Schemes

Consider Friedrich’s scheme:

At .
F F} ) (53)

n l n n
U]+1=§( j+1+Uj_1)+E( j+1_

where F}' | = F (U it 1). This scheme is based on first order approximation of the
derivatives using Taylor expansion, and it can be easily shown that this scheme is
first order accurate. Linearizing the function F (#) around some arbitrary value to uy,
A(u) is replaced by a constant matrix A, so that the linearized problem is equivalent

to the original problem with F(u) = Au. Substituting in the Freidrich’s scheme, the
linearized form is obtained.

1 At
Uit = 3 U + U + AU+ U)) %

The corresponding amplification matrix is given by
G (&) = Icos(§) +iAsin(§) (55)
where £ = kAx, and [ is the p x p identity matrix. If the original problem is strongly

or strictly hyperbolic, then it follows that the matrix A = A(uy) is diagonalizable,
there exist a matrix T

aq -0
T'AT = . (56)
0---a,
where ay, ..., a, are the real eigenvalues of A. Therefore:
a -0
T'GET =Icos(§) +ir| : - : |sin(§) (57)
0---a,

and the eigenvalues are
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i) = cos(§) + iAay sin(§) (58)

which implies that

lug(§)1* = cos® () + ir’ag sin® (&)
=1—(1-2%ag)sin’(§) (59)

Therefore, if p(A) = maxy|a| satisfies the inequality %p(A) < 1 then Von
Neumann stability condition will hold and |u(§)| < 1 for k and &. It is an exercise
to prove under strict inequality of Von Neumann condition, the scheme is dissipative
of order 2.

Upwind schemes are motivated by the scalar equation u, = au, when p = 1.
If a > O the characteristics are straight lines moving to the left, and the scheme
constructed in order to “follow” the physical characteristics is:

At
Ut = U+ DU~ Up). a0 ()

And the scheme is accurate and stable for 0 < al < 1 for A = 2—;. On the other
hand, if a < 0, then the characteristics point to the right and

vt =g 2 (Ur —-ury) 0 (61)
i TYI T A MY T ) as

In this case, stability follows from the condition —1 < Xa < 0.

2.6.2 Second Order Schemes

A scheme for approximating the solution of u, = A(u)u, is called a Lax-Wendroff
scheme if under the assumption A(u) = A (or F(u) = Au is linear) the scheme
reduces to

2Ax 2\ Ax o 205 U’}?_]) 62)

At 1/ A \?
n+l __ yrn n n n
Uit =Uj + AU} —Uj)) + ‘<—A> U
The above scheme is actually the only second order scheme for the linear problem.
Lax-Wendroff schemes arise from the idea of replacing time derivatives by space
derivatives, using the equation u, = F(u) and approximating the later by finite
differences. Using a Taylor expansion for u

AZ
u(x,t+ At) =u(x,t) + Atu,(x,t) + TM,,(x, 1)+ 0(At3) (63)

u;(x,t) = F(u(x, t)) in the linear case where F(u) = Au
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u;(x,t) = Auy(x, t) (64)

n (x, 1) = At (x, 1) (65)
The amplification matrix of the linear form of the Lax-Wendroff scheme is
G(&) = I + i Asin(€) + A2 A%(cos(€) — 1) (66)

E=kAt, A= % and n = sin(%),

G(E) =1+ 2irAny1 —n? —222A% 6N

Any eigenvalue 1(n) of the amplification matrix
() = 1+ 2iApu(A)ny'1 — n? — 2224 (68)

The eigenvalues (1) of the amplification matrix
lw> =1 =221 (An* (1 = A2 (A)?) (69)

which holds for every eigenvalue of G (£). The spectral radius of G (£) is defined as
the maximum value of (£(n). . is the eigenvalue of A which maximizes the above
expression |u(n)|

0GP =1 =320 (1 = 3213) (70)
Von Neumann condition will be satisfied if
Ap(A) <1 (71)

which implies A, (A) < 1 for all eigenvalues of A. Furthermore, if A u, < 1, then
the scheme given by (Eq. 62) is dissipative of order 4.
For the nonlinear case,

up = [F)ly = [F) ], = [Au;], = [A@) F (u)x], (72)

Substituting u, = F(u), and using Taylor expansion,

2
w4+ D) = e, 1)+ AF@), + S-TA@F@L], + 0(MF)  (73)

At
n+1 n n
Uit = U} + o —(1

2Ax NIt Fy

1)
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1 At : n n n n n
5\ & (Ar (Ff = F) = A0 (Fy = F)) (74

Fr = F(U;?) 50

v, +U?
a, = () 75)

Scheme Eq. 74 becomes rather inefficient in practical applications due to the
many computations involved at each time step iteration in order to evaluate A and
F. A modification of this scheme which is very popular considers approximating
derivatives at “half stages” of the iteration

1
u(x,t+ At) =u(x,t) + Atu,(x, t+ 5At> + O(At2) (76)

and it is known as the MacCormack scheme. Each iteration has two steps
corresponding to first order approximations of the solution at half steps.
The scheme is given by:

* n A n n
Uj = Uj + —(Fj = Ff) 77
1 At
n+1 __ n *
Uit = E(zjj + U+ B(Ff - Ff_l)) (78)

where F!' = F(U;?), Fr= F(U;f).

This scheme is a two-stage which evaluates a “predictor” U}“ and a “corrector”
Pra * At * ok n+1 *% *
U =U;+ 3% (Fj Fj—l) and then forms U;™" as the average (Uj + Uj>/2.

Itis clear that in order to evaluate U 7+1 the scheme uses the same points in the grid
at time in as Lax-Wendroff scheme. The “efficiency” of a scheme is often related to
the cost in computer time of each iteration. In these terms, one can compere different

schemes. For the Lax-Wendroff scheme, F j”+l, F nF J” 1s An+‘ and A” 1 need to

evaluate and perform matrix multiplications in each iteration, whereas MacCormack
Scheme requires only the evaluation of F}',,, F}/, F; and F}_,

It only remains to prove the order of accuracy of MacCormack scheme. The local
truncation error of the MacCormack scheme is O (Af?) + O(Ax?) + O(AtAx) in
which At = O(Ax). Thus it has a second order accuracy in space and time.

The MacCormack scheme uses forward difference for the predictor and backward
difference for the corrector steps. It has second order accuracy as the Lax-Wendroff
method. It is much easier to apply, since it is no need to evaluate the second time

derivatives [19].
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Among the class of second order non-dissipative schemes is the leapfrog scheme.
For the general non-linear equation, the scheme is given by:

At
n+1 n—1 n
Uit = Ui + ——(F;

o (Fla — FlL) (79)
This scheme is analyzed in detail for the linear case, found out that it is not dissipa-
tive but stable, provided that % p(A) < 1. The fact that Eq. 79 is accurate of second
order follows a straightforward calculation. This scheme is generally more efficient
than Lax-Wendroff schemes, although it needs roughly twice as much memory due to
the dependence on two previous time stages to evaluate U" "', therefore in practice,
must face the trade-off between efficiency and storage requirements. Since this is
a non-dissipative scheme, it will not give good approximations for nonlinear equa-
tions. A dissipative term is introduced to Eq. 79 to deal with problem. When adding
a dissipative term in the form of a small perturbation, care must be taken so that the
resulting linear scheme retains stability. Recall that in the linear case F (1) = Au,
the amplification matrix G(§) is a2p x 2p matrix (A itself is a p X p matrix)

(80)

GE) = <2iAA sin(&) 1)

I 0
where now each of the entries is itself a p x p matrix. In order to express the

eigenvalues @ (£) of G in terms of those of A, if A is diagonalizable by a matrix 7,
then G possesses the same eigenvalues of G.

oo (T7HO\[(2irAsin) 1\(TO
G(S)_< 0 1)( 1 0)(0 I)

. 71 .
_ 2iAT " ATsin(§) 1 @1
1 0
Recall that T~'AT is a diagonal matrix with diagonal entries ay, ..., a,. From

this expression, it follows that any eigenvalue @ (£) of the amplification matrix
satisfies:

pP(E) = 14 2ika;sinE)pE), j=12,....p (82)

If a dissipative term is added to the leapfrog scheme at time level n, this will cause
rise to instabilities.

e(Uj,, =207 +U}) (83)
added to the scheme (Eq. 79) where ¢ is a small perturbation. Notice that any modi-

fication at time level n will affect the first block in the amplification matrix. The
modified amplification matrix will be of the form:
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. . .2
G(E) = (21)»Asm(§)—i;€sm E/2)1 (1)) (84)

and therefore the eigenvalues will now satisfy:
12 (E) = 1+ (2ika; sin(§) + &sin*(§/2)) (&) (85)

E denotes the shift operator E U} = U7, adding a dissipative term at time level

n amounts to modifying Eq. 74 yielding the scheme:

At
U;“ =U"" + —A(U}

AU = ULy + e P(EYU] (86)

where P(E) is a function of the shift operator (P(E) =F-2I+ E’l). Since

P (E) approximates a second order derivative, its Fourier transform ﬁ(é) will be a
real function of £ and thus the modified eigenvalues will in general satisfy:

12(E) = 1+ (20ha; sin(®) + eP(€) ) u(6) (87)

for some eigenvalue at of A.

Let x; and x; are the solutions of the equation x*—ax —1=0.If both |x;| < 1
and |x;| < 1, then necessarily the coefficient « is purely imaginary.

Using exactly the same analysis, the leapfrog scheme gives rise to instabilities
when it is used to approximate parabolic equations. For the heat equation, this can
also be explained by the stability region of the leapfrog method, which is only on
the imaginary axis, while the centered finite difference used in approximating the
second order derivatives will give real eigenvalues.

In order to introduce the correct amount of dissipation, the dissipation term at
time level n — 1 should be added. The operator E'/?U 7 = Uj ), so the leapfrog
scheme Eq. 79 can be rewritten in the form:

At
n+l1 n—1 1/2 -1/2 12 -1/2
Uj _Uj +_x(E — F )(E + E )F]" (88)

in general form:

Ujr;+1 _ U;zfl + %(Elﬂ . E—l/2)(E1/2 + E-]/z)F;l
£

1/2 —1/2\477n-1
16(E/ - E7V2)'U; (89)

n = sin(£/2) the amplification matrix of the linearized scheme

GE) = <21AA151n(§) (1 (‘)an )I) (90)
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and the eigenvalues hold the relations:

pAE) =1 —n* 4+ 2irpu(A) sin(€) sin(&) (&) 1)

for some eigenvalue £ (A) of A. Therefore:

w(€) =iru(A)sin(§) £ \/1 — |(A)] sin®(§) — en? (92)
And |p(£)]* = 1 — en* provided that
1 — [Ap(A))*sin®() —en > 0 (93)

for all eigenvalues of A and &. Under this condition, the modified scheme Eq. 89 is
stable and dissipative. Remark, though, that in order for Eq. 93 to hold, whenever
add dissipation (¢ > 0), and also must decrease the value of A = %. This means
that for a fixed space grid, a large number of time steps must be evaluated to get an
approximate solution at some given time .

3 Finite Difference Time Domain Applications in Electrical
Engineering

The FDTD method used in the solution of Maxwell’s equations allows to analyze
the electric and magnetic fields and interactions with medium. Maxwell’s equations,
which have differentials in time and space dimensions, are solved by using the future
and past values of time and space [20]. In the solution of this discrete set of space
and time, the electric and magnetic fields are resolved interconnectedly and the value
obtained in each step becomes the first value for the next step [21]. The relationship
between these two parameters is described in Fig. 1.

This method is used in many different applications since it is a very powerful
tool for solving partial differential equations. These applications include many engi-
neering problems such as the percussion instrument model, where different sampling
frequencies are used to reduce the simulation time, the grounding characteristics of
wind turbines in low resistive soil, the propagation of partial discharge signals in HV
current transformers, and the analysis of electromagnetic interaction currents flowing
in the power cables of DC-DC converters [20, 22, 23]. Since the examination of all
these application areas is beyond the scope of this chapter, the applications of the
FDTD method in the power system and high voltage industry are discussed.

Electromagnetic transient and non-transient simulations become an important tool
for planning, operation and fault analysis in electrical power systems [8]. These simu-
lations concentrate on transient state analyzes that occur in power system equipment
such as circuit breakers (CBs), lightning arrestor, overhead and underground cables,
ultra-high frequency (UHF) sensors and power transformers (PTs) [8, 9, 24, 25].
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Determination of lightning induced voltage and current caused by lightning
discharges, one of the major sources of fault in power systems, is critical for the
protection of power system equipment [26]. Aodsup and Kulworawanichpong [24]
examined the propagation and reflection of the lightning strike in the lightning arrester
with silicon carbide (SiC) and metal oxid varistor (MOV) by adapting the Telegraphist
equations to the FDTD method. According to the simulation results, MOV arrester
reflects and transmits the impulse surge smooter than SiC arrester [24]. Nagarjuna
and Chandrasekaran [21] adapted the transmission line approach to FDTD equations
to examine the current and voltage characteristics of the horizontal ground electrode
at high impulse currents. Izadi et al. [26] calculated the electric and magnetic fields
in different time and space using Maxwell’s equations and 2nd order FDTD while
advancing of the lightning channel in the power system, and the proposed algorithm
showed a good agreement with the measurement results.

Analyzing the electromagnetic behavior of overhead and underground cables,
one of the important parts in power system transmission and distribution, improves
system design. These cables, consisting of multiple layers with different characteris-
tics between the cable core and the shell, can be successfully modeled by the FDTD
method with a high spatial discretization [27]. In addition, frequency-dependent FDT
models are numerically unstable or computational time is excessive. Additionally,
underground cable applications of these models are very limited. To overcome these
limitations, the FDTD method can be developed by taking into account distributed
fixed parameters such as skin effect and imperfect earth in overhead lines [27]. It
is an important problem to analyze the transient state responses of electromagnetic
fields in underground cables, which are used more and more for environmental,
political and technical reasons in high voltage applications. Barakou et al. [28] used
the universal line model (ULM) and FDTD method to model these lines. While the
FDTD method provides very high accuracy for slow front surge, these results are
distorted by temporary fluctuations for fast front surges. Either way, simulation times
are almost six times the ULM and are quite slow [28].
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As aresult of the operation of power system equipment such as disconnectors or
CBs in gas-insulated substations (GISs), switching pulses called very fast transient
(VFT) may occur in the frequency range from several MHz to more than 100 MHz
[9]. Calculated the transient electromagnetic disturbances caused by these frequen-
cies using FDTD and EMTP and found that the results obtained by the FDTD are
less oscillating. Shakeri et al. [25] examined the effect of VFTs on power trans-
formers, one of the most important equipment in power systems, by adapting the
multi-conductor transmission line theory to the FDTD method and observed the
effect of electromagnetic waves. In order to increase the accuracy of this model, the
winding capacity matrix is calculated by FEM analysis, and the simulation results
are obtained with a certainty to confirm the experimental results [25].

FDTD method is also used in the electromagnetic modeling stage to understand
the behavior and improve the performance of UHF sensors used to detect partial
discharges that can be dangerous for power systems and transformers [6]. Ishak
et al. [22], using the FDTD integrated UHF sensor developed for this purpose,
achieved agreement results with experimental results in a wide frequency range
of 500-1500 MHz. Another proposed approach to determine the behavior of the
UHF based test system used as a PD sensor in high voltage cables and to investigate
the PD coupling process is the combination of the FDTD method and the transfer
function theory [2]. This proposed approach has been applied to 11 kV XLPE cable
by Hu et al. [2]. In another application where the amplitude and charge of the partial
discharge current in gas insulated switches are examined, the data obtained with a
voltage probe placed on the outer surface of a three-phase gas-insulated switch in
the 84 kV-class are verified by simulation results obtained by the three-dimensional
FDTD method [29].

Busbar structures commonly used in high voltage transmission are also affected by
electromagnetic fields radiated from switching operations. These analyzes become
even more important for high voltage equipment located close to switching equipment
and electronic circuits of these [4]. The FDTD method is successfully used in the
modeling of busbar structures in high voltage air-insulated substations [5]. Musa et al.
[4] modeled transient electromagnetic fields as a result of switching operations in a
400 kV air insulated substation using simply specifying their constitutive parameters
with this method.

Grounding behavior, which is one of the important parameters to ensure system
reliability in transmission and distribution systems, can also be examined with the
FDTD method. In this context, the soil ionization phenomenon, which reduces the
ground electrode resistance, has been investigated by the FDTD method and applied
to a typical high voltage substation of 500/220 kV [7].

Finite element and difference methods are also widely used in high voltage tech-
nique to calculate the breakdown characteristics of gas dielectrics [30]. The electron
drift velocity, mean energy, ionization and attachment coefficients of dielectric gases
such as SFg, CF4, CHF3, and argon, which are frequently used in the insulating
gas industry, can be calculated by using the finite difference method for solving
Boltzmann equations [31-33].
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Despite this widespread use of the FDTD method, there are also limitations such
as defining the uncertainties they have due to the nature of electromagnetic fields,
and the excessive computation time needed in the analysis of large objects [9, 34].

In the calculation of electromagnetic fields, the properties of the object, such
as geometric properties, electrical parameters, material characteristics and input
sources, can increase randomness and thus uncertainty [35]. The uncertainty in these
input parameters is reflected in the electromagnetic fields, which are the output
parameters, and a parametric uncertainty appears in the resulting components [36].
Identifying these uncertainties, which are very important in some engineering prob-
lems, is also a major research topic in the analysis of electromagnetic fields [35].
As an alternative to the Monte Carlo method used to identify parametric uncertain-
ties, there are many methods and approaches combined with FDTD. In this context,
methods such as stochastic, polynomial chaos, control variations, and the method of
moments are combined with the FDTD method and defined the uncertainties in the
calculation of electromagnetic fields [35-38].

Chen [34] used the hybrid implicit explicit approach in combination with the
FDTD method to overcome the problem of electromagnetic modeling in very
fine structures. This proposed method is applicable for many boundary condi-
tions including connect boundary, absorbing boundary and periodic boundary. In
order to overcome the computation time problems encountered in the electromag-
netic modeling of electrically large objects, Shi et al. [39] proposed FDTD method
combined with Internet of Things, in which multiple processors are connected in
parallel.

Another important problem of the FDTD method is the increased response time
at high frequencies and the decrease in the accuracy of the analysis results [27].
In order to overcome this disadvantage, alternative models and software combined
with FDTD method are used in the analysis of high frequency transient situations
frequently encountered due to switching and lightning in high voltage equipment,
especially cables [2, 27].

4 Conclusions

In this chapter, the time-dependent finite difference method, which is widely used in
the solution of engineering problems defined by differential equations, is examined in
the theoretical framework and application examples. In order to limit the examination
in terms of engineering applications, the use of the finite difference method in the
analysis of electric and magnetic fields in power systems and high voltage equipment
is concentrated. The limitations of the finite difference method are defined and how
these limitations can be overcome by combining them with different methods and
approaches are discussed. Finite difference method, which is an important tool in
robust and accurate calculation of electromagnetic fields, has been used more widely
in transient analysis as well as in steady state analysis.
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types: analysis and synthesis problems. In principle, a synthesis problem can be
solved by an iterative technique, repeating the solving of some analysis problems,
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Nomenclatures

A. Acronyms

FEA Finite element analysis

FEM Finite element method (FEM)
FDM Finite difference method (FDM)
FE Finite elements

BVP Boundary value problems

BC Boundary conditions

B. Symbols/parameters

M, Permanent magnetization

1 Magnetic polarization

B Magnetic flux density

H Magnetic field strength

v Absolute magnetic permeability

v Magnetic permeability of the vacuum
Vv Scalar magnetic potential

J Electric conduction current density vector
A Magnetic potential vector

©; Form functions

U Trial functions

Ds Computation domain

Y = Sp U Sy Surface which bounds the computation domain

1 Introduction

Finite element analysis (FEA) applies to a wide variety of electrical engineering
applications, including solid mechanics, fluid mechanics, heat transfer, acoustics.
The description of the modalities of applying the FEA within the different disci-
plines is quite complicated, because it involves the use of an abstract mathe-
matical approach, while the particularization of a domain or discipline limits the
mathematical abstraction [1].

The finite element method (FEM) is a technique utilized in the process of obtaining
approximate solutions of the boundary values for mathematical physics problems.
This method was first proposed in the 1940s and began its journey in the early 1950s
for aircraft design. Later, this method was developed and has been widely used in
structural analysis problems and on a smaller scale in other areas. At present, this
method is recognized to be one of the general methods with applicability in various
fields, from those related to engineering and to mathematical problems [2].
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Fig. 1 Methods and theories on which FEM is based

There are many papers written in this field, yet Zienkiewicz’s book is one of the
most well-known texts of this genre. Zienkiewicz and Cheung have given a wide inter-
pretation of FEM and practically underlines FEM’s applicability to any engineering
problem. With this general interpretation, FEM equations can also be obtained using
the weighted residuals method, such as the Galerkin method or the least-squares
approach. All of these have led to an increasing interest among specialists in applied
mathematics, applying FEM for solving linear and nonlinear problems. A plethora of
literature on the topic, from conferences and books, confirms the continuous scien-
tific interest in FEM. The application of FEM in the current engineering applications
has its fundamentals in the theories and methods synthesized in Fig. 1 [3—12].

Computers provide fast means of performing a large volume of calculations
involved in FEA and made the method practically applicable. FEM requires the
utilization of computationally powerful computers. FEM application has progressed
at an impressively high speed due to the development of high-speed digital computers.

The necessity of improving the performances of electrotechnical and elec-
tronic components leads to the development of the electromagnetic field compu-
tation methods. These problems imply solving some complicated equation systems
containing partial derivatives. If the laws referring to the materials (called “laws
of material”) are linear (linear media), then the corresponding systems are linear.
Most of the time, the laws of material are not linear; therefore, the corresponding
systems of equations are not linear. The computation of such systems involves many
iterations (i.e., “iterative manner”), at each iteration being computed a linear field
problem, using the known procedures from the linear media.

In engineering practices, electromagnetic field problems are of two main types:
analysis and synthesis problems. Analyses problems consist of determining the
corresponding magnetic field to some given uniqueness conditions problems.
Synthesis problems consist in determining the configurations capable of producing
an electromagnetic field holding some characteristics.
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In principle, a synthesis problem can be solved by an iterative technique, repeating
the solving of some analysis problems, for configurations adapted because of some
preliminary results of analysis simulations.

Whereas using a mathematical approach as a classification criterion, there are
analytical methods and numerical methods. Analytical methods utilize a set of equa-
tions (in general, with partial derivatives) of the electric and or magnetic field directly.
Such methods of computation require simple enough applications (e.g., configura-
tions with some symmetries). However, they may have their niche, as auxiliary means
in more complex studies.

The numerical methods seek to determine the solution in a discrete set of points
in the studied domain. Although apparently, the numerical methods can approach the
most real problems of determining some electromagnetic fields, the reality is much
more “modest.” Even if some calculus systems get more and more capable and more
and more approachable, numerous limitations persist in this domain. Despite the
abundance of performant (and generally expensive!) software packages commer-
cially available, addressing the problem of numerical computation of electromag-
netic field, there is a strong demand for proper knowledge of electromagnetism
when it comes to modeling. Nowadays, having access on a large scale to performant
computers allowed numerical methods to gain more steam.

Firstly, scientists developed and applied the Finite Difference Method (FDM),
which originated from the expansion of Taylor series. FDM has its well-known
drawback when it comes to express the Neumann boundary conditions at interfaces.
The answer to such a problem was the development of the Finite Element Method
(FEM), which conveniently addressed some limitations of the FDM, particularly the
“stiffness” in the construction of the meshing scheme.

The main goal of this chapter is to give an insight into the theoretical approaches
of the FEM. The construction of the finite element approximation relies on partial
differential equations as expressions of the solutions defined by a partition of the
field study in disjoint elements, called “finite elements” (FE), giving the name of the
method. Although such an approach looks similar to the FDM, the procedure used
in FEM is different.

This chapter starts with a presentation of the importance of the principle of the
FEM. The description of the electromagnetic field (and a field in general) appeals
to several formulations for its equations, including the integral form of laws and the
differential forms of laws.

In terms of a concrete approach, FEM has two main variants: the Galerkin method
and the Ritz method. The distinction between these approaches is not always obvious.
For this reason, the terminology may show some differences (i.e., the Ritz method is
sometimes called the Ritz-Galerkin). The sections of this chapter contain a detailed
presentation of these methods.

The so-called “weak formulation” of the electromagnetic field equations charac-
terized the Galerkin method; therefore, it is presented the weak form using the scalar
electric potential and weak form using magnetic vector potential, followed by the
principle of the Galerkin method.
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For a better understanding, each section comes with clear examples. In such
examples, the FEM turns to be extremely flexible and easy to customize, pending
upon the type of problem in place for analysis (e.g. electrostatics, magnetostatics,
AC analysis, transient analysis and the geometry, 2D or 3D).

The chapter ends with the conclusions section, and a comprehensive set of
bibliographic references accompanies it.

2 The Principle of Finite Elements Method (FEM)

In many situations, existing analytical equipment is not enough for finding the exact
solution (or, in some cases, the approximate one) for problems with immediate prac-
tical application. The basic idea in FEM is to get the solution to a complex problem
by replacing it with a less complicated one.

The basic idea is that if the structure suffers a division into several parts called
“finite elements”. For each of them, it follows the application of the computation
theories corresponding to the adopted schematization. The division of the whole into
smaller parts, an operation that is called “discretization,” has the effect of obtaining
simple forms for the finite elements of the structure. The calculation model used in
FEA is approximate, obtained by assembling finite element components, considering
the geometry of the structure. The connection of the finite elements is made only
at specific points called nodes. The nodes represent the intersection points of the
straight lines or curves of the finite elements. Function of the structure’s modeled
geometry, the finite elements can be 1D, 2D, or 3D kind. Usually, the nodes are points
placed on the contours of the element, being points of connection with the adjacent
elements of the mesh. A simple function can approximate the variation of the field
inside the domain of an FE. These approximation functions (interpolation models)
are extracted from the nodes’ values of the field variables [13-16].

The approximate character of FEM results from the replacement of the real geom-
etry with a finite element network that follows the original form but can be accurately
reproduced only for specific geometries. The finite number of elements imposes
the calculation of unknowns only in the nodes of the structure. Consequently, the
computation precision increases as the number of finite elements increases.

FEM relies on the concept of constructing complicated objects from simpler
objects or dividing complicated objects into simpler objects, suitable for the
application of known computation schemes.

Steps of applying FEM

1. Study of the structure

This step is essential for choosing a computation model and the types of finite
elements suitable to reproduce as accurately as possible the real structure. The choice

of the types of finite elements follows the demands regarding the precision and quality
of the results we want to obtain [17-19, 21].
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2. The discretization of the structure (mesh building)

In this step, the objective of the discretization mechanism, in areas of interest, must be
to obtain as small as possible finite elements in the area of interest. The transition from
areas with small finite elements to large finite elements must follow a progressive
pass. When choosing the discretization mode, one must not distort the finite elements.
Most of the professional programs dedicated to FEM analysis provide modules of
data preprocessing and make automatic discretization.

Moreover, in these cases, verifying the configuration of the used finite elements is
an essential step in solving the problem with minimal errors in the proposed analysis
[20].

The electromagnetic field equations require adequate formulation for applications
in the energy problems domain.

The laws, expressed in two kinds of forms, integral, respectively differential,
address the FEM problem formulation Furthermore, Galerkin’ s Method applies the
so-called weak form of laws. In contrast, Ritz’s Method considers the variational
form based on minimizing a function that derives from the field equations.

FEM or FEA is a computation technique used to obtain approximate boundary
value problems (BVP) in engineering. BVPs are also known as field problems.

The field represents the area of interest, and most of the time, represents a phys-
ical structure. Domain variables are those dependent interest variables governed by
differential equations. Boundary conditions (BC) are those specific values of domain
variables (or related variables such as their derivatives) attached to the domain bound-
aries. Certain differential equations, followed by a set of constraints, called boundary
conditions, are assembling the BVP problems. Finding the solutions for such prob-
lems, one applies either the Galerkin Method or Ritz Method mentioned before. The
distinction between these approaches is less clear than it seems. For this reason,
the terminology may also have some differences (for example, the Ritz method is
sometimes called the Ritz-Galerkin) [21].

3 Galerkin Method

3.1 Weak Form of Equations of the Steady-State Magnetic
Field

Galerkin Method requires the so-called weak formulation of the electromagnetic
field equations [22].
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3.1.1 Weak Form Formulation Using the Scalar Magnetic Potential

Let us consider a magnetostatics field problem, in a domain in which there can
exist bodies with permanent magnetization. For simplicity, we assume there are no
discontinuity surfaces. The corresponding field equations are [22, 23]:

f Hdl =0 — H = —gradV (Magnetic circuit Law) @))
r

B =pH + woM, = \wH + I(Material Law) 2)

where the vectors: M,—the “permanent magnetization”, I—"“magnetic polariza-
tion” (with its components permanent and temporary), B—“magnetic flux density”,
H—*“magnetic field strength”, respectively the scalars: p—*“absolute magnetic
permeability” of the medium, and pwy—“magnetic permeability of the vacuum”.

% Bds = 0 — divB = 0(Magnetic Flux Law) 3)
b

From Egs. 3.1, 3.2, 3.3, it results:

divB = 0 = —div(p gradV) + divl 4
where V is the scalar magnetic potential. If we define the “magnetic charge”, having
the density p = —divl, the following equation becomes:

—div(p gradV) = p )

Regarding the computation domain from Fig. 2, one uses the notations by Dy—
the computation domain, respectively ¥ = Sp U Sy, (Sp N Sy = 0), the surface
which bounds the computation domain (Fig. 2).

Fig. 2 Computation domain
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On this surface X, the boundary conditions can be:
Dirichlet conditions

V(P)= f(P), P € Sp (©)
Neumann conditions:
dV(P)
= g(p), P €Sy (7N
n

We are about to consider the functions Y = {Ul: with the following properties:

— its square and derivatives are integrable
— is equal to zero on Sp:
UP)=0,PecSp 3

The domain of definition for function U(r) is Dy.
By multiplying the Eq. (3.5) with this function, followed by its integration on the
domain, it results:

/ Udiv(u gradV)dQ = — / oUSQ ©)
Dy, Dy

At this point there is a computational procedure that involves calculations in both
differential and integral form, as follows:

div(U (i gradV)) = Udiv(w gradV) + p gradU gradV (10)
or, by using Gauss-Ostrogradski relation:
av
/ugradU gradV3Q = / pUd2 + jg pLUd—dS (11
n
Dy, Dy D)

From (8),in (11) the surface integral refers only to the Neumann conditions surface
SNZ

av
/ugradUgrachSQ:/pU(SQ+/uUd—dS (12)
n

Dy Dy SN

respectively
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/ugradUgradVBQ:/pU89+/ugUdS (13)

Ds, Ds, NN

The above equation is the “weak form” of the magnetic field equation using scalar
potential, and therefore the solution is called the problem’s weak solution. It has this
name because to obtain the solution, the imposed conditions (derivability, continuity)
are less restrictive than those imposed in the “strong form.”

3.1.2 Weak Form Using the Magnetic Potential Vector

The considered problem refers to the steady magnetic field, where there are
permanent magnetization bodies and conductors circulated by currents. Again, for
simplicity, there are no discontinuity surfaces. The corresponding field equations are
(14) the magnetic field law (Ampere’s Theorem), (15) the magnetic flux law (Gauss’s
Theorem) respectively (16) the law of material [23, 24]:

?{Hdl:%JdS—)rotH:J (14)
I Sr
deS:0—>B:rotA (15)
»
B =uH + uoM, (16)

where J represents the vector of electric conduction current density.
From Egs. (14), (15) and (16) results:

porotM

1
H= —rotA — (17
u

1 tM
— rot(—rotA _ Hoto ) =]
n

where A represents the magnetic potential vector. If one defines Jj = ““’l—‘:’M, it
results:

1
rot(—rotA) Ty =Yr Jr =T+ I (18)
m

Dy is the computation domain and is bounded by the closed surface ¥ = Sp U
Sn((Sp N Sy = V) (Fig. 3). The boundary conditions on this surface are:

— Homogenous Dirichlet conditions, (which comes from the limit condition
expressed using the normal component of the vector representing the magnetic
flux density or induction B)
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Fig. 3 Computation domain

Ss

SH

nx Als, =b,PeSy (19)

— Neumann conditions (from the limit conditions expressed for the tangential

component of the magnetic field strength H):

1
n x (—rotA>|s“ =h(P),P e Sy (20)
"

Let us consider the vector function: U (r) defined in Dy.
Let Y = {Ul:, be the set of vector functions, with the following properties:

— its square and derivatives are integrable
— there is the following fulfilled condition on Sg:

nxUls, =0,PeSg 21)

Then, the Eq. (18) multiplied by the function U, and integrated on the given

domain leads to:
1
/ Urot(—rotA)SQ = / UlréQ2 (22)
"

D): DE

Using the identity:

. rotA rotA rotA
divi{U x — | =rotU — Urot| — (23)
2 2 2

results:
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1 . rotA
/—rotUrotASQ:/UJTSQ+fd1V Ux —)5Q 24)
u

m
Ds Ds Dy

or, by applying Gauss-Ostrogradski:
1 rotA
—rotUrotAéQ = | UJr6Q2 + U x — |ndS (25)
Ds o Dy ) o

The application of the identities:

rotA rotA rotA
<Ux—)n:(nxU)—:—<nx )U (26)
n w

uw

gives the possibility for decomposition of the surface integral into the sum of two
surface integrals Sg and Sy

1 tA (A
/—rotUrotAssz =/UJT<SQ+/(n x U)&dS—/U<n x &>ds
Jom : n m

Dy
(27)

n

In the Eq. (37), whereas considering the condition on the surface Sy, we’ve
obtained:

1
/—rotUrotASQ:/UJTSQ—/hUdS (28)
n

Dsx Dsx Sy

Equation (28) is the “weak form” using the magnetic potential vector of the
magnetic field equation. Therefore, the solution is the “so-called” problem’s weak
solution.

3.2 The Principle of the Galerkin Method

The Galerkin method requires the application of the following procedure [22, 23]:
a. The domain is divided (discretized) in disjoint finite elements
Depending on the function of the nature of the unknown (scalar or vector) and the

configuration (2D or 3D problems), one can use various types of discretization.
There are the following notations in place:

N the number of the nodes corresponding to the discretization mesh
Ne the number of elements of the discretized domain
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I  the number of nodes of the network
Ip the set of nodes with Dirichlet conditions.

b. Seek solution of the following form:

Vi)=Y Vigi(r) (29)

iel

for the case when the unknown is either a scalar field (e.g. scalar magnetic potential),
or even the magnetic potential vector. The quantities V;, i € I are the unknowns in
the network’s nodes. One can impose some of the unknowns following the using of
Dirichlet type conditions.

The functions ¢; are called form functions and have the following property:

lr=r _.

(pi(r)Z{Oryéri’lEI (30)

The function ¢; attached to the node i € N is equal to 1 in this node and O in the
remaining nodes. The case of vector fields is treated using a similar procedure.

c. Use the weak form of the equations for a complete set of trial functions ¥; € Y,
i € N. The computation of the integrals present in the weak form, utilizes the
analytical expressions of the form functions ¢; and of the trial functions ;,
resulting a system of N algebraic equations with N unknowns.

The same function can have both either form and test function, such that, which
is a characteristic of Galerkin Method.

d. Solve the equations system obtained at point c.

Remarks

(1) The Dirichlet conditions are active from the beginning of the approximation
expression of the solution. That’s why they are called essential conditions.

(ii)) Neumann conditions don’t act directly on the set of functions in which the
solution is searched for. They implicitly appear in the weak form of the solution.
For this reason, the Neumann condition are also called “natural conditions”.

3.3 Approximation Using Finite Elements

FEM, Galerkin and Ritz use the approximation with finite elements.
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3.3.1 2D Finite Elements

a. Local approximation

The 2D finite elements used to discretize a given domain are disjoint polygonal
domains, whose reunion aims to cover as well as possible the shape (exact or approx-
imated) of the domain on which the two variables function under study is defined
[23].

The most common case is that corresponding to the linear triangular finite
elements, presented as follows: (Fig. 4).

Let’s consider one of the triangular elements (e), with the nodes i, j, and keN,
labeled using the direct trigonometric direction (counterclockwise) (Fig. 5).

For linear elements, the form functions are linear and inside each element, they
can have value one in one of the nodes, being zero in the remaining ones:

lr=r ..
@fn:{or#rm;mzz,],k (31)

Let be one form function, corresponding to node i. It can have a polynomial form
(Fig. 6):

¢ (x,y) = ax + by +¢ (32)
From the definition condition, results:
(P = aix; +biy; +¢i =1

(p?(Pj) = aiXj + biyJ' +¢=0

Fig. 4 Creating the mesh in
a plane domain using
triangular finite elements
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Fig. 5 Triangular finite I
element
Pk

Vi

=1~

-

Fig. 6 Linear form function

¢;(P) = aixk + by, +¢ =0 (33)

The unknowns a;, b;, ¢; are the solution of the following system of equations:

xi yi || a 1
X;j Y 1 b,‘ =10 (34)
X v 1 ci 0

Using Cramer rule, it results:
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|:yi 1]
— Yk 1_ _ Yi™Yk __ YiTVk

a; = =
! Aijk Ajjk 28ijk
1 Xj
b' _ 1 'xk Jd xk—Xj _ xk—Xj
P A T A T 28

Xk Yk

Cc: = — NVRTARY) Xk
! Ajji Aijk 28ijk
where
xi il
Ajje =1 x;y; 1 | =28u
X ye 1

and Sy is the area of the triangle ijk.
Replacing the expression of the function ¢; for the element (e), results:

1 yi 1 1 x; Xi V;
etz b2
Gy 2Sik \ Ly 1 1 x Y Xk Yk

1
Qi (x,y) = 250 ((v; = w)x + (xx — x;)y + (%536 — xy;))
ij

The above relation has the following replacement:

x y1

)Cj yj 1
. . X yi 1 28pjk _ Spejk
¢ (x, y) = ¢{(P) = ===
28k 28;jk Sijk

where P (x, y) is a point inside the triangular element.

75

(35)

(36)

(37

(38)

(39)

One can express the barycentric coordinates of a point P € e, defined as the ratios
between the areas of the triangles consisting of this specific point and each branch

and the area of the triangle (Fig. 7).

The three values are not independent, being related by the completeness relation:

)\i+>\j+)\k=1

(40)

Each barycentric coordinate associated with a branch has an association with the
opposite vertex. It is equal to zero when the point belongs to the branch and is equal to
1 when the point is in the associated vertex. The interior of the triangular element can
be graded using parallel lines associated with the three barycentric triangles (Fig. 8).
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0.25 |0

“\a{:',

W)

Fig. 8 Barycentric coordinates associated with the elements of the branches

The cases presented above correspond to the triangles with sharp angles, because
they are appropriate. The presence of obtuse angles leads to numerical difficulties.
The scalar function defined inside of the element has an approximation determined
by its values in the element’s nodes, using the relation:

VeQr) = Zm:i,j,kee Vil (r); 1 € e; (41)

Another approximation of the function inside the element uses the barycentric
coordinates:

Ve(r) = Z’n:[jkee Varo(x,y);r e (42)
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Fig. 9 Linear global O
approximation function
attached to a node

b. Global approximation

The assembling of local approximations (for each finite element) represents a prelim-
inary condition for obtaining a global approximation, for the entire domain. The
global approximation function attached to one node is the reunion of the local inter-
polation functions for all the elements which has in common the respective node
[23]. Consequently, the function is equal to 1 in the node to which is attached and
equal to zero in the remaining nodes. For linear interpolation functions, the global
interpolation function attached to a node is:

@i, ) =Y @)=Y N yiel (43)

e—i e—i

where Y ...represents the sum for all elements containing the node i; /—the mesh’s
e—i

set of the nodes. Such a function has a pyramidal shape, having as base the reunion
of the triangles of the component functions (Fig. 9):

supp ¢; = U suppoi;i €1 (44)

e—i

The global approximation of a function V (x, y) defined on the given domain and
which has the values V; in the network’s nodes will be:

V)~ Y Vigitx, y)si el (45)

3.3.2 3D Finite Elements

The presented principles apply for the 3D case, as well. The simple solution consists
of discretizing the domain (building the mesh) in elements having the shape of a
tetrahedron. The neighboring tetrahedrons have a common face, and inside each
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tetrahedron, the interpolation function is linear. The presentation of the case is the
following section.

3.4 Galerkin Method Using the Scalar Magnetic Potential

3.4.1 Parallel Plane Field Computation

For simplicity, we consider only the case of parallel plane field in which the
unknown—the scalar magnetic potential V depends only on the x and y coordinates
[21, 23]. Consequently, the computation domain is represented by the transversal
section St bounded by the curve I' (Fig. 10).

The boundary conditions:

— Dirichlet conditions:

V(P)= f(P); PeCp (46)
— Neumann conditions:
dv(P
d( ) g(p), P € Cy 47)
n

In this case, the weak form of the equations expressed using the scalar potential,
becomes:

Fig. 10 The computation
domain for the 2D problem

FZCD UCN
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/ p gradU grad VdS = / pUdS + / pgUdl (48)
Sr Sr Cy

Approximation using finite elements

We adopt a discretization using triangular elements and linear form functions. So,
the approximation of the vector potential V is the relation (3.54). At the limit, the
condition becomes:

V(P), —Vi— f(P),PeCp=iclp (49)
d‘;ip) =g(P),PeCy=icl\Ip (50)

where I are the nodes fulfilling Dirichlet conditions. According to the principle of
Galerkin method, the trail (form) functions belong to the same class.
It results that:

/ugrad(Z W(p,-)gradnpjds = / pe;dS +/M8(del; Vjel D
Sr iel Sp Cx

or, condensed:

ZaﬁVi =b;+c;Vjel;[a]l[V]=I[d] [d] = [b] + [c] (52)

il
where
aij = f n gradg; grade;dS; i, j € I
b = fp(p]dS jel (53)
f ugcp]dl jely
Because the nodes i € Ip in which there are given the Dirichlet conditions and

the values of V are the known, the corresponding terms from the equations system
appears put on the right side:

Z aj,-V,»:bj—f-cj—ZajiV;;VjeI\lD (54)
iel\Ip ielp
[al[V]=1[dl:d; =b;+c;— Y aifije\p (55)

iGID
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Fig. 11 The integration
domain for computing the
coefficients

The coefficients of the equations system
— The aj; coefficients.

The interpolation functions ¢; and ¢; have as a support the reunion of the finite
elements which has in common the nodes i, respectively j, according to relation
(3.53). If we denote the support of the interpolation function ¢; with S;, the integral
from the expression of the coefficient a ;;, must be computed only on the intersection
of the support functions ¢; and ¢;, §; U S;:

aj = f W grade; grade;dS; (56)
S,‘USJ

These coefficients display the property of symmetry: a;; = a;; (j # i)

The only elements which intervene are those attached to the nodes i and j,
connected by a segment (Fig. 11).

The form functions corresponding to i and j from the first of the two elements
(e.jk) which has in common the branch 7 are:

o (x,y) = ((yj — )X+ (% —x;)y + (x5 — xey5)) 57)
e’” (x,y) = A;(()’k — y)x + (5 — x0)y + (Xyi — X))
It results:
grade;” (x, y) = 5= ((v; — )i + (o — x,)j) 58)
grade}" (x, y) = A;((Yk — Vi + (i = x0) j)

Similarly, for the second element bounded by the ij branch (ejin element), the
system of equations becomes valid:
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jim
€jim 1

grade;" (x, y) = = ((ym — y;)i + (x; = x) J) 59)
grade; " (x, y) = z (i = ym)i + (Xm — Xi) J)

Replacing these expressions, it results:

aj = / 1 gradg;" grade’"dS + / (o grade;" grade"dSi, j € I, j #i (60)

respectively:
ds
aji =/ [(v; = )i + (e — x;) 7 [ — ¥)i + (xi — x0) /] = 5
o (Aje)
ds
+ / [(ym - yj)l + (xj _xm).]][())l - ym)l + (xm _xi)j]ﬁ; ] 7&1
Cijk Jim
(61)
a :(J’j — )k — yi) + (szk —x;) (x; — x) /MdS
(Aijx) o
+ (ym - YJ)()’z - y;'n) + (zl _xm)(-xm _xi) / /,LdS, ] ;él (62)
(4jim) e

The computation of the integral must target the form function ¢;; attached to node
J» represented by the reunion of all finite elements which have in common the node
J and the interpolation functions ¢; and ¢;.

ajj = /ugradchde;j el (63)
S

It results:

(A)?

2 2
ajjzz(yf_y") + (o =) /MdS (64)

e—j

To compute the integrals, one adopted the hypothesis referring to the magnetic
permeability repartition in the mesh elements. The simplest approximation consists
of considering a constant permeability L, for the mesh elements (e).

For this approximation, we’ve obtained the following coefficients of the system:
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(vj = ) Ok — yi) + (i — x;) (xi — x3)

a'i = Cijk
' 2(Aije)
m — Yj i~ Ym + i — Am m — Al
1 bm = 2)) 0 = ) (x; xn) & DA (69)
2(Ajim)
(v; — yk)2 + (v — xj)2
o . 66
ajj Z} 22 (66)

— The b; coefficients.

In relation (62) the integral computation involves the support of the form function
¢;, which represents the reunion of the finite elements that has in common the node

J-
b; Z/p(pjdsz prq)de;j el (67)
Sj eajsj

For simplicity, we’ve assumed that the function p is constant inside the finite
elements. It results:

bf=Z/F"P?d5=zpe/<pjd5=Zpe/x;ds;jel (68)
Sj s;

e—j 5 e—j e—j
The computation of integrals requires the use of the Holland-Bell formulae [14]:

/ AAPNdS = 25,-]-,{& = Aijk& (69)
t (a+p+v+2)! (@a+p+vy+2)!

S[/k

This case corresponds to o = x =0, p = 1, and the result is:

A
/ hyds = St (70)
Sijk
Furthermore:
Pele .
bj:Z G ;] €1 (71)
e—j

— The c; coefficients.

In relation (62), the integral computation involves the support of the form function
¢; corresponding to a point placed on the boundary with Neumann conditions, which
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Fig. 12 The integration
contour for computing ¢;
coefficients

represents the reunion of the finite elements which have in common the node j and
which have one of the branches on the Cy boundary.

/ug%dl > /ug%dl jely (72)

Cx e%‘]GINC
If, for simplicity, one admits that the magnetic permeability i and the Neumann

boundary condition (g) have constant values inside the involved finite elements, it
results:

= > ug/<p,dl > uegefx dl = [tege / Ndlii, j € Iy

e—jely e—jely e—>]eIN ij
ijely
(73)
Using one of the Holland-Bell formulae [14], results (Fig. 12):
18!
/ b = Ly — 8P (74)
J / T(a+p+ D!
ij
fora =0,p=1:
2 2
Ly E+x) +0i+y
ijdz=7f=\/(’ ’)2(’ ) (75)

ij

Consequently:
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2 2
Li \/(x,- +x)" + i +y)
Cj = Z pvege% = Z We8e ) i, €Iy (76)
e—jely e—jely
i€iy LELN

Building the equations system
The matrix of the equations systems has the following properties:

— Itis symmetrical aj; = a;;.

— It is sparse (the number of non-zero elements is relatively small).

— It is positively-defined.

— Using a convenient labeling of the nodes, the matrix can have a band structure;
the wider the band is, the more advantageous is.

These particularities are exploited by using adequate equation system computation
techniques. This is a common subject for all numerical methods.

3.5 Galerkin Method Using the Magnetic Potential Vector

3.5.1 Parallel-Plane Field Computation

Let us consider the case of parallel-plane fields, in which the vector potential has an
orientation along the oz axis (Fig. 13).
The boundary conditions are, for 3D problems, those given in paragraph 3.2.1.2:
For parallel-plane fields, these conditions become:

A(x,y) = f(P),PeCp 77

Fig. 13 The computation
domain for 3D problem
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1 dA

w dn

=g(P), PeCy (78)
Cn

The weak forms of the field equations are given by the relation (79):
1
/—rotUrotABQ = / UlrdQ —/hUdS (79)
D o D D

For parallel-plane magnetic fields:

A=kA(x,y) > 10tA =—k x VA (80)
U =kU(x,y) > rotU = —k x VU 81)
Jr =klr(x, y) (82)

From these relations results:

rotUrotA = (—k x VA)(—k x VU) = VAVU (83)
tA —kxA 1 dA

hU = <n x 2 )U - <n x =X )kU = -y (84)
R n n dn

The weak form becomes:

1 1dA
—gradUgradAdS = | UlpdS+ | ——UdI (85)
R n dn

Sc Sc Cn

The resulting expression is similar to the one used for solving the problem using
the scalar potential. The necessary transformations are obvious. Therefore, all the
above-presented considerations are valid for the present case.

4 Numerical Example

The subject of the numerical modeling is a three-phase squirrel-cage induction motor
with the following ratings: nominal power P,, = 7.5 kW synchronous speed n; = 3000
rot/min (one pole pair), nominal voltage V,= 380 V, nominal frequency f ;= 50 Hz,
Y-connected. The copper made distributed stator winding has one layer, whereas,
the squirrel cage is molded from aluminum [27, 28].
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Starting with Maxwell’s equations, one can conclude the mathematical model of
the induction motor in the quasi-stationary harmonic magnetic regime as [25-27]:

(a) In the stator winding area:
rot[v(B) -rotA] =J (86)
(b) In the areas of the rotor bars:
rot[v(B) - rotA] = —o(jwA + gradV) (87)
(c) In the air gap and core ferromagnetic areas:
rot[v(B) - TotA] = 0 (88)

One can express the relationship between the vector potential and the scalar
potential as (89):

div[—o(jwA + gradV)] =0 (89)

The application of Coulomb calibration condition turns the system of Egs. (86)—
(89) the “AV” formulation (90), (91):

rot[v - rotA] — grad(vdivA, ) + o(jwA + gradV) =0 (90)

div[c(jooé + gradK)] =0 on

The axial symmetry of the induction motor cross-sectional area makes the 2D
FEM appropriate. Circular symmetry gives the possibility to reduce the area of the
cross-section to an area covered by a pole-pitch, as in Figs. 14 and 15. The borders
of the domain are the axis of the cross-sectional area, the stator’s external surface,
respectively, the internal surface of the rotor’s magnetic circuit [28].

Fig. 14 Calculation domain
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Fig. 15 Discretization detail

There are subdomains displaying distinct physical properties as following:
following

STATOR (blue), nonconductive magnetic region.

STATOR TOOTH (blue), nonconductive magnetic region.

ROTOR (blue), nonconductive magnetic region.

ROTOR TOOTH (blue), nonconductive magnetic region.

AIR GAP(yellow), nonconductive nonmagnetic region.

INSULATION (cyan), non-conductive nonmagnetic region.

PHASE]1 (in red), PHASE2 (in green), PHASE3 (in yellow), nonmagnetic
nonconductive regions made of fascicular conductors placed into the stator’s slots:
in this way they are not subjected to eddy currents.

e BARI1,BAR?2,...,BAR14 (magenta), regions of massive conductor type nonmag-
netic placed inside of the 14 slots of the rotor included in the calculation
domain.

Triangular finite elements participated in the domain meshing process. The air
gap requires a discretization of higher elements density due to a higher magnetic
field variation: discretization starts from the air gap towards exterior.

In the quasi-stationary regime of the magnetic type, the rotor has a fixed position
relative to the stator. The sources for the magnetic field are in such a case, either
the densities of the currents circulating in the stator winding. If the motor operates
energized from a three-phase voltage supply, one must solve a circuit-field coupled
problem. Following the definition and discretization of the calculation domain (mesh
build-up), the allocation of the physical properties to the regions is the next step. For
example, the magnetic core is characterized by the magnetization curve B = f(H) as
in Fig. 16. Moreover, the boundary conditions impose a vector potential null at the
exterior of the stator magnetic core and anti-symmetry properties for the boundary
sections defined by the two axes of symmetry.
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Fig. 16 Magnetization
curve of the stator and rotor 2 b
magnetic core

H [A/m] x 10

The magneto-harmonic model of the induction machine runs for constant slip,
respectively, constant rotor speed. For this type of simulations, there is no relative
movement between the stator and the rotor. Due to the presence of the stator and
rotor slots, simulation results depend on their positions. There is a requirement to
determine that particular position of the rotor for which the electromagnetic torque
is equal to average electromagnetic torque for a cycle of variation, whereas the rotor
relative position to the stator changes. There, such a position requires a rotor rotation
with two degrees. The simulations of interest point out to the full load and to the
starting as well (Figs. 17, 18 and 19). From Fig. 16, one can visualize the map of the

Quantity: Flux density/Tesla
Slip 0.034 Pos (deg): 2 Phase
(deg) 0

Scale/Color

150.712€-3 / 301.406E-3
301.406E-3 /452.099E-3
452.099E-3 / 602.792E-3
602.792€E-3 / 753.485E-3
753.485E-3 /904.179E-3
904.179E-3 / 1.05487
1.05487 / 1.20557
1.20557 / 1.35626
1.35626 / 1.50695
1.50695/ 1.65765
1.65765/ 1.80834
1.80834 /1.95903
1.95903/ 2.10973
210973/ 2.26042
226042/ 2.41111

Fig. 17 The magnetic field induction distribution at full-load
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Quantity: Current density/A (square mm
Slip 0.034 Pos (deg): 2 Phase (deg) 0
Scale/Color

3.84556 [ 3.9524

3.9524 /4.05924

4.05924 / 4.16609

4.16609/4.27293

4.27293 / 4.37977

437977/ 4.48661

‘ ‘ ' ' 4.48661/ 4.59345
‘ ' ' 4.59345 / 4.7003

s . ‘ ’ 4.7003 / 4.80714
~ ’ ' 480714/ 4.91398

‘ 491398 / 5.02082

5.02082/ 5.12766
[ . i 5.12766 / 5.23451
-- - 5.23451 f 5.44819

5.44819 /5.55503

Fig. 18 The current density distribution in the stator and rotor windings

Quantity: Flux density/Tesla
slip 1 Pos (deg): 2 Phase (deg) 0
Scale/Color

77.8467E-6 [ 184.971E-3
184.971€-3/ 369.866E-3
369.866E-3 / 554.760E-3
554.760E-3 [ 739.654E-3
739.654E-3 [ 924.548E-3
524.548€-3 /1.10944
1.10944 /1.29434
1.25434 /1.47923
147923/ 1.66412

1.66412 / 1.84902

1.84902 / 2.4037

24037/ 2.5886

25886/ 2.77349

2.77349 /295838

5.44819 /5.55503

Fig. 19 The magnetic field induction distribution at starting

magnetic induction in the cross-sectional area at full load. The stator teeth adjacent
to the slots containing phase coils carrying the highest instantaneous current, suffer
the highest magnetic stress with the magnetic induction, B = 1.8 T. Similarly, in the
rotor region teeth adjacent to bars carrying the highest instantaneous current carry a
magnetic field having the induction B = 2.4 T. The current density in the rotor bars
varies between 4.7 and 5.5 A/mm?. At starting, the magnetic induction is B=2.6 T
in the stator’s teeth, 1 T in the stator’s yoke, whereas the current density in the rotor
bars varies 4.7 and 10 A/mm?.
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5 Conclusions

The necessity of improving the performances of electrotechnical and electronic
components leads to the development of the electromagnetic field computation
methods. These problems imply solving some complicated equation systems
containing partial derivatives. The manner of computation of such systems involves
many iterations.

In engineering practices, electromagnetic field problems are of two main types:
analysis problems, which consist of determining the corresponding magnetic field to
some given uniqueness conditions and synthesis problems, which consist in deter-
mining the configurations capable of producing an electromagnetic field holding
some characteristics.

The numerical methods seek to determine the solution in a discrete set of points
in the studied domain. Although apparently, the numerical methods can approach the
most real problems of determining some electromagnetic fields, the reality is much
more “modest.” Even if some calculus systems get more and more capable and more
and more approachable, numerous limitations persist in this domain. Despite the
abundance of performant (and generally expensive!) software packages commer-
cially available, addressing the problem of numerical computation of electromag-
netic field, there is a strong demand for proper knowledge of electromagnetism
when it comes to modeling. Nowadays, having access on a large scale to performant
computers allowed numerical methods to gain more steam.

Firstly, scientists developed and applied the Finite Difference Method (FDM),
which originated from the expansion of the Taylor series. FDM has its well-known
drawback when it comes to express the Neumann boundary conditions at interfaces.
The answer to such a problem was the development of the Finite Element Method
(FEM), which conveniently addressed some limitations of the FDM, particularly the
“stiffness” in the construction of the meshing scheme.

This chapter provided an insight into the theoretical approaches of the FEM.
The construction of the finite element approximation relies on partial differential
equations as expressions of the solutions defined by a partition of the field study in
disjoint elements, called “finite elements” giving the name of the method. Although
such an approach looks like the FDM, the procedure used in FEM is different.

In terms of a concrete approach, FEM has two main variants: the Galerkin method
and the Ritz method. The distinction between these approaches is not always obvious.
For this reason, the terminology may show some differences (i.e., the Ritz method is
sometimes called the Ritz-Galerkin). The sections of this chapter contain a detailed
presentation of these methods.

The so-called weak formulation of the electromagnetic field equations character-
ized the Galerkin method; therefore, it is presented the weak form using the scalar
electric potential and weak form using magnetic vector potential, followed by the
principle of the Galerkin method.

For a better understanding, each section comes with clear examples. In such
examples, the FEM turns to be extremely flexible and easy to customize, pending
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upon the type of problem in place for analysis, like electrostatics, magnetostatics,
AC analysis, transient analysis, and geometry, 2D or 3D.
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Abstract The chapter presents some advanced numerical methods based on Artifi-
cial Intelligence (AI) techniques applied to specific electrical engineering problems.
A theoretical description is done regarding the basic aspects of the nowadays most
commonly used Al techniques: Neural Networks, Fuzzy Logic, and Genetic Algo-
rithms respectively. The presented Al techniques are exemplified through two specific
electrical engineering application implemented by the authors in their previous
research projects. The first application consist in the identification of the optimal
equivalent horizontally layered earth structure by means of a Genetic Algorithm
according in site soil resistivity measurements. The second application provides
a Neural Network alternative two evaluate the impedance matrix that describes
the electromagnetic coupling between overhead powerlines and nearby under-
ground pipelines for different separation distances and various vertically layered
soil structures.
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EA Evolutionary Algorithms
FEM  Finite Element Method
FL Fuzzy Logic

FLS  Fuzzy Logic Systems
GA Genetic Algorithms
HVPL High Voltage Power Line
MGP Metallic Gas Pipeline
ML Measurement Location
NN Neural Networks

SM Surrogate Models

1 Introduction

The first definition for Al, which is still one of most accepted ones, was given in 1955
by McCarthy: “making a machine behave in ways that would be called intelligent if
a human were so behaving” [1].

The Al technics represents a class of heuristic methods for solving the last decade’s
issues, that were born from the desire of implementing a system with the capacity
to mimic the human mind. One of the most fundamental methods is the capacity
of learning with or without external help and even with the purpose of permeant
improvement. This method is usually used as a quick alternative for the old methods
that requires a high effort and a long time of calculus compilation.

The main Al techniques that are used nowadays are Fuzzy Logic (FL), Neural
Networks (NN), Genetic Algorithms (GA), Surrogate Models (SM) and Evolutionary
Algorithms (EA) [2].

The main purpose of this chapter is to highlight the basic theoretical aspects of the
most commonly used Al techniques (Genetic Algorithms, Fuzzy Logic and Neural
Networks) and to exemplify how they could be implemented in case of specific
electrical engineering applications.

Section 2 makes a brief introduction to the theoretical aspects regarding Genetic
Algorithms based optimization techniques, presenting their structure, different chro-
mosomal coding techniques and the basic GA operators. The next section describes
how Fuzzy Logic Systems (FLS) work and main implementation steps (fuzzification,
FL rule base interface and defuzzification respectively). Section 4 presents the basic
theoretical aspects regarding Neural Networks: the structure of an artificial neuron,
the main activation functions, the most commonly used NN architectures and training
techniques.

The first demonstrative application (Sect. 5) shows how a genetic algorithm could
be implemented to determine the optimal equivalent horizontal soil structure based
on soil resistivity measurements. The second application (Sect. 6) exemplifies the
implementation of Neural Networks in order to determine the inductive coupling



Advanced Numerical Methods Based on Artificial Intelligence 95

matrix in case of electromagnetic interference problems between overhead power
line and nearby metallic pipelines.

2 Genetic Algorithms

Genetic Algorithms are part of the evolutionary computing strategies and represent
a series of adaptive heuristic techniques based on the principle of natural selection:
“The one who is best suited survives”. The idea of evolutionary calculus was intro-
duced in 1960 when several biologists began to use computers to simulate biological
systems [3, 4].

Usually, genetic algorithms are used to solve multi-criteria optimization, planning
or nonlinear search problems. They constitute a set of adaptive procedures that could
find the solutions of a problem through a mechanism of natural selection and genetic
recombination/evolution. The mechanism was introduced and analysed by J. Holland
[5], being characterized by the fact that only the species (the solutions) that are better
adapted to the environment (to the investigated problem) are able to survive and
evolve over generations, while the less adapted ones will disappear. The likelihood
of a species to survive and evolve over generations becomes greater as the degree of
adaptation grows, which in terms of optimization it means that the solution is getting
closer to an optimum.

2.1 Structure of a Genetic Algorithm

Genetic Algorithms start from an initial set of solutions, randomly generated or based
on prior knowledge, referred as “population” in the literature. In this population, each
individual represents a possible solution of the investigated problem and is defined
by its “chromosome” structure (its coding). Within the GA the starting population
is subjected to an iterative process, exemplified in Fig. 1, through which an optimal

Population Selection

Evaluation

Mutation Crossover

Fig.1 The structure of a genetic algorithm
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solution of the studied problem is determined. An iteration of this optimization/search
process is known in literature as “a generation” of the genetic algorithm.

The iterative process that underlies any genetic algorithm can be defined by the
following steps:

Step 1: Creation of a set of initial possible solutions (“individuals™) that will form
the starting population of the investigated problem;

Step 2:  Selection based on an objective (“fitness”) function of the individuals from
the current generation population, that have adapted best to the needs of the
problem that has to be solved;

Step 3: The selected individuals are subjected to genetic operators (such as
“crossover’” and “mutation”) to form the population of the next generation;

Step 4: Evaluate the degree to which the members of the new generation correspond
more adequately to the requirements of the studied problem;

Step 5: The population of old generation is abandoned, and the iterative process is
resumed from Step 2.

Such a cycle is repeated until the best solution of the problem is identified or a
predetermined number of generations/iterations has been reached [6, 7].

2.2 Chromosome Structure of an Individual

The chromosome structure of an individual defines how a candidate solution of
the investigated problem is represented within a genetic algorithm. This consti-
tutes the whole set of “genes”, the parameters of an individual that must be deter-
mined/optimized for the studied problem. The genes of an individual can be repre-
sented either in binary form (Fig. 2a), through a finite string of 0 and 1 values, or in
natural form (Fig. 2b) by a real value, generally in the range of O to 1.

In order to evaluate how each parameter (“gene”), that has to be optimized, corre-
spond to the requirements of the investigated problem, a cost function, f, has to be
defined, for each gene, g. The overall performance of an individual (possible solution)
regarding the problem in question is determined by the GA objective (or “fitness”)
function, that is given by the weighted sum of these cost functions, see Eq. (1):

1 n
F= ;-2@i~fc,~<g,~>> (1)
=
Gene A Gene B Gene C Gene A Gene B Gene C
Lof1fof1falafofa]o[1]1]0] [ 0333 | 087 | o400 |
a) b)

Fig. 2 Chromosome structure of an individual: a binary form, b natural form
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where: n is the total number of parameters, p; indicates the importance of the gene
gi,i=1.n.

Within the iterative process of optimizing the solution, a minimization or maxi-
mization of the fitness function must to be achieved according to the investigated
problem [8].

2.3 Selection Operator

The selection operator plays an important role in a genetic algorithm. This operator
decides which of the individuals of a population will be able to participate in the
formation of the next generation population. The purpose of the selection is to ensure
more chances of “survival” / “reproduction” for the best performing individuals in
a given population. The selection aims to maximize the performance of individuals
(possible solutions to the problem in question).

2.4 Crossover Operator

The crossover operator is the most important operator in the optimization process.
This operator applies to individuals in the current population for the purpose of gener-
ating individuals for the next generation, and thus ensuring the convergence of the
problem. The mechanism of the crossover operator is highly dependent on the gene
coding mode of the chromosome structure. Usually, the crossover operator applies to
two parents (possible solutions) from the current population and provides two descen-
dants (new solution configurations) for the next generation population. Descendants
obtained through the crossover operation, will have characteristics from both parents.
Due to its major importance, several crossing methods have been proposed in the
literature [9, 10].

2.5 Mutation Operator

The mutation operator has the role of maintaining the diversity of the search space
population by introducing individuals that could not be obtained through other
mechanisms. This operator consists in randomly changing the value of a single
gene/position in the chromosome structure of an individual. In the case of a binary
gene coding, the process of mutation implies the negation of a bit in a gene, while
in the case of natural form coding it implies a small variation of the value of a gene,
see Eq. (2):

genA = genA +§& 2)
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where: genA is the value of the parameter represented by gene A, and & is the applied
perturbation [11].

Mutation is a probabilistic operator. Considering a population of N individuals,
each one having n genes, the probability of a gene to undergo a mutation will be
Pm, m = 1..N n. According to GA implementation these probability values could be
equal or not equal for each gene.

There are several ways to apply a mutation operator. One of them would be the
change in formatting. In this case for each position in the chromosome structure of
an individual selected for mutation, a random number, g, is generated in the interval
[0,1]. If g > p,,, then the mutation operator is executed, for that chromosome position,
otherwise the position remains unchanged [10].

3 Fuzzy Logic

Fuzzy Logic (FL) offers an alternative, to classical linear equation-based methods, for
dealing with problems that describe system operations. It is used especially when the
connections between the input and output data of a system are too complex and cannot
be defined exactly, due to a significant level of uncertainty in the analysed problem.
In case of Fuzzy Logic Systems (FLS), conventional algorithms are replaced by a
set of rules of the form IF (premise) THEN (conclusion). This results in a heuristic
algorithm that takes into account operator’s experience in describing the investigated
system.

The basis of the fuzzy set theory was laid by L.A. Zahed in 1965 [12]. From a
mathematical point of view, the object of FL is to make a connection (application)
between the set of input data of a system and its output values. This connection is
made based on a set of IF—THEN type laws or reasoning. All the laws are evaluated
in parallel and their order do not affect the outcome values.

Fuzzy Logic Systems work only with linguistic/fuzzy values. Therefore, all the
input data must undergo a “fuzzification” process that transforms the actual values
into fuzzy sets, and the obtained results has to be subjected to a “defuzzification”
process for later use [13, 14], as in Fig. 3 can be seen.

‘wlipitd R1: IF ... THEN ... \

. : R2: IF ... THEN ... \ i
Rn:IF..THEN .. | \ \
M i |} ! M F | \

Input Data Fuzzification Fuzzy Rule Base Defuzzification Result
Process Process

Fig. 3 Operation of a fuzzy logic system
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3.1 Fuzzification

Fuzzification is the process by which the actual data provided at the input of a FL.S
block is transformed into linguistic variables defined by fuzzy sets. The notion of a
fuzzy set has been introduced as a generalization of the concept of binary membership
of an element to a set. Each fuzzy set is associated with a characteristic/membership
function that provides a value in the [0,1] range. This value describes the degree of
the belonging of an element to that fuzzy set [15], as in (3) is presented.

ua X — [0, 1] 3)

A fuzzy set is completely defined by its membership function. Most of the fuzzy
sets used practical applications have a membership function defined over the set of
real numbers. Therefore, is the most convenient way to express these membership
functions as analytical equations [15].

3.2 Inference

The most important component in describing a fuzzy logic system s set of rules (laws)
that are applied. The mathematical interpretation of these IFF — THEN sentences
is done through the inference process, which has several distinct parts. First, the
premises are evaluated, which involves providing the input data and applying the
fuzzy membership functions. Then the proper consequence of a fuzzy law is applied
to the output values, this operation is known as an implication. The premise of a
fuzzy rule can have several parts joined by fuzzy operators of “AND” or “OR” type
[16], like in (4):

IF x; isA AND x; is BTHEN y is V
IF x; is C AND x, is D THEN y is W 4@

where: x;, x, are input values; A, B and C, D are fuzzy sets for input data x; and x;
respectively; y is the FLS output and V, W are fuzzy sets corresponding to y.

Each part of the premise is evaluated separately, assigning a specific value to the
fuzzy operators. The way in which these “AND” / “OR” operators are mathematically
interpreted depends on the inference method adopted. The most commonly used
inference methods in the literature are the Max—Min, the Max-Product and the Sum-
Product respectively [15].
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3.3 Defuzzification

The result of the inference are fuzzy sets attached to the FLS output values. In order
to turn these fuzzy sets into real values, they must undergo a defuzzification process.
The task of this operation is to determine that unique value from a given range
belonging to each output data that best fits the resulting fuzzy sets.

Among the most common methods of defuzzification, in the literature, there are
the centre of gravity method, the centre of sums method and the height method
respectively [17].

4 Neural Networks

The most complex neural network in nature is the human brain, this inspired scientist
to try to mimic it by designing Artificial Neural Networks (ANN). As in nature,
ANN are constructed from smaller building blocks called neurons. The first attempt
to schematically represent the mathematic model of an artificial neuron was made in
the early 1940s by McCulloch and Pits [18].

As Fig. 4 shows, the architecture of an artificial neuron follows the structures
of the biological neuron, being a system with variable number of m input data x;,
k = 1..m, and a single output value y. The m input values of an artificial neuron
are multiplied by coefficients wy, called the weights, and then summed together.
The value thus obtained is added to a parameter b called bias value. The final sum,
denoted by £, is applied as argument to the transfer function of the artificial neuron.
This function is also known as activation function, f,, in the literature and can have
various mathematical implementations [19-21].

Thus, the output of an artificial neuron is generally described by Eq. (5):

y =fa(h) ®)

where:

—

LR b

Fig. 4 Structure of a biological (a) and artificial (b) neurons [22]
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m

h:Z(xk~wk)+b (6)

k=1

The weights and the bias of an artificial neuron are adjustable parameters, and
their values are determined during the neural network training process, in order to
obtain the desired network behaviour. Therefore, when using a neuron, the output
depends only on the set of input data and the used activation function.

4.1 Activation Functions

The activation function of a neuron is generally a bounded and monotony increasing
function, as in Eq. (7), with values between 0 and 1 or between —1 and 1:

[fuW| <M, M € (0, +00),£,(h) > 0 )

Each neuron of an artificial neural network can have its own activation function,
however, usually, the same activation function is used for all neurons that form a
layer. If back-propagation error technique is used to train the neural network, then
it is necessary to know the first derivative of applied activation/transfer functions. In
most application, for the output layer of neurons a linear transfer function is used
while for the intermediate (hidden) layer neurons sigmoid type transfer functions are
implemented.

4.2 Neuronal Networks Architecture

The output of a neural network is highly influenced by its architecture, how the
neurons that form it are interconnected. As a NN architecture we understand the struc-
ture, more precisely the number of layers, the activation functions and the number
of neurons used on each layer. A layer of neurons is formed by all the neurons that
work in parallel with the same input data and have the same destination for their
output data. Figure 5 shows the working configuration of a layer of neurons:

The weights of the neurons forming a layer can be grouped and placed in a matrix
of weights W, while the bias values could be collected in a vector B [20], see Eq. (8):

Wil Wi - Wiy b

Wa1 W22 - Wig

W: ,B: ... (8)

Wi, Wm,2 ** Wmn bm
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Fig. 5 Structure of a layer of neurons

Usually, the same activation function f, is used for all the neurons from a specific
layer. Therefore, the output values of a layer of neurons could be expressed as:

yi=fah)), i=1.n 9
with:

Zxk wei) +bi, i =l.n (10)

k=1

The matrix form of the above equation in given by:
[H] = [W]" - [x] + [B] (11

The architecture of a specific NN could contain one or several layers of neurons.
Output layer is called the layer of neurons that provides the final output data a neural
network. This layer cannot be missing from the structure of any neural network. The
neuron layers that interpose between the NN input data and the input values of the
output layer are called hidden layers. In some literature references the first layer of
neuros is called also as the input layer [21].

Figure 6 shows a simplified representation a feed-forward neural network with
one hidden/input layer and one output layer. The following notations are used in
Fig. 6: x;, k = I..m for the m NN input data values; v;, j = I..r for the r output
values of the hidden/input layer neurons; y;, i = I..n for the n output values of the
NN; and w/y;, respectively w?y; for the weights of the neurons in the two layers of
the presented network configuration.
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Fig. 6 Simplified diagram
of a multi-layer feed-forward
neural network [22]

X1 Y
2 Y2
x3 Y
Xm Yn

Based on this simplified representation the mathematical form of the output data
of a feed-forward neural network, with one hidden layer and one output layer, can
be easily deduced according to equations (9—11). Thus, the arguments of the hidden
layer neurons activation function are given by:

m

k=1

while the output values of the hidden layer neurons are obtained through:

v = £l () = 1, <Z (xk~w,i‘j)+b;>,j= Lr (13)

k=1

Therefore, the arguments of the output layer activation functions will be given by:

=3 (o) = D (1 k) 481) o 1=
j=1 j=1

k=1
(14)

Finally, the general NN output data could be evaluated with equation (15):

vi=f2(13) = f? i(ﬁ(i(xk.w,lgj)m})-wj%i>+b% Ji=1l.a (15)

j=1 k=1

Due to the above presented mathematical form, feed-forward neural networks
can approximate/replace any kind of function. By using multiple hidden layers of
neurons with sigmoid activation functions, a very good approximation could be
obtained even for nonlinear relations between the NN input and output data. Linear
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transfer functions applied on output layer neurons allows the network to provide any
kind of output values. On the other hand, if it is desired to limit the output values, a
sigmoid transfer function is advised to be used on the output layer [23].

A particular type of NN is the so-called radial basis neural network. This network
contains a single hidden layer of neurons that uses the exponential function as transfer
function. On the output layer, the linear activation function is used, similar to most
feed-forward neural networks.

Recurrent neural networks have been also developed. In this case, the neurons
from the hidden layers of the network, receive as input data and their own output
value or the output data of nearby neuron layers. Recurrent neural networks are
usually used in for the implementation of dynamic systems. For this reason, these
networks are also called sequential networks [24].

Howeyver, the most common network architecture remains the feed-forward one
due to the ease of implementation and training.

4.3 Training of Neural Networks

The process through which a neural network is taught to provide at its output the
values of a specific desired function is called training. During the training process, the
weights and bias values of the neurons are established so that the y outputs generated
by network for a set of x input data, would be as close as possible to the target y*
values. Figure 7 graphically presents the error backpropagation principle in the NN
training process.

Based to this principle the weights and bias values are continuously adjusted
through an iterative process according to the error between the actual NN output
values and the network desired ones. Several training algorithms were devel-
oped from this basic error backpropagation principle like: gradient descent algo-
rithms; conjugate gradient algorithms; quasi-Newton algorithms; and Jacobian based
Levenberg—Marquardt and Bayesian Regularization algorithms [24].

Usually, a large number of input/target output pairs (x, y*) are used to train a neural
network. The values of the weights and biases depend on the applied training algo-
rithm and error evaluation technique. The evaluation of the error between the provided
NN output data and the target values is done through a cost (“fitness”) function. Since

Fig. 7 Error
backpropagation principle
used to train neural networks

Neural
Network



Advanced Numerical Methods Based on Artificial Intelligence 105

the cost functions express the deviation from the desired NN behaviour, these func-
tions are also called as quality indicators of the networks. The most commonly used
quality indicator is the mean square error [24], see Eq. (16).

1 t. 2

i=1

5 Identification of the Proper Equivalent Multi-layer Earth
Structure Through a Genetic Algorithm Based Al
Technique

5.1 Description of the Presented Application

Several electrical engineering applications like grounding grid design for power
substations or strategic buildings, cathodic protection design of underground metallic
gas or oil pipelines, design of lightning protection system require as a first step a
proper knowledge of the earth structure from an electrical (soil resistivity) point of
view. The following application meant to exemplify how genetic algorithm based
optimization techniques could be applied in electrical engineering.

In order to determine the equivalent multi-layer earth structure corresponding
to on site soil resistivity measurements the authors have developed an Al based
optimization technique [25, 26]. The implemented genetic algorithm identifies the
optimum value of the resistivity and the width of each soil layer considering hori-
zontal multi-layer earth model, in order to reconstruct the measured apparent soil
resistivity data.

The developed GA optimization will be applied to determine the proper multi-
layer soil structure for two different locations (ML1 and ML2) where on-site Wenner
type soil resistivity measurements were carried out. Obtained earth structure data are
compared to soil configurations provided by dedicated software applications (the
RESAP tool from the CDEGS software package [27]).

5.2 Implemented Genetic Algorithm

The implemented GA starts from a population of 30 individuals, randomly generated,
each of them representing a possible configuration of the multi-layered soil model that
has to be determined. The chromosome structure of each possible solution contains
the resistivity, respectively the thickness of the equivalent soil layers.
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To determine the optimal soil structure, the implemented GA uses a cost function,
Eq. (17), that evaluates the mean square error between the Wenner apparent resistivity
curve, obtained through soil resistivity measurements (see Fig. 8), and the apparent
resistivity curve, related to a possible multi-layer earth configuration:

n

1
MSQeyr = — 3 [pa(di) = pra(d) (17)

i=1

where: MSQg,, is the mean square error; n is the number of measurement points;
pa(d;)is the apparent soil resistivity value measured through the Wenner method; and
PEq(d;) s the apparent soil resistivity value corresponding to a horizontal equivalent
multi-layered earth model, numerically computed for a depth d;, i = 1..N.

For the numerical evaluation of the apparent soil resistivity, related to a possible
soil configuration, the following equation was adopted [28]:

PEa(d) = p1 - [1+2-F(d) — FL(2- d)] (18)

where the value of the F(d) function is given by the semi-infinite integral:

K - e*2~)vh1

————— - Jy(A-d) -dA 19
e D) 19)

FL(d)=2-d~/oo
0

with Jy(led) the first kind, zero order, Bessel function and K;; a coefficient
determined by:

k4K ee
- 1— k] . KL2 . e 2Mh

1 (20)

and

j=1.L—2 1)
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where K;;.; = k;.;, L being the number of horizontal layers, A; the thickness of
the jth layer and k; the reflection coefficient between layers j and j + I with soil
resistivity p; and pj,; respectively:

ko= P

(22)
Pj+1 + pj

5.2.1 The Iterative Optimization Process

To obtain the optimal equivalent earth horizontal model, the set of possible solutions,
from the initial GA population, is involved in an iterative process defined by the
following steps [25]:

Step 1: The cost function is evaluated for all the possible soil configuration from
the current GA population and the best suited ones are directly transferred
to the next GA generation;

Step 2: Two soil configuration are randomly selected and subjected to the crossover
operator to obtain two new equivalent soil configurations with lower cost
function values for the GA next generation;

Step 3: The previous step is repeated until the next GA generation will have the
same number of individuals (possible solutions) as the current one;

Step 4: In order to maintain solution diversity four soil configurations are randomly
selected and the mutation operator is applied on them;

Step 5: The iterative GA optimization process restarted form Step 1.

The maximum number of GA iterations was set to N = 2000, a value identified
by the authors to be high enough to obtain accurate soil configurations. This way,
the implemented GA identifies the optimal parameters of a specific multi-layer earth
structure, according to on site Wenner apparent soil resistivity measurements.

5.2.2 Chromosome Structure
Each possible soil configuration solution is represented in the GA optimization
process by its chromosome structure formed by the resistivity and thickness of each

soil layer scaled to [0,1] range, as in Eq. (23).

C={pi,h,p2,ha,...,p0} (23)
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5.2.3 Crossover Operator

During the crossover process, six new soil configurations are obtained from the
initial two solutions selected for crossover recombination, applying three different
crossover operators. The first two configuration (GA children) are obtained through
an arithmetic crossover operator, Eq. (24):

Cl=a-P 4+ (l—a) P,
Cy=a-Py+(1—a)-P (24)

where: o is a randomly determined scaling factor, ¢ denotes the rth parameter of an
equivalent soil model, C; and P; represent the ith GA child configuration and jth GA
parent soil configuration.

Another two new soil configurations are obtained using a Max—Min type crossover
operator, Eq. (25):

C} = min(P}, P})
C; = max(P}, P}) (25)

The last two GA child soil configurations are generated applying the classical
cut-point crossover operator [8], Eq. (26):

Csz(p: ...pllcp’2‘+1 ...pg)
C6=(P21-~~P'2‘ p’lf+1 p{) (26)

where k is a randomly selected cut point and r is the total number of chromosome
structure parameters.

From these six GA child configurations the best two ones with lower cost function
values are transferred the next GA generation population.

5.2.4 Mutation Operator

Within the mutation process, each parameter that has to be optimized from a possible
multi-layer earth configuration is subjected to a probabilistic test. If the test is passed,
then the value of the selected parameter is slightly changed through the following
arithmetic mutation operator:

C'=C'+05-—a)-M Q27)

with o a random value from the [0,1] range and M a predefined mutation
coefficient.
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5.3 Computed Equivalent Soil Models

The above presented GA optimization process was applied by the authors to deter-
mine the equivalent soil structure based on the on-site Wenner soil resistivity
measured at location ML1 and ML?2 (see measured apparent soil resistivity curves
from Fig. 8) considering a three horizontal layer earth structure. To validate the
obtained multi-layer earth configurations a comparison has been done with the
RESAP module of CDEGS software package (see Table 1).

Based on the layer resistivity and thickness values obtained through the imple-
mented GA optimization process and the RESAP module respectively (see Table
1, Fig. 9a and Fig. 10a) the apparent soil resistivity curves were generated according

Table. 1 Obtained equivalent three horizontal layer soil models

p1[82/m] hi[m] p2[82/m] hy[m] p3[2/m] h3[m]
ML1 CDGES 80.77 0.99 82.52 13.61 49.31 Inf
GA 83.84 5.25 101.18 4.63 51.78 Inf
ML2 CDGES 210.69 1.29 109.02 5.16 168.55 Inf
GA 178.678 1.29 112.34 6.67 174.99 Inf
Fig. 9 Obtained three-layer ® Meaz SoilRes  ++ oo+ CDEGSSoil Model = = GA Soil Model
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to equations (18-22) and compared to the on-site Wenner apparent soil resistivity
measurements (see Fig. 9b and Fig. 10b).

For measurement location ML 1, the average deviation from the measured apparent
soil resistivity curve is 7.66% for the equivalent three-layer soil structure provided
by the RESAP module of the CDEGS software package, while the average devia-
tion for the soil structure provided by the implemented genetic algorithm is 7.16%
(see Fig. 9b).

In case of measurement location ML2 the average deviation from the measured
apparent soil resistivity curve are 3.83% for RESAP and 3.30% with the implemented
GA optimization process (see Fig. 10b).

Similar comparisons have been carried out by the authors for uniform and two-
layer horizontal earth structures in [25] and [26]. Based on the obtained results it can
be concluded that the implemented GA provides an accurate alternative to evaluate
the equivalent multi-layer earth structure using to on-site apparent soil resistivity
measurements.

The above presented multi-layer soil structure GA optimization technique was also
applied by the authors at archaeological sites in order to identify and establish the
trajectory of buried walls, according to the obtained equivalent earth configurations
[29].
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6 Neural Network Implementation to Evaluate
the Inductive Coupling Matrix in Case of a HVPL
— MGP Electromagnetic Interference Problem

6.1 Description of the Studied Problem

Due to economic policies meat to limit construction costs and to environmental
regulations meant to protect wildlife and nature, the access of utility systems to
new right-of-ways is highly limited. Therefore, in many situations gas, oil or water
transportation metallic pipelines are forced to share the same distribution corridor
with high voltage power lines and/or AC electrical railway systems (see Fig. 11) and
to be exposed to induced AC currents and voltages [30, 31].

In case of underground or above ground metallic pipelines, the induced elec-
tromagnetic interferences produced by nearby high voltage power lines could be
dangerous on both the operating personnel (that may be exposed to electric shocks),
and to the structural integrity of the pipeline, due to corrosion phenomena [31].

Induced AC currents and voltages may appear as effect of inductive, conductive
or capacitive coupling mechanisms. However, during power line normal operating
conditions, only the inductive coupling, described by the self and mutual inductance
matric, has to be considered for underground pipelines. Conductive and capacitive
coupling may be, also, neglected when a phase to ground fault happens on the power
line far away from the common distribution corridor [30, 32].

To evaluate the self and mutual inductance between all the present conduc-
tors in the analysed problem geometry (phase wires, sky wires and pipelines) the
magnetic vector potential must be evaluated on the cross section of these conductors
as presented in [33, 34]. The longitudinal z-direction component of the magnetic
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Fig. 11 Common distribution corridor of multiple utilities
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vector potential A; and the total current density J, are described by the following
system of differential equations:

1 0%A,  0%A,
pot, | 9x2  9y?
—JjwoA; +Js. = J; (28)

//]st = Ii
Si

where o is the conductivity, w is the angular frequency, (i is the magnetic perme-
ability of free space (g = 4 - w - 1077 H/m), 1, is the relative permeability of the
environment, J, is the source current density in the z-direction and /; is the imposed
current on conductor i of S; cross section.

To solve this differential equation system, the finite element method (FEM) is
recommended to be used. Although the calculation process based on FEM, used in the
hybrid method presented in [34], provides accurate solution for the magnetic vector
potential, regardless of the complexity of the problem, the computation time of the
method increases with the complexity of the geometry, the size of the discretization
network, the characteristics of the material and the number of parameters being
evaluated.

Therefore, the authors have implemented a neural network solution to evaluate
the inductive coupling matrix for a specific electromagnetic interference problem
between a 220 kV/50 Hz overhead High Voltage Power Lines (HVPL) and under-
ground Metallic Gas Pipeline (MGP) [35], considering a stratified soil structure for
the common distribution corridor with three vertical layers (see Fig. 12).

:| —JjwoA; +J;; =0

Sz et D S
Py o Ps

Fig. 12 Interference problem HVPL-MGP with vertically layered earth
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6.2 Proposed Neural Network Solution

Once the proposed neural network solution will be trained it will have to be able to
instantly evaluate the self and mutual inductance matrix for any possible geometric
configuration of the investigated electromagnetic interference problem. Therefore,
to implement the proposed NN, the input and desired output data values must be
analysed. The following geometrical and electrical parameters of the studied problem
were chosen as input values:

d—HVPL-MGP separation distance (with variation in the 0—1000 m range);
p;—middle layer resistivity S1 (with variation in the 10-5000 €2 m range);
D—middle layer width S1 (with variation in the 20—1200 m range);

02, p3 (considering p, = p3;) —sideways layers resistivity S2 and S3 (with
variation in the 10-5000 €2 m range);

Tacking into the account that the inductance matrix is a symmetrical one, the
proposed NN should provide only the elements above the main diagonal. For the
investigated HVPL-MGP interference problem (three phase wires, one sky wire and
one underground pipeline) these inductance elements are: L;;, L2, L3, L4, L;s, Lo,
L3, Loyg, Los, L33, L3y, L3s, Ly, Lys, Lss, with L; representing the self-inductance
of conductor i (i = 1.0.3 for phase wires, i = 4 for the sky wire and i = 5 for the
underground pipeline) and L;; representing the mutual inductance between conductor
iandj.

Due to the large variation range of the inductance matrix elements value (the
self-inductance values are much higher than the mutual inductance values), it was
concluded to implement three different neural networks: NN1 for the self-inductance
values (L;;, L2, L33, Lyy, Ls55), NN2 for the MGP mutual inductances (L;s, L;s, L3s,
L4s) and NN3 for the remaining mutual inductances between HVPL conductors.
This way the complexity of the implemented NN will be reduced, so that the required
training time will also be reduced, and the obtained results accuracy will be increased.

6.3 Matlab Implementation of Proposed Neural Network

The Neural Networks toolbox from the MATLAB software package [24] was used to
implement, test and validate the proposed NN solution. A feed-forward architecture
with two hidden layers and an output layer was chosen (as in Fig. 13).

To identify the optimal configuration of the chosen NN architecture different
transfer functions and various number of neurons on the NN hidden layers were
tested. The number of neurons on each hidden layer was varied between 5 and 30
with a step of 5. The “tansig” (sigmoid tangent) and “logsig” (logarithmic sigmoid)
transfer functions were tested for the NN hidden layer neurons while the “purelin”
(linear) transfer function was used for the output layer neurons. To automatically
generate and test all these different possible NN configurations a Matlab code “.m”
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Hidden Layer1 Hidden Layer 2 Output Layer

et e

5+30 neurons 5430 neurons 4+6 neurons

Fig. 13 Implemented feed-forward architecture with two hidden layers and an output layer

file was implemented, using the feedforwardnet Matlab function [24]:

net = feedforwardnet(hiddenSizes, trainFcn) 29)

where: net is the created feed-forward neural network, hddinSizes is a vector of
values specifying the number of neurons used on each hidden layer and trainFcn is
a vector of strings defining the transfer function used on each NN layer.

To create a useful training database for the investigated HVPL-MGP electromag-
netic interference problem approximately 4000 inductance matrixes were determined
through FEM analysis for various problem geometries. The HVPL-MGP separation
distance was varied between 0 and 1000 m, the resistivities of the vertical soil layers
were varied between 10 € m and 5000 2 m while the width of the middle soil layer
was varied between 20 and 1200 m. Table 2 shows some of the HVPL-MGP problem
geometries used to train the proposed neural networks. different configurations used
to stimulate the NN.

The NN training process took between 1 and 25 min depending on the NN config-
uration complexity. The Levenberg—Marquardt training method (“trainlm”) was used
with a mean square error (“mse”) cost function on a i7-3632QM 2.2 GHz Intel Core

Table. 2 Different problem geometry configurations used for NN training

Ssse d D P1 02 03 ste d | D P1 2 03
[m] | [m] | [Q-m] | [Q-m]|[Q- m] [m] | [m] | [Q-m] | [Q-m]|[Q- m]

8 5 60 | 500 50 500 2134 |0 550 |50 250 50
104 100 |60 |150 250 150 2301 120 |550 |30 250 30
206 |20 60 |50 500 50 2532 | 100 | 550 | 100 500 100
373 | 100 |60 |500 750 500 2751 | 500 | 550 |30 100 30
481 | 150 |60 |500 250 500 2914 |5 1050 | 10 250 10
692 | 1000 | 60 | 750 50 750 3096 |20 | 1050 | 100 250 100
875 |20 120 | 750 100 750 3274 | 100 | 1050 | 500 1000 500
1064 | 50 120 | 750 1000 750 3545|750 | 1050 | 30 750 30
1231 | 500 | 120 | 100 30 100 3754 |5 1500 | 50 30 50
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Table.3 HVTL-MGP problem geometries used for the NN testing procedure

Case d D Case d D

P1 P2 P3 P1 P2 P3
no No

[m] | [m] | [Q-m] | [Q2-m] | [Q-m] [m] | [m] | [Q-m] | [Q2-m] | [Q-m]

1 310 | 800 |900 850 900 85 310 | 800 |900 850 900
13 105 | 1100 | 550 550 550 97 170 | 700 | 300 350 300
25 250 | 800 |150 150 150 109 | 240 | 500 |80 750 80

37 340 | 400 | 600 150 600 121 |420 | 100 |550 20 550
49 170 | 800 | 650 750 650 135 | 105 | 1200 | 250 950 250
54 |55 | 1000 | 900 400 900 148 |85 |400 |140 160 140
61 40 200 |600 800 600 176 |15 |300 | 140 700 140
73 120 {900 |750 350 750 198 |10 | 1000 | 200 750 200

PC, with a 64-bit operating system and 8 GB RAM memory. To train the implemented
NN configurations the train Matlab function was applied [24].

6.4 Obtained NN Results

In order to determine the accuracy of the generated NN architectures and to identify
the optimal NN configuration for each of the three implemented NN solutions (NN,
NN2 and NN3 respectively) an addition set of approximatively 200 randomly gener-
ated, testing HVPL-MGP problem geometries were used. These testing HVPL-MGP
problem geometries were not supplied to the implemented NN configuration during
the NN training process. Table 3 shows some of the testing HVPL-MGP problem
geometries.

To identify the optimal NN configurations the evaluation error of the provided
NN output data was analysed for both the training and testing data sets [35, 36]. To
obtain NN provided output data for the training and testing HVPL-MGP problem
geometries the sim Matlab function was applied.

For the neural network meat to evaluate the self-inductance values of the conduc-
tors (NN1 network) the best identified NN configuration was a feed-forward archi-
tecture with 15 neurons on the first hidden layer and 25 neurons on the second hidden
layers, with “tansig” transfer function on both hidden layers. The obtained average
evaluation errors are 0.064% for the testing geometries and 0.043% for the training
geometries. The maximum recorded evaluation error was 0.77%. Figure 14 presents
the evaluation error distribution on different error classes for both training and testing
HVPL-MGP problem geometries.

In case of the neural network implemented to compute the mutual inductance
values that define the electromagnetic coupling between MGP and the nearby HVPL
(NN2 network) the best NN configuration has 30 neurons on the first hidden layer
and 20 neurons on the second layer with “logsig” transfer function. The average
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evaluation error was around 0.060% for both testing and training data sets, while the
maximum recorded evaluation error was 2.67%. The evaluation error distribution
over the analysed error classes for the testing and training HVPL-MGP problem
geometries is presented in Fig. 15.

For the neural network used to compute the mutual inductance values between
HVPL conductors (NN3 network) the best NN configuration has 25 neurons, respec-
tively 15 neurons with “tansig” transfer function on the NN hidden layers. The
maximum recorded evaluation error is 2.56% while the average evaluation error is
around 0.030% for both testing and training data sets. Figure 16 shows the obtained
evaluation error distribution over different error classes:

The implemented NN configurations allow to evaluate the inductance matrix
values for any HVPL-MGP problem geometry. Table 4 shows the self and mutual
inductance values obtained for a HVPL-MGP problem geometry with a 30 m separa-
tion distance between HVPL and MGP; with p; =30 Q m, p; = p3 = 500 2 m and
a 20 m width for the middle earth layer. Using the self and mutual inductance values
provided by the implemented neural network configurations the equivalent electrical
circuit of the investigated HVPL-MGP electromagnetic interference problem could
be constructed according to [34, 37].

The InterfStud software application developed by the authors [38] automatically
creates the above-mentioned equivalent circuit model and evaluates the induced AC
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Fig. 16 Percentage error mTraining Data = Testing Data
distribution for the optimal 70%

NN3 network 60%
50%
40%
30%
20%
10% .
0% e — —————

,u. . sle e g e o s
FELpPLE ey

Al & o g @ & g ¢ o
o"'e & e Qfg DL RS T e iqf

Data Set Percentege

Table. 4 Obtained inductive coupling matrix through NN implementation

Self and mutual inductances [WH/m]

PhWA |PhWB |PhWC |SkyW | Pipe
PhW A 245 1.234 1.110 1.187 | 0.82
PhW B 1.234 2.45 1.100 1.073 | 0.84
PhW C 1.110 1.100 245 1.073 | 0.80
SkyW 1.187 1.073 1.073 8.74 0.79
Pipe 0.822 0.842 0.80 0795 |228

currents and voltages in the MGP. Figure 17 presents the obtained induced AC volt-
ages for the three different problem geometries [35], considering a 10 km long parallel
HVPL-MGP exposure, a 130 MVA power load on HVPL with a 0.94 power factor
(a 350 A symmetrical current load):

e Geom 01: A 30 m separation distance, with soil structure: p; =30 Q m, p, = p3
= 500 2 m, and 20 m middle layer width;

® Geom 02: A 50 m separation distance, with soil structure: p; = 10 Q m, p, =
100  m, p3 = 500 2 m, and 30 m middle layer width;

Fig. 17 Induced voltage in ——Geom01 — = -Geom 02 — -~ Geom 03
MGP for different
HVPL-MGP problem
geometries

Induced Voltage [V]

Pipeline Length [km]
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® Geom 03: A 150 m separation distance, with soil structure: p; = p, = 100 2 m
p3 = 1000 2 m, and 100 m middle layer width.

7 Conclusions

This chapter starts with a brief introduction to artificial intelligence (AI) based
advanced numerical methods applied in engineering, making a summary of the
most commonly used Al techniques (Genetic Algorithms, Fuzzy Logic and Neural
Networks, Sects. 2—4) and new approaches in the field (through two demonstrative
applications).

The first application (Sect. 5) presents a genetic algorithm implementation to
determine the equivalent horizontal soil structure based on Wenner on-site soil
resistivity measurements. A proper knowledge of the earth structure is required in
electrical engineering application like grounding grid design for power substations,
cathodic protection design of underground metallic gas or oil pipelines, design of
lightning protection.

The presented multi-layer soil structure GA optimization technique was also
applied by the authors at archaeological sites in order to identify and establish the
trajectory of buried walls, according to the obtained equivalent earth configurations.

In the second presented application (Sect. 5) a neural network based artificial
intelligence technique has been implemented to evaluate the inductive coupling
matrix of a specific HVPL-MGP electromagnetic interference problem. The proposed
neural network approach reduces considerably the required computation time. From
Figs. 14-16 it can be observed that the evaluation error produced by the identified
optimal NN architecture are usually less than 0.1% in comparison to the finite element
results considered as reference. Therefore, the implemented neural network solution
to evaluate the self and mutual inductance values is a very effective one, especially
if we take into account the fact that the solutions provided by neural networks are
obtained almost instantaneously and can be used to evaluate the induced currents
and voltages.
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Abstract The nonlinear description has continuously been crucial in a wide range of
disciplines to provide an accurate prediction of a natural phenomenon. Thus, finding
a reliable solution method for these nonlinear models is of significant importance
since, in most real-life applications, direct solution methods are not feasible, even
in linear cases. Moreover, an inefficient method is likely to take additional compu-
tational cost and effort. This chapter attempts to provide a fundamental descrip-
tion of various iterative methods for solving nonlinear discretized equations. In the
first part, a theoretical account of nonlinear systems with different types of iterative
methods are depicted. The second part deals with both one-point and multi-point
iterative methods; this includes a description of the method, mathematical formula-
tions, and the weak and strong points. Different iterative methods to solve a system of
nonlinear equations are then described. Some discussed methods include the family
of conjugate gradient, multi-step, and Newton-like. This part also identifies intrica-
cies regarding a system of nonlinear equations, offering different remedies to solve
these issues. Finally, a comparative study of the discussed methods and their appli-
cations in solving conventional equations are outlined in brief. The iterative methods
mentioned in this chapter can be useful not only in solving nonlinear problems but
also in linear problems and optimization.
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Nomenclatures

A. Acronyms

IVP  Initial Value Problems

BVP Boundary Value Problems
ODEs Ordinary Differential Equations
PDEs Partial Differential Equations
FE Finite Element

FV Finite Volume

FD Finite Difference

CO Convergence Order

LU Lower—Upper

B. Symbols/Parameters

X Unknown value(s)

i Iteration index

x Actual root

E.L Efficiency index

0 Convergence order

n Total number of function evaluation

[a, b] Specific interval
f(x)  Nonlinear function

f First derivative of the nonlinear function

" Second derivative of the nonlinear function
x© Initial approximation of the zero of the function
C Computacional cost

J@O  p-dimensional Jacobian matrix
F(x) Column vector of nonlinear functions
2 Partial derivative with respect to the unknown x

J Jacobian matrix

h Incriminate value
VF Gradient of F(x)

T Transpose sign
H(x) Hessian matrix

A Damping parameter
n'®  Forcing term

N Inexact newton step



Numerical Methods for Solving Nonlinear Equations 123

1 Introduction

There is a wide range of natural phenomena, as well as numerous practical appli-
cations that can be accurately simulated through mathematical analysis. The formu-
lation of a real phenomenon in a format of the system of equations endows many
benefits, such as validating the results of physical experiments and demonstrating
a reliable relationship among variables explaining the features of a phenomenon or
a system. A problem modeled in a frame of mathematical equations can be either
linear or nonlinear. Linear problems are more straightforward to solve than nonlinear
problems, with respect to computational cost and implementation. The linear anal-
ysis may be applied for nonlinear problems when errors are too small, or they can be
tolerated; but in some problems, according to the required accuracy for a problem and
the target of analysis, employing the nonlinear analysis is necessary and unavoidable.
Some examples demonstrating the importance of a nonlinear description include the
design of components for some special usage such as aerospace and nuclear engi-
neering, obtaining an accurate understanding of a phenomenon, or simulating the
behavior of some materials. Hence, complex nonlinear equations, in spite of intri-
cacies stemming from solving them, should be employed to provide a perception of
the behavior of these phenomena as well as present a realistic approximation of the
response [1, 2].

Nonlinear equations can be either one-variable equations (scalar equations) or
multi-variable equations (the system of nonlinear equations). A nonlinear equation
can be represented as an equation that does not follow the superposition principle,
and the output and input of the system are not directly proportional to each other.
Regarding the system of nonlinear equations, it is a set of n simultaneous equa-
tions with n unknowns that consists of only one or more nonlinear equations [3]. In
contrast to scalar nonlinear equations, the system of nonlinear equations due to their
complexity has received less attention.

Solving a nonlinear equation is an intractable task; besides, the uniqueness and
existence of the nonlinear solution may also be challenging. To solve these nonlinear
problems, there are two numerical and analytical methods. Albeit the analytical
method provides high accuracy without much computational cost and effort, in most
cases, finding a closed-form solution for a nonlinear system is not feasible; these
solutions are restricted to some simplified and exceptional cases and are not suitable
for real applications. On the other hand, the growing knowledge and improvements
of computer technology have made the use of complicated numerical methods an
easy task for analyzing physical systems; by writing new programs or using the
existing computer packages. Therefore, during the last decades, researchers have
been stimulated to develop new computationally efficient methods to find a numerical
method approximating a solution for nonlinear initial value problems (IVP) and
boundary value problems (BVP) [1, 4, 5].

Nonlinear equations governing a system can take different forms of alge-
braic, differential- ordinary differential equations (ODEs), partial differential equa-
tions (PDEs)—and integral equations. Regarding differential or integral equations,
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initially, one of the well-known numerical methods such as Finite Element (FE),
Finite Volume (FV), Finite Difference (FD), or other discretization methods may
be employed to convert nonlinear equations to nonlinear algebraic equations. These
discretization techniques provide a weakly nonlinear system of equations. Then, an
iteration method should be adopted to solve this weakly system of nonlinear equations
[1, 6].

Initeration methods, by an initial guess, a particular process like a generalized rule
should be followed for every new estimation of the final response until the termination
criterion meets. Termination criterion is a condition determining an acceptability
level for the final allowable error that should be satisfied to terminate to an iteration
process. The termination criterion for a small value ¢, and the approximated values
x with the iteration index i can be defined in different ways. Three commonly used
of these criteria are as:

(1) Two last responses are very close together:
}x(”]) — x(i)‘ <e (1)

(2) The relative difference of two last responses are small:

LD _ @)
— | <s 2)

0
(3) The final response is sufficiently small [2, 7, 8]:
|fxD)| <e 3)

The value of ¢ can be varied according to each problem and the final goal of
that problem. As a numerical method provides an estimate of the exact response, the
termination criterion is an important factor defining the accuracy and reliability of
results. Moreover, this criterion can significantly affect the time of the process.

According to Traub [9], iterative methods to solve nonlinear equations can be
divided into two categories viz one-point and multi-point iterative methods, regarding
the fact that whether they employ new data from different points or not. These two
methods are also divided into multi-point methods with memory or without memory
and one-point methods with memory or without memory based on whether old
information is reused or not. In one-point methods without memory, the value of
a new estimation, say x;, is computed only based on the information at x;. In this
method, the only way to enhance the convergence of the problem is by increasing
the derivative order. For example, to achieve a method of convergence order i, one
should employ the (i — 1)th derivative of a function. Some examples of this method
are Newton, Halley, and Cauchy methods. A method is named a one-point method
with memory when the next approximation is obtained based on the information of
older points such as x =D, x(=2 x( a5 well as x to estimate the value of x@.
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One well-known example of this case is the Secant method. This type of iterative
methods mostly includes derivative-free algorithms.

Regarding multi-point iterative methods, they use the new information at different
points, which results in a more computationally efficient method in comparison to
one-point methods. These methods can increase the order of convergence without
any need to employ a higher-order derivative as well as provide a wider region of
convergence [10].

To select an iterative numerical method for a nonlinear problem, there are some
criteria that should be considered to ensure the efficient performance of a solver in
providing an accurate result. In the first step, the convergence order (CO) should be
measured to identify the speed of a numerical method to obtain the final response.
According to Eq. (4), for p > 1 and K > 0, if a function with the actual root of
x* satisfies this relationship, it is said that the method converges to x* with order p.
This relationship can be calculated based on either n-dimensional Taylor expansion
or the matrix approach.

lim [x@+D — x*’ < K’x(i) — x*‘p ()
n—oo

In addition, if p = 1 and K = 1, it is said that the method is super-linearly
convergent, which is faster than linearly convergent [11].

With respect to the convergence, iterative methods can be either locally conver-
gent or globally convergent methods. In the locally convergent method, the order of
convergence is greater than 1. Moreover, to ensure the convergence to the accurate
root, this method requires an initial guess sufficiently close to the root. In contrast,
a globally convergent method is not restricted to a good initial approximation to
converge, but the convergence order of these methods is often lower than locally
convergent methods. For example, the Newton method is a second-order locally
convergent method highly sensitive to the initial guess; whereas the bisection method
linearly converges even for a poor initial approximation [12].

The number of call functions or function evaluations required at each step can also
determine the efficiency and the CPU time (running time of an algorithm) required
for a process; this can be determined by the number of times that goal function
and its supporting functions computed during the process. In a system of nonlinear
equations along with the number of function evaluations, other operations such as
matrix-vector multiplications, matrix-matrix multiplications, Jacobian evaluations,
and Jacobian inverses calculation are deemed factors determining the efficiency of
a method. These factors are important since they may cau