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Abstract. The concept of blockchain was developed with the purpose
of decentralizing the trade of assets, suppressing the need for interme-
diaries during this process, as well as achieving a digital trust between
parties. A blockchain consists in a public immutable ledger, constituted
by chronologically ordered blocks such that each block contains records
of a finite number of transactions.

The Ethereum platform, that this paper builds upon, is implemented
using a blockchain architecture and introduces the possibility of stor-
ing Turing complete programs. These programs, also known as smart
contracts, can then be executed using the Ethereum Virtual Machine.
Despite its core language being the EVM bytecode, they can also be
implemented using a higher-level language that is later compiled to EVM,
being Solidity the most used. Among its applications stand out decen-
tralized information storage, tokenization of assets, and digital identity
verification.

In this paper we propose a method for formal verification of Solid-
ity smart contracts in Isabelle/HOL. We start from the imperative lan-
guage and big-step semantics proposed by Schirmer [23], and adapt it to
describe a rich subset of Solidity, implementing it using the Isabelle/HOL
proof assistant. Then, we describe the properties about programs using
Hoare logic, and present a proof system for the language, for which results
on soundness and (relative) completeness are obtained.

Finally, we describe the verification of an electronic voting smart
contract, which illustrates the degree of proof complexity that can be
achieved using this method. Examples of smart contracts containing over-
flow and reentrancy vulnerabilities are also presented.
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1 Introduction

The emergence of the blockchain concept was associated with the appearance
of Bitcoin, one of the first decentralized cryptocurrencies, introduced in 2008 by
Satoshi Nakamoto [21]. A cryptocurrency is independent of any central admin-
istrative entities and uses instead a peer-to-peer digital system, managed by a
network of nodes. Transactions are stored in a blockchain, an append-only public
ledger, through the process of mining. Nodes in the network, also known as min-
ers, try to solve a difficult computational problem called proof-of-work. When
a transaction is verified by the network it is incorporated into the blockchain
using a cryptographic hash function, which includes data from the previous
block’s hash and makes the whole chain cryptographically secure and, therefore,
immutable.

Our work focuses on the Ethereum platform, proposed by Vitalik Buterin [4]
in 2013, which similarly uses a blockchain architecture but also introduces the
feature of storing Turing complete programs, known as smart contracts. These
programs can be executed by the stack-based Ethereum Virtual Machine (EVM),
and its formalization was first approached by Gavin Wood [26]. Ethereum also
introduces the concept of gas, as each operation in the virtual machine has an
associated cost in ether, the Ethereum currency. When a contract is executed,
either by being called by a transaction or by code in another contract, the original
transaction initiator needs to pay for the total cost of operations.

Given the valuable assets in these contracts, and the fact that they are
immutable, studying the security of these programs becomes of uttermost impor-
tance. With that in mind, the main goal of this work is to introduce a formal
verification method of Ethereum smart contracts using Isabelle, a higher order
logic (HOL) theorem prover. We have chosen to verify smart contracts written
in Solidity, a higher level language that compiles to EVM bytecode.

The main reference for our language, and respective semantics and proof sys-
tem, is the work by Schirmer [23]. We adapt the proposed language for sequential
programs to capture a relevant subset of Solidity. Our main additions were the
modeling of Solidity calls, both internal and external, Solidity exceptions, and
reverting all state modifications. To formalize the meaning of these new opera-
tions in terms of execution, the big-step semantics was extended. The verification
of programs is done using Hoare logic. Soundness and (relative) completeness
results for the proof system are presented.

The concept of weakest precondition [6] is presented and used both for opti-
mizing program verification and for the completeness result. Regarding the first,
and following the work by Frade and Pinto [7], we enhance the weakest pre-
condition and verification condition computations with the cases for Dyncom,
Require and Init. The proof of (relative) completeness, based on the proof by
Winskel [25], is extended with the Call, Handle, Revert, Dyncom, Require and
Init cases.

To conclude the paper we present some relevant examples of applications
such as electronic voting, tokens, and reentrancy, describing and analyzing this
way the expressiveness of the language.
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Related Work. Previous efforts have been made by the research commu-
nity to formally verify smart contracts. Hirai formalized the EVM semantics
in Lem and used Isabelle/HOL to prove safety properties of Ethereum smart
contracts [11]. Amani et al. [1] formalized the EVM semantics in Isabelle/HOL
and proposed a sound program logic to verify correctness of smart contracts.
Grishchenko et al. [9] formalized a complete small-step semantics of EVM byte-
code in F∗, and defined security properties for smart contracts such as call
integrity and atomicity. Hildebrandt et al. [10] formalized the EVM semantics
in the K framework. Bhargavan et al. [3] introduced a framework that translates
smart contracts from Solidity to F∗, allowing verification of functional correct-
ness and safety, as well as a decompilation from EVM bytecode to F∗ for analysis
of low-level properties.

As for analysis of Solidity code, Bartoletti et al. [2] proposed a calculus for
a fragment of Solidity with a single primitive to transfer currency and invoke
contract procedures, and Jiao et al. [14] developed a formal semantics for Solidity
in the K framework that allows formal reasoning about high-level contracts.
Zakrzewski [27] proposed a semantics for a small fragment of Solidity in Coq.

Some automatic analysis tools for analysing Ethereum smart contracts have
also been developed as are the cases of Oyente [17], Maian [22], Mythril [20],
and Securify [24]. A survey on these techniques and tools can be found in [8].

Andre’s Influence in This Work. Scedrov’s results on linear logic [15,16]
significantly shaped our work. Linear logic encompasses the dynamics of algo-
rithms and resources, and its main impacts have been in computer science rather
than traditional mathematics. Linear logic significantly influenced the design
of Hoare triples, which are the basis of this work. Moreover, the use of for-
mal methods in Scedrov’s work [18,19], namely on process algebras, has also
been a significant contribution to the security area in general and inspired this
work in particular. Indeed, this paper’s primary goal is to present a proof-based
method to derive security properties in an imperative language for contracts
over a blockchain, which is a very restrictive form of concurrent programming,
and for which we do not impose polynomial-time bounding. More importantly,
Andre directly impacted the work and scientific career of two of the authors.
Pedro Adão and Paulo Mateus were respectively PhD and Postdoc students of
Andre.

2 The Ethereum Blockchain

Ethereum can be seen as a decentralized computing platform since it uses a
blockchain architecture and introduces the feature of storing smart contracts.

In this section we present a simplified definition of the Ethereum blockchain.
In the following definitions let Nx the set of non-negative integers with size
up to x bits and B the set of bytes. An account is an object of the Ethereum
environment that is identified by a 160-bit string known as the account’s address.
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Definition 1 (World state). The world state is a mapping σ between addresses
(160 bit strings) and account states.

σ : {0, 1}160 → N256 × N256 × ({0, 1}256 → {0, 1}256) × B
∗

There are two types of accounts: externally owned accounts (EOA) and
accounts associated with code (contract accounts).

Definition 2 (Account state). Given an address a, the account state σ(a) is
a tuple A = 〈nonce, balance, storage, code〉, where

– nonce ∈ N256 is the nonce of the account. If a is the address of an EOA,
corresponds to the number of transactions sent from this address. If a is the
address of a contract account, corresponds to the number of contract-creations
made by this account;

– balance ∈ N256 is the value of ether owned by account a;
– storage is a mapping between 256-bit values and corresponds to the account’s

storage;
– code ∈ B

∗ is the EVM code of this account. In case of an EOA corresponds
to the empty string.

There are two types of transactions: contract creation transactions and trans-
actions which result in message calls. A transaction is triggered by an external
actor.

Definition 3 (Transaction). A transaction is a tuple T = 〈nonce, gasprice,
gaslimit, from, to, value, init/data〉, where

– nonce ∈ N256 is the number of transactions sent by address from;
– gasprice ∈ N256 is equal to the cost per unit of gas, in ether, for all compu-

tation costs of this transaction;
– gaslimit ∈ N256 is equal to the maximum amount of gas that should be used

in the execution of this transaction;
– from ∈ {0, 1}160 is the address of the transaction’s sender;
– to ∈ {0, 1}160 is the address of the transaction’s recipient;
– value ∈ N256 is the value of ether to be transferred to the message call’s

recipient or, in the case of contract creation, as an endowment to the newly
created account.

Additionally, in the case of a contract creation transaction

– init is the EVM code for the account initialization procedure;

In the case of a message call

– data is the input data of the message call.

A message call is an internal concept which consists of data (a set of bytes)
and value (specified as ether) passed from one account to another. It may be
triggered by a transaction, where the sender is an EOA, or by EVM code, where
the sender is a contract account.

Transactions are grouped and stored in finite blocks.
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Definition 4 (Block). A block B is a package of data constituted by

– a header, constituted by the block’s number, timestamp, nonce, difficulty, ben-
eficiary, state and hash of its parent’s block header;

– a list of transactions T = {T1, . . . , Tm}.
The block’s difficulty influences the time that it takes to find a valid nonce for

the block and thus solving the proof-of-work mining problem. The beneficiary is
the address which receives all the fees from the successful mining of this block.
The fact that the hash of this block’s header includes its parent’s hash, is essential
to the blockchain’s immutability. The stored state corresponds to the one after
all transactions are executed.

Ethereum can be seen as a transaction-based state machine. In such a repre-
sentation a transaction represents a valid transition between two states σt and
σt+1. Since transactions are grouped in finite blocks, a block may also represent
a state transition σ′

t and σ′
t+1. These transitions between blocks introduce the

concept of a chain of blocks, a blockchain.

Definition 5 (Blockchain). A blockchain is defined as an ordered sequence of
blocks B = {B0,B1, . . . }.

In this paper we present an approach to the formal verification of Solidity
smart contracts. Regarding code structure, a Solidity contract consists, as it
follows a object-oriented structure, of a set of state variables which are part of
the account’s storage, and a set of function declarations. Functions in a contract
can introduce local variables, which are stored in the memory. Solidity also
contains a set of globally available variables that can be accessed regarding the
current block, transaction, message call and address.

A function can be called by an external user, an EOA, which initiates a
transaction, or by another contract. This happens when a called contract con-
tains code that calls another contract, generating a new message call. A function
call can be internal or external and an external call can be a regular call or a
delegate call, in which case the code is executed in the context of the calling
contract. Details about these methods and respective implementation are pre-
sented in Sect. 3.4.

Every contract has a fallback function, which is automatically executed when-
ever a call is made to the contract and none of its other functions match the
given function identifier, or in the cases where no data is supplied.

Solidity also allows the usage of exceptions. Whenever an exception is thrown,
all state changes are reverted. Our approach for modeling exceptions and state
reversion is described in Sect. 3.4.

3 The SOLI Language

In this section we define the core elements of the language and introduce a set of
big-step execution rules to describe their semantics. The main reference for our
language and respective semantics is the work by Schirmer [23] which we adapt
and extend to capture a relevant fragment of Solidity.
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3.1 Syntax

The syntax of our language is a combination of deep and shallow embeddings.
Commands are represented by an inductive, state dependent, datatype whereas
some other syntactic elements are defined as abbreviations of their semantics.
Boolean expressions, bexp, and assertions, assn, are defined as state sets.

Definition 6 (Syntax). Let ′s be the state space type. The syntax for boolean
expressions and assertions is defined by the types ′s bexp and ′s assn, respec-
tively. The syntax for commands is defined by the polymorphic datatype ′s com,
where ′s ⇒ ′s is a state-update function and fname the type of function names.

′s bexp := ′s set
′s assn := ′s set
′s com := Skip | Upd ′s ⇒ ′s | Seq ′s com ′s com |

If ′s bexp ′s com ′s com | While ′s bexp ′s com |
Dyncom ′s ⇒ ′s com | Call fname | Revert |
Handle ′s com ′s com | Require ′s bexp |
Init ′s com ′s ⇒ ′s ⇒ ′s

Regarding the definition of commands, Upd is used to model assignments
by executing a state-update function ′s ⇒′ s. Conditional statements and while
loops are defined with the usual syntax. The Skip command, which does nothing,
is also defined.

In order to allow complex operations such as calling other functions and
reverting all state changes, the following commands are introduced in SOLI.
Dyncom is a command which receives a state and allows to write statements
which are state dependent. This is useful when referring to states in different
steps of execution. A general Call is introduced, which receives a function name.
It corresponds to the simplest form of calling a procedure. The different types
of procedure calls and respective execution details are described in detail in
Sect. 3.4. Revert throws a revert type exception which signals that the state
must be reverted, and Handle is an auxiliary command to handle state reversion
if signaled. Require models Solidity exceptions, and Init models state reversion
whenever a REVERT exception is thrown. Both commands are detailed in Sect. 3.4.

3.2 Concrete Syntax

To improve the readability of SOLI programs, some syntax translations are intro-
duced. {|b|} is defined as the set of states for which the predicate b holds. Syntax
translations are defined as follows, where c1 and c2 are commands, b a boolean
and s a state.
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x́ ::= a ⇀ Upd (λs. s�x := a�)

c1; ; c2 ⇀ Seq c1 c2

IF b THEN c1 ELSE c2 ⇀ If {|b|} c1 c2

IF b THEN c1 ⇀ IF b THEN c1 ELSE Skip

WHILE b DO c ⇀ While {|b|} c

REQUIRE b ⇀ Require {|b|}

3.3 Semantics

To model big-step semantics, the state space ′s is augmented, as described by
the datatype ′s state, with information about whether exceptions were thrown.

′s state := Normal ′s | Rev ′s

To formalize the execution relation, the partial function Γ is introduced,
which maps function names to the corresponding bodies.

In Isabelle such a function is defined as ′b ⇒ ′a option where ′a option =
Some ′a | None. In the case of Γ being defined for m, it is selected using
the (Some m) = m.

Definition 7 (Big-step semantics). The big-step semantics for SOLI is based
on a deterministic evaluation relation formalized by the predicate

Γ � 〈c, s〉 ⇒ t

where

Γ :: fname ⇀ ′s com

c :: ′s com

s, t :: ′s state

and evaluated accordingly to the set of rules represented in Fig. 1. The meaning
for this predicate is as expected, that is, if command c is executed in initial state
s, then the execution terminates in state t.

3.4 Additional Language Features

Gas isn’t modeled in SOLI, the main reason is because it expresses a high level
language and would not be accurate to measure gas consumption since it is
defined for each opcode. Also the goal is to verify properties which are expressed
in a symbolic way, and in most of the cases this measure is not relevant. One
could however estimate bounds for SOLI commands, with the help of some side
tools such as the Remix compiler, and defining the consumption inductively.



78 M. Ribeiro et al.

Fig. 1. Big-step semantics rules for SOLI

Exceptions
To deal with exceptions, the EVM has two available opcodes: REVERT and
INVALID. Both undo all state changes, but REVERT will also allow to return
a value and refund all remaining gas to the caller, whereas INVALID will sim-
ply consume all remaining gas. Solidity uses these opcodes to handle exceptions
using the revert(), require() and assert() functions. The require() and
assert() functions receive a bool and throw the respective exception if the con-
dition is not met while revert() simply throws the exception. Both revert()
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and require() use the REVERT opcode and can also receive an error message to
display to the user; assert() uses the INVALID opcode.

In SOLI the first two are modeled. revert() corresponds to the Revert
command, which modifies the current state type from Normal to Rev. The
require() function is defined by the Require command, as a conditional state-
ment.

Require :: ′s bexp ⇒ ′s com

Require b := If b Skip Revert

Calling a Function
In order to model the different types of function call, calling must be extended
with the following definition, which introduces the modeling of passing argu-
ments, resetting local variables and returning results.

call :: � ′s ⇒′ s, fname, ′s ⇒′ s ⇒′ s, ′s ⇒′ s ⇒′ s com � ⇒ ′s com

call pass f return result :=

DynCom (λs. (Upd pass; ; Call f ; ;

(DynCom (λt. Upd (return s); ; result s t))))

Here DynCom is used to abstract over the state space and refer to certain
program states. The initial state s is captured by the first DynCom and the
state after executing the body of the called procedure, t, by the second. The
function pass, receives the initial state s and is used to pass the arguments of
the function to the intended variables in the memory before the body of the
function is executed. The return function is used to return from the procedure
by cleaning the state, that is by restoring the local variables. In the case of a
function call with a return value, the result function is used to communicate the
results to the caller environment by updating the result variable. The control
flow of call is depicted is in Fig. 2.

Fig. 2. Control flow for call

The big-step execution rule for call , Fig. 3, follows intuitively from the above
description. First the body of the called function is executed after passing the
arguments, that is, starting in state pass s. Then the result command is executed
after returning from the call, that is, starting in state return s t .
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Fig. 3. Big-step execution rule for call

In Solidity, a function call can be internal or external. For internal calls,
functions are in the same contract and so state variables, memory, and execu-
tion context are the same and we only need to model function arguments and
results. External calls, which call functions from other contracts, are done via
message call. All function arguments have to be copied to memory and, after
execution, the memory needs to be restored. In addition, some execution envi-
ronment variables are updated, such as msg sender , msg value, msg data and
address this.

Reverting State Changes
In Solidity, whenever an error occurs, for instance when some condition is not
satisfied, a REVERT exception is thrown and all state changes made in the current
call must be reverted.

Suppose one wants to execute the SOLI statement bdy starting in a normal
type state s. The execution can run without any errors and terminate in a normal
state t. But, if an exception is thrown, the execution must be stopped with the
current Rev state t′ in order to proceed to the state reversion. This is modeled
with Handle bdy c, where c is the statement which handles the reversion.

Inside c the state is first passed to a normal state in order to allow the regular
SOLI statements, for instance Upd to be executed. The update of the state
variables to their original value is made with the rvrt function, which receives
the initial state s and the current state t. Finally the error is propagated by
re-throwing Revert. The control flow for a statement execution is depicted in
Fig. 4.

Fig. 4. Control flow for Init

In order to actually revert the state, first one needs to get hold of the initial
state s which can be captured using DynCom. Also, while taking care of the
state reversion, another DynCom is used to refer to the current state t when
updating the variables.
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Whenever a statement, such as a function, is written in SOLI it is encapsu-
lated in an Init command which receives the function body and the rvrt function
which models the reset of all state variables in case of error.

Init :: � ′s com, ′s ⇒ ′s ⇒ ′s� ⇒ ′s com

Init bdy rvrt := DynCom (λs. (Handle bdy; ; (DynCom (λt.

Upd (rvrt s); ; Revert))))

The big-step execution rules for Init are defined in Fig. 1. For normal exe-
cution it is immediate, it is just the regular execution of bdy. If an exception is
thrown when executing bdy, its execution stops in a revert type state t and the
full execution will terminate in state rvrt s t.

3.5 State Space

Since the goal of this work is to verify properties about specific programs, it
was chosen to explicitly state the HOL type for each variable by working with
records. Some of the used types are constructed using the HOL type word, which
represents a bit.

byte := 8 word

address := 160 word

uint := 256 word

A record of Isabelle/HOL is a collection of fields where each has a specified
name and type. A record comes with select and update operations for each field.
Record types can also be defined by extending other record types. A record st
represents the storage of a Solidity contract and loc the local variables for the
functions in that contract. We illustrate this concept for an electronic voting
contract in Sect. 5.1.

3.6 Environment Variables

Solidity defines a set of global variables regarding the execution environment,
mainly to provide information about the blockchain. For a block, we need vari-
ables that keep track of the current block’s hash, miner’s address, difficulty,
gaslimit, number and timestamp. For a transaction, we need variables that keep
track of the current message call: data, gas, sender and signature, and for the
whole transaction: gasprice and origin. In SOLI these variables are part of the
environment record env, which is defined in Fig. 5.

An account state is defined as a record Account with four fields corresponding
to its nonce, balance, storage and code, also represented in Fig. 5. The world state
is defined as a field of the env record gs which maps addresses to their account
states.
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Fig. 5. Account state representation and environment variables

4 Hoare Logic

In this section we present Hoare logic, a system proposed by Tony Hoare [12,13],
and its formalization for SOLI regarding partial correctness. We extended the
proof system in [23] to a relevant subset of Solidity.

4.1 The Proof System

A Hoare logic formula is a triple of the form P c Q, where c is a command
and P and Q are assertions, the precondition and postcondition, respectively. In
EVM, command execution can result in a Normal or in a Rev state. To model
this feature, we split the postcondition in two, Q and A, for regular and for
exceptional termination respectively.

To reason about recursive procedures, a set of assumptions Θ is introduced.
This set contains function specifications, which will be used as hypothesis when
proving the body of a recursive procedure. An assumption for a function is a
tuple that contains its precondition, name and both postconditions.

′s assmpt := 〈′s assn, fname, ′s assn, ′s assn〉

The notation used for a derivable Hoare formula is associated with the pro-
cedure body environment Γ and with the set of assumptions Θ.

Definition 8 (Hoare logic). A Hoare logic is defined for SOLI such that a
derivable formula is represented by

Γ,Θ � P c Q,A
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Fig. 6. Hoare logic for SOLI

where

Γ :: fname ⇒ ′s com

Θ :: ′s assmpt set

P,Q,A :: ′s assn

c :: ′s com,

and the proof system is constituted by the rules in Fig. 6.

There is a rule for each SOLI command and, additionally, the Asm and
Consequence rules. To have an intuitive meaning for the rules of this system, one
should read it backwards. For instance, for the Upd rule, if Q holds (for regular
execution) after the update then P is the set of states such that the application
of f to them belongs to Q. Skip and Revert have the intuitive meaning of doing
nothing, and Seq and Handle correspond respectively to the cases where c1 c2 are
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both executed, and c1 throws an exception and c2 is executed. In the DynCom
rule, the triple has to hold for every state s that satisfies the precondition as the
dynamic command will depend on the initial state. The CallRec rule regards a
set of function specifications S whose bodies are verified and that is added to
Θ. Then, when one of these functions is called, the specification can be assumed
using Asm rule.

The Require command is modelled as a conditional statement, hence both
rules follow the same structure. In one of the branches the precondition b holds,
and in the other it does not. The Init statement corresponds to a regular execu-
tion of the body ending in a state for which the regular postcondition Q holds or,
in the case of an exception being thrown, the execution ends in a state such that
by reverting all state changes the exceptional postcondition A holds. A depen-
dence on the initial state s is introduced in the premise. The Consequence rule
allows to strengthen the precondition as well as to weaken the postcondition.

4.2 Weakest Precondition Calculus

In order to verify properties about programs using Hoare logic, a backward
propagation method is followed. In this method, sufficient conditions for a certain
result, the postcondition, are determined. The rules are successively applied
backwards, starting in the postcondition until the beginning of the program.
Some side conditions may be generated.

The weakest precondition is then said to be the most lenient assumption on
the initial state such that Q,A will hold after the execution of the command c.

Weakest precondition calculus, also know as predicate transformer semantics
(Dijkstra [6]), is a reformulation of Hoare logic. It constitutes a strategy to
reduce the problem of proving a Hoare formula to the problem of proving an HOL
assertion, which is called the verification condition. Since assertions are expressed
as sets, reasoning about the conditions is expressed using set operations.

Definition 9 (Weakest precondition calculus). Let c be a command, Q
and A assertions, and wpΓ,Θ(c,Q,A) the weakest precondition of Q,A for c.
The weakest precondition calculus for SOLI is inductively defined as follows:
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wpΓ,Θ (Skip, Q, A) = Q

wpΓ,Θ (Revert, Q, A) = A

wpΓ,Θ (Upd f, Q, A) = {s. f s ∈ Q}
wpΓ,Θ (Seq c1 c2, Q, A) = wpΓ,Θ (c1, wpΓ,Θ (c2, Q, A), A)

wpΓ,Θ (If b c1 c2, Q, A) = {s. (s ∈ b −→ s ∈ wpΓ,Θ (c1, Q, A)) ∧
(s /∈ b −→ s ∈ wpΓ,Θ (c2, Q, A))}

wpΓ,Θ (While I b c, Q, A) =

{s. (s ∈ b −→ s ∈ wpΓ,Θ (Seq c (While I b c), Q, A)) ∧
(s /∈ b −→ s ∈ wpΓ,Θ (c2, Q, A))}

wpΓ,Θ (Call f, Q, A) = Pf , such that f ∈ dom Γ ∧ (Pf , f, Qf , Af ) ∈ Θ

wpΓ,Θ (DynCom c, Q, A) =
⋂

s

wpΓ,Θ (c s, Q, A)

wpΓ,Θ (Handle c1 c2, Q, A) = wpΓ,Θ (c1, Q, wpΓ,Θ (c2, Q, A))

wpΓ,Θ (Require b, Q, A) = {s. (s ∈ b −→ s ∈ Q ∧ (s /∈ b −→ s ∈ A)}
wpΓ,Θ (Init bdy rvrt, Q, A) =

⋂

s

wpΓ,Θ (bdy, Q, {t. rvrt s t ∈ A})

The weakest precondition for the call of procedure f corresponds to the
precondition for its specification, present in the set of assumptions.

Since both Dyncom and Init have to consider every preceding state s, their
weakest precondition corresponds to the intersection of certain weakest precon-
ditions: in the former, to the wp of the command applied to each one of the
states; in the latter, to the wp of bdy such that in case of exception the state
reversion is applied to s. From the definition of Require it follows immediately
that its weakest precondition is Q if b holds, and A otherwise.

A strategy to generate verification conditions based on this calculus is
described in Sect. 4.5.

4.3 Soundness

To prove soundness of our proof system, we follow the same technique as [23]. The
formal definition for validity regarding partial correctness is defined as follows:

Definition 10 (Validity—Partial Correctness)

Γ � P c Q,A if
∀s t. Γ � 〈c, s〉 ⇒ t ∧ s ∈ Normal ′P −→ t ∈ Normal ′Q ∪ Rev ′A.

The goal is to prove that if a formula is derivable in the Hoare Logic (Fig. 6)
then it also valid according to Definition 10. In the case of recursive calls, we need
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to take into account the set of assumptions Θ and also the depth of recursion.
However, the definitions of validity and big-step semantics are not rich enough
to approach these properties. The notion of validity is thus extended with the
set of assumptions.

Definition 11 (Validity with context)

Γ,Θ � P c Q,A if
∀〈P, f,Q,A〉 ∈ Θ. Γ � P (Call f) Q,A −→ Γ � P c Q,A.

Also, an additional set of big-step rules to deal with the depth of recursion
are defined, where n is the limit on nested procedure calls.

Γ � 〈c, s〉 n=⇒ t

These rules are similar to the normal big-step rules (Fig. 1) except for the
Call statement where the limit n is decremented in each step to account for the
depth of the recursion.

Γ � 〈the (Γ f), Normal s〉 n
=⇒ t

Γ � 〈Call f, Normal s〉 n+1
==⇒ t

(Call)

We can show that this new set of rules is monotonic with respect to the limit n.

Lemma 1 (Monotonicity)

Γ � 〈c, s〉 n=⇒ t ∧ n ≤ m −→ Γ � 〈c, s〉 m=⇒ t

Validity can now be established regarding the limit on nested recursive calls.

Definition 12 (Validity with limit)

Γ �n P c Q,A if
∀s t. Γ � 〈c, s〉 n=⇒ t ∧ s ∈ Normal ′P −→ t ∈ Normal ′Q ∪ Rev ′A.

Finally the notions of validity with context and limit can be joined, leading
to a definition which suits the needs to reason about recursive procedure calls.

Definition 13 (Validity with limit and context)

Γ,Θ �n P c Q,A if
∀〈P, f,Q,A〉 ∈ Θ.Γ �n P (Call f) Q,A −→ Γ �n P c Q,A.

The required conditions to show that Hoare rules preserve validity are now
established.
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Lemma 2

(∀n. Γ,Θ �n P c Q,A) −→ Γ,Θ � P c Q,A

Lemma 3 (Soundness with limit and context). Let Γ be the mapping
between function names and their bodies, Θ the set of assumptions, c a SOLI

command, P the precondition and Q,A the postconditions.

If Γ,Θ � P c Q,A then (∀n. Γ,Θ �n P c Q,A).

The intended result follows directly from Lemmas 3 and 2.

Theorem 1 (Soundness). Let Γ be the mapping between function names and
their bodies, Θ the set of assumptions, c a SOLI command, P the precondition
and Q,A the postconditions.

If Γ,Θ � P c Q,A then Γ,Θ � P c Q,A.

4.4 Completeness

Due to its inheritance from HOL, used to state assertions, Hoare logic is not
complete. However, Cook [5] introduced the notion of relative completeness by
separating incompleteness of the assertion language from incompleteness due to
inadequacies in the axioms and rules for the programming language constructs.
It is assumed that there is an oracle which can be inquired about the validity of
an HOL assertion. The proof follows the method by Winskel [25] and relies on
the concept of weakest precondition, Definition 9.

Lemma 4

Γ,Θ � P c Q,A −→ (s ∈ P −→ s ∈ wp(c, Q, A))

An auxiliary weakest precondition property regarding the derivation of a
formula and its precondition is proven.

Lemma 5

Γ,Θ � wp(c,Q,A) c Q,A

Using Lemma 5, the (relative) completeness Theorem can now be proven.

Theorem 2 ((Relative) Completeness). Let Γ be the mapping between func-
tion names and their bodies, Θ the set of assumptions, c a SOLI command, P
the precondition and Q,A the postconditions.

If Γ,Θ � P c Q,A then Γ,Θ � P c Q,A.
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4.5 Computation of Verification Conditions

One of the goals of this work is to develop a proof technique for the verification
of properties about smart contracts. In this section, we extend previous work
by Frade and Pinto [7] and present a method to compute the verification condi-
tions of a program, which follows a backwards propagation through the weakest
precondition.

To achieve this, the invariants for while loops must be supplied explicitly.
The concept of annotated command is, therefore, introduced.

Definition 14 (Annotated commands). The syntax for annotated com-
mands is defined by the polymorphic datatype ′s acom.

′s acom := Skip | Upd ′s ⇒ ′s | Seq ′s acom ′s acom

| If ′s bexp ′s acom ′s acom | While ′s assn ′s bexp ′s acom

| Dyncom ′s ⇒ ′s acom | Call fname | Revert

| Handle ′s acom ′s acom | Require ′s bexp

| Init ′s acom ′s ⇒ ′s ⇒ ′s

The weakest precondition calculus for annotated commands is the same as
for normal commands except for While where it becomes the loop invariant,
since it is a condition that must be met before each loop execution, or even if it
isn’t executed in the first place.

Definition 15 (Weakest precondition calculus for annotated com-
mands). The weakest precondition calculus for annotated commands is induc-
tively defined as follows:

wpΓ,Θ (Skip, Q, A) = Q

wpΓ,Θ (Revert, Q, A) = A

wpΓ,Θ (Upd f, Q, A) = {s. f s ∈ Q}
wpΓ,Θ (Seq c1 c2, Q, A) = wpΓ,Θ (c1, wpΓ,Θ (c2, Q, A), A)

wpΓ,Θ (If b c1 c2, Q, A) = {s. (s ∈ b −→ s ∈ wpΓ,Θ (c1, Q, A)) ∧
(s /∈ b −→ s ∈ wpΓ,Θ (c2, Q, A))}

wpΓ,Θ (While I b c, Q, A) = I

wpΓ,Θ (Call f, Q, A) = Pf such that f ∈ dom Γ ∧ (Pf , f, Qf , Af ) ∈ Θ

wpΓ,Θ (DynCom c, Q, A) =
⋂

s

wpΓ,Θ (c s, Q, A)

wpΓ,Θ (Handle c1 c2, Q, A) = wpΓ,Θ (c1, Q, wpΓ,Θ (c2, Q, A))

wpΓ,Θ (Require b, Q, A) = {s. (s ∈ b −→ s ∈ Q ∧ (s /∈ b −→ s ∈ A)}
wpΓ,Θ (Init bdy rvrt, Q, A) =

⋂

s

wpΓ,Θ (bdy, Q, {t. rvrt s t ∈ A})
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The verification condition computation for a command can be obtained using
the structure of each rule in the proof system. An important property about these
is that the verification conditions are computed independently from precondi-
tions, leaving only the need to check their inclusion in the propagated weakest
precondition. This prevents the generation of unnecessary verification conditions.

Definition 16 (Verification condition I). The verification condition func-
tion vc is defined as follows:

vc (Γ,Θ � P c Q,A) = P ⊆ wpΓ,Θ (c, Q, A) ∪ vcΓ,Θ
aux (c, Q, A),

where the auxiliary verification condition vcΓ,Θ
aux is inductively defined as follows:

vcΓ,Θ
aux (Skip, Q, A) = ∅

vcΓ,Θ
aux (Revert, Q, A) = ∅

vcΓ,Θ
aux (Upd f, Q, A) = ∅

vcΓ,Θ
aux (Seq c1 c2, Q, A) = vcΓ,Θ

aux (c1, wpΓ,Θ(c2, Q, A), A) ∪ vcΓ,Θ
aux (c2, Q, A)

vcΓ,Θ
aux (If b c1 c2, Q, A) = vcΓ,Θ

aux (c1, Q, A) ∪ vcΓ,Θ
aux (c2, Q, A)

vcΓ,Θ
aux (While I b c, Q, A) = (I ∩ b) ⊆ wpΓ,Θ (c, I, A) ∪

vcΓ,Θ
aux (c, I, A) ∪ (I ∩ −b) ⊆ Q

vcΓ,Θ
aux (Call f, Q, A) = Qf ⊆ Q

vcΓ,Θ
aux (DynCom c, Q, A) =

⋂

s

vcΓ,Θ
aux (c s, Q, A)

vcΓ,Θ
aux (Handle c1 c2, Q, A) = vcΓ,Θ

aux (c1, Q, wpΓ,Θ(c2, Q, A)) ∪ vcΓ,Θ
aux (c2, Q, A)

vcΓ,Θ
aux (Require b, Q, A) = ∅

vcΓ,Θ
aux (Init bdy rvrt, Q, A) =

⋂

s

vcΓ,Θ
aux (bdy, Q, {t. rvrt s t ∈ A})

However, upon the verification of a program with any number of function calls,
their specification must have been verified and added to the set of assumptions.
A verification condition suitable for every program is then formalized.

Definition 17 (Verification condition II). Let S be the set of specifications
for every function whose call is generated by the execution of c. The verification
condition function V C for c is defined as

V C (Γ,Θ � P c Q,A) = P ⊆ wpΓ,Θ (c, Q, A) ∪
vcΓ,Θ

aux (c, Q, A) ∪
⋃

〈P,f,Q,A〉∈S

vc (Γ, (Θ ∪ S) � P (the (Γ f)) Q,A).

An Alternative Formulation of Rules
The verification condition computations explicitly separate the main verification
condition (the inclusion of precondition in the weakest precondition of the pro-
gram) from auxiliary conditions (generated from the structure of the rules). In
order to construct a proof which follows this backwards propagation method,
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some Hoare rules are modified to a structure that will be referred as weakest
precondition style. Following the method above, we were able to obtain the same
rules as in [23] together with a new rule for the Solidity command Require. The
set of rules is presented in Fig. 7.

Fig. 7. Weakest precondition style rules

5 Application to Real-World Smart Contracts

In this section we illustrate the usage of our method for proving properties about
smart contracts.

5.1 Electronic Voting

In this example an electronic voting contract, Ballot1, which features automatic
and transparent vote counting and delegate voting, is presented. This is an exam-
ple of a successful contract verification that has some complex properties orig-
inated by the loop invariant, and that introduces the need to prove additional
lemmas, defined generally.

The Ballot contract contains a Voter struct constituted by the weight of
the voter (accumulated by delegation), a boolean that states whether the person
already voted, the delegate’s address (in case of vote delegation) and the index of
the voted proposal. It also contains a Proposal struct constituted by the proposal
name and corresponding vote count. As global variables the contract contains
1 https://solidity.readthedocs.io/en/v0.5.12/solidity-by-example.html.

https://solidity.readthedocs.io/en/v0.5.12/solidity-by-example.html
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an address chairperson, a mapping voters between addresses and Voter structs,
and a list of proposals proposals, which are stored in the st record.

record st = env +

chairperson :: address

voters :: address ⇒ Voter

proposals :: Proposal list

record loc = st +

winningVoteCount :: int

p :: int

winningProposal out :: int

r :: int

winningVoteCount out :: int

This example is focused on the verification of the winnerName func-
tion (Fig. 8), which returns the name of the winning proposal by calling the
winningProposal function which returns the corresponding index. This function
finds the maximum value of voteCount in the list of proposals using a loop. It
introduces the necessity of supplying an invariant and to verify that, while the
list is gone through, the current maximum is correctly computed. The verifica-
tion requires a definition of the maximum of a list and additional lemmas on the
matter to be introduced.

Fig. 8. winningProposal and winnerName functions
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INIT is defined as an init statement to revert all state changes in case
of exception, that is, resetting the global variables to their initial values. In
order to internally call the winningProposal function, call wp is defined as a call
statement.

The verification consists in showing that the return value r from the
winningProposal function corresponds to the maximum vote count of the list
and that the output of the winnerName function is the corresponding name.
The initial values for global variables are stored in the auxiliary variables chair,
vtrs and prop.

Γ, Θ � {| chair =′ chairperson ∧ vtrs =′ voters ∧ prop =′ proposals |}
winnerName com

{| max ′ (map voteCount prop) = (map voteCount prop)[′r] ∧
′winnerName out = name prop[′r] |},

{| ′chairperson = chair ∧ ′voters = vtrs ∧ ′proposals = prop |}

I = {| 1 ≤ ′p ≤ length prop ∧
′winningVoteCount = max ′(take ′p(map voteCount prop)) ∧
′winningVoteCount = (map voteCount prop)[′winningProposal out ] |}

The max ′ function was defined to retrieve the maximum of a list of natural
numbers. Invariant I states the limits that should be verified on the value of p
and that the current maximum is correctly computed.

The application of the verification method results, after simplification, in two
conditions, which are solved through the use of the auxiliary lemmas.

1. ′proposals �= {} =⇒ 1 ≤ length ′proposals ∧
voteCount ′proposals[0] = max ′(take 1 (map voteCount ′proposals))

2. ′p < length ′proposals =⇒
(max ′(take ′p (map voteCount ′proposals)) < voteCount ′proposals[′p] −→
max ′(take(′p + 1)(map voteCount ′proposals)) = voteCount ′proposals[′p]) ∧

(¬max ′(take ′p (map voteCount ′proposals)) < voteCount ′proposals[′p] −→
max ′ (take (′p + 1) (map voteCount ′proposals)) =

max ′ (take ′p (map voteCount ′proposals)))

The first condition results from the precondition inclusion and is proved using
Lemma 6, together with the fact that

voteCount ′proposals[0] = (map voteCount ′proposals)[0]

Lemma 6
l = {} =⇒ l[0] = max′ (take 1 l).
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The second, which results from the invariant verification conditions, is proven
using the max ′ definition and Lemma7, that follows by induction on the struc-
ture of the list.

Lemma 7

{x1, . . . , xn} = {} =⇒ max ′ ({x1, . . . , xn}) = max (max ′ {x1, . . . , xn−1}) xn

5.2 Ethereum Tokens

Solidity is prone to underflows and overflows since the EVM works with 256-bit
unsigned integers and, therefore, all operations are performed modulo 2256. As
an example of a vulnerable implementation of an ERC20 token, the Hexagon
(HXG) token2 is taken into account. This example illustrates that some proofs
on the alleged specification of a contract may not terminate but give us
important insights about the source of its vulnerability. Amongst its global
variables it contains a mapping balanceOf, a mapping allowances and a uint
burnPerTransaction, which is set to 2. In this example we analyze the transfer
function (Fig. 9). According to its specification it should be the case that, after
the function is executed, the balance of address from decreases by val + 2, the
balance of address to increases by val, and the balance of address adr0 increases
by 2.

Note that the conditions in the postcondition are stated using the uint
Isabelle function which allows to check that an operation does not underflow
or overflow. The uint arith Isabelle tactic is used in the proof to unfold this
definition, which can take some time to run. It gets stuck with a verification
condition which depends on the fact that uint (val + 2) = uint val + 2.

Fig. 9. transfer function of Hexagon contract

2 https://etherscan.io/address/0xB5335e24d0aB29C190AB8C2B459238Da1153cEBA
#code.

https://etherscan.io/address/0xB5335e24d0aB29C190AB8C2B459238Da1153cEBA#code
https://etherscan.io/address/0xB5335e24d0aB29C190AB8C2B459238Da1153cEBA#code
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Γ, Θ � {| ′burnPerTransaction = 2 ∧ from = ′frm ∧ t = ′to ∧ a = ′adr0 ∧
bal from = ′balanceOf from ∧ bal to = ′balanceOf t ∧
bal a = ′balanceOf a ∧ supply = ′currentSupply ∧
from �= a ∧ from �= t ∧ a �= t |}

transfer

{| uint(′balanceOf from) = uint bal from − (uint ′val + 2 ) ∧
uint(′balanceOf t) = uint bal to + uint ′val ∧
uint(′balanceOf a) = uint bal a + 2 |},

{| ′balanceOf from = bal from ∧ ′balanceOf t = bal to ∧
′balanceOf a = bal a |}

Looking at transfer function there is no condition that ensures this and pre-
vents overflow during the addition of ′val and ′burnPerTransaction. Therefore,
one is not able to prove the specification since there is no way to prove that

uint (balanceOf from) = uint (bal from − (val + 2))
= uint bal from − (uint val + 2)

This vulnerability can be exploited. Suppose the transfer function is called by
an attacker with val equal to 2256−2. It follows that val+burnPerTransaction =
2256 − 2 + 2 = 0 and therefore the second REQUIRE statement’s guard will
become balanceOf ′frm ≥ 0 which is always true. The balance of ′frm is then
decreased by 0 and the balance of ′to increased by 2256 − 2.

To solve this issue a require statement can be added to the transfer function
which checks if ′val +′ burnPerTransaction < 2256.

5.3 Reentrancy

This example shows how the defined recursive features can be used to model
reentrancy. A DAO is a Decentralized Autonomous Organization built using the
Ethereum blockchain. In 2016, an hacker exploited a bug in the DAO contract
which resulted in the loss of approximately $50 million in ether. This was the
first reentrancy attack which consisted in draining funds using the attacker’s
fallback function.

A fallback function is a contract’s function, with no arguments or return
values, which is automatically executed whenever a call is made to the contract
and none of its other functions match the given function identifier or when no
data is supplied. This is the case when the contract receives ether, with no data
specified. The vulnerability consisted in the fact that DAO’s withdraw function
uses call .value() to send ether to the caller’s account. Now, this triggers its
fallback function, which contains arbitrary code defined by the owner.

To explain the technical aspects of this attack a simplified version, babyDao,
is presented. The contract contains, as state variable, a mapping credit between
addresses and their respective balances. The vulnerability is present in the
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Fig. 10. withdraw and malicious fallback function

withdraw function (Fig. 10) and the attacker’s goal is to drain all caller’s funds
in the contract and send this value to his account. To perform this transference
the function uses call.value() which triggers its fallback function, containing arbi-
trary code defined by the owner. This is modelled as the call statement call value,
which is defined so that the values of some environment variables are updated,
the balance of user is increased by msg value and the balance of babyDao is
decreased by the same amount. The fallback function’s code is then executed.

To write the specification for withdraw, the auxiliary variables c, b and bdao
are introduced.

∀c b bdao . Γ, Θ �{| c = ′credit user ∧ b = balance (′gs user) ∧
bdao = balance (′gs babyDao) |}

withdraw

{| ′credit user = 0 ∧ balance (′gs user) = b + c ∧
balance (′gs babyDao) = bdao − c |}, {}

In the case of a so called friendly fallback function, the specification for
withdraw holds. However, suppose an attacker writes a fallback function which
besides increasing the attacker’s balance and decreasing the balance of babyDao,
contains code that checks whether the balance of babyDao will remain bigger
than or equal to 0 after another possible withdraw, and if so, calls withdraw.

Suppose the attacker has some credit c and bdao is the total balance of
babyDao. When the attacker calls the withdraw function, call value transfers
ether to the attacker, triggering its fallback function which may create another
call to withdraw . This causes the attacker to receive the same amount of ether
again and enter a recursive loop until all possible ether has been drained from
babyDao without causing the function to fail, that is, the guard of the conditional
statement in the fallback function never evaluates to false. The attacker’s credit
is only set to 0 after babyDao, and therefore, after all these recursive calls. The
withdraw function ends up being called

⌊
bdao

c

⌋
times and the attacker increases

its value by
⌊

bdao
c

⌋
× c.

In this case, the proof for the specification no longer holds but a proof for the
attack can be established using the rules for multiple procedure recursive calls.
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6 Conclusions

The main contribution from this work is the development of an imperative lan-
guage and respective semantics system regarding a relevant subset of Solidity,
based on a set of existent imperative languages in Isabelle/HOL, in particular
the language proposed by Schirmer [23]. The main additions were the modelling
of Solidity calls, both internal and external, Solidity exceptions, and reverting
all state modifications. The relative completeness proof, based on the proof by
Winskel [25], uses an auxiliary lemma that involves the concept of weakest pre-
condition. After the addition of the Dyncom, Require and Init cases to the wp
and vc computations, following the work by Frade and Pinto [7], we extend the
proof of the lemma with the Call, Handle, Revert, Dyncom, Require and Init
cases.

The main advantage of using a proof assistant is the richness with which
properties about programs can be expressed as we saw in Sect. 5. From the Ballot
example, it can be seen how invariants increase the complexity of a proof, but
also how that complexity can be tackled using auxiliary properties. Also, the
example of Ethereum tokens was analyzed and in most cases, upon a correct
specification, the tactic uint arith is able to find, or at least give a hint of,
overflows and underflows. Finally, the possibility of recursion allows to model
reentrancy vulnerabilities and fallback function attacks.
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