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15.1	 �Toxic Disease

15.1.1  �Chemotherapy-Induced 
Leukoencephalopathy

Intrathecal or intravenous methotrexate, with or 
without radiation therapy, can cause diffuse white 
matter changes [1]. There are two types of 
methotrexate-related leukoencephalopathy: (1) 
disseminated necrotizing leukoencephalopathy 
(DNL) and (2) mild leukoencephalopathy [2]. 
DNL indicates a rapidly deteriorating clinical 
course, with irreversible extensive white matter 
damage. Mild leukoencephalopathy is usually 
transient. MR imaging findings are different in 
these two types. In DNL, MR imaging shows 

multifocal T2 and FLAIR hyperintensities in the 
white matter with small irregular low-signal foci 
and contrast enhancement. DW imaging shows 
slightly increased ADC in the center of the lesion 
and increased ADC in the perilesional vasogenic 
edema [3] (Fig. 15.1). In mild leukoencephalopa-
thy MR imaging shows diffuse T2 hyperintensity 
in the white matter. DW imaging shows the dif-
fuse white matter as hyperintense with decreased 
apparent diffusion coefficient (ADC), even 
before conventional MR imaging can detect the 
lesions (Fig. 15.2). Pathologically the white mat-
ter lesion represents intramyelinic edema.

High-dose chemotherapy including carmus-
tine (BCNU), cyclophosphamide, cisplatin, 
5-fluorouracil (5-FU), and carmofur (a derivative 
of 5-FU) can also cause diffuse white matter dis-
ease. The lesions are hyperintense on T2-weighted 
images as well as on DW images, and ADC is 
decreased [4–6] (Fig.  15.3). Chemotherapeutic 
agents such as 5-FU and carmofur can have direct 
toxic effects on myelin, which causes intramy-
elinic edema [7]. Chemotherapy-associated leu-
koencephalopathy can be fatal and early diagnosis 
and discontinuation of the offending drug is 
therefore necessary. Leukoencephalopathy was 
found in 30% of long-term ALL survivors treated 
with methotrexate and persisted in 80% [8]. 
Furthermore, mean diffusivity in the genu of the 
corpus callosum, corona radiata, and the superior 
fronto-occipital fasciculi was associated with 
global neurocognitive impairment [8, 9].
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Fig. 15.1  Disseminated necrotizing leukoencephalopa-
thy in a 43-year-old woman with leptomeningeal metasta-
sis from breast carcinoma treated with methotrexate and 
radiation. (a) T2-weighted image shows multifocal hyper-
intensities in the deep white matter with small irregular 
low-signal foci in the left frontal area (arrow). (b) Post-
contrast T1-weighted image reveals enhancement in the 

foci (arrow) in the left frontal white matter consistent with 
necrosis. (c, d) DWI image shows mild hyperintensity in 
the white matter lesions associated with diffuse increased 
ADC and mild increased ADCs in the left frontal foci, 
consistent with diffuse vasogenic edema and necrotic foci 
(arrow). (Courtesy of Policeni B, MD, University of Iowa 
Hospitals and Clinics, USA)
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Fig. 15.2  Methotrexate leukoencephalopathy (high 
dose) in a 50-year-old woman. (a) T2-weighted image 
does not demonstrate an appreciable abnormality in the 
white matter. (b) DWI image shows symmetric hyperin-
tensity in the bilateral corona radiata extending into the 
central semiovale. (c) ADC map shows white matter 

lesions as decreased ADC, which represents intramyelinic 
edema. (d) Pathology shows spongiform change repre-
senting intramyelinic edema (arrows) diffusely in white 
matter. Astrocytes are relatively spared (hematoxylin–
eosin stain, original magnification ×200)

a b c

Fig. 15.3  Carmofur leukoencephalopathy in a 58-year-
old woman. (a) T2-weighted image shows symmetric 
hyperintensity in the periventricular white matter includ-

ing the corpus callosum. (b, c) DW image shows these 
lesions as hyperintense with decreased ADC, presumably 
related to intramyelinic edema
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15.1.2  �Carbon Monoxide Intoxication

The affinity of hemoglobin for carbon monoxide 
(CO) is approximately 250 times that of oxygen. The 
carboxyhemoglobin reduces the oxygen-carrying 
capacity of blood, causing tissue hypoxia. CO 
also inhibits the mitochondrial electron transport 
enzyme system and activates polymorphonuclear 
leukocytes, which causes brain lipid peroxydation 
and myelin breakdown. The globus pallidus is the 
most common site of involvement. The putamen, 
caudate nucleus, thalamus, hippocampus, and sub-
stantia nigra are also occasionally involved [10]. 
The globus pallidus and the pars reticulata of the 
substantia nigra contain the highest iron concen-
tration in the brain. CO directly binds heme-iron 
in these areas, which is the cause of the histotox-
icity and selective vulnerability of the pallido-
reticularis [11]. DW imaging shows hyperintensity 
with decreased ADC in these lesions in the acute 
phase (Fig.  15.4). Cerebral white matter involve-
ment is common and usually presents as delayed 
anoxic encephalopathy. It is usually seen in the late 
subacute phase after recovery from the acute stage 
of CO poisoning (with a lucid interval of usually 
2–3 weeks). DW imaging shows diffuse hyperin-
tensity with decreased ADC in the periventricular 
white matter and centrum semiovale [12, 13].

15.1.3  �Cocaine, Phencyclidine 
Hydrochloride, 
Amphetamines, and Related 
Catecholaminergics

Cocaine, phencyclidine hydrochloride, amphet-
amines, and related catecholaminergics can cause 
hemorrhage or infarction due to vasculitis, vascu-
lopathy, or acute hypertensive effects [1]. DW 
imaging can be useful for the detection of these 
lesions (see also Chap. 11).

15.1.4  �Opiods (Morphine, Methadone, 
Oxycodone, Heroin)

Opioid overdose has been reported as a cause of 
delayed hypoxic leukoencephalopathy, cerebel-
lar white matter edema (particularly with heroin 
and methadone) [14, 15] and symmetric pallidal 

and hippocampal-restricted DWI [14, 16–21]. 
Narcotic-induced leukoencephalopathy is not only 
secondary to hypoxia but to direct toxicity to the 
myelin-rich white matter by lipophilic drugs [22]. 
This toxic leukoencephalopathy may be reversible 
[23]. The inhalation of black-market heroin vapors 
(pyrolysate), practice known as “chasing the 
dragon,” as well as intravenous consumption of 
heroin can lead to toxic leukoencephalopathy [24]. 
The leukoencephalopathy is pathologically char-
acterized by spongiform degeneration of the white 
matter as a result of fluid accumulation within the 
myelin sheaths (intramyelinic edema). Electron 
microscopy shows vacuoles between the myelin 
lamellae by splitting of the intraperiod lines [25]. 
On brain MRI, it displays symmetric white matter 
T2 hyperintensities in the cerebrum, cerebellum, 
and brainstem [26] with facilitated diffusion [27] 
also involving the cerebral peduncles, corticospi-
nal tracts, lemniscus medialis, and solitary tracts 
[28–30]. The accumulation of restricted fluid 
between the layers of myelin lamellae may cause 
hyperintensity on DW imaging with decreased 
ADC [31] (Figs.  15.5 and 15.6). Because the 
myelin itself and the blood–brain barrier are intact 
in cases of less severe heroin-induced leukoen-
cephalopathy, the changes in the DW signal may 
be reversible on follow-up MR imaging [21].

15.1.5  �Metronidazole Induced 
Encephalopathy

Metronidazole is an antimicrobial agent used in 
the treatment of protozoal and anaerobic bacterial 
infections and is often used in hepatic encepha-
lopathy. Metronidazole toxicity can cause both 
peripheral neuropathy and central nervous system 
dysfunction with ataxic gait, dysarthria, seizures, 
and encephalopathy, which may result from both 
short-term and chronic use of this drug and is col-
lectively referred to as “metronidazole induced 
encephalopathy.” Neuroimaging is essential for 
the diagnosis of this uncommon entity. Typical 
anatomical sites of involvement include the cere-
bellum, midbrain, brainstem, and corpus callo-
sum. Symmetric T2 hyperintensity of the dentate 
nuclei is the most suggestive feature (Fig. 15.7) 
[32, 33]. Diffusion restriction at the abovemen-
tioned sites has been mentioned, but ADC values 
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Fig. 15.4  Carbon monoxide poisoning in a 4-year-old 
boy. (a) CT shows symmetric low-density areas in the 
globi pallidi. (b) T2-weighted imaging shows symmetric 
extensive hyperintense lesions in the basal ganglia, thal-

ami, hippocampi, and posterior cerebral cortices. (c, d) 
DW image shows these areas as hyperintense with 
decreased ADC
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have been variable. DWI showed increased ADC 
value consistent with vasogenic edema in lesions 
of the midbrain, pons, medulla, and cerebellar 
dentate nuclei, which involve mainly gray matter, 
but decreased ADC values indicating cytotoxic 
edema in lesions of the corpus callosum [34]. 
Improvement in clinical symptoms and imaging 
findings after discontinuation of metronidazole is 
noticed in the majority of cases; however, revers-
ibility is not universal [33, 35].

15.1.6  �Marchiafava–Bignami Disease

Marchiafava–Bignami disease is a rare complica-
tion of chronic alcoholism characterized by 
demyelination of the corpus callosum [36]. The 
genu of the corpus callosum is more frequently 
involved, but the degeneration can extend 
throughout the entire corpus callosum. 

Occasionally, optic chiasm and the visual tracts, 
putamen, anterior commissure, cerebellar pedun-
cles, cortical gray matter, and U fibers may be 
involved. Clinical signs include seizures, impair-
ment of consciousness, and signs of interhemi-
spheric disconnection, but they are nonspecific.

The corpus callosum appears hypodense on 
CT and hyperintense on T2-weighted and 
FLAIR MR images, which is essential to con-
firm the diagnosis. These lesions can be par-
tially reversible with treatment [37]. DW 
imaging shows lesions in the early phase as 
hyperintense with decreased ADC [38] repre-
senting cytotoxic edema, mainly in the myelin 
sheaths (intramyelinic edema). In the subacute 
phase, the lesions are hyperintense on DW 
imaging with increased ADC representing 
demyelination or necrosis (Fig. 15.8). DTI dem-
onstrates reduced FA in the corpus callosum, and 
fiber-tracking demonstrates disruption of axonal 

a b c

d

Fig. 15.5  Heroin-induced leukoencephalopathy in a 
55-year-old man. (a) T2-weighted image shows diffuse 
hyperintensity in the white matter including U fibers. (b, 
c) DWI image shows these lesions as diffusely hyperin-
tense with mildly decreased ADC. (d) Pathology shows 

intramyelinic edema and reactive astrogliosis, consistent 
with the subacute phase of heroin-induced leukoencepha-
lopathy (hematoxylin–eosin stain, original magnification 
×200)
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fiber bundles, most marked within the body of 
the corpus callosum [39]. The prognosis of 
Marchiafava–Bignami disease may be good even 
in cases with severe diffusion restriction of the 
entire corpus callosum if treatment with paren-
teral thiamine is initiated early, leading to imag-
ing and clinical reversibility [40, 41].

15.2	 �Metabolic Diseases

15.2.1  �Hypoxic–Ischemic 
Encephalopathy

Hypoxic-ischemic encephalopathy (HIE) is the 
result of decreased global perfusion or oxygen-
ation. The distribution of HIE varies according 
to the duration, degree, and abruptness of the 

hypoxic and/or ischemic insults, basal blood 
flow, and metabolic activity in the areas of isch-
emia, temperature, and serum glucose levels 
[42, 43]. Hypoxia basically causes cardiac 
decompensation within minutes, resulting in 
global hypoperfusion and ischemic brain injury. 
However, pure anoxic encephalopathy may 
exist in some patients who are found early after 
the insult or who have suffered less severe 
anoxia [44]. In pure anoxia, cerebral blood flow 
is preserved allowing effective supply of nutri-
ents and removal of toxic products such as lac-
tic acid. Neurons tolerate pure anoxia for a 
longer duration than ischemia. Coma and other 
clinical findings can result from synaptic 
dysfunction.

DW imaging often depicts acute or subacute 
ischemic lesions when conventional MR imaging 

a b c
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Fig. 15.6  49-year-old female with acute encephalopathy 
and positive urine screening for methadone. She had clini-
cal recovery with no imaging follow-up (a, d: DWI, b, e: 

ADC map, c, e: FLAIR). Note simultaneous occurrence 
of facilitated diffusion anteriorly and restricted diffusion 
posteriorly in the ADC map
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and CT scans show only subtle abnormalities 
[45]. Layers 3 and 5 of the cerebral cortex, the 
CA1 field of the hippocampus, Purkinje neurons 
of the cerebellar cortex, and the watershed zones 
are most sensitive to ischemia [46]. Cortical lam-
inar necrosis is observed as hyperintensity on 
T2-weighted, FLAIR images (variably seen as 
early as 1 day after injury) and on T1-weighted 
images from the subacute to chronic phase of 
HIE. DW imaging often depicts acute or subacute 
ischemic lesions when other MR sequences, and 
CT scans are still normal or show only subtle 
abnormalities [45]. DW hyperintensity through-
out the cerebral cortex suggests devastating dif-
fuse hypoxic-ischemic necrosis, whereas a 
pattern of basal ganglia or thalamic hyperinten-
sity suggests primary hypoxic injury or mild HIE 
(Figs.  15.9 and 15.10). The prognosis of HIE 
depends on the extension of the cytotoxic edema, 
which is usually irreversible. DW imaging is 
helpful in establishing both the diagnosis and 
prognosis, and also in the management of HIE 
[47, 48]. High-b-value (3000 s/mm2) DW imag-
ing with long TE improves accuracy in the early 
detection of the HIE lesions [49].

15.2.2  �Delayed Postanoxic 
Encephalopathy

Delayed postanoxic encephalopathy is a condi-
tion in which patients appear to make a com-
plete clinical recovery after an episode of 
anoxia or hypoxia and then develop progressive 
neuropsychiatric symptoms and/or neurologi-
cal deficits [50]. The incidence has been 
reported to range from 1 to 28 per 1000 suffer-
ing from hypoxic or anoxic events. It is most 
commonly associated with CO poisoning [51], 
but has also been reported after hypoxic events 
related to childbirth, surgery and anesthesia, 
drug overdose, exposure to toxins, anaphylaxis, 
seizures, cyanosis, and strangulation [52, 53]. 
The prognosis is variable from a full recovery 
to permanent neurologic sequelae, personality 
changes, and death. The pathogenesis is pre-
sumably related to programmed cell death/
apoptosis of the oligodendrocytes triggered by 
hypoxia.

DW imaging shows diffuse hyperintensity 
with decreased ADC in the periventricular white 
matter and centrum semiovale, pathologically 

a b c d
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Fig. 15.7  69-year-old male with history of perforated 
appendix with phlegmon as well as pneumonia who has 
been on more than 2 months of metronidazole and mox-
floxacin. He presented with 2–3 weeks of paresthesias in 
the bilateral feet, fall within the previous week with contu-
sion to the head, dysarthria, and dysmetria for the past 

3 days. FLAIR (a), T2-weighted (b), DWI (c), and ADC 
map (d) showing symmetric hyperintense lesions of the 
dentate nuclei. Additionally, there was a splenial lesion 
with restricted diffusion (e–f). (Courtesy Dr. Atsuhiko 
Handa, MD, University of Iowa Hospitals & Clinics)
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Fig. 15.8  Marchiafava–Bignami disease in a 58-year-old 
man. (a) T2-weighted image shows hyperintensity in the 
anterior and posterior corpus callosum (arrows) and in the 
periventricular white matter. (b) Gadolinium-enhanced 
T1-weighted image with magnetization transfer contrast 

reveals enhancing lesions in the anterior and posterior cor-
pus callosum. (c, d) DW image shows hyperintense 
lesions with increased ADC in the corpus callosum, repre-
senting demyelination and necrosis in the subacute phase
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consistent with cytotoxic edema in the myelin 
sheath (intramyelinic edema) (Fig. 15.11).

15.2.3  �Brain Death

Brain death is defined as the irreversible cessa-
tion of all brain function [54]. Brain death criteria 
that most countries have commonly accepted are 
[55]: deep unresponsive coma; absence of brain 
stem function and reflexes; positive apnea test 

despite pCO2 greater than 60  mmHg. The 
irreversibility of such criteria must be confirmed. 
Brain electrical activity (EEG, brain stem evoked 
potentials) may be inaccurate in comatose 
patients with drug-induced hypothermia or intox-
ication. The absence of cerebral blood flow is 
accepted as a confirmatory sign of brain death.

Conventional angiography was considered the 
gold standard until the 1990s, but it is an invasive 
method and may damage transplantable organs. 
MR imaging and MR angiography have been 

a b c

Fig. 15.9  Hypoxic-ischemic encephalopathy in an 
18-year-old male patient after hanging himself. (a) FLAIR 
image shows hyperintensity in the posterior part of the 

putamina bilaterally. (b, c) DW image shows these lesions 
as hyperintense with the decreased ADC

a b c

Fig. 15.10  Hypoxic-ischemic encephalopathy in an 
83-year-old man with a cardiac arrest. (a) No obvious 
abnormality seen on FLAIR. (b, c) DW image shows 

extensive diffuse hyperintense lesions in the temporo-
occipital cortices bilaterally (arrows) with decreased 
ADC values
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reported as reliable methods in demonstrating 
absence of cerebral blood flow and determining 
brain death [54, 56, 57]. MR findings in brain 
death include (1) central and tonsillar herniation, 
(2) absent intracranial vascular flow voids, (3) 
poor gray matter/white matter differentiation, (4) 
no intracranial contrast enhancement, (5) carotid 
artery gadolinium enhancement (intravascular 
enhancement sign), and (6) prominent nasal and 
scalp enhancement (MR hot nose sign) [56]. MR 
angiogram shows no intracranial flow above the 
supra-clinoid carotid arteries due to the increased 

intracranial pressure. DW imaging shows diffuse 
hyperintense areas in the gray and white matter 
including the brain stem (Figs. 15.12 and 15.13). 
A massive drop in ADC values in the hemi-
spheres has been reported (<50% of normal val-
ues) [58]. The ADC value of the white matter is 
significantly lower than that of the gray matter 
[59]. Diffusion restriction usually extends to the 
brain stem and, variably, the cerebellum [60]. 
Severe ADC reduction in gray and white matter 
probably reflects global irreversible cytotoxic 
edema.

Fig. 15.11  Delayed postanoxic encephalopathy in a 
53-year-old man with progressive mental status changes 
for 3–4  days. There was a history of narcotic overdose 
2 weeks earlier. (a) T2-weighted image shows no abnor-
mal signal intensity in the brain. (b, c) DW image shows 
very subtle hyperintensity with mild decreased ADC in 
the corona radiata. (d) Follow-up MR imaging was per-
formed 14 days after the onset. FLAIR image shows high 
signal intensity in the deep white matter bilaterally. (e) 
DW images revealed diffuse hyperintensity with decreased 

ADC (f). The patient continued to deteriorate and died 
about 20 days later, 46 days after the overdose. Autopsy 
was performed. (g–i) Pathology shows myelin discolor-
ation in the periventricular white matter and caudate 
nucleus. Pathology shows neuronal axonal spheroids 
(arrows) in the gray matter (h) and varying degrees of 
myelin loss with spongiform changes in the white matter, 
reflecting intramyelinic edema in the deep white matter (i)

a b c

d e f
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15.2.4  �Hypoglycemia 
and Hyperglycemia

Glucose is the main energy substrate of the brain. 
Hypoglycemia is caused by overuse of insulin, 
oral hypoglycemic agents, insulinoma, sepsis, 
renal or hepatic failure, or Addison disease. 
Neurologic signs of hypoglycemia are nonspe-
cific including weakness, confusion, seizures, 
and coma. Sequelae of hypoglycemic coma are 
rare, but they include profound memory loss, per-
sistent vegetative state, and death in 2–4% of 
cases. MR imaging of hypoglycemia shows 
lesions that involve the cerebral cortex, particu-
larly the temporal lobe, hippocampus, and basal 
ganglia [61]. The most severely affected patients 
manifest basal ganglia involvement. DW imaging 
shows hyperintense lesions with decreased ADC 
similar to hypoxic–ischemic encephalopathy 
(Fig. 15.14) [61, 62]. Reversible lesions on DW 
imaging have also been reported, which often 
involve the bilateral internal capsules, corona 

radiata, and corpus callosum [63, 64]. This pat-
tern may be the result of a different pathophysi-
ologic process from glucose starvation such as a 
release of excitatory amino acids into the extra-
cellular space [65].

Hyperglycemia can disrupt the blood–brain 
barrier and produce decreased cerebral blood 
flow, intracellular acidosis, accumulation of 
extracellular glutamate, and decreased activity of 
GABAergic neurons. Hemichorea-hemiballismus 
associated with hyperglycemia is characterized 
by hyperintensities in the striatum on T1-weighted 
images and CT studies. The process is either uni-
lateral or bilateral. The T1 high signal is probably 
related to manganese (Mn) accumulation accom-
panied by induction of Mn superoxide dismutase 
(MN-SOD) and glutamine synthetase (GS) with 
rich protein contents in the reactive swollen 
astrocytes (gemistocytes) [66–68]. Increased vis-
cosity was also proposed as a potential basis for 
the high T1 signal, which could also explain 
restricted diffusion [67]. DW imaging has been 

g

h

i

Fig. 15.11  (continued)
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Fig. 15.12  32-year-old man with brain death. (a) ADC 
map reveals marked decreased ADC in the white matter 
(0.21  ×  10−3  mm2/s) and decreased ADC in the cortex 
(0.51 × 10−3 mm2/s). Note diffuse obliteration of cortical 
sulci. (b) Decreased ADC is observed in the pons 

(0.30 × 10−5 mm2/s) but not in the cerebellum. (c) Dynamic 
contrast MR angiography shows loss of vascular flow in 
the supraclinoid internal carotid arteries but reveals opaci-
fication of intracranial vertebral and basilar arteries

Fig. 15.13  Brain death in a 48-year-old man. (a) Sagittal 
T1-weighted image shows central and tonsillar herniation. 
(b) FLAIR image shows diffuse hyperintensity in the cor-
tex, deep gray matter, and periventricular white matter. (c) 
DW image shows extensive diffuse hyperintensity in the 
brain, especially the periventricular white matter. (d) The 

ADC values of the brain are diffusely decreased in the 
cortex (0.51  ×  10−3  mm2/s) and white matter 
(0.25  ×  10−3  mm2/s). (e) MR angiography shows non-
visualization of intracranial vessels above the supracli-
noid carotid arteries

a b c
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Fig. 15.13  (continued)

a b c

Fig. 15.14  Hypoglycemic encephalopathy in a 53-year-
old man. (a, b) Coronal T2-weighted and axial FLAIR 
images show symmetric hyperintense lesions in the basal 

ganglia, hippocampi, and temporo-occipital lobes 
(arrows). (c) DW image shows these areas as hyperinten-
sity lesions (arrows)

reported to detect early ischemic damage as areas 
of heterogeneous signal intensity with decreased 
ADC (Fig.  15.15) [67–69]. On the other hand, 
diabetic ketoacidosis with prolonged hyperglyce-

mia may cause subtle FLAIR and diffusion 
abnormalities in the cortex (Fig.  15.16) associ-
ated with elevations in glucose, myoinositol, tau-
rine, and ketones in MR spectroscopy [70].

A. A. Capizzano et al.
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15.2.5  �Osmotic Demyelination (OD)

OD encompasses previously reported central pon-
tine myelinolysis (CPM) and extrapontine myelin-
olysis (EPM), which represent destruction of 
myelin sheaths in characteristic locations within 
the brain stem and cerebrum. The most common 
location is the central part of the basis pontis, fol-
lowed by a combined type with central and extra-
pontine areas of myelinolysis. Isolated EPM is the 
least common presentation [71]. A symmetric tri-

dent-shaped hyperintensity in the central pons is 
the characteristic finding on T2-weighted and 
FLAIR MR images. The ventrolateral pons and 
the corticospinal tracts typically are spared [72]. 
The basal ganglia, thalamus, geniculate bodies, 
internal and external capsules, corpus callosum, 
cerebellum, cerebellar peduncles, and gray–white 
matter junction are possible sites of EPM [73–76]. 
The cortico-subcortical junction, especially at the 
crown of the cortical gyri, is vulnerable to osmotic 
demyelination syndrome [77, 78]. The synonyms 

a b c

Fig. 15.15  Hemichorea-hemiballismus associated with 
hyperglycemia in a 69-year-old woman with type 2 diabe-
tes. (a) CT shows high-density areas in the left caudate 
head and anterior part of the putamen (arrow). (b) 

T1-weighted image shows hyperintensity in the left entire 
striatum (arrows). (c) DW image shows these lesions as 
low-signal intensity with an isointense area in the left cau-
date head (arrows)

a b c

Fig. 15.16  Diabetic ketoacidosis with type 1 diabetes in 
a 28-year-old man (blood sugar 1500 mg/dl). (a) FLAIR 
image shows symmetric hyperintense lesions in the pari-

etal cortices bilaterally. (b, c) DW image shows these 
areas as hyperintense with mildly decreased ADC
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include osmotic myelinolysis and osmotic demy-
elination syndrome. Symptoms include acute con-
fusional state, pseudobulbar affect, stupor, coma, 
and occasionally locked-in syndrome, intermin-
gled with prominent motor manifestations of flac-
cid evolving to spastic quadriparesis, dysarthria, 
and dysphagia [79–81].

Pathological findings show destruction of 
myelin sheaths, though the nerve cells and axons 
are relatively spared. The underlying etiology and 
pathogenesis are unknown, but the hypotheses 
include osmotic endothelial injury, microglia-
derived cytokines, excessive brain dehydration, 
and metabolic compromise [82]. Organic osmo-
lytes, including glutamate, glutamine, myoinosi-
tol, and taurine, have been implicated in the 
pathogenesis of myelinolysis [83]. The most com-
mon osmotic insult is a rapid correction of com-
pensated subacute hyponatremia. However, CPM 
and EPM can also occur in normo- or hyperna-
tremic states in patients with chronic alcoholism, 
post-liver transplantation, malnutrition, burns, 
hyperemesis gravidarum, and AIDS [84–86].

MR imaging has a fundamental role in the 
diagnosis and discloses hyperintense lesions on 
T2-weighted images, with or without enhance-
ment on gadolinium-enhanced T1-weighted 
images. DW imaging is useful in detecting the 
lesions in the early phase as hyperintense with 
decreased ADC, which represents cytotoxic 
edema (Figs.  15.17, 15.18, and 15.19) [87]. 
Cytotoxic edema in CPM and EPM occur not 

only in myelin sheaths but also in neurons, axons, 
and astrocytes [88]. The clinical outcome of 
CPM and EPM is highly variable, and both fatal 
and clinically reversible cases may be associated 
with this kind of cytotoxic edema.

15.2.6  �Wernicke’s Encephalopathy

Thiamine (vitamin B1) deficiency can cause 
Wernicke encephalopathy, characterized by confu-
sion, ataxia, and abnormal eye movements, but the 
classical clinical triad is not always present. It is 
frequently associated with chronic alcohol abuse. 
Nonalcoholic Wernicke encephalopathy includes 
many other conditions such as tumors and bypass 
surgery of the gastrointestinal tract, gastroplasty, 
pancreatitis, anorexia nervosa, voluntary food star-
vation, hyperemesis gravidarum, chronic uremia, 
dialysis, HIV infection, and thyrotoxicosis [89–
91]. Without thiamine, the Krebs and pentose 
phosphate cycles cannot metabolize glucose. 
Thiamine is also essential in maintaining osmotic 
gradients across cell membranes. Cellular homeo-
stasis will soon fail resulting in release of gluta-
mate into the extracellular space leading to NMDA 
receptor mediated excitotoxicity. Pathologic fea-
tures are edema, swelling of capillary endothelial 
cells and astrocytes, hemorrhage, necrosis, and 
decreased myelination. The lesions are commonly 
seen in the mamillary bodies (57–75%), medial 
thalamic and hypothalamic nuclei, periaqueductal 

a b c

Fig. 15.17  Central pontine myelinolysis in a 33-year-old man. (a) T2-weighted image shows a hyperintense lesion in 
the center of the pons (arrow). (b, c) DW image shows this lesion as hyperintense with decreased ADC
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a b c

Fig. 15.18  Extrapontine myelinolysis in an 11-year-old 
boy. (a) T2-weighted image shows no appreciable abnor-
mality in the external capsules and hippocampi. (b, c) DW 

image demonstrates bilateral symmetrical hyperintense 
lesions with decreased ADC in the external capsules and 
hippocampi (arrows), representing cytotoxic edema

a b c

d e f

Fig. 15.19  Central pontine and cerebellar peduncle 
myelinolysis in a 54-year-old man with slurred speech 
and confusion. (a, b) T2-weighted image shows hyperin-
tense lesions in the center of the pons, middle cerebellar 
peduncles (a), and corpus callosum. (b) (arrows). (c–f) 

DW image shows the lesions in the middle cerebellar 
peduncles and corpus callosum as hyperintense with 
decreased ADC (arrows), and the pontine lesion as isoin-
tense with increased ADC
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gray matter, tectal plate, walls of the third and floor 
of the fourth ventricle, and less commonly in the 
caudate nuclei, frontal, and parietal cortex, pons, 
dorsal medulla, red nuclei, corpus callosum, cere-
bellum, and dentate nuclei [91–95].

MR imaging shows symmetrical hyperintense 
lesions of these areas on FLAIR and T2-weighted 
images [96]. They may or may not show enhance-
ment on T1weighted images following contrast 
agent injection, depending on local disruption of 
the blood–brain barrier [91, 97]. Mammillary 
body involvement and enhancement are often 
seen in Wernicke encephalopathy with alcohol 
abuse but are less frequent in nonalcoholic 
Wernicke encephalopathy [89–91]. With intrave-
nous thiamine treatment, these lesions may 
resolve. DW imaging shows these lesions as 
hyperintense with decreased or increased 
ADC. Lesions with decreased ADC are thought 
to represent cytotoxic edema of neurons or 
astrocytes, while lesions with increased ADC 
may represent vasogenic edema (Figs. 15.20 and 
15.21) [95, 98–100]. Both types of lesion can be 
reversible [98]. The important differential diag-
nosis of symmetric lesions in the medial thalami 
includes ischemia due to occlusion of the artery 
of Percheron and deep cerebral vein thrombosis.

15.2.7  �Hyperammonemic 
Encephalopathy

Hyperammonemia is the end result of several 
metabolic derangements such as hepatic enceph-
alopathy, deficiencies of urea cycle enzymes, 
Reye’s syndrome, and other toxic encephalopa-
thies [102]. FLAIR and DWI display abnormali-
ties in the thalami, posterior limb of the internal 
capsule, periventricular white matter, dorsal 
brainstem, or diffuse cortical involvement. 
Restricted diffusion involving the insular and cin-
gulate cortices and thalamus bilaterally is charac-
teristic (Fig.  15.22) [103]. FLAIR and DWI 
changes correlate with plasma ammonia level, 
which is a strong predictor of outcome [104]. The 
combination of facilitated and restricted diffu-
sion suggests the presence of both intracellular 
and extracellular components of cerebral edema 
in patients with acute-on-chronic liver failure 
[105]. The time course of ADC changes is remi-
niscent of HIE, with pseudonormalization at 
8  days [101]. In well-compensated cirrhosis 
patients free of overt hepatic encephalopathy, 
ADC values were significantly increased in the 
genu and body of the corpus callosum suggesting 
increase in extracellular fluid [106].

a b c

Fig. 15.20  Wernicke encephalopathy with alcohol abuse 
in a 75-year-old man. (a) FLAIR shows a symmetrical 
hyperintense lesion in the hypothalamus (arrow). (b, c) 

DW image shows isointense lesions with increased ADC 
in the hypothalamus, which may represent vasogenic 
edema (arrow)
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15.2.8  �Wilson’s Disease (WD)

The incidence of WD is approximately 
1:30,000. The underlying mechanism of WD 
is a defect in ATP7B, a copper transporting 
ATPase that is mainly expressed in hepato-
cytes. This leads to accumulation of copper, 
which eventually overwhelms safe storage 
capacity and cellular injury occurs. Most WD 
patients present with liver disease during their 
first and second decades of life with neuro-
logic or psychiatric symptoms in the second 
and third decades or later on [107]. Neurologic 
disease most often presents with tremor and 
progresses with gait imbalance, dysarthria, 
drooling, and parkinsonism. Psychiatric dis-

ease may range from mild mood disturbance 
to frank psychosis.

On T2-weighted images, neurological WD 
patients show high signal changes in the putamen, 
followed by involvement of the caudate, mid-
brain, thalamus, and cerebral cortex (Fig. 15.23) 
[108, 109]. The appearance of axial T2-weighted 
images at the midbrain has been linked to a “giant 
panda” face sign [110]. On DWI images, restricted 
diffusion in the putamen can be detected before 
the occurrence of neurologic manifestations in 
WD.  In contrast, an increase in diffusion is 
detected after the occurrence of symptoms within 
the putamen, pallidum, internal capsule, and sub-
cortical white matter, which parallel the signal 
changes seen on FLAIR [111].

a b c

d e

Fig. 15.21  Wernicke encephalopathy with thyrotoxico-
sis in a 36-year-old man. (a) T2-weighted image shows 
symmetric hyperintense lesions in the mammillary bod-
ies, hypothalamus, and periaqueductal region (arrows). 
(b–e) DW imaging shows hyperintense lesions in the 

hypothalamus, midbrain tectum, periaqueductal region, 
medial thalami, fornices, and pre- and postcentral gyri 
(arrows), associated with partially decreased ADC (not 
shown)
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Fig. 15.22  Hyperammonemic encephalopathy in a 
55-year-old man with cirrhosis, subsequently fatal, with 
initial plasma ammonia level (PAL) of 410 μM/L. (a–c) 
Axial FLAIR symmetric hyperintensities in thalami, 
upper midbrain, insula and external capsule and temporal 

cortex. DWI trace images (d and f) and ADC map (e and 
g) display extensive restricted DWI in those areas. The 
graph shows temporal evolution of ADC changes with 
pseudonormalization at 8 days [101]

a b c

d e f

g
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15.2.9  �Mitochondrial 
Encephalopathies

Mitochondrial encephalopathies are a heteroge-
neous group of disorders affecting primarily the 
central nervous system and skeletal muscles that 
result from mutations in the mitochondrial DNA 
that are inherited through the maternal line. Two 
main hypotheses attempt to explain the cerebral 
lesions: (a) mitochondrial dysfunction, which 
results in anaerobic metabolism and neuronal 
death from acidosis and (b) metabolic damage of 
the endothelium, which leads to small-vessel 
occlusion and secondary neuronal death [112].

Mitochondrial encephalomyopathy, lactic 
acidosis, and stroke-like episodes (MELAS) is 
one of the most frequent mitochondrial disor-
ders. MELAS syndrome is a multi-organ dis-
ease with stroke-like episodes, dementia, 
epilepsy, lactic acidemia, myopathy, recurrent 
headaches with vomiting, hearing impairment, 
diabetes, and short stature [112]. 80% of 
MELAS cases are associated with the 
m.3243A  >  G mutation in the MT-TL1 gene 
encoding the mitochondrial tRNALeu(UUR) 
(Fig. 15.24). On the other hand, Leigh syndrome 
displays a wide variety of presentations, from 
severe neurologic symptoms to subtle abnor-

malities. Most frequently, the central nervous 
system is affected with psychomotor retarda-
tion, seizures, nystagmus, ophthalmoparesis, 
optic atrophy, ataxia, dystonia, or respiratory 
failure. Some patients also present with periph-
eral nervous system involvement, including 
polyneuropathy or myopathy, or non-neurologic 
abnormalities, e.g., diabetes, short stature, car-
diomyopathy, anemia, renal failure, vomiting, 
or diarrhea (Leigh-like syndrome) [113]. Onset 
is in early childhood, but in a small number of 
cases, adults are affected (Fig. 15.25).

T2-weighted images occasionally show 
increased signal intensity in the cortex and sub-
cortical white matter, with features reminiscent 
of stroke but not respecting vascular territories. 
Cerebellar atrophy may be a hint to a preexist-
ing abnormality (Figs. 15.24 and 15.25). Proton 
MR spectroscopy is useful in the diagnosis by 
detecting elevated lactate peak. DW imaging 
often shows the stroke-like lesions in MELAS 
as hyperintense with restricted diffusion ini-
tially and later facilitated diffusion [114]. They 
have increased or normal ADC, which presum-
ably represents vasogenic edema, however, 
decreased ADC in these lesions representing 
cytotoxic edema can be observed [114] 
(Fig. 15.25).
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15.2.10  �SMART Syndrome

SMART syndrome (stroke-like migraine attacks 
after radiation therapy) is a rare condition that 
involves complex migraines with focal neuro-

logic findings in patients following cranial irra-
diation for central nervous system malignancies. 
It may be diagnosed up to 35 years (on average 
20 years) after high-dose radiation (>5000 centi 
Gray) treatment for intracranial neoplasms. It 

Fig. 15.23  Wilson disease 19 year/o male with slurred speech, change in behavior, depression, and low ceruloplas-
min. Symmetric T2 and DWI hyperintensities with facilitated diffusion in the striatum
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involves complicated migraine symptoms con-
sisting of transient neurologic deficits such as 
hemiparesis, aphasia, and sensory disturbances 
[115]. On imaging, it may resemble subacute 

infarction or MELAS on post-contrast images 
(Fig.  15.26): unilateral gyriform enhancement 
on MR imaging that develops within 2–7  days 
and resolves in 2–5 weeks. On the other hand, 

a b c

d e f

g h

Fig. 15.24  MELAS 42-year-old female with headache, 
blurry vision, and altered mental status. Hereditary deaf-
ness in maternal line. m.3243A > G pathogenic variant in 

the MT-TL1 gene. (a–d) At presentation, (e–h) follow-up 
with worsening cortical-based restricted DWI (f–g), and 
cortical enhancement (h)
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DWI abnormalities primarily demonstrated T2 
shine through without convincing evidence of 
restricted diffusion as opposed to mitochondrial 
diseases. Although considered reversible, up to 
45% of SMART cases had incomplete neuro-
logic recovery with imaging or clinical sequelae 
such as dysphasia, cognitive impairment, or 
hemiparesis [116].

15.3	 �Treatment of Toxic 
and Metabolic Diseases

Yang Mao-Draayer and Brian Chang

15.3.1  �Chemotherapy-Induced 
Leukoencephalopathy

The most commonly implicated agent associated 
with leukoencephalopathy is methotrexate, and 
there is no standardized treatment for 
methotrexate-induced leukoencephalopathy 
[117]. Some case reports have suggested benefit 
with aminophylline and a retrospective series of 

patients with subacute encephalopathy found 
improvement with dextromethorphan [118, 119]. 
However, whether methotrexate in general 
should even be stopped should be assessed with 
relation to many mitigating factors, including 
determination of why the affected patient was 
more at risk for toxicity, whether leukoencepha-
lopathy was symptomatic or not, how extensive 
the leukoencephalopathy was, and how much the 
patient would benefit from continuing metho-
trexate [120]. Other methotrexate-induced neu-
rotoxicities—specifically transverse myelopathy 
and disseminated necrotizing leukoencephalopa-
thy—require immediate discontinuation of 
methotrexate [121, 122]. A case report of the for-
mer has documented improvement with high 
doses of metabolites of the methyl-transfer path-
way including S-adenosylmethionine, folinate, 
cyanocobalamin, and methionine [123]. The lat-
ter has been associated with poor outcomes, with 
supportive treatment as the only therapeutic 
management [2].

While less common, other chemotherapies 
associated with leukoencephalopathy include 
bortzemoib, gemcitabine, sunitinib, cisplatin, 
and oxiplatin [124–131]. Treatment for these 

a b c

d

i

e f

g

h j

Fig. 15.25  Adult Leigh syndrome. 42-year-old man 
with a pathogenic mutation in MTATP6. Had recurrent 
stroke-like episodes, imaging evidence of necrotizing 
encephalopathy, decompensation at the time of infectious 
illness, chronic migraine, sensorineural hearing loss, and 
psychotic symptoms. Also had lifelong progressive mus-

cle weakness, ataxia, cerebral and cerebellar atrophy, and 
visual problems. Symmetric gray matter symmetric 
involvement with high FLAIR signal in cortex and basal 
ganglia (a–c), with cortical enhancement (d–e) and 
restricted DWI (g–j). Note basal ganglia (c–f) and cere-
bellar (e) atrophy
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a b c

d e f

g h

Fig. 15.26  SMART syndrome. 30-year-old male with 
VP shunt presents with progressive left-sided headache, 
language difficulties, right arm numbness, and weight 
loss. History of medulloblastoma status-post excision, 
chemotherapy and radiation 24  years before. Right: 

Imaging on presentation with pre contrast T1 (a) and gyri-
form cortical enhancement in the left temporo-occipital 
region (b, d, e) and no definite restricted DWI (f). Left: 
Imaging resolution on follow-up (g h)
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neurotoxicities as detailed in case reports gener-
ally involve removal of the offending agent, 
supportive care including anti-seizure medica-
tions, and control of comorbidities, especially 
hypertension.

15.3.2  �Heroin-Induced Spongiform 
Leukoencephalopathy

There is no proven treatment for heroin-induced 
spongiform leukoencephalopathy. However, 
some manuscripts have reported varying levels of 
improvement with antioxidants including coen-
zyme Q10 on its own or in combination with vita-
min E and vitamin C [132, 133].

15.3.3  �Cocaine, Phencyclidine 
Hydrochloride, 
Amphetamines, and Related 
Catecholaminergics

Management for these toxicities begins first and 
foremost with establishment of airway, breath-
ing, and circulation. Should intubation be 
required, succinylcholine should be avoided, as 
it is a strong acetylcholine receptor agonist that 
produces sustained depolarization and has a 
well-established risk of rhabdomyolysis as com-
pared to non-depolarizing neuromuscular block-
ing drugs [134].

Following resuscitation, treatment relies 
largely on attenuating CNS release of catechol-
amines and treating the sequelae of sympathetic 
activation. Intermediate to long-acting benzodi-
azepines including lorazepam and diazepam are 
first-line agents for acute cocaine, phencyclidine 
hydrochloride, and amphetamine toxicity, lower-
ing blood pressure, attenuating hyperthermia, 
and decreasing agitation [135–137]. For hyper-
tension resistant to benzodiazepines, short-act-
ing vasodilators including nitroglycerin and 
nitroprusside are employed, while residual 
tachycardia may be treated with calcium channel 
blockers. If myocardial infarction is suspected or 
diagnosed, appropriate therapeutic steps should 
be taken.

15.3.4  �Hypoxic–Ischemic 
Encephalopathy

Management of hypoxic-ischemic encephalopa-
thy (HIE) varies by age. In adults, supportive 
and preventive care is the standard [138–140]. 
Seizures may be treated with appropriate anti-
seizure medications, and myoclonic seizures 
specifically may be treated with valproate or 
clonazepam [141]. Patients may also present 
with post-hypoxic myoclonus, which case 
reports have been responsive to phenytoin, phe-
nobarbitone, or benzodiazepines [142]. Limited 
evidence exists for the treatment of subclinical 
seizures [143].

In neonates, the only protective strategy that 
has shown consistently benefit has been thera-
peutic hypothermia, started within the first 6  h 
after delivery [144]. Mechanistically, it is thought 
to reduce free radicals and glutamate levels, 
decrease oxygen demand, and decrease apoptosis 
[145]. This should be supplemented with sup-
portive care, including volume support, manage-
ment of seizures with phenobarbital, lorazepam, 
fosphenytoin, or levetiracetam, and respiratory 
therapy for infants with persistent pulmonary 
hypertension to maintain oxygenation.

15.3.5  �Hypoglycemia 
and Hyperglycemia

Treatment is specific to etiology of the glucose 
imbalance (Table 15.1).

First, we consider hypoglycemia in patients 
with type 1 or type 2 diabetes. By far, the most 
commonly implicated etiology is medication. 
Preventive strategies around this include setting 
glycemic targets, establishing consistent medica-
tion regimens, recognizing signs and symptoms 
of hypoglycemia early, and ingesting bedtime 
snacks to prevent nocturnal hypoglycemia. If 
hypoglycemia does arise, treatment may vary 
from ingesting fast-acting carbohydrates and re-
testing blood glucose if the patient is asymptom-
atic or mildly symptomatic to administering 
glucagon or IV dextrose if the patient is severely 
symptomatic [146, 147].
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Next, we address patients with diabetes who 
present with hyperglycemia. In patients with type 
I diabetes, physicians should adjust their insulin 
regimen and address their dietary habits. In 
patients with type II diabetes, management 
begins with lifestyle changes including diet, 
exercise, and weight loss. Should this be unsuc-
cessful, the first-line treatment is metformin, with 
a glycemic treatment goal of HgbA1c goal of 
<7.0 in younger adults without complications or 
8–8.5 depending on advanced age, comorbidities, 
and life expectancy [148, 149]. If within 
3  months, the glycemic treatment goal is not 
achieved with metformin along with lifestyle 
intervention, a second agent may be prescribed. 
Following that, triple agent therapy and bariatric 
surgery are third-tier options, though recurrences 
of diabetes in the latter are not uncommon and 
microvascular and macrovascular complications 
are comparable to those of medical therapy [150, 
151]. Medications should be prescribed as toler-
ated with additional comorbidities (such as obe-
sity) in mind. In patients in diabetic ketoacidosis 
(DKA) or hyperosmotic hyperglycemic state 
(HHS), the overriding principles are to correct 
fluid and electrolyte abnormalities, administer 
insulin, and monitor laboratory parameters 
closely until the anion gap closes [152]. The use 
of sodium bicarbonate has been widely debated, 
as side effects include peripheral hypoxemia, 
paradoxical CNS acidosis, and cerebral edema in 
children and young adults [153–155]. However, a 
general consensus has been formed around its 
use strictly in adults when arterial pH is less than 
7.0 or when potentially life-threatening hyperka-
lemia (>6.4 mEq/l) is present [156–158].

If hypoglycemia occurs in patients without 
diabetes, treatment should be targeted at the 
underlying etiology of the low blood sugar. 
Again, medications are a widely implicated 
cause. A number of common medications have a 
known side effect of hypoglycemia, such as pent-
amidine, quinine, and indomethacin [159]. Other 
medications less commonly but still associated 
with hypoglycemia include lithium and IGF-1 
[160]. Physicians should adjust medication regi-
mens as appropriate, titrating therapeutic effects 
to each patient. Chronic alcoholism is also asso-
ciated with hypoglycemia, and should be treated 
with dietary counseling and support around alco-
hol cessation [161]. Cortisol deficiency second-
ary to Addison’s disease may be treated with 
cortisone therapy, and sepsis should be managed 
with appropriate resuscitation and treatment of 
the offending organism. While a relatively 
uncommon cause of hypoglycemia, insulinomas 
may be treated with resection of primary tumor, 
ethanol ablation, or medical management with 
diazoxide, octreotide/lanreotide if refractory to 
diazoxide, or verapamil [162–164].

Finally, hyperglycemia in patients without 
diabetes and with appropriately drawn labs could 
be attributable to stress-induced hyperglycemia 
(SIH), an enhanced metabolic state induced after 
trauma [165]. Attempts at tight glycemic control 
in both ICU and non-ICU patients do not improve 
outcomes, and the ideal glucose parameters under 
this condition are unclear as spontaneous 
improvement in fasting blood glucoses is incon-
sistently found in some patients with SIH [166]. 
However, a general target range between 100 and 
180 mg/dl has been suggested by experts [167].

Table 15.1  Etiologies of hypo- and hyperglycemia by diabetes status

Without diabetes With diabetes
Hypoglycemia Medications

Alcohol
Cortisol deficiency
Insulinoma/excess insulin
Critical illness/sepsis

Medications

Hyperglycemia Stress-induced
Acute myocardial 
infarction

Type 1 diabetes
Type 2 diabetes
Hyperosmotic hyperglycemia state (HHS)/diabetic ketoacidosis 
(DKA)
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15.3.6  �Carbon Monoxide Intoxication

If exposed to excessive quantities of carbon mon-
oxide (CO), patients should be immediately 
removed from the source of the CO and adminis-
tered 100%, high-flow oxygen via a non-
rebreather mask. In most cases, such treatment 
will be successful in resolving symptoms. 
However, patients with persistent symptoms or 
EKG or lab findings suggestive of severe poison-
ing should be hospitalized. Additionally, if 
patients become comatose or unable to protect 
their airway, they should be intubated immedi-
ately [168].

The benefit of hyperbaric oxygen is unclear. 
Randomized control trials have shown mixed 
effects of hyperbaric treatment, and one meta-
analysis conducted in 2011 demonstrated no 
statistically significant difference between treat-
ment and control [169, 170]. However, studies 
have been heterogeneous, with variable out-
come measures. In general, hyperbaric treat-
ment is recommended if any of the following 
are present: loss of consciousness, new neuro-
logic impairments, end-organ ischemia, or preg-
nancy [171].

15.3.7  �Delayed Postanoxic 
Encephalopathy

Following emergence of delayed postanoxic 
encephalopathy, treatment is supportive with 
active rehabilitation [172]. If Parkinsonian symp-
toms arise, case reports have described success-
ful use of carbidopa and haloperidol [50, 173, 
174]. Outcomes are generally positive.

15.3.8  �Osmotic Demyelination

Prevention is crucial toward avoiding these 
demyelination syndromes, with slow (less than 
6–8 mEq/l correction every 24-h period) correc-
tion in patients with hyponatremia lasting more 
than 2  days or with hyponatremia of unknown 

duration. Should an osmotic demyelinating syn-
drome arise, treatment is largely supportive, with 
careful monitoring of serum sodium concentra-
tion every 2–3 h initially.

While less commonly employed, case reports 
have demonstrated benefit from lowering sodium 
levels [175–177]. As such, desmopressin has 
been administered for its antidiuretic effects 
along with fluid replacement with dextrose if 
excessive urinary-free water loss is present [178, 
179]. Additionally, one case report detailed 
symptomatic improvement in two of three 
patients following plasmapheresis. However, 
imaging remained unchanged, and spontaneous 
self-resolution of neurologic impairment has 
been previously observed [180].

15.3.9  �Wernicke Encephalopathy

Immediate parenteral administration of thia-
mine is required after diagnosis, with a transi-
tion to oral vitamin B1 as tolerated [181]. Even 
after treatment, patients with thiamine insensi-
tivity may necessitate higher than normal levels 
of thiamine [182]. If patients are hypoglycemic 
as well, case reports and series have suggested 
that glucose administration prior to thiamine 
might be a risk factor for development of 
Wernicke encephalopathy [183]. Regardless, 
correction of hypoglycemia should be either 
concurrent with or immediately preceded by 
administration of thiamine. Following appro-
priate management, patients should be coun-
seled on dietary requirements of B vitamins and 
alcohol cessation if abuse or overuse is 
present.

15.3.10  �Marchiafava–Bignami 
Disease

Similar to Wernicke encephalopathy, Marchiafava-
Bignami disease is associated with chronic alco-
holism, so treatment aimed at correcting underlying 
nutritional and vitamin imbalances is often 
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employed. Parenteral thiamine has been associ-
ated with better outcomes, especially during the 
acute phase of the illness compared to chronic dis-
ease. Additionally, a case report has documented 
benefit with steroids. However, the disease has 
poor prognosis overall, therapeutic failure is often 
seen even after supplementation of B1, and a case 
series by Hillbom et al. showed no statistically sig-
nificant improvement in 150 patients with steroid 
treatment [41, 184, 185]. A subset of surviving 
patients develops subsequent dementia, though 
partial or complete spontaneous recovery has been 
reported in some of these cases [184].

15.3.11  �Steroid-Responsive 
Encephalopathy Associated 
with Autoimmune 
Thyroiditis (Hashimoto’s 
Encephalopathy)

A vast majority of patients respond well to high-
dose steroids with duration and tapering titrated 
to improvement in symptoms [186]. Other thera-
peutics including IV immunoglobulins, plasma-
pheresis, and immunomodulators such as 
methotrexate, azathioprine, and mycophenolate 
have been used with variable success in patients 
who have been steroid-intolerant [187–190].
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15.4	 �Brain Death Management

Deema Fatal

15.4.1  �History of Brain Death Concept

Brain death criteria is a new concept that was 
developed in the twentieth century as a result of 
improvements in intensive care of comatose 
patients, including unresponsive patients. The 
concept of brain death was first noted in the med-
ical literature in 1959 by Mollaret and Goulon, 
which they called irreversible coma (coma 
dépassé) [191]. During the 1950s, advances in 
positive pressure ventilators led to patients, who 
would have died otherwise, to remain alive but 
without being responsive. As a result of such situ-
ations, neurologists had ongoing debates about 
these patients throughout the 1960s, and such 
debates were ongoing across the globe too, in 
Great Britain, Switzerland, South Africa, and 
Australia [192]. In 1967, anesthesiologist Henry 
Beecher led a committee to review the “ethical 
problems created by the hopelessly unconscious 
patient” [192]. This culminated in 1968  in the 
Harvard report on brain death [193]. This report 
was the first to put forth specific criteria for brain 
death [192]. The purpose of the report was to 
“define irreversible coma as a new criterion for 
death” and to discuss the ethical issue of procur-
ing organs from such patients for transplantation; 
and both these issues were mentioned in the final 
report: “(1) the burden is great on patients who 
suffer permanent loss of intellect, on their fami-
lies, on the hospitals, and on those in need of hos-
pital beds already occupied by these comatose 
patients; (2) obsolete criteria for the definition of 
death can lead to controversy in obtaining organs 
for transplantation” [193]. The Harvard report’s 
brain death criteria were the following: a person 
can be declared dead if there is (1) unreceptivity 
and unresponsivity even to the most intensely 
painful stimuli; (2) No movements (observed for 
1 h) or breathing (upon turning off the ventilator 
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for 3 min); (3) No reflexes (pupil, calorics, dolls 
eyes, corneal, and pharyngeal reflexes, and no 
swallow, yawning, or vocalization); and no 
stretch reflexes; (4) Flat EEG recorded for at least 
10  min [193]; all this should be repeated 24  h 
later. Moreover, hypothermia <90 °F and depres-
sants such as barbiturates should be excluded 
[193].The Harvard criteria were not legally bind-
ing [192]. Yet over the ensuing decade, the con-
cept of brain death spread and during the 1970s 
some states started to develop brain death crite-
ria, making it possible to be alive in one state and 
dead in another [192].

To overcome the confusion related to brain 
death across the states, there was a need for regu-
lation at the federal level. In 1981, The President’s 
Commission report for the “Study of Ethical 
Problems in Medicine and Biomedical and 
Behavioral Research” led to a proposal for a legal 
definition for brain death, which, in turn, resulted 
in the Uniform Determination of Death Act 
(UDDA) [194]. UDDA states that “An individual 
who has sustained either (1) irreversible cessation 
of circulatory and respiratory functions, or (2) 
irreversible cessation of all functions of the entire 
brain, including the brain stem, is dead. A deter-
mination of death must be made with accepted 
medical standards” [195]. Over time, all 50 states 
adopted one version or another of UDDA.

Though brain death was now defined in all 
states, confusion related to the exact criteria of 
brain death remained. The UDDA did not define 
“accepted medical standards.” So in 1995, the 
American Academy of Neurology (AAN) pub-
lished practice parameter to delineate the medical 
standards for the determination of brain death 
[196] and updated them in 2010 [197].

15.4.2  �Diagnostic Criteria for Brain 
Death

To define brain death, three specified parame-
ters need to be followed which are (1) Coma: 
irreversible cessation of all functions of the 
entire brain, including the brain stem due to a 
known condition that can cause brain death; (2) 
absence of brainstem reflexes; and (3) apnea. In 

other words, brain death is declared when 
“brainstem reflexes, motor responses, and 
respiratory drive are absent in a normothermic, 
non-drugged comatose patient with a known 
irreversible massive brain lesion and no con-
tributing metabolic derangements” [198]. 
Typically, cardiac death occurs within few days 
of brain death [199], but not uniformly—the 
case of Jahi McMath [192]. It is important to 
note that once the AAN criteria for brain death 
determination were followed completely, no 
one has been reported to recover [197].

15.4.3  �Neuropathology

In the past, the neuropathology of brain-dead 
patients showed total brain necrosis, so-called 
respirator brain [200]. But, with the advent of 
transplantation protocols, brain fixation is occur-
ring in a timely fashion. In 2008, Wijdicks and 
Pfeifer reviewed neuropathology of 41 brains 
from brain dead patients where the autopsy was 
done within 36 h of brain death [200]. The find-
ings were the following: (1) there are no pathog-
nomonic feature; and (2) severe pathology was 
not uniform; in fact, mild changes were seen in as 
much as one-third of cerebral hemispheres and 
half of the brainstems [200].

15.4.4  �Brain Death Causes

Known causes of brain death are intracranial 
hemorrhage, subarachnoid hemorrhage, large 
strokes with edema and herniation, hypoxic-
ischemic injury, severe trauma, and fulminant 
hepatic necrosis with cerebral edema and 
increased intracranial pressure [201]. In fact, 
90% of brain death causes are brain trauma, 
intracranial hemorrhage, subarachnoid hemor-
rhage, stroke, and anoxia [202].

15.4.5  �Brain Death Mimickers

Severe clinical conditions can present in coma 
and could potentially be confused with brain 
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death: fulminant Guillain-Barré syndrome, 
organophosphate intoxication, high cervical spi-
nal cord injury, lidocaine toxicity, baclofen over-
dose, and delayed vecuronium clearance [197]. 
Yet review of these cases showed that none had a 
complete brain death examination using the AAN 
practice parameters [197].

15.4.6  �Determination of Brain Death

To determine brain death, using AAN 2010 
guidelines [197], the following criteria are 
needed:

	1.	 Known irreversible cause
	2.	 No confounding factors (such as no paralytic 

agents, sedatives, hypnotics, drugs, alcohol, 
or severe electrolytes, acid base, or endocrine 
disturbances)

	3.	 Complete brain death examination—see 
Table 15.2.

	4.	 Apnea test

The lack of need for a second exam was shown 
in a study by Lustbader et al. [203]. They studied 
1229 brain dead adult bodies and 82 pediatrics. 
None regained brainstem function upon repeat 
examination. The time between the two exams 
was 19 h. Consent for organ donation decreased 
from 57 to 45% as the brain death declaration 
interval increased. Twelve percent sustained car-
diac arrest between the first and second 
examination.

It is important to note that the apnea test can-
not be completed in about 10% [204]. This is 
where the role of radiological tests may become 
relevant.

15.4.7  �Future Directions

The biggest consequence of brain death criteria 
has been the ability to procure organs and save 
lives. But the definition of brain death has 
remained challenging. First, many versions of 
brain death criteria exist across the USA and the 
globe [198, 205]. In one study, 80 countries were 
surveyed and major discrepancies were found, 
such as PCO2 target was recommended in only 
59% of the protocols [198]. Second, the concept 
of brain death has been difficult to conceptual-
ize. Is the brain essential for the function of the 
whole organism, so that a dead brain means a 
dead organism [206]? This argument did not 
hold water over time since brain dead patients, 
with support of artificial feeding and ventilation, 
can remain stable for years, and can even give 
birth, negating the claim that the brain is essen-
tial for the functioning of the whole body [207]. 
In 2008, president’s council on bioethics 
addressed this issue in its white paper “contro-
versies in the determination of death” [208]. 
Although brain dead patients can remain stable 
and maintain “integrated functioning,” they are 
still dead because “they have ceased to perform 
the fundamental vital work of a living organism” 
[192]. However, this concept too is on shaky 
grounds: the lack of ability to perform a vital 
function as criteria for death is confusing since a 
patient who has pneumonia and needs a ventila-
tor cannot perform a vital function yet s/he is not 
dead. As 3-D printing of organs and tissues and 
xenotransplantation science continues to evolve, 
it is possible that the need for organ donation 
will become obsolete, making brain death defini-
tion less important in the future [192]. Until 
then, brain death concept remains, 50 years later, 
“well settled, yet still unresolved” [192].
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