
Vivek Nigam · Tajana Ban Kirigin ·
Carolyn Talcott · Joshua Guttman ·
Stepan Kuznetsov · Boon Thau Loo ·
Mitsuhiro Okada (Eds.)

Logic, Language,
and Security

Fe
st

sc
hr

ift
LN

CS
 1

23
00

Essays Dedicated to Andre Scedrov
on the Occasion of His 65th Birthday

Lecture Notes in Computer Science 12300

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Vivek Nigam • Tajana Ban Kirigin •

Carolyn Talcott • Joshua Guttman •

Stepan Kuznetsov • Boon Thau Loo •

Mitsuhiro Okada (Eds.)

Logic, Language,
and Security
Essays Dedicated to Andre Scedrov
on the Occasion of His 65th Birthday

123

Editors
Vivek Nigam
fortiss GmbH
Munich, Germany

Tajana Ban Kirigin
University of Rijeka
Rijeka, Croatia

Carolyn Talcott
SRI International
Menlo Park, CA, USA

Joshua Guttman
Worcester Polytechnic Institute
Worcester, MA, USA

Stepan Kuznetsov
Steklov Mathematical Institute
of the Russian Academy of Sciences
Moscow, Russia

Boon Thau Loo
University of Pennsylvania
Philadelphia, PA, USA

Mitsuhiro Okada
Keio University
Tokyo, Japan

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-62076-9 ISBN 978-3-030-62077-6 (eBook)
https://doi.org/10.1007/978-3-030-62077-6

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2020
Chapter “A Small Remark on Hilbert’s Finitist View of Divisibility and Kanovich-Okada-Scedrov’s Logical
Analysis of Real-Time Systems” is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/). For further details see license informa-
tion in the chapter.
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Cover illustrations taken from Andre Scedrov’s work.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-4089-1218
https://orcid.org/0000-0003-3230-6891
https://orcid.org/0000-0003-2845-7144
https://orcid.org/0000-0003-0025-0133
https://orcid.org/0000-0001-9117-4935
https://doi.org/10.1007/978-3-030-62077-6
http://creativecommons.org/licenses/by/4.0/

Photo by Nikola Ščedrov

Preface

It is an honor to be associated with Andre Scedrov as a scientific collaborator and a
friend. While numbers do not completely reflect Andre’s ability in building bridges
between researchers and between different topics, they are nevertheless impressive.
With an Erdös Number of 2, Andre Scedrov has co-authored papers with more than 90
researchers, distributed among his more than 130 refereed publications in the last 40
years of contributions. His research has impacted scientists from the four corners of the
world, including the USA, Brazil, Japan, Russia, and many countries in Europe,
including Croatia, his birth place.

Scedrov helped establish important venues, such as the IEEE Symposium on Logic
in Computer Science (LICS), being actively part of its Advisory Board (1998–2012),
and the Computer Security Foundations Workshop (CSFW) and its derived conference
IEEE Computer Security Foundations Symposium (CSF).

He has been a member of the Mathematics Department at the University of
Pennsylvania, USA, since the 1980s, and is currently a full professor, having recently
served as chair. He is also a professor at the Department of Computer and Information
Science.

Scedrov’s contributions are particularly substantial, since his work transformed
three very separate fields, namely linear logic and structural proof theory; formal
reasoning for networked systems; and foundations of information security emphasizing
cryptographic protocols.

Scedrov carried out seminal work in the early days of linear logic and structural
proof theory that have shaped linear logic research for the following decades. Together
with Jean-Yves Girard and Philip Scott, he developed Bounded Linear Logic, estab-
lishing foundational connections between linear logic and the complexity of algorithms.
This research has evolved into a field of its own called implicit computational complexity
where his initial ideas can still be observed. Scedrov also had important contributions to
the influential program of studying the complexity of the provability problem of frag-
ments of linear logic. This seminal work greatly advanced our understanding of com-
putational limits of linear logic theories and still impacts research on the field. Finally,
Scedrov contributed to the foundations of logic programming, helping understand logic
programming from a proof-theoretic perspective. This work has set the stage for a
number of research programs on computational logic and logical frameworks.

Scedrov published a series of papers that aim to bridge the gap between formal
reasoning and networked systems. Back in the early 2010s, when network verification
was a nascent field, together with his student Anduo Wang and colleagues at Penn,
Carnegie-Mellon University, and SRI, he developed Formally Safe Routing, a toolkit
that can generate verified Internet routing protocol implementations using a combi-
nation of declarative networking techniques, in conjunction with Yices SMT solvers,
PVS theorem provers, and the Maude rewriting engine. This line of work is significant

as it aims to bridge the gap between formal methods and network implementations.
Today, there are entire tracks at major networking conferences (NSDI, SIGCOMM) on
network verification, particularly in the context of software-defined networks.

In the foundations of security, Scedrov has worked on three major lines of work.
First, in collaboration with John Mitchell, Iliano Cervesato, Joe-Kai Tsay, and others,
he developed the use of multiset rewriting as a formalism for reasoning about security
protocols. This led to major theoretical conclusions about the complexity of reasoning
about protocols, as well as major applications to widely deployed protocols including
Kerberos. He and his group saved the IETF from deploying a flawed public-key
initiation protocol for Kerberos by discovering its failure before standardization had
completed. More recently, multiset rewriting has been very well implemented in a
protocol analysis tool developed at ETH Zurich, Switzerland. In a separate line of
work, he explored the boundaries between the formal protocol analysis we have been
discussing so far and a harder but more high-fidelity method. This is the computational
foundation of cryptography that cryptographers use. When applicable, the latter gives
strong guarantees; however, the formal analysis is far easier to use or even mechanize.
Working with his PhD students Gergei Bana and Pedro Adão, Scedrov developed
strong methods for showing that the simpler formal technique would yield the same
conclusions as the more arduous computational technique. The third line of work – in
collaboration with his student Rohit Chadha and also Steve Kremer – developed
techniques for reasoning about contract-signing protocols, which have subtler goals
than key agreement security protocols.

This combination of breadth and penetrating originality is rare and impressive. This
Festschrift in his honor only tries to reflect this combination with a number of con-
tributions distributed among these different topics.

Finally, we are in great debt to the authors for their excellent submissions, and the
hard work done by the paper reviewers in providing reviews within our tight schedules.

July 2020 Vivek Nigam
Tajana Ban Kirigin

Carolyn Talcott
Joshua Guttman

Stepan Kuznetsov
Boon Thau Loo
Mitsuhiro Okada

viii Preface

Contents

Logic

A P0
1-Bounded Fragment of Infinitary Action Logic with Exponential 3

Stepan L. Kuznetsov

Transcendental Syntax IV: Logic Without Systems. 17
Jean-Yves Girard

Logic and Computing

A Small Remark on Hilbert’s Finitist View of Divisibility
and Kanovich-Okada-Scedrov’s Logical Analysis of Real-Time Systems 39

Mitsuhiro Okada

Logic of Fusion: — Dedicated to Andre Scedrov — 48
Dusko Pavlovic

There’s No Time, The Problem of Conceptualising Time 61
Tajana Ban Kirigin and Benedikt Perak

Andre and the Early Days of Penn’s Logic and Computation Group 69
Dale Miller

Formal Verification of Ethereum Smart Contracts Using Isabelle/HOL. 71
Maria Ribeiro, Pedro Adão, and Paulo Mateus

Logic and Applications - LAP Meeting . 98
Zvonimir Šikić, Silvia Ghilezan, Zoran Ognjanović, and Thomas Studer

Logic and Security

Formal Methods Analysis of the Secure Remote Password Protocol 103
Alan T. Sherman, Erin Lanus, Moses Liskov, Edward Zieglar,
Richard Chang, Enis Golaszewski, Ryan Wnuk-Fink, Cyrus J. Bonyadi,
Mario Yaksetig, and Ian Blumenfeld

The Hitchhiker’s Guide to Decidability and Complexity of Equivalence
Properties in Security Protocols. 127

Vincent Cheval, Steve Kremer, and Itsaka Rakotonirina

Assumption-Based Analysis of Distance-Bounding Protocols with CPSA 146
Paul D. Rowe, Joshua D. Guttman, and John D. Ramsdell

Modelchecking Safety Properties in Randomized Security Protocols 167
Matthew S. Bauer, Rohit Chadha, and Mahesh Viswanathan

Logic and Language

Andre Scedrov . 187
Glyn Morrill

Gender Bias in Neural Natural Language Processing 189
Kaiji Lu, Piotr Mardziel, Fangjing Wu, Preetam Amancharla,
and Anupam Datta

Author Index . 203

x Contents

Logic

A Π0
1 -Bounded Fragment of Infinitary
Action Logic with Exponential

Stepan L. Kuznetsov1,2(B)

1 Steklov Mathematical Institute of RAS, Moscow, Russia
sk@mi-ras.ru

2 National Research University Higher School of Economics, Moscow, Russia

Abstract. Infinitary action logic is an extension of the multiplicative-
additive Lambek calculus with Kleene iteration, axiomatized by an ω-
rule. Buszkowski and Palka (2007) show that this logic is Π0

1 -complete.
As shown recently by Kuznetsov and Speranski, the extension of infini-
tary action logic with the exponential modality is much harder: Π1

1 -
complete. The raise of complexity is of course due to the contraction
rule. We investigate fragments of infinitary action logic with exponen-
tial, which still include contraction, but have lower (e.g., arithmetically
bounded) complexity. In this paper, we show an upper Π0

1 bound for
the fragment of infinitary action logic, in which the exponential can be
applied only to formulae of implication depth 0 or 1.

Keywords: Infinitary action logic · Exponential modality ·
Complexity · Lambek calculus

This paper is dedicated to Andre Scedrov on the occasion of his 65th birthday,
with many thanks for fruitful collaboration and his exceptional generosity,

as suggested by his last name: in Russian, ‘generosity’ is ščedrost’.

1 Introduction

The notion of action lattice, or residuated Kleene lattice, was introduced by
Pratt [23] and Kozen [15]. Action lattices combine algebraic structures of resid-
uated lattices (see [7]), with the notion of residuals going back to Krull [17], and
Kleene algebras, the idea of which goes back to Kleene [14].

The inequational theory of action lattices is the set of all generally true
inequations of the form u � v, where u and v are terms in the language of
action lattices. This theory is also called action logic, as it can be viewed as, and
axiomatized as, a substructural propositional logic. This logic is an extension
of the multiplicative-additive Lambek calculus [10,20] with the Kleene star as
a unary connective. The Lambek calculus, in its turn, can be considered as an
intuitionistic non-commutative version of Girard’s [8] linear logic (see [1]). Lin-
ear logic also includes the exponential modality, which enables structural rules
c© Springer Nature Switzerland AG 2020
V. Nigam et al. (Eds.): Scedrov Festschrift, LNCS 12300, pp. 3–16, 2020.
https://doi.org/10.1007/978-3-030-62077-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62077-6_1&domain=pdf
https://doi.org/10.1007/978-3-030-62077-6_1

4 S. L. Kuznetsov

(permutation, contraction, weakening), thus it is natural to extend the Lambek
calculus with exponential [9,10,21] or even a family of subexponentials [12].

In action logic, Kleene star is axiomatized by induction-style axioms (for
example, Pratt formulated them as ‘pure induction,’ (p / p)∗ � p / p). We con-
sider a stronger system, called infinitary action logic [3,22], where Kleene star is
axiomatized by an ω-rule. The motivation for this is as follows. Action logic itself
is already Σ0

1 -complete [18], thus adding (sub)exponential modalities, which are
axiomatized by finitary rules, could not increase complexity of the derivability
problem. For infinitary action logic, the situation is different. Infinitary action
logic without exponential is Π0

1 -complete [3,22]. However, if we enrich it with
an unrestricted exponential modality, the derivability problem becomes much
harder: Π1

1 -complete [19].
The main source of this complexity raising from Π0

1 to Π1
1 is, of course, the

contraction rule for exponential. Contraction allows duplicating formulae and,
thus, allows encoding of derivations from extra axioms by a variant of deduction
theorem (see [19]). The problem of derivability from finite sets of extra axioms
(derivability of Horn clauses) is, in its turn, Π1

1 -complete even for Kleene algebras
without division operations, as shown by Kozen [16].

In this paper, we present a restricted fragment of infinitary action logic with
exponential, where the exponential modality can be applied only to formulae
of implication (division) depth less or equal to 1. The extension of the Lambek
calculus with such a restricted exponential was studied by Fofanova and shown to
be decidable [5,6] (for a previous result for depth 0 see [11]). We shall prove that
the corresponding extension of infinitary action logic belongs to Π0

1 . This result
is in the same line as Fofanova’s one. Namely, though contraction is allowed, an
exponential restricted to formulae of depth 0 or 1 does not lead to complexity
growth.

2 Infinitary Action Logic with Exponential

Let us formulate infinitary action logic with exponential, denoted by !ACTω,
as an infinitary sequent calculus. The system !ACTω, as defined below, is a
fragment of a richer system from [19], which includes a family of subexponential
modalities.

Formulae of !ACTω are built from variables (p, q, r, . . .) and the unit constant
1 using five binary connectives: · (product), \ (left division), / (right division), ∨
(additive disjunction), and ∧ (additive conjunction), and two unary connectives:
∗ (Kleene star) and ! (exponential). Sequents are expressions of the form Γ � C,
where C (succedent) is a formula and Γ (antecedent) is a sequence of formulae.
The antecedent could be empty; in this case we write just � C.

Axioms and inference rules of !ACTω are as follows:

p � p
Id

Π � A Γ,B,Δ � C

Γ,Π,A \ B,Δ � C
\ L

A,Π � B

Π � A \ B
\ R

A Π0
1 -Bounded Fragment of Infinitary Action Logic with Exponential 5

Π � A Γ,B,Δ � C

Γ,B / A,Π,Δ � C
/ L

Π,A � B

Π � B / A
/ R

Γ,A,B,Δ � C

Γ,A · B,Δ � C
·L Γ � A Δ � B

Γ,Δ � A · B
·R

Γ,Δ � C

Γ,1,Δ � C
1L � 1 1R

Γ,A1,Δ � C Γ,A2,Δ � C

Γ,A1 ∨ A2,Δ � C
∨L

Π � Ai

Π � A1 ∨ A2
∨R, i = 1, 2

Γ,Ai,Δ � C

Γ,A1 ∧ A2,Δ � C
∧L, i = 1, 2

Π � A1 Π � A2

Π � A1 ∧ A2
∧R

(Γ,An,Δ � C)n∈N

Γ,A∗,Δ � C
∗L

Π1 � A . . . Πn � A

Π1, . . . , Πn � A∗ ∗R, n ≥ 0

Γ,A,Δ � C

Γ, !A,Δ � C
!L

!A1, . . . , !An � B

!A1, . . . , !An � !B !R

Γ,Π, !A,Δ � C

Γ, !A,Π,Δ � C
!P1

Γ, !A,Π,Δ � C

Γ,Π, !A,Δ � C
!P2

Γ,Δ � C

Γ, !A,Δ � C
!W

Γ, !A, !A,Δ � C

Γ, !A,Δ � C
!C

Π � A Γ,A,Δ � C

Γ,Π,Δ � C
Cut

The Id axiom here is formulated in an atomic form, for convenience of deriva-
tion analysis. The general form of this axiom, A � A for an arbitrary A, is deriv-
able. This is performed by induction on the structure of A. The interesting cases
are ! and ∗. For !, the sequent !A � !A is derived from A � A by !L and !R. For
∗, wishing to establish A∗ � A∗, we first derive all sequents of the form An � A∗

(using ∗R), and then apply ∗L.
The cut rule is eliminable, as shown in [19] by combining methods of [22]

and [12]. The system !ACTω, in its full power, is Π1
1 -complete [19]. On the other

hand, its fragment without ! (the basic infinitary action logic ACTω) belongs to
Π0

1 , as shown by Palka [22]. We strengthen Palka’s result by allowing exponential,
restricted to a class of formulae.

6 S. L. Kuznetsov

Under !, we consider formulae constructed using only \ and / of implication
(division) depth 0 or 1. These are formulae of the following form:

A = r1 \ r2 \ . . . \ rk \ p / q1 / q2 / . . . / q�.

(Here \ associates to the right and / associates to the left.) Here k and/or �
could be zero (if k = � = 0, we get just a variable, p).

Since the exponential modality allows permutation, !(E \ F) is equivalent to
!(F /E). Thus, !A is equivalent to !(p / q1 / q2 / . . . / q� / r1 / r2 / . . . / rk), and we
can consider, under !, only formulae with k = 0, of the form p / q1 / . . . / qn (here
n = k + � and q�+i = ri). We shall write such a formula as follows: p / qn . . . q1,
which reflects the fact that it is equivalent to p /(qn · . . . · q1).

Theorem 1. The derivability problem in !ACTω for sequents in which ! is
applied only to formulae of the form p / q1 . . . qn belongs to the Π0

1 class.

Notice that, due to subformula property, the restriction on formulae under !
also holds for all sequents in a cut-free derivation of a restricted sequent.

By conservativity, Buszkowski’s Π0
1 lower bound for ACTω [3] also propagates

to the restricted fragment of !ACTω. Thus, we conclude that the derivability
problem in !ACTω for sequents in which ! is applied only to formulae of the form
p / q1 . . . qn is Π0

1 -complete.
The technique we use for proving Theorem1 is a combination of two meth-

ods. The first one is Fofanova’s method for proving decidability of the Lambek
calculus extended with ! which can be applied only to formulae of implication
depth 0 or 1 [5,6]. The second one is the *-elimination technique developed by
Palka [22] for ACTω.

3 The Calculus !D1 ACTω

We start with reformulating the restricted fragment of !ACTω, following the ideas
of [5,6]. The new system will be called !D1 ACTω. Here ‘1’ means “implication
depth ≤ 1” and ‘D’ stands for ‘dyadic,’ because in this calculus we use the idea
of isolating !-formulae as in Andreoli’s dyadic system Σ2 [2].

Sequents of the dyadic system !D1 ACTω have two zones in antecedents, for
!-formulae and for normal (non-commutative linear) formulae. Thus, sequents
are expressions of the form Φ;Γ � C, where C is a formula, Γ is a sequence of
formulae, and Φ is a set of formulae. All formulae in Φ are required to be of the
restricted form p / q1 . . . qn. If Γ is empty, we write Φ; � C. A sequent with an
empty Φ is written as Γ � C (which is a shortcut for ∅;Γ � C). A sequent with
a completely empty antecedent (both zones empty) is written as � C.

If compared with the focused system for the multiplicative-additive Lambek
calculus with subexponentials [13], our !D1 ACTω does not maintain focus on
non-!-formulae (thus, it is not a focused system). However, for !-formulae it
behaves quite aggressively. Namely, !-formulae are confined in !-zones, and their
decomposition is postponed up to axioms.

A Π0
1 -Bounded Fragment of Infinitary Action Logic with Exponential 7

There are no explicit structural rules for ! in !D1 ACTω. Permutability of !-
formulae is now maintained by the structure of sequents: being a set, Φ is com-
mutative by design. Weakening and, surprisingly, contraction is implemented in
axioms.

Axioms are now quite complicated (not just p � p, as in !ACTω). For a set
Φ of formulae of the form p / q1 . . . qn consider a context-free grammar GΦ with
the following production rules:

p ⇒ q1 . . . qn for each formula (p / q1 . . . qn) ∈ Φ.

In GΦ, we neither distinguish terminal and non-terminal symbols (the united
alphabet is the set of variables), nor designate a starting symbol. Now we declare
as axioms all sequents of the form

Φ; r1, . . . , rm � s,

where r1 . . . rm is derivable from s in GΦ (that is, s ⇒∗
G r1 . . . rm). Additionally,

sequents
Φ; � 1

are also axioms, for any Φ. The set of axioms is decidable, using standard parsing
algorithms for context-free grammars.

Rules for Lambek connectives (·, \, /), additives (∨, ∧), and Kleene star in
!D1 ACTω are basically copied from !ACTω. The !-zone (Φ) is non-deterministically
distributed between branches in / L, \ L, ·R, and ∗R, with implicit contractions
applied. (In order to reduce proof search, one could just force Φ to be the same;
here we do not need it.)

Ψ ;Π � A Φ;Γ,B,Δ � C

Φ ∪ Ψ ;Γ,Π,A \ B,Δ � C
\ L

Φ;A,Π � B

Φ;Π � A \ B
\ R

Ψ ;Π � A Φ;Γ,B,Δ � C

Φ ∪ Ψ ;Γ,B / A,Π,Δ � C
/ L

Φ;Π,A � B

Φ;Π � B / A
/ R

Φ;Γ,A,B,Δ � C

Φ;Γ,A · B,Δ � C
·L Φ;Γ � A Ψ ;Δ � B

Φ ∪ Ψ ;Γ,Δ � A · B
·R

Φ;Γ,Δ � C

Φ;Γ,1,Δ � C
1L

Φ;Γ,A1,Δ � C Φ;Γ,A2,Δ � C

Φ;Γ,A1 ∨ A2,Δ � C
∨L

Φ;Π � Ai

Φ;Π � A1 ∨ A2
∨R, i = 1, 2

Φ;Γ,Ai,Δ � C

Φ;Γ,A1 ∧ A2,Δ � C
∧L, i = 1, 2

Φ;Π � A1 Π � A2

Φ;Π � A1 ∧ A2
∧R

8 S. L. Kuznetsov

(Φ;Γ,An,Δ � C)n∈N

Φ;Γ,A∗,Δ � C
∗L

Φ1;Π1 � A . . . Φn;Πn � A

Φ1 ∪ . . . ∪ Φn;Π1, . . . , Πn � A∗ ∗R, n ≥ 0

The rules for ! are as follows:

Φ ∪ {A};Γ,Δ � C

Φ;Γ, !A,Δ � C
!L

Φ; � B

Φ; � !B !R

Recall that each formula under ! should be of the form p / q1 . . . qn.
Finally, now we have two cut rules, one for each zone:

Ψ ;Π � A Φ;Γ,A,Δ � C

Φ ∪ Ψ ;Γ,Π,Δ � C
Cut

Ψ ; � A Φ ∪ {A};Δ � C

Φ ∪ Ψ ;Δ � C
Cut!

In the next section we prove that both cut rules in !D1 ACTω are eliminable
and that !D1 ACTω is equivalent to the restricted fragment of !ACTω. Further, in
Sect. 5, we develop Palka’s *-elimination technique for !D1 ACTω and in this way
prove that it belongs to Π0

1 . This finishes the proof of Theorem1.
As suggested by the Reviewer, instead of introducing a sophisticated set of

axioms for !D1 ACTω one could equivalently add inference rules of the form

Φ;Π1 � q1 . . . Φ;Πn � qn

Φ;Π1, . . . , Πn � p
provided that p / q1 . . . qn ∈ Φ.

This type of inference rule is a generalization of the rule called Buszkowski’s rule
B1 in [11]. Buszkowski’s rules are friendly to cut elimination [11]. However, they
are not that convenient for inductive arguments on derivations: namely, if n = 1,
then the rule does not reduce complexity when looking from bottom to top.
Moreover, if Φ includes both p / q and q / p, then a derivation can include a useless
sequence of rule applications replacing p with q and then back q with p. This
would make our complexity upper bound argument in Sect. 5 problematic. In our
formulation, all these issues are hidden into the context-free derivations used for
verifying axioms, and we refer to ready-made context-free parsing algorithms.
(In particular, issues with p / q and q / p are resolved by the standard chain rule
elimination technique.)

4 Cut Elimination in !D1 ACTω and Equivalence
with Restricted !ACTω

Let us first establish cut elimination for !D1 ACTω.

Theorem 2. Any sequent provable in !D1 ACTω can be proved without using Cut
and Cut!.

Proof. As usual in cut elimination proofs, we shall proceed by induction on (cut-
free) derivations of the premises of cut. Due to the infinitary nature of !D1 ACTω,
these inductive arguments ought to be transfinite. For a cut-free derivation, we
define its rank as an ordinal in the following way:

A Π0
1 -Bounded Fragment of Infinitary Action Logic with Exponential 9

– the rank of an axiom is zero;
– if the lowermost rule is a finitary one (that is, any rule except ∗L), then the

rank is the maximum of the ranks of the derivations of its premises, plus one;
– if the lowermost rule is ∗L, then the rank is the supremum of the ranks of

the derivations of its (ω many) premises, plus one.

Thus, the rank reduces (at least by one) when moving from a derivation tree to
a subtree deriving one of the premises of the lowermost rule.

We start with eliminating Cut!, which can be done independently from Cut.
Recall that A = p / q1 . . . qn. The left premise of Cut!, enjoys a cut-free deriva-
tion. Notice that no rule introduces formulae into the !-zone Ψ (this is done only
in axioms). Thus, Ψ ; � p / q1 . . . qn was derived by n applications of / R from
the axiom Ψ ; q1 . . . qn � p.

Now proceed by induction on the cut-free derivation of Φ ∪ {A};Δ � C. The
key consideration here is that all rule applications are non-principal and can be
exchanged with Cut! (this reduces the rank). The reason is that the cut formula
A is in the !-zone and therefore is kept intact up to axioms.

Finally, let Φ ∪ {A};Δ � C be an axiom of the form Φ ∪ {A}; r1, . . . , rm � s.
Recall that Ψ ; q1, . . . , qn � p is also an axiom, and therefore p ⇒∗

GΨ
q1 . . . qn.

This is exactly the context-free production rule expressed by formula A. Given
s ⇒∗

GΦ∪{A} r1 . . . rm, let us replace each application of p ⇒ q1 . . . qn with the
corresponding derivation in GΨ . This yields s ⇒∗

Φ∪Ψ r1 . . . rm. Therefore, the
sequent Φ ∪ Ψ ; r1, . . . , rm � s, which is the goal of Cut!, is an axiom.

Now we eliminate Cut, proceeding by a standard induction (but in a transfi-
nite setting). The two parameters are now α and β, the ranks of cut-free deriva-
tions of the premises of Cut. Notice that the following preorder on pairs (α, β)
is well-founded: (α1, β1) ≺ (α2, β2) if and only if either α1 < α2 and β1 ≤ β2, or
α1 ≤ α2 and β1 < β2. At each step (α, β) will be ≺-reduced.

In non-principal cases, where at least one of the lowermost rules in derivations
of Ψ ;Π � A and Φ;Γ,A,Δ � C does not introduce A, cut gets propagated,
lowering one of the ranks while keeping the other one. Principal cases for all
connectives, except !, are considered as in Palka’s proof [22], which generally
follows Lambek’s scheme [20].

Finally, for ! the principal case is as follows:

Ψ ; � A

Ψ ; � !A !R
Φ ∪ {A};Γ,Δ � C

Φ;Γ, !A,Δ � C
!L

Φ ∪ Ψ ;Γ,Δ � C
Cut

and Cut is transformed into Cut!:

Ψ ; � A Φ ∪ {A};Γ,Δ � C

Φ ∪ Ψ ;Γ,Δ � C
Cut!

Premises of Cut! have cut-free proofs, and we can eliminate it as shown above.
This shows how to eliminate one (lowermost) instance of cut. In order to

eliminate many (maybe infinitely many) cuts in a derivation, we define the notion

10 S. L. Kuznetsov

of cut rank. Cut rank is defined similarly to the rank of a derivation, but now
we count only cuts. That is, for rules except Cut and Cut! the cut rank is just
counted as the supremum (maximum) of the cut ranks for premises, and for Cut
and Cut! this maximum is increased by one.

Proofs in !D1 ACTω do not have infinite branches. Thus, we have a set of
topmost cuts, whose premises enjoy cut-free derivations. Eliminating these cuts
reduces the cut rank. �

Now we show equivalence between !D1 ACTω and the restricted fragment of
!ACTω. We start with a technical lemma.

Lemma 1. Let A = p / q1 . . . qn. Then the sequents {A}; � A and {A}; � !A
are derivable in !D1 ACTω.

Proof. The sequent {A}; � A is derived from {A}; q1, . . . , qn � p by n applica-
tions of / R. The latter sequent is an axiom, since q1 . . . qn is derived from p in
G{A} in one step. The second sequent, {A}; � !A, is derived from {A}; � A by
applying !R. �
Theorem 3. Let Γ � C be a sequent in which ! is applied only to formulae of
the form p / q1 . . . qn. Then Γ � C is derivable in !ACTω if and only if Γ � C is
derivable in !D1 ACTω.

Proof. For the “only if” part, notice that the rules of !ACTω not operating !
directly map onto the corresponding rules of !D1 ACTω with empty !-zones added.
The remaining rules !L, !R, !P1, !P2, !W , and !C are modelled using cut and
Lemma 1 as follows: {A}; � A Γ,A,Δ � C

{A};Γ,Δ � C
Cut

Γ, !A,Δ � C
!L

({Ai}; � !Ai)
n
i=1 !A1, . . . , !An � B

{A1, . . . , An}; � B
Cut (n times)

{A1, . . . , An}; � !B !R

!A1, . . . , !An � !B
!L (n times)

{A}; � !A Γ,Π, !A,Δ � C

{A};Γ,Π,Δ � C
Cut

Γ, !A,Π,Δ � C
!L

{A}; � !A Γ, !A,Π,Δ � C

{A};Γ,Π,Δ � C
Cut

Γ, !A,Π,Δ � C
!L

{A}; � 1
Γ,Δ � C

Γ,1,Δ � C
1L

{A};Γ,Δ � C
Cut

Γ, !A,Δ � C
!L

A Π0
1 -Bounded Fragment of Infinitary Action Logic with Exponential 11

{A}; � !A
{A}; � !A Γ, !A, !A,Δ � C

{A};Γ, !A,Δ � C
Cut

{A};Γ,Δ � C
Cut

Γ, !A,Δ � C
!L

For the “if” part, we prove a stronger statement: if {A1, . . . , An};Γ � C is
derivable in !D1 ACTω, then !A1, . . . , !An, Γ � C is derivable in !ACTω. This is
proved by direct transformation of the cut-free derivation of {A1, . . . , An};Γ � C
in !D1 ACTω.

The most interesting case is the axiom. Recall that axioms of !D1 ACTω are
sequents of the form Φ; r1, . . . , rm � s, where r1 . . . rm is derivable from s in the
context-free grammar GΦ. Let Φ = {A1, . . . , An} and proceed by induction on
this context-free derivation (this is a regular induction, not a transfinite one).
If r1 . . . rm = s, then !A1, . . . , !An, s � s is derivable from axiom Id by n appli-
cations of !W . If the first production rule is s ⇒ q1 . . . qk, then the following
sequents are derivable by induction hypothesis:

!Φ, r1, . . . , rj1 � q1, !Φ, rj1+1, . . . , rj2 � q2, . . . , !Φ, rjk−1+1, . . . , rm � qk,

where !Φ = !A1, . . . , !An. Now !Φ, r1, . . . , rm � s is derived as follows (recall that
A = s / q1 . . . qk belongs to Φ):

!Φ, r1, . . . , rj1 � q1 . . . !Φ, rjk−1+1, . . . , rm � qk s � s

s / q1 . . . qk, !Φ, r1, . . . , rj1 , . . . , !Φ, rjk−1+1, . . . , rm � s
/ L (k times)

!Φ, s / q1 . . . qk, r1, . . . , rm � s
!C, !P (several times)

!Φ, r1, . . . , rm � s
!C, !P, !L

Axioms of the form Φ; � 1 are translated as !A1, . . . , !An � 1 and derived
from � 1 by !W . Inference rules of !D1 ACTω not operating ! are translated to
the corresponding rules of !ACTω, adding !P and !C, where necessary. Finally,
!L in !D1 ACTω is a specific form of !P in !ACTω, and !R corresponds directly to
!R. �

In the next section we show that the derivability problem for !D1 ACTω belongs
to Π0

1 . By the equivalence theorem, this yields the same complexity upper bound
for the restricted fragment of !ACTω.

5 *-Elimination and Complexity of !D1 ACTω

In this section we develop Palka’s [22] *-elimination technique for !D1 ACTω. Our
exposition follows [4], rather than [22]. The crucial notion here is the notion of
n-th approximation of a sequent. Informally, the n-th approximation is obtained
by replacing each negative occurrence of B∗ with B≤n = 1 ∨ B ∨ B2 ∨ . . . ∨ Bn

12 S. L. Kuznetsov

(where Bn = B · . . . · B
︸ ︷︷ ︸

n times

). The formal definition involves defining two functions,

Nn and Pn, by joint induction1:

Nn(p) = Pn(p) = p Nn(1) = Pn(1) = 1

Nn(A \ B) = Pn(A) \ Nn(B) Pn(A \ B) = Nn(A) \ Pn(B)
Nn(B / A) = Nn(B) / Pn(A) Pn(B / A) = Pn(B) / Nn(A)
Nn(A · B) = Nn(A) · Nn(B) Pn(A · B) = Pn(A) · Pn(B)
Nn(A ∨ B) = Nn(A) ∨ Nn(B) Pn(A ∨ B) = Pn(A) ∨ Pn(B)
Nn(A ∧ B) = Nn(A) ∧ Nn(B) Pn(A ∧ B) = Pn(A) ∧ Pn(B)
Nn(B∗) = 1 ∨ Nn(B) ∨ (Nn(B))2 ∨ . . . ∨ (Nn(B))n

Nn(!A) = Pn(!A) = !A Pn(B∗) = (Pn(B))∗

Notice that in !D1 ACTω formulae of the form !A never contain Kleene star,
therefore we do not need to propagate Nn or Pn in this case.

The n-th approximation of the sequent of the form Φ;B1, . . . , Bk � C is
the sequent Φ;Nn(B1), . . . , Nn(Bk) � Pn(C). The *-elimination theorem (which
eliminates all negative occurrences of Kleene star) is formulated as follows:

Theorem 4. A sequent is derivable in !D1 ACTω if and only for any n its n-th
approximation is derivable in !D1 ACTω.

Following [4], we first establish two lemmas.

Lemma 2. The sequents A � Pn(A) and Nn(A) � A are derivable in !D1 ACTω

for any formula A.

Proof. By induction on the complexity of A, exactly as in [4]. (Notice that the
case of A = !A′ is trivial, since Nn(!A′) = Pn(!A′) = !A′ by definition.) �
Lemma 3. If m ≤ n, then Nm(A) � Nn(A) and Pn(A) � Pm(A) are derivable
in !D1 ACTω for any formula A.

Proof. Also similar to [4]. �
Proof (of Theorem 4).

The “only if” part follows from Lemma2 using cut.
For the more interesting “if” part, we proceed by nested induction on two

complexity parameters for the given sequent Φ;B1, . . . , Bk � C. The parameter
of the inner induction is the usual complexity, counted as the total number of
connectives in B1, . . . , Bk, and C (we do not count the complexity of Φ, since
formulae in Φ are just propagated up to axioms, and are never decomposed).

The parameter of the outer induction is more complicated. We call it star rank
and define as follows. The star rank σ of a formula or a sequent is a sequence
of natural numbers, which is formally infinite, but, starting from some point,
includes only zeroes.

On such sequences, we define two operations:
1 In [4], the notations N and P are inverted.

A Π0
1 -Bounded Fragment of Infinitary Action Logic with Exponential 13

– if ξ = (x0, x1, x2, . . .) and η = (y0, y1, y2, . . .), then ξ ⊕ η = (x0 + y0, x1 +
y1, x2 + y2, . . .);

– if ξ = (x0, x1, x2, . . .), then ξ ↑ = (0, x0, x1, x2, . . .).

The order on such sequences is lexicographical. It is easy to see that it is well-
founded. Thus, we can use induction.

The inductive definition of σ is as follows:

σ(p) = σ(1) = σ(!A) = 0;
σ(A · B) = σ(A \ B) = σ(B / A) = σ(A ∨ B) = σ(A ∧ B) = σ(A) ⊕ σ(B);
σ(B∗) = σ(B) ↑ ⊕ (1, 0, 0, 0, . . .).

Informally, the d-th component of σ(A) is the number of occurrences of ∗ of
nesting depth d. For a sequent Φ;B1, . . . , Bn � C, its star rank is σ(B1) ⊕ . . . ⊕
σ(Bn) ⊕ σ(C).

Now consider a sequent Φ;B1, . . . , Bk � C and suppose that, for any n, the
sequent Φ;Nn(B1), . . . , Nn(Bk) � Pn(C) is derivable in !D1 ACTω. Consider two
cases:

Case 1: one of Bi is of the form E∗. Then Nn(Bi) = (Nn(E))≤n. By cut with
(Nn(E))m � (Nn(E))≤n, for m ≤ n, we get derivability of

Φ;Nn(B1), . . . , (Nn(E))m, . . . , Nn(Bk) � Pn(C),

provided n ≥ m. Using Lemma 3, we get derivability of this sequent for arbi-
trary n and m.
This new sequent, for a fixed m, has less star rank than the original sequent.
Thus, by induction hypothesis we get derivability of

Φ;B1, . . . , E
m, . . . , Bk � C,

and by the ω-rule ∗L we derive our goal sequent Φ;B1, . . . , Bi, . . . Bk � C
(recall that Bi = E∗).
Case 2: none of Bi is of the form E∗. Consider the lowermost rules in cut-free
derivations of

Φ;Nn(B1), . . . , Nn(Bk) � Pn(C),

for n = 0, 1, 2, . . . If a least one of these sequents is an axiom, then it should
coincide with Φ;B1, . . . , Bk � C, whence the latter is also an axiom. Other-
wise, each of these sequents is derived using a one of the finitary rules (not
∗L).

The main connective of each Nn(Bi) is the same as that of Bi itself (recall that
Bi �= E∗), ditto for Pn(C). For each finitary rule, the complete information
about its application is as follows: (1) the number i of Bi introduced by the
rule, or i = k + 1 for the rule introducing C; (2) the lengths of the parts of the
antecedent which go to its premises (for example, for ∗R these are the lengths
of Π1, . . . , Πn); (3) the way Φ is distributed between premises. Let us call this
collection of information the form of the rule.

14 S. L. Kuznetsov

For a given goal sequent Φ;B1, . . . , Bk � C, there is only a finite number of
possible forms for lowermost rules in derivations of Φ;Nn(B1), . . . , Nn(Bk) � C.
Therefore, there is an infinite set N of natural numbers, such that this sequent
is derived using a rule of the same form for all n ∈ N .

The premises of these rules can be defined uniformly, as n-th approximations
of the corresponding sequents obtained from Φ;B1, . . . , Bk � C. Using Lemma 3,
we prove these premises for all n, since for any n there exists n′ ∈ N such that
n′ ≥ n. Finally, we derive Φ;B1, . . . , Bk � C using the rule of that form. The
premises of this rule have either a smaller star rank, or, if the star rank is the
same, smaller complexity. Thus, they are derivable by induction hypothesis. �

Theorem 4 immediately yields Theorem 1. Indeed, n-th approximations
include no negative occurrences of ∗, and derivability of such sequents is decid-
able (for checking axioms, we use standard context-free parsing algorithms); the
outer “∀n” quantifier yields Π0

1 .

Future Work

The use of Palka’s *-elimination technique for !D1 ACTω became possible only
because we managed to reformulate our calculus without an explicit contraction
rule. In the presence of contraction, the *-elimination argument fails. Namely,
in Case 2 of the proof of Theorem 4, if the rule we wish to apply is contraction,
then its premise has greater complexity than the conclusion.

Actually, for !ACTω in general *-elimination should not hold due to complex-
ity reasons. Indeed, *-elimination would yield a Π0

2 upper complexity bound:
derivability in the fragment of !ACTω without negative occurrences of ∗ is unde-
cidable (cf. [21]), but belongs to Σ0

1 , and *-elimination would add just one “∀n”
quantifier. As shown in [19], however, !ACTω is Π1

1 -complete, which is much
more than Π0

2 .
In the view of the above, it is interesting to find a fragment of !ACTω, which is

Π0
2 -complete. A natural candidate would be the fragment where ∗ is not allowed

under !. For this system, a Π0
2 lower bound is provided by !-encoding of deriv-

ability of sequents from finite sets of *-free extra axioms (finite *-free theories).
The latter is Π0

2 -complete due to Kozen [16]. Reformulating this system for
*-elimination to work, however, is an open problem.

A toy example of a Π0
2 -complete fragment, however, can be constructed as

follows: sequents are required to be of the form E1, . . . , Ek � F , where F is
*-free and Ei is either *-free, or of the form G∗ for a *-free G. Such sequents are
still powerful enough to encode derivability in Kleene algebras from finite *-free
theories (see [16]). This gives Π0

2 -hardness. On the other hand, all occurrences
of ∗ are on the top level, and *-elimination comes trivially from invertibility of
∗L, thus the upper Π0

2 boundary. Extending this to an interesting fragment is
left for further research.

Financial Support. Research work towards this paper was supported by the HSE

University Basic Research Program funded by the Russian Academic Excellence

A Π0
1 -Bounded Fragment of Infinitary Action Logic with Exponential 15

Project ‘5–100,’ by grant MK-430.2019.1 of the President of Russia, by the Young

Russian Mathematics Award, and by the Russian Foundation for Basic Research grant

20-01-00435.

References

1. Abrusci, V.M.: A comparison between Lambek syntactic calculus and intuitionistic
linear logic. Zeitschr. Math. Logik Grundl. Math. (Math. Log. Q.) 36, 11–15 (1990)

2. Andreoli, J.-M.: Logic programming with focusing proofs in linear logic. J. Log.
Comput. 2(3), 297–347 (1992)

3. Buszkowski, W.: On action logic: equational theories of action algebras. J. Log.
Comput. 17(1), 199–217 (2007)

4. Buszkowski, W., Palka, E.: Infinitary action logic: complexity, models and gram-
mars. Stud. Log. 89(1), 1–18 (2008). https://doi.org/10.1007/s11225-008-9116-7

5. Fofanova, E.M.: Algorithmic decidability of a fragment of the Lambek calculus with
exponential modality. In: Mal’tsev Meeting 2018, Collection of Abstracts, p. 226.
Sobolev Institute of Mathematics and Novosibirsk State University, Novosibirsk
(2018). (in Russian)

6. Fofanova, E.M.: Algorithmic decidability of a fragment of the Lambek calculus with
exponential modality. M.Sc. thesis, Moscow State University (2019). (in Russian)

7. Galatos, N., Jipsen, P., Kowalski, T., Ono, H.: Residuated Lattices: An Algebraic
Glimpse at Substructural Logics. Studies in Logic and the Foundations of Mathe-
matics, vol. 151. Elsevier, Amsterdam (2007)

8. Girard, J.-Y.: Linear logic. Theor. Comput. Sci. 50(1), 1–101 (1987)
9. de Groote, P.: On the expressive power of the Lambek calculus extended with a

structural modality. In: Casadio, C., Scott, P.J., Seely, R.A.G. (eds.) Language
and Grammar. Studies in Mathematical Linguisticsand Natural Language. CSLI
Lecture Notes, vol. 168, pp. 95–111 (2005)

10. Kanazawa, M.: The Lambek calculus enriched with additional connectives. J. Log.
Lang. Inf. 1(2), 141–171 (1992). https://doi.org/10.1007/BF00171695

11. Kanovich, M., Kuznetsov, S., Scedrov, A.: Undecidability of the Lambek calcu-
lus with a relevant modality. In: Foret, A., Morrill, G., Muskens, R., Osswald,
R., Pogodalla, S. (eds.) FG 2015-2016. LNCS, vol. 9804, pp. 240–256. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53042-9 14

12. Kanovich, M., Kuznetsov, S., Nigam, V., Scedrov, A.: Subexponentials in non-
commutative linear logic. Math. Struct. Comput. Sci. 29(8), 1217–1249 (2019)

13. Kanovich, M., Kuznetsov, S., Nigam, V., Scedrov, A.: A logical framework with
commutative and non-commutative subexponentials. In: Galmiche, D., Schulz, S.,
Sebastiani, R. (eds.) IJCAR 2018. LNCS (LNAI), vol. 10900, pp. 228–245. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-94205-6 16

14. Kleene, S.C.: Representation of events in nerve nets and finite automata. In:
Automata Studies, pp. 3–41. Princeton University Press (1956)

15. Kozen, D.: On action algebras. In: van Eijck, J., Visser, A. (eds.) Logic and Infor-
mation Flow, pp. 78–88. MIT Press (1994)

16. Kozen, D.: On the complexity of reasoning in Kleene algebra. Inform. Comput.
179(2), 152–162 (2002)

17. Krull, W.: Axiomatische Begründung der algemeinen Idealtheorie. Sitz. Phys.-Med.
Soc. Erlangen 56, 47–63 (1924)

https://doi.org/10.1007/s11225-008-9116-7
https://doi.org/10.1007/BF00171695
https://doi.org/10.1007/978-3-662-53042-9_14
https://doi.org/10.1007/978-3-319-94205-6_16

16 S. L. Kuznetsov

18. Kuznetsov, S.: The logic of action lattices is undecidable. In: 34th Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS). IEEE (2019)

19. Kuznetsov, S.L., Speranski, S.O.: Infinitary action logic with exponentiation. arXiv
preprint arXiv:2001.06863 (2020)

20. Lambek, J.: The mathematics of sentence structure. Am. Math. Mon. 65, 154–170
(1958)

21. Lincoln, P., Mitchell, J., Scedrov, A., Shankar, N.: Decision problems for proposi-
tional linear logic. Ann. Pure Appl. Log. 56(1–3), 239–311 (1992)

22. Palka, E.: An infinitary sequent system for the equational theory of *-continuous
action lattices. Fundam. Inform. 78(2), 295–309 (2007)

23. Pratt, V.: Action logic and pure induction. In: van Eijck, J. (ed.) JELIA 1990.
LNCS, vol. 478, pp. 97–120. Springer, Heidelberg (1991). https://doi.org/10.1007/
BFb0018436

http://arxiv.org/abs/2001.06863
https://doi.org/10.1007/BFb0018436
https://doi.org/10.1007/BFb0018436

Transcendental Syntax iv: Logic Without
Systems

Jean-Yves Girard(B)

Directeur de Recherches émérite, Marseille, France
jeanygirard@gmail.com

For André

Abstract. A derealistic, system-free approach, with an example: arith-
metic.

Keywords: Logic · Arithmetic · Derealism

1 bhk Revisited

1.1 A System-Free Approach

According to a widespread prejudice, logic should depend upon a system limiting
the validity of its laws. Typically, the excluded middle should be accepted in the
classical chapel but refused in the intuitionistic bunker. A conception that Kreisel
refuted in his day: the polemics as to A ∨ ¬A does not concern the system, but
the connective, i.e., ∨ := ` vs. ∨ := ⊕.

The first evidences against this “fishbowl” view of logic date back to the
early 1930’s. Typically, Gentzen’s subformula property which restricts proofs of
A to the constituents of A, thus excluding the wider system in which A may
have been proved. But the most spectacular blow against bunkerisation is to be
found in bhk (Brouwer-Heying-Kolmogoroff), which presents a sort of functional
definition of proofs (Sect. 3).

This approach, which does not refer to any system, acknowledges the fact
that logic deals with pure reason, truths beyond discussion.

1.2 Axiomatic Realism

Getting rid of systems means standing up against axiomatic realism, the duality
between syntax and its realistic counterpart, semantics.

But axiomatics and semantics have little to do with proofs. Being concerned
with falsification, they are, so to speak, scouting the intellectual wilderness:
the consistency of ¬A (or the existence of a model refuting A) shows that we
shouldn’t waste energy in trying to prove A. By telling us where not to go, they
are very precious auxiliaries, but too warped to be anything more, since they
c© Springer Nature Switzerland AG 2020
V. Nigam et al. (Eds.): Scedrov Festschrift, LNCS 12300, pp. 17–36, 2020.
https://doi.org/10.1007/978-3-030-62077-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62077-6_2&domain=pdf
https://doi.org/10.1007/978-3-030-62077-6_2

18 J.-Y. Girard

yield contingent truths: A may be valid in system T and its negation ¬A in
system U, both being consistent.

Axiomatics and semantics deal with counterexamples, i.e., impermanence.
While our basic interest lies in logic, i.e., permanence.

1.3 The First Leakage: Emptiness

bhk, although the only approach respecting the meaning of the word “logic”,
has serious leaks. The most obvious being emptiness: what to do in presence of
formulas with no proofs, typically the absurdity 0 ? Since ¬A := A ⇒ 0, a proof
of a negation becomes a function with the empty set – an unfriendly fellow –
as target; this forces the source to be empty as well, in which case the proof
becomes the bleak empty function ∅.

The emptiness of 0 justifies the excluded middle: either A has a proof or it has
none, in which case the empty function which maps proofs of A to proofs of 0 is a
proof of ¬A. This is quite embarrassing and various modifications, none of them
definite, have thus been proposed, yielding various realisability interpretations.
Those “semantics of proofs” are only useful tools, not the real thing – just like a
scout is not the Army.

The only way to fix the leakage is to allow all formulas to have proofs, a
proposal which conflicts with consistency. Not quite indeed: it is enough to dis-
tinguish, among proofs, the real ones from those which are here “to fill the holes”.
A situation akin to what happens with computer folders: those who look empty
to the user indeed harbour “invisible” files .xxx which contain essential informa-
tions, the name of the folder or the list of its visible files.

Every proposition, including the absurdity 0 := !(フフフ `ヲヲヲ) ⊗ヲヲヲ (Sect. 3.4),
admits “proofs”. A truth criterion (Sect. 3) will determine which ones are visible,
i.e., “true”; in the case of absurdity, none.

1.4 The Second Leakage: Operationality

The functions at work in Definition 2 play an essential role, but their status
remains rather vague. Should we understand them as computable (recursive)
functions or plain set-theoretic graphs? Each answer leads to a specific cate-
gory of morphisms, i.e., a semantics. Categories presuppose the form (whence
the word “morphism”): their intrinsic essentialism makes them one of the best
semantic artifacts, but surely not a way out the bunker.

It seems that rock bottom was hit with the constellations of [4], that I will
rename designs. A product of the experience of proof-theory and computer sci-
ence, they embody the lessons of Gentzen (their stars are sort of logic-free
sequents), Herbrand (they socialise through unification), logic programming
(they look like deterministic prolog programs) and proof-nets.

Under certain circumstances, two designs may merge to form a new one
through a process that may diverge: this normalisation is akin to the traditional
cut-elimination – or the resolution of logic programming.

Transcendental Syntax iv: Logic Without Systems 19

This process, which corresponds to the functional application at work in
Definition 2, presupposes neither logic nor categories: the merger of two designs
can be expressed as a composition. . . provided we select appropriate sources and
targets, but there is no univoque way to do so.

1.5 The Third Leakage: Language

bhk is concerned with those formulas taken from a given language, typically
arithmetic. Of course, if we want to free ourselves from systems, we must be
ready to consider new formulas and connectives, including eccentric ones, i.e.,
not limit ourselves to an a priori choice: we should be able to consider general
propositions, not only those available in a particular fishbowl.

The naive definition of those language-free formulas, called behaviours:

A behaviour is any set of designs.

is not technically mature: it must be regulated, typically to exclude the nightmare
of emptiness.

The basic example of such a regulation is given by the correctness criterion
of proof-nets. Which can be expressed in terms of a duality between designs: P,
the one under testing vs. T , the test. The test succeeds if the combination P+T
merges into a design of a certain form, notation

P ⊥ T

Hence given a set P of designs, we can define its orthogonal ∼P, i.e., the set of
tests it passes. The biorthogonal ∼∼P is, so to speak, the regulated version of
P, indeed the behaviour generated by P.

Definition 1
A behaviour is any non trivial set of designs equal to its biorthogonal.

“Non trivial” means that the behaviour and its orthogonal are non empty. With
denumerably many designs, the number of possible behaviours has the power of
the continuum. No fishbowl can harbour that many propositions!

1.6 The Fourth Leakage: Usine

This happened to be the only leakage ever observed in the literature. Assuming
everything works swell – and it does with our definitions – remains the problem
of the distinction between usine and usage (factory and use, the use of French
emphasising the opposition). L’usage is nothing but the bhk definition, which
yields functions, etc. L’usine is the place where we get the certainty that those
so-called functions do what they mean to do.

The successful passing of the tests implies cut-elimination and consistency.
Therefore incompleteness forbids any form of absolute certainty as to l’usine
which usually involves infinitely many tests.

20 J.-Y. Girard

People addressing the issue did not seem to realise that they were up against
incompleteness. For instance those asking that, besides the functional proof of
Definition 2, one should add an auxiliary proof that the function does what it
means to do. But how to deal with this “meta-proof”? If we treat it in the bhk
style, it will need in turn its own auxiliary proof, etc.: metas all the way down.
In [8], Kreisel proposed to make the meta-proof a formal one in a system given
in advance – but later claimed (private communication, circa 1979) that this was
a practical joke.

We do know that consistency proofs are impossible, that the Hilbert program
cannot be fixed. So let us address the issue without any dogmatism. A behaviour
G is the orthogonal of a set of tests, a “preorthogonal”. The most elementary
behaviours admit finite preorthogonals and will therefore be subject to a com-
pletely finite checking. But the preorthogonal is, most of the time, infinite and
there is no way to implement infinitely many tests: the fact that F is a bhk
proof cannot be an absolute certainty. It can, however, be justified by the usual
tools of mathematics, i.e., within set theory.

See annex, p. 18 for further developments.

2 The Architecture of Logic

2.1 Logic vs. Set Theory

We propose to delegate the abstract testing (usine) to set theory: this makes our
ultimate – reductionist foundations – depend upon set theory. Just like axiomatic
realism, whose justification boils down to some set-theoretic semantics. Both
approaches, derealistic and realistic thus rest upon plain mathematics, so let us
compare the two approaches in foundational terms.

Set theory is a system, but a well-established one, so flexible and universal
that one hardly notices its boundaries: for us, it is mathematics, period. If we
insist upon absolute certainty (Sect. 2.3), we must acknowledge the possibility of
a failure of this framework. This highly unreasonable occurrence would equally
affect both approaches.

Set theory being incomplete, it is likely that it cannot establish that some
proof is a proof, i.e., miss the fact that some design P belongs to some behaviour
G. But this limitation of the derealistic approach, based on far-reached unprov-
able statements, is mainly theoretical. On the other hand, the realistic approach
is most effectively limited by the walls of its self-chosen prison. As a consequence,
the metastatic proliferation of systems.

Take for instance my system F of fifty years ago [3]: les candidats de réductibil-
ité – which are the prefiguration of behaviours – are handled by means of the
comprehension principle. If we still see it as a system, we are bound to build
extensions – not necessarily bad, like the constructions of Coquand [1] –, but
sort of prisons anyway. Or we could dump the idea of any system and directly
work on behaviours, with almost unlimited possibilities.

Last but not least, most systems are wrong because the semantic justifica-
tion leaks. The notion is easily tampered with and “bad witnesses” eliminated:

Transcendental Syntax iv: Logic Without Systems 21

this is what happened to the embarrassing empty model of predicate calculus
(Sect. 2.3).

2.2 Systems vs. Toolbox

So we don’t quite need logical systems: if we are not happy with our formulas,
connectives, etc., define new ones by biorthogonality, establish their basic prop-
erties and add them to our data base. This stock may take the form of an open
toolbox containing various designs together with the name of the behaviour they
belong to. A list of untyped artifacts – delogicalised proofs – together with their
types, those types being attributed externally, by arbitrary mathematical meth-
ods. The toolbox requires no sophisticated logical structure, e.g., a sequent cal-
culus formulation: we can even use the most archaic logical formulation (axioms
and Modus Ponens), which allows us to draw consequences from the principles
listed in the data base, i.e., combine the tools. No cut-elimination, normalisa-
tion, etc. at the level of the toolbox is needed, since it is the task of the tools
themselves: when we combine them by Modus Ponens, they initiate a converging
merging process.

This is a major improvement over the fishbowl approach for which each
novelty prompted a change of system, the creation of a schismatic chapel. An
approach which culminated with logical frameworks [7] where systems T,U,V, . . .
could be put under the same roof with no right to communicate: like hospital
patients, each of them quarantined in his room, lest he contaminate the others.

The fact that l’usine has been delegated to current mathematics, i.e., set
theory, makes our toolbox absolutely faultless – except the legitimate doubt
(Sect. 2.3). The only limit to this approach is our own imagination.

2.3 Certainty

The logical discussions of yesteryear were polluted by the obsession of founda-
tions. We must adopt an adult approach to the question and reflect upon our
certainties or, dually, our doubts.

Generally, the testing cannot actually be performed – it is infinite – and
is delegated to set theory. It is legitimate to doubt as to the reliability of set
theory – in the same way we cannot be absolutely confident in the daily return
of the Sun. But these doubts are not quite reasonable. Some form of certainty
thus arises from the set theoretic foundation of logic: I call it epidictic. Due to
incompleteness, this certainty is only reasonable, not absolute: it leaves some
room for limited, but legitimate, doubts.

The old foundational approach did not distinguish between legitimate and
reasonable: it was seeking a sort of apodictic certainty – the one which leaves not
the slightest doubt – and neglected anything irrelevant to this chimeric issue. It
promoted a reductionistic viewpoint based on brute force – consistency as rock
bottom –, thus excluding any sort of finesse.

Like any kind of religious approach, the developments of the apodictic ide-
ology contradict its goals. The search for final justifications leads to overlook

22 J.-Y. Girard

obvious mistakes, for which the doubt is more than legitimate, reasonable: typ-
ically the ludicrous principle ∀ ⇒ ∃. Based on the misuse of variables, it is
obviously false; but consistent hence, from the apodictic ideology which deals
with “strength”, a neglectable drawback. The Al Capone method was applied to
the embarrassing witness – the empty model – which refutes the nonsense: it
was disposed of on the way to Court, this is why models are supposed to be non
empty!

2.4 Constraints and Freedom

As we observed with the dubious ∀ ⇒ ∃, each axiomatic system can be justified
by means of an ad hoc relation to reality. This is precisely why their results are
not portable: these systems are prisons, with their own approach to reality, what
they call semantics. If we can still use such a prostituted expression, derealism
is the ultimate semantics.

It is therefore much demanding and does not content itself with a model.
For instance, they were serious grounds for the logical constants 1 and ⊥ of
linear logic: no need to explain the interest of having neutral elements for the
multiplicative connectives. However, altough a considerable amount of energy
was devoted to that peculiar task, the theory of proof-nets never worked for
those constants. There is only one way out, namely accept the fact that 1 and
⊥ are wrong, i.e., impossible. Forcing them to integrate the bulk of logic would
destroy the whole architecture. By the way, if we insist upon something of the
like, ∀X (X � X) and ∃X (X ⊗ ∼ X) will provide reasonable ersatz, but not
the real thing which remains a logical fantasy.

The point of good constraints is that they create freedom. Derealism refuses
1 and ⊥ but accepts equality, the most notorious failure of axiomatic realism,
based upon the Leibniz definition

Any property of a is a property of b.

As observed in [5], individuals a and b can never be equal, since they can be dis-
tinguished by their position w.r.t. “and”. Axiomatic realism will object by claim-
ing that we are actually speaking of the respective denotations, i.e., semantics,
of these objects and that properties should be consistent with denotations. But
how do we know that a property only depends upon the semantics? Elementary,
my dear Watson: when it is compatible with. . . equality! This circular riddle is
implemented in various systems telling us which properties are legit. Hence, with-
out system, no Leibniz definition, no equality. By the way, the proof-theoretical
treatment of equality is admittedly ad hoc: it involves generalised identity axioms
embodying the cuts one cannot eliminate, e.g., t = u, v = u,A[t] � A[v].

But who told us that there is a special, segregated category of “individuals”
proceeding from the Sky; furthermore that they harbour properties in the same
way dogs have a tail? Wouldn’t it be simpler if those individuals were just plain
propositions, equality being equivalence? This obvious solution can indeed be
used to define natural numbers and prove the third and fourth Peano axioms
(Sect. 5). Exit the aporia of the Leibniz equality.

Transcendental Syntax iv: Logic Without Systems 23

So why did it take so long to integrate the most natural logical primitive?
Simply because of the classical prejudice: up to consistency, everything is classi-
cal, hence the excluded middle

A ≡ B ∨ B ≡ C ∨ C ≡ A (1)

which implies the impossibility of three unequivalent propositions. Intuitionism,
which does not agree on this, does not disagree either, i.e., proves ¬¬ (1). Linear
logic – which should not be seen as a system, but a space of freedom –, by
restricting the contraction rule to specific cases, makes (1) the exception, by no
means the rule. No doubt a useful exception, but which can be a pain in the
neck in some cases.

Another issue related to freedom: the paper [6] introduced light exponentials,
i.e., connectives dedicated to perenniality, with some relation to computational
complexity. They were developed in various systems (bll, lll, ell. . .) whose
relative qualities I shall not discuss for the very reason that we move on sort of
quicksand, with no real benchmark: the semantics turns out to be more treach-
erous than ever. This is why it would be of utmost importance to determine
whether or not light exponentials are more than a figment of axiomatic realism,
in other terms whether they can be explained in terms of behaviours.

3 Truth

3.1 The Tarskian Pleonasm

It suffices to compare bhk

Definition 2

A proof of A ⇒ B is a function F mapping any proof P of A to a proof F(P)
of B.

to Tarski’s “definition” of truth, e.g.,

Definition 3
A ⇒ B is true when the truth of A implies the truth of B.

(and its declinations for ∧,∨,¬ , . . . in terms of and, or, not, . . .) to see the
difference between an inspired approach and a pleonasm which boils down to “A
is true when A”. But the truism is the ultimate form of snobbery: you think the
Emperor is naked, mistake, you just don’t see his new clothes.

Indeed, the famous vérité de La Palice, a theory of truth due to a French
precursor of analytic philosophy, e.g.,

Un quart d’heure avant sa mort, il était encore en vie.

foreshadows Definition 3.
The current opinion among non believers is that tarskian truth is, unfortu-

nately, correct. But even this correctness is dubious, since truth does not apply
to formulas but to proofs! Sect. 4.3 wil provide us with examples contradicting
the tarskian definition, which is thus not even a pleonasm.

24 J.-Y. Girard

3.2 Generalities About Visibility

Remember that we definitely dumped fishbowls, hence no longer deal with the
formulas of a language, but with general behaviours (Definition 1). Our definition
of truth takes the form:

Definition 4
G is true when it harbours a visible design.

The visible designs are the true ones, the actual proofs so to speak. Visibility,
yet to be defined, should enjoy certain implicit requirements:

– It should be closed under cut: hence, if P and F are proofs of G and G ⇒ H,
then the design F(P) of H must be visible, i.e., a proof of H.

– Some behaviour, typically the absurdity 0, must be without visible element,
i.e., not true.

If these requirements are satisfied, then truth is consistent: G and its classical
negation G ⇒ 0 cannot both have visible designs, i.e., both be true. An exclusion
that does not extend to linear negation: the self-dual behaviours フフフ = ∼フフフ and
ヲヲヲ = ∼ヲヲヲ are true.

Since truth deals with proofs and not with mere provability, the truth of a
compound behaviour cannot be reduced to the truth of its constituents. There-
fore it cannot follow any kind of truth table. In particular, a conjunction may be
true while one of the conjuncts is not. So tarskian truth is worse than a useless
and snobbish ready-made, it is a plain mistake!

3.3 Multiplicative Case

We shall first explain the solution in the case of the multiplicative proof-nets
of linear logic; we consider formulas built from literals p,∼ p, q,∼ q, r,∼ r, . . . by
means of ⊗ and `. Besides the usual ⊗ and `-links, we allow arbitrary links
︷ ︸︸ ︷

p1, . . . , pk, with k > 0, which resemble axioms in the sense that they are without
premise. The usual correctness criterion is applied to the structures built from
those,

︷ ︸︸ ︷

p1, . . . , pk being seen as a vertex with edges p1, . . . , pk: this generalises the
usual case based on the sole

︷ ︸︸ ︷

p,∼ p, see Sect. 3.5 below.
A proof structure with literals q1, . . . , qN (with possible repetitions, this is the

familiar nonsense about “occurrences”) can be seen as a partition P of {1, . . . , N}
the classes of which are precisely the “axioms”

︷ ︸︸ ︷

qi1 , . . . , qik used. A switching of
the proof-net yields another partition T of the same {1, . . . , N}. Both partitions
can be put together to form a bipartite graphs: the classes being its vertices, an
edge between X ∈ P and Y ∈ T is an element of P ∩ T . The Danos-Regnier
criterion [2] requires that, for any T arising from a switching, the induced graph
is connected and acyclic. In particular X ∈ P and Y ∈ T intersect in at most
one point.

Let n and m be the respective numbers of partitions in P and T . If the
proof is correct, then n + m − N = 1 (Euler-Poincaré), what can be written

Transcendental Syntax iv: Logic Without Systems 25

(2n − N) + (2m − N) = 2. The weight |P| := 2n − N , which does not depend
upon T , can be written as the sum of the weights of its “axiom links” defined by
|
︷ ︸︸ ︷

p1, . . . , pk | = 2 − k. Our visibility definition writes as:

Definition 5
P is visible when |P| ≥ 0.

Observe that the weight of the familiar
︷ ︸︸ ︷

p,∼ p is 2 − 2 = 0, hence a proof-net
using the familiar identity axioms is of total weight 0, hence visible.

Visibility satisfies the requirements of the previous section. First, it is
deductively closed: normalising a cut amounts at replacing

︷ ︸︸ ︷

p1, . . . , pk, p and
︷ ︸︸ ︷

∼ p, q1, . . . , q� (total weight 2 − (k + 1) + 2 − (� + 1) = 2 − (k + �)) with
︷ ︸︸ ︷

p1, . . . , pk, q1, . . . , q� (weight 2 − (k + �), i.e., the same). Moreover, not every-
thing is true: typically, p ` q ` r, whose only correct proof-net, which uses the
axiom

︷ ︸︸ ︷

p, q, r of weight −1, is invisible.
Incidentally, we gave the fatal blow to tarskian truth: (p ` q ` r) ⊗ s is true

while p ` q ` r is not.

3.4 The Constants Are Dead, Long Live the Constants!

Our multiplicative example has been oversimplified for pedagogic purposes.
Atoms indeed split into two classes, objective and subjective, each one being
closed under negation. This modification makes it possible to handle the absur-
dity 0 and is the key to second order (Sect. 5.2). It only affects the weighing of
“axioms”, written

︷ ︸︸ ︷

p1, . . . , pk, q1, . . . , q�, the pi being objective, the qj subjective.

– If � = 0, i.e., if the axiom is objective, then |
︷ ︸︸ ︷

p1, . . . , pk | = 2 − k.
– Otherwise, |

︷ ︸︸ ︷

p1, . . . , pk, q1, . . . , q� | = −k

Subjective atoms, whatever their number, count for two objective ones.
Keeping Definition 5 of visibility, it remains to show the deductive closure of

truth. |
︷ ︸︸ ︷

p1, . . . , pk, q1, . . . , q�, p | takes the value −k if p is subjective; if p is objec-
tive, it takes one of the values 2− (k+1) (if � = 0) and −(k+1) (if � �= 0). Ditto
with |

︷ ︸︸ ︷

∼ p, r1, . . . , rk′ , s1, . . . , s�′ |: possible weights −k′, 2−(k′+1) and −(k′+1).
Both of them weight a−(k+k′) where a takes one of the values 2, 0,−1,−2: a = 1
is excluded since this would require, say, p to be objective and ∼ p subjective. On
the other hand,

︷ ︸︸ ︷

p1, . . . , pk, q1, . . . , q�, r1, . . . , rk′ , s1, . . . , s�′ weights 2− (k+k′) or
−(k + k′). The weight can decrease during normalisation only if a = 2, in case
� = �′ = 0 but the normalised “axiom” would weight 2 − (k + k′).

Indeed, up to linear equivalence, there are only two atoms, the objective
フフフ (“fu”) and the subjective ヲヲヲ (“wo”). Both are true, self-dual and inequivalent.
They can be used to define the absurdity by 0 := !(フフフ`ヲヲヲ)⊗ヲヲヲ. Indeed, Sect. 4.2
of [5], proves, without using the notations (フフフ and ヲヲヲ were still in limbo) the
rule

�Γ,A

�Γ,���

26 J.-Y. Girard

which is an alternative formulation of the famous ex nihilo quod libet 0 � A.
Incidentally, the notion of épure (= working drawing) of paper [5] is different:
either k = 2, � = 0 or k = 0. This ensures that |

︷ ︸︸ ︷

p1, . . . , pk, q1, . . . , q� | = 0, hence
épures are visible.

The constants (1 and ⊥) are dead, long live the constants (フフフ andヲヲヲ). Whose
multiplicative combinations yield natural numbers (Sect. 4 below).

3.5 Variables

According to a dubious tradition, propositional calculus should be built from
unspecified constants P,Q,R, Weird constants indeed, for which anything
can be substituted: this is what one usually calls variables! But such variables
should then be styled second order, a part of logic against which a fatwa was
declared. Let us call a spade a spade and use the notation X,Y,Z, . . . to empha-
sise the fact that we are dealing with variables.

Those variables were part of proof-nets original, since we needed some sorts

of atoms. Those proof-nets made use of binary identity links
︷ ︸︸ ︷

X,∼ X. They are
compatible with our truth definition, since they are binary; their weight is always
zero, since X and ∼X are simultaneously objective or subjective.

The restriction to the links
︷ ︸︸ ︷

X,∼ X has nothing to do with a sort of systemic
ukase, it can be derived from closure under instanciation: the net should remain
correct when we replace its variables with independent propositions. This can
take the form of a switching (already presented in [4], but without the notation
フフフ), involving the selection of a “value” for each variable X with three cases:

X :=フフフ ∼X :=フフフ
X :=フフフ⊗フフフ ∼X :=フフフ`フフフ
X :=フフフ`フフフ ∼X :=フフフ⊗フフフ

This excludes all possible practical jokes, e.g.,
︷︸︸︷

X ,
︷ ︸︸ ︷

X,Y ,
︷ ︸︸ ︷

X,X,
︷ ︸︸ ︷

X,X, ∼ X.

3.6 General Case

We are not quite dealing with proof-nets, but with the designs of a behaviour.
The main difference with the multiplicative case is that duplications and erasings
may occur during normalisation. Our numerical criterion is obviously sensitive
to these operations, hence we must be cautious.

The truth of P ∈ G is related to the testing process. So let T be a test in
∼G, hence P ⊥ T . The actual performance of the test, a normalisation in the
sense of [4], involves the building of a connected-acyclic graph whose vertices are
made of two designs, PT and T ′, each ray of PT being a ray of T ′; the edges are
those common rays. PT and T ′ are obtained through a unification (matching)

Transcendental Syntax iv: Logic Without Systems 27

procedure which replaces any star σ of those designs with various substitutions
σθi.

The visibility of P is obtained by means of a weighing of the stars of
PT . Remembering that rays are divided into objective and subjective ones, let
� t1, . . . , tk, u1, . . . , u� � ∈ PT , then:

– If � = 0, then |� t1, . . . , tk �| = 2 − k.
– Otherwise, |� t1, . . . , tk, u1, . . . , u� �| = −k.

The closure of visibility under cut is the consequence of the fact that the
matching between t and u of complementary colours is impossible if one is objec-
tive and the other subjective. Generally, the testing should anticipate general
normalisation; in terms of truth, it should make sure that the PT are represen-
tative of the PQ occurring during the actual normalisation of a cut between P
and a design Q, visible or not, in some � ∼G,Γ.

4 Natural Numbers

We now restrict our attention to the multiplicative combinations of the self-dual
constantsフフフ andヲヲヲ. We shall classify them up to linear equivalence (i.e., logical
equality) A ≡ B := (A � B) & (B � A).

4.1 First Series

Definition 6
The weight of the multiplicative A built from the soleフフフ is defined as the common
weight of all designs of A:

|フフフ| = 1
|A ⊗ B| = |A| + |B|
|A ` B| = |A| + |B| − 2

In particular, | ∼ A| = 2 − |A| and |A � B| = |B| − |A|.
For n > 0 define フフフn := フフフ ⊗フフフ ⊗ . . . ⊗フフフ (a n-ary tensor) and for n < 2

フフフn := フフフ `フフフ ` . . . `フフフ (a 2 − n-ary par), both cases agreeing on フフフ1 := フフフ.
Observe that ∼フフフn ≡フフフ2−n.

Theorem 1
A ≡フフフ|A|

Proof: By recurrence on the size of A, the basic case A =フフフ being trivial. If A
is a tensor B ⊗ C and B ≡ フフフ|B|, C ≡ フフフ|C|, then A ≡ フフフ|B| ⊗フフフ|C| ≡ フフフ|A|. If
A is a “par” B ` C, the previous case shows that ∼A is equivalent to フフフ| ∼ A|,
hence A ≡ ∼フフフ2−|A| ≡フフフ|A|. ��

28 J.-Y. Girard

フフフ0 = フフフ `フフフ is a sort of corrected version of the late neutral 1, ditto for
フフフ2 = フフフ ⊗ フフフ w.r.t. ⊥. フフフ0 and フフフ2 are, so to speak, the logical part of the
multiplicative units. They basically work because フフフ and ヲヲヲ no longer follow
any semantic paradigm!

All フフフn, for n ≥ 0, are provable. As a particular case, フフフ0, フフフ1 and フフフ2 are
provable together with their linear negations フフフ2, フフフ1 and フフフ0. For n < 0, the フフフn

are not provable; they are indeed refutable (Sect. 4.3).

4.2 Second Series

For n ∈ Z, we define the ヲヲヲn: ヲヲヲ0 :=ヲヲヲ, ヲヲヲn :=フフフn ⊗ヲヲヲ when n �= 0.

Proposition 1
ヲヲヲ ≡フフフ0 ⊗ヲヲヲ

Proof: From �ヲヲヲ,ヲヲヲ and �フフフ0, we get �ヲヲヲ,フフフ0⊗ヲヲヲ, hence the implicationヲヲヲ�
フフフ0 ⊗ヲヲヲ. Conversely, �フフフ and �フフフ,ヲヲヲ,ヲヲヲ admit designs of respective weights 1
and −1 which combine into a design of weight 0 of �フフフ⊗フフフ,ヲヲヲ,ヲヲヲ which yields
a proof of フフフ0 ⊗ヲヲヲ�ヲヲヲ. ��

Hence ヲヲヲn ≡フフフn ⊗ヲヲヲ for all n ∈ Z. More generally:

Proposition 2
フフフm ⊗ヲヲヲn ≡ヲヲヲm+n

(obvious) and

Proposition 3
ヲヲヲm ⊗ヲヲヲn ≡ヲヲヲm+n

Proof: Boils down to ヲヲヲ ⊗ヲヲヲ ≡ ヲヲヲ. From �ヲヲヲ,ヲヲヲ,ヲヲヲ, we get ヲヲヲ ⊗ヲヲヲ � ヲヲヲ;
conversely, �ヲヲヲ,ヲヲヲ and �ヲヲヲ yield �ヲヲヲ,ヲヲヲ⊗ヲヲヲ, hence ヲヲヲ�ヲヲヲ⊗ヲヲヲ. ��

Proposition 4
フフフn+2 `ヲヲヲ ≡ヲヲヲn

Proof: From �ヲヲヲ,ヲヲヲ and designs in ∼フフフn+2 and フフフn of respective weights −n
and n, one gets a proof of � (∼フフフn+2 ⊗ヲヲヲ), (フフフn ⊗ヲヲヲ), hence フフフn+2 `ヲヲヲ�ヲヲヲn.
Conversely, from �ヲヲヲ,フフフ2,ヲヲヲ, we get � ∼フフフn `ヲヲヲ, (フフフ2 ⊗フフフn)`ヲヲヲ, hence ヲヲヲn �
フフフn+2 `ヲヲヲ. ��

Theorem 2
Any multiplicative combination A ofフフフ and at least oneヲヲヲ is provably equivalent
to some ヲヲヲn.

Proof: By recurrence on the size of A, the basic case A =ヲヲヲ being trivial. If A is
a tensor B ⊗ C, at least one of B and C uses a ヲヲヲ and we are left with the cases
ヲヲヲm ⊗ヲヲヲn, フフフm ⊗ヲヲヲn and ヲヲヲm ⊗フフフn which by Propositions 2 and 3 are equivalent
to ヲヲヲm+n. If A is a “par” B ` C, the previous case shows that ∼ A is equivalent
to some ヲヲヲn, hence A ≡フフフn `ヲヲヲ; using Proposition 4, we get A ≡ヲヲヲn−2. ��

Transcendental Syntax iv: Logic Without Systems 29

Definition 6 can be extended to multiplicative combinations of フフフ and ヲヲヲ:

Definition 7

|フフフ| = 1
|ヲヲヲ| = 0

|A ⊗ B| = |A| + |B|
|A ` B| = |A| + |B| − 2 if one ofA,B isヲヲヲ−free
|A ` B| = |A| + |B| otherwise

By 1 and 2, A is equivalent to either フフフ|A| or ヲヲヲ|A|. In general:

1. フフフm ⊗フフフn ≡フフフm+n and フフフm `フフフn ≡フフフm+n−2

2. ∼フフフn ≡フフフ2−n and フフフm �フフフn ≡フフフn−m

3. ヲヲヲm ⊗ヲヲヲn ≡ ヲヲヲm `ヲヲヲn ≡ ヲヲヲm+n

4. ∼ヲヲヲn ≡ヲヲヲ−n and ヲヲヲm �ヲヲヲn ≡ヲヲヲn−m

5. ヲヲヲm ⊗フフフn ≡ヲヲヲm+n and ヲヲヲm `フフフn ≡ヲヲヲm+n−2

6. ヲヲヲm �フフフn ≡ ヲヲヲn−m−2 and フフフm �ヲヲヲn ≡ ヲヲヲn−m

4.3 Truth and Falsity

Theorem 3
The フフフn and ヲヲヲn are refutable for n < 0.

Proof: フフフn � ヲヲヲn being equivalent to ヲヲヲ0 (= ヲヲヲ), is provable; ¬ヲヲヲn � ¬フフフn is
thus provable, which reduces the theorem to the case of ヲヲヲn. Now ヲヲヲn � ヲヲヲ−1

being equivalent to the provable ヲヲヲ−1−n, we are reduced to proving ¬ヲヲヲ−1: from
� ∼ヲヲヲ−1,ヲヲヲ−1 and �フフフ, we get ヲヲヲ−1 ⇒ !ヲヲヲ−1 ⊗ フフフ, i.e., ヲヲヲ−1 ⇒ 0 that is the
negation ¬ヲヲヲ−1. ��

Let us sum up the basic facts about truth and falsity (i.e., refutability):

1. The フフフn and ヲヲヲn are true for n ≥ 0, false for n < 0.
2. The implications フフフm � フフフn, フフフm � ヲヲヲn and ヲヲヲm � ヲヲヲn are true for m ≤ n,

false when m > n.
3. The implication ヲヲヲm �フフフn is true when n ≥ m + 2, false otherwise.

The two series are thus distinct, the sole relation between them being the
double implication

We definitely contradict the excluded middle (1) which forbids the existence
of three provably unequivalent propositions! This implies necessary divergences
from classical truth which are made possible by the fact that our truth applies
to proofs and not to propositions. In particular the novelty cannot be tamed by
a change of truth tables, say replacing t,f with Z. Typically, A of weight n can
be equivalent to フフフn or ヲヲヲn.

30 J.-Y. Girard

The following table is a list of possible deviations (with t = true, f= false)
w.r.t. classical truth. The first line, with A = B =フフフ0, yields A ` B =フフフ−2 and
∼A = フフフ2. The second line, with A = フフフ−1, B = フフフ1, yields A ⊗ B = フフフ0 and
A ` B =フフフ−2. No deviation when both A and B are false. “`” is more deviant
than “⊗”: this is because negation does not exchange t and f.

A B A ⊗ B A ` B ∼A
t t f t
f t t f

A definite jailbreak from tarskism. . . and any sort of semantics.

5 Arithmetic

We shall now reconstruct arithmetic, not as a system, but as part of our open
logic. We basically need two sorts of quantifiers, first and second order.

5.1 First Order Quantification

First order quantification is about relative numbers, identified with the series
フフフn (n ∈ Z). The following can serve as a definition of individuals:

1. The variables x, y, z, . . . are individuals.
2. 1 :=フフフ is an individual.
3. If t, u are individuals, so are t + u := t ⊗ u and t − u := t � u.

Since logic is open, we don’t even require that (1)–(3) be the only way to build
individuals.

The usual rules of quantification do apply, provided we declare our variables.
Incidentally, due to the presence of the closed individualフフフ, the principle ∀ � ∃
holds: ∀xA[x] � A[フフフ] and A[フフフ] � ∃xA[x].

Variables indeed stand for arbitrary behaviours, analogous to the so-called
propositional “constants”, indeed variables, of logic. The basic parametric propo-
sition (i.e., predicate) is inequality:

t ≤ u := t � u

From which we can define equality:
t = u := (t u) & (u t)

The standard principles of linear logic allow us to establish certain principles
which are usally handled via axiomatics. Typically:

x ≤ x (2)
x+ (y+ z) = (x+ y) + z (3)
x+ (y − z) ≤ (x+ y) − z (4)

Transcendental Syntax iv: Logic Without Systems 31

Let 0 := フフフ −フフフ(= フフフ `フフフ). Since individuals deal with relative numbers, the
third Peano axiom takes the form:

0 ≤ x � (x+フフフ) �= 0 (5)

Which can be proved as follows: from 0 ≤ x we get 0 +フフフ ≤ x +フフフ, which,
combined with (x+フフフ) = 0, yields the refutable 0+フフフ ≤ 0.

As to the fourth Peano axiom, the best we can get is the following:

(x+フフフ) ≤ (y+フフフ) � x ≤ ((y+フフフ) −フフフ) (6)

which makes use of x � ((x +フフフ) −フフフ). The implication ((x +フフフ) −フフフ) � x
is missing; it is however provable when x is a “successor”:

Theorem 4

Proof: �∼ x, x and �フフフ,フフフ,フフフ (weight −1) yield �∼ x`フフフ`フフフ, x⊗フフフ (weight
−1) hence, with �フフフ (weight 1), �(∼ x`フフフ`フフフ) ⊗フフフ, x ⊗フフフ. ��
Summing up, we conclude that the fourth Peano axiom holds for successors, so
to speak SSx = SSy � Sx = Sy.

In terms of proof-nets, universal quantification is handled, as in [5], by means
of a switching choosing independent values for the variables: the choices x =
フフフ, x =フフフ`フフフ, x =フフフ⊗フフフ are enough (Sect. 3.5 supra).

Existential quantification is handled as in [5], with a major simplification: the
existential witnesses G + G̃ were defined as linear combinations of all elements
in the finite G and G̃. We simplify our construction by using, instead of the full
t and ∼ t a specific test in each of them. With two consequences:

– We no longer use linear combinations (good riddance!).
– The same simplification can be used in the second order case where behaviours

are infinite.

First-order is basically weaker than the usual first order of Peano, who could
use axiomatics to decide which primitive is legal or not or which principle is true.
Since we are concerned with logic, we have no longer access to ukases and are
unable to establish the full fourth Peano axiom or define the product t · u. The
missing “axiom” is trivially proved under the form x ∈ N � ((x+フフフ)−フフフ) � x
by a recurrence (Sect. 5.3), a second order principle1, just as the missing product
is second order definable (Sect. 5.4).

By the way, one of the blind spots of bhk was the handling of purely universal
statements of arithmetic. Basically a proof of ∀xA[x] is treated pointwise as a
function mapping n ∈ N to a proof of A[n], which, being a plain computation,
can be described in advance, hence the “proof” reduces to the “meta-proof” of
Sect. 1.6, which in turn reduces to meta-meta-proofs all the way down. Observe
that ((n +フフフ) −フフフ) � n holds pointwise but that the proofs do not proceed
from a common design; there is indeed one for n > 0 which does not merge with
the case n = 0.
1 Which also proves x ∈ N � 0 ≤ x, hence x ∈ N � (x+フフフ) �= 0.

32 J.-Y. Girard

5.2 Second Order Propositional Case

Although there is no use for it, let us start with second order propositional
quantification, i.e., system F. This was the stumbling block of [5], due to the
fact that behaviours are usually infinite: we cannot encapsulate an infinite set
inside a design. By the way, should we attempt such a nonsense, we would enter
into a wild goose chase as to the cardinality of behaviours.

The original treatment of F [3] involved candidats de réductibilité, which
suggests the following definition.

Definition 8
A candidate of base T + U , where T ,U are orthogonal tests, is any behaviour
G such that T ∈ G and U ∈ ∼G.

Existential quantification is handled as follows:

Analytically: The proof of ∃XA[X] obtained from A[T] makes use of a witness
T + U , namely the base of the behaviour T, seen as a candidate.

Synthetically: The behaviour ∃XA[X] is defined by:

∃XA[X] := ∼ ∼(
⋃

T

A[T]) (7)

Our choice of witness is basically a simplification of what we proposed in [5]: since
there is no hope of packing together the full T,∼T, we cannot avoid partiality
(Sect. 6.1 of [5]). Singling out elements T ∈ T and U ∈ ∼T makes it even more
partial, but this partiality matters no more in the context of infinite behaviours.
Incidentally observe that the existential case actually defines a behaviour: the
practical joke of an empty orthogonal is avoided, since it contains the switching
�

pα(mag(xdy)),pα̃(mag(xdy))
� ([5], Sect. 6.1) which checks the orthogonality of

the pillars T ,U of the base.
Universal quantification is handled by a plain intersection:

∀XA[X] :=
⋂

T

A[T] (8)

Definitions (7) and (8) follow the original pattern used for system F ([3])
which now yields a justification of second order principles.

5.3 Recurrence

The principle of recurrence, a.k.a. mathematical induction is usually written:

∀y (A[y] � A[y+フフフ]) ⇒ (A[0] � A[x]) (9)

with two defects, one being that it is an axiom, i.e., an ukase proceeding from the
Sky, the other being that it is a schema, i.e., a sort of meta-axiom introduced in
order to circumvent the fatwa against second order. Replacing the schema with

Transcendental Syntax iv: Logic Without Systems 33

the obvious second order definition makes it possible to define natural numbers,
Dedekind style, as the smallest set containing zero and closed under successor:

x ∈ N := ∀X (∀y (X(y) � X(y+フフフ)) ⇒ (X(0) � X(x))) (10)

From which the implication x ∈ N � (9) follows. A useful variant is obtained
by applying (9) to !A[x] ⊗ (A[x] � A[x]), which yields:

x ∈ N � ∀y (A[y] ⇒ A[y+フフフ]) ⇒ (A[0] ⇒ A[x]) (11)

The handling of quantification over predicates, here unary, is inspired from
the propositional case. We should introduce a notion of parametric candidate.
First by separating positive from negative occurrences. Typically, x � x should
be written as x− � x+ and later subject to the constraint x− = x+. In terms
of parametric candidates, this means that we should consider doubly indexed
families Gm,n (m,n ∈ Z) of candidates enjoying:

m′ ≤ m,n ≤ n′ ⇒ Gm,n ⊂ Gm′,n′ (12)

i.e., covariant in n, contravariant in m; the negation will thus be covariant in m,
contravariant in n. They should also be provided with a base T + U such that, for
all m,n ∈ Z, T (∼ m, n)+U(m,∼ n) is a base of Gm,n. Typically, if Gm,n := m � n,
T and U stand for switchings of ` and its dual ⊗, so that T (∼ m, n) and U(m,∼ n)
are switchings of m � n and m ⊗ ∼ n.

5.4 Product

The product (t · x) � y is defined by a quantification over binary predicates:

∀X (∀x∀y (X(x, y) � X(x+フフフ, y+ t)) � (X(0, 0) � X(x, y))) (13)

We can then prove the existence of the product by recurrence on x:

x ∈ N ⇒ ∃y (!(y ∈ N) ⊗ (t · x) � y) (14)

The predicate (t · x) � y is handled by means of a sort of graph recurrence,
which amounts at replacing the variable X of definition (13) with a specific
binary predicate A[x, y]. For instance, with A[x, y] := x ∈ N, we get:

(t · x) � y � x ∈ N (15)

Consider A[x, y, x′, y′] := x = x′ � y = y′; the following are provable:

A[0, 0, 0, 0] (16)

A[0, 0, x′ +フフフ, y′ + t] (17)

A[x+フフフ, y+ t, 0, 0] (18)

34 J.-Y. Girard

A[x, y, x′, y′] � A[x+フフフ, y+ t, x′ +フフフ, y′ + t] (19)

A “graph recurrence” w.r.t. x′, y′, using (16) and (17) yields

(t · x′) � y′ � A[0, 0, x′, y′] (20)

Another “graph recurrence” w.r.t. x′, y′, using (18) and (19) yields

(t · x′) � y′ � (A[x, y, x′, y′] � A[x+ t, y+ t, x′, y′]) (21)

And a graph recurrence w.r.t. x, y, using (20) and (21) yields:

(t · x) � y � ((t · x′) � y′ � A[x, y, x′, y′]) (22)

in other terms, the unicity of the product.
Incidentally, the fact that the product is only second order definable may

be related to the typical second order feature known as the incompleteness of
arithmetic, which relies on an encoding making a heavy use of the product.

A L’usine, Again

Usine vs. usage, it’s Church vs Curry. The existentialist approach of Curry is
quite respected by the notion of behaviour. On the other hand, the essentialism
inherent to the typing à la Church leads to systems and must be deeply modified.
I propose the following:

A type (Church style) is a (finite) battery of tests.

This is compatible with polymorphism: several batteries may be used to “type”
the same design. However, there is a problem, the definition seeming not to apply
in full generality, because of the absence of finite preorthogonals.

I propose the following solution: instead of a preorthognal of behaviour P,
a preorthogonal of a sub-behaviour of P. Orthogonality to such a preorthogonal
need not be necessary, it is only sufficient. On the other hand, it may remain
finite, hence the possibility of a battery of tests. Let us give two examples.

A.1 Identity

The principle A � A, the identity “axiom”, poses a problem of finiteness. It is
tested through simultaneous tests, for ∼A and A, which is possible in certain
cases, but doesn’t work in general.

Let us suppose that A correspond to general behaviour A, with not finiteness
restriction. I still know how to justify � ∼A,A because it is sufficient to test it
against generic pairs, that of a test for ∼A and for A with no reference to A
which therefore takes the moral value of a variable X. We know that the cases:

A =フフフ ∼A =フフフ (23)

Transcendental Syntax iv: Logic Without Systems 35

A =フフフ⊗フフフ ∼A =フフフ`フフフ (24)

A =フフフ`フフフ ∼A =フフフ⊗フフフ (25)

do suffice. They force the presence of a star �∼ A(x), A(x) �, if I abusively denote
the respective locations of ∼A and A by ∼ A(x), A(x). This implies in turn that
the said star does belong to the behaviour � ∼ A,A.

These tests are not necessary: if A = B ⊗ C and �∼ A,A has been obtained
by “η-expansion” from � ∼ B,B and � ∼C,C, they fail.

We just witnessed the native sufficient testing. Remark that its two parts
are not independent: if A is tested as フフフ⊗フフフ, ∼A must be tested as フフフ`フフフ.

A.2 Existence

Existence can be informally reduced to a very peculiar case, that of the implica-
tion ∀X A�A[T/X], in other terms �∃X ∼A,A[T/X]. We must test (T , T ′,P)
where P is the identity � ∼ A[T/X], A[T/X]. We just observed that this iden-
tity possesses a sufficient battery of tests. We conclude that P belongs to the
behaviour associated with �∼ A[T/X], A[T/X].

In order to show that (T , T ′,P) is in the behaviour (7) corresponding to
�∃X ∼ A,A[T/X], we imitate the argument given for system F: the comprehen-
sion principle shows that the behaviour associated with T is a set, and we use
the “substitution lemma” of [3].

A.3 Finitism

The finitistic pattern advocated by Hilbert is correct provided we throw in some
necessary distinctions. Three layers are needed:

Usine: Typing à la Church, but system-free. It enables us to predict the
behaviour are doing.

Usage: Typing à la Curry, naturally system-free. A behavourial approach, what
proofs are actually doing.

Adequation: Cut-elimination, so to speak. It shows the accuracy of the predic-
tion of l’usine.

The first two layers are the opposite sides of finitism, of a completely different
nature. The first person who (vaguely) understood the distinction was Lewis
Carroll (1893), who mistook l’usine for the “meta” of l’usage and built a ludi-
crous wild goose chase which he dared compare with Zeno’s paradox. Indeed, by
replacing a cut on A with a cut on A ⇒ A, next a cut on (A ⇒ A) ⇒ (A ⇒ A),
etc. Carroll’s Achilles is constantly fleeing away from the Tortoise. . . no wonder
it never reaches him.

The third layer, adequation, does not belong to finitism: it is where an infini-
tary, eventually set-theoretic, argument must be thrown in. . . with no possible
way of bypassing it.

vitam impendere logicæ

36 J.-Y. Girard

References

1. Coquand, T., Huet, G.: The calculus of constructions. Inf. Comput. 76, 95–120
(1988)

2. Danos, V., Regnier, L.: The structure of multiplicatives. Arch. Math. Logic 28,
181–203 (1989)

3. Girard, J.-Y.: Une extension de l’interprétation fonctionnelle de Gödel à l’analyse
et son application à l’élimination des coupures dans l’analyse et la théorie des types.
In: Fenstad (ed.) Proceedings of the 2nd Scandinavian Logic Symposium, pp. 63–92.
North-Holland, Amsterdam (1971)

4. Girard, J.-Y.: Transcendental syntax 1: deterministic case. Mathematical Structures
in Computer Science, pp. 1–23 (2015). Computing with lambda-terms. A special
issue dedicated to Corrado Böhm for his 90th birthday

5. Girard, J.-Y.: Transcendental syntax 3: equality. Logical Methods in Computer Sci-
ence (2016). Special issue dedicated to Pierre-Louis Curien for his 60th birthday

6. Girard, J.-Y., Scedrov, A., Scott, P.: Bounded linear logic: a modular approach to
polynomial time computability. Theor. Comput. Sci. 97, 1–66 (1992)

7. Harper, R., Honsell, F., Plotkin, G.: A framework for defining logics. LFCS report
series, Edinburgh, 162 (1991)

8. Kreisel, G.: Mathematical logic. In: Saaty, T.L. (ed.) Lectures in Modern Mathe-
matics, vol III, pp. 99–105. Wiley, New York (1965)

Logic and Computing

A Small Remark on Hilbert’s Finitist
View of Divisibility and

Kanovich-Okada-Scedrov’s Logical
Analysis of Real-Time Systems

Mitsuhiro Okada(B)

Keio University, 2-15-45 Mita, Minato-ku, Tokyo, Japan
mitsu@abelard.flet.keio.ac.jp

Abstract. Hilbert remarked in the introductory part of his most famous
finitism address (1925 [1]) that “[t]he infinite divisibility of a continuum
is an operation that is present only in our thought”, which means that
no natural event or matter is infinitely divisible in reality. We recall
that Scedrov’s group including the author started logical analysis of real
time systems with the principle similar to Hilbert’s no-infinite divisibility
claim, in [2]. The author would like to note some early history of the
group’s work on logical analysis of real time system as well as some
remark related to Hilbert’s claim of no-infinite divisibility.

Keywords: Real-time system · Hilbert · Finitism · Zeno paradox ·
Andre Scedrov · Multi-agent system · Formal verification

It was at a narrow corridor of the faculty building that a big whiteboard
(with a photo-copying function of the board) was temporarily placed, and the
three researchers discussed for the whole days and formed a starting point of
the logical analysis of real-time systems. Since it was necessary for all faculty
members on the floor to pass along the corridor quite frequently everyday, they
were required to get sophisticated skills to find a way to go through some narrow
space among the big board and the three men discussing including the big guy
with big voice. It was how the collaboration began among the three lead by Andre
Scedrov at Keio University in Tokyo.

1 Introduction

In his most famous finitism address, which was published in [1], Hilbert claimed
that infinite divisibility of natural events and mater was not real but just our
näıve impression; in the other words, infinite divisibility of a continuity was “an
operation that is present only in our thought” and “merely an idea”, which is
not in reality.

c© The Author(s) 2020
V. Nigam et al. (Eds.): Scedrov Festschrift, LNCS 12300, pp. 39–47, 2020.
https://doi.org/10.1007/978-3-030-62077-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62077-6_3&domain=pdf
https://doi.org/10.1007/978-3-030-62077-6_3

40 M. Okada

“The initial, näıve impression that we have of natural events (Geschehen)
and of matter is one of uniformity, of continuity. If we have a piece of
metal or a volume of liquid, the idea impresses itself upon us that it is
divisible without limit, that any part of it, however small, would gain the
same properties. But, wherever the methods of the research in the physics
of matter were refined sufficiently, limits to divisibility were reached that
are not due to the inadequacy of our experiments but to the nature of the
subject matter....”

He continued, after mentioning the cases of electricity and quantum of energy,
as follows.

“The infinite divisibility of a continuum is an operation that is present only
in our thought; it is merely an idea, which is refused by our observations
of nature, and by the experience gained in physics and chemistry (Hilbert
1925 [1]).”

Here, Hilbert expresses an aspect of the finitist distinction between reality and
ideas as the distinction between no-infinite divisibility in reality and infinite
divisibility only in our thought, in the introductory part of this paper on his
finitist program. His finitist program was, very roughly speaking, a safety verifi-
cation program, to prove consistency of ideal reasoning of classical mathematics
by means of finitist methods, in other words, by means of concrete and con-
tentual methods, so that the freedom of the use of classical mathematical rea-
soning and of its applications to physics and other mathematically described sci-
ences were provably-safe without any possibility of critical state “contradiction”
(even though classical mathematical reasoning using continuity, infinite divisi-
bility, set-theoretical infinity, etc.). Although at the above quoted part Hilbert
talked about no-infinite divisibility of natural events and matter in the spatial
continuity sense, one could presume, from the finitist view, the same claim of
no-infinite divisibility for events in wider and various senses) in a spatiotemporal
continuum, e.g., to claim no-infinite temporal divisibility of any, either natural
or artificial, events.

Hilbert himself made the remark on no-infinite divisibility in reality from the
finitist view in the context of the foundational studies in mathematics in the early
20th century. We would like to remark that the similar no-infinite divisibility
settings have appeared in more contemporary contexts of computer science. In
this Note, we recall one example investigated by Andre Scedrov’s group including
the author, initiated by [2], where some logical analyses of multi-agent real-time
systems with dense-time were given in a logical way (using a subsystem of linear
logic, or called multiset rewriting system). A different approach was given in
using the timed automata setting.1 This Note does not include the precise logical
definitions and does not require the reader to know them, but the reader who
wish to know more precise settings is invited to see the papers in the References.

In order to see the effect of the no-infinite divisibility setting, which we call the
no-infinite divisibility principle in this Note, we could compare two different ways
1 We only consider the logical approach in this Note.

A Small Remark on Hilbert’s Finitist View of Divisibility 41

of resolving Zeno’s paradoxes, such as the Paradox of Achilles and the Tortoise.
One way is the usual way, namely the classical analytic way, and the other way
is the way employing the no-divisibility principle (without analytic notion of
“limit”). In the Hilbert’s finitist terminology, the one by using ideal operations
of thought, the other by finitistic description of the real world. First, we remind
ourselves what was Zeno’s argument: The starting point of the Tortoise is a
little ahead of that of Achilles. Zeno argues that when one considers the event
that Achilles reaches the starting point of the Tortoise, the Tortoise’s position
is already a little advanced. Then, one considers another event that Achilles
reaches the position of the Tortoise at the previous event, and in the same way
one could consider unlimited number of events, which are all sub-events of this
whole race event. Zeno claims that since there are infinitely many events before
Achilles reaches the Tortoise, Achilles would never catch up with the Tortoise,
which is a paradox.

However, by means of the modern mathematical definition of “limit” and con-
vergence of an infinite series, one can easily calculate exactly when and where in
the spatiotemporal continuum Achilles catches up with the Tortoise and over-
takes hime. This usual resolution is consistent with Zeno’s argument itself, with-
out any contradiction assuming that modern mathematics has no contradiction.2

The other way to resolve the Paradox of Achilles and the Tortoise is to take
the standpoint of the no-divisibility principle that there is no infinite divisibility
of the race: Zeno’s argument divides the race into infinite sub-events, which
violates reality, namely the no-infinite divisibility principle. Hence, the principle
blocks Zeno’s argument itself, therefore no paradox occurs here. From the view
point of Hilbert, the former analytic resolution is not real but ideal, while the
latter real. This latter would suggest us some idea of finite states and events-
based modeling of the outer world of finitely many agents on the spatiotemporal
continuum with the no-infinite divisibility principle. For example, the race of
Achilles and the Tortoise could be modeled as a two-agent state transition system
in various ways by choosing primitive states and by respecting the no-infinite
divisibility principle. An extremely simplest modeling, but with reality, is the
following.

In “What the Tortoise Said to Achilles” (1895), Lewis Carroll emphasizes
that reality of the race uses only a few state transitions; with starting state of
the race, only after a single tick (a little time progress, expressed by a single
application of the tick-axiom in the sense of [2], it gets the state that Achilles
has overtaken the Tortoise, then, after another-tick, Achilles has seated himself
on the back of the Tortoise. There would be various different ways to set the
primitive states associated to each agent to describe the race or other events in a
state transition-based multi-agent real-time systems depending on a focused crit-
ical states or events.3 One could consider more complexed multi-agent systems

2 To show no contradiction of classical mathematical reasoning was the exact purpose
of Hilbert’s finitist program.

3 Note that Zeno, believing his argument of the paradox successful, concluded no
state-change and no event in reality of the world, which is too simple description of
the real world which is contradictory with our intuition.

42 M. Okada

where various time constraints are imposed on the time-continuum. For exam-
ple, if we have one-time constraint that the race should be finished by 5 h after
the starting-time (as such a time constraint is usually imposed to some citizen
marathon events), then, Achilles who now sits on the back of the Tortoise auto-
matically moving towards the goal, needs to think a scheduling until when he
may remain on the back of the Tortoise and when he should leave the back to
start running himself) (or just one jump) to the goal in the constraint dead-
line, namely safely with respect to the critical state. Adding time constraints
would involve notions of “may”, “should”, “critical state”, “safety”, “schedul-
ing” in multi-agent modeling with the no-infinite divisibility principle even for
modeling the Achilles-the Tortoise race by a state transition system.

2 A Case Study: Multi-agent Real-Time State Transition
Model with the No-Infinite Divisibility Principle

2.1 Finitely-multi-agent Finite State Transition System with Finite
Time Constraint Conditions on the Dense Real-Time

Kanovich-Okada-Scedrove [2] provided a case study of finitely modeling of real
time system with the no-infinite divisibility principle, which is sometime also
called the Zeno principle, which tells that there is no infinite events, actions,
or state transitions in any bounded time interval of the dense or continuous
time.4 Kanovich-Okada-Scedrov [2] took a state transition model of the exter-
nal environments and any state is either a primitive state or a composite state
of concurrent finite primitive states. Any primitive state is typically related to
an agent. A composite state transition was expressed by a logical implication
where a composite state is expressed by multiplicative connectives of atomic
states, which has been also called a multiset rewrite rule by Scedrov’s group
later (See References, where the reader could find the use of the name even in the
title of later papers co-authored by Scedrov.). A time progress with unspecified
duration is expressed by a time transition rule called tick-axiom. For example,
instead of (classical) mathematical description of physical moving as to how a
train approaches to a railway gate by means of continuous function on the real
number, one takes a finite-states description, such as “far distance safe state”,
“approaching to the railway (be-careful) state”, “train’s passing the railway gate
(danger) state”, “train’s-passing away state” for the purpose of safety verifica-
tion of a traffic system as in [2]. The distinction of the two ways of description of
train states has a certain correspondence to the distinction between the classical
mathematical-physical description with continuity and the finite description with
the no-infinite divisibility of events, discussed in the previous Section. Scedrov’s
group initiated by [2] showed that the apparent dense real-time is eliminable; the
main purpose was to specify a certain class of dense-time multi-agent systems

4 Setting a time interval could be considered an event with the duration, such as the
race of Achiles and the Tortoise.

A Small Remark on Hilbert’s Finitist View of Divisibility 43

with time-constraints, with the focuses on (1) showing formal specification abil-
ity of critical states for safety and (2) showing computational complexity of the
reachability problem, which implies the complexity of decision problem of safety
in the specification framework. The dense-time setting provided an interesting
modeling of multi-agent system, where any agent could start its primitive state
transition (or an agent’s action) at any moment on the dense time under finitely
many must-time constraints and may-time constraints.5 This dense-time setting
could allow us to have an interpretation that any participating agent apparently
has freedom to trigger its action; e.g., a walker can change her state from the
standing-state to the crossing-street-state whenever some may-constraints and
must-constraints are satisfied; a may-constraint could be “one may start cross-
ing 5 s after the traffic-light changed to the Green state” , and a must-constraint
could be “one must complete crossing the street before 5 s passing of the Yellow
state of the traffic light”, for example. [2] and the related works tell that in fact
the dense time is eliminable with the state transition model and the reachability
problem is PSPACE. This could be understood that if a given specific compos-
ite state happens or not is PSPACE decidable even if apparent free-triggering
primitive state transitions by any agent under the constraints. There are some
corresponding work in the timed-automata research community.

2.2 Global Clock and Local Alarm Stopwatches

The original work [2] was involved with set theoretical treatment to consider
equivalent classes of states to eliminate the dense (infinite) time-states. During
the author’s stay in Paris in 2000, the author had an opportunity to reformulate
it by switching the use of global clocks to local alarm-stopwatches and gave
lectures on it. The author shared this modified method with the co-authors of [2].
This switching gave the effect of putting the time constraint locally inside the
linear logical implicational or multiset transition rules and the whole argument
of [2] became more constrictive in the sense that one eliminates the dense-time
without the set-theoretical equivalence classes treatment6.

To hint some of the specific characteristics of the work initiated by [2] it
would be worth noting here various different reactions from the audience to
the author’s series of lectures on this topic in 2000–2002. For example, when
the author gave an invited talk at an interdisciplinary meeting organized by G.
Longo at ENS-Paris, it was physicists who expressed most appreciations on our
work, especially on the way how the continuous time in the physics sense could
be reformed to finite state transition systems with PSPACE decidability. As for
another example, when the author gave the lectures at the Coq group meetings
in INRIA, they were interested in the way to switch the global clock to local

5 A transition of primitive state associated to an agent is called an action of the agent
in this Note for simplicity of the argument. See [2] for more formal and precise
setting.

6 Among our agreement Max Kanovich was supposed to write the version, but unfor-
tunately without realization soon.

44 M. Okada

watches to make the argument more constructively, and the author collaborated
with them on the topic including an implementation work. When the author gave
talks to the audience of the AI and multi-agent system research community, some
of them told us that it was such a rare good work in the AI-multi-agent sys-
tem research community that the primitive concepts, ontology, syntax, technical
proofs of computational complexity, semantics, applications and implementation
altogether were given by one group: they appreciated our work. The part of our
local-watches-based linear logical transition systems were implemented by our
master students on the Coq group under the author’s supervision with Jean-
Pierre Jouannaud, as FATALIS System. Some part of FATALIS was presented
in [4]. Some versions were presented at [3] and [5] by the author. The linear log-
ical (multiset reriwrite) system framework is easy to express dynamic changes
of the system, such as new agents participations, changing the time constraints,
on the rewrite rule level.

The framework proposed in [2] was one of the earliest works for modeling
timed multi-agent systems, either with dense-time or with discrete time, which
opened a wide range of applications. Andre Scedrov and his colleagues have
developed sophisticated logical techniques on this line for various different set-
tings, including time-related security, scheduling and others. See [6–9] for some
of the recent developments of the group. These show wide range of describabil-
ity and logical analyzability by means of the timed multiset rewriting framework
and its further potentials.

2.3 Back to Finitism

We already remarked that the no-infinite divisibility claim, in Hilbert’s
finitism [1], also occured in the setting of [2] as the basic principle. Hence it
would be interesting to comparing the two shortly to conclude this Note. Hilbert
distinguishes reality and ideality, and he anticipated a finitist or realist (in his
sense) safety verification proof of classical or ideal (in his sense) mathematics
which was essentially needed for our describing the physical world. On the other
hand, the standpoint of the framework of the timed multiset rewriting (and its
linear logical version) is rather neutral with respect to the reality-vs-ideality
distinction of the description level. It could be considered a combined descrip-
tion. For example, the timeless version of the discrete system description of [2]
is a finitely modeling (hence idealized modeling) for some focused aspect of the
external world, such as a part of train-traffic system for the purpose of safety
proofs or safe scheduling etc. But, when the dense time enters to the discrete
model, the no-infinite divisibility is required as a realist requirement. (As we
reminded in Introduction, unless one takes the continuous physical description
of the agents’ moving, it would go into Zeno’s too idealistic world view.) One
could even relativize the real-time; in certain finitely described cases discussed
in this Note the no-infinite divisibility is the real requirement, while in certain
analytically-physically described cases the continuity is the real requirement.
The finitely described real-time modeling framework used in [2] and others pro-
vided typical cases of the former. A discrete state transition modeling could

A Small Remark on Hilbert’s Finitist View of Divisibility 45

be natural as a modeling of the physical real train traffic in “reality”. In fact,
when we define which area is the “approaching (danger) state” area, for exam-
ple, we need some physical calculation; then based on the physical calculation,
one takes the view of train traffic system as a discrete state transition system,
In that case, one might think that the description by continuous functions with
the time-continuum as relatively real and the description by discrete modeling
relatively with the no-infinite divisibility relatively ideal. However, one could
easily imagine the other way around, too, for cetain cases. After designing and
formally verifying safety with the timed multiset rewrite system, the physical
area and the physical speed bound of the approaching-state can be defined; in
this way, one could consider the descrete safe system is relatively real and the
implementation in the physical world is a simulation of the symbolic safe system.
In fact, both views are interactive. Time-continuum and no-infinite divisibility of
time co-exist. One could say the interactive view of the two aspects important,
beyond the reality-indeality issue. In practice, we often use the view of hybrid
systems accommodating both.

Note that we have not discussed another way of description, besides the finite-
descrete way and the analytic mathematical -physical way of description (say,
for safety verification): one missing was the probabilistic way of description. For
example, security properties of cryptographic protocols are often investigated
and proven by the discrete modeling, such as using finitely Dolev-Yao model
description, which can be understood as a state transition model, and by the
cryptographic computational description, such as using probabilistic poly-time
Turing machine description and others. The interactive view of the two ways
of description is important in these cases, too. One of the author’s views may
be found in [12] where a variant of the forcing model construction, Fitting-
embedding, method was used for connecting the logical-descrete verification
proofs to the poly-time probabilistic Turing machine based-verification proofs,
by means of giving “computational soundness” of logical proofs with respect to
the computational models.7

Acknowledgements. This work was supported by JSPS KAKENHI Grant Numbers
19KK0006, 17H02265, 17H02263. The author would like to express his sincere thanks to
the anonymous referee for helpful comments at the preparation stage of this manuscript.

7 Andre Scedrov and his colleagues are known as the experts on the domain of for-
mal verification of time-related cryptographic protocols using the similar framework
discussed in this Note. The author have been working on clarifying the relation-
ship between the two ways of description for security verifications, including [12],
especially with Gergei Bana, a former student of Andre Scedrov.

46 M. Okada

References

1. Hilbert, D.: On the infinite, in Frege to Gödel, pp. 369–392. Harvard Univer-
sity Press (1967). (Edited By van Heijenoort, J.) The original version: Über
das Unentliche, Mathematische Annalen 95, 161–190 (1926). Jahresbericht der
Deutschen Mathematiker-Vereinigung, 36, 201–215 (1927)

2. Kanovich, M.I., Scedrov, A., Okada, M.: Specifying real-time finite-state systems
in linear logic. In: 2-nd International Workshop on Constraint Programming for
Time-Critical Applications and Multi-agent Systems (COTIC), Electronic Notes in
Theoretical Computer Science, Nice, France, vol. 16, no. 1, September 1998 (1998).
15 pp

3. Okada, M.: Theory of formal specification and verification of concurrency sys-
tems and real-time systems based on linear logic, Report Meeting, Jan. 2002 Mext
12480075, also, Logical verification method for dynamic real-time system beyond
the limit of model-checking method, Report Meeting, MEXT: 13224081

4. Hasebe, K., Cremet, V., Jouannaud, J.-P., Kremer, A., Okada, M.: FATALIS: real
time processes as linear logic specifications. In: Second International Workshop on
Automated Verification of Infinite-State Systems (2003)

5. Hasebe, K., Jouannaud, J.-P., Kremer, A., Okada, M., Zumkeller, R.: Formal ver-
ification of dynamic real-time state-transition systems using linear logic. In: The
20th Conference of Software Science Society of Japan, 2003, Proc., Japan (2003)

6. Alturki, M.A., Ban Kirigin, T., Kanovich, M., Nigam, V., Scedrov, A., Talcott, C.:
A multiset rewriting model for specifying and verifying timing aspects of secu-
rity protocols. In: Guttman, J.D., Landwehr, C.E., Meseguer, J., Pavlovic, D.
(eds.) Foundations of Security, Protocols, and Equational Reasoning. LNCS, vol.
11565, pp. 192–213. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
19052-1 13

7. Kanovich, M.I., Ban Kirigin, T., Nigam, V., Scedrov, A., Talcott, C.L.: Compliance
in Real Time Multiset Rewriting Models. CoRR abs/1811.04826 (2018)

8. Kanovich, M.I., Ban Kirigin, T., Nigam, V., Scedrov, A., Talcott, C.L., Ranko, P.:
A rewriting framework and logic for activities subject to regulations. Math. Struct.
Comput. Sci. 27(3), 332–375 (2017)

9. Kanovich, M.I., Ban Kirigin, T., Nigam, V., Scedrov, A., Talcott, C.L.:Timed mul-
tiset rewriting and the verification of time-sensitive distributed systems. In: FOR-
MATS, pp. 228–244 (2016)

10. Kanovich, M.I., Ban Kirigin, T., Nigam, V., Scedrov, A., Talcott, C.L.: Discrete
vs. dense times in the analysis of cyber-physical security protocols. In: POST, pp.
259–279 (2015)

11. Kanovich, M.I., Ban Kirigin, T., Nigam, V., Scedrov, A., Talcott, C.L., Ranko,
P.: A Rewriting Framework for Activities Subject to Regulations. In: RTA, pp.
305–322 (2012)

12. Bana, G., Okada, M.: Semantics for “Enough-Certainty” and Fitting’s embedding
of classical logic in S4. In: Computer Science Logic 2016, Proceedings, article 23,
17 p. (2016)

https://doi.org/10.1007/978-3-030-19052-1_13
https://doi.org/10.1007/978-3-030-19052-1_13

A Small Remark on Hilbert’s Finitist View of Divisibility 47

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Logic of Fusion

— Dedicated to Andre Scedrov —

Dusko Pavlovic(B)

University of Hawaii, Honolulu, HI, USA
dusko@hawaii.edu

Abstract. We pursue an extension of the Curry-Howard isomorphism
of propositions and types by a correspondence of cut elimination and
program fusion. In particular, we explore the repercussions of this exten-
sion in generic and transformational programming. It provides a logical
interpretation of build fusion, or deforestation, in terms of the inductive
and the coinductive datatypes. Viewed categorically, this interpretation
leads to the novel structure of paranatural transformations. This is a
modified version of functorial polymorphism, that played a prominent
role in the work of Andre Scedrov.

Personal Introduction

I first met Andre at one of the Peripatetic Seminars on Sheaves and Logic (PSSL)
in the late 80s. PSSL was a legendary community of category theorists, meeting a
couple of times a year at venerable universities in Europe and the UK. Andre was
a well-established researcher, who had already subsumed forcing under the clas-
sifying topos construction; and I was a wide-eyed grad student. He was pointed
out to me as coming from the same country where I had come from (which at
the time still existed); but the main reason why I had already read maybe not
all, but most of his papers, was that I was trying to learn and understand the
powerful new methods of category theory that Andre had worked on.

Nowadays, you probably wouldn’t call either Andre or me a category theorist.
The word “category” does not occur that often either in his or in my papers. Yet,
if you follow the common thread that ties together Andre’s work, it takes you
through logic, semantics of computation, decision procedures and algorithms,
models of natural language, security protocols. It is a very long thread. Longer
than just a thread of good taste, of clever constructions, and honest excitement.
It is a thread of method. By trying to trace this thread through Andre’s work, I
confront the challenge of explaining my own. How did we get from toposes and
constructivist universes to distance bounding protocols and mafia attacks? Of
course I don’t know the answer. One answer might be that we got wiser. Another
answer is that we are still too young to tell. Or is that just a wise way to avoid
answering?

D. Pavlovic—Supported by NSF and AFOSR.

c© Springer Nature Switzerland AG 2020
V. Nigam et al. (Eds.): Scedrov Festschrift, LNCS 12300, pp. 48–60, 2020.
https://doi.org/10.1007/978-3-030-62077-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62077-6_4&domain=pdf
https://doi.org/10.1007/978-3-030-62077-6_4

Logic of Fusion 49

Instead of attempting to answer, or to avoid answering, I recall an intermedi-
ary step. I reproduce for the occasion a construction from a long time ago, that
arose when I read [14], and then [2,4,8]. The construction was never published,
although it indirectly led to [11]. It was developed for specific applications in a
tool that I was trying to build [1], but the conceptual problem was reduced to
the toy task of polymorphic zipping. By that time, Andre was already past the
polymorphism research phase. When I caught up with him at the next corner, we
were both thinking about security. There seems to be some sort of polymorphism
behind it all.

1 Technical Introduction

1.1 Idea

The starting point of this work is the observation that the Curry-Howard iso-
morphism [16], relating

types ↭ propositions
programs ↭ proofs

composition ↭ cut

can be extended by a correspondence of

program fusion ↭ cut elimination

This simple idea suggests logical interpretations of some of the basic methods of
generic and transformational programming. In the present paper, we provide a
logical analysis of the general form of build fusion, also known as deforestation,
over the inductive and the coinductive datatypes, regular or nested. The analysis
is based on a logical reinterpretation of parametricity [17] in terms of paranatural
transformations, modifying the functorial interpretation of polymorphism in [2].

1.2 Fusion and Cut

The Curry-Howard isomorphism is one of the conceptual building blocks of type
theory, built deep into the foundation of computer science and functional pro-
gramming [10, Ch. 3]. The fact that it is an isomorphism means that the type
and the term constructors on one side obey the same laws as the logical con-
nectives, and the logical derivation ruleson the other side. For instance, the
products and the sums of types correspond, respectively, to the conjunction and
the disjunction, because the respective introduction rules

A � B0 A � B1 ∧I
A � B0 ∧ B1

A0 � B A1 � B
∨I

A0 ∨ A1 � B

50 D. Pavlovic

extended by the labels for proofs, yield the type formation rules

f0 : A → B0 f1 : A → B1

〈f0, f1〉 : A → B0 × B1

g0 : A0 → B g1 : A1 → B

[g0, g1] : A0 + A1 → B

In a sense, the pairing constructors 〈−,−〉 and [−,−] record on the terms the
applications of the rules ∧I and ∨I, as the proof constructors.

Extending this line of thought a step further, one notices that the term
reductions also mirror the proof transformations. E.g., the transformation

A0 � B A1 � B

A0 ∨ A1 � B B � C

A0 ∨ A1 � C

��
A0 � B B � C

A0 � C

A1 � B B � C

A1 � C

A0 ∨ A1 � C

corresponds to the rewrite

h · [f0, f1] �� [h · f0 , h · f1] (1)

where f0 and f1 are the labels of the proofs A0 � B and A1 � B, whereas h is
the label of B � C. The point of such transformations is that the applications
of the cut rule

A � B B � C

A � C
(2)

get pushed up the proof tree, as to be eliminated, by iterating such moves. On the
side of terms and programs, the cut, of course, corresponds to the composition

f : A → B h : B → C

h · f : A → C
(3)

Just like the presence of a cut in a proof means that an intermediary proposition
has been created, and then cut out, the presence of the composition in a pro-
gram means that the thread of computation leads through an intermediary type,
used to pass data between the components, and then discarded. Computational
aspects of normalization are discussed in [10, Ch. 4].

While the programs decomposed into simple parts are easier to write and
understand, passing the data and control between the components incurs a com-
putational overhead. For instance, running the composite ssum · zipW of

zipW : [Nat]×[Nat] -> [Nat×Nat]

zipW (x::xs,y::ys) = (x,y) :: zip xs ys

zipW (xs, ys) = []

and

ssum : [Nat×Nat] -> Nat

ssum [] = 0

ssum (x,y)::zs = x + y + sum zs

Logic of Fusion 51

is clearly less efficient than running the fusion

sumzip : [Nat]×[Nat] -> Nat

sumzip (x::xs,y::ys) = x + y + sumzip (xs,ys)

sumzip (xs, ys) = 0

where the intermediary lists [Nat× Nat] are eliminated. In practice, the data
structures passed between the components tend to be very large, and the gain by
eliminating them can be significant. On the other hand, the efficient, monolythic
code, obtained by fusion, tends to be more complex, and thus harder to under-
stand and maintain.

To get both efficiency and compositionality, to allow the programmers to
write simple, modular code, and optimize it in compilation, the program fusions
need to be sufficiently well understood to be automated. Our first point is that
the Curry-Howard isomorphism maps this task onto the well ploughed ground
of logic.

1.3 Build Fusion

The general form of the build fusion that we shall study corresponds, in the
inductive case, to the “cut rule”

A
f �� MF

FMF

F (|c|) ��

μ
��

FC

c
��

MF

(|c|) �� C

A
f ′C(�c�) �� C

(4)

eliminating the inductive datatype MF , which is the initial algebra of the type
constructor F . In practice and in literature, F is usually a list- or a tree-like
constructor, and the type A is often inductively defined itself; but we shall see
that the above scheme is valid in its full generality. The sumzip-example from
the preceding section can be obtained as an instance of this scheme, taking
FX = 1 + Nat × Nat × X, and thus MF = [Nat × Nat]. The function ssum is
the catamorphism (fold) of the map [0, ‡] : 1 + Nat × Nat × Nat −→ Nat where
‡ maps 〈i, j, k〉 to i + j + k.
The dual scheme

FA
F [(a)] �� FNF

A

a

��

[(a)] �� NF

ν

��

NF

g �� C

A
g′A(�a�) �� C

(5)

52 D. Pavlovic

allows eliminating the coinductive type NF , the final F -coalgebra.
Clearly, the essence of both of the above fusion schemes lies in the terms f ′

and g′. Where do they come from? The idea is to represent the fixpoints MF

and NF in their “logical form”

MF
∼= ∀X. (FX ⇒ X) ⇒ X (6)

NF
∼= ∃X. X × (X ⇒ FX) (7)

The parametric families

f ′X : (FX ⇒ X) −→ (A ⇒ X) (8)
g′X : (X ⇒ FX) −→ (X ⇒ C) (9)

are then obtained by extending f : A −→ MF and g : NF −→ C along isomor-
phisms (6) and (7), and rearranging the arguments. The equations

(|c|) · f = f ′C(�c�) (10)
g · [(a)] = g′A(�a�) (11)

can be proved using logical relations, or their convenient derivative, Wadler’s
“theorems for free” [18]. This was indeed done already in [9] for (10), and (11)
presents no problems either.

However, mapped along the Curry-Howard isomorphism, Eqs. (10–11)
become statements about the equivalence of proofs. The fact that all logical
relations on all Henkin models must relate the terms involved in these equations
does not seem to offer a clue for understanding their equivalence.

Overview of the paper

In order to acquire some insight into the logical grounds of program fusion, and
equivalence, we propose paranatural transformations, presented in Sect. 2, as a
conceptually justified and technically useful instance of the dinatural semantics
of polymorphism [2]. The applicability of this concept is based on the character-
ization of the parametricity of families (8) and (9) in terms of an intrinsic com-
mutativity property. We note that this characterization is completely intrinsic,
with no recourse to models or external structures. The upshot is that the results
actually apply much more widely than presented here, i.e. beyond the scope of
build fusion. But that was the application that motivated the approach, and
it suffices to show the case. The paranaturality condition is a variation on the
theme of functorial and structural polymorphism [2,4,7,8,14]. Unfortunately,
neither of these semantical frameworks provides sufficient guidance for actual
programming applications. The dinatural transformations of [2,8] provide con-
ceptually clear view of polymorphism as an invariance property; but it has been
recognized early on that the characterization is too weak, as it allows too many
terms. On the other hand, the structor morphisms of [7] precisely correspond
to the accepted polymorphic terms; but the approach is not effective, as it does

Logic of Fusion 53

not stipulate which of the many possible choices of structors should be used
to interpret a particular polytype. We propose paranatural transformations as
means for filling this gap. This proposal emerged from practical applications in
programming. It is based on the insight, on the logical background of Proposi-
tions 1 and 2, that program fusion only ever requires capturing as polymorphic
one of two kinds of families of computations:

– those where the inputs from some final datatypes are consumed, and
– those where the outputs are produced into some initial datatypes.

Proposition 3 in Sect. 3 formalizes this idea. The proof of this proposition is
given in the Appendix. The proofs of the other propositions are straightforward.
We note that the result eliminates the extensionality and the well-pointedness
requirements of logical relations, which hamper their applications, even on the
toy examples discussed here. On the other hand, refining the logical approach
from Sects. 1.2 and 1.3 along the lines of [13] seems to broaden the presented
methods beyond their current scope. Some evidence of this is discussed in the
final section.

2 Paranatural Transformations

As it has been well known at least since Freyd’s work on recursive types
in algebraically compact categories [6], separating the covariant and the con-
travariant occurrences of X in a polytype T (X) yields a polynomial functor
T : Cop ×C −→ C. On the other hand, by simple structural induction, one easily
proves that

Proposition 1. For every polynomial functor T : Cop×C −→ C over a cartesian
closed category C, there are polynomial functors W : Cop×C −→ C and V : C −→
C, unique up to isomorphism, such that

T ∼= W ⇒ V

This motivates the following

Definition 1. Let C be a category and W : Cop × C −→ C and V : C −→ C
functors on it.
A paranatural transformation ϑ : W −→ V is a family of C-arrows ϑX :
WXX −→ V X, such that for every arrow u : X −→ Y in C, the external
pentagon in the following diagram

WXX
ϑX ��

WXu

��

V X

V u

��

Z

z0

�����������

z1 ���
��

��
��

��
WXY ⊆

WY Y
ϑY

��

WuY

��

V Y

54 D. Pavlovic

commutes whenever the triangle on the left commutes, for all Z, z0 and z1 in C.
This conditional commutativity is annotated by the ⊆ inside the diagram.
The class of the paranatural transformations from W to V is written Para(W,V).

Remark. When C supports calculus of relations, the quantication over Z, z0
and z1 and the entire triangle on the left can be omitted: the definition boils
down to the requirement that the square commutes up to ⊆, in the relational
sense.

Proposition 2. Let L be a polymorphic λ-calculus, and CL the cartesian closed
category generated by its closed types and terms. For every type constructor T ,
definable in L, there is a bijective correspondence

CL (A, ∀X.T (X)) ∼= Para(A × W,V)

natural in A.

3 Characterizing Fixpoints

Proposition 3. Let C be a cartesian closed category, and F a strong endofunc-
tor on it. Whenever the initial F -algebra MF , resp. the final F -coalgebra NF

exist, then the following correspondences hold

C(A,MF) ∼= Para (A × (FX ⇒ X), X) (12)

C(NF , B) ∼= Para (X × (X ⇒ FX), B) (13)

naturally in A, resp. B.

The proof of this proposition is given in the Appendix.
In well-pointed categories and strongly extensional λ-calculi, this proposi-

toion boils down to the following “yoneda” lemmas.

Notation. Given h : A × B −→ C and b : 1 −→ B, we write h(b) for the result
of partially evaluating h on b

A

h(b)
����

���
���

���
���

�
〈id,b!〉 �� A × B

h

��
C

where b! denotes the composite A
!→ 1 b→ B.

Lemma 1. For paranatural transformations

ϕX : A × (FX ⇒ X) −→ X

ψY : Y × (Y ⇒ FY) −→ B

Logic of Fusion 55

hold the equations

ϕX(�x�) = (|x|) · ϕMF
(μ) (14)

ψY (�y�) = ψNF
(ν) · [(y)] (15)

for all x : FX −→ X and y : Y −→ FY .

While (14) follows from

A × FMF ⇒ MF
ϕMF ��

A×FMF ⇒(|x|)
��

MF

(|x|)

��

A

〈id,�μ�!〉
��������������

〈id,�x�!〉 ����
���

���
���

� A × FMF ⇒ X ⊆

A × FX ⇒ X
ϕX

��

A×F (|x|)⇒X

��

X

(15) is obtained by chasing

Y × Y ⇒ FY
ψY ��

[(y)]×Y ⇒F [(y)]

��

B

id

��

Y

〈id,�y�!〉
		�������������

〈[(y)],�ν�!〉 ����
���

���
���

��

[(y)]

��

NF × Y ⇒ FNF ⊆

NF 〈id,�ν�!〉
�� NF × NF ⇒ FNF

ψNF

��

NF ×[(y)]⇒FNF

��

B

In well-pointed categories, ϕX : A×(FX ⇒ X) −→ X is completely determined
by its values ϕX(�x�) : A −→ C on all x : FX −→ X. Similarly, ψY : Y × (Y ⇒
FY) −→ B is completely determined by its values on y : Y −→ FY .

However, in order to show that ϕMF
(μ) is generic for ϕ and ψNF

(ν) for ψ
without the well-pointedness assumption, one needs to set up slightly different
constructions.

4 Applications

Using correspondence (12), i.e. the maps realizing it, we can now, first of all,
provide the rational reconstruction of the simple fusion from the introduction.
The abstract form of the function zipW will be

zipW’ : [Nat]×[Nat] -> ((1+Nat×Nat×X)->X)->X

zipW’ X (x::xs,y::ys) [m,c] = c(x, y, zipWith’ X (xs,ys)

[m,c]) zipW’ X (xs, ys) [m,c] = m

56 D. Pavlovic

While zipW can be recovered as the instance zipW’ [Nat× Nat] [[],(::)],
i.e. zipW = build(zipW’), the fusion is obtained as

sumzip = zipW’ Nat _ [0,‡]

But what is zipW, if it is not a catamorphism? How come that it still has a
recursive definition?

It is in fact an anamorphism, and ssum · zipW can be simplified by the coin-
ductive build fusion as well. The scheme is this time

1+Nat×Nat×[Nat]×[Nat] �� 1+Nat×Nat×[Nat×Nat]

[Nat]×[Nat]

zW

��

zipW �� [Nat×Nat]

��

[Nat×Nat]
ssum �� Nat

[Nat]×[Nat]
ssum′ [Nat]×[Nat] - zW

�� Nat

where

zW (x::xs,y::ys) = (x,y,xs,ys)

zW (xs,ys) = One (the element of 1)

induces zipW = [(zW)], whereas

ssum’ : X × (X -> 1+Nat×Nat×X) -> Nat

ssum’ X x d = case d x of

One -> 0

(n,m,y) -> n + m + ssum’ X y d

Calculating the conclusion this time yields

sumzip = ssum’ [Nat]×[Nat] _ zW

Finally, lifting proposition 3 to the category CC of endofunctors, we can derive
the build fusion rule for nested data types [3]. Consider, e.g., the type constructor
Nest, that can be defined as a fixpoint of the functor Ψ : CC −→ CC, mapping
Ψ(F) = λX.1 + X × F (X × X).

The elements of the datatype Nest Nat are the lists where the i-th entry is
an element of Nat2

i

. Abbreviating Nest Nat to {Nat}, we can now define

zWN (x::xs,y::ys) = (x,y,fst xs,fst ys,

snd xs,snd ys)

zWN (xs,ys) = One

where fst and snd are the obvious projections {X× X} −→ {X}, and and derive
zipWN : {Nat} × {Nat} −→ {Nat × Nat} as [(zWN)] again. On the other hand,
working out the paranaturality condition in CC allows lifting

Logic of Fusion 57

ssumN : {Nat×Nat} -> Nat

ssumN [] = 0

ssumN (x,y)::zs = x + y + ssumN (fst zs)

+ ssumN (snd zs)

to

ssumN’ : F(Nat) ×
F(X) -> 1+X×X×F(X×X) -> Nat

ssumN’ F X f d = case d Nat f of

One -> 0

(n,m,g) -> m + n + ssumN’ FF X g dd

where FF and dd are the instances with X× X instead of X. The fusion

sumzipN = ssumN’ Nest×Nest Nat _ zWN

is this time

sumzipN : {Nat}×{Nat} -> Nat

sumzipN (x::xs,y::ys) = x + y + sumzipN (fst xs,fst ys) +

sumzipN (snd xs,snd ys)

sumzipN (xs, ys) = 0

5 Afterword

The real application that motivated the presented work was a network applica-
tion, based on event-channel architecture. A process involved a stream producer
and a stream consumer, and the problem was to move filtering from the client side
to the server side. Build fusion made this possible. The intermediary datatype,
eliminated through build fusion, was thus infinitary: the streams. While the pre-
sented approach achieved its goal, and significantly improved the system, albeit
in exchange for a lengthy derivation, the server at hand was actually a service
aggregator, and thus also a client of other servers; and those wervers were for
their part also other servers’ clients. So there was a cascade of streams to be
eliminated by means of a cascade of build fusions. The upshot is that the the-
oretical approach presented here simplified the practical application; but the
practical application demonstrated that the calculations needed to apply the
theory were intractably complex. The task of automating the approach opened
up, and remained open. On the bright side, the event-channels involved security
protocols. As I was trying to learn more about that, I realized that structural
methods seemed to apply in that area as well, and that it was under active
explorations by Andre Scedrov, with many friends and collaborators [5,12,15].

58 D. Pavlovic

Appendix: Proof of Proposition 3

Towards isomorphism (12), we define the maps

(−)′ : C(A,MF) −→ Para (A × (FX ⇒ X), X)
build : Para (A × (FX ⇒ X), X) −→ C(A,MF)

and show that they are inverse to each other.
Given f : A −→ MF , the X-th component of f ′ will be

f ′
X : A × (FX ⇒ X)

f×k−→ MF × (MF ⇒ X)
ε−→ X

where k : (FX ⇒ X) −→ (MF ⇒ X) maps the algebra structures x : FX → X
to the catamorphisms (|x|) : MF → X. Formally, k is obtained by transposing
the catamorphism (|κ|) : MF −→ (FX ⇒ X) ⇒ X for the F -algebra κ on
(FX ⇒ X) ⇒ X, obtained by transposing the composite

(FX ⇒ X) × F ((FX ⇒ X) ⇒ X) −→
(i)−→ (FX ⇒ X) × (FX ⇒ X) × F ((FX ⇒ X) ⇒ X)
(ii)−→ (FX ⇒ X) × F ((FX ⇒ X) × (FX ⇒ X) ⇒ X)
(iii)−→ (FX ⇒ X) × FX

(iv)−→ X

where arrow (i) is derived from the diagonal on FX ⇒ X, (ii) from the strength,
while (iii) and (iv) are just evaluations.

Towards the definition of build, for a paranatural ϕ : A×(FX ⇒ X) −→ X
take

build(ϕ) : A
A×�μ�!�� A × (FMF ⇒ MF)
ϕMF �� MF

Composing the above two definitions, one gets the commutative square

A

build(f ′)

��

A×�μ�! �� A × (FMF ⇒ MF)

f ′MF

			
		
		
		
		
		
		
		
		
		

f×k

��
MF MF × (MF ⇒ MF)

ε
��

Since k · �μ� = �idM�, the path around the square reduces to f , and yields
build(f ′) = f .

Logic of Fusion 59

The converse build(ϕ)′ = ϕ is the point-free version of lemma 1. It amounts
to proving that the paranaturality of ϕ implies (indeed, it is equivalent) to the
commutativity of

A

ϕ̃X

��

A×�μ�! �� A × (FMF ⇒ MF)

ϕMF

��
(FX ⇒ X) ⇒ X MF

(|κ|)
��

where ϕ̃X is the transpose of ϕX. Showing this is an exercise in cartesian closed
structure. On the other hand, the path around the square is easily seen to be
build(ϕ)′

X .
To establish isomorphism (13), we internalize 15 similarly like we did 14

above. The natural correspondences

(−)′ : C(NF , B) −→ Para (X × (X ⇒ FX), B)
build : Para (X × (X ⇒ FX), B) −→ C(NF , B)

are defined

g′
X : X × (X ⇒ FX) X×�−→ X × (X ⇒ NF)

ε−→ NF
g−→ B

and

build(ψ) : NF
NF ×�ν�!�� NF × (NF ⇒ FNF)

ψNF �� B

for g : NF −→ B and ψ : X × (X ⇒ FX) −→ B. The arrow 	 : (X ⇒ FX) −→
(X ⇒ FX) maps the coalgebra structures x : X → FX to the anamorphisms
[(x)] : X → NF . �

References

1. Anlauff, M., Pavlovic, D., Waldinger, R., Westfold, S.: Proving authentication prop-
erties in the protocol derivation assistant. In: Degano, P., Küsters, R., Vigano, L.
(eds.) Proceedings of FCS-ARSPA 2006. ACM (2006)

2. Bainbridge, E.S., Freyd, P.J., Scott, P.J., Scedrov, A.: Functorial polymorphism.
Theor. Comput. Sci. 70(1), 35–64 (1990). orrigendum in 71(3), 431

60 D. Pavlovic

3. Bird, R., Meertens, L.: Nested datatypes. In: Jeuring, J. (ed.) MPC 1998.
LNCS, vol. 1422, pp. 52–67. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0054285

4. Carboni, A., Freyd, P.J., Scedrov, A.: A categorical approach to realizability and
polymorphic types. In: Main, M., Melton, A., Mislove, M., Schmidt, D. (eds.)
MFPS 1987. LNCS, vol. 298, pp. 23–42. Springer, Heidelberg (1988). https://doi.
org/10.1007/3-540-19020-1 2

5. Chadha, R., Kanovich, M.I., Scedrov, A.: Inductive methods and contract-signing
protocols. In: Reiter, M.K., Samarati, P. (eds.) CCS 2001, Proceedings of the 8th
ACM Conference on Computer and Communications Security, Philadelphia, Penn-
sylvania, USA, 6–8 November 2001, pp. 176–185. ACM (2001)

6. Freyd, P.: Algebraically complete categories. In: Carboni, A., Pedicchio, M.C.,
Rosolini, G. (eds.) Category Theory. LNM, vol. 1488, pp. 95–104. Springer, Hei-
delberg (1991). https://doi.org/10.1007/BFb0084215

7. Freyd, P.J.: Structural polymorphism. Theor. Comput. Sci. 115(1), 107–129 (1993)
8. Freyd, P.J., Girard, J.-Y., Scedrov, A., Scott, P.J.: Semantic parametricity in poly-

morphic lambda calculus. In: Proceedings Third Annual Symposium on Logic in
Computer Science, pp. 274–279. IEEE Computer Society Press, July 1988

9. Gill, A., Launchbury, J., Peyton-Jones, S.: A short cut to deforestation. In: Pro-
ceedings of FPCA 1993. ACM (1993)

10. Girard, J.Y., Lafont, Y., Taylor, P.: Proofs and Types. Cambridge Tracts in The-
oretical Computer Science. Cambridge University Press, Cambridge (1989)

11. Krstić, S., Launchbury, J., Pavlović, D.: Categories of processes enriched in final
coalgebras. In: Honsell, F., Miculan, M. (eds.) FoSSaCS 2001. LNCS, vol. 2030, pp.
303–317. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45315-6 20

12. Lincoln, P., Mitchell, J., Mitchell, M., Scedrovy, A.: Probabilistic polynomial-time
equivalence and security analysis. In: Wing, J.M., Woodcock, J., Davies, J. (eds.)
FM 1999. LNCS, vol. 1708, pp. 776–793. Springer, Heidelberg (1999). https://doi.
org/10.1007/3-540-48119-2 43

13. Pavlovic, D.: Maps II: chasing diagrams in categorical proof theory. J. IGPL 4(2),
1–36 (1996)

14. Scedrov, A.: A guide to polymorphic types. In: Odifreddi, P. (ed.) Logic and Com-
puter Science. LNM, vol. 1429, pp. 111–150. Springer, Heidelberg (1990). https://
doi.org/10.1007/BFb0093926

15. Scedrov, A., Canetti, R., Guttman, J.D., Wagner, D.A., Waidner, M.: Relat-
ing cryptography and cryptographic protocols. In: 14th IEEE Computer Security
Foundations Workshop (CSFW-14 2001), Cape Breton, Nova Scotia, Canada, 11–
13 June 2001, pp. 111–114. IEEE Computer Society (2001)

16. Seldin, J.P., Hindley, J.R., Curry, T.H.B. (eds.): Essays on Combinatory Logic.
Lambda Calculus and Formalism. Academic Press, London (1980)

17. Strachey, C.: Fundamental concepts in programming languages, lecture notes for
the international summer school in computer programming. Copenhagen, August
1967

18. Wadler., P.: Theorems for free! In: Proceedings of FPCA 1989. ACM (1989)

https://doi.org/10.1007/BFb0054285
https://doi.org/10.1007/BFb0054285
https://doi.org/10.1007/3-540-19020-1_2
https://doi.org/10.1007/3-540-19020-1_2
https://doi.org/10.1007/BFb0084215
https://doi.org/10.1007/3-540-45315-6_20
https://doi.org/10.1007/3-540-48119-2_43
https://doi.org/10.1007/3-540-48119-2_43
https://doi.org/10.1007/BFb0093926
https://doi.org/10.1007/BFb0093926

There’s No Time,
The Problem of Conceptualising Time

Tajana Ban Kirigin1(B) and Benedikt Perak2

1 Department of Mathematics, University of Rijeka, Rijeka, Croatia
bank@math.uniri.hr

2 Faculty of Humanities and Social Sciences, University of Rijeka, Rijeka, Croatia
bperak@ffri.uniri.hr

Abstract. Among his numerous collaborations, over the last decade,
Andre Scedrov has formed quite a stable research group. This would not
have been possible without his leading scientific role, which has been
equally measured by his generous personality, hospitality, and kindness.
Among the obtained results and mathematical solutions, the group is
particularly fond of real-time abstractions, called Circle-Configurations,
which provide a way of handling both density as well as infinity of time in
the model. Having in mind the broadness and variety of Andre Scedrov’s
interests, we hope to offer here yet another view on these constructions
and formal timed models, enriched with the cognitive science perspective.

1 Real-Time Multiset Rewriting

Over a number of years our research group centered around Andre Scedrov
has been developing multiset rewriting (MSR) models for various applications.
Among the underlying mathematical solutions, we have been particularly fond
of circle-configurations, the abstractions used in real-time MSR models [7,8].

These abstractions have been essential in providing some of the complexity
results, e.g., in protocol security [8,16]. However, the abstractions themselves
may have been overshadowed by the concrete applications of the obtained results
and may have not been fully appreciated for their mathematical elegance and
meaning. At the same time, discussions with colleagues from different scientific
fields, seem to provide some additional and unexpected appreciation for our
mathematical constructions. In particular, there appears to be some relation to
the conceptualization of time in the cognitive science and system theory. Some
of the parallels in the approach to modelling time are presented here.

Modeling Time

Real time has explicitly been introduced to MSR models [7,8] by timestamping
the atomic formulas, called facts, with real numbers, written F@t. A special
predicate Time is used to denote the global time. Multisets of facts containing

c© Springer Nature Switzerland AG 2020
V. Nigam et al. (Eds.): Scedrov Festschrift, LNCS 12300, pp. 61–68, 2020.
https://doi.org/10.1007/978-3-030-62077-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62077-6_5&domain=pdf
https://doi.org/10.1007/978-3-030-62077-6_5

62 T. Ban Kirigin and B. Perak

one occurrence of a Time fact represent system configurations, while MSR rules
represent change in the system.

Time advancement is modelled by the Tick rule, Time@T −→ Time@(T+ε),
where ε can be instantiated by any positive real number formalizing the natural
continuous aspect of time we experience in our everyday life. The remaining rules
are instantaneous and denote possible events in the system.

Additional timing aspects are introduced through time constraints, which
are comparisons of two time variables that may be attached to rules and system
configurations, expressing conditions and system properties involving time. For
example, Time@T,Deadline(i, no)@T ′ | T ′ = T + 10 specifies a critical config-
uration when the deadline for the unfinished task i will be reached in 10 time
units. Reachability problems search for traces, i.e., sequences of configurations,
SI −→∗ SG, obtained by consecutive rule application. Traces in real-time models
involve time variables and timestamps that range over real-time domain. The
challenge here is to address density of time, the Zeno type phenomena, and the
unboundedness of time, as there is no upper bound on the values of timestamps.
All of these issues are handled using abstractions.

Abstracting Time

Circle-configurations are simple, finite sequences of symbols selected from a finite
alphabet, containing no notion of time. By introducing these abstractions, traces
over real-time MSR configurations are simulated with traces that do not contain
any real numbers.

Abstractions are defined w.r.t. to a resolution parameter, Dmax, extracted
from the reachability problem at hand, and are formed by considering integer
and decimal parts of timestamps of facts.

Definition 1 (Circle-Configurations). Let R be a timed MSR with dense
time, GS a goal, CS a critical configuration specification and S0 an initial con-
figuration. Let Dmax be an upper bound on the numeric values appearing in R,
GS, CS and S0, and S = F1@t1, F2@t2, . . . , Fn@tn, T ime@t.

The pair AS = 〈ΔS ,US〉 is the circle-configuration of the configuration S
defined as follows. The δ-configuration of S, ΔS , is:

ΔS =
〈

{P 1
1 , . . . , P 1

m1
}, δ1,2, {P 2

1 , . . . , P 2
m2

}, δ2,3, . . . , δj−1,j , {P j
1 , . . . , P j

mj
}
〉

where {P 1
1 , . . . , P 1

m1
, P 2

1 , . . . , P j
mj

} = {F1, . . . , Fn, T ime}, timestamps of facts
P i
1, . . . , P

i
mi

have the same integer part, t i, ∀i = 1, . . . , j, and

δi,i+1 =
{

t i+1 − t i, if t i+1 − t i ≤ Dmax

∞, otherwise , i = 1, . . . , j − 1.

Unit circle of S is
US = [{Q0

1, . . . , Q
0
m0

}Z , {Q1
1, . . . , Q

1
m1

}, . . . , {Qk
1 , . . . , Q

k
mk

}],
where {Q0

1, . . . , Q
0
m0

, Q1
1, . . . , Q

k
mk

} = {F1, . . . , Fn, T ime}, timestamps of facts
in the same class, Qi

1, . . . , Q
i
mi

have the same decimal part, ∀i = 0, . . . , k,
timestamps of facts Q0

1, . . . , Q
0
m0

are integers, and the classes are ordered in

There’s No Time, The Problem of Conceptualising Time 63

the increasing order, i.e., dec(Ql
i) < dec(Ql′

j), for all i �= j, where 1 ≤ i ≤ ml,
1 ≤ j ≤ ml′ , 0 ≤ l ≤ k, 1 ≤ l′ ≤ k.

Each circle-configuration is simply a pair of finite sequences of symbols, each
sequence partitioning and ordering its facts. One sequence, δ-configuration, is
formed according to the integer part, while the other, unit circle, relates to the
decimal part of the timestamps. Unit circles can be clearly visualized using a
circle, as shown in Fig. 1. For example, with Dmax = 3, the circle-configuration
of the configuration

{ M@3.00000001, R@3.14, P@4.2, T ime@111.2, Q@112.5333, S@114 }
consists of the δ-configuration 〈{M,R}, 1, {P},∞, {Time}, 1, {Q}, 2, {S}〉 and
the unit circle [{S}Z , {M}, {R}, {P, T ime}, {Q}] as illustrated in Fig. 2.

Q1
1, . . . , Q

1
m1

Qi
1, . . . , Q

i
mi

Qj
1, . . . , Q

j
mj

Q0
1, . . . , Q

0
m0

Fig. 1. Unit circle

S

M

P, T ime

Q

〈{M,R}, 1, {P},∞, {Time}, 1, {Q}, 2, {S}〉

R

Fig. 2. Circle-configuration

Although these symbolic representations of configurations do not contain
any real numbers, they provide enough information related to satisfaction of
time constraints, which is necessary e.g., for rule application.

Theorem 1 (Bisimulation). Let T be a reachability problem for a balanced
system with facts of bounded size. Let Dmax be an upper bound on the numeric
values in T . Then SI −→∗ SG for some configurations SI and SG in T
if and only if AI −→∗ AG, where AI and AG are, respectively, the circle-
configurations of SI and SG w.r.t. Dmax.

The systems to which the above theorem relates, involve configurations with
a fixed number of facts, each containing a bounded number of symbols. Such sys-
tems typically represent systems with a fixed, i.e., bounded memory. Specifically,
balanced systems only have rules with the same number of facts on each side of
rewrite rules. Relaxing these conditions leads to undecidability of the reachabil-
ity problem for MRS models [3,9]. For balanced real-time MSR models with a
bound on the size of facts, the above bisimulation result allows the search for
solutions of reachability problems symbolically, not necessarily involving explicit
values of the timestamps, i.e., the real numbers. Circle-configurations provide a
sound and complete representation of traces:

64 T. Ban Kirigin and B. Perak

SI →r1 . . . →ri−1 Si−1 →ri Si →ri+1 . . . →rn SG� � � �

AI →(r′
1)

. . . →(r′
i−1)

Ai−1 →(r′
i)

Ai →(r′
i+1)

. . . →(r′
n)

AG

In the above bisimulation, (r′
i) is a representation of MSR rules over abstrac-

tions. In particular, to an instantaneous MSR rule corresponds a single rule over
abstractions.

A Tick rule (for any ε!) is simulated with a finite sequence of Next rules over
circle-configurations. There are eight cases defining the Next rule, exactly one of
which is applicable to a given circle-configuration. The fact Time is moved clock-
wise on the unit-circle, updating the δ-configuration when needed, as illustrated
below:

Sequences of circle-configurations obtained by consecutive applications of
Next rules simulate the “flow of time”. They represent a series of “atomic”
changes in the system where the fact Time moves just enough so that a dif-
ferent circle-configuration is obtained. This can be observed as a change in the
system, substantial enough to reflect on the system behaviour and properties
which are specified through the satisfiabiliy of time constraints. For example,
the circle-configuration above on the right represents a configuration in which
Time@T1 has the same decimal part as F1@T2, satisfying, hence, some time con-
straint of the form T1 = T2 ± D. This constraint is not satisfied by the previous
circle-configuration, which instead satisfies some time constraint T1 < T2±D. On
the other hand, it may be the case that Time@T −→ Time@(T + ε) is applied
for small ε so that both the enabling and the resulting configurations correspond
to the same circle-configuration. This means, that w.r.t. time constraints, i.e.,
time conditions, the time increase is not noticeable in the system.

Abstractions, therefore, represent a way of removing the dimension of time
from a system, so that time ticks are replaced by (possibly empty) sequences of
distinct abstractions, denoting noticable change in the system. For more details
on real-time MSR see [8].

2 Conceptualization of Sequence as Time

The above abstractions imply the sequential conceptualization of time that con-
tests the usual folk-based notion of the time as an objective ontological category.
What we assume by folk theory is the common metaphorical conception of time
as resource (“We’re out of time”), as container (“We did it in five days”), as person
(“Time is a great teacher”), as an object in motion (“Time is passing quickly”) or
as a static reference point where the conceptualizer is moving towards (“We are
moving towards future”), or with earlier events in front of later events (“Leave
the history behind you!”) [2,11].

There’s No Time, The Problem of Conceptualising Time 65

Fig. 3. Hierarchical structure of complex dynamic system organization. [12]

The sequential nature of the system changes is the basis for the folk concep-
tion of the ontologically objective existence of time: time exists. The reoccurring
system changes are also the source domain for figurative extension of the time
units: day, month, year. This apparent correlation of time and sequences of
physical changes yielded two opposing philosophical views with the claim of the
ontologically objective nature of the time.

The first one is the relational perspective that considers time as dependent on
the sequences of the physical events in the universe. According to this position,
promoted by Leibniz, Mach and Saint Augustine, there is no existence of the time
outside the succession of events. On the other hand, the opposing philosophical
realist view, promoted by Isaac Barrow and Isaac Newton, claims that time
exists independently of physical occurrences and that it would exist even in an
empty universe. The relational perspective conceptualizes the TIME as having a
SEQUENTIAL CHANGE, while the realists metaphorically conceptualize TIME
as a CONTAINER FOR SEQUENTIAL CHANGE. Both conceptualizations
pragmatically imply existence of the TIME entity irrespective of the cognizer
that can perceive the sequential change.

In contrast to this metaphorical conceptualization of time as an ontological
objective entity, systemic approach assumes that a time emerges as an psycho-
logical phenomenon referring to the process of subjective perception, experience
and conceptualization of sequences. This position is similar to the idealist view,
partly described by Saint Augustine, Immanuel Kant and many other physicist
and philosophers. According to the idealist perspective the time is a construc-
tion of the human mind, and correspondingly the existence of time depends on
the existence of the human observer. Where the systemic view potentially dif-
fers from the idealist perspective is in the conceptualization of the observing

66 T. Ban Kirigin and B. Perak

mind. The idealist tend to metaphorically construct the MIND as a COGNI-
TIVE CONTAINER with some (inherent or essential) features that transcend
the physical nature of the body, a position that is sometimes called objective
idealism. On the other hand, the systemic perspective is more akin to the subjec-
tive idealism in that it regards mind as an emergent complex phenomena arising
from the propensities of the organization of constitutive physical structures,
biological-information features, sensors, evolutionary acquired affect processes,
cognitive functions of memory, mapping, attention, mental simulation, reason-
ing, etc.

In line with the hierarchical structure of complex dynamic systems organized
by Emergence principle [1,4,13], the emergence of time, as an ontologically sub-
jective property, is possible only in self-organized systems of highly complex
interrelated components of perception, affect, memory, attention and cognition
(see Fig. 3).

The more accurate classification argues for the distinction of the time1 as
sequential change of structures from the time2 as the subjective perception of
the sequential change.

Time1 can be defined as the sequential change of some system (Fig. 3, level
7+). It is a dynamic process of a material entity, endowed at least with the
features of the existence, emergent spatial structuring of partonymy and dynamic
forces that:

– undergoes a change in its internal organization as a whole or
– is a part of changing features with regards to some external material structure

while maintaining its structural complexity.

Time1 has ontologically and epistemologically objective features, meaning that
sequences of change within a system are (mostly) observer independent. The
sequences occur regardless of the perception by any cognizer.

Time2, on the contrary, involves cognition of the sequential change by some
cognizer (Fig. 3, level 11+). The cognizer is a system that maintains the internal
structure while undergoing sequential changes. It is endowed with at least the
ontologically objective features of:

– maintaining the complexity features while interacting with the environment,
– internal storing of the data created by the interaction, and
– ontologically subjective emergent features of perception, affection processes

that signal the quality of the perceived structures, and cognition processes
that allow for the mental simulation and evaluation of the stored information
about the quality of the perceptions.

The cognizer observes the sequential changes, as a perception:

– of the internal change within cognizers system (body changes, interception)
and/or

– of the external structure changes outside cognizers system (visual, auditive
perception, exteroception).

There’s No Time, The Problem of Conceptualising Time 67

Time2 has, obviously, a subjective character. In fact, time2 is the subjective
perception of time1. Due to the varying levels of dynamic stability within the
system, the emergent properties of subjective time are prominently correlated
with the cognitive functions and traits. Different species will differ in perception
of subjective time2 due to the internal representation system, different sensors,
attention and memory processing systems [10].

Even among individuals of the same species, for instance humans, processing
perception of sequential change, time1, is dependent of the state of the cognition
faculties. The obvious example is the state of deep sleep, without dreams, non-
REM stage, where there is no cognition of external perception, and no cognition
of internal mental simulation, and subsequently no perception of time. So, if
there is no perception of time is there time at all?1

At least, if there is a (perception of) sequence, there is time.2
How is it that we all use time concepts in interpersonal setting and even have

global objective time structures? As for the global time, it is clear that the time
measured by some clock, be it atomic, quartz or mechanical is just a standardized
physical measure of some sequential process, much like one kilo is a standardized
unit for measuring mass. Regarding the similar experience of subjective time, it
seems that the evolutional predispositions of the neural structures facilitate the
approximation of the subjective time in a commensurable way.

This brings us to the question of the scientific terminology that uses the
notion of time. Are we talking about the sequential change or perception of
sequences? What is really the concept of time that is referred to in Einstein’s
relativity theory? Gödel argued that there cannot be an objective lapse of time
[5,15]. When theoretical physicist Carlo Rovelli [6,14], claims that “time is an
illusion” he is rightly observing that naive perception of time flow doesn’t cor-
respond to the physical reality, but can we say the time is non-existent?

3 Relating the Approaches to Time

When we escape into the formal mathematical world we can claim there’s no
time in traces over our circle-configurations. There are just sequences of sym-
bolic abstractions that contain no explicit real-time values. Still, such traces of
subsequent applications of the Next rule simulate the usual, naive flow of time in
a sound and complete way, providing an (un-timed, but time-like) representation
of real-time.

However, by carefully analyzing the solution that uses abstractions, one
can suspect that there are some elements that represent subjective perception.
Namely, the definition of circle-configurations relates to a bounded (balanced)
system and the observation of such system (extracting the parameter Dmax).
These elements may involve the perception of time within the system. The flow
of time in the given system is therefore specific, i.e., subjective, and is reduced
to a sequence of such system-specific abstractions.
1 Is it time for change?.
2 The perception of time is the perception of change.

68 T. Ban Kirigin and B. Perak

Acknowledgments. This work has been supported in part by the Croatian Science
Foundation under the project UIP-05-2017-9219 and the University of Rijeka under
the project Initial Grants 1016-2017.

References

1. Bar-Yam, Y.: Dynamics of Complex Systems. CRC Press, Boca Raton (2019)
2. Brdar, M., Brdar-Szabó, R., Perak, B.: Metaphor repositories and cross-linguistic

comparison. In: Metaphor and Metonymy in the Digital Age: Theory and Methods
for Building Repositories of Figurative Language, vol. 8, p. 64 (2019)

3. Durgin, N.A., Lincoln, P., Mitchell, J.C., Scedrov, A.: Multiset rewriting and the
complexity of bounded security protocols. J. Comput. Secur. 12(2), 247–311 (2004)

4. Emmeche, C., Køppe, S., Stjernfelt, F.: Explaining emergence: towards an ontology
of levels. J. Gen. Philos. Sci. 28(1), 83–117 (1997)

5. Gödel, K.: An example of a new type of cosmological solutions of Einstein’s field
equations of gravitation. Rev. Mod. Phys. 21(3), 447 (1949)

6. Jaffe, A.: The illusion of time. Nature 556(7701), 304–306 (2018)
7. Kanovich, M., Kirigin, T.B., Nigam, V., Scedrov, A., Talcott, C.: Discrete vs. dense

times in the analysis of cyber-physical security protocols. In: Focardi, R., Myers,
A. (eds.) POST 2015. LNCS, vol. 9036, pp. 259–279. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46666-7_14

8. Kanovich, M.I., Ban Kirigin, T., Nigam, V., Scedrov, A., Talcott, C.L.: Time,
computational complexity, and probability in the analysis of distance-bounding
protocols. J. Comput. Secur. 25(6), 585–630 (2017)

9. Kanovich, M.I., Ban Kirigin, T., Nigam, V., Scedrov, A., Talcott, C.L., Perovic,
R.: A rewriting framework and logic for activities subject to regulations. Math.
Struct. Comput. Sci. 27(3), 332–375 (2017)

10. Matthews, W.J., Meck, W.H.: Temporal cognition: connecting subjective time to
perception, attention, and memory. Psychol. Bull. 142(8), 865 (2016)

11. Núñez, R.E., Sweetser, E.: With the future behind them: convergent evidence from
aymara language and gesture in the crosslinguistic comparison of spatial construals
of time. Cogn. Sci. 30(3), 401–450 (2006)

12. Perak, B.: The role of the metonymy and metaphor in the conceptualization of
nation. an emergent ontological analysis of syntactic-semantic constructions. In:
Metaphors in the Discourse of the National. John Benjamins (2019)

13. Perak, B., D’Alessio, S.P.: Culture as an emergent property of the embodied cogni-
tion. In: Avanture kulture: kulturalni studiji u lokalnom kontekstu. Jesenski i Turk
(2013)

14. Rovelli, C.: The Order of Time. Riverhead Books (2019)
15. Schilpp, P.A., Gödel, K.: A remark about the relationship between relativity theory

and idealistic philosophy (1949)
16. Urquiza, A.A., et al.: Resource-bounded intruders in denial of service attacks. In:

2019 IEEE 32nd Computer Security Foundations Symposium (CSF), pp. 382–
38214. IEEE (2019)

https://doi.org/10.1007/978-3-662-46666-7_14

Andre and the Early Days of Penn’s
Logic and Computation Group

Dale Miller(B)

Inria & LIX, École Polytechnique, Palaiseau, France
Dale.Miller@inria.fr

I first met Andre Scedrov in the Fall of 1983 when I joined the Computer
and Information Science Department faculty at the University of Pennsylvania.
Andre had started in the Mathematics Department at Penn the year earlier.
As was apparent even then, Andre’s approach to doing research lead him to
seek out colleagues. In 1983, he crossed the divide between the Mathematics
Department and the Computer and Information Science Departments—that is,
he crossed 33rd Street in West Philadelphia—in search of joint research projects
with computer scientists.

At that time, Andre and Peter Freyd were holding a weekly Geometric Logic
Seminar in the Mathematics Department. Andre and Peter invited me to speak
there twice in 1984. Around that time, it was decided to expand the seminar’s
scope and to rename it as the Penn Logic Seminar. In a proposal that Andre and
I submitted to the NSF in December 1986, we described the three-year-old sem-
inar by saying that it was “held jointly between the Mathematics and Computer
Science Departments. There is also substantial involvement from the Philoso-
phy and Linguistics Departments at Penn as well as from various departments
of local universities. The attendees for this seminar include the following Penn
faculty: Peter Freyd and Scedrov of the Mathematics Department, Peter Bune-
man, Jean Gallier, Saul Gorn, Aravind Joshi and Miller of the Computer and
Information Science Department, Scott Weinstein and Zoltan Domotor of the
Philosophy Department, and Henry Hiz of the Linguistics Department.” Even-
tually, we renamed the seminar once more to be the Logic and Computation
Seminar.

In 1986, Albert Meyer organized the first IEEE Symposium on Logic in
Computer Science (LICS) at MIT in Cambridge. The establishment of that con-
ference series played a major role in shaping how many of us at Penn understood
the core of our research goals. LICS 1986 brought together a large number of
famous logicians, mathematicians, and computer scientists, and it helped us see
ourselves as being involved in a new and vital topic. It is notable, however, that
no one from Penn was involved in the organization of LICS 1986, nor did we
have any accepted papers there.

The first couple of years of this seminar were used to educate ourselves on sev-
eral topics, including polymorphic λ-calculus, category theory, linear logic, logic
programming, denotational semantics, and automated deduction. As I remember
it, Andre was instrumental in organizing many the faculty, postdocs, graduate
students, and visitors into a steady stream of lectures on foundational topics.

c© Springer Nature Switzerland AG 2020
V. Nigam et al. (Eds.): Scedrov Festschrift, LNCS 12300, pp. 69–70, 2020.
https://doi.org/10.1007/978-3-030-62077-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62077-6_6&domain=pdf
https://doi.org/10.1007/978-3-030-62077-6_6

70 D. Miller

The seminar was usually held on the second floor of the David Rittenhouse Lab-
oratory, which hosted the Mathematics Department. Attendance was typically
strong: we all had the sense that there was a great deal of dynamism in this topic.
The appearance in the late 1980s of both linear logic and the π-calculus helped
to convince us that this topic was open to fresh and important shifts in perspec-
tives. No longer were we only attempting to apply well known and mature logic
techniques to computing, computing itself was influencing foundations, even the
foundations of logic.

This education phase for the Logic and Computation Group was very success-
ful. For example, people from Penn started to have papers appearing in LICS.
In the second LICS meeting in 1987, three accepted papers were authored by
attendees of this seminar, and Andre co-authored two of those papers. In fact,
during the five years 1987–1991, Andre authored six papers accepted at LICS
for which he had 12 co-authors. Andre also served as the PC Chair for LICS
1992.

In 1987, the Logic and Computation Group grew with the hiring of Carl
Gunter and Val Tannen by the Computer and Information Science Department.
Around that time, we had posters printed and mailed that advertised our inter-
disciplinary approach to Logic and Computation. We felt at that time that
our main competitor was the Laboratory for Foundations of Computer Science
(LFCS) at the University of Edinburgh. A year or so after we distributed our
poster, Carnegie Mellon University formed a similar interdisciplinary group and
distributed their poster, an event that we referred to as “The Empire Strikes
Back.”

Andre was always well connected to many other researchers. For example, the
group had a series of visitors who were collaborators of Andre: Harvey Friedman,
Jean-Yves Girard, Andreas Blass, Max Kanovich, Phil Scott, Mitsuhiro Okada,
Jim Lipton, etc. In addition, Andre’s Erdös number is 2 and, as a result, many
people at Penn have an Erdös number of 3.

I owe a big thanks to Andre. It was immensely valuable for me in 1983, as a
beginning researcher in an interdisciplinary setting, to meet and collaborate with
Andre. He was warm and willing to helped me, my students, and our colleagues.
His assistance also extended to providing sage advice and guidance with maneu-
vering the professional and academic world of universities and funding agencies.

Thank you, Andre, for having been there at the beginning of my professional
life. You have helped me find and develop an enthusiasm for the interdisciplinary
research that has been with me my full career.

Formal Verification of Ethereum Smart
Contracts Using Isabelle/HOL

Maria Ribeiro1, Pedro Adão1,2(B), and Paulo Mateus1,2

1 Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
{maria.ribeiro,pedro.adao}@tecnico.ulisboa.pt,

pmat@math.tecnico.ulisboa.pt
2 Instituto de Telecomunicações, Lisbon, Portugal

Abstract. The concept of blockchain was developed with the purpose
of decentralizing the trade of assets, suppressing the need for interme-
diaries during this process, as well as achieving a digital trust between
parties. A blockchain consists in a public immutable ledger, constituted
by chronologically ordered blocks such that each block contains records
of a finite number of transactions.

The Ethereum platform, that this paper builds upon, is implemented
using a blockchain architecture and introduces the possibility of stor-
ing Turing complete programs. These programs, also known as smart
contracts, can then be executed using the Ethereum Virtual Machine.
Despite its core language being the EVM bytecode, they can also be
implemented using a higher-level language that is later compiled to EVM,
being Solidity the most used. Among its applications stand out decen-
tralized information storage, tokenization of assets, and digital identity
verification.

In this paper we propose a method for formal verification of Solid-
ity smart contracts in Isabelle/HOL. We start from the imperative lan-
guage and big-step semantics proposed by Schirmer [23], and adapt it to
describe a rich subset of Solidity, implementing it using the Isabelle/HOL
proof assistant. Then, we describe the properties about programs using
Hoare logic, and present a proof system for the language, for which results
on soundness and (relative) completeness are obtained.

Finally, we describe the verification of an electronic voting smart
contract, which illustrates the degree of proof complexity that can be
achieved using this method. Examples of smart contracts containing over-
flow and reentrancy vulnerabilities are also presented.

Keywords: Formal verification · Isabelle/HOL · Hoare logic · Smart
contracts · Solidity · Ethereum

Partially supported by Programa Operacional Competitividade e Internacionalização
(COMPETE 2020), Fundo Europeu de Desenvolvimento Regional (FEDER) through
Programa Operacional Regional de Lisboa (Lisboa 2020), Project BLOCH - LISBOA-
01-0247-FEDER-033823, and Fundação para a Ciência e Tecnologia (FCT) project
UID/EEA/50008/2019.

c© Springer Nature Switzerland AG 2020
V. Nigam et al. (Eds.): Scedrov Festschrift, LNCS 12300, pp. 71–97, 2020.
https://doi.org/10.1007/978-3-030-62077-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62077-6_7&domain=pdf
https://doi.org/10.1007/978-3-030-62077-6_7

72 M. Ribeiro et al.

1 Introduction

The emergence of the blockchain concept was associated with the appearance
of Bitcoin, one of the first decentralized cryptocurrencies, introduced in 2008 by
Satoshi Nakamoto [21]. A cryptocurrency is independent of any central admin-
istrative entities and uses instead a peer-to-peer digital system, managed by a
network of nodes. Transactions are stored in a blockchain, an append-only public
ledger, through the process of mining. Nodes in the network, also known as min-
ers, try to solve a difficult computational problem called proof-of-work. When
a transaction is verified by the network it is incorporated into the blockchain
using a cryptographic hash function, which includes data from the previous
block’s hash and makes the whole chain cryptographically secure and, therefore,
immutable.

Our work focuses on the Ethereum platform, proposed by Vitalik Buterin [4]
in 2013, which similarly uses a blockchain architecture but also introduces the
feature of storing Turing complete programs, known as smart contracts. These
programs can be executed by the stack-based Ethereum Virtual Machine (EVM),
and its formalization was first approached by Gavin Wood [26]. Ethereum also
introduces the concept of gas, as each operation in the virtual machine has an
associated cost in ether, the Ethereum currency. When a contract is executed,
either by being called by a transaction or by code in another contract, the original
transaction initiator needs to pay for the total cost of operations.

Given the valuable assets in these contracts, and the fact that they are
immutable, studying the security of these programs becomes of uttermost impor-
tance. With that in mind, the main goal of this work is to introduce a formal
verification method of Ethereum smart contracts using Isabelle, a higher order
logic (HOL) theorem prover. We have chosen to verify smart contracts written
in Solidity, a higher level language that compiles to EVM bytecode.

The main reference for our language, and respective semantics and proof sys-
tem, is the work by Schirmer [23]. We adapt the proposed language for sequential
programs to capture a relevant subset of Solidity. Our main additions were the
modeling of Solidity calls, both internal and external, Solidity exceptions, and
reverting all state modifications. To formalize the meaning of these new opera-
tions in terms of execution, the big-step semantics was extended. The verification
of programs is done using Hoare logic. Soundness and (relative) completeness
results for the proof system are presented.

The concept of weakest precondition [6] is presented and used both for opti-
mizing program verification and for the completeness result. Regarding the first,
and following the work by Frade and Pinto [7], we enhance the weakest pre-
condition and verification condition computations with the cases for Dyncom,
Require and Init. The proof of (relative) completeness, based on the proof by
Winskel [25], is extended with the Call, Handle, Revert, Dyncom, Require and
Init cases.

To conclude the paper we present some relevant examples of applications
such as electronic voting, tokens, and reentrancy, describing and analyzing this
way the expressiveness of the language.

Formal Verification of Ethereum Smart Contracts Using Isabelle/HOL 73

Related Work. Previous efforts have been made by the research commu-
nity to formally verify smart contracts. Hirai formalized the EVM semantics
in Lem and used Isabelle/HOL to prove safety properties of Ethereum smart
contracts [11]. Amani et al. [1] formalized the EVM semantics in Isabelle/HOL
and proposed a sound program logic to verify correctness of smart contracts.
Grishchenko et al. [9] formalized a complete small-step semantics of EVM byte-
code in F∗, and defined security properties for smart contracts such as call
integrity and atomicity. Hildebrandt et al. [10] formalized the EVM semantics
in the K framework. Bhargavan et al. [3] introduced a framework that translates
smart contracts from Solidity to F∗, allowing verification of functional correct-
ness and safety, as well as a decompilation from EVM bytecode to F∗ for analysis
of low-level properties.

As for analysis of Solidity code, Bartoletti et al. [2] proposed a calculus for
a fragment of Solidity with a single primitive to transfer currency and invoke
contract procedures, and Jiao et al. [14] developed a formal semantics for Solidity
in the K framework that allows formal reasoning about high-level contracts.
Zakrzewski [27] proposed a semantics for a small fragment of Solidity in Coq.

Some automatic analysis tools for analysing Ethereum smart contracts have
also been developed as are the cases of Oyente [17], Maian [22], Mythril [20],
and Securify [24]. A survey on these techniques and tools can be found in [8].

Andre’s Influence in This Work. Scedrov’s results on linear logic [15,16]
significantly shaped our work. Linear logic encompasses the dynamics of algo-
rithms and resources, and its main impacts have been in computer science rather
than traditional mathematics. Linear logic significantly influenced the design
of Hoare triples, which are the basis of this work. Moreover, the use of for-
mal methods in Scedrov’s work [18,19], namely on process algebras, has also
been a significant contribution to the security area in general and inspired this
work in particular. Indeed, this paper’s primary goal is to present a proof-based
method to derive security properties in an imperative language for contracts
over a blockchain, which is a very restrictive form of concurrent programming,
and for which we do not impose polynomial-time bounding. More importantly,
Andre directly impacted the work and scientific career of two of the authors.
Pedro Adão and Paulo Mateus were respectively PhD and Postdoc students of
Andre.

2 The Ethereum Blockchain

Ethereum can be seen as a decentralized computing platform since it uses a
blockchain architecture and introduces the feature of storing smart contracts.

In this section we present a simplified definition of the Ethereum blockchain.
In the following definitions let Nx the set of non-negative integers with size
up to x bits and B the set of bytes. An account is an object of the Ethereum
environment that is identified by a 160-bit string known as the account’s address.

74 M. Ribeiro et al.

Definition 1 (World state). The world state is a mapping σ between addresses
(160 bit strings) and account states.

σ : {0, 1}160 → N256 × N256 × ({0, 1}256 → {0, 1}256) × B
∗

There are two types of accounts: externally owned accounts (EOA) and
accounts associated with code (contract accounts).

Definition 2 (Account state). Given an address a, the account state σ(a) is
a tuple A = 〈nonce, balance, storage, code〉, where

– nonce ∈ N256 is the nonce of the account. If a is the address of an EOA,
corresponds to the number of transactions sent from this address. If a is the
address of a contract account, corresponds to the number of contract-creations
made by this account;

– balance ∈ N256 is the value of ether owned by account a;
– storage is a mapping between 256-bit values and corresponds to the account’s

storage;
– code ∈ B

∗ is the EVM code of this account. In case of an EOA corresponds
to the empty string.

There are two types of transactions: contract creation transactions and trans-
actions which result in message calls. A transaction is triggered by an external
actor.

Definition 3 (Transaction). A transaction is a tuple T = 〈nonce, gasprice,
gaslimit, from, to, value, init/data〉, where

– nonce ∈ N256 is the number of transactions sent by address from;
– gasprice ∈ N256 is equal to the cost per unit of gas, in ether, for all compu-

tation costs of this transaction;
– gaslimit ∈ N256 is equal to the maximum amount of gas that should be used

in the execution of this transaction;
– from ∈ {0, 1}160 is the address of the transaction’s sender;
– to ∈ {0, 1}160 is the address of the transaction’s recipient;
– value ∈ N256 is the value of ether to be transferred to the message call’s

recipient or, in the case of contract creation, as an endowment to the newly
created account.

Additionally, in the case of a contract creation transaction

– init is the EVM code for the account initialization procedure;

In the case of a message call

– data is the input data of the message call.

A message call is an internal concept which consists of data (a set of bytes)
and value (specified as ether) passed from one account to another. It may be
triggered by a transaction, where the sender is an EOA, or by EVM code, where
the sender is a contract account.

Transactions are grouped and stored in finite blocks.

Formal Verification of Ethereum Smart Contracts Using Isabelle/HOL 75

Definition 4 (Block). A block B is a package of data constituted by

– a header, constituted by the block’s number, timestamp, nonce, difficulty, ben-
eficiary, state and hash of its parent’s block header;

– a list of transactions T = {T1, . . . , Tm}.
The block’s difficulty influences the time that it takes to find a valid nonce for

the block and thus solving the proof-of-work mining problem. The beneficiary is
the address which receives all the fees from the successful mining of this block.
The fact that the hash of this block’s header includes its parent’s hash, is essential
to the blockchain’s immutability. The stored state corresponds to the one after
all transactions are executed.

Ethereum can be seen as a transaction-based state machine. In such a repre-
sentation a transaction represents a valid transition between two states σt and
σt+1. Since transactions are grouped in finite blocks, a block may also represent
a state transition σ′

t and σ′
t+1. These transitions between blocks introduce the

concept of a chain of blocks, a blockchain.

Definition 5 (Blockchain). A blockchain is defined as an ordered sequence of
blocks B = {B0,B1, . . . }.

In this paper we present an approach to the formal verification of Solidity
smart contracts. Regarding code structure, a Solidity contract consists, as it
follows a object-oriented structure, of a set of state variables which are part of
the account’s storage, and a set of function declarations. Functions in a contract
can introduce local variables, which are stored in the memory. Solidity also
contains a set of globally available variables that can be accessed regarding the
current block, transaction, message call and address.

A function can be called by an external user, an EOA, which initiates a
transaction, or by another contract. This happens when a called contract con-
tains code that calls another contract, generating a new message call. A function
call can be internal or external and an external call can be a regular call or a
delegate call, in which case the code is executed in the context of the calling
contract. Details about these methods and respective implementation are pre-
sented in Sect. 3.4.

Every contract has a fallback function, which is automatically executed when-
ever a call is made to the contract and none of its other functions match the
given function identifier, or in the cases where no data is supplied.

Solidity also allows the usage of exceptions. Whenever an exception is thrown,
all state changes are reverted. Our approach for modeling exceptions and state
reversion is described in Sect. 3.4.

3 The SOLI Language

In this section we define the core elements of the language and introduce a set of
big-step execution rules to describe their semantics. The main reference for our
language and respective semantics is the work by Schirmer [23] which we adapt
and extend to capture a relevant fragment of Solidity.

76 M. Ribeiro et al.

3.1 Syntax

The syntax of our language is a combination of deep and shallow embeddings.
Commands are represented by an inductive, state dependent, datatype whereas
some other syntactic elements are defined as abbreviations of their semantics.
Boolean expressions, bexp, and assertions, assn, are defined as state sets.

Definition 6 (Syntax). Let ′s be the state space type. The syntax for boolean
expressions and assertions is defined by the types ′s bexp and ′s assn, respec-
tively. The syntax for commands is defined by the polymorphic datatype ′s com,
where ′s ⇒ ′s is a state-update function and fname the type of function names.

′s bexp := ′s set
′s assn := ′s set
′s com := Skip | Upd ′s ⇒ ′s | Seq ′s com ′s com |

If ′s bexp ′s com ′s com | While ′s bexp ′s com |
Dyncom ′s ⇒ ′s com | Call fname | Revert |
Handle ′s com ′s com | Require ′s bexp |
Init ′s com ′s ⇒ ′s ⇒ ′s

Regarding the definition of commands, Upd is used to model assignments
by executing a state-update function ′s ⇒′ s. Conditional statements and while
loops are defined with the usual syntax. The Skip command, which does nothing,
is also defined.

In order to allow complex operations such as calling other functions and
reverting all state changes, the following commands are introduced in SOLI.
Dyncom is a command which receives a state and allows to write statements
which are state dependent. This is useful when referring to states in different
steps of execution. A general Call is introduced, which receives a function name.
It corresponds to the simplest form of calling a procedure. The different types
of procedure calls and respective execution details are described in detail in
Sect. 3.4. Revert throws a revert type exception which signals that the state
must be reverted, and Handle is an auxiliary command to handle state reversion
if signaled. Require models Solidity exceptions, and Init models state reversion
whenever a REVERT exception is thrown. Both commands are detailed in Sect. 3.4.

3.2 Concrete Syntax

To improve the readability of SOLI programs, some syntax translations are intro-
duced. {|b|} is defined as the set of states for which the predicate b holds. Syntax
translations are defined as follows, where c1 and c2 are commands, b a boolean
and s a state.

Formal Verification of Ethereum Smart Contracts Using Isabelle/HOL 77

x́ ::= a ⇀ Upd (λs. s�x := a�)

c1; ; c2 ⇀ Seq c1 c2

IF b THEN c1 ELSE c2 ⇀ If {|b|} c1 c2

IF b THEN c1 ⇀ IF b THEN c1 ELSE Skip

WHILE b DO c ⇀ While {|b|} c

REQUIRE b ⇀ Require {|b|}

3.3 Semantics

To model big-step semantics, the state space ′s is augmented, as described by
the datatype ′s state, with information about whether exceptions were thrown.

′s state := Normal ′s | Rev ′s

To formalize the execution relation, the partial function Γ is introduced,
which maps function names to the corresponding bodies.

In Isabelle such a function is defined as ′b ⇒ ′a option where ′a option =
Some ′a | None. In the case of Γ being defined for m, it is selected using
the (Some m) = m.

Definition 7 (Big-step semantics). The big-step semantics for SOLI is based
on a deterministic evaluation relation formalized by the predicate

Γ � 〈c, s〉 ⇒ t

where

Γ :: fname ⇀ ′s com

c :: ′s com

s, t :: ′s state

and evaluated accordingly to the set of rules represented in Fig. 1. The meaning
for this predicate is as expected, that is, if command c is executed in initial state
s, then the execution terminates in state t.

3.4 Additional Language Features

Gas isn’t modeled in SOLI, the main reason is because it expresses a high level
language and would not be accurate to measure gas consumption since it is
defined for each opcode. Also the goal is to verify properties which are expressed
in a symbolic way, and in most of the cases this measure is not relevant. One
could however estimate bounds for SOLI commands, with the help of some side
tools such as the Remix compiler, and defining the consumption inductively.

78 M. Ribeiro et al.

Fig. 1. Big-step semantics rules for SOLI

Exceptions
To deal with exceptions, the EVM has two available opcodes: REVERT and
INVALID. Both undo all state changes, but REVERT will also allow to return
a value and refund all remaining gas to the caller, whereas INVALID will sim-
ply consume all remaining gas. Solidity uses these opcodes to handle exceptions
using the revert(), require() and assert() functions. The require() and
assert() functions receive a bool and throw the respective exception if the con-
dition is not met while revert() simply throws the exception. Both revert()

Formal Verification of Ethereum Smart Contracts Using Isabelle/HOL 79

and require() use the REVERT opcode and can also receive an error message to
display to the user; assert() uses the INVALID opcode.

In SOLI the first two are modeled. revert() corresponds to the Revert
command, which modifies the current state type from Normal to Rev. The
require() function is defined by the Require command, as a conditional state-
ment.

Require :: ′s bexp ⇒ ′s com

Require b := If b Skip Revert

Calling a Function
In order to model the different types of function call, calling must be extended
with the following definition, which introduces the modeling of passing argu-
ments, resetting local variables and returning results.

call :: � ′s ⇒′ s, fname, ′s ⇒′ s ⇒′ s, ′s ⇒′ s ⇒′ s com � ⇒ ′s com

call pass f return result :=

DynCom (λs. (Upd pass; ; Call f ; ;

(DynCom (λt. Upd (return s); ; result s t))))

Here DynCom is used to abstract over the state space and refer to certain
program states. The initial state s is captured by the first DynCom and the
state after executing the body of the called procedure, t, by the second. The
function pass, receives the initial state s and is used to pass the arguments of
the function to the intended variables in the memory before the body of the
function is executed. The return function is used to return from the procedure
by cleaning the state, that is by restoring the local variables. In the case of a
function call with a return value, the result function is used to communicate the
results to the caller environment by updating the result variable. The control
flow of call is depicted is in Fig. 2.

Fig. 2. Control flow for call

The big-step execution rule for call , Fig. 3, follows intuitively from the above
description. First the body of the called function is executed after passing the
arguments, that is, starting in state pass s. Then the result command is executed
after returning from the call, that is, starting in state return s t .

80 M. Ribeiro et al.

Fig. 3. Big-step execution rule for call

In Solidity, a function call can be internal or external. For internal calls,
functions are in the same contract and so state variables, memory, and execu-
tion context are the same and we only need to model function arguments and
results. External calls, which call functions from other contracts, are done via
message call. All function arguments have to be copied to memory and, after
execution, the memory needs to be restored. In addition, some execution envi-
ronment variables are updated, such as msg sender , msg value, msg data and
address this.

Reverting State Changes
In Solidity, whenever an error occurs, for instance when some condition is not
satisfied, a REVERT exception is thrown and all state changes made in the current
call must be reverted.

Suppose one wants to execute the SOLI statement bdy starting in a normal
type state s. The execution can run without any errors and terminate in a normal
state t. But, if an exception is thrown, the execution must be stopped with the
current Rev state t′ in order to proceed to the state reversion. This is modeled
with Handle bdy c, where c is the statement which handles the reversion.

Inside c the state is first passed to a normal state in order to allow the regular
SOLI statements, for instance Upd to be executed. The update of the state
variables to their original value is made with the rvrt function, which receives
the initial state s and the current state t. Finally the error is propagated by
re-throwing Revert. The control flow for a statement execution is depicted in
Fig. 4.

Fig. 4. Control flow for Init

In order to actually revert the state, first one needs to get hold of the initial
state s which can be captured using DynCom. Also, while taking care of the
state reversion, another DynCom is used to refer to the current state t when
updating the variables.

Formal Verification of Ethereum Smart Contracts Using Isabelle/HOL 81

Whenever a statement, such as a function, is written in SOLI it is encapsu-
lated in an Init command which receives the function body and the rvrt function
which models the reset of all state variables in case of error.

Init :: � ′s com, ′s ⇒ ′s ⇒ ′s� ⇒ ′s com

Init bdy rvrt := DynCom (λs. (Handle bdy; ; (DynCom (λt.

Upd (rvrt s); ; Revert))))

The big-step execution rules for Init are defined in Fig. 1. For normal exe-
cution it is immediate, it is just the regular execution of bdy. If an exception is
thrown when executing bdy, its execution stops in a revert type state t and the
full execution will terminate in state rvrt s t.

3.5 State Space

Since the goal of this work is to verify properties about specific programs, it
was chosen to explicitly state the HOL type for each variable by working with
records. Some of the used types are constructed using the HOL type word, which
represents a bit.

byte := 8 word

address := 160 word

uint := 256 word

A record of Isabelle/HOL is a collection of fields where each has a specified
name and type. A record comes with select and update operations for each field.
Record types can also be defined by extending other record types. A record st
represents the storage of a Solidity contract and loc the local variables for the
functions in that contract. We illustrate this concept for an electronic voting
contract in Sect. 5.1.

3.6 Environment Variables

Solidity defines a set of global variables regarding the execution environment,
mainly to provide information about the blockchain. For a block, we need vari-
ables that keep track of the current block’s hash, miner’s address, difficulty,
gaslimit, number and timestamp. For a transaction, we need variables that keep
track of the current message call: data, gas, sender and signature, and for the
whole transaction: gasprice and origin. In SOLI these variables are part of the
environment record env, which is defined in Fig. 5.

An account state is defined as a record Account with four fields corresponding
to its nonce, balance, storage and code, also represented in Fig. 5. The world state
is defined as a field of the env record gs which maps addresses to their account
states.

82 M. Ribeiro et al.

Fig. 5. Account state representation and environment variables

4 Hoare Logic

In this section we present Hoare logic, a system proposed by Tony Hoare [12,13],
and its formalization for SOLI regarding partial correctness. We extended the
proof system in [23] to a relevant subset of Solidity.

4.1 The Proof System

A Hoare logic formula is a triple of the form P c Q, where c is a command
and P and Q are assertions, the precondition and postcondition, respectively. In
EVM, command execution can result in a Normal or in a Rev state. To model
this feature, we split the postcondition in two, Q and A, for regular and for
exceptional termination respectively.

To reason about recursive procedures, a set of assumptions Θ is introduced.
This set contains function specifications, which will be used as hypothesis when
proving the body of a recursive procedure. An assumption for a function is a
tuple that contains its precondition, name and both postconditions.

′s assmpt := 〈′s assn, fname, ′s assn, ′s assn〉

The notation used for a derivable Hoare formula is associated with the pro-
cedure body environment Γ and with the set of assumptions Θ.

Definition 8 (Hoare logic). A Hoare logic is defined for SOLI such that a
derivable formula is represented by

Γ,Θ � P c Q,A

Formal Verification of Ethereum Smart Contracts Using Isabelle/HOL 83

Fig. 6. Hoare logic for SOLI

where

Γ :: fname ⇒ ′s com

Θ :: ′s assmpt set

P,Q,A :: ′s assn

c :: ′s com,

and the proof system is constituted by the rules in Fig. 6.

There is a rule for each SOLI command and, additionally, the Asm and
Consequence rules. To have an intuitive meaning for the rules of this system, one
should read it backwards. For instance, for the Upd rule, if Q holds (for regular
execution) after the update then P is the set of states such that the application
of f to them belongs to Q. Skip and Revert have the intuitive meaning of doing
nothing, and Seq and Handle correspond respectively to the cases where c1 c2 are

84 M. Ribeiro et al.

both executed, and c1 throws an exception and c2 is executed. In the DynCom
rule, the triple has to hold for every state s that satisfies the precondition as the
dynamic command will depend on the initial state. The CallRec rule regards a
set of function specifications S whose bodies are verified and that is added to
Θ. Then, when one of these functions is called, the specification can be assumed
using Asm rule.

The Require command is modelled as a conditional statement, hence both
rules follow the same structure. In one of the branches the precondition b holds,
and in the other it does not. The Init statement corresponds to a regular execu-
tion of the body ending in a state for which the regular postcondition Q holds or,
in the case of an exception being thrown, the execution ends in a state such that
by reverting all state changes the exceptional postcondition A holds. A depen-
dence on the initial state s is introduced in the premise. The Consequence rule
allows to strengthen the precondition as well as to weaken the postcondition.

4.2 Weakest Precondition Calculus

In order to verify properties about programs using Hoare logic, a backward
propagation method is followed. In this method, sufficient conditions for a certain
result, the postcondition, are determined. The rules are successively applied
backwards, starting in the postcondition until the beginning of the program.
Some side conditions may be generated.

The weakest precondition is then said to be the most lenient assumption on
the initial state such that Q,A will hold after the execution of the command c.

Weakest precondition calculus, also know as predicate transformer semantics
(Dijkstra [6]), is a reformulation of Hoare logic. It constitutes a strategy to
reduce the problem of proving a Hoare formula to the problem of proving an HOL
assertion, which is called the verification condition. Since assertions are expressed
as sets, reasoning about the conditions is expressed using set operations.

Definition 9 (Weakest precondition calculus). Let c be a command, Q
and A assertions, and wpΓ,Θ(c,Q,A) the weakest precondition of Q,A for c.
The weakest precondition calculus for SOLI is inductively defined as follows:

Formal Verification of Ethereum Smart Contracts Using Isabelle/HOL 85

wpΓ,Θ (Skip, Q, A) = Q

wpΓ,Θ (Revert, Q, A) = A

wpΓ,Θ (Upd f, Q, A) = {s. f s ∈ Q}
wpΓ,Θ (Seq c1 c2, Q, A) = wpΓ,Θ (c1, wpΓ,Θ (c2, Q, A), A)

wpΓ,Θ (If b c1 c2, Q, A) = {s. (s ∈ b −→ s ∈ wpΓ,Θ (c1, Q, A)) ∧
(s /∈ b −→ s ∈ wpΓ,Θ (c2, Q, A))}

wpΓ,Θ (While I b c, Q, A) =

{s. (s ∈ b −→ s ∈ wpΓ,Θ (Seq c (While I b c), Q, A)) ∧
(s /∈ b −→ s ∈ wpΓ,Θ (c2, Q, A))}

wpΓ,Θ (Call f, Q, A) = Pf , such that f ∈ dom Γ ∧ (Pf , f, Qf , Af) ∈ Θ

wpΓ,Θ (DynCom c, Q, A) =
⋂

s

wpΓ,Θ (c s, Q, A)

wpΓ,Θ (Handle c1 c2, Q, A) = wpΓ,Θ (c1, Q, wpΓ,Θ (c2, Q, A))

wpΓ,Θ (Require b, Q, A) = {s. (s ∈ b −→ s ∈ Q ∧ (s /∈ b −→ s ∈ A)}
wpΓ,Θ (Init bdy rvrt, Q, A) =

⋂

s

wpΓ,Θ (bdy, Q, {t. rvrt s t ∈ A})

The weakest precondition for the call of procedure f corresponds to the
precondition for its specification, present in the set of assumptions.

Since both Dyncom and Init have to consider every preceding state s, their
weakest precondition corresponds to the intersection of certain weakest precon-
ditions: in the former, to the wp of the command applied to each one of the
states; in the latter, to the wp of bdy such that in case of exception the state
reversion is applied to s. From the definition of Require it follows immediately
that its weakest precondition is Q if b holds, and A otherwise.

A strategy to generate verification conditions based on this calculus is
described in Sect. 4.5.

4.3 Soundness

To prove soundness of our proof system, we follow the same technique as [23]. The
formal definition for validity regarding partial correctness is defined as follows:

Definition 10 (Validity—Partial Correctness)

Γ � P c Q,A if
∀s t. Γ � 〈c, s〉 ⇒ t ∧ s ∈ Normal ′P −→ t ∈ Normal ′Q ∪ Rev ′A.

The goal is to prove that if a formula is derivable in the Hoare Logic (Fig. 6)
then it also valid according to Definition 10. In the case of recursive calls, we need

86 M. Ribeiro et al.

to take into account the set of assumptions Θ and also the depth of recursion.
However, the definitions of validity and big-step semantics are not rich enough
to approach these properties. The notion of validity is thus extended with the
set of assumptions.

Definition 11 (Validity with context)

Γ,Θ � P c Q,A if
∀〈P, f,Q,A〉 ∈ Θ. Γ � P (Call f) Q,A −→ Γ � P c Q,A.

Also, an additional set of big-step rules to deal with the depth of recursion
are defined, where n is the limit on nested procedure calls.

Γ � 〈c, s〉 n=⇒ t

These rules are similar to the normal big-step rules (Fig. 1) except for the
Call statement where the limit n is decremented in each step to account for the
depth of the recursion.

Γ � 〈the (Γ f), Normal s〉 n
=⇒ t

Γ � 〈Call f, Normal s〉 n+1
==⇒ t

(Call)

We can show that this new set of rules is monotonic with respect to the limit n.

Lemma 1 (Monotonicity)

Γ � 〈c, s〉 n=⇒ t ∧ n ≤ m −→ Γ � 〈c, s〉 m=⇒ t

Validity can now be established regarding the limit on nested recursive calls.

Definition 12 (Validity with limit)

Γ �n P c Q,A if
∀s t. Γ � 〈c, s〉 n=⇒ t ∧ s ∈ Normal ′P −→ t ∈ Normal ′Q ∪ Rev ′A.

Finally the notions of validity with context and limit can be joined, leading
to a definition which suits the needs to reason about recursive procedure calls.

Definition 13 (Validity with limit and context)

Γ,Θ �n P c Q,A if
∀〈P, f,Q,A〉 ∈ Θ.Γ �n P (Call f) Q,A −→ Γ �n P c Q,A.

The required conditions to show that Hoare rules preserve validity are now
established.

Formal Verification of Ethereum Smart Contracts Using Isabelle/HOL 87

Lemma 2

(∀n. Γ,Θ �n P c Q,A) −→ Γ,Θ � P c Q,A

Lemma 3 (Soundness with limit and context). Let Γ be the mapping
between function names and their bodies, Θ the set of assumptions, c a SOLI

command, P the precondition and Q,A the postconditions.

If Γ,Θ � P c Q,A then (∀n. Γ,Θ �n P c Q,A).

The intended result follows directly from Lemmas 3 and 2.

Theorem 1 (Soundness). Let Γ be the mapping between function names and
their bodies, Θ the set of assumptions, c a SOLI command, P the precondition
and Q,A the postconditions.

If Γ,Θ � P c Q,A then Γ,Θ � P c Q,A.

4.4 Completeness

Due to its inheritance from HOL, used to state assertions, Hoare logic is not
complete. However, Cook [5] introduced the notion of relative completeness by
separating incompleteness of the assertion language from incompleteness due to
inadequacies in the axioms and rules for the programming language constructs.
It is assumed that there is an oracle which can be inquired about the validity of
an HOL assertion. The proof follows the method by Winskel [25] and relies on
the concept of weakest precondition, Definition 9.

Lemma 4

Γ,Θ � P c Q,A −→ (s ∈ P −→ s ∈ wp(c, Q, A))

An auxiliary weakest precondition property regarding the derivation of a
formula and its precondition is proven.

Lemma 5

Γ,Θ � wp(c,Q,A) c Q,A

Using Lemma 5, the (relative) completeness Theorem can now be proven.

Theorem 2 ((Relative) Completeness). Let Γ be the mapping between func-
tion names and their bodies, Θ the set of assumptions, c a SOLI command, P
the precondition and Q,A the postconditions.

If Γ,Θ � P c Q,A then Γ,Θ � P c Q,A.

88 M. Ribeiro et al.

4.5 Computation of Verification Conditions

One of the goals of this work is to develop a proof technique for the verification
of properties about smart contracts. In this section, we extend previous work
by Frade and Pinto [7] and present a method to compute the verification condi-
tions of a program, which follows a backwards propagation through the weakest
precondition.

To achieve this, the invariants for while loops must be supplied explicitly.
The concept of annotated command is, therefore, introduced.

Definition 14 (Annotated commands). The syntax for annotated com-
mands is defined by the polymorphic datatype ′s acom.

′s acom := Skip | Upd ′s ⇒ ′s | Seq ′s acom ′s acom

| If ′s bexp ′s acom ′s acom | While ′s assn ′s bexp ′s acom

| Dyncom ′s ⇒ ′s acom | Call fname | Revert

| Handle ′s acom ′s acom | Require ′s bexp

| Init ′s acom ′s ⇒ ′s ⇒ ′s

The weakest precondition calculus for annotated commands is the same as
for normal commands except for While where it becomes the loop invariant,
since it is a condition that must be met before each loop execution, or even if it
isn’t executed in the first place.

Definition 15 (Weakest precondition calculus for annotated com-
mands). The weakest precondition calculus for annotated commands is induc-
tively defined as follows:

wpΓ,Θ (Skip, Q, A) = Q

wpΓ,Θ (Revert, Q, A) = A

wpΓ,Θ (Upd f, Q, A) = {s. f s ∈ Q}
wpΓ,Θ (Seq c1 c2, Q, A) = wpΓ,Θ (c1, wpΓ,Θ (c2, Q, A), A)

wpΓ,Θ (If b c1 c2, Q, A) = {s. (s ∈ b −→ s ∈ wpΓ,Θ (c1, Q, A)) ∧
(s /∈ b −→ s ∈ wpΓ,Θ (c2, Q, A))}

wpΓ,Θ (While I b c, Q, A) = I

wpΓ,Θ (Call f, Q, A) = Pf such that f ∈ dom Γ ∧ (Pf , f, Qf , Af) ∈ Θ

wpΓ,Θ (DynCom c, Q, A) =
⋂

s

wpΓ,Θ (c s, Q, A)

wpΓ,Θ (Handle c1 c2, Q, A) = wpΓ,Θ (c1, Q, wpΓ,Θ (c2, Q, A))

wpΓ,Θ (Require b, Q, A) = {s. (s ∈ b −→ s ∈ Q ∧ (s /∈ b −→ s ∈ A)}
wpΓ,Θ (Init bdy rvrt, Q, A) =

⋂

s

wpΓ,Θ (bdy, Q, {t. rvrt s t ∈ A})

Formal Verification of Ethereum Smart Contracts Using Isabelle/HOL 89

The verification condition computation for a command can be obtained using
the structure of each rule in the proof system. An important property about these
is that the verification conditions are computed independently from precondi-
tions, leaving only the need to check their inclusion in the propagated weakest
precondition. This prevents the generation of unnecessary verification conditions.

Definition 16 (Verification condition I). The verification condition func-
tion vc is defined as follows:

vc (Γ,Θ � P c Q,A) = P ⊆ wpΓ,Θ (c, Q, A) ∪ vcΓ,Θ
aux (c, Q, A),

where the auxiliary verification condition vcΓ,Θ
aux is inductively defined as follows:

vcΓ,Θ
aux (Skip, Q, A) = ∅

vcΓ,Θ
aux (Revert, Q, A) = ∅

vcΓ,Θ
aux (Upd f, Q, A) = ∅

vcΓ,Θ
aux (Seq c1 c2, Q, A) = vcΓ,Θ

aux (c1, wpΓ,Θ(c2, Q, A), A) ∪ vcΓ,Θ
aux (c2, Q, A)

vcΓ,Θ
aux (If b c1 c2, Q, A) = vcΓ,Θ

aux (c1, Q, A) ∪ vcΓ,Θ
aux (c2, Q, A)

vcΓ,Θ
aux (While I b c, Q, A) = (I ∩ b) ⊆ wpΓ,Θ (c, I, A) ∪

vcΓ,Θ
aux (c, I, A) ∪ (I ∩ −b) ⊆ Q

vcΓ,Θ
aux (Call f, Q, A) = Qf ⊆ Q

vcΓ,Θ
aux (DynCom c, Q, A) =

⋂

s

vcΓ,Θ
aux (c s, Q, A)

vcΓ,Θ
aux (Handle c1 c2, Q, A) = vcΓ,Θ

aux (c1, Q, wpΓ,Θ(c2, Q, A)) ∪ vcΓ,Θ
aux (c2, Q, A)

vcΓ,Θ
aux (Require b, Q, A) = ∅

vcΓ,Θ
aux (Init bdy rvrt, Q, A) =

⋂

s

vcΓ,Θ
aux (bdy, Q, {t. rvrt s t ∈ A})

However, upon the verification of a program with any number of function calls,
their specification must have been verified and added to the set of assumptions.
A verification condition suitable for every program is then formalized.

Definition 17 (Verification condition II). Let S be the set of specifications
for every function whose call is generated by the execution of c. The verification
condition function V C for c is defined as

V C (Γ,Θ � P c Q,A) = P ⊆ wpΓ,Θ (c, Q, A) ∪
vcΓ,Θ

aux (c, Q, A) ∪
⋃

〈P,f,Q,A〉∈S

vc (Γ, (Θ ∪ S) � P (the (Γ f)) Q,A).

An Alternative Formulation of Rules
The verification condition computations explicitly separate the main verification
condition (the inclusion of precondition in the weakest precondition of the pro-
gram) from auxiliary conditions (generated from the structure of the rules). In
order to construct a proof which follows this backwards propagation method,

90 M. Ribeiro et al.

some Hoare rules are modified to a structure that will be referred as weakest
precondition style. Following the method above, we were able to obtain the same
rules as in [23] together with a new rule for the Solidity command Require. The
set of rules is presented in Fig. 7.

Fig. 7. Weakest precondition style rules

5 Application to Real-World Smart Contracts

In this section we illustrate the usage of our method for proving properties about
smart contracts.

5.1 Electronic Voting

In this example an electronic voting contract, Ballot1, which features automatic
and transparent vote counting and delegate voting, is presented. This is an exam-
ple of a successful contract verification that has some complex properties orig-
inated by the loop invariant, and that introduces the need to prove additional
lemmas, defined generally.

The Ballot contract contains a Voter struct constituted by the weight of
the voter (accumulated by delegation), a boolean that states whether the person
already voted, the delegate’s address (in case of vote delegation) and the index of
the voted proposal. It also contains a Proposal struct constituted by the proposal
name and corresponding vote count. As global variables the contract contains
1 https://solidity.readthedocs.io/en/v0.5.12/solidity-by-example.html.

https://solidity.readthedocs.io/en/v0.5.12/solidity-by-example.html

Formal Verification of Ethereum Smart Contracts Using Isabelle/HOL 91

an address chairperson, a mapping voters between addresses and Voter structs,
and a list of proposals proposals, which are stored in the st record.

record st = env +

chairperson :: address

voters :: address ⇒ Voter

proposals :: Proposal list

record loc = st +

winningVoteCount :: int

p :: int

winningProposal out :: int

r :: int

winningVoteCount out :: int

This example is focused on the verification of the winnerName func-
tion (Fig. 8), which returns the name of the winning proposal by calling the
winningProposal function which returns the corresponding index. This function
finds the maximum value of voteCount in the list of proposals using a loop. It
introduces the necessity of supplying an invariant and to verify that, while the
list is gone through, the current maximum is correctly computed. The verifica-
tion requires a definition of the maximum of a list and additional lemmas on the
matter to be introduced.

Fig. 8. winningProposal and winnerName functions

92 M. Ribeiro et al.

INIT is defined as an init statement to revert all state changes in case
of exception, that is, resetting the global variables to their initial values. In
order to internally call the winningProposal function, call wp is defined as a call
statement.

The verification consists in showing that the return value r from the
winningProposal function corresponds to the maximum vote count of the list
and that the output of the winnerName function is the corresponding name.
The initial values for global variables are stored in the auxiliary variables chair,
vtrs and prop.

Γ, Θ � {| chair =′ chairperson ∧ vtrs =′ voters ∧ prop =′ proposals |}
winnerName com

{| max ′ (map voteCount prop) = (map voteCount prop)[′r] ∧
′winnerName out = name prop[′r] |},

{| ′chairperson = chair ∧ ′voters = vtrs ∧ ′proposals = prop |}

I = {| 1 ≤ ′p ≤ length prop ∧
′winningVoteCount = max ′(take ′p(map voteCount prop)) ∧
′winningVoteCount = (map voteCount prop)[′winningProposal out] |}

The max ′ function was defined to retrieve the maximum of a list of natural
numbers. Invariant I states the limits that should be verified on the value of p
and that the current maximum is correctly computed.

The application of the verification method results, after simplification, in two
conditions, which are solved through the use of the auxiliary lemmas.

1. ′proposals �= {} =⇒ 1 ≤ length ′proposals ∧
voteCount ′proposals[0] = max ′(take 1 (map voteCount ′proposals))

2. ′p < length ′proposals =⇒
(max ′(take ′p (map voteCount ′proposals)) < voteCount ′proposals[′p] −→
max ′(take(′p + 1)(map voteCount ′proposals)) = voteCount ′proposals[′p]) ∧

(¬max ′(take ′p (map voteCount ′proposals)) < voteCount ′proposals[′p] −→
max ′ (take (′p + 1) (map voteCount ′proposals)) =

max ′ (take ′p (map voteCount ′proposals)))

The first condition results from the precondition inclusion and is proved using
Lemma 6, together with the fact that

voteCount ′proposals[0] = (map voteCount ′proposals)[0]

Lemma 6
l = {} =⇒ l[0] = max′ (take 1 l).

Formal Verification of Ethereum Smart Contracts Using Isabelle/HOL 93

The second, which results from the invariant verification conditions, is proven
using the max ′ definition and Lemma7, that follows by induction on the struc-
ture of the list.

Lemma 7

{x1, . . . , xn} = {} =⇒ max ′ ({x1, . . . , xn}) = max (max ′ {x1, . . . , xn−1}) xn

5.2 Ethereum Tokens

Solidity is prone to underflows and overflows since the EVM works with 256-bit
unsigned integers and, therefore, all operations are performed modulo 2256. As
an example of a vulnerable implementation of an ERC20 token, the Hexagon
(HXG) token2 is taken into account. This example illustrates that some proofs
on the alleged specification of a contract may not terminate but give us
important insights about the source of its vulnerability. Amongst its global
variables it contains a mapping balanceOf, a mapping allowances and a uint
burnPerTransaction, which is set to 2. In this example we analyze the transfer
function (Fig. 9). According to its specification it should be the case that, after
the function is executed, the balance of address from decreases by val + 2, the
balance of address to increases by val, and the balance of address adr0 increases
by 2.

Note that the conditions in the postcondition are stated using the uint
Isabelle function which allows to check that an operation does not underflow
or overflow. The uint arith Isabelle tactic is used in the proof to unfold this
definition, which can take some time to run. It gets stuck with a verification
condition which depends on the fact that uint (val + 2) = uint val + 2.

Fig. 9. transfer function of Hexagon contract

2 https://etherscan.io/address/0xB5335e24d0aB29C190AB8C2B459238Da1153cEBA
#code.

https://etherscan.io/address/0xB5335e24d0aB29C190AB8C2B459238Da1153cEBA#code
https://etherscan.io/address/0xB5335e24d0aB29C190AB8C2B459238Da1153cEBA#code

94 M. Ribeiro et al.

Γ, Θ � {| ′burnPerTransaction = 2 ∧ from = ′frm ∧ t = ′to ∧ a = ′adr0 ∧
bal from = ′balanceOf from ∧ bal to = ′balanceOf t ∧
bal a = ′balanceOf a ∧ supply = ′currentSupply ∧
from �= a ∧ from �= t ∧ a �= t |}

transfer

{| uint(′balanceOf from) = uint bal from − (uint ′val + 2) ∧
uint(′balanceOf t) = uint bal to + uint ′val ∧
uint(′balanceOf a) = uint bal a + 2 |},

{| ′balanceOf from = bal from ∧ ′balanceOf t = bal to ∧
′balanceOf a = bal a |}

Looking at transfer function there is no condition that ensures this and pre-
vents overflow during the addition of ′val and ′burnPerTransaction. Therefore,
one is not able to prove the specification since there is no way to prove that

uint (balanceOf from) = uint (bal from − (val + 2))
= uint bal from − (uint val + 2)

This vulnerability can be exploited. Suppose the transfer function is called by
an attacker with val equal to 2256−2. It follows that val+burnPerTransaction =
2256 − 2 + 2 = 0 and therefore the second REQUIRE statement’s guard will
become balanceOf ′frm ≥ 0 which is always true. The balance of ′frm is then
decreased by 0 and the balance of ′to increased by 2256 − 2.

To solve this issue a require statement can be added to the transfer function
which checks if ′val +′ burnPerTransaction < 2256.

5.3 Reentrancy

This example shows how the defined recursive features can be used to model
reentrancy. A DAO is a Decentralized Autonomous Organization built using the
Ethereum blockchain. In 2016, an hacker exploited a bug in the DAO contract
which resulted in the loss of approximately $50 million in ether. This was the
first reentrancy attack which consisted in draining funds using the attacker’s
fallback function.

A fallback function is a contract’s function, with no arguments or return
values, which is automatically executed whenever a call is made to the contract
and none of its other functions match the given function identifier or when no
data is supplied. This is the case when the contract receives ether, with no data
specified. The vulnerability consisted in the fact that DAO’s withdraw function
uses call .value() to send ether to the caller’s account. Now, this triggers its
fallback function, which contains arbitrary code defined by the owner.

To explain the technical aspects of this attack a simplified version, babyDao,
is presented. The contract contains, as state variable, a mapping credit between
addresses and their respective balances. The vulnerability is present in the

Formal Verification of Ethereum Smart Contracts Using Isabelle/HOL 95

Fig. 10. withdraw and malicious fallback function

withdraw function (Fig. 10) and the attacker’s goal is to drain all caller’s funds
in the contract and send this value to his account. To perform this transference
the function uses call.value() which triggers its fallback function, containing arbi-
trary code defined by the owner. This is modelled as the call statement call value,
which is defined so that the values of some environment variables are updated,
the balance of user is increased by msg value and the balance of babyDao is
decreased by the same amount. The fallback function’s code is then executed.

To write the specification for withdraw, the auxiliary variables c, b and bdao
are introduced.

∀c b bdao . Γ, Θ �{| c = ′credit user ∧ b = balance (′gs user) ∧
bdao = balance (′gs babyDao) |}

withdraw

{| ′credit user = 0 ∧ balance (′gs user) = b + c ∧
balance (′gs babyDao) = bdao − c |}, {}

In the case of a so called friendly fallback function, the specification for
withdraw holds. However, suppose an attacker writes a fallback function which
besides increasing the attacker’s balance and decreasing the balance of babyDao,
contains code that checks whether the balance of babyDao will remain bigger
than or equal to 0 after another possible withdraw, and if so, calls withdraw.

Suppose the attacker has some credit c and bdao is the total balance of
babyDao. When the attacker calls the withdraw function, call value transfers
ether to the attacker, triggering its fallback function which may create another
call to withdraw . This causes the attacker to receive the same amount of ether
again and enter a recursive loop until all possible ether has been drained from
babyDao without causing the function to fail, that is, the guard of the conditional
statement in the fallback function never evaluates to false. The attacker’s credit
is only set to 0 after babyDao, and therefore, after all these recursive calls. The
withdraw function ends up being called

⌊
bdao

c

⌋
times and the attacker increases

its value by
⌊

bdao
c

⌋
× c.

In this case, the proof for the specification no longer holds but a proof for the
attack can be established using the rules for multiple procedure recursive calls.

96 M. Ribeiro et al.

6 Conclusions

The main contribution from this work is the development of an imperative lan-
guage and respective semantics system regarding a relevant subset of Solidity,
based on a set of existent imperative languages in Isabelle/HOL, in particular
the language proposed by Schirmer [23]. The main additions were the modelling
of Solidity calls, both internal and external, Solidity exceptions, and reverting
all state modifications. The relative completeness proof, based on the proof by
Winskel [25], uses an auxiliary lemma that involves the concept of weakest pre-
condition. After the addition of the Dyncom, Require and Init cases to the wp
and vc computations, following the work by Frade and Pinto [7], we extend the
proof of the lemma with the Call, Handle, Revert, Dyncom, Require and Init
cases.

The main advantage of using a proof assistant is the richness with which
properties about programs can be expressed as we saw in Sect. 5. From the Ballot
example, it can be seen how invariants increase the complexity of a proof, but
also how that complexity can be tackled using auxiliary properties. Also, the
example of Ethereum tokens was analyzed and in most cases, upon a correct
specification, the tactic uint arith is able to find, or at least give a hint of,
overflows and underflows. Finally, the possibility of recursion allows to model
reentrancy vulnerabilities and fallback function attacks.

References

1. Amani, S., Bégel, M., Bortin, M., Staples, M.: Towards verifying Ethereum smart
contract bytecode in Isabelle/HOL. In: CPP 2018, pp. 66–77. ACM (2018)

2. Bartoletti, M., Galletta, L., Murgia, M.: A minimal core calculus for solidity con-
tracts. In: Pérez-Solà, C., Navarro-Arribas, G., Biryukov, A., Garcia-Alfaro, J.
(eds.) DPM/CBT 2019. LNCS, vol. 11737, pp. 233–243. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-31500-9 15

3. Bhargavan, K., et al.: Formal verification of smart contracts: short paper. In: PLAS
2016, pp. 91–96. ACM (2016)

4. Buterin, V.: Ethereum: a next-generation cryptocurrency and decentralized appli-
cation platform

5. Cook, S.A.: Soundness and completeness of an axiom system for program verifica-
tion. SIAM J. Comput. 7, 70–90 (1978)

6. Dijkstra, E.W., Scholten, C.S.: Predicate Calculus and Program Semantics. Texts
and Monographs in Computer Science. Springer, Heidelberg (1990). https://doi.
org/10.1007/978-1-4612-3228-5

7. Frade, M.J., Pinto, J.S.: Verification conditions for source-level imperative pro-
grams. Comput. Sci. Rev. 5(3), 252–277 (2011)

8. Grishchenko, I., Maffei, M., Schneidewind, C.: Foundations and tools for the static
analysis of Ethereum smart contracts. In: Chockler, H., Weissenbacher, G. (eds.)
CAV 2018. LNCS, vol. 10981, pp. 51–78. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-96145-3 4

https://doi.org/10.1007/978-3-030-31500-9_15
https://doi.org/10.1007/978-1-4612-3228-5
https://doi.org/10.1007/978-1-4612-3228-5
https://doi.org/10.1007/978-3-319-96145-3_4
https://doi.org/10.1007/978-3-319-96145-3_4

Formal Verification of Ethereum Smart Contracts Using Isabelle/HOL 97

9. Grishchenko, I., Maffei, M., Schneidewind, C.: A semantic framework for the secu-
rity analysis of Ethereum smart contracts. In: Bauer, L., Küsters, R. (eds.) POST
2018. LNCS, vol. 10804, pp. 243–269. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-89722-6 10

10. Hildenbrandt, E., et al.: KEVM: a complete formal semantics of the Ethereum
virtual machine. In: CSF 2018, pp. 204–217. IEEE Computer Society (2018)

11. Hirai, Y.: Defining the Ethereum virtual machine for interactive theorem provers.
In: Brenner, M., et al. (eds.) FC 2017. LNCS, vol. 10323, pp. 520–535. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70278-0 33

12. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580 (1969)

13. Hoare, C.A.R.: Procedures and parameters: an axiomatic approach. In: Engeler,
E. (ed.) Symposium on Semantics of Algorithmic Languages. LNM, vol. 188, pp.
102–116. Springer, Heidelberg (1971). https://doi.org/10.1007/BFb0059696

14. Jiao, J., Kan, S., Lin, S., Sanán, D., Liu, Y., Sun, J.: Semantic understanding
of smart contracts: executable operational semantics of solidity. In: SP 2020, pp.
1265–1282. IEEE Computer Society (2020)

15. Lincoln, P., Mitchell, J., Scedrov, A., Shankar, N.: Decision problems for proposi-
tional linear logic. Ann. Pure Appl. Logic 56(1), 239–311 (1992)

16. Lincoln, P.D., Mitchell, J.C., Scedrov, A.: Linear logic proof games and optimiza-
tion. Bull. Symbolic Logic 2(3), 322–338 (1996)

17. Luu, L., Chu, D., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts
smarter. In: ACM CCS 2016, pp. 254–269. ACM (2016)

18. Mateus, P., Mitchell, J., Scedrov, A.: Composition of cryptographic protocols
in a probabilistic polynomial-time process calculus. In: Amadio, R., Lugiez, D.
(eds.) CONCUR 2003. LNCS, vol. 2761, pp. 327–349. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-45187-7 22

19. Mitchell, J.C., Ramanathan, A., Scedrov, A., Teague, V.: A probabilistic
polynomial-time process calculus for the analysis of cryptographic protocols.
Theor. Comput. Sci. 353(1), 118–164 (2006)

20. Mythril. https://github.com/ConsenSys/mythril
21. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2009)
22. Nikolic, I., Kolluri, A., Sergey, I., Saxena, P., Hobor, A.: Finding the greedy, prodi-

gal, and suicidal contracts at scale. In: ACSAC 2018, pp. 653–663. ACM (2018)
23. Schirmer, N.: Verification of sequential imperative programs in Isabelle/HOL.

Ph.D. thesis, Technical University Munich, Germany (2006)
24. Tsankov, P., Dan, A.M., Drachsler-Cohen, D., Gervais, A., Bünzli, F., Vechev,

M.T.: Securify: practical security analysis of smart contracts. In: ACM CCS 2018,
pp. 67–82. ACM (2018)

25. Winskel, G.: The Formal Semantics of Programming Languages: An Introduction.
MIT Press, Cambridge (1993)

26. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger.
Ethereum Project Yellow Paper (2019)

27. Zakrzewski, J.: Towards verification of Ethereum smart contracts: a formalization
of core of solidity. In: Piskac, R., Rümmer, P. (eds.) VSTTE 2018. LNCS, vol.
11294, pp. 229–247. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
03592-1 13

https://doi.org/10.1007/978-3-319-89722-6_10
https://doi.org/10.1007/978-3-319-89722-6_10
https://doi.org/10.1007/978-3-319-70278-0_33
https://doi.org/10.1007/BFb0059696
https://doi.org/10.1007/978-3-540-45187-7_22
https://github.com/ConsenSys/mythril
https://doi.org/10.1007/978-3-030-03592-1_13
https://doi.org/10.1007/978-3-030-03592-1_13

Logic and Applications - LAP Meeting

Zvonimir Šikić1, Silvia Ghilezan2,3(B), Zoran Ognjanović3,
and Thomas Studer4

1 University of Zagreb, Zagreb, Croatia
2 University of Novi Sad, Novi Sad, Serbia

gsilvia@uns.ac.rs
3 Mathematical Institute SASA, Belgrade, Serbia

4 University of Bern, Bern, Switzerland

The aim of this note is to bring your attention to Prof. Scedrov’s role and impact
in the foundation and shaping the practice of the scientific meeting Logic and
Application as well as its regular organization.

The Logic and Application1, a.k.a. LAP, is an annual meeting that brings
together researchers from various fields of logic with applications in computer
science, at large.

In 2012, Prof. Scedrov and the first three authors of this note agreed to
meet in Dubrovnik during LiCS 2012, which was chaired by Prof. Scedrov, for
a one-day workshop Sustavi dokazivanja (Proof systems). The main issue of
the meeting was to discuss the possibilities to set-up a regular meeting that
will bring together doctoral students from the region, early stage researchers
and world-wide recognized experts in logic and its application. From the early
1970s, for almost twenty years, there was an ongoing seminar in mathematical
logic between the research groups in Belgrade and Zagreb, which was alternating
between the two venues. Prof. Scedrov, still a student at the time, was an active
participant. Building on this good-practice and tradition, we have decided to
set-up an annual meeting based at the Inter-University Center in Dubrovnik
every September. Such kind of regular forum on research in logic was lacking in
the region.

(a) Dubrovnik (b) Inter University Center

From the very beginning, LAP was meant to have a very specific profile. It
has been developed as a “slow meeting” focusing on detailed one hour expert
1 The web page of LAP is http://imft.ftn.uns.ac.rs/math/cms/LAP.

c© Springer Nature Switzerland AG 2020
V. Nigam et al. (Eds.): Scedrov Festschrift, LNCS 12300, pp. 98–100, 2020.
https://doi.org/10.1007/978-3-030-62077-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62077-6_8&domain=pdf
http://imft.ftn.uns.ac.rs/math/cms/LAP
https://doi.org/10.1007/978-3-030-62077-6_8

Logic and Applications - LAP Meeting 99

talks, along with face-to-face interaction and exchange of ideas, as well as student
presentations with joint discussions of peers and experienced researchers. It has
been foreseen to have a schedule which enables, encourages and maximises the
effectiveness in an environment which perfectly matches these requirements.

LAP is hosted by the Inter-University Center Dubrovnik2, which is an inde-
pendent international institution for advanced studies structured as a consortium
of universities with a long standing tradition and mission to organise and pro-
mote contact and exchange through projects, study programmes, courses and
conferences across a wide range of scientific concerns.

Topics of interest include, but are not restricted to: - Formal systems of clas-
sical and non-classical logic; - Category theory; - Proof theory; - Model theory;
- Set theory; - Type theory; - Lambda calculus; - Process algebras and calculi; -
Behavioural types; - Systems of reasoning in the presence of incomplete, impre-
cise and/or contradictory information; - Computational complexity; - Interactive
theorem provers; - Security and Privacy.

(c) Prof. Scedrov’s talk at LAP
2015

(d) LAP 2017

The role of Prof. Scedrov in the LAP meetings is multifold. Prof. Scedrov has
initiated LAP; during nine years of the meeting, he always actively takes part
in inviting lecturers and assembling the program; he gave talks at all eight LAP
meetings and he has been thoroughly involved in advising doctoral students.
Prof. Scedrov has the merits of making LAP a successful, lively and prosperous
meeting.

(e) IUC reception, LAP 2018 (f) LAP co-directors, LAP 2019

2 The web page of IUC is http://www.iuc.hr.

http://www.iuc.hr

100 Z. Šikić et al.

Since LAP 2013 the meeting has its current concept coordinated by five co-
directors, Prof. Scedrov and the authors of this note. Since then there were eight
editions and the organisation of the ninth edition, LAP 2020, is ongoing.

Welcome to LAP and meet with Prof. Scedrov!

Logic and Security

Formal Methods Analysis of the Secure
Remote Password Protocol

Alan T. Sherman1(B), Erin Lanus2, Moses Liskov3, Edward Zieglar4,
Richard Chang1, Enis Golaszewski1, Ryan Wnuk-Fink1, Cyrus J. Bonyadi1,

Mario Yaksetig1, and Ian Blumenfeld5

1 Cyber Defense Lab, University of Maryland, Baltimore County (UMBC),
Baltimore, MD 21250, USA

sherman@umbc.edu
2 Virginia Tech, Arlington, VA 22309, USA

lanus@vt.edu
3 The MITRE Corporation, Burlington, MA 01720, USA

mliskov@mitre.org
4 National Security Agency, Fort George G. Meade, MD 20755, USA

evziegl@nsa.gov
5 Two Six Labs, Arlington, VA 22203, USA

ian.blumenfeld@twosixlabs.com

Abstract. We analyze the Secure Remote Password (SRP) protocol for
structural weaknesses using the Cryptographic Protocol Shapes Analyzer
(CPSA) in the first formal analysis of SRP (specifically, Version 3).

SRP is a widely deployed Password Authenticated Key Exchange
(PAKE) protocol used in 1Password, iCloud Keychain, and other prod-
ucts. As with many PAKE protocols, two participants use knowledge of
a pre-shared password to authenticate each other and establish a session
key. SRP aims to resist dictionary attacks, not store plaintext-equivalent
passwords on the server, avoid patent infringement, and avoid export
controls by not using encryption. Formal analysis of SRP is challenging
in part because existing tools provide no simple way to reason about its
use of the mathematical expression v + gb mod q.

Modeling v+gb as encryption, we complete an exhaustive study of all
possible execution sequences of SRP. Ignoring possible algebraic attacks,
this analysis detects no major structural weakness, and in particular no
leakage of any secrets. We do uncover one notable weakness of SRP, which
follows from its design constraints. It is possible for a malicious server
to fake an authentication session with a client, without the client’s par-
ticipation. This action might facilitate an escalation of privilege attack,
if the client has higher privileges than does the server. We conceived of
this attack before we used CPSA and confirmed it by generating corre-
sponding execution shapes using CPSA.

Keywords: Cryptographic protocols · Cryptography · Cryptographic
Protocol Shapes Analyzer (CPSA) · Cybersecurity · Formal methods ·
Password Authenticated Key Exchange (PAKE) protocols ·

c© Springer Nature Switzerland AG 2020
V. Nigam et al. (Eds.): Scedrov Festschrift, LNCS 12300, pp. 103–126, 2020.
https://doi.org/10.1007/978-3-030-62077-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62077-6_9&domain=pdf
https://doi.org/10.1007/978-3-030-62077-6_9

104 A. T. Sherman et al.

Protocol analysis · Secure Remote Protocol (SRP) · UMBC Protocol
Analysis Lab (PAL)

1 Introduction

Cryptographic protocols underlie most everything that entities do in a networked
computing environment, yet, unfortunately, most protocols have never under-
gone any formal analysis. Until our work, this situation was true for the widely
deployed Secure Remote Password (SRP) protocol [28,51–53]. Given the com-
plexity of protocols and limitations of the human mind, it is not feasible for
experts to find all possible structural flaws in a protocol; therefore, formal meth-
ods tools can play an important role in protocol analysis.

Protocols can fail for many reasons, including structural flaws, weak cryp-
tography, unsatisfied hypotheses, improper configuration, inappropriate applica-
tion, and implementation errors. We focus on structural weaknesses: fundamental
logic errors, which enable an adversary to defeat a protocol’s security objective
or learn secret information.

We analyze SRP for structural weaknesses in the first formal analysis of
SRP (specifically, Version 3, known as SRP-3). Using the Cryptographic Protocol
Shapes Analyzer (CPSA) [36] tool in the Dolev-Yao network intruder model [21],
we model SRP-3 and examine all possible execution sequences of our model.
CPSA summarizes these executions with graphical “shapes,” which we interpret.

SRP is a Password Authenticated Key Exchange (PAKE) protocol used in
1Password, iCloud Keychain, and other products. As with many PAKE proto-
cols, two participants use knowledge of a pre-shared password to authenticate
each other and establish a session key. SRP aims to resist dictionary attacks,
not store plaintext-equivalent passwords on the server, avoid patent infringe-
ment, and avoid export controls by not using encryption.

Formal analysis of any protocol is challenging, and analysis of SRP is partic-
ularly difficult because of its use of the mathematical expression v + gb mod q.
This expression involves both modular exponentiation and modular addition,
exceeding the ability of automated protocol analysis tools to reason about mod-
ular arithmetic. Although SRP claims to have no encryption, ironically, we over-
come this difficulty by modeling the expression as encryption, which, effectively
it is.

We created a new virtual protocol analysis lab at UMBC. Embodied as a
virtual machine running on the Docker utility,1 this lab includes documentation,
educational modules for learning about protocol analysis, and three protocol
analysis tools: CPSA, Maude-NPA [24,25], and Tamarin Prover [22].

Contributions of our work include: (1) The first formal analysis of the SRP-3
protocol for structural weaknesses, which we carried out using the CPSA tool.
Ignoring possible algebraic attacks, this analysis detects no major structural
weakness, and in particular no leakage of any secrets. (2) The discovery of the
first attack on SRP, in which it is possible for a malicious server to fake an
1 www.docker.com.

www.docker.com

Formal Methods Analysis of the Secure Remote Password Protocol 105

authentication session with the client, without the client’s participation. This
action might facilitate an escalation of privilege attack, if the client has higher
privileges than does the server.

2 Background and Previous Work

We briefly review formal methods for analyzing cryptographic protocols, CPSA,
PAKE protocols, and previous work on SRP.

2.1 Formal Methods for Analyzing Cryptographic Protocols

Several tools exist for formal analysis of cryptographic protocols, including
CPSA [19,20,29], Maude-NPA [24,25], the Tamarin Prover [45], and ProVerif [8].
Created in 2005, CPSA outputs a set of “shapes” that describe all possible
protocol executions, which can reveal undesirable execution states including
ones caused by adversarial interference. Developed by Meadows [40] in 1992
as the NRL Protocol Analyzer, and rewritten into Maude language by Escobar
et al. [23] in 2005, Maude-NPA works backwards from explicitly-defined attack
states. The Tamarin Prover uses a multiset-rewriting model particularly well
suited for analyzing stateful protocols. ProVerif is an automated cryptographic
protocol verifier that operates on protocol specifications expressed in applied pi
calculus, which specifications it translates into Horn clauses. We choose to use
CPSA because we are more familiar with that tool, have easy access to experts,
and like its intuitive graphical output.

A variety of additional tools exist to support formal reasoning, including for
cryptography. For example, created in 2009, EasyCrypt2 supports “reasoning
about relational properties of probabilistic computations with adversarial code
. . . for the construction and verification of game-based cryptographic proofs.”
Cryptol [11] is a domain-specific language for cryptographic primitives. Cryptol
allows for the symbolic simulation of algorithms, and thus the ability to prove
properties of such by hooking into various constraint (SAT/SMT) solvers. Addi-
tionally, interactive theorem provers, such as Isabelle or Coq, have been used
to analyze cryptographic functions and protocols [3,42]. These tools offer the
potential to verify any property expressible in their underlying logics (higher-
order logic or dependent type theory, respectively) but sacrifice automation.

The 1978 Needham-Schroeder [41] public-key authentication protocol dra-
matically illustrates the value of formal methods analysis and limitations of
expert review. In 1995, using a protocol analysis tool, Lowe [38] identified a
subtle structural flaw in Needham-Schroeder. This flaw had gone unnoticed for
17 years in part because Needham and Schroeder, and other security experts,
had failed to consider the possibility that the intended recipient might be the
adversary. Thus, for example, if Alice authenticates to Bob, then Bob could
impersonate Alice to Charlie. CPSA easily finds this unexpected possible execu-
tion sequence, outputting a suspicious execution shape.
2 https://www.easycrypt.info/trac/#no1.

https://www.easycrypt.info/trac/#no1

106 A. T. Sherman et al.

Cryptographers sometimes present a Universal Composability (UC) proof of
security [12], but such proofs as typically written are long and complex and can
be difficult to verify. For example, Jarecki, Krawczyk, and Xu’s [33] UC proof of
the OPAQUE protocol is in a 61-page complex paper. There is, however, recent
work on mechanically checking UC proofs (e.g., see Canetti, Stoughton, and
Varia [13]), including Dolev-Yao versions of UC (e.g., see Böhl and Unruh [9]
and Delaune, Kremer, and Pereria [16].) By contrast, to analyze SRP-3, CPSA
requires only a relatively short and easy-to-verify input that formally defines the
protocol in terms of its variables, the participant roles, and the messages sent
and received.

2.2 Cryptographic Protocol Shapes Analyzer

The Cryptographic Protocol Shapes Analyzer (CPSA) [29,36,43] is an open-
source tool for automated formal analysis of cryptographic protocols. The tool
takes as input a model of a cryptographic protocol and a set of initial assumptions
called the point of view, and attempts to calculate a set of minimal, essentially
different executions of the protocol consistent with the assumptions. Such exe-
cutions, called shapes, are relatively simple to view and understand. Executions
in which something “bad” happens amount to illustrations of possible attacks
against the protocol. Conversely, when some property holds in all shapes, it is a
property guaranteed by the protocol.

CPSA is a tool based on strand space theory [20,26], which organizes events
in a partially-ordered graph. In strand space theory, events are transmissions
or receptions of messages, and sequences of events called strands capture the
notion of the local viewpoint of a participant in a network. CPSA also has state
events, which comprise initializing, observing, and transitioning between states.
Protocols are defined as a set of legitimate participant roles, which serve as
templates for strands consistent with the protocol requirements.

Bundles are the underlying execution model, in which every reception is
explained directly by a previous transmission of that exact message. A bun-
dle of a particular protocol is a bundle in which all the strands are either
(1) generic adversary behavior such as parsing or constructing complex messages,
or encrypting or decrypting with the proper keys, or (2) behavior of participants
in the protocol consistent with the protocol roles.

CPSA reasons about bundles indirectly by analyzing skeletons, which are
partially-ordered sets of strands that represent only regular behavior, along with
origination assumptions that stand for assumptions about secrecy and/or fresh-
ness of particular values. For example, such assumptions might include that a
key is never revealed or a nonce is freshly chosen and therefore assumed unique.
Some skeletons represent, more or less, the exact set of regular behavior present
in some bundle consistent with the secrecy and freshness assumptions; such
skeletons are called realized skeletons. Realized skeletons are a simplified rep-
resentation of actual protocol executions. Non-realized skeletons may represent
partial descriptions of actual executions, or may represent a set of conditions
inconsistent with any actual execution [36].

Formal Methods Analysis of the Secure Remote Password Protocol 107

The CPSA tool creates visualizations of skeletons as graphs in which events
are shown as circles in columns, where each column represents a strand. Within
each strand, time progresses downward. Arrows between strands indicate neces-
sary orderings (other than orderings within strands, or those that can be inferred
transitively). That is, an arrow from event P to event Q denotes that, for Q to
take place, it is necessary for P to take place first. A solid arrow represents a
transmission of some message to a reception of exactly that message. A dashed
arrow indicates that the adversary altered the message. The color of a circle indi-
cates the type of event: black circles are transmissions; blue circles are receptions;
and grey circles deal with state that is assumed to be not directly observable
by the attacker. A blue arrow from state event P to state event Q denotes that
Q’s strand observes, or transitions from, the state associated with P ; it can
appear only between two state events (e.g., grey circles) of different strands. For
example, Fig. 3 in Sect. 5.1 shows such a visualization.

2.3 PAKE Protocols

PAKE protocols evolved over time in response to new requirements and newly
discovered vulnerabilities in authentication protocols [10]. Initially, authentica-
tion over a network was carried out simply with a username and password sent in
the clear. Unlike terminals hardwired to a computer, networks provided new and
easier ways for intruders to acquire authentication credentials. Passively moni-
toring a network often harvested credentials sufficient to gain remote access to
systems. In the 1980’s, Kerberos [47] attempted to mitigate this vulnerability
by no longer transmitting passwords. Unfortunately, the structure of Kerberos
messages and the use of passwords as keys created opportunities for password
guessing and dictionary attacks against the passwords, without requiring the
intruder to acquire the password file directly from the server. Weak, user-chosen
passwords simplified such attacks.

In 1992, with their Encrypted Key Exchange (EKE) protocols, Bellovin and
Merrit [6] evolved PAKE protocols to address the weaknesses in user-generated
passwords as keys. In 1996, that work led Jablon [32] to develop the Simple Pass-
word Exponential Key Exchange (SPEKE), which is deployed in the ISO/IEC
11770-4 and IEEE 1363.2 standards. As did Kerberos, to complicate dictionary
attacks, SPEKE incorporated random salt values into its password computations.
Attacks against the protocol in 2004 [54], 2005 [48], and 2014 [31], prompted
modifications to the protocol. Although these and similar protocols aimed to
protect against the use of weak passwords for authentication, none protected
the passwords from attack on the server’s password file. Access to the server’s
password file provided keys to authenticate as any user on the system.

Protection of the server’s authentication file became a primary new require-
ment that Wu [51,52] aimed to address with the Secure Remote Password (SRP)
protocol in 1998. Wu addressed this requirement by not storing the password,
but instead a verifier consisting of a modular exponentiation of a generator raised
to the power of a one-way hash function of the password. Improving on earlier

108 A. T. Sherman et al.

PAKE protocols, the way SRP incorporates a random salt into the key computa-
tion prevents the direct use of server-stored verifiers as keys. In 2002, weaknesses
discovered against SRP-3 led Wu to propose a new version, SRP-6 [53].

Unfortunately, for each password, SRP publicly reveals the corresponding
salt, which facilitates pre-computation dictionary attacks on targeted pass-
words. Aware of this vulnerability, Wu nevertheless considered SRP a significant
improvement over what had come before. Avoiding pre-computation attacks led
to new approaches including the OPAQUE protocol [27,33,34].

2.4 Previous Work

SRP [49,50] is a widely used password-authenticated key-establishment proto-
col, which enables two communicants to establish a secret session key, provided
the communicants already know a common password. SRP is faster than the
authenticated Diffie-Hellman key exchange protocol, and it aims to avoid patent
infringement and export control. In this protocol, an initiator Alice (typically a
client) authenticates to a responder Bob (typically a server).

In this paper, we analyze the basic version of SRP called SRP-3. SRP-6
mitigates a two-for-one attack and decreases communication times by allowing
more flexible message orderings.

Against a passive adversary, SRP-3 seems to be as secure as the Diffie-
Hellman problem [17,28,39]. It remains possible, however, that a passive adver-
sary can acquire information from eavesdropping without solving the Diffie-
Hellman problem. Against an active adversary, the security of SRP-3 remains
unproven.

Wu [52] claims to prove a reduction from the Diffie-Hellman problem to
breaking SRP-3 against a passive adversary, but his proof is incorrect: his reduc-
tion assumes the adversary knows the password, which a passive adversary would
not know.3 We are not aware of any other previous effort to analyze the SRP
protocol.

Wilson et al. [7] survey authenticated Diffie-Helman key agreement protocols.
Adrian et al. [1] analyze how such protocols can fail in practice. Schmidt et al. [45]
present automated analysis of Diffie-Helman protocols.

As an example of formal analysis of a protocol using CPSA, we note: In 2009,
Ramsdell et al. [43] analyzed the CAVES attestation protocol using CPSA, pro-
ducing shapes that prove desirable authentication and confidentiality properties.
The tool successfully analyzed the protocol despite the presence of hash functions
and auxiliary long-term keys. As another example, which illustrates the utility
of service roles, see Lanus and Zieglar [35]. Corin, Doumen, and Etalle [15] sym-
bolically analyze offline guessing attacks.

3 Wu incorrectly states the direction of his reduction, but his reduction actually pro-
ceeds in the correct direction.

Formal Methods Analysis of the Secure Remote Password Protocol 109

3 The Secure Remote Password Protocol

Figure 1 summarizes how SRP-3 works, during which Alice and Bob establish a
secret session key K, leveraging a password P known to Alice and Bob.

In SRP-3, all math is performed in some prime-order group Zq, where q is a
large prime integer. Let g be a generator for this group. The protocol uses a hash
function h. For brevity, for any x ∈ Zq, we shall write gx to mean gx mod q.

SRP-3 works in three phases: I. Registration. II. Key Establishment and
III. Key Verification. The protocol establishes a new session key K known to
Alice and Bob, which they can use, for example, as a symmetric encryption key.

Phase I works as follows: Before executing the protocol, Alice must register
her password P with Bob. Bob stores the values (s, v) indexed by “Alice”, where
s is a random salt, x = h(s, P) is the salted hash value of Alice’s password, and
v = gx is a non-sensitive verifier derived from P , which does not reveal x or P .

P, s, x = h(s, P), v = gx s, vClient Server

client

s

a, ga ga
ga

gb, u b, u
v + gb,u

K = h((v + gb − v)a+ux)

= h((gb)a+ux)

= h(gb(a+ux))

K = h((ga(gx)u)b)

= h((gagux)b)

= h((ga+ux)b)

= h(gb(a+ux))

h(ga, v + gb,K)

h(ga, h(ga, v + gb,K),K)

Fig. 1. Protocol diagram for SRP-3, which comprises three phases: Registration, Key
Exchange, and Key Verification. During key exchange, the server transmits to the client
the expression v + gb mod q, which we cannot directly model in CPSA. Variables on
arrows inside the lattice diagram indicate message transmissions. Variables to the left
or right of the lattice indicate terms known to the participants and the relative time
within the protocol that they know them. Variables in solid boxes denote values chosen.
Variables in dashed boxes denote values received.

110 A. T. Sherman et al.

Phase II works as follows:

1. Alice sends her identity “Alice” to Bob.
2. Bob receives Alice’s identity and looks up Alice’s salt s and stored verifier

v = gx, where x = h(s, P). Bob sends Alice her salt s.
3. Alice receives s, calculates x = h(s, P), and generates a random secret

nonce a. Alice calculates and sends ga to Bob.
4. Bob receives ga and generates a random secret nonce b and a random scram-

bling parameter u. Bob calculates and sends v+ gb to Alice, together with u.
5. Each party calculates the session key K as the hash of a common value, which

each party computes differently. Alice calculates K = h((v + gb) − gx)a+ux

and Bob calculates K = h(gagux)b.

Thus, in Phase II, Alice and Bob establish a common session key K. In
Phase III, Alice and Bob verify that they have the same session key. Phase III
works as follows:

1. Alice computes M1 = h(ga, v + gb,K) and sends M1 to Bob. Bob verifies the
received value by recomputing M1 = h(ga, v + gb,K).

2. Bob computes M2 = h(ga,M1,K) and sends it to Alice. Alice verifies the
received value by recomputing M2 = h(ga,M1,K).

3. If and only if these two verifications succeed, the session key K is verified.

4 Modeling SRP-3 in CPSA

Using CPSA, we analyze SRP-3 in the Dolev-Yao network intruder model in
two steps: in this section, we model SRP-3 in CPSA; in the next section, we
interpret shapes produced by our model. Appendix A lists important snippets
of our CPSA sourcecode.

4.1 Challenges to Modeling SRP-3 in CPSA

CPSA provides two algebras to express protocols: basic and Diffie-Hellman. The
basic crypto algebra includes functions that support modeling of pairings, decom-
posing a pair into components, hashing, encrypting by symmetric and asymmet-
ric keys, decrypting by keys, returning the “inverse of a key” (a key that can
be used to decrypt), and returning a key associated with a name or pair of
names. CPSA does not support arithmetic operations. The Diffie-Hellman alge-
bra extends the basic crypto algebra by providing sorts (variable types) that
represent exponents and bases, as well as functions for a standard generator
g, a multiplicative identity for the group, exponentiation, and multiplication of
exponents.

SRP-3 is challenging to model in CPSA because CPSA does not support any
of the following computations: addition of bases when the server sends v + gb,
subtraction of bases when the client computes (v + gb) − v, and addition of expo-
nents (i.e., multiplication of bases) when the client computes the key. CPSA han-
dles only multiplication of exponents, and cannot be easily modified to handle

Formal Methods Analysis of the Secure Remote Password Protocol 111

these additional algebraic operations, because CPSA makes use of general uni-
fications in its class of messages, and a full decision procedure in the theory of
rings is undecidable [14].

4.2 Our Model of SRP-3

We model SRP-3 by defining variables, messages, and associated roles. Critical
modeling decisions are how to represent the problematic expression v + gb, how
to deal with multiplication of bases, and how to handle the initialization phase.
Figure 2 shows the SRP-3 protocol diagram as we modeled SRP-3 in CPSA.

There are two legitimate protocol participants, which we model by the client
and server roles (see Fig. 8). We organize each of these roles into two phases:
initialization and main. The initialization phase establishes and shares the pass-
word, and it establishes the salt and verifier in the long-term memory of the
server.

We model the problematic expression v+gb as {|gb|}v, which is the encryption
of gb using v as a symmetric key. Indeed, this modular addition resembles a
Vernam Cipher. Thus, knowing gb requires knowledge of v. Previous researchers
have similarly modeled modular addition or exclusive-or as encryption (e.g., see
Arapinis et al. [2] and Ryan and Schneider [44].)

The other problematic expressions occur in the calculation of the key. The
key K is supposed to be equal to (gb)a+ux. Here, each party calculates this
value by calculating gab and gbux and multiplying them together. The client can
calculate these values from gb by raising gb to the a power and to the ux power.
The server calculates these values by raising ga to the b power, and by raising
gx = v to the bu power.

We emulate the multiplication of these base values by hashing them; since
both parties can calculate the two factors, each can calculate the hash of the
two factors. Thus, we represent the key K as K = h(gab, gbux), where h stands
for cryptographic hashing.

Finally, we explain how we model the initialization phase, and in particular,
how the client communicates their salt and verifier to the server. In the beginning
of the client and server roles, one could exchange the salt and verifier as a
message. This strategy, however, would prevent CPSA from exploring scenarios
in which the same client or server conducts multiple executions of the protocol
using the same password information exchanged during initialization. Instead,
we model the initialization phase using service roles, which provide a function
or service to one or more participant roles. Our service roles generate values,
store them in state, and exchange the values across a secure channel. These
values persist in state that can be accessed only by instances of the appropriate
main-phase roles.

Specifically, the client-init service role initializes a state record with the value
{“client state”, s, x, client, server} (see Fig. 8). The “client state” string literal
serves the function of a label, enabling us to write client roles to observe state
that begins with that string. We store the salt and password hash because each
client role directly uses these values. The names of the client and server help to
link the state to the correct client-server pair.

112 A. T. Sherman et al.

client-init server-init

“client state,”
s, x

client, server

init

{|“Enroll,′′ s, gx|}client−server

“server record,”

s, v = gx

client, server

init

client server

client

obsv

s

a, ga ga
ga

gb, u b, gb, u{|gb|}v, u

K = h((gb)a, (gb)ux) K = h((ga)b, (gx)ub)

h(ga, {|gb|}v,K)

h(ga, h(ga, {|gb|}v,K),K)

Fig. 2. Protocol diagram for SRP-3, as we modeled it in CPSA. We introduce two
service roles, client-init and server-init, that handle the setup phase by instantiating
values for s, x, and v = gx, and by making these values available to the legitimate
client and server. We model the computation v+gb as an encryption of gb under key v.
The red circle indicates the variables stored inside the state. Solid lines pointing to
the circles denote initializing state values, and dashed lines indicate observing state.
(Color figure online)

After initializing its state, the client-init role sends a string literal “Enroll”,
together with the salt and verifier. The client-init role encrypts this message
using a long-term key known by the particular client and server. The server-init
role receives this message and initializes the server’s state by storing a string
literal “server record”, the salt and verifier, and the names of the client and
server.

To prevent CPSA from instantiating an unlimited number of server-init and
client-init roles, we add a rule that disregards any executions in which there is
more than one instance of the server-init role for a specific client-server pair (see
Fig. 9).

Formal Methods Analysis of the Secure Remote Password Protocol 113

The model above is sufficient to verify most of the security properties of SRP,
but cannot verify the property that compromise of the server’s authentication
database cannot be used directly to gain immediate access to the server. The
reason is that if SRP meets its security goals, the verifier v is not leaked to the
adversary by the protocol. Therefore, to test whether or not access to v allows
the adversary to impersonate a client to the server, we need to use a model
in which the server-init role is modified to transmit the verifier it receives for
a client. This model provides the adversary with access to v that they cannot
obtain from SRP. For this property, it is sufficient to test only the server’s point
of view. Compromise of a server’s authentication database would allow anyone to
impersonate a server to the client and is not a property that SRP was designed
to prevent.

5 Interpreting Shapes from the SRP-3 Model

We generate and interpret shapes showing executions of our model of SRP-3
under various assumptions from the perspectives of various roles. Specifically,
we define skeletons that provide the perspectives of an honest client and an
honest server, respectively (see Figs. 10 and 11). We also define listeners to detect
possible leaked values of the password hash x or verifier v (see Figs. 12 and 13).
Finally, we investigate if an adversary directly using a compromised verifier could
authenticate as a client (see Fig. 6). CPSA completed its search, generating all
possible shapes for each point of view (see [37] for an explanation).

Figures 3, 4, 5 and 6 display selected shapes that highlight our main findings.
These shapes show that, when the client and server are honest, there is no attack
against our model of SRP-3: the only way the protocol completes is between a
client and a server. Similarly, CPSA found no leakage of x or v. CPSA also found
that an adversary directly using a compromised verifier cannot authenticate as
a client without access to internal values of the server.

Our public GitHub repository [46] includes interactive web-based visualiza-
tions of our CPSA shapes and skeletons, which provide more detailed information
than do the static images in this paper.

5.1 Client Point of View

Figures 3 and 4 show the two shapes generated from the perspective of an honest
client. The first shape is what we had expected. One added client-init strand
provides state needed for the client to access password information, and one
added server-init strand provides password information to the server strand. The
solid lines in the shape prove that the messages must come from the expected
parties, and the shape closely reflects the protocol diagram for our model.

The second shape explores the possibility that the adversary could replay the
client’s initial message to the server resulting in the server beginning two protocol
runs with the client. We are able to verify that it is the same server by observing
that the server variables in both strands are instantiated with the same value.

114 A. T. Sherman et al.

Only one of the server strands is able to complete, because the messages between
the two runs of the protocol cannot be confused. The shape indicates that there
is not any way for the adversary to take advantage of initiating multiple runs of
the protocol with the server.

tini-tneilc revresserver-initclient

srp3 22 (realized)

Fig. 3. Shape showing an execution of SRP-3 from the client’s perspective. The client-
init service role begins the execution. The blue arrow from the client-init strand to the
client strand denotes that the client observes the initial state from client-init. Similarly,
the blue arrow from the server-init strand to the server strand denotes that the server
observes state from server-init. Horizontal black arrows between the client and server
represent successful message transmissions and receptions between these two protocol
participants. This graphical output from CPSA reveals expected behavior. (Color figure
online)

5.2 Server Point of View

Figure 5 shows the first of two shapes generated from the perspective of an
honest server. As happens for the client, two shapes result. The first shape is
similar to the protocol diagram for our model and is what we had expected. A
client is needed to complete the protocol, as are the service roles server-init and
client-init. The second shape indicates a replay of the client’s initial message
resulting in two server strands with the same server as indicated in the strands’
instantiated variables. As with the additional shape in the client’s view, only
one of the server’s strands is able to complete, indicating that there is no attack
against the protocol from the server point of view.

Formal Methods Analysis of the Secure Remote Password Protocol 115

tini-revres tini-tneilc revresserverclient

srp3 41 (realized)

Fig. 4. Shape showing an execution of SRP-3 from the client’s perspective, with an
additional run of the server. This graphical output from CPSA reveals two server roles
accessing the same state, causing them to behave like two instances of the same server.
The client can begin the protocol with one instance of the server, then complete it
with the other. This intriguing shape does not suggest any harmful attack but is an
unavoidable consequence of CPSA exploring two server strands.

tini-tneilc tneilcserver-initserver

srp3 5119 (realized)

Fig. 5. Shape showing an execution of SRP-3 from the server’s perspective. This figure
is similar to Fig. 3, except CPSA is now trying to explain the server events. CPSA is
able to explain the server events only by involving client-init, server-init, and client
roles, thus revealing expected behavior.

116 A. T. Sherman et al.

5.3 Privacy Properties

It is important that the password hash x = h(s, P) and the verifier v = gx

remain secret. To determine whether a network adversary can observe either of
these values in our model of SRP-3, we define two input skeletons to test these
privacy properties, one for x and one for v (see Figs. 12 and 13). Because the
client knows x, we add the listener for x to the client point of view. Similarly,
because the server knows v, we add the listener for v to the server point of view.
Listeners in CPSA represent a test that a value can be found by the adversary.

For each of these skeletons, we ran CPSA. In each case, CPSA returned an
empty tree, meaning that there is no way to realize the skeleton as a shape,
which means that no such attack is possible in our model. In each case, CPSA
ran to completion, indicating that it explored all possible shapes for the model.

5.4 Leaked Verifiers

CPSA analysis of listeners for v confirms that the SRP protocol does not leak
the verifier v. Therefore, to analyze the protocol when the adversary has access
to v, we modified server-init to leak the verifier to the adversary. In the presence
of this variant of the server-init role, CPSA discovered two main shapes: one is
the ordinary server point of view (Fig. 5); the other shows that the adversary is
able to impersonate a client if the verifier has indeed leaked (Fig. 6).

tini-tneilc tini-revresserver

srp 7022 (realized)

Fig. 6. Shape showing an execution of SRP-3 from the server’s perspective, when the
verifier is leaked to the adversary and u = b. It is suspicious that CPSA can explain
all server events without invoking the client. In the last event of the server-init strand,
the server-init leaks the verifier to the adversary. The dashed arrow indicates that the
adversary is able to use the leaked verifier, together with their knowledge of b (since u is
publicly known), to satisfy the server strand’s final event, and complete the protocol.
This shape indicates an attack where the adversary impersonates the client to the
server, when the adversary learns the verifier and b.

Formal Methods Analysis of the Secure Remote Password Protocol 117

The situation is more subtle. The adversary is able to impersonate the client
only if they know both v and b, as an adversary might learn if the adversary
comprised the server. Initially, in our model of SRP-3, we did not require that b
and u be distinct, only that they be uniquely generated. CPSA found the imper-
sonation attack in part because CPSA deduced that the adversary could learn b
if b = u, since SRP-3 reveals u. Subsequently, when we added an additional
assumption that b �= u, CPSA discovered only the expected shapes. This fact
validates the assertion that SRP is secure from an adversary directly using the
verifier to authenticate as a client without access to internal values of the server.

6 A Malicious Server Attack Against SRP

Our analysis in Sect. 5 assumes that legitimate participants of SRP-3 are honest,
meaning they will execute the protocol faithfully. In this section, we explore an
attack on SRP-3 in which the server is compromised. For example, an adversary
might corrupt the server to run a malicious process. In this attack, the malicious
server authenticates to itself, pretending to be a particular client, without the
client’s involvement. A possible goal of this attack might be for the malicious
server to escalate its privileges to those of the client, which might be higher than
those of the server. For example, a company might have a high-power, low-trust
offline computing server used by individuals with sensitive access elsewhere in
the network.

To analyze this attack, we define a malicious server role, which we call
malserver (see Fig. 14). We provide to malserver only the information that an
honest server would have access to by observing the state initialized by a server-
init role. Consequently, malserver must compute the key using the same method
as carried out by an honest server. Malserver also acts like a client, initiating
the protocol and sending messages consistent with those from the client role.
Figure 14 also defines an associated skeleton, which enables CPSA to compute a
strand of the malserver role.

Figure 7 shows the first of two shapes produced by CPSA from the malserver
skeleton. As for honest participants, CPSA also produced a second shape that
shows the protocol can be started and completed with two different honest server
roles on the same machine. Figure 7 shows the malserver initiating the protocol
by sending the client’s name and proceeding to interact with the server as though
it were the client, all the way through to the key verification messages. For
executions with a legitimate client, CPSA adds client-init and server-init strands,
as a result of the setup phase in which a client sends name, salt, and verifier to
the server. Here, however, there is no client strand. The server sends the final
black node on its strand only after the server verifies the hash provided by the
malserver strand, indicating that the server believes it is communicating with
the specified client.

The attack is possible because the malserver role is operating on the server
it is attacking (the server and malserver variables are equal) and has access to
the server’s internal values, as we discuss in the analysis of the leaked verifiers.

118 A. T. Sherman et al.

tini-tneilc revresserver-initmalserver

srp3 23 (realized)

Fig. 7. Shape showing an execution of SRP-3 from the perspective of a malicious server
impersonating the client. It is notable that CPSA can explain all events of the malicious
server strand, simply by the malicious server knowing the state of the honest server
(without the malicious server knowing the client’s password). This graphical output
from CPSA reveals that a malicious server can impersonate the client to itself (the
server), thereby potentially inheriting the client’s higher privileges.

Even though this attack is not a part of the Dolev-Yao model that CPSA uses,
by creating a special malserver role outside of the normal protocol roles, we were
able to coax CPSA to explore the attack. This approach is similar to work by
Basin and Cremers [4,5].

7 Discussion

We briefly discuss two limitations of our work: one arising from our modeling
of the problematic expression v + gb as encryption, the other arising from our
choice of CPSA’s point of view (see Sect. 2.2). We also comment briefly on our
experiences using CPSA.

Modeling the problematic expression as encryption enabled CPSA to carry
out its work. A consequence of this crucial decision, however, is that we analyzed
a slight variation of SRP-3 that might be stronger than SRP-3. By abstracting
these algebraic operations as strong encryption, our analysis cannot find possible
“algebraic attacks” that might take advantage of detailed algebraic relationships.
We are not aware of any such attacks on SRP-3 and do not suspect that they
exist, but we cannot exclude their possible existence. The consequences of this

Formal Methods Analysis of the Secure Remote Password Protocol 119

crucial modeling decision are similar to those from the common practice of mod-
eling a particular encryption function as a strong encryption function, which
excludes the possibility of finding attacks that exploit possible weaknesses in the
particular encryption function.

CPSA exhaustively explores possible executions of a protocol from a speci-
fied point of view and set of assumptions. Such analysis holds only when those
assumptions are satisfied for that point of view. For example, initially, CPSA did
not find the malicious server attack described in Sect. 6. CPSA did not find this
attack because the adversary requires access to variables v and b, that are not
available through the messages exchanged and the assumptions of the model.
We were able to show that SRP-3 does not leak those values. Similarly, initially,
CPSA could not verify SRP-3’s property that access to the state variable v by
the adversary would not allow the adversary to impersonate a client directly.
To verify that property would require a model that made v available to the
adversary.

Subsequently, we explored two models to investigate possible impersonation
attacks. One model gave the adversary v; the other model gave the adversary v
and b. With these models, CPSA showed that the adversary can impersonate
the client if they know v and b, but not if they know only v (see Sect. 5).

Different assumptions and points of view can influence analyses. All formal
methods tools explore properties only within a specified scope and do not find
attacks outside that scope. Although CPSA did not initially discover the mali-
cious server attack, we were able to enlarge CPSA’s scope of search to find it. It
is possible, however, that there might be additional attacks outside our scope of
search.

During our analysis of SRP-3, the graphical outputs of CPSA helped us gain
insights into the properties of the protocol. Nevertheless, using CPSA effectively
was challenging. It required learning a new complex language, gaining experi-
ence interpreting shapes, devising techniques to model algebraic expressions that
cannot be expressed directly in CPSA, and exploring ways to expand CPSA’s
point of view. Embodied as a virtual machine, our virtual protocol lab avoids
the need for users to carry out complex installation procedures for each tool.

We found the following existing techniques useful. (1) Service roles (e.g.,
client-init, server-init) permitted us to share state between protocol participants
(e.g., server, client) and, more generally, to model aspects of protocols that do
not directly involve communications among participants. (2) We modeled certain
algebraic expressions as basic cryptographic operations such as encryption or
hashing. (3) Defining additional protocol participants (e.g., listeners, malicious
server) enabled us to explore additional properties of SRP-3 and to expand the
capabilities of the Dolev-Yao adversary. We are sharing theses and other lessons
in our lab’s educational materials.

8 Conclusion

Using CPSA, we formally analyzed the SRP-3 protocol in the Dolev-Yao network
intruder model and found it free of major structural weakness. We did find a

120 A. T. Sherman et al.

weakness that a malicious server can fake an authentication session with a client
without the client’s participation, which might lead to an escalation of privilege
attack.

Limitations of our analysis stem in part from our cryptographic modeling.
CPSA will not find attacks that exploit weak cryptography, and our use of
CPSA will not find any algebraic attacks. As all tool users must, we trust the
correctness of CPSA and its execution. Our results do not speak to a vari-
ety of other potential issues, including possible implementation and configura-
tion errors when using SRP-3, inappropriate applications of it, and side-channel
attacks.

Open problems include formal analysis of other PAKE protocols [30], includ-
ing the recent OPAQUE protocol [27,33,34], which, unlike SRP, tries to resist
precomputation attacks by not revealing the salt values used by the server.
OPAQUE is the most promising new protocol possibly to replace SRP. Because
quantum computers can compute discrete logarithms in polynomial time, it
would be useful to study and develop post-quantum PAKE protocols [18] that
can resist quantum attack.

We hope that our work, as facilitated by the virtual protocol analysis lab cre-
ated at UMBC, will help raise the expectation of due diligence to include formal
analysis when designing, standardizing, adopting, and evaluating cryptographic
protocols.

Acknowledgments. We appreciate the helpful comments from Akshita Gorti and
the reviewers. Thanks also to John Ramsdell (MITRE) and other participants at the
Protocol eXchange for fruitful interactions. This research was supported in part by the
U.S. Department of Defense under CySP Capacity grants H98230-17-1-0387, H98230-
18-1-0321, and H98230-19-1-0308. Sherman, Golaszewski, Wnuk-Fink, Bonyadi, and
the UMBC Cyber Defense Lab were supported also in part by the National Science
Foundation under SFS grants DGE-1241576, 1753681, and 1819521.

To appear in Festschrift in Honour of Professor Andre Scedrov, Vivek Nigam, Editor,
LNCS, Springer (June 11, 2020).

A CPSA Sourcecode

We list critical snippets of CPSA sourcecode that we used to model SRP-3 and
carry out our analysis. A complete electronic version is available from our public
GitHub repository [46].

Formal Methods Analysis of the Secure Remote Password Protocol 121

Fig. 8. Modeling of SRP-3 in CPSA. We define four roles: client-init, server-init, client,
and server. The client-init and server-init roles are service roles that initialize common
values between the client and server roles.

122 A. T. Sherman et al.

(defrule at-most-one-server-init-per-client

(forall ((z0 z1 strd) (client server name))

(implies

(and (p "server-init" z0 1)

(p "server-init" z1 1)

(p "server-init" "client" z0 client)

(p "server-init" "client" z1 client)

(p "server-init" "server" z0 server)

(p "server-init" "server" z1 server))

(= z0 z1))

)

Fig. 9. Rule added to SRP-3 to prevent CPSA from instantiating an unlimited number
of server-init roles, which would prevent CPSA from terminating.

(defskeleton srp3

(vars (client server name))

(defstrand client 7 (server server) (client client))

(non-orig (ltk client server)))

Fig. 10. Client skeleton of SRP-3, which provides CPSA a starting point for analyzing
SRP-3 from the client’s perspective.

(defskeleton srp3

(vars (client server name))

(defstrand server 7 (server server) (client client))

(non-orig (ltk client server)))

Fig. 11. Server skeleton of SRP-3, which provides CPSA a starting point for analyzing
SRP-3 from the server’s perspective.

(defskeleton srp3

(vars (client server name))

(defstrand client 7 (server server) (client client))

(deflistener x)

(non-orig (ltk client server)))

Fig. 12. Client skeleton of SRP-3 with listener for the value x, which provides CPSA
a starting point for analyzing SRP-3 from the client’s perspective. The listener role
helps CPSA determine whether an execution of SRP-3 can leak the value x.

(defskeleton srp3

(vars (client server name))

(defstrand server 7 (server server) (client client))

(deflistener v)

(non-orig (ltk client server)))

Fig. 13. Server skeleton of SRP-3 with listener for the value v, which provides CPSA
a starting point for analyzing SRP-3 from the server’s perspective. The listener role
helps CPSA determine whether an execution of SRP-3 can leak the value v.

Formal Methods Analysis of the Secure Remote Password Protocol 123

(defrole malserver

(vars (client server name) (a rndx) (b u expt) (s text) (v base))

(trace

(send client)

(recv s)

(obsv (cat "Server record" s v client server))

(send (exp (gen) a))

(recv (cat (enc (exp (gen) b) v) u))

(send (hash (exp (gen) a)

(enc (exp (gen) b) v) u

(hash (exp (gen) (mul a b)) (exp v (mul u b)))))

(recv (hash (exp (gen) a)

(hash (exp (gen) a)

(enc (exp (gen) b) v) u

(hash (exp (gen) (mul a b)) (exp v (mul u b))))

(hash (exp (gen) (mul a b)) (exp v (mul u b))))))

(uniq-gen a)

)

(defskeleton srp3

(vars (client server name))

(defstrand malserver 7 (server server) (client client))

(non-orig (ltk client server)))

Fig. 14. Modeling a malicious server in CPSA. We define the malserver role to behave
like a client while having access to the legitimate server’s initialized variables. The
associated skeleton provides CPSA a starting point for analyzing the malicious server
attack from the perspective of the malicious server.

References

1. Adrian, D., et al.: Imperfect forward secrecy: how Diffie-Hellman fails in practice.
In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Commu-
nications Security, CCS 2015, pp. 5–17. ACM, New York (2015). https://doi.org/
10.1145/2810103.2813707

2. Arapinis, M., et al.: New privacy issues in mobile telephony: fix and verification.
In: Proceedings of the 2012 ACM Conference on Computer and Communications
Security, CCS 2012, pp. 205–216. Association for Computing Machinery, New York
(2012). https://doi.org/10.1145/2382196.2382221

3. Bartzia, E.-I., Strub, P.-Y.: A formal library for elliptic curves in the Coq proof
assistant. In: Klein, G., Gamboa, R. (eds.) ITP 2014. LNCS, vol. 8558, pp. 77–92.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08970-6 6

4. Basin, D., Cremers, C.: Modeling and analyzing security in the presence of compro-
mising adversaries. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS
2010. LNCS, vol. 6345, pp. 340–356. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-15497-3 21

5. Basin, D., Cremers, C.: Know your enemy: compromising adversaries in proto-
col analysis. ACM Trans. Inf. Syst. Secur. 17(2) (2014). https://doi.org/10.1145/
2658996

https://doi.org/10.1145/2810103.2813707
https://doi.org/10.1145/2810103.2813707
https://doi.org/10.1145/2382196.2382221
https://doi.org/10.1007/978-3-319-08970-6_6
https://doi.org/10.1007/978-3-642-15497-3_21
https://doi.org/10.1007/978-3-642-15497-3_21
https://doi.org/10.1145/2658996
https://doi.org/10.1145/2658996

124 A. T. Sherman et al.

6. Bellovin, S.M., Merritt, M.: Encrypted key exchange: password-based protocols
secure against dictionary attacks. In: IEEE Symposium on Research in Security
and Privacy, pp. 72–84, May 1992

7. Blake-Wilson, S., Menezes, A.: Authenticated Diffie-Hellman key agreement pro-
tocols. In: Proceedings of the Selected Areas in Cryptography, SAC 1998, pp.
339–361. Springer, Heidelberg (1999). http://dl.acm.org/citation.cfm?id=646554.
694440

8. Blanchet, B., Smyth, B., Cheval, V.: Proverif 1.90: automatic cryptographic pro-
tocol verifier, user manual and tutorial (2015). http://prosecco.gforge.inria.fr/
personal/bblanche/proverif/manual.pdf

9. Böhl, F., Unruh, D.: Symbolic universal composability. J. Comput. Secur. 24(1),
1–38 (2016)

10. Boneh, D., Shoup, V.: A graduate course in applied cryptography version 0.5, Jan-
uary 2020. https://crypto.stanford.edu/∼dabo/cryptobook/BonehShoup 0 5.pdf

11. Browning, S.: Cryptol, a DSL for cryptographic algorithms. In: ACM SIGPLAN
Commercial Users of Functional Programming, p. 1. ACM (2010)

12. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: Proceedings of the 42nd IEEE Symposium on Foundations of Com-
puter Science, FOCS 2001, p. 136. IEEE Computer Society, USA (2001)

13. Canetti, R., Stoughton, A., Varia, M.: EasyUC: using EasyCrypt to mechanize
proofs of universally composable security. In: 2019 IEEE 32nd Computer Security
Foundations Symposium (CSF), pp. 167–183 (2019)

14. Church, A.: An unsolvable problem of elementary number theory. Am. J. Math.
58(2), 345–363 (1936)

15. Corin, R., Doumen, J., Etalle, S.: Analysing password protocol security against off-
line dictionary attacks. Electron. Notes Theoret. Comput. Sci. 121, 47–63 (2005)

16. Delaune, S., Kremer, S., Pereira, O.: Simulation based security in the applied
pi calculus. In: Kannan, R., Kumar, K.N. (eds.) IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science. Leibniz
International Proceedings in Informatics (LIPIcs), vol. 4, pp. 169–180. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2009). http://
drops.dagstuhl.de/opus/volltexte/2009/2316

17. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theor.
22(6), 644–654 (2006). https://doi.org/10.1023/A:1008302122286

18. Ding, J., Alsayigh, S., Lancrenon, J., RV, S., Snook, M.: Provably secure pass-
word authenticated key exchange based on RLWE for the post-quantum world.
In: Handschuh, H. (ed.) CT-RSA 2017. LNCS, vol. 10159, pp. 183–204. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-52153-4 11

19. Doghmi, S., Guttman, J., Thayer, F.J.: Skeletons and the shapes of bundles. In:
Proceedings of the 7th International Workshop on Issues in the Theory of Security,
pp. 24–25 (2006)

20. Doghmi, S.F., Guttman, J.D., Thayer, F.J.: Searching for shapes in cryptographic
protocols. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp.
523–537. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71209-
1 41

21. Dolev, D., Yao, A.C.: On the security of public key protocols. In: Proceedings of
the 22nd Annual Symposium on Foundations of Computer Science, SFCS 1981,
pp. 350–357. IEEE Computer Society, Washington, DC (1981). https://doi.org/
10.1109/SFCS.1981.32

http://dl.acm.org/citation.cfm?id=646554.694440
http://dl.acm.org/citation.cfm?id=646554.694440
http://prosecco.gforge.inria.fr/personal/bblanche/proverif/manual.pdf
http://prosecco.gforge.inria.fr/personal/bblanche/proverif/manual.pdf
https://crypto.stanford.edu/~dabo/cryptobook/BonehShoup_0_5.pdf
http://drops.dagstuhl.de/opus/volltexte/2009/2316
http://drops.dagstuhl.de/opus/volltexte/2009/2316
https://doi.org/10.1023/A:1008302122286
https://doi.org/10.1007/978-3-319-52153-4_11
https://doi.org/10.1007/978-3-540-71209-1_41
https://doi.org/10.1007/978-3-540-71209-1_41
https://doi.org/10.1109/SFCS.1981.32
https://doi.org/10.1109/SFCS.1981.32

Formal Methods Analysis of the Secure Remote Password Protocol 125

22. Dreier, J., Duménil, C., Kremer, S., Sasse, R.: Beyond subterm-convergent
equational theories in automated verification of stateful protocols. In: Maf-
fei, M., Ryan, M. (eds.) POST 2017. LNCS, vol. 10204, pp. 117–
140. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54455-6 6.
https://hal.inria.fr/hal-01430490/document

23. Escobar, S., Meadows, C., Meseguer, J.: A rewriting-based inference system for
the NRL protocol analyzer and its meta-logical properties. Theoret. Comput. Sci.
367(1–2), 162–202 (2006)

24. Escobar, S., Meadows, C., Meseguer, J.: Maude-NPA: cryptographic protocol
analysis modulo equational properties. In: Aldini, A., Barthe, G., Gorrieri, R.
(eds.) FOSAD 2007-2009. LNCS, vol. 5705, pp. 1–50. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03829-7 1

25. Escobar, S., Meadows, C., Meseguer, J.: Maude-NPA, Version 3.0, April 2017
26. Fabrega, F.J.T., Herzog, J.C., Guttman, J.D.: Strand spaces: why is a security

protocol correct? In: Proceedings of the 1998 IEEE Symposium on Security and
Privacy (Cat. No. 98CB36186), pp. 160–171, May 1998. https://doi.org/10.1109/
SECPRI.1998.674832

27. Green, M.: Let’s talk about PAKE, October 2018. https://blog.cryptographyeng
ineering.com/2018/10/19/lets-talk-about-pake/

28. Green, M.: Should you use SRP? October 2018. https://blog.cryptographyeng
ineering.com/should-you-use-srp/

29. Guttman, J.D., Liskov, M.D., Ramsdell, J.D., Rowe, P.D.: The Cryptographic
Protocol Shapes Analyzer (CPSA). https://github.com/mitre/cpsa

30. Haase, B., Labrique, B.: AuCPace: Efficient verifier-based PAKE protocol tailored
for the IIoT. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019, 1–48 (2018)

31. Hao, F., Shahandashti, S.F.: The SPEKE protocol revisited. In: Chen, L., Mitchell,
C. (eds.) SSR 2014. LNCS, vol. 8893, pp. 26–38. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-14054-4 2

32. Jablon, D.P.: Strong password-only authenticated key exchange. ACM Comput.
Commun. Rev. 26(5), 5–26 (1996)

33. Jarecki, S., Krawczyk, H., Xu, J.: OPAQUE: An asymmetric PAKE protocol secure
against pre-computation attacks. Cryptology ePrint Archive, Report 2018/163
(2018). https://eprint.iacr.org/

34. Jarecki, S., Krawczyk, H., Xu, J.: OPAQUE: an asymmetric PAKE protocol secure
against pre-computation attacks. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018. LNCS, vol. 10822, pp. 456–486. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-78372-7 15

35. Lanus, E., Zieglar, E.: Analysis of a forced-latency defense against man-in-the-
middle attacks. J. Inf. Warfare 16(2), 66–78 (2017). https://www.jstor.org/stable/
26502758

36. Liskov, M.D., Ramsdell, J.D., Guttman, J.D., Rowe, P.D.: The Cryptographic
Protocol Shapes Analyzer: A Manual. The MITRE Corporation (2016)

37. Liskov, M.D., Rowe, P.D., Thayer, F.J.: Completeness of CPSA. Technical report
MTR110479, The MITRE Corporation (2011)

38. Lowe, G.: An attack on the Needham-Schroeder public-key authentication protocol.
Inf. Process. Lett. 56(3), 131–133 (1995). http://www.sciencedirect.com/science/
article/pii/0020019095001442

39. Maurer, U.M., Wolf, S.: The Diffie-Hellman protocol. Des. Codes Cryptography
19(2–3), 147–171 (2000). https://doi.org/10.1023/A:1008302122286

40. Meadows, C.: NRL protocol analyzer. J. Comput. Secur. 1(1) (1992)

https://doi.org/10.1007/978-3-662-54455-6_6
https://hal.inria.fr/hal-01430490/document
https://doi.org/10.1007/978-3-642-03829-7_1
https://doi.org/10.1109/SECPRI.1998.674832
https://doi.org/10.1109/SECPRI.1998.674832
https://blog.cryptographyengineering.com/2018/10/19/lets-talk-about-pake/
https://blog.cryptographyengineering.com/2018/10/19/lets-talk-about-pake/
https://blog.cryptographyengineering.com/should-you-use-srp/
https://blog.cryptographyengineering.com/should-you-use-srp/
https://github.com/mitre/cpsa
https://doi.org/10.1007/978-3-319-14054-4_2
https://doi.org/10.1007/978-3-319-14054-4_2
https://eprint.iacr.org/
https://doi.org/10.1007/978-3-319-78372-7_15
https://doi.org/10.1007/978-3-319-78372-7_15
https://www.jstor.org/stable/26502758
https://www.jstor.org/stable/26502758
http://www.sciencedirect.com/science/article/pii/0020019095001442
http://www.sciencedirect.com/science/article/pii/0020019095001442
https://doi.org/10.1023/A:1008302122286

126 A. T. Sherman et al.

41. Needham, R.M., Schroeder, M.D.: Using encryption for authentication in large
networks of computers. Commun. ACM 21(12), 993–999 (1978). https://doi.org/
10.1145/359657.359659

42. Paulson, L.C.: Relations between secrets: two formal analyses of the Yahalom pro-
tocol. J. Comput. Secur. 9(3), 197–216 (2001)

43. Ramsdell, J.D., Guttman, J.D., Millen, J.K., O’Hanlon, B.: An analysis of the
CAVES attestation protocol using CPSA. arXiv preprint arXiv:1207.0418 (2012)

44. Ryan, P.Y.A., Schneider, S.A.: An attack on a recursive authentication protocol.
A cautionary tale. Inf. Process. Lett. 65(1), 7–10 (1998). https://doi.org/10.1016/
S0020-0190(97)00180-4

45. Schmidt, B., Meier, S., Cremers, C., Basin, D.: Automated analysis of Diffie-
Hellman protocols and advanced security properties. In: 2012 IEEE 25th Computer
Security Foundations Symposium, pp. 78–94, June 2012

46. Sherman, A.T., et al.: PAL GitHub repository, June 2020. https://github.com/
egolaszewski/UMBC-Protocol-Analysis-Lab

47. Steiner, J.G., Neuman, B.C., Schiller, J.I.: Kerberos: an authentication service for
open network systems. In: Proceedings Winter USENIX Conference, pp. 191–202
(1988)

48. Tang, Q., Mitchell, C.J.: On the security of some password-based key agreement
schemes. In: Hao, Y., et al. (eds.) CIS 2005. LNCS (LNAI), vol. 3802, pp. 149–154.
Springer, Heidelberg (2005). https://doi.org/10.1007/11596981 22

49. Taylor, D., Wu, T., Mavrogiannopoulos, N., Perrin, T.: RFC 5054, Using the secure
remote password (SRP) protocol for TLS authentication. Technical report, RFC
Editor, November 2007. https://doi.org/10.17487/rfc5054

50. Wu, T.: RFC 2944, Telnet Authentication: SRP. Technical report, RFC Editor,
September 2000. https://doi.org/10.17487/rfc2944

51. Wu, T.: The secure remote password protocol. In: Proceedings of the Internet
Society on Network and Distributed System Security (1998)

52. Wu, T.: The SRP Authentication and Key Exchange System, RFC 2945, September
2000

53. Wu, T.: SRP-6: Improvements and Refinements to the Secure Remote Password
Protocol, October 2002

54. Zhang, M.: Analysis of the SPEKE password-authenticated key exchange protocol.
IEEE Commun. Lett. 8(1), 63–65 (2004). https://doi.org/10.1109/LCOMM.2003.
822506

https://doi.org/10.1145/359657.359659
https://doi.org/10.1145/359657.359659
http://arxiv.org/abs/1207.0418
https://doi.org/10.1016/S0020-0190(97)00180-4
https://doi.org/10.1016/S0020-0190(97)00180-4
https://github.com/egolaszewski/UMBC-Protocol-Analysis-Lab
https://github.com/egolaszewski/UMBC-Protocol-Analysis-Lab
https://doi.org/10.1007/11596981_22
https://doi.org/10.17487/rfc5054
https://doi.org/10.17487/rfc2944
https://doi.org/10.1109/LCOMM.2003.822506
https://doi.org/10.1109/LCOMM.2003.822506

The Hitchhiker’s Guide to Decidability
and Complexity of Equivalence Properties

in Security Protocols

Vincent Cheval, Steve Kremer(B), and Itsaka Rakotonirina

Inria Nancy Grand-Est & LORIA, Villers-lès-Nancy, France
steve.kremer@inria.fr

Abstract. Privacy-preserving security properties in cryptographic pro-
tocols are typically modelled by observational equivalences in process
calculi such as the applied pi-calculus. We survey decidability and com-
plexity results for the automated verification of such equivalences, cast-
ing existing results in a common framework which allows for a precise
comparison. This unified view, beyond providing a clearer insight on the
current state of the art, allowed us to identify some variations in the
statements of the decision problems—sometimes resulting in different
complexity results. Additionally, we prove a couple of novel or strength-
ened results.

Keywords: Formal verification · Cryptographic protocols ·
Complexity

1 Introduction

Symbolic verification techniques for security protocols can be traced back to the
seminal work of Dolev and Yao [38]. Today, after more than 30 years of active
research in this field, efficient and mature tools exist, e.g. ProVerif [15] and
Tamarin [50] to only name the most prominent ones. These tools are able to
automatically verify full fledged models of widely deployed protocols and stan-
dards, such as TLS [14,34], Signal [29,47], the upcoming 5G standard [11], or
deployed multi-factor authentication protocols [45]. We argue that the develop-
ment of such efficient tools has been possible due to a large amount of more the-
oretical work that focuses on understanding the precise limits of decidability and
the computational complexity of particular protocol classes [30,39–41,46,49].

The abovementioned results extensively cover verification for the class of
reachability properties. Such properties are indeed sufficient to verify authen-
tication properties and various flavors of confidentiality, even in complex sce-
narios with different kinds of compromise [10]. Another class of properties are

The research leading to these result has received funding from the ERC under the EU’s
H2020 research and innovation program (grant agreements No 645865-SPOOC), as well
as from the French ANR project TECAP (ANR-17-CE39-0004-01). Itsaka Rakotonirina
benefits from a Google PhD Fellowship.

c© Springer Nature Switzerland AG 2020
V. Nigam et al. (Eds.): Scedrov Festschrift, LNCS 12300, pp. 127–145, 2020.
https://doi.org/10.1007/978-3-030-62077-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62077-6_10&domain=pdf
https://doi.org/10.1007/978-3-030-62077-6_10

128 V. Cheval et al.

indistinguishability properties. These properties express that an adversary can-
not distinguish two situations and are conveniently modelled as observational
equivalences in a cryptographic process calculus, such as the applied pi calcu-
lus. Such equivalences can indeed be used to model strong flavors of secrecy, in
terms of non-interference or as a “real-or-random” experiment. Equivalences are
also the tool of choice to model many other privacy-preserving properties. Such
properties include anonymity [3], unlinkability properties [6,42], as well as vote
privacy [37] to give a few examples. Equivalence properties are inherently more
complex than reachability properties, and both the theoretical understanding
and tool support are more recent and more brittle. This state of affairs triggered
a large amount of recent works to increase our theoretical understanding and
improve tool support.

In this paper we give an extensive overview of decidability and complexity
results for several process equivalences. In particular, in this survey we give
a unified view, allowing us to highlight subtle differences in the definitions of
the decision problems across the literature (such as whether the term theory is
part of the input or not) as well as the protocol models. Typically, models may
vary in whether they allow for a bounded or unbounded number of sessions, the
support of cryptographic primitives, whether they support else branches (i.e.
disequality tests, rather than only equality tests), and various restrictions on
non-determinism. Additionally, our technical report [25] contains full proofs of
all results that are novel or that required additional arguments to make up for the
differences in stating the problem compared to the original work. All the results
are summarised in Table 1, and we identify several open questions. Delaune and
Hirschi [36] also survey symbolic methods for verifying equivalence properties.
However, they mainly discuss tool support whereas we focus on computational
complexity.

2 Model

We will model protocols as processes in the applied pi calculus, and cryptographic
primitives are modelled using terms equipped with rewrite rules. We assume the
reader is familiar with these notions and only recall them briefly and informally.
A fully-detailed model can be found in the technical report [25].

Cryptographic Primitives. As usual in symbolic protocol analysis we take an
abstract view of cryptography and model the messages exchanged during the
protocol as terms built over a set of function symbols each with a given arity.
Terms are then either atomic values or function symbols applied to other terms,
respecting the function’s arity. Atomic values are either constants, i.e., function
symbols of arity 0 or names. Constants, sometimes referred to as public names,
model public values, such as agent identities or protocol tags. Names model
secret values, such as keys or nonces, and are a priori unknown to the adversary.
We assume an infinite set of constants and names.

Decidability and Complexity of Equivalence Properties in Security Protocols 129

Example 1. For example the encryption of a plaintext m with a key k using a
symmetric encryption scheme senc is modelled by the term senc(m, k). �

The functional properties of the symbols are modelled by an equational theory.
In this work we restrict ourselves to equational theories that can be oriented into
a convergent rewriting system. This also implies that any term t has a unique
normal from t↓.

Example 2. The rewrite rule sdec(senc(x, y), y) → x defines the behaviour of the
encryption scheme: one can decrypt (apply sdec) a ciphertext senc(x, y) with the
corresponding key y to recover the plaintext x. This behaviour is idealised by
the absence of other rules for senc and sdec, modelling an assumption that no
information can be extracted from a ciphertext except by possessing the decryp-
tion key. Similarly, asymmetric encryption can be modelled by the rewrite rule
adec(aenc(x, pk(y)), y) → x where pk is a symbol of arity 1 modelling pub-
lic keys. Such rewrite rules can express a broad range of other primitives like
pairs (fst(〈x, y〉) → x and snd(〈x, y〉) → y), hash functions (no rewrite rule)
or randomised encryption (adding an additional argument to senc to explicitly
represent the randomness). �

In this survey we call a theory the set of non-constant function symbols together
with a rewriting system. Two classes of theories are particularly important for
our results. The first is the class of subterm convergent theories [2,12,16,22,28,
31], defined by a syntactic criterion on rewriting rules � → r requiring that r
is either a strict subterm of � or a ground term in normal form. The second
is the class of constructor-destructor theories [16,20,22], partitioning function
symbols into constructor (used to build terms) and destructors (only used in
rewrite rules). In constructor-destructor theories any rewrite rule � → r is such
that � = d(t1, . . . , tn) where d is a destructor and t1, . . . , tn, r do not contain any
destructor. Moreover, we assume a message predicate msg(t) which holds if u↓
does not contain any destructor symbol for all subterms u of t, i.e., all destructor
applications in t succeeded yielding a valid message. This predicate is used to
restrict to protocols that only send and accept such well-formed messages.

Protocols. Protocols are defined using processes in the applied pi calculus. The
syntax of protocols is defined by the grammar of processes:

P,Q ::= 0 if u = v then P else Q c(x).P c〈u〉.P P | Q

Intuitively the 0 models a terminated process, a conditional if u = v then P else Q
executes either P or Q depending on whether the terms u↓ and v↓ are equal,
and P | Q models two processes executed concurrently. The constructs c(x).P
and c〈u〉.P model, respectively, inputs and outputs on a communication channel
c. When the channel c is known to the attacker, e.g. when it is a constant,
executing an output on c adds it to the adversary’s knowledge and inputs on c are
fetched from the adversary possibly forwarding a previously stored message, or
computing a new message from previous outputs. Otherwise the communication

130 V. Cheval et al.

is performed silently without adversarial interferences. To model an unbounded
number of protocol sessions we also add the two constructs

P,Q ::= new k.P !P

The replication !P models an unbounded number of parallel copies of P , and
new k.P creates a fresh name k unknown to the attacker; in particular !new k.P
models an unbounded number of sessions, each with a different fresh key. The
fragment of the calculus without replication is referred to as finite or bounded.
Another notable subclass is the original pi-calculus [48], referred to as the pure
fragment, that can be retrieved with the empty theory (only names, constants
and an empty rewrite system).

Semantics in an Adversarial Environment. The behaviour of processes is for-
malised by an operational semantics. The detailed presentation differs from one
work to another [1,21,22] and we only give a high-level overview here. It takes
the form of a transition relation (P,Φ) α−→ (P ′, Φ′) on configurations (P,Φ) where
P is the process to be executed, and Φ is called a frame and records the attacker
knowledge. A frame is a substitution of the form {ax1 �→ t1, . . . , axn �→ tn} where
ti are previous outputs and axi are special variables called axioms that serve as
handles to the adversary for building new terms. The label α of the transition
step is called an action and is either

• an unobservable action τ which represents an internal action, such as the
evaluation of a conditional or a communication on a private channel;

• an input action ξc(ξt) where ξc (resp. ξt) represents the attacker’s computa-
tion of the input’s public channel (resp. of the term to be input), see recipes
in the next section;

• an output action ξc〈axi〉 where ξc is again the attacker’s computation of the
channel, and the underlying output term is added to the frame as axiom axi.

We refer to the technical report [25] for full details of the semantics but provide
additional intuition through the following example. Suppose that an agent S
wants to send a nonce N to a recipient R. Assuming S and R already share a
secret ks , S encrypts N and ks with the public key of R, i.e. pk(kR) where kR is
the corresponding private key. When receiving a message, R acknowledges the
nonce only if the plaintext contains the shared secret. This is modelled by the
following process:

P = S | R with S = c〈M〉 where M = aenc(〈N, ks〉, pk(kR))
and R = c(x). if snd(adec(x, kR)) = ks then c〈ack〉 else 0

with ks , kR, N ∈ N and c ∈ Σ0. The 0 processes are omitted. The fact that
the public key should be known to the attacker is modelled by a frame Φ0 =
{ax0 �→ pk(kR)}. A “normal” execution of the protocol would be, with informal
notations:

Decidability and Complexity of Equivalence Properties in Security Protocols 131

(S | R,Φ0)
c〈ax1〉−−−−→ (0 | R,Φ1) with Φ1 = Φ0 ∪ {ax1 �→ M} (1)
c(ax1)−−−−→ (0 | if snd(adec(M,kR)) = ks then c〈ack〉 else 0, Φ1) (2)
τ−→ (0 | c〈ack〉, Φ1) (3)
c〈ax2〉−−−−→ (0 | 0, Φ1 ∪ {ax2 �→ ack}) (4)

Here the attacker is passive and only forwards messages. More precisely in tran-
sition (1), S sends M which is added to the frame as reference ax1. This models
that the attacker spies on the communication network and gets access to all
messages sent on public channels like c. In transition (2) the attacker forwards
M to R, i.e. inputs ax1. Transition (3) is an internal test of R which leads to
the final acknowledgement output (4). An active attacker would also have the
capability of forging new messages and inserting them in the execution flow.

For example transition (2) can be replaced by the input
c(aenc(〈a,b〉,ax0))−−−−−−−−−−−→ with

a, b ∈ Σ0: rather than forwarding M the attacker encrypts the pair of constants
a, b with the public key of R (using reference ax0) and sends it to R. In this
modified execution the subsequent test would however fail. Finally let us men-
tion that for constructor-destructor theories, all attacker-crafted terms must be
valid messages, i.e. satisfy the predicate msg [22,27].

When defining security against an active attacker we quantify over all such
transitions which means we consider all possible executions in an active adver-
sarial environment. Thus even the bounded fragment yields an infinite transition
system if the theory contains a non-constant function symbol (as this allows to
build an unbounded number of messages).

3 Complexity of Static Equivalence (Passive Attacker)

3.1 Static Equivalence

Attacker Knowledge. As explained above, frames Φ = {ax1 �→ t1, . . . , axn �→ tn}
record the outputs ti performed during the execution of a process. They therefore
enable adversarial deductions as they aggregate: for example after observing a
ciphertext and the decryption key, the attacker can also obtain the plaintext
by decrypting. Formally we say that one can deduce all terms of the form ξΦ↓
where ξ is called a recipe that is a term built from function symbols, axioms
axi ∈ dom(Φ), and constants. Recipes were mentioned in the previous section,
in the operational semantics, as the way to specify attacker’s computations. The
fact that recipes cannot contain names models that names are assumed unknown
to the adversary initially. For example in Φ = {ax1 �→ senc(t, k), ax2 �→ k} the
term t is deducible by the recipe sdec(ax1, ax2), regardless of k being a name
(which is not allowed to occur directly in the recipe).

Indistinguishability. Some security properties against a passive attacker, i.e.
a simple eavesdropper, can then be modelled as an observational equivalence
of two frames: intuitively no equality test can be used to distinguish them.

132 V. Cheval et al.

For example, in a protocol that outputs a sequence of messages t1, . . . , tn, the
“real-or-random” confidentiality of a key k can be modelled as the equivalence
of

Φ = {ax1 �→ t1, . . . , axn �→ tn, ax �→ k} Ψ = {ax1 �→ t1, . . . , axn �→ tn, ax �→ k′}

where k′ is a fresh key. More formally, two frames Φ, Ψ with same domain are
statically equivalent when for all recipes ξ1, ξ2 we have that

ξ1Φ↓= ξ2Φ↓ ⇐⇒ ξ1Ψ↓= ξ2Ψ↓ .

In constructor-destructor theories we also require that msg(ξ1Φ) iff msg(ξ1Ψ),
modelling an assumption that the adversary can observe destructor failures.

Example 3. If k, k′ are names, Φ = {ax �→ k} and Ψ = {ax �→ k′} are equiv-
alent, capturing the intuition that random keys cannot be distinguished. How-
ever, for the constant 0, Φ = {ax1 �→ senc(0, k), ax2 �→ k} and Ψ = {ax1 �→
senc(0, k), ax2 �→ k′} are not equivalent since ξ1 = sdec(ax1, ax2) and ξ2 = 0 are
equal in Φ but not in Ψ . �

3.2 Complexity Results

We study the following decision problem referred to as StatEq:

Input: A theory, two frames of same domain.
Question: Are the two frames statically equivalent for this theory?

General Case. As rewriting is Turing-complete, unsurprisingly static equivalence
is undecidable in general for convergent rewriting systems [2]. It is also proved in
[2] that the Deducibility problem (given a term t and a frame Φ, is t deducible
in Φ?) reduces to StatEq. As a consequence, the results of [5] imply that static
equivalence is also undecidable for so-called optimally-reducing rewrite systems,
a subclass of rewrite systems that have the finite-variant property [17].

Subterm Convergent Theories. Historically, complexity results for static equiv-
alence only considered fixed theories [2,12], that is, the theory was not part of
the input of the problem and its size was seen as a constant in the complexity
analysis. This was consistent with most formalisms and verification tools at the
time, which would not allow for user-defined theories and only consider a fixed
set of cryptographic primitives, such as in the spi-calculus for example [4]. In
particular fixed theories are considered in the following result:

Theorem 1 ([2]). For all fixed subterm convergent theories StatEq is PTIME.

Generic PTIME-completeness results would make no sense when the theory
is not part of the input, since the complexity may depend of it. Typically when
using an empty theory the complexity changes:

Decidability and Complexity of Equivalence Properties in Security Protocols 133

Theorem 2 ([22]). In the pure pi-calculus, StatEq is LOGSPACE.

However, in some sense, the PTIME bound is optimal since it is possible to
provide a hardness result for a large class of fixed subterm convergent theories:

Theorem 3. For all fixed theories containing symmetric encryption, StatEq is
PTIME-hard.

Proof. (Sketch). We proceed by reduction from HornSAT. Let X the set of
variables of a Horn formula ϕ = C1 ∧ . . .∧Cn, and kx names for all x ∈ X ∪{⊥}.
Then to each clause C = x1, . . . , xn ⇒ x, x ∈ X ∪ {⊥} we associate the term

tC = senc(. . . senc(senc(kx, kx1), kx2), . . . , kxn
) .

Putting kx under several layers of encryption ensures that kx is deducible if
all the keys kx1 , . . . , kxn

are deducible as well. In particular k⊥ is deducible
from the terms tC1 , . . . , tCn

iff the formula ϕ is unsatisfiable. Hence given two
constants 0,1, and Φ = {ax1 �→ tC1 , . . . , axn �→ tCn

}, we have that the frames
Φ ∪ {ax �→ senc(0, k⊥)} and Φ ∪ {ax �→ senc(1, k⊥)} are statically equivalent iff
ϕ is satisfiable. ��

However tools have improved since then and automated provers like Kiss [28],
Yapa [13] or Fast [31] are able to handle user-defined theories. It is therefore
interesting today to refer to complexity analyses that account for the size of the
rewrite system:

Theorem 4 ([22]). StatEq is coNP-complete for subterm convergent theories.

Beyond Subterm Convergence. Although we are not aware of complexity results
for the decision of static equivalence for classes larger than subterm theories,
there exist decidability results. Some of the abovementioned tools, like Kiss and
Yapa, can actually handle most convergent rewriting system; but they naturally
fail to terminate in general by undecidability of the problem. However it is proved
in [28] that the termination of Kiss is guaranteed for theories modelling blind
signatures or trapdoor commitment (that are typically not subterm).

4 Complexity of Dynamic Equivalences (Active Attacker)

4.1 Equivalences

We expect security protocols to provide privacy against attackers that actively
engage with the protocol. This can be modelled by behavioural equivalences,
defining security as the indistinguishability of two instances of the protocol that
differ on a privacy-sensitive attribute. There exist several candidate equivalences
for modelling this notion of indistinguishability. We study two of them here and
refer to [21] for details.

134 V. Cheval et al.

Trace Equivalence. The first one is trace equivalence. Referring to the operational
semantics described in Sect. 2, we call a trace t a sequence of transition steps

t = (A0
α1−→ A1

α2−→ · · · αn−−→ An)

If tr is the word obtained after removing unobservable actions (i.e. τ ’s) from the
word α1 · · · αn, the trace t may be written A0

tr=⇒ An instead. Processes P0 and P1

are then trace equivalent when for all traces Pi
tr=⇒ (P,Φ), i ∈ {0, 1}, there exists

P1−i
tr=⇒ (P ′, Φ′) such that the frames Φ and Φ′ are statically equivalent. Auto-

mated verification of trace equivalence has been studied intensively for security
protocols [7,20–22] and received strong tool support [17,18,23,32,33]. We refer
to this problem as TraceEq:

Input: A theory, two processes.
Question: Are the two processes trace equivalent?

Labelled Bisimilarity. Some other tools prove stronger equivalences, like observa-
tional equivalence for ProVerif [16,19] for example. There exist several flavours
of more operational bisimulation-based properties but the one usually considered
in security-protocol analysis is labelled bisimilarity because it coincides with
observational equivalence in the applied pi-calculus [1]. Formally it is an early,
weak bisimulation that additionally requires static equivalence at each step; that
is, it is the largest symmetric binary relation ≈ on processes such that A ≈ B
implies that (1) the frames of A and B are statically equivalent, and (2) for all
actions α and all transitions A

α−→ A′, there exists a trace B
α=⇒ B′ such that

A′ ≈ B′. We refer to the following problem as Bisim:

Input: A theory, two processes.
Question: Are the two processes labelled bisimilar?

4.2 Classical Fragments of the Calculus

In addition to the assumptions on the rewriting system (e.g. subterm convergence
as in Sect. 3), there are several common restrictions made on the processes.

Conditionals and Patterns. A typical restriction on conditionals is the class of
positive processes that only contains trivial else branches [12,21,22]. In particular
for succintness we often write [u = v]P instead of if u = v then P else 0.

When the rewrite system is constructor-destructor, some conditionals may
also be encoded within inputs [26,27]. For that the syntax for inputs is gener-
alised as c(v).P where v is a term without destructors (but may contain vari-
ables), called a pattern. In terms of semantics, such inputs only accept terms
that match the pattern, i.e. inputs t such that t↓= uσ↓ for some substitution σ,
and then proceeds to execute Pσ. In this paper, to ensure that protocols can be
effectively implemented we require that it is possible to test with a sequence of

Decidability and Complexity of Equivalence Properties in Security Protocols 135

positive conditionals that a term t matches the pattern u, and that all variables
of u can be extracted by applying destructors to u. We thus define the patterned
fragment to be the class of processes without conditionals but using pattern
inputs, and where outputs do not contain destructor symbols; it is a subset of
the positive fragment.

Ping Pong Protocols. These protocols [27,38,44] intuitively consist of an
unbounded number of parallel processes receiving one message and sending a
reply. Although the precise formalisms may differ from one work to another, the
mechanisms at stake are essentially captured by processes P = !P1 | · · · |!Pn

where

Pi = ci(x). [ui
1 = vi

1] · · · [ui
ni

= vi
ni

]new k1 · · · new kri
. ci〈wi〉

In particular ping-pong protocols are positive.

Simple Processes. A common middleground in terms of expressivity and decid-
ability is the class of simple processes, for example studied in [21,26]. Intuitively,
they consist of a sequence of parallel processes that operate each on a distinct,
public channel—including replicated processes that generate dynamically a fresh
channel for each copy. Formally they are of the form

P1 | · · · | Pm | !ch Pm+1 | · · · | !ch Pn where !ch P = ! new cP . c′
P 〈cP 〉. P

where each Pi does not contain any parallel operator (|) nor replication (!)
and uses a unique, distinct communication channel cPi

. Unlike ping pong pro-
tocols, each parallel process may input several messages and output messages
that depend on several previous inputs. There exists a generalisation of simple
processes called determinate processes, mentioned later in Sect. 5.

4.3 Complexity Results: Bounded Fragment

The bounded fragment is a common restriction to study decidability, as removing
replication bounds the length of traces. However, as the attacker still has an
unbounded number of possibilities for generating inputs, the transition system
still has infinite branching in general. Additional restrictions are also necessary
on the cryptographic primitives (as static equivalence is undecidable in general).
For subterm convergent, constructor-destructor theories for example:

Theorem 5 ([22]). TraceEq and Bisim are decidable in coNEXP for subterm
convergent constructor-destructor theories and bounded processes.

We do not detail the decision procedures as they are quite involved. In a nut-
shell, they use a dedicated constraint-solving procedure to show that, whenever
trace equivalence is violated, there exists an attack trace whose attacker-input
terms are at most of exponential size; in particular this shows non-equivalence
to be decidable in NEXP. As before, we may also study the problem for fixed the-
ories to investigate their influence on the complexity; typically with the empty
theory:

136 V. Cheval et al.

Theorem 6 ([22]). In the pure pi-calculus, TraceEq (resp. Bisim) is Π2-
complete (resp. PSPACE-complete) for bounded processes, and for bounded posi-
tive processes.

However, unlike static equivalence, fixing the theory does not make it possible
to obtain a bound that is better than the general one:

Theorem 7 ([22]). There is a subterm-convergent constructor-destructor the-
ory s.t. TraceEq and Bisim are coNEXP-hard for bounded positive processes.

The theory in question [22] encodes binary trees and a couple of ad hoc
functionalities. We show in the technical report [25] that, provided we discard
the positivity requirement, the proof is possible with symmetric encryption and
pairs only. This shows that the problem remains theoretically hard even with a
minimal theory.

4.4 Complexity Results: Unbounded Case

Equivalence is undecidable in general since the calculus is Turing-complete even
for simple theories. For example, Hüttel [43] shows that Minsky’s two counter
machines can be simulated within the spi-calculus (and hence the applied pi-
calculus with symmetric encryption only). It is not difficult to adapt the proof
to a simulation using only a free symbol, i.e., a function symbol h of positive arity
and an empty rewrite system. These two encodings can be performed within the
finite-control fragment, typically not Turing-complete in the pure pi-calculus (i.e.
without this free function symbol) [35].

Ping Pong Protocols. While equivalence is undecidable for ping-pong protocols
[27,44] some decidability results exist under additional assumptions. For example
[44] studies a problem that can be described in our model essentially as Bisim

for ping-pong protocols with 2 participants or less (i.e. n ≤ 2 in the definition).
This is proved decidable under some model-specific assumptions which we do
not detail here. We also mention a result for patterned ping-pong protocols (cf.
Sect. 4.2) without a limit on the number of participants [27]. Given a constructor-
destructor theory, a ping-pong protocol P is said to be deterministic when each
Pi (using the same notations as in the definition) can be written under the form

Pi = ci(ui). new k1 · · · new kri
.ci〈vi〉

where u1, . . . , un is a family of patterns verifying:

(1) binding uniqueness: for all i, ui does not contain two different variables;
(2) pattern determinism: for all i �= j, if ui and uj are unifiable then ci �= cj .

There is an additional, minor restriction on the structure of ui and vi that is
omitted here, and we refer to [27] for details.

Decidability and Complexity of Equivalence Properties in Security Protocols 137

Theorem 8 ([27]). For a theory limited to randomised symmetric and asymmet-
ric encryption and digital signature, TraceEq is decidable in primitive recursive
time for deterministic ping-pong protocols.

Decidability is obtained by a reduction of the problem to the language equiva-
lence of deterministic pushdown automata, which is decidable in primitive recur-
sive time. A complexity lower bound for this problem is open (beyond the PTIME-
hardness inherited from static equivalence, recall Theorem3).

Simple Processes. We now study a decidability result for patterned simple pro-
cesses [26]. In this work the theory is limited to symmetric encryption and pairs,
and the processes must be type compliant and acyclic. Formalising the last two
assumptions is quite technical and beyond the scope of this survey. We refer
to the technical report [25] for more intuition and details. Compared to our
other models, there is also a restriction to atomic keys, i.e. for all encryptions
senc(u, v) in the process, v is either a constant, name or variable. This restriction
is also enforced to attacker’s recipes in the semantics by strenghtening the msg
predicate.

Theorem 9 ([26]). For a theory limited to pairs and symmetric encryption,
TraceEq is coNEXP for patterned, simple, type-compliant, acyclic processes with
atomic keys.

The proof shows that equivalence of such (unbounded) processes is violated
iff it is violated for a exponential number of sessions, and then uses a coNP
decidability result in the bounded fragment [21]. However complexity was not
the focus of [26] and the authors only claimed a triple exponential complexity
for their procedure. Besides no lower bounds were investigated, but we proved
that the problem was coNEXP-complete.

Theorem 10. For a theory limited to pairs and symmetric encryption,
TraceEq is coNEXP-hard for patterned, simple, type-compliant, acyclic processes
with atomic keys.

The reduction shares some similarities with the proof of coNEXP-hardness
for trace equivalence of bounded processes (Theorem 7), compensating the more
deterministic structure of simple processes by the use of replication.

Proof (Sketch). We proceed by reduction from Succint 3SAT. This is a common
NEXP-complete problem that, intuitively, is the equivalent of 3SAT for formulas
of exponential size represented succinctly by boolean circuits. Formally a formula
ϕ with 2m clauses and 2n variables x0, . . . , x2n−1 is encoded by a boolean circuit
Γ : {0, 1}m+2 → {0, 1}n+1 in the following way. If ϕ =

∧2m−1
i=0 �1i ∨ �2i ∨ �3i and

0 ≤ i ≤ 2m − 1 and 0 ≤ j ≤ 2, we let xk be the variable of the literal �j+1
i

and b its negation bit; then Γ (̄i j̄) = b k̄ where ī, j̄, k̄ are the respective binary
representations of i, j, k. Succint 3SAT is the problem of deciding, given a circuit
Γ , whether the formula ϕ it encodes is satisfiable.

138 V. Cheval et al.

Let then ϕ be a formula with 2m clauses and 2n variables x0, . . . , x2n−1

and Γ a boolean circuit encoding this formula. We construct two simple, type-
compliant, acyclic processes that are trace equivalent iff ϕ is unsatisfiable. Using
pairs 〈u, v〉 we encode binary trees: a leaf is a non-pair value and, if u and v
encode binary trees, 〈u, v〉 encodes the tree whose root has u and v as children.
Given a term t, we build a process P (t) behaving as follows:

(1) P (t) first waits for an input x from the attacker. This term x is expected to
be a binary tree of depth n with boolean leaves, modelling a valuation of ϕ
(the ith leaf of x being the valuation of xi).

(2) The goal is to make P (t) verify that this valuation satisfies ϕ; if the veri-
fication succeeds the process outputs t. Given two constants 0 and 1, P (0)
and P (1) will thus be trace equivalent iff ϕ is unsatisfiable.

(3) However it is not possible to hardcode within a process of polynomial size
the verification that the valuation encoded by x satisfies the 2m clauses of
ϕ. Hence we replicate a process that, given x, verifies one clause at a time.
Intuitively, the attacker will guide the verification of the 2m clauses of ϕ, and
whenever the ith clause has been successfully verified, the process reveals the
binary representation of i (encrypted using a key unknown to the attacker).

(4) In particular, the attacker gets the encryption of all integers 0, . . . , 2m − 1
only if she has successfully verified that the initial input x indeed encodes a
valuation satisfying all clauses of ϕ. It then suffices to design a process that
outputs t if the attacker is able to provide all such ciphertexts. This can be
encoded by a replicated process that, upon receiving the encryption of two
integers that differ only by their least significant bit, reveals the encryption
of these integers with the least significant bit truncated. The verification
ends when the encryption of the empty binary representation is revealed.

��

5 Variations of the Model

In this section we discuss a few variants of the model such as other notions of
equivalence or different semantics of the process calculus.

Diff Equivalence. The most well-known variant of equivalence properties in secu-
rity protocols is diff-equivalence, different variants of which are proved by the
state-of-the-art ProVerif and Tamarin. Intuitively, diff-equivalence can be
seen as an analogue of trace equivalence where two equivalent traces are also
required to follow the exact same execution flow. Consider for example the pro-
cesses

P = c〈u〉 | c〈v〉 and Q = c〈u′〉 | c〈v′〉 .

Given the trace of P outputting u first and then v, a proof of trace equivalence
could match it with either of the two traces of Q. However diff-equivalence only
considers the trace of Q outputting u′ first and then v′.

Decidability and Complexity of Equivalence Properties in Security Protocols 139

Theorem 11 ([16]). If two processes are diff-equivalent then they are also
labelled bisimilar (and therefore trace equivalent).

The converse does not hold in general, which may lead to so-called false
attacks (non-diff-equivalent processes that are, for example, trace equivalent).
Regarding decidability and complexity, we call the following problem DiffEq:

Input: A theory, two processes.
Question: Are the two processes diff equivalent?

Although undecidable in general, it is known to be decidable in the bounded,
positive fragment [12]. More precisely it is shown that for all fixed subterm
convergent theories, diff-equivalence is reducible to a coNP constraint-solving
problem.

Theorem 12 ([12]). For all fixed subterm convergent theories, DiffEq is coNP
for positive bounded processes.

It is also known that DiffEq is coNP-hard for a theory containing only a free
binary symbol h [12]. A simple proof justifies that DiffEq is actually coNP-hard
even for the empty theory and, hence, for any fixed theory:

Theorem 13. In the pure pi-calculus, DiffEq is coNP-complete for positive
bounded processes.

Proof. By reduction from SAT we consider a formula ϕ =
∧m

i=1 Ci in CNF and
x = x1, . . . , xn its variables. For each clause Ci, let ki be a name and define

CheckSat i(x) = [xi1 = bi1]c〈ki〉 | · · · | [xip = bip]c〈ki〉
where xi1 , . . . , xip are the variables of Ci and bi1 , . . . , bip their respective negation
bit. That is, at least one output of ki is reachable in CheckSat i(x) if x is a
valuation of ϕ that satisfies Ci. In particular if we define

CheckSat = c(x1). . . . c(xn).(CheckSat1(x) | · · · | CheckSatm(x))
Final(t) = c(y1).[y1 = k1] . . . c(ym).[ym = km] c〈t〉

then for two distinct constants ok, ko, we have the processes CheckSat | Final(ok)
and CheckSat | Final(ko) diff-equivalent iff ϕ is unsatisfiable.

As far as we know the complexity of diff-equivalence has only been studied for
fixed theories. However the coNP-completeness [12] can be adapted to parametric
theories; inspecting the proof we observe that (1) in the complexity bounds, the
dependencies in the theory are polynomial and (2) the proof uses the fact that
static equivalence is PTIME for fixed theories (Theorem 1) but the arguments
still hold if we only assume static equivalence to be coNP.

Theorem 14. DiffEq is coNP-complete for subterm convergent theories and
positive bounded processes.

140 V. Cheval et al.

Equivalence by Session. We also briefly mention another equivalence, between
diff-equivalence and trace equivalence (but incomparable with labelled bisimi-
larity) [24]. Known as equivalence by session, it was originally presented as a
sound proof technique for trace equivalence in the bounded fragment, that was
inducing less false attacks than diff-equivalence. We call this problem SessEq:

Input: A theory, two processes.
Question: Are the two processes equivalent by session?

Surprisingly, despite practical improvements by order of magnitudes of the
verification time compared to trace equivalence [24], this performance gap is not
reflected in the theoretical, worst-case complexity. The same reduction as trace
equivalence can indeed be used to prove equivalence by session coNEXP-hard.
More details about the complexity of this problem can be found in the technical
report [25].

Theorem 15. SessEq is coNEXP-complete for constructor-destructor subterm
convergent theories and positive bounded (resp. bounded) processes.

The Case of Determinacy. We now mention the fragment of determinate pro-
cesses, a generalisation of simple processes. In this fragment of the calculus,
most of the studied equivalences coincide and their complexity also drops expo-
nentially. This class has been investigated significantly [9,17,21,24] although
several variants coexist in the literature, as discussed in [8]. For example the
results of [9,24] hold for action-determinate processes, meaning that the pro-
cesses never reach an intermediary state where two inputs (resp. outputs) on the
same communication channel are executable in parallel; whereas a more permis-
sive definition is used in [21]. There also exists a notion that is stricter than all
of these, referred as strong determinacy [8]. A process is strongly determinate
when (1) it does not contain private channels, (2) it is bounded, (3) all its syn-
tactic subprocesses are strongly determinate, (4) in case the process is of the
form P | Q there exist no channels c such that both P and Q contain an input
(resp. an output) on c. For example this process is action-determinate but not
strongly-determinate:

if a = b then c(x) else 0 | if a = b then 0 else c(x) .

Note in particular that bounded simple processes are strongly determinate.

Theorem 16 ([21,24]). Two labelled bisimilar (resp. equivalent by session) pro-
cesses are trace equivalent. The converse is true for action-determinate processes.

In [21] it is shown that, for bounded, simple, positive processes, the equiv-
alence problem could be reduced to the same coNP constraint-solving problem
mentioned in the paragraph on diff-equivalence. Their arguments can be gener-
alised from simple to strongly-determinate processes in a straightforward man-
ner; however it is not clear whether this would also be true for action-determinate
processes or processes with else branches. In particular we obtain for this
fragment:

Decidability and Complexity of Equivalence Properties in Security Protocols 141

Table 1. Summary of the results. Colored cells indicate configurations with open prob-
lems. All results for diff-equivalence also coincide with the results for trace equivalence,
labelled bisimilarity, and equivalence by session for strongly-determinate processes.

142 V. Cheval et al.

Theorem 17 ([21]). TraceEq, Bisim and SessEq are coNP-complete for sub-
term convergent theories and bounded, strongly determinate, positive processes.
The coNP completeness also holds for all fixed subterm convergent theories.

Variations of the Communication Model. Although all symbolic models rely on
the same fundamental ideas, several variations exist in the semantics of commu-
nication, as noted in [8]. The differences lie in the modelling of silent communi-
cations between parallel processes. In the original semantics [1], called classical
in [8], communications on a same public channel between parallel processes can
either be an internal, synchronous, and silent action, or be intercepted by the
attacker. This is also the semantics used in the popular ProVerif tool [16].
On the contrary, the so-called private semantics only allows private, uninter-
cepted communications on channels that are unknown to the attacker, mod-
elling an attacker that continuously eavesdrops on the network (rather than an
attacker that has the capability of eavesdropping any communication). The pri-
vate semantics is actually used in tools such as Tamarin [50] and Akiss [17]
and also in the presentation of equivalence by session [24].

While both semantics are equivalent when it comes to reachability properties,
they surprisingly happen to be incomparable for equivalence properties [8]. All
the complexity results of this paper are with respect to the private semantics.
Although we did not expand on studying all the variations of complexity induced
by using different semantics, most of the analyses presented in this survey are
robust to these changes. Indeed, all complexity results for the bounded fragment
hold for both semantics. In the unbounded case, only the private semantics has
been considered in the underlying models [26,27].

6 Summary of the Results

Table 1 summarises the results of and highlights open questions (including a few
results only detailed in the technical report [25] for space reasons). Cells for which
the complexity results are not tight are colored in grey. For instance, for subterm-
convergent constructor-destructor theories and bounded processes, DiffEq is
known coNEXP and coNP-hard, but the precise complexity remains unknown.
We also include in this table some complexity results with the theory seen as a
constant of the problem (denoted as “fixed” in the theory columns). The corre-
sponding cells contain bounds applying to all theories of the class; e.g. for Bisim

of bounded processes, with fixed subterm-convergent constructor-destructor the-
ories, the problem is decidable in coNEXP and PSPACE-hard; despite the gap
between the two bounds, they are optimal since there exist theories for which
the problem is either coNEXP-hard or PSPACE. Therefore this cell is not high-
lighted in grey. In our opinion the most interesting open questions are:

• Can upper bounds on constructor-destructor subterm convergent theories be
lifted to more general subterm convergent theories?

• Without the positivity assumption, can we tighten the complexity for diff
equivalence, and strongly determinate processes?

Decidability and Complexity of Equivalence Properties in Security Protocols 143

This last question might allow to better understand why strongly determinate
processes benefit from optimisations that improve verification performance that
much. Finally, as witnessed by the contrast between the high complexity of
equivalence by session and its practical efficiency, worst-case complexity may
not always be an adequate measure.

References

1. Abadi, M., Blanchet, B., Fournet, C.: The applied pi calculus: mobile values, new
names, and secure communication. J. ACM (JACM) 65, 1–41 (2017)

2. Abadi, M., Cortier, V.: Deciding knowledge in security protocols under equational
theories. Theoret. Comput. Sci. 367, 2–32 (2006)

3. Abadi, M., Fournet, C.: Private authentication. Theoret. Comput. Sci. 322, 427–
476 (2004)

4. Abadi, M., Gordon, A.D.: A calculus for cryptographic protocols: the spi calculus.
Inf. Comput. 148, 1–70 (1999)

5. Anantharaman, S., Narendran, P., Rusinowitch, M.: Intruders with caps. In:
Baader, F. (ed.) RTA 2007. LNCS, vol. 4533, pp. 20–35. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-73449-9 4

6. Arapinis, M., Chothia, T., Ritter, E., Ryan, M.: Analysing unlinkability and
anonymity using the applied pi calculus. In: IEEE Computer Security Founda-
tions Symposium (CSF) (2010)

7. Arapinis, M., Cortier, V., Kremer, S.: When are three voters enough for privacy
properties? In: Askoxylakis, I., Ioannidis, S., Katsikas, S., Meadows, C. (eds.)
ESORICS 2016. LNCS, vol. 9879, pp. 241–260. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-45741-3 13

8. Babel, K., Cheval, V., Kremer, S.: On the semantics of communications when
verifying equivalence properties. J. Comput. Secur. 28(1), 71–127 (2020)

9. Baelde, D., Delaune, S., Hirschi, L.: Partial order reduction for security protocols.
In: International Conference on Concurrency Theory (CONCUR) (2015)

10. Basin, D.A., Cremers, C.: Know your enemy: compromising adversaries in protocol
analysis. ACM Trans. Inf. Syst. Secur. (TISSEC) 17, 1–31 (2014)

11. Basin, D.A., Dreier, J., Hirschi, L., Radomirovic, S., Sasse, R., Stettler, V.: A for-
mal analysis of 5G authentication. In: ACM Conference on Computer and Com-
munications Security (CCS) (2018)

12. Baudet, M.: Sécurité des protocoles cryptographiques: aspects logiques et calcula-
toires. Ph.D. thesis (2007)

13. Baudet, M., Cortier, V., Delaune, S.: YAPA: a generic tool for computing intruder
knowledge. ACM Trans. Comput. Log. (TOCL) 14, 1–32 (2013)

14. Bhargavan, K., Blanchet, B., Kobeissi, N.: Verified models and reference imple-
mentations for the TLS 1.3 standard candidate. In: IEEE Symposium on Security
and Privacy, (S&P) (2017)

15. Blanchet, B.: Modeling and verifying security protocols with the applied pi calculus
and ProVerif. In: Foundations and Trends in Privacy and Security (2016)

16. Blanchet, B., Abadi, M., Fournet, C.: Automated verification of selected equiva-
lences for security protocols. J. Log. Algebraic Program. 75, 3–51 (2008)

17. Chadha, R., Cheval, V., Ciobâcă, Ş., Kremer, S.: Automated verification of equiv-
alence properties of cryptographic protocols. ACM Trans. Comput. Log. (TOCL)
17, 1–32 (2016)

https://doi.org/10.1007/978-3-540-73449-9_4
https://doi.org/10.1007/978-3-319-45741-3_13
https://doi.org/10.1007/978-3-319-45741-3_13

144 V. Cheval et al.

18. Cheval, V.: APTE: an algorithm for proving trace equivalence. In: Ábrahám, E.,
Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 587–592. Springer, Heidel-
berg (2014). https://doi.org/10.1007/978-3-642-54862-8 50

19. Cheval, V., Blanchet, B.: Proving more observational equivalences with ProVerif.
In: Basin, D., Mitchell, J.C. (eds.) POST 2013. LNCS, vol. 7796, pp. 226–246.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36830-1 12

20. Cheval, V., Comon-Lundh, H., Delaune, S.: Trace equivalence decision: negative
tests and non-determinism. In: ACM Conference on Computer and Communica-
tions Security (CCS) (2011)

21. Cheval, V., Cortier, V., Delaune, S.: Deciding equivalence-based properties using
constraint solving. Theoret. Comput. Sci. 492, 1–39 (2013)

22. Cheval, V., Kremer, S., Rakotonirina, I.: DEEPSEC: deciding equivalence prop-
erties in security protocols theory and practice. In: IEEE Symposium on Security
and Privacy (S&P) (2018)

23. Cheval, V., Kremer, S., Rakotonirina, I.: The DEEPSEC prover. In: Chockler, H.,
Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10982, pp. 28–36. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-96142-2 4

24. Cheval, V., Kremer, S., Rakotonirina, I.: Exploiting symmetries when proving
equivalence properties for security protocols. In: ACM Conference on Computer
and Communications Security (CCS) (2019)

25. Cheval, V., Kremer, S., Rakotonirina, I.: The Hitchhiker’s guide to decidability
and complexity of equivalence properties in security protocols (Technical report)
(2020). https://hal.archives-ouvertes.fr/hal-02501577

26. Chrétien, R., Cortier, V., Delaune, S.: Decidability of trace equivalence for pro-
tocols with nonces. In: IEEE Computer Security Foundations Symposium (CSF)
(2015)

27. Chrétien, R., Cortier, V., Delaune, S.: From security protocols to pushdown
automata. ACM Trans. Comput. Log. (TOCL) 17, 1–45 (2015)

28. Ciobâcă, Ş., Delaune, S., Kremer, S.: Computing knowledge in security protocols
under convergent equational theories. In: Schmidt, R.A. (ed.) CADE 2009. LNCS
(LNAI), vol. 5663, pp. 355–370. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-02959-2 27

29. Cohn-Gordon, K., Cremers, C., Garratt, L., Millican, J., Milner, K.: On ends-to-
ends encryption: Asynchronous group messaging with strong security guarantees.
In: ACM Conference on Computer and Communications Security (CCS) (2018)

30. Comon, H., Cortier, V.: Tree automata with one memory set constraints and cryp-
tographic protocols. Theoret. Comput. Sci. 331, 143–214 (2005)

31. Conchinha, B., Basin, D.A., Caleiro, C.: Fast: an efficient decision procedure for
deduction and static equivalence. In: International Conference on Rewriting Tech-
niques and Applications (RTA) (2011)

32. Cortier, V., Dallon, A., Delaune, S.: Efficiently deciding equivalence for standard
primitives and phases. In: Lopez, J., Zhou, J., Soriano, M. (eds.) ESORICS 2018.
LNCS, vol. 11098, pp. 491–511. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-99073-6 24

33. Cortier, V., Grimm, N., Lallemand, J., Maffei, M.: A type system for privacy prop-
erties. In: ACM Conference on Computer and Communications Security (CCS)
(2017)

34. Cremers, C., Horvat, M., Hoyland, J., Scott, S., van der Merwe, T.: A comprehen-
sive symbolic analysis of TLS 1.3. In: ACM Conference on Computer and Com-
munications Security (CCS) (2017)

https://doi.org/10.1007/978-3-642-54862-8_50
https://doi.org/10.1007/978-3-642-36830-1_12
https://doi.org/10.1007/978-3-319-96142-2_4
https://hal.archives-ouvertes.fr/hal-02501577
https://doi.org/10.1007/978-3-642-02959-2_27
https://doi.org/10.1007/978-3-642-02959-2_27
https://doi.org/10.1007/978-3-319-99073-6_24
https://doi.org/10.1007/978-3-319-99073-6_24

Decidability and Complexity of Equivalence Properties in Security Protocols 145

35. Dam, M.: On the decidability of process equivalences for the π-calculus. Theoret.
Comput. Sci. 183, 215–228 (1997)

36. Delaune, S., Hirschi, L.: A survey of symbolic methods for establishing equivalence-
based properties in cryptographic protocols. J. Log. Algebraic Methods Program.
87, 127–144 (2017)

37. Delaune, S., Kremer, S., Ryan, M.: Verifying privacy-type properties of electronic
voting protocols. J. Comput. Secur. 17, 435–487 (2009)

38. Dolev, D., Yao, A.: On the security of public key protocols. In: Symposium on
Foundations of Computer Science (FOCS) (1981)

39. Dolev, D., Even, S., Karp, R.M.: On the security of ping-pong protocols. Inf.
Control 55, 57–68 (1982)

40. Durgin, N.A., Lincoln, P., Mitchell, J.C.: Multiset rewriting and the complexity of
bounded security protocols. J. Comput. Secur. 12, 247–311 (2004)

41. Durgin, N.A., Lincoln, P., Mitchell, J.C., Scedrov, A.: Undecidability of bounded
security protocols. In: Proceedings of Workshop on Formal Methods in Security
Protocols (1999)

42. Filimonov, I., Horne, R., Mauw, S., Smith, Z.: Breaking unlinkability of the ICAO
9303 Standard for e-passports using bisimilarity. In: Sako, K., Schneider, S., Ryan,
P.Y.A. (eds.) ESORICS 2019. LNCS, vol. 11735, pp. 577–594. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-29959-0 28

43. Hüttel, H.: Deciding framed bisimilarity. Electron. Notes Theoret. Comput. Sci 68,
1–18 (2003)

44. Hüttel, H., Srba, J.: Recursive ping-pong protocols. BRICS Report Series (2003)
45. Jacomme, C., Kremer, S.: An extensive formal analysis of multi-factor authen-

tication protocols. In: IEEE Computer Security Foundations Symposium (CSF)
(2018)

46. Kanovich, M.I., Kirigin, T.B., Nigam, V., Scedrov, A.: Bounded memory protocols.
Comput. Lang. Syst. Struct. 40(3–4), 137–154 (2014)

47. Kobeissi, N., Bhargavan, K., Blanchet, B.: Automated verification for secure mes-
saging protocols and their implementations: a symbolic and computational app-
roach. In: IEEE European Symposium on Security and Privacy (EuroS&P) (2017)

48. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes. I. Inf. Comput.
100, 1–40 (1992)

49. Rusinowitch, M., Turuani, M.: Protocol insecurity with a finite number of sessions,
composed keys is NP-complete. Theoret. Comput. Sci. 299, 451–475 (2003)

50. Meier, S., Schmidt, B., Cremers, C., Basin, D.: The TAMARIN prover for the
symbolic analysis of security protocols. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 696–701. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-39799-8 48

https://doi.org/10.1007/978-3-030-29959-0_28
https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1007/978-3-642-39799-8_48

Assumption-Based Analysis
of Distance-Bounding Protocols with cpsa

Paul D. Rowe(B), Joshua D. Guttman, and John D. Ramsdell

The MITRE Corporation, Bedford, USA
{prowe,guttman,ramsdell}@mitre.org

Abstract. This paper, dedicated to Andre Scedrov, was inspired by con-
versations with him about the physical properties of distributed systems.
We use cpsa, the strand space protocol analysis tool, to analyze and clas-
sify distance-bounding protocols. We introduce a model of strand spaces
that explicitly accounts for physical properties like distance. We prove
that non-metric, causal facts allow us to infer distance bounds. More-
over, cpsa already provides these causal conclusions about protocols.
We apply this method to numerous protocols from the literature. By
taking an assumption-based perspective—rather than an attack-based
perspective—we introduce a taxonomy of distance-bounding protocols
that compares the relative strength of different designs.

1 Introduction

A distance-bounding protocol is an exchange of messages between parties that
include a prover and a verifier [6,16]. The verifier wants to determine whether
the prover is nearby, i.e. within some application-relevant radius. This requires
authenticating the prover to some extent, since generally one wants to know
which party is within the radius. For instance, if a credit card is the device
acting as prover, the verifier definitely needs to know what number is associated
with it so that the right number will be billed.

Distance-bounding protocols have often been weak, sometimes quixotically
weak. In this paper, we will approach distance-bounding protocols in three steps.

First, although the goals of a distance-bounding protocol are essentially
metric—they are about how far the prover is from the verifier—we extract a
non-metric model from them, using strand spaces. From this non-metric model,
together with purely local metric assertions about the time elapsed for a sin-
gle participant, metric consequences about space and time will follow. Lemma 2
justifies this step back to a conclusion about the distance to the prover.

Second, we show how to use the strand space protocol analyzer cpsa to
extract a set of non-metric executions for each distance-bounding protocol. From
these non-metric executions, we can draw conclusions about whether a protocol
achieves its metric goals, with the backing of Lemma2.

Finally, we exhibit a taxonomy classifying distance-bounding protocols by
the assumptions that they require, to be sure of achieving their goals.
c© Springer Nature Switzerland AG 2020
V. Nigam et al. (Eds.): Scedrov Festschrift, LNCS 12300, pp. 146–166, 2020.
https://doi.org/10.1007/978-3-030-62077-6_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62077-6_11&domain=pdf
https://doi.org/10.1007/978-3-030-62077-6_11

Assumption-Based Analysis of Distance-Bounding Protocols with cpsa 147

Strand Spaces in Spacetime. The idea for strand spaces came from an anal-
ogy to spacetime diagrams in physics. A spacetime diagram organizes some phys-
ical interactions by considering the world-lines of some entities as they progress
through time, moving in space. Moreover, the entities interact through messages,
whether transmitted as light or as other waves or particles; these messages travel
no faster than the speed of light c.

Protocol analysis is structurally similar: the world-line of a principal includes
message transmissions and receptions. If a principal is regular, i.e. acting in accor-
dance with the protocol under study, these transmission and reception events
partition into a number of regular strands, meaning a finite sequence of trans-
mission and reception events ◦ ⇒ ◦ ⇒ · · · permitted by some protocol role. For
uniformity, we divide the actions of a Dolev-Yao adversary [12] into a collec-
tion of finite sequences of transmission and reception events; these are adversary
strands. A protocol execution consists of a finite collection of regular and adver-
sary strands, or initial segments of them, with two main properties:

– If a reception event receives a message m, then some transmission event must
have sent m, i.e. ◦ m→ ◦; and

– the finite directed graph G must be acyclic, where G’s nodes ◦ are the events,
and G’s arcs →,⇒ are either message communications → or the succession
relation between two events along the same strand ⇒.

These are natural properties of causality. The first says that message reception
needs to be causally explained by some transmission. The second is the famil-
iar principle that causality is well-founded: You cannot go back and encourage
your grandparents to beget your parents, or not to. It certainly applies in our
context, in which message transmissions and receptions occur at discrete, well-
separated times, and where moreover none of the activities will stretch over long
(or cosmological) timescales.

Diagrams with these two properties are bundles, and bundles form the strand
space execution model. Bundles B have “forgotten” the metric that governs events
in spacetime, and retained only the strand structure and communication arcs.

Each bundle B has a partial order �B = (→ ∪ ⇒)∗, which is the weakest
reflexive, transitive relation that extends the succession relation ⇒ of nodes on
the same strand, and extends the communication relation ◦ m→ ◦.

The acyclicity justifies a well-founded induction principle on �B: If S is a
non-empty set of nodes of B, then there exist nodes in S that are �B-minimal
in S. Reasoning in strand spaces is ultimately justified by taking cases on these
minimal nodes, given the permissible regular strands and adversary strands.

Hence, strand spaces are particularly natural for reasoning about distance-
bounding protocols. The pure protocol analysis allows us to characterize the
bundles a protocol allows. These then may be embedded in spacetime in any
way that respects their causal structure, including the physical principle that
causality cannot propagate faster than the speed of light. If this implies that the
distance between two entities must have been below a selected bound d, then
the protocol has achieved its goal.

148 P. D. Rowe et al.

Our overall strategy is akin to Meadows et al.’s 2007 work [24]. They capital-
ize on the causal characteristics of the challenge-response principles that govern
security protocol correctness in general, which thereby determine how events
can be ordered given the effects some of them must have on others. We add a
particular realization of these principles for a model of security protocols [14].
Since that model is backed by an efficient tool, namely cpsa, we can apply the
method on an industrial scale.

Mauw et al. [22] also observe the value of using the causal structure to guide
protocol analysis for bounding distance. A separate source brought the problem
back to our attention: Andre Scedrov and Carolyn Talcott discussed their work
on distance-bounding protocols, including round-off attacks, repeatedly at the
Protocol Exchange we periodically share [2,3,17,18]. The opportunity for an
analysis of the kind we will present here was a consequence of those discussions,
together with some preliminary work [33].

CPSA, a Cryptographic Protocol Shapes Analyzer. The protocol analysis
tool cpsa implements the enrich-by-need method [14,28,29]. cpsa carries out
protocol analysis by showing the analyst all of the minimal, essentially different
executions compatible with some scenario of interest, often a very small set.
By a scenario, we generally mean a situation in which some protocol roles have
executed at least part way, with some assumptions that some parameters are
freshly chosen, or some long-term keys are uncompromised. A skeleton means a
formal representation of such a scenario.

Starting from a skeleton A0, cpsa systematically explores how to add new
role instances and other information in ways that would help explain executions.
cpsa does not explicitly represent adversary actions, but simply keeps track of
what the adversary can obtain from the regular transmissions, subject to the
assumptions. Mathematically, cpsa explores skeletons by rising in a homomor-
phism ordering, and it stops along any branch of its exploration when it runs
out of possible explanations or reaches a realized skeleton.

A skeleton B is realized if, together with adversary actions compatible with
its freshness and non-compromise assumptions, it can form a bundle B. We say
that B is a skeleton of such a bundle B, and we say that a skeleton A covers
bundle B if there exists a realized skeleton B such that B is a skeleton of B, and
a homomorphism H : A ·→ B.

The set of minimal realized skeletons are called the shapes for the starting
skeleton A0. cpsa is useful because well-designed protocols often lead to small
sets of shapes, even though the set of shapes is large or infinite in unfavorable
cases.1 cpsa presents the shapes in a concrete, graphical form, allowing a logi-
cally naive designer to understand the effects of varying protocol choices.

Moreover, each shape contains the events and their ordering needed for the
non-metric, causal aspects of our distance-bounding analyses.

cpsa now allows assuming that certain messages pass over channels that
ensure confidentiality or integrity. Any protocol implementation must discharge
1 Indeed, since Andre et al. [13] proved the underlying problem class to be undecidable,

uniform termination is impossible.

Assumption-Based Analysis of Distance-Bounding Protocols with cpsa 149

the assumptions, for instance by suitable cryptography. But cpsa can infer the
effects of the assumptions, independent of particular choices about how to dis-
charge them. We will use these channel assumptions in Sect. 4.

Protocol Goals as Formulas. cpsa offers a logical language LΠ to express
goals for a protocol Π [15,27]. LΠ includes the following types of predicates:

– For each role ρ ∈ Π, and for each transmission or reception position i along
ρ, LΠ contains a one-place predicate rρ,i(n) that asserts that a node n is an
instance of the ith event along role ρ.

– For each role ρ ∈ Π, and for each parameter or variable x that helps to
determine ρ’s instances, LΠ contains a two-place predicate pρ,x(n, v) that
asserts that node n’s instance for the x parameter is v.

– The causal ordering n ≺ n′ is expressed by a predicate prec(n, n′).
– Two nodes on the same strand satisfy the collinear predicate coll(n, n′).
– unique(v) is satisfied if v is fresh; non(k), if key k is non-compromised.
– Confidentiality and integrity for a channel c are conf(c) and auth(c).

Any skeleton A0 may be expressed by a conjunctive formula of LΠ . Thus,
a cpsa run starting from A0 determines what must be true in all Π-bundles
satisfying this formula, which we call the characteristic formula cf(A0) of A0.

A goal formula is a universally quantified implication ∀x . Φ =⇒ ∨
i∈I ∃yi . Ψi,

where Φ and the Ψi are conjunctions of atomic formulas (see Definition 4).
The special case I = ∅ gives the empty disjunction

∨
i∈∅ with no way to be

true, i.e. false. A goal cf(A0) =⇒ false states that no Π-bundle exhibits the sce-
nario A0. If A0 assumes some putative secret k is heard unprotected, expressed
in a parameter predicate plsn,x(n, k) for a special role, the conclusion false
ensures non-disclosure. Formulas with non-empty conclusions express authen-
tication properties. They say that the behavior in the hypothesis Φ requires
additional behavior found in one of the conclusions Ψi.

Indeed, a terminating run of cpsa may be summarized as a formula, which
we call a shape analysis formula [27]. Suppose, starting from the initial scenario
A0, cpsa terminates with the family of shapes {Bi}i∈I . It has discovered the
security goal formula cf(A0) =⇒ ∨

i∈I ∃yi . cf(Bi); the homomorphisms from A0

to the Bi determine the quantified variables yi. The formula must be true because
the cpsa search is sound, i.e. it refines any skeleton A to a set of skeletons that
cover all of the executions that A covers. Moreover, it is a strongest goal with the
hypothesis cf(A0), because each of the shapes Bi really is an essentially different
scenario that can occur. No correct goal could rule any of them out.

Thus, the shape analysis formula is the strongest security goal achieved by Π
for this hypothesis [15,32]. In this way, cpsa allows us to discover what security
goals Π achieves, for the situations of concern to us.

As this suggests, there is a natural ordering on security goals that share
the same antecedent Φ, namely the entailment ordering on their conclusions∨

i∈I ∃yi . Ψi. There is also a dual ordering on security goals that share the same
conclusion Ψ . Namely, of two security goals Γ1 = Φ1 =⇒ Ψ and Γ2 = Φ2 =⇒ Ψ ,
Γ1 is at least as strong as Γ2 iff Φ2 entails Φ1.

150 P. D. Rowe et al.

In Sect. 4 we use this idea to compare different protocols, according to
whether their shared distance-bounding conclusions require stronger or weaker
assumptions to assure. The cross-protocol use of formulas like this is justified in
our work on protocol transformation [15,32].

2 Adapting the Strand Model for Distance-Bounding

Let d be the usual Euclidean distance and c be the speed of light. We add metric
information to bundles in the simplest way:

Definition 1. Let B be a bundle, and let E : nodes(B) → R
4 be a function from

the nodes of B into spacetime. (B, E) is a spacetime bundle iff, for all n1, n2

such that n1 ≺B n2, letting E(n1) = (t1, x1, y1, z1), and E(n2) = (t2, x2, y2, z2):

1. t1 < t2; and
2. d((x2, y2, z2), (x1, y1, z1)) < c · (t2 − t1).

We will write dE(n2, n1) for d((x2, y2, z2), (x1, y1, z1)) and tE(n1) for t1.

Evidently, every spacetime bundle determines a (non-metric) bundle, namely its
first component. Indeed, intuitively, however the events of B have occurred in
space and time, they will satisfy conditions 1–2.

Conversely, any bundle B may be embedded into spacetime, i.e. it is the first
component of some spacetime bundle:

Lemma 1. Let B be a bundle. There exists an E : nodes(B) → R
4 such that

(B, E) is a spacetime bundle.

Proof. We choose to let each strand be stationary. Construct E by well-founded
recursion on �B. For each n choose a time tE(n) that exceeds the time of its
immediate predecessors enough to allow its incoming messages to arrive. There
is no upper bound on the choice for tE(n). �
Any skeleton A is compatible with or covers a (possibly empty) set of spacetime
bundles (B, E), namely all those where there is a H : A ·→ B such that B is a
skeleton of B.

Definition 2. Let A be a skeleton with collinear nodes n1 ⇒+ n2, and let n′ be
a node. We say n1, n2 bound separation from n′ in A iff n1 �A n′ �A n2.

Lemma 2. Let (B, E) be a spacetime bundle; H : A ·→B, and B be a skeleton of
B. If n1, n2 bound separation from n′ in A, then

dE(H(n1),H(n′)) + dE(H(n′),H(n2)) < c · (tE(H(n2)) − tE(H(n1))).

That is, using a local clock along the strand of H(n1), the principal executing
it can bound the distance to the node H(n′). Thus, reasoning about ordering
in a skeleton gives a uniform way to bound the distance between corresponding
events in all the spacetime bundles it covers.

Assumption-Based Analysis of Distance-Bounding Protocols with cpsa 151

Proof. The homomorphism H preserves the ordering relations, as does the
embedding of the realized skeleton B into the bundle B. Thus, condition 2 in
Definition 1 yields the desired inequality. �
We express requirements on distance-bounding protocols as security goals. Since
we must talk about particular formulas and free variables, we will write formal
variables �n� with a ceiling in the next few paragraphs to distinguish them from
our informal variables n ranging over nodes. Subsequently, we will revert to
the usual ambiguity between mentioning formal variables and using informal
variables. To express bounded separation goals, we distinguish particular formal
variables �n1, n2, n

′�.
Definition 3. Let Γ be a security goal ∀x . Φ =⇒ ∨

�∈L ∃y� . Ψ� in LΠ with
non-empty L; let �n1, n2� be node variables among the variables x, and �n′� be
among the variables y� for every �. Then:

1. Γ, �n1, n2, n
′� is a distance-bounding requirement for protocol Π (or a

requirement, for short).
2. Π achieves the requirement Γ, �n1, n2, n

′�, iff, for every realized Π-skeleton B

and each variable assignment η such that η satisfies B |=η Φ, there is some � ∈
L and an η′ extending η such that B |=η′ Ψ� and moreover η′(�n1�), η′(�n2�)
bound separation from η′(�n′�) in B.

Since both the conclusions Ψ� and bounding separation are preserved by homo-
morphisms, as soon as they are satisfied in a branch of a cpsa, they will remain
true thereafter. Moreover, by Lemma2, the requirement ensures that some strand
satisfying Ψ� will be no farther from a strand satisfying Φ than the locally elapsed
time Δt · c/2 between the ith and jth node.

Hence, suppose we want to check if Π achieves a requirement Γ, �n1, n2, n
′�,

where Γ is of the form ∀x . Φ =⇒ ∨
�∈L ∃y� . Ψ�, and Φ is the characteristic

formula of a cpsa starting scenario A0, i.e. Φ = cf(A0).

1. Execute cpsa starting from the scenario A0, obtaining the set of shapes
{H� : A0 ·→ B�}�∈I ;

2. ascertain that each B� |=η Γ ;
3. for the satisfying variable assignments η′, check that η′(�n1�), η′(�n2�) bound

separation from η′(�n′�) in B�.

In the favorable case in which I is finite, these steps terminate.
We can easily express bounded separation as a conjunctive formula in the

variables �n1, n2, n
′�, namely:

prec(�n1�, �n′�) ∧ prec(�n′�, �n2�),
which we will denote bnd_sep(�n1�, �n2�, �n′�). Thus, in practice we perform
surgery on the given goal Γ to obtain Γ+:

∀x . Φ =⇒
∨

�∈L

∃y� . (Ψ� ∧ bnd_sep(�n1�, �n2�, �n′�)).

cpsa can check this security goal directly, as we illustrate in the next section.

152 P. D. Rowe et al.

3 Examples

In this section, we show how cpsa is used to find and fix a flaw in the Terrorist-
fraud Resistant and Extractor-free Anonymous Distance-bounding (tread) pro-
tocol [4]. The aim of its authors is to “obtain provable terrorist-fraud resistant
protocols without assuming that provers have any long-term secret key”. Alas,
the case in which tread is implemented with public key cryptography as shown
in Fig. 2 of [4] has an authentication failure.

Fig. 1. tread Protocol

Figure 1 shows our model of the
tread protocol. Each participant,
V and P , has a public key pk(·)
and a private key sk(·). A mes-
sage is encrypted with {| · |}pk(·) and
signed with [[·]]sk(·). The first message
exchanged in the protocol is γ signed
by the prover and then encrypted for
the verifier.

All distance-bounding protocols
include a fast phase, where one prin-
cipal measures the time it takes for a
sequence of message interactions. Our
modeling of tread abstracts away
details of its fast phase by a pair of

messages. The two bullets • near the clock � in the Verifier role show the begin-
ning and end of the timed fast phase.

In tread, γ is a pair of random n-bit values γ = (α, β). During the fast phase
of the protocol, the Verifier sends n one bit messages that make up the contents
of randomly chosen n-bit message c. The Prover responds to the reception of ci

with ri, where

ri =
{

αi if ci = 0,
βi ⊕ mi if ci = 1.

The Verifier declares success if it receives the responses it expects within the
protocol’s time bound. If the adversary cannot obtain γ, the adversary is highly
unlikely to provide the right n values for the ri. In that case, n bounded sepa-
ration claims are likely to hold.

In our protocol representation with a single fast exchange, the Prover sends
the hash of c, m, and γ, and the Verifier declares success if it receives that
message. Thus, in our version, we would like bounded separation to hold where
n1, n2 are the two Verifier nodes on the timed edge, and n′ is the Prover node that
transmits #(c,m, γ). The security goal Γ asserts that if a Verifier run completes,
a Prover run with matching V, P, γ,m, c parameters should also complete.

Analysis of tread. Figure 1 describes the tread protocol. Consider the point-
of-view in which the Verifier has run to completion with freshly chosen m, c and
non-compromised sk(P), sk(V). What else must have happened?

Assumption-Based Analysis of Distance-Bounding Protocols with cpsa 153

Fig. 2. tread Shape

The shape found by cpsa is displayed in Fig. 2. cpsa infers that the Prover
was active, but it may only have transmitted its first message, which may have
been altered before delivery by the adversary. The message received at the Veri-
fier’s 4th node can be synthesized by the adversary. cpsa is telling us that there
are bundles that are compatible with the shape in which adversary strands syn-
thesize all the messages received by the Verifier using only the message sent at
the Prover’s first (and only) node. Thus, neither Γ nor the bounded separation
property holds.

cpsa explains each step it takes on its way to finding its answers, and a
knowledgeable user can use this information to fix the protocol. However, we
press on, trying to fix the problem by adding a confirming message at the end
of the protocol. This is a reasonable thing to try, as at least one industrial
protocol uses this technique to (slowly) authenticate the replies sent during the
fast phase [8]. Plus, it is intuitively clear that this should allow the Verifier to
conclude that the Prover must have engaged in a fast phase.

Figure 3 shows the amended protocol we call tread+. When started with
the point-of-view skeleton in which the Verifier runs to completion, cpsa finds
the shape in Fig. 3. This time, cpsa concludes that the Prover must have run
to full length. However, the mismatch between the first message sent by the
Prover and received by the Verifier is still present, so Γ fails. Message #(c,m, γ)
is received by the Verifier on the second timed node, and is also sent by the
Prover. However, cpsa does not report that the transmission has to precede the
reception: The adversary can synthesize #(c,m, γ) before the Prover sends it!
This occurs because the Prover’s random values leak in the first message. Thus,
bounded separation again fails.

The retread protocol fixes the authentication problem in the tread pro-
tocol. It alters the first message by including the name of the Verifier, V , in
the signed part of the message. Therefore, the first message in both roles of the
protocol is {|γ, [[γ, V]]sk(P)|}pk(V). When cpsa is started with the point-of-view
skeleton in which the Verifier runs to completion, it finds the shape in Fig. 4.
No adversary behavior need occur in bundles compatible with this shape. What
cpsa learns is expressed in the shape analysis sentence:

154 P. D. Rowe et al.

Fig. 3. tread+ Protocol (l) and relevant shape (r)

Fig. 4. The retread protocol (l) and its shape (r)

If a Verifier with parameters P , V , c, m, and γ runs to completion, and
– c, m, and γ are assumed to be uniquely originating, and
– sk(P) and sk(V) are assumed to be non-originating,

then a Prover with parameters P , V , c, m, and γ ran to completion, with
bounded separation for the timed Verifier nodes and the 3th Prover node.

Adding V ’s name inside the signature in the Prover’s last message in tread+
also forces V and P to agree on V ’s identity, ensuring γ remains secret and
ensuring bounded separation. However, retread is a superior protocol since it
is shorter and requires only a single signature.

4 Taxonomy

Much of the recent literature on symbolic analysis of distance-bounding protocols
has focused on classifying protocols according to their ability to resist various

Assumption-Based Analysis of Distance-Bounding Protocols with cpsa 155

kinds of attacks (e.g. [7,9,22]). Our position is that it is more useful to categorize
protocols according the security goals they achieve. We follow the approach
from [32] in which security goals are expressed as first-order logical formulas. The
strength ordering of goal formulas is naturally captured by logical implication.
If Γ1 and Γ2 are security goals, then Γ1 is at least as strong as Γ2 iff Γ1 ⇒ Γ2.

Definition 4. A security goal is a closed formula Γ ∈ LΠ of the form

∀x̄ . (Φ =⇒
∨

k∈K

∃ȳk . Ψk)

where Φ and Ψ are conjunctions of atomic formulas. We write hyp(Γ) = Φ and
conc(Γ) =

∨
k∈K ∃ȳk . Ψk.

Fundamentally, all distance-bounding protocols have the same minimal goal.
If the verifier accepts a run apparently with prover P , then P must have
responded to the challenge after the start of the fast phase of the protocol
and before its completion. Protocols may have more stringent authentication
requirements such as needing the prover to agree on the verifier’s name and
other authenticated data. But often such agreement is achieved in the service of
the main goal which is to ensure P must be close. We can naturally express this
in our goal language.

To say that the verifier has accepted a run apparently with P we may write

Φ1(n, P) = VerifierDone(n) ∧ Prover(n, P)

where VerifierDone(·) is a predicate that holds for the last node of a verifier’s
run, and Prover(·) signifies the verifier’s value for the prover’s identity.

To express the requirement that P respond to the verifier’s challenge during
the fast phase, we need to identify the nodes starting and stopping the fast
phase. We can write

Φ2(n1, n2) = StartTimer(n1) ∧ StopTimer(n2) ∧ coll(n1, n2)

where StartTimer(·) and StopTimer(·) serve to identify the nodes starting and
stopping the fast phase on the verifier’s strand. coll(n1, n2) states that these
nodes start and stop the fast phase on the same strand. We similarly must ensure
that we are referring to the fast phase of the same strand as the one accepting
the run with P . It suffices to express that n and n1 are on the same strand.
Putting it all together, we have:

Φ(n, P, n1, n2) = Φ1(n, P) ∧ Φ2(n1, n2) ∧ coll(n, n1) (1)

Equation 1 serves as the hypothesis for the distance-bounding security goal.
The conclusion must state that P responded to the challenge during the fast
phase. As all distance-bounding protocols have an event in which the prover
sends the reply to a challenge, we use ProverReply(·) to denote such a node of
a prover strand. We again use Prover(·, ·) to express that the prover’s identity

156 P. D. Rowe et al.

for the ProverReply node is P . Finally, we use bnd_sep to express the ordering
required for the fast phase. The result is:

Ψ(n1, n2, n
′, P) = ProverReply(n′) ∧ Prover(n′, P) ∧ bnd_sep(n1, n2, n

′) (2)

The basic distance-bounding security goal is thus:

DB = ∀n, P, n1, n2 . Φ(n, P, n1, n2) =⇒ ∃n′ . Ψ(n1, n2, n
′, P) (3)

However, no protocol can achieve DB as formulated in Eq. 3. The assumptions
in hyp(DB) are too weak to imply bounded separation. First, distance bounding
is hopeless unless the verifier chooses fresh values. We will henceforth always
assume this, adopting a corresponding strengthening Φ′ in place of Eq. 1.

But also, Φ makes no assumption about the authenticity or confidentiality of
any communications channels—either directly or through assumptions on cryp-
tographic keys. It is well-known that authentic or confidential channels cannot
be constructed without access to an authentic or confidential channel [21], or
corresponding secret keys. We identify a collection of additional assumptions
that can help to ensure a protocol can achieve the goal of bounding the distance
of the apparent prover. We identify three main types of assumptions:

s. Secrecy of long-term keys (private keys and/or shared symmetric keys)
f. Freshness of prover-chosen values
a. Authenticity of messages received during the fast phase

The assumption that a given long-term key has been kept secret is familiar
for cryptographic protocols of all types. In surveying the literature, there are
typically three types of long-term keys that distance-bounding protocols tend
to rely on: private keys belonging to the prover (sk(P)), private keys belonging
to the verifier (sk(V)), and symmetric keys shared by the prover and verifier
(ltk(P, V)). We may state the corresponding secrecy requirements as follows:

sltk(n, P, V) = Verifier(n, V) ∧ Prover(n, P) ∧ non(ltk(P, V)) (4)

sprv(n, P) = Prover(n, P) ∧ non(sk(P)) (5)

svrf(n, V) = Verifier(n, V) ∧ non(sk(V)) (6)

The freshness of prover-chosen values can also play an important role in the
success of distance-bounding protocols. If a verifier believes the prover’s nonces
to be randomly chosen and shared only with the verifier, then by incorporating
the nonces into the reply during the fast phase the verifier can conclude it really
is the prover providing the reply. However, there are several natural reasons
this assumption may not be justified. In many distance-bounding protocols the
prover has very limited computational power, and so may also not have a reliable
source of randomness. It may also be the case that a dishonest and distant prover
is willing to share their nonces with a malicious accomplice who is in physical
proximity with the verifier. This is related to Terrorist Fraud Attacks [11], about

Assumption-Based Analysis of Distance-Bounding Protocols with cpsa 157

which we say more in a later section. We may state the freshness assumption on
a prover’s nonce as follows:

f(n, np) = ProverNonce(n, np) ∧ uniq(np) (7)

In some protocols (e.g. tread), the prover contributes two nonces. In those
cases, for each of the nonces, f will include a pair of conjuncts like Eq. 7. In
our analysis below, we always make the same assumption on all of the prover’s
nonces. That is, we either assume all nonces are fresh, or we don’t assume any
are.

Finally, some protocols might be run in environments where it is reasonable to
assume that only regular (i.e. honest) provers can provide the replies during the
fast phase. Consider, for example, a secure facility that enforces physical access
control to a building that uses a distance-bounding protocol to gate access to
special rooms. The fast phase may use near-field communication meaning that
only those provers who have already passed the initial access control would be
within range. This is one way to ensure the authenticity of messages received
during the fast phase.

Whether malicious parties have access to the timed channel inbound to the
verifier is related to Distance Hijacking Attacks [9]. We may state the assumption
that the inbound timed channel is authentic as follows:

a(n, timed) = TimedChannel(n, timed) ∧ auth(timed) (8)

Equations 4–8 allow us to define a family of distance-bounding security goals
according to which subsets of the assumptions we include. Many protocols only
require the prover to have access to a single long-term key. Depending on whether
it is a shared symmetric key or a private signing key, we would use either Eq. 4
or 5. By making all possible combinations of assumptions of type s, f, and a,
we naturally generate eight possible goals which we denote DBP({sfa}) according
to which subset of {s, f, a} is included in the assumptions of hyp(DBP({sfa})) So,
for example, DB = DB∅ because we make none of the assumptions. The goal
that only assumes authenticity of messages received during the fast phase is
denoted DBa, (with the set braces suppressed for readability) which stands for
the formula:

∀n, P, n1, n2, timed . Φ(n, P, n1, n2) ∧ a(n, timed) =⇒ ∃n′ . Ψ(n1, n2, n
′, P).

Following the ideas in [32], this family of goals is naturally ordered by implica-
tion. Goal formulas that make fewer assumptions are naturally stronger. Figure 5
depicts the ordering of the family DBP({sfa}). Only the superscripts are denoted
in the diagram. This partial ordering can serve as a yard stick to measure the
relative strength of a variety of designs for distance-bounding protocols. If a
protocol satisfies the goal at one point in the partial order, then it satisfies all
goals below it (since they are ordered by implication). Therefore, we can evaluate
protocols according to the maximal goals they achieve. We performed a survey
of numerous protocols from the literature, and the boxes indicate the maximal
strength achieved by at least one of the protocols we studied.

158 P. D. Rowe et al.

∅

a f s

fa sa sf

sfa

Fig. 5. Strength ordering for DBP({sfa}).
Boxes indicate maximal strength achieved
by at least one protocol from our survey.

For protocols such as tread that
rely on two long-term keys, one of the
keys is typically the prover’s signing
key, while the other is either the ver-
ifier’s private decryption key (sk(V))
or a shared symmetric key (ltk(P, V)).
We may wish to separate the assump-
tions we make about their secrecy.
This yields a bigger family of goals
denoted DBss′fa where s represents the
assumption sprv (Eq. 5), and s′ repre-
sents either sltk (Eq. 4) or svrf (Eq. 6)
depending on the design of the proto-

col. This yields a bigger lattice of security goals depicted in Fig. 6. Again, the
boxes indicate maximal strengths achieved by at least one protocol among those
we surveyed.

∅

a f s′ s

fa s′a s′f sa sf ss′

s′fa sfa ss′a ss′f

ss′fa

Fig. 6. Strength ordering for DBP({ss′fa}). Boxes indicate maximal strength achieved
by at least one protocol from our survey.

As stated above, we analyzed numerous protocols from the literature.
Our intent is not to be exhaustive, but rather to demonstrate the utility
of assumption-based analyses for comparing the relative strength of different
designs of distance-bounding protocols. Space constraints preclude an exhaus-
tive description of all the analyses, but the results are summarized in Table 12
and we discuss a few noteworthy highlights below. The times reported are based
on runs using a 2018 MacBook Air with 1.6GHz Dual-Core Intel Core i5 proces-
sor with 16GB of RAM. They represent the total elapsed time after verifying all
8 or 16 variants of the goal depending on how many long-term keys the protocol
uses. As the table makes clear, cpsa is an extremely efficient tool.

2 Cf. https://github.com/mitre/cpsaexp/tree/master/doc/dist_bnd_prots.

https://github.com/mitre/cpsaexp/tree/master/doc/dist_bnd_prots

Assumption-Based Analysis of Distance-Bounding Protocols with cpsa 159

Table 1. Various distance-bounding protocols ordered by strength.

Protocol Strength Elapsed time (s)

Protocols with a single long-term key
Hancke and Kuhn [16] {s}, {a} 0.03
Kim and Avoine [19] {s}, {a} 0.03
Munilla et al. [26] {s}, {a} 0.07
Reid et al. [31] {s}, {a} 0.04
Swiss-Knife [20] {s}, {a} 0.05
Mauw et al. [23] {sf}, {a} 0.03
Meadows et al. [24] {sf}, {fa} 0.05
BC-Signature [6] {sf} 0.06
CRCS [30] {sf} 0.06
BC-FiatShamir [6] {sfa} 0.10
Protocols with two long-term keys
Paysafe [8] {sf}, {s′f} 0.12
tread-sk [5] {sfa}, {s′f} 0.08
tread-pk [5] {sfa} 0.05
tread variants introduced in this paper
tread-sk+ {sfa}, {s′f} 0.16
retread-sk {sfa}, {s′f} 0.07
retread-pk {sfa}, {ss′f} 0.06
tread-pk+ {sfa} 0.16

We first note that it seems to be easy for distance-bounding protocols to
satisfy the weakest goal (DBsfa or DBss′fa). Every protocol we checked was secure
under the strongest set of assumptions. The weakest protocol we discovered was
Brands and Chaum’s early adaptation of the Fiat-Shamir identification scheme
into a distance-bounding scheme [6]. This weak result may not be entirely accu-
rate, but might rather be an artifact of modeling algebraic properties with logical
axioms.

At the other end of the spectrum, there is a collection of protocols that all
satisfy both DBa and DBs which are incomparable goals [16,19,20,26,31]. Indeed,
this is the best we can hope for. As we have already seen, DB∅ is impossible to
achieve due to the need to have access to at least one confidential or authentic
channel [21]. DBf is unsatisfiable for the same reason. Therefore, simultaneously
satisfying both “shoulders” of Fig. 5 is the maximum strength possible.

It is instructive to consider the design principles used by various protocols
that contribute to their strength or weakness. The family of protocols achiev-
ing the maximum strength are all based on the same core design. Namely, in
the fast phase, the prover’s reply cryptographically binds the verifier’s challenge
with a long-term shared symmetric key that serves to authenticate the prover.

160 P. D. Rowe et al.

The exact way in which these values are cryptographically bound varies widely,
but it typically involves generating a hash of a message containing at least the
shared key and the verifier’s nonce. Much of the variation in the designs is
attributable to the need to make the cryptographic operation as simple as possi-
ble. More computationally intensive operations force the verifier to accept longer
threshold times for the round trip because the verifier needs to account for the
computation time as well. Longer threshold times generally provide weaker dis-
tance guarantees. Our symbolic analysis only ensures that an upper bound on
the distance can be achieved. Since it does not consider the computation time
explicitly, CPSA does not distinguish among these protocols.

In order to better understand how different designs fall short of the maximum
strength, consider the protocol from Mauw et al. [23]. Rather than creating an
explicit binding between the long-term shared symmetric key and the verifier’s
nonce, they create an implicit binding. They do this with a message in the
setup phase. During this first phase, the prover sends a nonce to the verifier
encrypted under their long-term, shared symmetric key. During the fast phase,
the prover combines the verifier’s nonce with its own nonce from the first phase.
This creates an implicit binding between the verifier’s nonce and the long-term
key. But, crucially, this binding only succeeds if the long-term key has not been
compromised, and the prover’s nonce is indeed random and fresh. An adversary
near to the verifier who is capable of guessing the prover’s nonce (or an adversary
who can coerce the prover into leaking its nonce during the first phase) can cause
a distant prover to appear close to the verifier. Thus, in this protocol, the security
of the long-term key is not enough. The verifier must also assume the prover’s
nonce is not available outside the bounds of the protocol execution. This is
why it does not achieve DBs, but does achieve DBsf . When considering the goal
DBa, the authenticity of the fast channel guarantees the prover is honest. Since
the reply also contains the prover’s identity, this authentic channel successfully
authenticates the prover’s identity.

The remaining protocols suffer in similar ways. Generally speaking, they also
perform implicit bindings between the verifier’s nonce and the long-term key.
In attempting to make the prover’s response as fast as possible to compute,
various techniques are chosen that suffer from subtle algebraic collisions. For
example, the bindings are frequently created by performing an xor operation
which is very efficient. But such values are not inherently integrity protected, so
there is an opportunity for algebraic manipulation. This is contrast to a standard
hash function which may be slower to compute, but which does not admit such
algebraic manipulations.

We also analyzed tread together with a shared-key version also present
in [5]. We distinguish them as tread-pk and tread-sk respectively. We can
now compare them to the altered versions we introduced in Sect. 3. Our earlier
analysis focused solely on the goal DBss′f . While tread-pk fails to satisfy that
goal, it does satisfy DBsfa. This says that, when the verifier assumes its timed
inbound channel is authentic, the verifier need not rely on the secrecy of its own
private key to achieve the distance bound. tread-sk additionally satisfies DBs′f

Assumption-Based Analysis of Distance-Bounding Protocols with cpsa 161

which implies the goal we investigated in Sect. 3 but is also incomparable with
the single strongest goal achieved by tread-pk. Although tread-sk does not
satisfy any goals stronger than the strongest one achieved by tread-pk, it does
satisfy goals the public key version does not. In this sense, tread-sk is strictly
stronger than tread-pk.

Notice that tread-pk+ provides no benefit beyond tread-pk, and similarly
for the shared-key versions. retread-pk, on the other hand, is slightly stronger
than tread-pk, although not quite as strong even as tread-sk since it doesn’t
achieve DBs′f . retread-sk satisfies the same goals as tread-sk, so adds no
value in a shared key context.

5 Related Work

Spacetime vs. Causality. A key aspect of our approach to analyzing distance-
bounding protocols is the lack of any explicit account of time or distance in the
protocol models. We are not the first to make the observation that a causality-
based analysis is informative enough to draw conclusions about time and dis-
tance. We follow the ideas taken by Mauw et al. in [22] in which they introduce a
semantic model that explicitly accounts for time and distance. They then relate
that model to the execution model underlying Tamarin [25] just as we relate
spacetime bundles and realized skeletons. The underlying Dolev-Yao adversary
model of Tamarin is sufficient to capture all relevant attacks.

This is in contrast to the work of Chothia et al. [7], which uses specific
classes of processes to model dishonest provers, instead of relying solely on the
underlying Dolev-Yao processes. Their approach is also causality-based: Rather
than model time and distance quantitatively, they model “places;” processes in
the same place are nearby. They adapt the pi-calculus operational semantics [1]
so that processes that communicate during the fast phase have the same place.

Various other symbolic approaches account for time and distance more explic-
itly [9,10,17]. Our core insight arose from discussions with Andre Scedrov and
Carolyn Talcott when they presented their work starting with [17] at our Proto-
col Exchange meeting. Our discussions suggested we could separate the analysis
of the causal constraints from an analysis of the quantitative constraints of time
and distance. We believed we could first reason causally and collect quantitative
constraints along the way. The causal reasoning would justify deriving a tolera-
ble strand-local delay from the desired quantitative distance bound. Lemmas 1–2
justify the procedure.

Attack-Based vs. Assumption-Based. Since the very early days of study-
ing distance-bounding protocols the focus has been on preventing various types
of attacks. The attacks are commonly referred to by names such as Terrorist
Fraud and Mafia Fraud. One frequently finds intuitive definitions of these attack
types based on the relative locations of Dolev-Yao attackers, honest & dishonest
provers, and the verifier. The informality of these intuitions can make it quite
difficult to interpret how they should be formally defined in any given model.

162 P. D. Rowe et al.

Indeed, as observed in [22], there still remains some disagreement around the
appropriate formal definition of Terrorist Fraud.

The clearest, most formal definitions we could find were in [7]. They introduce
systematic definitions of dishonest provers for Mafia Fraud and Terrorist Fraud.
They then explore the set of combinations of verifiers, Dolev-Yao attackers, and
honest & dishonest provers in all possible relative locations, and organize them
into a hierarchy of attacks.

In our view, focusing on and explicitly modeling different attack types runs
counter to the spirit of most modern approaches to symbolic analysis of proto-
cols. The community no longer makes distinctions about whether an adversary
executes a reflection attack or a replay attack. The community no longer creates
different protocol models for closed systems and open systems.

Our approach is based on a lesson learned by one of the authors from an
observation made by Andre Scedrov regarding the classic Needham-Schroeder
protocol. The standard view that Lowe found a previously undiscovered attack
is somewhat misleading. The original protocol was secure under the assumptions
made by Needham and Schroeder. Lowe’s attack did not invalidate old security
claims. It merely showed that the desired authentication property doesn’t hold
under a weaker set of assumptions. In the language of strand spaces, Needham
and Schroeder assumed that initiators only engage in sessions with responders
whose private keys are non-originating. Indeed, under such an assumption the
protocol does achieve the desired conclusion. The question of whether such an
assumption is justified is separate from that of whether the protocol achieves
the right conclusion under the assumption.

This observation motivates the assumption-driven analysis in contrast to an
attack-driven analysis. We believe our focus on altering assumptions instead of
altering attacks helps focus attention on the security goals achieved by a distance-
bounding protocol regardless of the type of attack. Of course, the assumptions
one makes are closely related to the types of attacks considered. But we find the
shift in perspective to be enlightening.

∅

aDH f sTF

fa sa sfMF

sfa

Fig. 7. Conjecture: attacks and the
assumptions that prevent them.

Nevertheless, we have a conjec-
ture connecting our lattice of assump-
tions to the standard attack types in
the literature. Figure 7 annotates our
assumption lattice for protocols using
one long-term key with three attack
types: Mafia Fraud (MF), Terrorist
Fraud (TF), and Distance Hijacking
(DH). For each attack type, we asso-
ciate it with the weakest goal such
that, if the protocol achieves that
goal, then it resists the given attack
type. So, for instance, if a protocol

achieves DBa then it resists distance hijacking attacks. This association is only
an informal conjecture at this point. The corresponding association for protocols

Assumption-Based Analysis of Distance-Bounding Protocols with cpsa 163

with two long-term keys is less clear. It is worth noting, however, the relative
order of the attacks in Fig. 7 matches the corresponding order embedding in the
attack hierachy of [7]. Establishing this conjecture, or making it more precise,
would require a more careful comparison of the semantics of the formal models.

Symbolic vs. Quantitative Analysis. Our symbolic analysis relies on a simple
and clear use of causal structures to infer the security goals achieved by distance-
bounding protocols. However, the simplicity and clarity is often obtained by
abstracting away the finer details of the fast phase. The fast phase typically
involves repeated round trips of single-bit messages, which we represent as a
single round trip of many-bit messages. The causal structure arises out of unique-
origination assumptions on nonces which preclude any other agent from being
able to send the nonce without first receiving it.

However, at the bit level, any given round trip does not guarantee the desired
causal order because an adversary or a dishonest prover always has a chance
of guessing the correct reply bit before receiving the challenge bit. The causal
conclusions only emerge probabilistically over time as challenge-response round
trips are performed. Symbolic analyses are therefore incapable of yielding insights
about how many challenges a verifier should issue to be confident of the causal
consequences. Recent work by Andre Scedrov and others explicitly addresses this
question for the Hancke-Kuhn family of distance-bounding protocols [2,3].

Another creative line of inquiry by Scedrov and others [18] involves a more
nuanced analysis of just how strongly the timing constraints can bound the dis-
tance between the verifier and the prover. They introduce a model that accounts
not only for the time it takes for a message to travel through space, but also for
the time it takes for instructions to execute. Because low-powered processors can
often only perform one instruction during any given clock tick, there can be time
between the event of starting the timer and the event of sending the challenge
that is unaccounted for by the timing constraint. They discover the possibility
of an “Attack Between the Ticks” in which a distant prover takes advantage of
this time discrepency to appear much closer than they actually are.

6 Conclusion

In this paper we introduced a version of strand spaces that explicitly accounts for
the physical properties of spacetime. We demonstrated that it is always possible
to embed the standard strand space bundles into spacetime bundles in such a
way that any quantitative constraints on distance and time are satisfied.

This justifies using cpsa without modifications to analyze the security of
distance-bounding protocols, illustrated by analyzing and repairing the tread
protocol which had previously been shown to be vulnerable to attack. A sur-
vey of various distance-bounding protocols from the literature places them in a
taxonomy of protocols according to their strength. In contrast to the prevailing
trend, we organize our taxonomy not on the basis of attacks that are possible,
but—dually—on the basis of the assumptions required for a verifier to bound
the distance to a given prover.

164 P. D. Rowe et al.

We believe the shift in perspective to an assumption-based taxonomy from
an attack-based one provides a clearer understanding of the conditions under
which distance-bounding protocols succeed and fail.

References

1. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. In:
28th ACM Symposium on Principles of Programming Languages (POPL 2001),
pp. 104–115 (2001)

2. AlTurki, M.A., Kanovich, M.I., Kirigin, T.B., Nigam, V., Scedrov, A., Talcott,
C.L.: Statistical model checking of distance fraud attacks on the hancke-kuhn fam-
ily of protocols. In: Lie, D., Mannan, M. (eds) Proceedings of the 2018 Workshop
on Cyber-Physical Systems Security and PrivaCy, CPS-SPC@CCS 2018, Toronto,
ON, Canada, 19 October 2018, pp. 60–71. ACM (2018)

3. Alturki, M.A., Ban Kirigin, T., Kanovich, M., Nigam, V., Scedrov, A., Talcott, C.:
A multiset rewriting model for specifying and verifying timing aspects of secu-
rity protocols. In: Guttman, J.D., Landwehr, C.E., Meseguer, J., Pavlovic, D.
(eds.) Foundations of Security, Protocols, and Equational Reasoning. LNCS, vol.
11565, pp. 192–213. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
19052-1_13

4. Avoine, G., et al.: A terrorist-fraud resistant and extractor-free anonymous
distance-bounding protocol. In: Karri, R., Sinanoglu, O., Sadeghi, A.-R., Yi, X.
(eds.) Proceedings of the 2017 ACM on Asia Conference on Computer and Com-
munications Security, AsiaCCS 2017, Abu Dhabi, United Arab Emirates, 2–6 April
2017, pp. 800–814. ACM (2017)

5. Avoine, G., et al.: A terrorist-fraud resistant and extractor-free anonymous
distance-bounding protocol. IACR Cryptology ePrint Archive 2017, 297 (2017)

6. Brands, S., Chaum, D.: Distance-bounding protocols. In: Helleseth, T. (ed.) EURO-
CRYPT 1993. LNCS, vol. 765, pp. 344–359. Springer, Heidelberg (1994). https://
doi.org/10.1007/3-540-48285-7_30

7. Chothia, T., de Ruiter, J., Smyth, B.: Modelling and analysis of a hierarchy of
distance bounding attacks. In: Enck, W., Felt, A.P. (eds.) 27th USENIX Security
Symposium, USENIX Security 2018, Baltimore, MD, USA, 15–17 August 2018,
pp. 1563–1580. USENIX Association (2018)

8. Chothia, T., Garcia, F.D., de Ruiter, J., van den Breekel, J., Thompson, M.: Relay
cost bounding for contactless EMV payments. In: Böhme, R., Okamoto, T. (eds.)
FC 2015. LNCS, vol. 8975, pp. 189–206. Springer, Heidelberg (2015). https://doi.
org/10.1007/978-3-662-47854-7_11

9. Cremers, C.J.F., Rasmussen, K.B., Schmidt, B., Čapkun, S.: Distance hijacking
attacks on distance bounding protocols. In: IEEE Symposium on Security and
Privacy, SP 2012, San Francisco, California, USA, 21–23 May 2012, pp. 113–127.
IEEE Computer Society (2012)

10. Debant, A., Delaune, S.: Symbolic verification of distance bounding protocols. In:
Nielson, F., Sands, D. (eds.) POST 2019. LNCS, vol. 11426, pp. 149–174. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-17138-4_7

11. Desmedt, Y.: Major security problems with the ‘unforgeable’ (feige)-fiat-shamir
proofs of identity and how to overcome them. In: SECURICOM 1988, pp. 15–17
(1988)

https://doi.org/10.1007/978-3-030-19052-1_13
https://doi.org/10.1007/978-3-030-19052-1_13
https://doi.org/10.1007/3-540-48285-7_30
https://doi.org/10.1007/3-540-48285-7_30
https://doi.org/10.1007/978-3-662-47854-7_11
https://doi.org/10.1007/978-3-662-47854-7_11
https://doi.org/10.1007/978-3-030-17138-4_7

Assumption-Based Analysis of Distance-Bounding Protocols with cpsa 165

12. Dolev, D., Yao, A.: On the security of public-key protocols. IEEE Trans. Inf. Theory
29, 198–208 (1983)

13. Durgin, N., Lincoln, P., Mitchell, J., Scedrov, A.: Multiset rewriting and the com-
plexity of bounded security protocols. J. Comput. Secur. 12(2), 247–311 (2004).
Initial version appeared in Workshop on Formal Methods and Security Protocols,
1999

14. Guttman, J.D.: Shapes: surveying crypto protocol runs. In: Cortier, V., Kremer, S.
(eds.) Formal Models and Techniques for Analyzing Security Protocols, Cryptology
and Information Security Series. IOS Press (2011)

15. Guttman, J.D.: Establishing and preserving protocol security goals. J. Comput.
Secur. 22(2), 201–267 (2014)

16. Hancke, G.P., Kuhn, M.G.: An RFID distance bounding protocol. In: First Interna-
tional Conference on Security and Privacy for Emerging Areas in Communications
Networks, SecureComm 2005, Athens, Greece, 5–9 September 2005, pp. 67–73.
IEEE (2005)

17. Kanovich, M., Ban Kirigin, T., Nigam, V., Scedrov, A., Talcott, C.: Timed multiset
rewriting and the verification of time-sensitive distributed systems. In: Fränzle, M.,
Markey, N. (eds.) FORMATS 2016. LNCS, vol. 9884, pp. 228–244. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-44878-7_14

18. Kanovich, M.I., Kirigin, T.B., Nigam, V., Scedrov, A., Talcott, C.L.: Time, compu-
tational complexity, and probability in the analysis of distance-bounding protocols.
J. Comput. Secur. 25(6), 585–630 (2017)

19. Kim, C.H., Avoine, G.: RFID distance bounding protocol with mixed challenges to
prevent relay attacks. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009.
LNCS, vol. 5888, pp. 119–133. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-10433-6_9

20. Kim, C.H., Avoine, G., Koeune, F., Standaert, F.-X., Pereira, O.: The swiss-knife
RFID distance bounding protocol. In: Lee, P.J., Cheon, J.H. (eds.) ICISC 2008.
LNCS, vol. 5461, pp. 98–115. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-00730-9_7

21. Maurer, U.M., Schmid, P.E.: A calculus for security bootstrapping in distributed
systems. J. Comput. Secur. 4(1), 55–80 (1996)

22. Mauw, S., Smith, Z., Toro-Pozo, J., Trujillo-Rasua, R.: Distance-bounding proto-
cols: Verification without time and location. In: 2018 IEEE Symposium on Security
and Privacy, SP 2018, Proceedings, 21–23 May 2018, San Francisco, California,
USA, pp. 549–566. IEEE Computer Society (2018)

23. Mauw, S., Smith, Z., Toro-Pozo, J., Trujillo-Rasua, R.: Post-collusion security and
distance bounding. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) Pro-
ceedings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2019, London, UK, 11–15 November 2019, pp. 941–958. ACM (2019)

24. Meadows, C.A., Poovendran, R., Pavlovic, D., Chang, L., Syverson, P.F.: Distance
bounding protocols: authentication logic analysis and collusion attacks. In: Pooven-
dran, R., Roy, S., Wang, C. (eds.) Secure Localization and Time Synchronization
for Wireless Sensor and Ad Hoc Networks. Advances in Information Security, vol.
30, pp. 279–298. Springer, Heidelberg (2007). https://doi.org/10.1007/978-0-387-
46276-9_12

25. Meier, S., Schmidt, B., Cremers, C., Basin, D.: The TAMARIN prover for the
symbolic analysis of security protocols. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 696–701. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-39799-8_48

https://doi.org/10.1007/978-3-319-44878-7_14
https://doi.org/10.1007/978-3-642-10433-6_9
https://doi.org/10.1007/978-3-642-10433-6_9
https://doi.org/10.1007/978-3-642-00730-9_7
https://doi.org/10.1007/978-3-642-00730-9_7
https://doi.org/10.1007/978-0-387-46276-9_12
https://doi.org/10.1007/978-0-387-46276-9_12
https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1007/978-3-642-39799-8_48

166 P. D. Rowe et al.

26. Munilla, J., Peinado, A.: Distance bounding protocols for RFID enhanced by using
void-challenges and analysis in noisy channels. Wirel. Commun. Mobile Comput.
8(9), 1227–1232 (2008)

27. Ramsdell, J.D.: Deducing security goals from shape analysis sentences. The MITRE
Corporation (2012). http://arxiv.org/abs/1204.0480

28. Ramsdell, J.D., Guttman, J.D.: CPSA4: A cryptographic protocol shapes analyzer
(2017). https://github.com/mitre/cpsaexp

29. Ramsdell, J.D., Guttman, J.D., Liskov, M.D., Rowe, P.D.: The CPSA Specifica-
tion: A Reduction System for Searching for Shapes in Cryptographic Protocols.
The MITRE Corporation (2009). http://hackage.haskell.org/package/cpsa. source
distribution, doc directory

30. Rasmussen, K.B., Capkun, S.: Realization of RF distance bounding. In: 19th
USENIX Security Symposium, Washington, DC, USA, 11–13 August 2010, Pro-
ceedings, pp. 389–402. USENIX Association (2010)

31. Reid, J., Nieto, J.M.G., Tang, T., Senadji, B.: Detecting relay attacks with timing-
based protocols. In: Bao, F., Miller, S. (eds.) Proceedings of the 2007 ACM Sym-
posium on Information, Computer and Communications Security, ASIACCS 2007,
Singapore, 20–22 March 2007, pp. 204–213. ACM (2007)

32. Rowe, P.D., Guttman, J.D., Liskov, M.D.: Measuring protocol strength with
security goals. Int. J. Inf. Secur. 15(6), 575–596 (2016). https://doi.org/10.
1007/s10207-016-0319-z. http://web.cs.wpi.edu/~guttman/pubs/ijis_measuring-
security.pdf

33. Thayer, F.J., Swarup, V., Guttman, J.D.: Metric strand spaces for locale authen-
tication protocols. In: Nishigaki, M., Jøsang, A., Murayama, Y., Marsh, S. (eds.)
IFIPTM 2010. IAICT, vol. 321, pp. 79–94. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-13446-3_6

http://arxiv.org/abs/1204.0480
https://github.com/mitre/cpsaexp
http://hackage.haskell.org/package/cpsa
https://doi.org/10.1007/s10207-016-0319-z
https://doi.org/10.1007/s10207-016-0319-z
http://web.cs.wpi.edu/~guttman/pubs/ijis_measuring-security.pdf
http://web.cs.wpi.edu/~guttman/pubs/ijis_measuring-security.pdf
https://doi.org/10.1007/978-3-642-13446-3_6
https://doi.org/10.1007/978-3-642-13446-3_6

Modelchecking Safety Properties
in Randomized Security Protocols

Matthew S. Bauer1, Rohit Chadha2(B), and Mahesh Viswanathan3

1 Galois Inc., Portland, USA
2 University of Missouri, Columbia , USA

chadhar@missouri.edu
3 University of Illinois, Urbana-Champaign, USA

Abstract. Automated reasoning tools for security protocols model pro-
tocols as non-deterministic processes that communicate through a Dolev-
Yao attacker. There are, however, a large class of protocols whose correct-
ness relies on an explicit ability to model and reason about randomness.
Although such protocols lie at the heart of many widely adopted systems
for anonymous communication, they have so-far eluded automated veri-
fication techniques. We propose an algorithm for reasoning about safety
properties for randomized protocols. The algorithm is implemented as an
extension of Stochastic Protocol ANalyzer (Span), the mechanized tool
that reasons about the indistinguishability properties of randomized pro-
tocols. Using Span, we conduct the first automated verification on several
randomized security protocols and uncover previously unknown design
weaknesses in several of the protocols we analyzed.

1 Introduction

As security protocols are vulnerable to design flaws, machine-aided formal analy-
sis is often utilized to verify their security guarantees. Such analysis must be car-
ried out in the presence of an attacker that can read, intercept, modify and replay
all messages on public channels, and potentially send its messages. The presence
of the attacker makes the analysis challenging. In order to aid automation, the
analysis is often carried out in the so-called Dolev-Yao model where messages are
modeled as terms in a first-order vocabulary, the assumption of perfect cryptog-
raphy is made. In the Dolev-Yao model, the attacker controls all communication,
non-deterministically schedule the participants, and non-deterministically inject
new messages, which are computed using the whole communication transcript.

Until recently, verification techniques in this domain have converged around
modeling and verifying protocols that are purely non-deterministic, where non-
determinism is used to model concurrency as well as the interaction between
protocol participants and their environment. In this setting, decades of work
have produced many sophisticated analysis tools [5,11,15,30,45]. There are,
however, a large class of protocols whose correctness depends on an explicit
ability to model and reason about randomness. With privacy goals in mind,

c© Springer Nature Switzerland AG 2020
V. Nigam et al. (Eds.): Scedrov Festschrift, LNCS 12300, pp. 167–183, 2020.
https://doi.org/10.1007/978-3-030-62077-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62077-6_12&domain=pdf
https://doi.org/10.1007/978-3-030-62077-6_12

168 M. S. Bauer et al.

these protocols lie at the heart of many anonymity systems such as Crowds [41],
mix-networks [22], onion routers [34] and Tor [29]. Cryptographic protocols also
employ randomness to achieve fair exchange [10,31], vote privacy in electronic
voting [4,21,42,44] and denial of service prevention [37]. The formal verification
of this class of protocols has thus-far received little systematic attention.

In the absence of a systematic framework, there have been primarily two
approaches to verify randomized security protocols. Works such as [49] use prob-
abilistic model checkers [27,39] to reason about probabilistic behavior in systems
like Crowds. These ad-hoc techniques fail to capture the Dolev-Yao attacker in
full generality and do not provide a general verification framework. Other works
in the symbolic model [28,38] simply abstract away essential protocol compo-
nents that utilize randomization, such as anonymous channels. By making these
simplifying assumptions, such analysis may miss key attacks. Indeed, we discov-
ered in our analysis an attack on the FOO electronic voting protocol [32] that
has long served as a key benchmark in the analysis of anonymity properties in
the Dolev-Yao model. Our attack emerges by realizing the perfectly anonymous
channels in the FOO by threshold-mixes and was missed by previous analysis.1

The critical challenge in the formal verification of randomized security proto-
cols is the subtle interaction between non-determinism and randomization. If the
attacker can base its non-deterministic computation on the results of private coin
tosses of the participants, then the analysis necessarily may yield false attacks in
correct protocols (see examples in [13,16,19,23,33]). Thus, the attacker behav-
ior should be restricted to perform the same computation in any two protocol
executions whose communication transcripts are indistinguishable to it. This
observation is at the heart of the first framework to analyze randomized security
protocols proposed in [9,17,43]. In this framework, the indistinguishability of
two traces is captured by the trace-equivalence from the applied π-calculus [2].
The first-of-its-kind model-checking tool Stochastic Protocol ANalyer (Span)
for checking the indistinguishability of two protocols in this framework was pre-
sented in [8]. Span was used to verify the 3-ballot electronic voting protocol [44]
in [8].

Contributions. In this work, we describe an algorithm for analyzing the
reachability-based safety properties of randomized protocols that were imple-
mented as an extension of Span. The algorithm follows the bounded model
checking approach of the equivalence checking in Span and assumes that
the attacker sends messages of bounded size. The problem of checking safety
reduces to the problem of computing reachability of acyclic finite state Partially-
Observable Markov Decision Processes (POMPDs). The analysis of finite
POMDPs is, in general undecidable. However, since we deal with acyclic
POMDPs, the problem of checking reachability is decidable and can be com-
puted by converting the POMDP into a fully-observable belief Markov Decision
Processes. Our algorithm exploits the acyclicity of the POMDPs to construct

1 A similar attack was also discovered by hand in [6] where the analysis of FOO
protocol is carried out in the computational model.

Modelchecking Safety Properties in Randomized Security Protocols 169

the belief MDP on-the-fly by discovering the states of the belief MDP using
the Depth-First-Search strategy that is often used to solve graph reachability
problems.

We use Span to conduct the first automated symbolic analysis of several
protocols including mix-networks [22], the FOO electronic voting protocol [32]
and Prêt à Voter [42]. Our analysis shows that realizing perfectly anonymous
channels in the FOO protocol requires non-trivial modification to the protocol
design, which if not done carefully, can lead to errors. In addition, a bug in the
design of the Prêt à Voter protocol was uncovered (see Sect. 2.2). In order to fix
the bug, we propose computing the cyclic offsets in the construction of Prêt à
Voter using psuedorandom permutations instead of hash functions.

Related Work. Modeling cryptographic protocols in a process calculus allowing
operations for both non-deterministic and probabilistic choice was first proposed
in [36]. Unfortunately, the calculus did not capture many important properties
of the threat model, such as the ability for protocol participants to make pri-
vate coin tosses. As a result, properties of these processes are required to be
formulated through a notion of bisimulation too strong to capture many natural
properties. The calculus upon which our techniques are built first appeared in
[9], where the authors studied the conditions under which reachability proper-
ties of randomized security protocols are preserved by composition. In [43] the
composition framework was extended to handle equivalence properties. Span
was originally presented in [8], which discusses the design and implementation
of the algorithms for checking equivalence properties. For randomized security
protocols, the complexity of verifying reachability and equivalence properties
was studied in [17]. The material presented here also appears in the Ph.D. thesis
of Matthew S. Bauer (See [7]), and we refer the reader to the thesis for a detailed
discussion of the tool architecture and of experimental results.

2 Randomized Security Protocols

In what follows, we give the details behind several security protocols that uti-
lize randomization. These protocols will serve as running examples upon which
we demonstrate how our techniques can be used for modeling and automated
analysis.

2.1 Mix Networks

A mix-network [22] is a routing protocol used to break the link between a
message’s sender and receiver. The unlinking is achieved by routing messages
through a series of proxy servers, called mixes. Each mix collects a batch of
encrypted messages, privately decrypts each message, and forwards the result-
ing messages in random order. More formally, consider a sender Alice (A) who
wishes to send a message m to Bob (B) through mix (M). Alice prepares a
cipher-text of the form

aenc(aenc(m,n1, pk(B)), n0, pk(M))

170 M. S. Bauer et al.

where aenc is asymmetric encryption, n0, n1 are nonces and pk(M), pk(B) are
the public keys of the Mix and Bob, respectively. Upon receiving a batch of N
such cipher-texts, the mix M unwraps the outer layer of encryption on each
message using its secret key and then randomly permutes and forwards the
messages. A passive attacker, who observes all traffic but does not otherwise
modify the network, cannot (with high probability) correlate messages entering
and exiting the mix M . Unfortunately, this simple design, known as a threshold
mix, is vulnerable to a straightforward active attack. To expose Alice as the
sender of the message aenc(m,n1, pk(B)), an attacker forwards Alice’s message
along with N−1 dummy messages to the mix M . In this way, the attacker
can distinguish which of M ’s N output messages is not a dummy message and
hence must have originated from Alice. Although active attacks of this nature
cannot be thwarted completely, several mix-network designs have been proposed
to increase the overhead associated with carrying out such an attack.

2.2 Prêt à Voter

Prêt à Voter [42] is a mix-network based voting protocol that provides a simple
and intuitive mechanism by which a set of voters (V1, ..., Vn) can carry out elec-
tions with the help of a set of honest tellers (T1, ..., Tk) and an honest election
authority (A). Each teller has two public key pairs. Using these keys and a set
of random values, the authority creates a set of ballot forms with the following
properties. Each ballot has two columns; the left column lists the candidates in
a permuted order and the right column provides space for a vote to be recorded.
The bottom of the right column also holds an “onion” which encodes the per-
muted ordering (cyclic offset) for the candidates on the left-hand side of the
ballot.

The precise construction of a ballot is as follows. The authority first generates
a random seed,

seed := g0, g1, ..., g2k−1

where each gi (for i ∈ {1, ..., 2k − 1}), called a germ, is drawn from an appro-
priately sized field. For a candidate list of size v, the seed is used generate the
cyclic offset

θ :=
2k−1∑

i=0

di(mod v)

where di := hash(gi)(mod v). Each teller i has public keys pk(T2i) and pk(T2i−1)
which are used to construct the onion

{〈g2k−1, {〈g2k−1, ...{〈g0,D0〉}pk(T0)...〉}pk(T2k−2)〉}pk(T2k−1)

where D0 is a nonce uniquely chosen for each onion. Each layer Di+1 :=
{〈gi,Di〉}pk(Ti) asymmetrically encrypts a germ and the previous layer of the
onion.

The election authority generates a number of ballots which far exceed the
number of voters. In order to cast a vote, a voter authenticates with the authority,

Modelchecking Safety Properties in Randomized Security Protocols 171

after which a random ballot is chosen by the voter. In the voting booth, the voter
marks his/her choice on the right-hand side of the ballot and removes the left-
hand side for shredding. The values on the right side of the ballot (the vote
position and onion) are read by a voting device and then retained by the voter
as a receipt. Once read by the voting device, the values are passed to the tellers
that manipulate pairs of the form 〈r2i,D2i〉. The first teller receives the pair
〈r,D2k〉 where r is the vote position, and D2k is the onion. Upon receiving such
a pair, each teller Ti−1 performs the following operations.

– Apply the secret key sk(T2i−1) to D2i to reveal the germ g2i−1 and the next
layer of the onion D2i−1.

– Recover d2i−1 = hash(g2i−1)(mod v) and obtain r2i−1 = (r2i−d2i−1)(mod v).
– Form the new pair 〈r2i−1,D2i−1〉.

After applying this transformation for each pair in the batch it receives, teller
Ti−1 performs a secret shuffle on the resulting transformed pairs. Teller Ti−1 then
repeats this process on the shuffled values using its second secret key sk(T2i−2)
to obtain a new set of pairs with the form 〈r2i−2,D2i−2〉. These pairs are shuffled
again and then passed to the next teller Ti−2. The output of the last teller is the
value of r0 which identifies a voter’s vote.

Our analysis of this version of the Prêt à Voter protocol has uncovered a
previously unknown flaw in the protocol’s design. The error arises from the
assumption that the elements of the field from which the germs are drawn are
evenly distributed when their hash is taken modulo v. To understand this error
in more detail, let us consider the simple case when there are two candidates (0
and 1) and one teller. Let F be a field with M elements and

Fj = {g | g ∈ F and hash(g)(mod 2) = j}

for j ∈ {0, 1}. There is no guarantee that F0 = F1 and thus the probability
of the two cyclic offsets θ0 = (F0

F)(F0
F) + (F1

F)(F1
F) and θ1 = 2(F0

F)(F1
F) in the

randomly chosen ballots may be different. This can give an attacker an advantage
in attempting to infer a vote from a ballot receipt: the attacker will guess that
cyclic shift is the one happens with higher probability. To fix this issue, the hash
function should be replaced by a pseudo-random permutation.

3 Randomized Applied π-Calculus

In this section, we present our core process calculus for modeling cryptographic
protocols with coin tosses. The presentation of the calculus is borrowed from [8],
and closely resembles the ones from [9,17,43]. As was first proposed in [36], it
extends the applied π-calculus by the inclusion of a new operator for probabilistic
choice.

172 M. S. Bauer et al.

3.1 Terms, Equational Theories and Frames

A signature F contains a finite set of function symbols, each with an associated
arity and two special countable sets of constant symbols M and N representing
public and private names, respectively. Variable symbols are the union of two
disjoint sets X and Xw, used to represent protocol and frame variables, respec-
tively. The sets F , M, N , X and Xw are required to be pairwise disjoint. Terms
are built by the application of function symbols to variables and terms in the
standard way. Given a signature F and Y ⊆ X ∪ Xw, we use T (F ,Y) to denote
the set of terms built over F and Y. The set of variables occurring in a term u
is denoted by vars(u). A ground term is one that contains no free variables. The
depth of a term t is defined to be the depth of the dag that represents t.

A substitution σ is a partial function with a finite domain that maps variables
to terms, where dom(σ) will denote the domain and ran(σ) will denote the range.
For a substitution σ with dom(σ) = {x1, . . . , xk}, we will denote σ as {x1 �→
σ(x1), . . . , xk �→ σ(xk)}. A substitution σ is said to be ground if every term in
ran(σ) is ground and a substitution with an empty domain will be denoted as
∅. Substitutions can be extended to terms in the usual way and we write tσ for
the term obtained by applying the substitution σ to the term t.

Our process algebra is parameterized by an equational theory (F , E), where
F is a signature and E is a set of F-Equations. By an F-Equation, we mean
a pair u = v where u, v ∈ T (F \ N ,X) are terms that do not contain private
names.

Example 1. We can model primitives for symmetric encryption/decryption and
a hash function using the equational theory (Fsenc, Esenc) with signature Fsenc =
{senc/2, sdec/2, h/1} and equations Esenc = {sdec(senc(m, k), k) = m}.

Two terms u and v are said to be equal with respect to an equational theory
(F , E), denoted u =E v, if E
 u = v in the first order theory of equality.
For equational theories defined in the preceding manner, if two terms containing
private names are equivalent, they will remain equivalent when the names are
replaced by arbitrary terms. We often identify an equational theory (F , E) by
E when the signature is clear from the context. An equational theory E is said
to be trivial if u =E v for any terms u and v and, otherwise it is said to be non-
trivial. For the remainder of this work, we will assume equational theories are
non-trivial. Processes are executed in an environment that consists of a frame
ϕ : Xw → T (F) and a binding substitution σ : X → T (F).

Definition 1. Two frames ϕ1 and ϕ2 are said to be statically equivalent in
equational theory E, denoted ϕ1 ≡E ϕ2, if dom(ϕ1) = dom(ϕ2) and for all
r1, r2 ∈ T (F \ N ,Xw) we have r1ϕ1 =E r2ϕ1 iff r1ϕ2 =E r2ϕ2.

Intuitively, two frames are statically equivalent if an attacker cannot distin-
guish between the information they contain. A term u ∈ T (F) is deducible from
a frame ϕ with recipe r ∈ T (F \ N , dom(ϕ)) in equational theory E, denoted
ϕ
r

E u, if rϕ =E u. We often omit r and E and write ϕ
 u if they are clear
from the context.

Modelchecking Safety Properties in Randomized Security Protocols 173

3.2 Process Syntax

We assume a countably infinite set of labels L and an equivalence relation ∼
on L that induces a countably infinite set of equivalence classes. For � ∈ L, [�]
denotes the equivalence class of �. Each equivalence class is assumed to contain
a countably infinite set of labels. Operators in our grammar will come with a
unique label from L, which, together with the relation ∼, will be used to mask
the information an attacker can obtain about the actions of a process. When an
action with label � is executed, the attacker will only be able to infer [�].

Processes in our calculus are a finite parallel composition of roles, which intu-
itively are used to model a single actor in a system/protocol. Please note that
we are modeling only a finite number of sessions. Hence we do not allow replica-
tion in our protocol syntax. Roles, in turn, are constructed by combining atomic
actions through sequential composition and probabilistic choice. Formally, an
atomic action is derived from the grammar

A := 0 νx� (x := u)� [c1 ∧ . . . ∧ ck]� in(x)� out(u)�

where � ∈ L, x ∈ X and ci ∈ {�, u = v} for all i ∈ {1, . . . , k} where u, v ∈
T (F \ N ,X). In the case of the assignment rule (x := u)�, we additionally
require that x �∈ vars(u). A role is derived from the grammar

R := A (R · R) (R +�
p R)

where p ∈ [0, 1], � ∈ L and x ∈ X . The 0 process does nothing. The process
νx� creates a fresh name and binds it to x while (x := u)� assigns the term u
to the variable x. The test process [c1 ∧ . . . ∧ ck]� terminates if ci is � or ci is
u = v where u =E v for all i ∈ {1, . . . , k} and otherwise, if some ci is u = v
and u �=E v, the process deadlocks. The process in(x)� reads a term u from
the public channel and binds it to x and the process out(u)� outputs a term on
the public channel. The processes R · R′ sequentially executes R followed by R′

whereas the process R +�
p R′ behaves like R with probability p and like R′ with

probability 1 − p. Note that protocols in our formalism are simple; a protocol is
said to be simple if there is no principal-level nondeterminism [25].

We will use P and Q to denote processes, which are the parallel composition
of a finite set of roles R1, . . . , Rn, denoted R1 | . . . | Rn. For a process Q, fv(Q)
and bv(Q) denote the set of variables that have some free or bound occurrence
in Q, respectively. The formal definition is standard and is omitted for lack of
space. Processes containing no free variables are called ground. We restrict our
attention to processes that do not contain variables with both free and bound
occurrences. That is, for a process Q, fv(Q) ∩ bv(Q) = ∅.

Definition 2. A process Q = R1 | . . . | Rn is said to be well-formed if the
following hold.

1. Every atomic action and probabilistic choice in Q has a distinct label.
2. If label �1 (resp. �2) occurs in the role Ri (resp. Rj) for i, j ∈ {1, . . . , n}

then i �= j iff [�1] �= [�2].

174 M. S. Bauer et al.

For the remainder of this work, processes are assumed to be well-formed. Unless
otherwise stated, we will also assume that the labels occurring a role come from
the same equivalence class.

Remark 1. For readability, we will omit process labels when they are not relevant
in a particular context.

We now present an example illustrating the type of protocols that can be
modeled in our process algebra.

Example 2. Using our process syntax, we model a simple threshold mix, as
described in Sect. 2.1. We will consider the situation when there two users A0

and A1 who want to communicate anonymously through a single mix server M
with users B0 and B1, respectively. The protocol is built over the equational the-
ory with signature Faenc = {sk/1, pk/1, aenc/3, adec/2, pair/2, fst/1, snd/1}
and the equations Eaenc given below.

adec(aenc(m, r, pk(k)), sk(k)) = m
fst(pair(m1,m2)) = m1

snd(pair(m1,m2)) = m2

For generation of their pubic key pairs, the parties A0, A1, B0, B1 and M will
hold private names kA0 , kA1 , kB0 , kB1 , and kM , respectively. The protocol will
also have private names n0, n1, n2, . . . to model nonces. The nonces n0 and n1

are the messages that A0 and A1 want to communicate. The behavior of each
user and the mix can be described by the roles below (where we use 〈, 〉 in place
of pair for succinctness).

A0 = out(aenc(aenc(n0, n2, pk(kB0)), n4, pk(kM)))
A1 = out(aenc(aenc(n1, n3, pk(kB1)), n5, pk(kM)))
M = in(z1) · in(z2)·

out(〈adec(z1, sk(kM)), adec(z2, sk(kM))〉+ 1
2

〈adec(z2, sk(kM)), adec(z1, sk(kM))〉

3.3 Partially Observable Markov Decision Processes

POMDPs are used to model processes that exhibit both probabilistic and non-
deterministic behavior, where the states of the system are only partially observ-
able. Formally, a POMDP is a tuple M = (Z, zs,Act,Δ,O, obs) where Z is a
countable set of states, zs ∈ Z is the initial state, Act is a countable set of actions,
Δ : Z × Act ↪→ Dist(Z) is a partial function called the probabilistic transition
relation, O is a countable set of observations and obs : Z → O is a labeling of
states with observations. The POMDP M is said to be a fully observable MDP
if obs is an injective function. For a distribution μ over Z, let support(μ) = {z ∈
Z | μ(z) > 0}. An execution ρ of the M is a finite sequence z0

α1−→ · · · αm−−→ zm

such that z0 = zs and for each i ≥ 0, zi
αi+1−−−→ μi+1 and zi+1 ∈ support(μi+1).

Modelchecking Safety Properties in Randomized Security Protocols 175

Such an execution is said to have length m, denoted |ρ| = m. The probability
an execution ρ in M is probM(ρ) =

∏|ρ|−1
i=0 Δ(zi, αi+1)(zi + 1) and the set of all

executions will be denoted by Exec(M).
For each state in a POMDP, there is a choice amongst several possible prob-

abilistic transitions. The choice of which probabilistic transition to trigger is
resolved by an attacker. Informally, the process modeled by M evolves as fol-
lows. The process starts in the state zs. After i execution steps, if the process
is in the state z, then the attacker chooses an action α such that Δ(z, α) = μ
and the process moves to state z′ at the (i + 1)-st step with probability μ(z′).
The choice of which action to take is determined by the sequence of observations
seen by the attacker.

For an execution ρ = z0
α1−→ · · · αm−−→ zm we write tr(ρ) to represent the trace

of ρ, defined as the sequence obs(z0)α1 · · · αmobs(zm). The set of all traces is
Trace(M) = (O,Act)∗ · O and an attacker is a function A : Trace(M) ↪→ Act.
Let ExecA(M) ⊆ Exec(M) be the smallest set such that zs ∈ ExecA(M) and if
ρ = ρ′ α−→ z ∈ ExecA(M) then ρ′ ∈ ExecA(M) and A(tr(ρ)) = α.

State-Based Safety Properties. Given a POMDP M = (Z, zs,Act,Δ,O, obs), a
set Ψ ⊆ Z is said to be a state-based safety property. An execution ρ = z0

α1−→
· · · αm−−→ zm of M satisfies Ψ , written ρ |= ψ, if zj ∈ Ψ for all 0 ≤ j ≤ m.
Otherwise ρ �|= ψ. We say that M satisfies Ψ with probability ≥ p against
attacker A, denoted MA |=p ψ, if the sum of the measures in the set {ρ ∈
ExecA(M) | ρ is a maximal and ρ |= ψ} is ≥ p. M is said to satisfy Ψ with
probability ≥ p, denoted M |=p ψ, if for all adversaries A, MA |=p ψ.

3.4 Process Semantics

Given a process P , an extended process is a 3-tuple (P,ϕ, σ) where ϕ is a frame
and σ is a binding substitution. Semantically, a ground process P over equational
theory (F , E) is a POMDP [[P]] = (Z ∪{error}, zs,Act,Δ,O, obs) where Z is the
set of all extended processes zs = (P, ∅, ∅), Act = (T (F \ N ,Xw) ∪ τ) × L/∼
and Δ,O, obs are defined below. Let μ · Q denote the distribution μ1 such that
μ1(P ′, ϕ, σ) = μ(P,ϕ, σ) if P ′ is P · Q and 0 otherwise. The distributions μ | Q
and Q | μ are defined analogously. For a conjunct ci (i ∈ {1, . . . , n}) in a test
process [c1 ∧ . . . ∧ cn] and a substitution σ we write ci
 � when ci is � or ci is
u = v where vars(u, v) ⊆ dom(σ) and uσ =E vσ. We define Δ in Fig. 1, where
we write (P,ϕ, σ) α−→ μ if Δ((P,ϕ, σ), α) = μ. For any extended process (P,ϕ, σ)
and action α ∈ Act, if Δ((P,ϕ, σ), α) is undefined in Fig. 1 then Δ((P,ϕ, σ), α) =
δerror. Note that Δ is well-defined, as roles are deterministic and each equivalence
class on labels identifies at most one role. For a frame ϕ and equational theory
E, we write [ϕ] to denote the equivalence class of ϕ with respect to the static
equivalence relation ≡E . We use EQ to denote the set of all such equivalence
classes. Let O = EQ and define obs as a function from extended processes to O
such that for any extended process η = (P,ϕ, σ), obs(η) = [ϕ].

176 M. S. Bauer et al.

r ∈ T (F \ N , Xw) ϕ �r u x �∈ dom(σ)

(in(x)�, ϕ, σ)
(r,[�])−−−→ δ(0,ϕ,σ∪{x�→u})

in
x �∈ dom(σ) n is a fresh name

(νx�, ϕ, σ)
(τ,[�])−−−−→ δ(0,ϕ,σ∪{x�→n})

new

vars(u) ⊆ dom(σ) i = |dom(ϕ)| + 1

(out(u)�, ϕ, σ)
(τ,[�])−−−−→ δ(0,ϕ∪{w(i,[�]) �→uσ},σ)

out Q0 �= 0 (Q0, ϕ, σ) α−→ μ

(Q0 · Q1, ϕ, σ) α−→ μ · Q1

seq

∀i ∈ {1, . . . , n}, ci � �

([c1 ∧ . . . ∧ cn]�, ϕ, σ)
(τ,[�])−−−−→ δ(0,ϕ,σ)

test (Q0, ϕ, σ) α−→ μ

(0 · Q0, ϕ, σ) α−→ μ
null

vars(u) ⊆ dom(σ) x �∈ dom(σ)

((x := u)�, ϕ, σ)
(τ,[�])−−−−→ δ(0,ϕ,σ∪{x�→uσ})

asgn (Q0, ϕ, σ) α−→ μ

(Q0 | Q1, ϕ, σ) α−→ μ | Q1

parl

(Q1 +�
p Q2, ϕ, σ)

(τ,[�])−−−−→ δ(Q1,ϕ,σ) +p δ(Q2,ϕ,σ)

prob ((Q1, ϕ, σ) α−→ μ

(Q0 | Q1, ϕ, σ) α−→ Q0 | μ
parr

Fig. 1. Process semantics.

Definition 3. An extended process (P,ϕ, σ) preserves the secrecy of a term
u in the equational theory (F , E), denoted (P,ϕ, σ) |=E u, if there is no
r ∈ T (F \ N , dom(ϕ)) such that ϕ
r

E uσ. We write secret(u), to represent
the set of states of [[P]] that preserve the secrecy of u and secret({u1, . . . , un}) to
denote secret(u1) ∩ . . . ∩ secret(un).

Remark 2. For a process P and terms u1, . . . , un, secret({u1, . . . , un}) is a
state-based safety property of [[P]]. For a probability p, we will write P |=E,p

secret(u1, . . . , un), if [[P]] |=p secret({u1, . . . , un}).

Example 3. Consider the mix-net protocol P = A0 | A1 | M defined in Exam-
ple 2. The protocol is designed to ensure that the messages output by the mix
cannot be linked to the original sends with high probability. That is, the adver-
sary should be able to do no better than “guess” which output message belongs
to which sender. This hypothesis is violated if, for an output of the mix, the
adversary can identify the sender of the message with probability > 1

2 . We can
model this property in our framework by adding, for each i ∈ {0, 1}, a role

Si = in(z′
i) · [z′

i = aenc(ni, ni+2, pk(kBi
))] · out(si)

to the process, where si is a private name. The protocol P preserves the
anonymity of sender Ai if (A0 | A1 | M | S0 | S1) |=Eaenc,

1
2
secret(si).

4 Model Checking Algorithm

As seen in Sect. 3, analyzing randomized protocols requires reasoning about their
underlying semantic objects, POMDPs. In particular, we are interested in find-
ing an attacker for a given POMDP that maximizes the probability of reaching
a set of target (bad) states. Unfortunately, techniques for solving reachability

Modelchecking Safety Properties in Randomized Security Protocols 177

problems in POMDPs are far less efficient than those for Markov Decision Pro-
cesses (MDPs), the fully observable counterpart to POMDPs (where attackers
are a function from executions to actions). The reason for the added complexity
is that at any given point in the execution of a POMDP, the attacker only knows
a distribution over the current state. Further, an attacker for a POMDP needs to
define a consistent strategy across all executions that produce the same sequence
of observations. The actions chosen in one branch of an execution may affect the
actions that can be made in another branch of the same execution. By contrast,
when trying to maximize a reachability probability in an MDP, one can make
a local decision about which action maximizes the probability of reaching the
target states.

Several results [18,26] corroborate this story, showing that many key verifi-
cation problems for POMDPs are undecidable. Although various solution tech-
niques have been proposed [12], and there have been successful applications to
AI and planning [14], tractable reasoning about POMDPs typically relies on
approximation techniques or simplifications to the model (discounts). Compli-
cating matters further, randomized security protocols induce POMDPs that are
infinitely branching. At every transition corresponding to protocol input, an infi-
nite number of possible recipes can be supplied by a Dolev−Yao attacker. Taming
the state space explosion that results from this infinite branching on inputs is a
huge challenge, even in the non-randomized case. We adopt the philosophy of the
SATMC [5] tool, in that, we will search for bounded attacks. That is, our tool
answers the question; for a given input recipe depth k, what is the maximum
probability of reaching a set of target states? The assumption of bounded recipe
depth allows randomized security protocol to be modeled by POMDPs that are
finite branching.

One of the most successful techniques in the approximation of optimal attack-
ers for POMDPs is to translate a POMDP M into a fully observable belief MDP
B(M) that emulates it. One can then analyze B(M) to infer properties of M.
The states of B(M) are probability distributions over the states of M. Further,
given a state b of B(M), if states z1, z2 of M are such that b(z1), b(z2) are
non-zero then z1 and z2 must have the same observation. Hence, by abuse of
notation, we can define obs(b) to be obs(z) if b(z) �= 0. Intuitively, an execution
ρ = b0

α1−→ b1
α2−→ · · · αm−−→ bm of B(M) corresponds to the set of all executions

ρ′ of M such that tr(ρ′) = obs(b0)α1obs(b1)α2 · · · αmobs(bm). The measure of
execution ρ in B(M) is exactly probM(obs(b0)α1obs(b1)α2 · · · αmobs(bm)).

The initial state of B(M) is the distribution that assigns 1 to the initial state
of M. Intuitively, on a given state b of B(M) and an action α, there is at most one
successor state bα,o for each observation o. The probability of transitioning from
b to bα,o is the probability that o is observed given that the distribution on the
states of M is b and action α is performed; bα,o(z) is the conditional probability
that the actual state of the POMDP is z. The formal definition follows.

Definition 4. Let M = (Z, zs,Act,Δ,O, obs) be a POMDP. The belief MDP
of M, denoted B(M), is the tuple (Dist(Z), δzs

,Act,ΔB) where ΔB is defined as
follows. For b ∈ Dist(Z), action α ∈ Act and o ∈ O, let

178 M. S. Bauer et al.

pb,α,o =
∑

z∈Z

b(z) ·
(∑

z′∈Z∧obs(z′)=o

Δ(z, α)(z′)
)

.

ΔB(b, α) is the unique distribution such that for each o ∈ O, if pb,α,o �= 0 then
ΔB(b, α)(bα,o) = pb,α,o where for all z′ ∈ Z,

bα,o(z′) =

{∑
z∈Z b(z)·Δ(z,α)(z′)

pb,α,o
if obs(z′) = o

0 otherwise
.

This definition results in a correspondence between the maximal reachability
probabilities in a POMDP M and the belief MDP B(M) it induces. The follow-
ing proposition, due to Norman et al. [40], makes this correspondence precise.
In the result below, for a POMDP (resp. MDP) M and a set of observations O
(resp. states T), we write probmax

M (O) (resp. probmax
M (T)) to denote the maxi-

mum probability with which MA reaches states with observations in O (resp.
states from T) for any adversary A.

Proposition 1. Let M = (Z, zs,Act,Δ,O, obs) be a POMDP, O ⊆ O and
TO = {b ∈ Dist(Z) | ∀z ∈ Z.(b(z) > 0 ⇒ obs(z) ∈ O)}. Then probmax

M (O) =
probmax

B(M)(TO).

In general, belief MDPs are defined over a continuous state space; even simple
POMDP models can yield an infinite number of distributions on states. It is this
continuous state space that makes belief MDPs difficult to analyze. Fortunately,
the calculus from Sect. 3.2 doesn’t include an operator for replication. This means
that protocol executions are of a fixed length and can be encoded as acyclic
POMDPs that reach a set of finite absorbing states after a bounded number
of actions. However, even for acyclic POMDPs, the number of reachable belief
states can grow much larger than the number of states in the original POMDP.

Let Q be a randomized security protocol such that [[Q]] = (Z, zs,Act,Δ,
O, obs). Define [[Qd]] = (Z, zs,Actd,Δd,O, obs) where every α ∈ Actd is such that
depth(α) ≤ d and for all z ∈ Z, Δd(z, α) = Δ(z, α) if α ∈ Actd and otherwise
Δd(z, α) is undefined. For a security protocol Q, probability p and safety property
ψ, the bounded model checking problem for depth d is to determine if [[Qd]] |=p ψ.
As described above, [[Qd]] can be translated into a finite acyclic fully observable
belief MDP B([[Qd]]). By analyzing B([[Qd]]), one can generate an attacker for
[[Qd]] that optimizes the probability of reaching a target set of states Z \ ψ.
These optimal reachability probabilities can be computed using Algorithm1,
where we assume a finite set of absorbing states Babs. The algorithm works by
recursively computing the maximum probability of attack by exploring states
in a depth-first fashion. Such an approach can avoid exploring many redundant
portions of the state space.

The correctness of our algorithm, which follows from Proposition 1, is given
below.

Modelchecking Safety Properties in Randomized Security Protocols 179

Algorithm 1 . On-the-fly model checking of safety properties in finite-length
belief MDPs.
1: procedure maxAttack(beliefState b, targetStates T)
2: p ← 0
3: if b ∈ Babs then
4: for , ∈ support(b) do
5: if ∈ T then
6: p ← p+b()

7: return p

8: for α ∈ Act do
9: for o ∈ O do

10: p ← max(p,maxAttack(bα,o, T))
11: if p == 1 then
12: return 1
13: return p

Theorem 1. Let Q be a protocol and d ∈ N be such that [[Qd]] = (Z, zs,Actd,
Δ,O, obs). For a given probability p and state-based safety property ψ ⊆ Z, if
[[Qd]] |=p ψ iff maxAttack(δz, Z \ ψ) ≤ 1 − p for the belief MDP B([[Qd]]).

5 Tool Description and Evaluation

The algorithm for checking safety in randomized security protocols is imple-
mented in the tool, Span. We refer the reader to [7] for a detailed discussion
of the implementation and evaluation of Span. We describe the salient features
briefly.

Implementation. As described in Sect. 4, the fundamental routine of Span trans-
lates a randomized security protocol into a belief MDP. Each translation step
requires operations from term rewriting as well as solving the static equiva-
lence and deduction problems on protocol frames. Currently, Span supports
two external engines for solving the static equivalence and deduction questions:
Kiss [3] and Akiss [15]. Kiss tool supports sub-term convergent theories, while
the Akiss tool supports more general optimally reducing theories and the AC
operation XOR. Span implements its own unification algorithm for convergent
equational theories for its term-rewriting engine. For rewriting in the presence
of AC operations, support for integration with Maude [24,30] is also included.
Because attacks on randomized protocols are trees (as opposed to sequences)
attacks are exported to DOT format, which can be rendered visually using the
graphviz framework [1].

Evaluation. We evaluated Span on a variety of protocols. Our experiments were
conducted on an Intel core i7 dual quad-core processor at 2.67 GHz with 12 GB of
RAM. The host operating system was 64 bit Ubuntu 16.04.3 LTS. The examples

180 M. S. Bauer et al.

Table 1. Experimental results for safety properties. Columns 1–5 describe the example
under test, where column 2 is the number of users in the protocol, column 3 is maximum
recipe depth, column 4 is the maximum attack probability and column 5 is the security
threshold: if the value of column 4 exceeds the value of column 5, then an attack was
found. Columns 6 and 7 give the running times (in seconds) under the Kiss and Akiss,
respectively. Column 8 reports the number of belief states explored during the model
checking procedure. All test were conducted using Maude 2.7.1 as the term rewriting
engine. For protocols with requiring equational theories with XOR we write n/s (not
supported) for the Kiss engine.

1 2 3 4 5 6 7 8

Protocol Parties Depth Attack Threshold Time (s) Beliefs

w/ Kiss w/ Akiss

DC-net 2 10 1/2 1/2 n/s 23 110

Threshold Mix 4 10 1 1/4 22 70 49

Cascade Mix 2 5 1 1/2 917 2832 55303

Pool Mix 3 5 2/3 1/3 1824 6639 26273

FOO 92 (corrected) 2 10 3/4 3/4 321 918 1813

Prêt à Voter 2 10 7/8 3/4 n/s 288 103

that we verified were sender anonymity in Dining Cryptographers-Net [20,35],
threshold mixes [22] and pool mixes [46–48], and vote privacy in FOO voting
protocol [32] and Prêt à Voter protocol [42]. We attempted to verify all protocols
with a recipe depth of 10; however, for some examples, Span did not terminate
within a reasonable time-bound. In such cases, we report the time for a recipe
depth of 5. Our experimental results are summarized in Table 1. As mentioned
above, mixes are vulnerable to active attacks, and our tool was able to capture
these attacks. For the FOO voting protocol, we implemented the anonymous
channels using threshold mixes. In the previous automated analysis of FOO vot-
ing protocol (See [15], for example), perfectly anonymous channels are assumed
to exist. This abstraction misses possible attacks. For example, if a threshold
mix is used to implement the FOO protocol, then Span found an attack on vote
privacy that exploits the flooding attack on mixes. A similar attack has also
been previously reported in [6], which carries out the analysis of FOO voting
protocol in the computational model, and was discovered by hand. We propose
corrections to the FOO protocol to avoid such attacks. Finally, in order to cap-
ture the attack on Prêt à Voter protocol described above, we assumed that the
sum of two hashes is even with probability 3

4 and odd with probability 1
4 .

6 Conclusion

We present a bounded model checking algorithm to verify safety properties of
acyclic randomized security protocols. As randomized security protocols are nat-
urally modeled as POMDPs, we adapt the belief MDP construction from POM-
PDP literature in the design of the algorithm. The algorithm exploits the acyclic

Modelchecking Safety Properties in Randomized Security Protocols 181

nature of the protocols considered and constructs the belief MDP by traversing
the belief MDP in a Depth First Search fashion. The algorithm is implemented
as an extension of Span. Our experiments demonstrate the effectiveness of the
tool in uncovering previously unknown attacks in protocols.

We plan to investigate the use of partial order reduction and symmetry reduc-
tion techniques to combat the state explosion problem. We also plan to investi-
gate the verification of randomized security protocols without any restriction of
recipe sizes. Another line of investigation that we plan to pursue is the verifica-
tion of cyclic randomized security protocols.

Acknowledgements. Andre Scedrov’s foundational work on formal analysis of secu-
rity protocols has been an unmistakable inspiration for us, and we thank him for his
mentorship. Rohit Chadha thanks Andre Scedrov for introducing him to the exciting
and challenging field of security protocol analysis, and his invaluable counsel.

Rohit Chadha was partially supported by grants NSF 1553548 CNS and NSF CCF
1900924. Mahesh Viswanathan was partially supported by NSF CCF 1901069.

References

1. Graphviz. https://www.graphviz.org/
2. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. In:

ACM SIGPLAN Notices, vol. 36, pp. 104–115. ACM (2001)
3. Abadi, M., Cortier, V.: Deciding knowledge in security protocols under equational

theories. Theor. Comput. Sci. 367(1), 2–32 (2006)
4. Adida, B.: Helios: web-based open-audit voting. In: USENIX Security Symposium,

vol. 17, pp. 335–348 (2008)
5. Armando, A., Compagna, L.: SAT-based model-checking for security protocols

analysis. Int. J. Inf. Secur. 7(1), 3–32 (2008)
6. Bana, G., Chadha, R., Eeralla, A.K.: Formal analysis of vote privacy using compu-

tationally complete symbolic attacker. In: Lopez, J., Zhou, J., Soriano, M. (eds.)
ESORICS 2018. LNCS, vol. 11099, pp. 350–372. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-98989-1 18

7. Bauer, M.S.: Analysis of randomized security protocols. Ph.D. thesis, University
of Illinois at Urbana-Champaign (2018)

8. Bauer, M.S., Chadha, R., Prasad Sistla, A., Viswanathan, M.: Model check-
ing indistinguishability of randomized security protocols. In: Chockler, H., Weis-
senbacher, G. (eds.) CAV 2018. LNCS, vol. 10982, pp. 117–135. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-96142-2 10

9. Bauer, M.S., Chadha, R., Viswanathan, M.: Composing protocols with randomized
actions. In: Piessens, F., Viganò, L. (eds.) POST 2016. LNCS, vol. 9635, pp. 189–
210. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49635-0 10

10. Ben-Or, M., Goldreich, O., Micali, S., Rivest, R.L.: A fair protocol for signing
contracts. IEEE Trans. Inf. Theory 36(1), 40–46 (1990)

11. Blanchet, B., Abadi, M., Fournet, C.: Automated verification of selected equiva-
lences for security protocols. J. Log. Algebr. Program. 75(1), 3–51 (2008)

12. Braziunas, D.: POMDP Solution Methods. University of Toronto (2003)
13. Canetti, R., et al.: Task-structured probabilistic I/O automata. In: Discrete Event

Systems (2006)

https://www.graphviz.org/
https://doi.org/10.1007/978-3-319-98989-1_18
https://doi.org/10.1007/978-3-319-98989-1_18
https://doi.org/10.1007/978-3-319-96142-2_10
https://doi.org/10.1007/978-3-662-49635-0_10

182 M. S. Bauer et al.

14. Cassandra, A.R.: A survey of POMDP applications. In: Working notes of AAAI
1998 fall Symposium on Planning with Partially Observable Markov Decision Pro-
cesses, vol. 1724 (1998)

15. Chadha, R., Cheval, V., Ciobâcă, Ş., Kremer, S.: Automated verification of equiva-
lence properties of cryptographic protocol. ACM Trans. Comput. Log. 17(4), 1–32
(2016)

16. Chadha, R., Sistla, A.P., Viswanathan, M.: Model checking concurrent programs
with nondeterminism and randomization. In: Foundations of Software Technology
and Theoretical Computer Science, pp. 364–375 (2010)

17. Chadha, R., Sistla, A.P., Viswanathan, M.: Verification of randomized security
protocols. In: Logic in Computer Science, pp. 1–12. IEEE (2017)

18. Chatterjee, K., Chmeĺık, M., Tracol, M.: What is decidable about partially observ-
able Markov decision processes with omega-regular objectives. J. Comput. Syst.
Sci. 82(5), 878–911 (2016)

19. Chatzikokolakis, K., Palamidessi, C.: Making random choices invisible to the sched-
uler. Information and Computation (2010, to appear)

20. Chaum, D.: The dining cryptographers problem: unconditional sender and recipient
untraceability. J. Cryptol. 1(1), 65–75 (1988)

21. Chaum, D., Ryan, P.Y.A., Schneider, S.: A practical voter-verifiable election
scheme. In: di Vimercati, S.C., Syverson, P., Gollmann, D. (eds.) ESORICS 2005.
LNCS, vol. 3679, pp. 118–139. Springer, Heidelberg (2005). https://doi.org/10.
1007/11555827 8

22. Chaum, D.L.: Untraceable electronic mail, return addresses, and digital
pseudonyms. Commun. ACM 24(2), 84–90 (1981)

23. Cheung, L.: Reconciling nondeterministic and probabilistic choices. Ph.D. thesis,
Radboud University of Nijmegen (2006)

24. Clavel, M., et al.: Maude: Specification and programming in rewriting logic. Theor.
Comput. Sci. 285(2), 187–243 (2002)

25. Cortier, V., Delaune, S.: A method for proving observational equivalence. In: Com-
puter Security Foundations, pp. 266–276 (2009)

26. de Alfaro, L.: The verification of probabilistic systems under memoryless partial-
information policies is hard. Technical report (1999)

27. Dehnert, C., Junges, S., Katoen, J.P., Volk, M.: A storm is coming: a modern
probabilistic model checker. In: Majumdar, R., Kunčak, V. (eds.) Computer Aided
Verification CAV 2017. LNCS, vol. 10427, pp. 592-600. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63390-9 31

28. Delaune, S., Kremer, S., Ryan, M.: Verifying privacy-type properties of electronic
voting protocols. J. Comput. Secur. 17(4), 435–487 (2009)

29. Dingledine, R., Mathewson, N., Syverson, P.: Tor: the second-generation onion
router. Technical report, DTIC Document (2004)

30. Escobar, S., Meadows, C., Meseguer, J.: Maude-NPA: cryptographic protocol
analysis modulo equational properties. In: Aldini, A., Barthe, G., Gorrieri, R.
(eds.) FOSAD 2007-2009. LNCS, vol. 5705, pp. 1–50. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03829-7 1

31. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts.
Commun. ACM 28(6), 637–647 (1985)

32. Fujioka, A., Okamoto, T., Ohta, K.: A practical secret voting scheme for large scale
elections. In: Seberry, J., Zheng, Y. (eds.) AUSCRYPT 1992. LNCS, vol. 718, pp.
244–251. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57220-1 66

33. Garcia, F.D., Van Rossum, P., Sokolova, A.: Probabilistic anonymity and admis-
sible schedulers. arXiv preprint arXiv:0706.1019 (2007)

https://doi.org/10.1007/11555827_8
https://doi.org/10.1007/11555827_8
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-642-03829-7_1
https://doi.org/10.1007/3-540-57220-1_66
http://arxiv.org/abs/0706.1019

Modelchecking Safety Properties in Randomized Security Protocols 183

34. Goldschlag, D.M., Reed, M.G., Syverson, P.F.: Hiding routing information. In:
Workshop on Information Hiding, pp. 137–150 (1996)

35. Golle, P., Juels, A.: Dining cryptographers revisited. In: Cachin, C., Camenisch,
J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 456–473. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-24676-3 27

36. Goubault-Larrecq, J., Palamidessi, C., Troina, A.: A probabilistic applied pi–
calculus. In: Shao, Z. (ed.) APLAS 2007. LNCS, vol. 4807, pp. 175–190. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-76637-7 12

37. Gunter, C.A., Khanna, S., Tan, K., Venkatesh, S.S.: DoS protection for reliably
authenticated broadcast. In: Network and Distributed System Security (2004)

38. Kremer, S., Ryan, M.: Analysis of an electronic voting protocol in the applied pi
calculus. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 186–200. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-31987-0 14

39. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

40. Norman, G., Parker, D., Zou, X.: Verification and control of partially observable
probabilistic systems. Real-Time Syst. 53(3), 354–402 (2017). https://doi.org/10.
1007/s11241-017-9269-4

41. Reiter, M.K., Rubin, A.D.: Crowds: anonymity for web transactions. ACM Trans.
Inf. Syst. Secur. 1(1), 66–92 (1998)

42. Ryan, P.Y.A., Bismark, D., Heather, J., Schneider, S., Xia, Z.: Prêt à voter: a
voter-verifiable voting system. IEEE Trans. Inf. Forensics Secur. 4(4), 662–673
(2009)

43. Bauer, M.S., Chadha, R., Viswanathan, M.: Modular verification of protocol equiv-
alence in the presence of randomness. In: Foley, S.N., Gollmann, D., Snekkenes,
E. (eds.) ESORICS 2017. LNCS, vol. 10492, pp. 187–205. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-66402-6 12

44. Santin, A.O., Costa, R.G., Maziero, C.A.: A three-ballot-based secure electronic
voting system. Secur. Priv. 6(3), 14–21 (2008)

45. Schmidt, B., Meier, S., Cremers, C., Basin, D.: Automated analysis of Diffie-
Hellman protocols and advanced security properties. In: Computer Security Foun-
dations, pp. 78–94 (2012)

46. Serjantov, A., Dingledine, R., Syverson, P.: From a trickle to a flood: active attacks
on several mix types. In: Petitcolas, F.A.P. (ed.) IH 2002. LNCS, vol. 2578, pp.
36–52. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36415-3 3

47. Serjantov, A., Newman, R.E.: On the anonymity of timed pool mixes. In: Gritzalis,
D., De Capitani di Vimercati, S., Samarati, P., Katsikas, S. (eds.) SEC 2003.
ITIFIP, vol. 122, pp. 427–434. Springer, Boston, MA (2003). https://doi.org/10.
1007/978-0-387-35691-4 41

48. Serjantov, A., Sewell, P.: Passive attack analysis for connection-based anonymity
systems. In: Snekkenes, E., Gollmann, D. (eds.) ESORICS 2003. LNCS, vol.
2808, pp. 116–131. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-
540-39650-5 7

49. Shmatikov, V.: Probabilistic analysis of anonymity. In: Computer Security Foun-
dations, pp. 119–128. IEEE (2002)

https://doi.org/10.1007/978-3-540-24676-3_27
https://doi.org/10.1007/978-3-540-76637-7_12
https://doi.org/10.1007/978-3-540-31987-0_14
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/s11241-017-9269-4
https://doi.org/10.1007/s11241-017-9269-4
https://doi.org/10.1007/978-3-319-66402-6_12
https://doi.org/10.1007/3-540-36415-3_3
https://doi.org/10.1007/978-0-387-35691-4_41
https://doi.org/10.1007/978-0-387-35691-4_41
https://doi.org/10.1007/978-3-540-39650-5_7
https://doi.org/10.1007/978-3-540-39650-5_7

Logic and Language

Andre Scedrov

Glyn Morrill(B)

Universitat Politècnica de Catalunya, Barcelona, Spain
morrill@cs.upc.edu

Amongst the subjects I found most difficult at school were languages (French and
Latin). Like a moth to the flame my research has been dedicated to grammar:
formal grammar, computational grammar, logical grammar, and mathematical
grammar. As a youth I sought literal translation, and my research has reflected
this in assuming interlingual semantics such as is provided by Montague-like
higher-order intensional logic. But my experience of living three decades in the
bilingual (Catalan and Spanish) community of Barcelona is that in the end each
language is a world unto itself and that translation in general is a holistic art
rather than a reductionist science.

When I began as a postgraduate in Edinburgh in 1984–85 Mark Steedman
was circulating a draft of a paper later published in Natural Language and Lin-
guistic Theory in 1987 under the title ‘Combinatory grammars and parasitic
gaps’. Parasitic gaps, such as that in (1c):

(1) a. the paper thati John filed ei without reading the guidelines
b. ?the guidelines that John filed the paper without reading ei
c. the paper thati John filed ei without reading ei

exhibit finely controlled syntactic-semantic contraction. This counterexample to
linearity been a constant source of fascination to me.

I came to the Polytecnic University of Catalunya in 1991 and here I have
sought to practice linguistics as an exact, mathematicised, science. For much of
this time I have had the benefit and privaledge to work with the mathematician
and linguist Oriol Valent́ın. Initially unbeknownst to me, in these last five years
a powerhouse team comprising Max Kanovich, Stepan Kuznetsov and Andre
Scedrov began working on the subtle formal properties of controlled contraction
in logical grammar.

At the 2016 European Summer School in Logic, Language and Information
in Bolzano, Stepan invited me on behalf of Andre to visit the Math department
at the University of Pennsylvania. This I did in February 2017, and there I met
Andre. Kind, relaxed, efficient, fair, intelligent, pleasant, amusing, and interest-
ing. And also devout. Several times he invited me into his home to dine with
Max, Stepan, and his family.

During that February visit the four of us wrote an article on the polyno-
mial decidability of the Lambek calculus with bracket modalities (for Formal
Grammar 2017) generalising the polynomial algorithm for the Lambek Calculus
with product of Pentus; and Stepan joined Oriol and I in completing an arti-
cle on count invariance (for Mathematics of Language 2017) including infinitary
counts for (sub)exponentials. In a subsequent paper Max, Stepan, Andre and I

c© Springer Nature Switzerland AG 2020
V. Nigam et al. (Eds.): Scedrov Festschrift, LNCS 12300, pp. 187–188, 2020.
https://doi.org/10.1007/978-3-030-62077-6_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62077-6_13&domain=pdf
https://doi.org/10.1007/978-3-030-62077-6_13

188 G. Morrill

investigated bracket induction for the Lambek calculus with bracket modalities
(Formal Grammar 2018), whereby brackets need not be included in the parsing
input but are discovered (induced) in the course of processing.

In recent work Max, Stepan and Andre have resumed studies on undecidabil-
ity of controlled contraction, showing that both of my recent formulations are
undecidable. I think that typically in mathematical linguistics an undecidability
or high complexity result invites questioning whether the formal source of the
complexity as revealed by the proof is linguistically motivated and, if not, how
this complexity of the formalism can be lowered while maintaining linguistic
adequacy. In this respect Max, Stepan and Andre suggest that the set of con-
tractable formulas might be limited to atoms and I think this would be a good
direction.

Gender Bias in Neural Natural Language
Processing

Kaiji Lu1(B), Piotr Mardziel1, Fangjing Wu1,2, Preetam Amancharla1,3,
and Anupam Datta1

1 Carnegie Mellon University, Moffiet Field, Pittsburgh, CA, USA
kaijil@andrew.cmu.edu

2 Facebook, Menlo Park, CA, USA
3 The Yes Platform, Burlingame, CA, USA

Abstract. We examine whether neural natural language processing
(NLP) systems reflect historical biases in training data. We define a gen-
eral benchmark to quantify gender bias in a variety of neural NLP tasks.
Our empirical evaluation with state-of-the-art neural coreference resolu-
tion and textbook RNN-based language models trained on benchmark
data sets finds significant gender bias in how models view occupations.
We then mitigate bias with counterfactual data augmentation (CDA):
a generic methodology for corpus augmentation via causal interventions
that breaks associations between gendered and gender-neutral words.
We empirically show that CDA effectively decreases gender bias while
preserving accuracy. We also explore the space of mitigation strategies
with CDA, a prior approach to word embedding debiasing (WED), and
their compositions. We show that CDA outperforms WED, drastically
so when word embeddings are trained. For pre-trained embeddings, the
two methods can be effectively composed. We also find that as training
proceeds on the original data set with gradient descent the gender bias
grows as the loss reduces, indicating that the optimization encourages
bias; CDA mitigates this behavior.

Keywords: Machine learning · Deep learning · Fairness · Natural
language processing

1 Introduction

Natural language processing (NLP) with neural networks has grown in impor-
tance over the last few years. They provide state-of-the-art models for tasks like
coreference resolution, language modeling, and machine translation [4,5,10,11,
14] However, since these models are trained on human language texts, a natural
question is whether they exhibit bias based on gender or other characteristics,
and, if so, how should this bias be mitigated. This is the question that we address
in this paper.

F. Wu and P. Amancharla—Work done while at Carnegie Mellon University.

c© Springer Nature Switzerland AG 2020
V. Nigam et al. (Eds.): Scedrov Festschrift, LNCS 12300, pp. 189–202, 2020.
https://doi.org/10.1007/978-3-030-62077-6_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62077-6_14&domain=pdf
https://doi.org/10.1007/978-3-030-62077-6_14

190 K. Lu et al.

Prior work provides evidence of bias in autocomplete suggestions [13] and
differences in accuracy of speech recognition based on gender and dialect [23] on
popular online platforms. Word embeddings, initial pre-processors in many NLP
tasks, embed words of a natural language into a vector space of limited dimension
to use as their semantic representation. [2] and [3] observed that popular word
embeddings including word2vec [19] exhibit gender bias mirroring stereotypical
gender associations such as the eponymous [2] “Man is to computer programmer
as Woman is to homemaker”.

Yet the question of how to measure bias in a general way for neural NLP tasks
has not been studied. Our first contribution is a general benchmark to quantify
gender bias in a variety of neural NLP tasks. Our definition of bias loosely follows
the idea of causal testing: matched pairs of individuals (instances) that differ in
only a targeted concept (like gender) are evaluated by a model and the difference
in outcomes (or scores) is interpreted as the causal influence of the concept in the
scrutinized model. The definition is parametric in the scoring function and the
target concept. Natural scoring functions exist for a number of neural natural
language processing tasks.

We instantiate the definition for two important tasks—coreference resolu-
tion and language modeling. Coreference resolution is the task of finding words
and expressions referring to the same entity in a natural language text. The
goal of language modeling is to model the distribution of word sequences. For
neural coreference resolution models, we measure the gender coreference score
disparity between gender-neutral words and gendered words like the disparity
between “doctor” and “he” relative to “doctor” and “she” pictured as edge
weights in Fig. 1a. For language models, we measure the disparities of emission
log-likelihood of gender-neutral words conditioned on gendered sentence prefixes
as is shown in Fig. 1b. Our empirical evaluation with state-of-the-art neural coref-
erence resolution and textbook RNN-based language models [4,14,25] trained on
benchmark datasets finds gender bias in these models1.

Next we turn our attention to mitigating the bias. [2] introduced a technique
for debiasing word embeddings which has been shown to mitigate unwanted
associations in analogy tasks while preserving the embedding’s semantic prop-
erties. Given their widespread use, a natural question is whether this technique
is sufficient to eliminate bias from downstream tasks like coreference resolution
and language modeling. As our second contribution, we explore this question
empirically. We find that while the technique does reduce bias, the residual
bias is considerable. We further discover that debiasing models that make use
of embeddings that are co-trained with their other parameters [4,25] exhibit a
significant drop in accuracy.

Our third contribution is counterfactual data augmentation (CDA): a generic
methodology to mitigate bias in neural NLP tasks. For each training instance,

1 Note that these results have practical significance. Both coreference resolution and
language modeling are core natural language processing tasks in that they form the
basis of many practical systems for information extraction [28], text generation [8],
speech recognition [9] and machine translation [1].

Gender Bias in Neural Natural Language Processing 191

Fig. 1. Examples of gender bias in coreference resolution and language modeling as
measured by coreference scores (left) and conditional log-likelihood (right).

the method adds a copy with an intervention on its targeted words, replacing
each with its partner, while maintaining the same, non-intervened, ground truth.
The method results in a dataset of matched pairs with ground truth independent
of the target distinction (see Fig. 1a and Fig. 1b for examples). This encourages
learning algorithms to not pick up on the distinction.

Our empirical evaluation shows that CDA effectively decreases gender bias
while preserving accuracy. We also explore the space of mitigation strategies
with CDA, a prior approach to word embedding debiasing (WED), and their
compositions. We show that CDA outperforms WED, drastically so when word
embeddings are co-trained. For pre-trained embeddings, the two methods can be
effectively composed. We also find that as training proceeds on the original data
set with gradient descent the gender bias grows as the loss reduces, indicating
that the optimization encourages bias; CDA mitigates this behavior.

In the body of this paper we present necessary background (Sect. 2), our
methods (Sects. 3 and 4), their evaluation (Sect. 5), and speculate on future
research (Sect. 6).

2 Background

In this section we briefly summarize requisite elements of neural coreference
resolution and language modeling systems: scoring layers and loss evaluation,
performance measures, and the use of word embeddings and their debiasing. The
tasks and models we experiment with later in this paper and their properties
are summarized in Table 1.

Coreference Resolution. The goal of a coreference resolution [5] is to group
mentions, base text elements composed of one or more consecutive words in an
input instance (usually a document), according to their semantic identity. The
words in the first sentence of Fig. 1a, for example, include “the doctor” and “he”.
A coreference resolution system would be expected to output a grouping that
places both of these mentions in the same cluster as they correspond to the same
semantic identity.

192 K. Lu et al.

Table 1. Models, their properties, and datasets evaluated.

Task/Dataset Model Loss via Trainable
embedding

Pre-trained
embedding

Coreference
resolution/CoNLL-
2012 [20]

Lee et al. [14] Coref.
score

�

Clark and Manning [4] Coref.
clusters

� �

Language
modeling/Wikitext-
2 [18]

Zaremba et al. [25] Likelihood �

Neural coreference resolution systems typically employ a mention-ranking
model [5] in which a feed-forward neural network produces a coreference score
assigning to every pair of mentions an indicator of their coreference likelihood.
These scores are then processed by a subsequent stage that produces clusters.

The ground truth in a corpus is a set of mention clusters for each constituent
document. Learning is done at the level of mention scores in the case of [14] and at
the level of clusters in the case of [4]. The performance of a coreference system is
evaluated in terms of the clusters it produces as compared to the ground truth
clusters. As a collection of sets is a partition of the mentions in a document,
partition scoring functions are employed, typically MUC, B3 and CEAFφ4 [20],
which quantify both precision and recall. Then, standard evaluation practice is
to report the average F1 score over the clustering accuracy metrics.

Language Modeling. A language model’s task is to generalize the distribution
of sentences in a given corpus. Given a sentence prefix, the model computes the
likelihood for every word indicating how (un)likely it is to follow the prefix in
its text distribution. This score can then be used for a variety of purposes such
as auto completion. A language model is trained to minimize cross-entropy loss,
which encourages the model to predict the right words in unseen text.

Word Embedding. Word embedding is a representation learning task for find-
ing latent features for a vocabulary based on their contexts in a training corpus.
An embedding model transforms syntactic elements (words) into real vectors
capturing syntactic and semantic relationships among words.

Bolukbasi et al. [2] shows that embeddings demonstrate bias. Objectionable
analogies such as “man is to woman as programmer is to homemaker” indicate
that word embeddings pick up on historical biases encoded in their training cor-
pus. Their solution modifies the embedding’s parameters so that gender-neutral
words no longer carry a gender component. We omit here the details of how
the gender component is identified and removed. What is important, however,
is that only gender-neutral words are affected by the debiasing procedure.

Gender Bias in Neural Natural Language Processing 193

All of our experimental systems employ an initial embedding layer which
is either initialized and fixed to some pretrained embedding, initialized then
trained alongside the rest of the main NLP task, or trained without initializing.
In the latter two cases, the embedding can be debiased at different stages of the
training process. We investigate this choice in Sect. 5.

Related Work. Two independent work [21,27] explore gender bias in corefer-
ence resolution systems. There are differences in our goals and methods. They
focus on bias in coreference resolution systems and explore a variety of such
systems, including rule-based, feature-rich, and neural systems. In contrast, we
study bias in a set of neural natural language processing tasks, including but
not exclusively coreference resolution. This difference in goals leads to differences
in the notions of bias. We define bias in terms of internal scores common to a
neural networks, while both [27] and [21] evaluate bias using Winograd-schema
style sentences specifically designed to stress test coreference resolutions. The
independently discovered mitigation technique of [27] is closely related to ours.
Further, we inspect the effect of debiasing different configurations of word embed-
dings with and without counterfactual data augmentation. We also empirically
study how gender bias grows as training proceeds with gradient descent with
and without the bias mitigation techniques.

Other related work includes the study of gender bias in other NLP appli-
cations such as neural machine translation [7,24], more recent models such as
ELMo [26]. Beside gender bias, other forms of social bias in NLP have also been
studied [16,17]. Some works that built on CDA method in the preprint [15]
include addressing bias in other languages [29], or the analysis of counter-factual
augmentation in general [12].

3 Measuring Bias

Our definition of bias loosely follows the idea of causal testing: matched pairs
of individuals (instances) that differ in only a targeted concept (like gender) are
evaluated by a model and the difference in outcomes is interpreted as the causal
influence of the concept in the scrutinized model.

As an example, we can choose a test corpus of simple sentences relating the
word “professor” to the male pronoun “he” as in sentence 1� of Fig. 1a along
with the matched pair 1� that swaps in “she” in place of “he”. With each
element of the matched pair, we also indicate which mentions in each sentence,
or context, should attain the same score. In this case, the complete matched pair
is (1�, (professor,he)) and

(
1�, (professor, she)

)
. We measure the difference in

scores assigned to the coreference of the pronoun with the occupation across the
matched pair of sentences.

We begin with the general definition and instantiate it for measuring gen-
der bias in relation to occupations for both coreference resolution and language
modeling.

194 K. Lu et al.

Definition 1 (Score Bias). Given a set of matched pairs D (or class of sets
D) and a scoring function s, the bias of s under the concept(s) tested by D (or
D), written Bs (D) (or Bs (D)) is the expected difference in scores assigned to
the matched pairs (or expected absolute bias across class members):

Bs (D) def= E
(a,b)∈D

(s(a) − s(b)) Bs (D) def= E
D∈D

|Bs (D)|

3.1 Occupation-Gender Bias

The principle concept we address in this paper is gender, and the biases we will
focus on in the evaluation relate gender to gender-neutral occupations. To define
the matched pairs to test this type of bias we employ interventions2: transfor-
mations of instances to their matches. Interventions are a more convenient way
to reason about the concepts being tested under a set of matched pairs.

Definition 2 (Intervention Matches). Given an instance i, corpus D, or
class D, and an intervention c, the intervention matching under c is the matched
pair i/c or the set of matched pairs D/c, respectively, and is defined as follows.

i/c
def= (i, c(i)) D/c

def= {i/c : i ∈ D}
The core intervention used throughout this paper is the naive intervention

gnaive that swaps every gendered word in its inputs with the corresponding word
of the opposite gender. In Sect. 4 we define more nuanced forms of intervention
for the purpose of debiasing systems.

We construct a set of sentences based on a collection of templates. In the
case of coreference resolution, each sentence, or context, includes a placeholder
for an occupation word and the male gendered pronoun “he” while the mentions
to score are the occupation and the pronoun. An example of such a template
is the sentence “The [OCCUPATION] ran because he is late.” where the
underline words indicate the mentions for scoring. The complete list can be found
in the Supplemental Materials.

Definition 3 (Occupation Bias). Given the list of templates T , we construct
the matched pair set for computing gender-occupation bias of score function s
for an occupation o by instantiating all of the templates with o and producing a
matched pair via the naive intervention gnaive:

Do(T) def= {t [[OCCUPATION] �→ o] : t ∈ T} /gnaive
To measure the aggregate occupation bias over all occupations O we compute

bias on the class D(T) where D(T) def= {Do(T) : o ∈ O}.
The bias measures are then simply:

Occupation Bias def= Bs (Do(T))
Aggregate Occupation Bias (AOG) def= Bs (D(T))

2 Interventions as discussed in this work are automatic with no human involvement.

Gender Bias in Neural Natural Language Processing 195

For language modeling the template set differs. There we assume the scoring
function is the one that assigns a likelihood of a given word being the next
word in some initial sentence fragment. We place the pronoun in the initial frag-
ment thereby making sure the score is conditioned on the presence of the male
or female pronoun. We are thus able to control for the frequency disparities
between the pronouns in a corpus, focusing on disparities with occupations and
not disparities in general occurrence. An example3 of a test template for lan-
guage modeling is the fragment “He is a | [OCCUPATION]” where the pipe
delineates the sentence prefix from the test word. The rest can be seen in the
Supplemental Materials. Since our evaluation depends on the choice of template
sentences, the result might differ with different set of templates. In this paper,
we specifically study gender-occupation bias, while other types of bias can be
addressed by adapting the issues of interest and choices of templates.

4 Counterfactual Data Augmentation (CDA)

In the previous section we have shown how to quantify gender bias in coreference
resolution systems and language models using a naive intervention, or gnaive.
The disparities at the core of the bias definitions can be thought of as unwanted
effects: the gender of the pronouns like he or she has influence on its coreference
strength with an occupation word or the probability of emitting an occupation
word though ideally it should not. Following the tradition of causal testing, we
make use of matched pairs constructed via interventions to augment existing
training datasets. By defining the interventions so as to express a particular
concept such as gender, we produce datasets that encourage training algorithms
to not capture that concept.

Definition 4 (Counterfactual Data Augmentation). Given an interven-
tion c, the dataset D of input instances (X,Y) can be c-augmented, or D/c, to
produce the dataset D ∪ {(c(x), y)}(x,y)∈D.

Note that the intervention above does not affect the ground truth. This high-
lights the core feature of the method: an unbiased model should not distinguish
between matched pairs, that is, it should produce the same outcome. The inter-
vention is another critical feature as it needs to represent a concept crisply, that
is, it needs to produce matched pairs that differ only (or close to it) in the expres-
sion of that concept. The simplest augmentation we experiment on is the naive
intervention gnaive, which captures the distinction between genders on gendered
words. The more nuanced intervention we discuss further in this paper relaxes
this distinction in the presence of some grammatical structures.

Given the use of gnaive in the definition of bias in Sect. 3, it would be expected
that debiasing via naive augmentation completely neutralizes gender bias. How-
ever, bias is not the only concern in a coreference resolution or language modeling
systems; its performance is usually the primary goal. As we evaluate performance
on the original corpora, the alterations necessarily reduce performance.
3 As part of template occupation substitution we also adjust the article “a”.

196 K. Lu et al.

To ensure the predictive power of models trained from augmented data, the
generated sentences need to remain semantically and grammatically sound. We
assume that if counterfactual sentences are generated properly, the ground truth
coreference clustering labels should stay the same for the coreference resolution
systems. Since language modeling is an unsupervised task, we do not need to
assign labels for the counterfactual sentences.

To define our gender intervention, we employ a bidirectional dictionary of
gendered word pairs such as he:she, her:him/his and other definitionally gen-
dered words such as actor:actress, queen:king. We replace every occurrence (save
for the exceptions noted below) of a gendered word in the original corpus with
its dual as is the case with gnaive.

Flipping a gendered word when it refers to a proper noun such as Queen
Elizabeth would result in semantically incorrect sentences. As a result, we do not
flip gendered words if they are in a cluster with a proper noun. For coreference
resolution, the clustering information is provided by labels in the coreference
resolution dataset. Part-of-speech information, which indicates whether a word
is a pronoun, is obtained through metadata within the training data.

A final caveat for generating counterfactuals is the appropriate handing of
her, he and him. Both he and him would be flipped to her, while her should
be flipped to him if it is an objective pronoun and to his if it is a possessive
pronoun. This information is also obtained from part-of-speech tags.

The adjustments to the naive intervention for maintaining semantic or gram-
matical structures, produce the grammatical intervention, or ggra.

5 Evaluation

In this section we evaluate CDA debiasing across three models from two NLP
tasks in comparison/combination with the word embedding debiasing of [2]. For
each configuration of methods we report aggregated occupation bias (marked
AOB) (Definition 3) and the resulting performance measured on original test sets
(without augmentation). Most of the experimentation that follow employs gram-
matical augmentation though we investigate the naive intervention in Sect. 5.2.

5.1 Neural Coreference Resolution

We use the English coreference resolution dataset from the CoNLL-2012 shared
task [20], the benchmark dataset for the training and evaluation of coreference
resolution. The training dataset contains 2408 documents with 1.3 million words.
We use two state-of-art neural coreference resolution models described by [14]
and [4]. We report the average F1 value of standard MUC, B3 and CEAFφ4

metrics for the original test set.

NCR Model I. The model of [14] uses pretrained word embeddings, thus all
features and mention representations are learned from these pretrained embed-
dings. As a result we can only apply debiasing of [2] to the pretrained embed-
ding. We evaluate bias on four configurations: no debiasing, debiased embeddings

Gender Bias in Neural Natural Language Processing 197

Table 2. Comparison of 4 debiasing configurations for NCR model of [14].

Index Debiasing configuration Test acc. (F1) ΔTest acc. AOB ΔAOB%

1.1 None 67.20a – 3.00 –

1.2 CDA (ggra) 67.40 +0.20 1.03 −66%

1.3 WED 67.10 −0.10 2.03 −32%

1.4 CDA (ggra) w/WED 67.10 −0.10 0.51 −83%
aMatches state-of-the-art result of [14].

(written WED), CDA only, and CDA with WED. The configurations and result-
ing aggregate bias measures are shown in Table 2.

In the aggregate measure, we see that the original model is biased (recall
the scale of coreference scores shown in Fig. 1). Further, each of the debiasing
methods reduces bias to some extent, with the largest reduction when both
methods are applied. Impact on performance is negligible in all cases.

Figure 2 shows the per-occupation bias in Models 1.1 and 1.2. It aligns with
the historical gender stereotypes: female-dominant occupations such as nurse,
therapist and flight attendant have strong negative bias while male-dominant
occupations such as banker, engineer and scientist have strong positive bias.
This behaviour is reduced with the application of CDA.

Fig. 2. Model 1.1 & 1.2: bias for occupations in original & CDA model

NCR Model II. The model of [4] has a trainable embedding layer, which is ini-
tialized with the word2vec embedding and updated during training. As a result,
there are three ways to apply WED: we can either debias the pretrained embed-
ding before the model is trained (written

←−−−
WED), debias it after model training

(written
−−−→
WED), or both. We also test these configurations in conjunction with

CDA. In total, we evaluate 8 configurations as in shown in Table 3.
The aggregate measurements show bias in the original model, and the general

benefit of augmentation over word embedding debiasing: it has better or compa-
rable debiasing strength while having lower impact on accuracy. In models 2.7

198 K. Lu et al.

nurse

fis
herm

an

film
m

ake
r

docto
r

su
rg

eon

banke
r

dent is
t

sin
ger

te
ach

er

sc
ient is

t

physic
ian

barb
er

t ra
nsla

to
r

eco
nom

ist

ca
rp

ente
r

sc
holar

m
ech

anic

th
era

pist

arch
ite

ct

build
er

polit i
cia

n
ch

ef

co
ach

photo
gra

pher
judge

se
cre

ta
ry

pro
fe

ss
or

pro
gra

m
m

er
pilo

t

at to
rn

ey

engineer

developer

Occupat ions

− 0.2

− 0.1

0.0

0.1

0.2
O

cc
up

at
io

n
B

ia
s

Original
CDA(All)

Fig. 3. Model 3.1 & 3.3: bias for occupations in original RNN language model

Table 3. Comparison of 8 debiasing configurations for NCR model of [4]. The ±AOB
column is aggregate occupation bias with preserved signs in aggregation.

Index Debiasing configuration F1 ΔTest acc. AOB ±AOB ΔAOB%

2.1 None 69.10 – 2.95 2.74 –

2.2
←−−−
WED 68.82 −0.28 2.50 2.24 −15%

2.3
−−−→
WED 66.04 −3.06 0.9 0.14 −69%

2.4
←−−−
WED and

−−−→
WED 66.54 −2.56 1.38 −0.54 −53%

2.5 CDA (ggra) 69.02 −0.08 0.93 0.07 −68%

2.6 CDA (ggra) w/
←−−−
WED 68.5 −0.60 0.72 0.39 −75%

2.7 CDA (ggra) w/
−−−→
WED 66.12 −2.98 2.03 −2.03 −31%

2.8 CDA (ggra) w/
←−−−
WED,

−−−→
WED 65.88 −3.22 2.89 −2.89 −2%

Table 4. Comparison of three debiasing configurations for an RNN language model.

Index Debiasing configuration Test perp. ΔTest perp. AOB ΔAOB%

3.1 None 83.39 – 0.054 –

3.2
−−−→
WED 1128.15 +1044.76 0.015 −72%

3.3 CDA (ggra) 84.03 +0.64 0.029 −46%

3.4 CDA (gnaive) 83.63 +0.24 0.008 −85%

and 2.8, however, we see that combining methods can have detrimental effects:
the aggregate occupation bias has flipped from preferring males to preferring
females as seen in the ±AOB column which preserves the sign of per-occupation
bias in aggregation.

Gender Bias in Neural Natural Language Processing 199

5.2 RNN Language Modeling

Although theoretically RNN language models can be either trained with a pre-
trained embedding or a trainable embedding layer, the latter is more often
used [22]. One reason is that since training corpus for language model are abun-
dant, a good task-specific embedding can be learned with the rest of the model.
As a result, we use the Wikitext-2 dataset [18] for language modeling and employ
a simple 2-layer RNN architecture with 1500 LSTM cells and a trainable embed-
ding layer of size 1500. As a result, word embedding can only be debiased after
training. The language model is evaluated using perplexity, a standard measure
for averaging cross-entropy loss on unseen text. We also test the performance
impact of the naive augmentation in relation to the grammatical augmentation
in this task. Figure 3 shows the per-occupation bias in Models 3.1 and 3.3. The
aggregate results for the four configurations are show in Table 4.

We see that word embedding debiasing in this model has very detrimental
effect on performance. The post-embedding layers here are too well-fitted to the
final configuration of the embedding layer. We also see that the naive augmen-
tation almost completely eliminates bias and surprisingly happened to incur a
lower perplexity hit. We speculate that this is a small random effect due to the
relatively small dataset (36,718 sentences of which about 7579 have at least one
gendered word) used for this task.

5.3 Learning Bias

The results presented so far only report on the post-training outcomes. Figure 4,
on the other hand, demonstrates the evolving performance and bias during train-
ing under various configurations. In general we see that for both neural coref-
erence resolution and language model, bias (thick lines) increases as loss (thin
lines) decreases. Incorporating counterfactual data augmentation greatly bounds
the growth of bias (gray lines). In the case of naive augmentation, the bias is
limited to almost 0 after an initial growth stage (lightest thick line, right).

5.4 Overall Results

The original model results in the tables demonstrate that bias exhibits itself in
the downstream NLP tasks. This bias mirrors stereotypical gender/occupation
associations as seen in Fig. 2 (black bars). Further, word debiasing alone is not
sufficient for downstream tasks without undermining the predictive performance,
no matter which stage of training process it is applied (

←−−−
WED of 2.2 preserves

accuracy but does little to reduce bias while
−−−→
WED of 2.3 does the opposite).

Comparing 2.2 (
←−−−
WED) and 2.4 (

←−−−
WED and

−−−→
WED) we can conclude that bias in

word embedding removed by debiasing performed prior to training is relearned
by its conclusion as otherwise the post-training debias step of 2.4 would have
no effect. The debiased result of configurations 1.2, 2.5 and 3.3 show that coun-
terfactual data augmentation alone is effective in reducing bias across all tasks
while preserving the predictive power.

200 K. Lu et al.

0 50000 100000 150000 200000 250000 300000
Iterat ions

1.0

1.5

2.0

2.5

3.0

A
gg

re
ga

te
d

O
cc

up
at

io
n

B
ia

s

25

30

35

40

45

Lo
ss

Original
CDA(Gram m ar)

10000 20000 30000 40000 50000 60000 70000
Iterat ions

0.01

0.02

0.03

0.04

0.05

A
gg

re
ga

te
d

O
cc

up
at

io
n

B
ia

s

100

120

140

160

180

200

Pe
rp

le
xi

ty

Original
CDA (Naive)
CDA (Gram m ar)

Fig. 4. Performance and aggregate occupation bias during training phases for corefer-
ence resolution with model of [14] (left) and language modeling (right).

Results combining the two methods show that CDA and pre-training word
embedding debiasing provide some independent debiasing power as in 1.4 and
2.6. However, the combination of CDA and post-training debiasing has an over-
correction effect in addition to the compromise of the predictive performance as
in configurations 2.7 and 2.8.

6 Future Work

A natural next step is to study bias in transformer-based language models such
as BERT [6]. However, NLP tasks trained with BERT requires fine tuning on a
pretrained base-model, as part of a transfer-learning pipeline. Retraining from
scratch is not feasible in such pipelines as the original training process is too com-
putationally expensive and the data for the base-model is typically unavailable.
We will explore how to adapt CDA for such transfer-learning scenarios.

We are exploring other types of bias beyond gender bias, such as racial or
age-related bias. One potential challenge for addressing other bias is that race
and age concepts are not as easily attributable to pairs of pronouns.

Finally, we are looking into explaining why neural network models exhibit
bias by studying their inner workings. Such explanations could help us encode
(de)bias constraints in the training loss function to prevent bias from being
introduced in the first place.

Supplemental Material

Context Template Sentences for Occupation Bias

Below is the list of the context template sentences used in our coreference resolu-
tion experiments OCCUPATION indicates the placement of one of occupation
words listed below.

– “The [OCCUPATION] ate because he was hungry.”
– “The [OCCUPATION] ran because he was late.”

Gender Bias in Neural Natural Language Processing 201

– “The [OCCUPATION] drove because he was late.”
– “The [OCCUPATION] drunk water because he was thirsty.”
– “The [OCCUPATION] slept because he was tired.”
– “The [OCCUPATION] took a nap because he was tired.”
– “The [OCCUPATION] cried because he was sad.”
– “The [OCCUPATION] cried because he was depressed.”
– “The [OCCUPATION] laughed because he was happy.”
– “The [OCCUPATION] smiled because he was happy.”
– “The [OCCUPATION] went home because he was tired.”
– “The [OCCUPATION] stayed up because he was busy.”
– “The [OCCUPATION] was absent because he was sick.”
– “The [OCCUPATION] was fired because he was lazy.”
– “The [OCCUPATION] was fired because he was unprofessional.”
– “The [OCCUPATION] was promoted because he was hardwork-

ing.”
– “The [OCCUPATION] died because he was old.”
– “The [OCCUPATION] slept in because he was fired.”
– “The [OCCUPATION] quitted because he was unhappy.”
– “The [OCCUPATION] yelled because he was angry.”

Similarly the context templates for language modeling are as below.

– “He is a | [OCCUPATION]”
– “he is a | [OCCUPATION]”
– “The man is a | [OCCUPATION]”
– “the man is a | [OCCUPATION]”

References

1. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning
to align and translate. arXiv preprint arXiv:1409.0473 (2014)

2. Bolukbasi, T., Chang, K.W., Zou, J.Y., Saligrama, V., Kalai, A.T.: Man is to
computer programmer as woman is to homemaker? Debiasing word embeddings.
In: Advances in Neural Information Processing Systems, pp. 4349–4357 (2016)

3. Caliskan, A., Bryson, J.J., Narayanan, A.: Semantics derived automatically from
language corpora contain human-like biases. Science 356(6334), 183–186 (2017)

4. Clark, K., Manning, C.D.: Deep reinforcement learning for mention-ranking coref-
erence models. arXiv preprint arXiv:1609.08667 (2016)

5. Clark, K., Manning, C.D.: Improving coreference resolution by learning entity-level
distributed representations. arXiv preprint arXiv:1606.01323 (2016)

6. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of
deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805 (2018)

7. Font, J.E., Costa-Jussa, M.R.: Equalizing gender biases in neural machine trans-
lation with word embeddings techniques. arXiv preprint arXiv:1901.03116 (2019)

8. Graves, A.: Generating sequences with recurrent neural networks. arXiv preprint
arXiv:1308.0850 (2013)

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1609.08667
http://arxiv.org/abs/1606.01323
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1901.03116
http://arxiv.org/abs/1308.0850

202 K. Lu et al.

9. Graves, A., Mohamed, A.R., Hinton, G.: Speech recognition with deep recurrent
neural networks. In: 2013 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 6645–6649. IEEE (2013)

10. Johnson, M., et al.: Google’s multilingual neural machine translation system:
enabling zero-shot translation. TACL 5, 339–351 (2017). https://transacl.org/ojs/
index.php/tacl/article/view/1081

11. Jozefowicz, R., Vinyals, O., Schuster, M., Shazeer, N., Wu, Y.: Exploring the limits
of language modeling. arXiv preprint arXiv:1602.02410 (2016)

12. Kaushik, D., Hovy, E., Lipton, Z.C.: Learning the difference that makes a difference
with counterfactually-augmented data. arXiv preprint arXiv:1909.12434 (2019)

13. Lapowsky, I.: Google autocomplete still has a hitler problem, February 2018.
https://www.wired.com/story/google-autocomplete-vile-suggestions/

14. Lee, K., He, L., Lewis, M., Zettlemoyer, L.: End-to-end neural coreference resolu-
tion. arXiv preprint arXiv:1707.07045 (2017)

15. Lu, K., Mardziel, P., Wu, F., Amancharla, P., Datta, A.: Gender bias in neural
natural language processing. arXiv preprint arXiv:1807.11714 (2018)

16. Manzini, T., Lim, Y.C., Tsvetkov, Y., Black, A.W.: Black is to criminal as cau-
casian is to police: detecting and removing multiclass bias in word embeddings.
arXiv preprint arXiv:1904.04047 (2019)

17. May, C., Wang, A., Bordia, S., Bowman, S.R., Rudinger, R.: On measuring social
biases in sentence encoders. arXiv preprint arXiv:1903.10561 (2019)

18. Merity, S., Xiong, C., Bradbury, J., Socher, R.: Pointer sentinel mixture models.
arXiv preprint arXiv:1609.07843 (2016)

19. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781 (2013)

20. Pradhan, S., Moschitti, A., Xue, N., Uryupina, O., Zhang, Y.: CoNLL-2012 shared
task: modeling multilingual unrestricted coreference in ontonotes. In: Joint Con-
ference on EMNLP and CoNLL-Shared Task, pp. 1–40. Association for Computa-
tional Linguistics (2012)

21. Rudinger, R., Naradowsky, J., Leonard, B., Van Durme, B.: Gender bias in coref-
erence resolution. arXiv preprint arXiv:1804.09301 (2018)

22. Sundermeyer, M., Schlüter, R., Ney, H.: LSTM neural networks for language model-
ing. In: Thirteenth Annual Conference of the International Speech Communication
Association (2012)

23. Tatman, R.: Gender and dialect bias in YouTube’s automatic captions. In: Pro-
ceedings of the First ACL Workshop on Ethics in Natural Language Processing,
pp. 53–59 (2017)

24. Vanmassenhove, E., Hardmeier, C., Way, A.: Getting gender right in neural
machine translation. arXiv preprint arXiv:1909.05088 (2019)

25. Zaremba, W., Sutskever, I., Vinyals, O.: Recurrent neural network regularization.
arXiv preprint arXiv:1409.2329 (2014)

26. Zhao, J., Wang, T., Yatskar, M., Cotterell, R., Ordonez, V., Chang, K.W.: Gender
bias in contextualized word embeddings. arXiv preprint arXiv:1904.03310 (2019)

27. Zhao, J., Wang, T., Yatskar, M., Ordonez, V., Chang, K.W.: Gender bias
in coreference resolution: evaluation and debiasing methods. arXiv preprint
arXiv:1804.06876 (2018)

28. Zheng, J., Chapman, W.W., Crowley, R.S., Savova, G.K.: Coreference resolution: a
review of general methodologies and applications in the clinical domain. J. Biomed.
Inform. 44(6), 1113–1122 (2011)

29. Zmigrod, R., Mielke, S.J., Wallach, H., Cotterell, R.: Counterfactual data augmen-
tation for mitigating gender stereotypes in languages with rich morphology. arXiv
preprint arXiv:1906.04571 (2019)

https://transacl.org/ojs/index.php/tacl/article/view/1081
https://transacl.org/ojs/index.php/tacl/article/view/1081
http://arxiv.org/abs/1602.02410
http://arxiv.org/abs/1909.12434
https://www.wired.com/story/google-autocomplete-vile-suggestions/
http://arxiv.org/abs/1707.07045
http://arxiv.org/abs/1807.11714
http://arxiv.org/abs/1904.04047
http://arxiv.org/abs/1903.10561
http://arxiv.org/abs/1609.07843
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1804.09301
http://arxiv.org/abs/1909.05088
http://arxiv.org/abs/1409.2329
http://arxiv.org/abs/1904.03310
http://arxiv.org/abs/1804.06876
http://arxiv.org/abs/1906.04571

Author Index

Adão, Pedro 71
Amancharla, Preetam 189

Ban Kirigin, Tajana 61
Bauer, Matthew S. 167
Blumenfeld, Ian 103
Bonyadi, Cyrus J. 103

Chadha, Rohit 167
Chang, Richard 103
Cheval, Vincent 127

Datta, Anupam 189

Ghilezan, Silvia 98
Girard, Jean-Yves 17
Golaszewski, Enis 103
Guttman, Joshua D. 146

Kremer, Steve 127
Kuznetsov, Stepan L. 3

Lanus, Erin 103
Liskov, Moses 103
Lu, Kaiji 189

Mardziel, Piotr 189
Mateus, Paulo 71

Miller, Dale 69
Morrill, Glyn 187

Ognjanović, Zoran 98
Okada, Mitsuhiro 39

Pavlovic, Dusko 48
Perak, Benedikt 61

Rakotonirina, Itsaka 127
Ramsdell, John D. 146
Ribeiro, Maria 71
Rowe, Paul D. 146

Sherman, Alan T. 103
Šikić, Zvonimir 98
Studer, Thomas 98

Viswanathan, Mahesh 167

Wnuk-Fink, Ryan 103
Wu, Fangjing 189

Yaksetig, Mario 103

Zieglar, Edward 103

	Preface
	Contents
	Logic
	A 10-Bounded Fragment of Infinitary Action Logic with Exponential
	1 Introduction
	2 Infinitary Action Logic with Exponential
	3 The Calculus !1DACT
	4 Cut Elimination in !1DACT and Equivalence with Restricted !ACT
	5 *-Elimination and Complexity of !1DACT
	References

	Transcendental Syntax iv: Logic Without Systems
	1 bhk Revisited
	1.1 A System-Free Approach
	1.2 Axiomatic Realism
	1.3 The First Leakage: Emptiness
	1.4 The Second Leakage: Operationality
	1.5 The Third Leakage: Language
	1.6 The Fourth Leakage: Usine

	2 The Architecture of Logic
	2.1 Logic vs. Set Theory
	2.2 Systems vs. Toolbox
	2.3 Certainty
	2.4 Constraints and Freedom

	3 Truth
	3.1 The Tarskian Pleonasm
	3.2 Generalities About Visibility
	3.3 Multiplicative Case
	3.4 The Constants Are Dead, Long Live the Constants!
	3.5 Variables
	3.6 General Case

	4 Natural Numbers
	4.1 First Series
	4.2 Second Series
	4.3 Truth and Falsity

	5 Arithmetic
	5.1 First Order Quantification
	5.2 Second Order Propositional Case
	5.3 Recurrence
	5.4 Product

	A L'usine, Again
	A.1 Identity
	A.2 Existence
	A.3 Finitism

	References

	Logic and Computing
	A Small Remark on Hilbert's Finitist View of Divisibility and Kanovich-Okada-Scedrov's Logical Analysis of Real-Time Systems
	1 Introduction
	2 A Case Study: Multi-agent Real-Time State Transition Model with the No-Infinite Divisibility Principle
	2.1 Finitely-multi-agent Finite State Transition System with Finite Time Constraint Conditions on the Dense Real-Time
	2.2 Global Clock and Local Alarm Stopwatches
	2.3 Back to Finitism

	References

	Logic of Fusion
	1 Technical Introduction
	1.1 Idea
	1.2 Fusion and Cut
	1.3 Build Fusion

	2 Paranatural Transformations
	3 Characterizing Fixpoints
	4 Applications
	5 Afterword
	References

	There's No Time, The Problem of Conceptualising Time
	1 Real-Time Multiset Rewriting
	2 Conceptualization of Sequence as Time
	3 Relating the Approaches to Time
	References

	Andre and the Early Days of Penn's Logic and Computation Group
	Formal Verification of Ethereum Smart Contracts Using Isabelle/HOL
	1 Introduction
	2 The Ethereum Blockchain
	3 The SOLI Language
	3.1 Syntax
	3.2 Concrete Syntax
	3.3 Semantics
	3.4 Additional Language Features
	3.5 State Space
	3.6 Environment Variables

	4 Hoare Logic
	4.1 The Proof System
	4.2 Weakest Precondition Calculus
	4.3 Soundness
	4.4 Completeness
	4.5 Computation of Verification Conditions

	5 Application to Real-World Smart Contracts
	5.1 Electronic Voting
	5.2 Ethereum Tokens
	5.3 Reentrancy

	6 Conclusions
	References

	Logic and Applications - LAP Meeting
	Logic and Security
	Formal Methods Analysis of the Secure Remote Password Protocol
	1 Introduction
	2 Background and Previous Work
	2.1 Formal Methods for Analyzing Cryptographic Protocols
	2.2 Cryptographic Protocol Shapes Analyzer
	2.3 PAKE Protocols
	2.4 Previous Work

	3 The Secure Remote Password Protocol
	4 Modeling SRP-3 in CPSA
	4.1 Challenges to Modeling SRP-3 in CPSA
	4.2 Our Model of SRP-3

	5 Interpreting Shapes from the SRP-3 Model
	5.1 Client Point of View
	5.2 Server Point of View
	5.3 Privacy Properties
	5.4 Leaked Verifiers

	6 A Malicious Server Attack Against SRP
	7 Discussion
	8 Conclusion
	A CPSA Sourcecode
	References

	The Hitchhiker's Guide to Decidability and Complexity of Equivalence Properties in Security Protocols
	1 Introduction
	2 Model
	3 Complexity of Static Equivalence (Passive Attacker)
	3.1 Static Equivalence
	3.2 Complexity Results

	4 Complexity of Dynamic Equivalences (Active Attacker)
	4.1 Equivalences
	4.2 Classical Fragments of the Calculus
	4.3 Complexity Results: Bounded Fragment
	4.4 Complexity Results: Unbounded Case

	5 Variations of the Model
	6 Summary of the Results
	References

	Assumption-Based Analysis of Distance-Bounding Protocols with cpsa
	1 Introduction
	2 Adapting the Strand Model for Distance-Bounding
	3 Examples
	4 Taxonomy
	5 Related Work
	6 Conclusion
	References

	Modelchecking Safety Properties in Randomized Security Protocols
	1 Introduction
	2 Randomized Security Protocols
	2.1 Mix Networks
	2.2 Prt Voter

	3 Randomized Applied -Calculus
	3.1 Terms, Equational Theories and Frames
	3.2 Process Syntax
	3.3 Partially Observable Markov Decision Processes
	3.4 Process Semantics

	4 Model Checking Algorithm
	5 Tool Description and Evaluation
	6 Conclusion
	References

	Logic and Language
	Andre Scedrov
	Gender Bias in Neural Natural Language Processing
	1 Introduction
	2 Background
	3 Measuring Bias
	3.1 Occupation-Gender Bias

	4 Counterfactual Data Augmentation (CDA)
	5 Evaluation
	5.1 Neural Coreference Resolution
	5.2 RNN Language Modeling
	5.3 Learning Bias
	5.4 Overall Results

	6 Future Work
	References

	Author Index

