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Abstract. In this paper, we propose the use of a social robot to sup-
port professional figures in performing cognitive screening and stimu-
lation. We implemented tools that allow us to automatize the eval-
uation of a subject’s cognitive abilities. More specifically, we pro-
grammed the humanoid robot Pepper to administer, in a fully auto-
mated and “friendly” way, three cognitive assessment tasks: Word List
Recall (WLR), Attentive Matrices (AM), and the Rey-Osterrieth Com-
plex Figure (ROCF). For WLR, we displayed the word list on the robot’s
tablet, and the speech recognition module to record the recalled words.
AM was delivered by asking the subjects to use and mark numbers on
the tablet. For ROCF, we implemented two novel score assessment algo-
rithms based on the processing of the picture drawn by the subjects and
acquired through the robot camera. In particular, for ROCF, correlation
analysis was conducted to compare automatically computed scores with
a human psychologist’s. Our results suggest that the human psychol-
ogist’s workload can be reliably reduced thanks to the support of the
robot.
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1 Introduction

A social robot is an autonomous robot capable of interacting with humans, that
can follow social norms and role-specific rules. Currently, the use of social robots
has become widespread in different areas, such as schools, transports, working
contexts, and others. In this paper, we present the use of a social robot in a
therapeutic setting, as support to professional figures for performing cognitive
screening and stimulation. Research has found that cognitive stimulation can
prevent the development of dementia [21]. Several studies explored the effective-
ness of cognitive-based interventions and have shown that people undergoing
cognitive training report a slower decline in daily activities (see e.g. [20]).
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Currently, there are many technologies, including robotics ones, designed to
submit cognitive training or to support professional figures in this area. Among
these, social robots could represent a pleasant and understandable interface for
facilitating the screening process. Social robots have been used to improve Autis-
tic Spectrum Disorder (ASD) diagnosis in children [11] or to administer Patient-
Reported Outcome measurement questionnaires to senior adults [3]. The success
of this approach can be favored by the preference of interacting with a humanoid
social robot rather than a non-embodied computer screen [15]. Moreover, results
presented in [17] suggest that using social robots to support professional figures
improves user performance, but the technology needs improvement for a fully
autonomous assessment. Little is known about robots as psychological evaluation
tools.

In our work, we explore the use of social robots to automate the psycho-
logical evaluation attributed to the performed cognitive exercises. Consequently,
our main objective is to use a social robot to automatically deliver and eval-
uate cognitive tests. In particular, we implemented tools that enable a robot
to automatically evaluate a subject’s cognitive abilities. Among activities to be
automatically performed by a robot, the computerized analysis of drawing-based
test is still a complex task due to the high degree of drawing variability and the
possible interpretation [7]. This activity is also time consuming for psychologists.
Here, we propose two algorithms for the evaluation of the Rey–Osterrieth Com-
plex Figure (ROCF) to be performed autonomously by a Pepper robot. Results
show that is a strong correlation between our automatic evaluation methods and
that of a human psychologist, but further analysis is required to fine tune our
approach.

2 Related Work

The use of social robots in healthcare is a relatively new field of study. For
instance, [10] explores the use of social robots in the therapeutic field. In partic-
ular, they are used in healthcare to provide monitoring, health education, and
entertainment to patients.

Neurological examination provides important information on cognitive abil-
ities of the therapeuric subject. Cognitive screening is the first step in neuro-
logical evaluation. Recent research like [18] demonstrates the benefits of using
social robots as therapeutic assistants, as they can provide many advantages
to diagnostic practice, for example by ensuring standardization in the subject’s
evaluation. Rossi et al. [14] explore the use of social robots as psychometric tools
for providing quick and reliable screening exams. More in detail, this study com-
pares the prototype of a robotic cognitive test to a traditional paper and pencil
psychometric tool. Rossi et al. [15] have shown that subjects are likely to rate
their experience as more satisfactory when they use a humanoid robot when
compared to a mobile application. For example, the iCat robot recommends the
use of ecological, energy-saving washing programs, while communicating through
voice messages and facial expressions. The results suggest that people involved
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in the experiment were more heavily influenced by the robotic cat rather than
by the luminous information message on the washing machine display. Kidd and
Breazeal [5] proposed a robotic trainer for weight loss for smart homes. Kidd and
David in [6], where participants were asked to join a weight loss program, the
authors found that the program was more effective when a robot was involved in
the monitoring process when compared to both pen and paper and computerized
interface-based approaches.

In this paper, we develop an algorithm for the evaluation of the Rey–
Osterrieth Complex Figure (ROCF) that requires scoring a drawing in a human-
like manner. Related work in this field uses fuzzy expert systems [4] that, how-
ever, does not provide a global evaluation of the figure due to localization issues.
Other techniques are based on Deep Neural Networks [7]. A shortcoming of such
methods is that they require a huge amount of data for the training phase. Our
hybrid method, instead, provides a lightweight way to provide a global evalu-
ation of the drawing using standard techniques from computer vision. As it is
written in Python, our algorithm can be readily embedded in a Pepper robot
and does not require any post-processing phase.

3 Materials and Methods

In our application, we used the humanoid robot Pepper Y20 V18A1 and the
Choreograph suite, which is included in Pepper’s SDK. Image processing oper-
ations were performed using Python and OpenCV libraries. We programmed
Pepper to administer, in a fully automated way, the three cognitive assessment
tasks listed below:

Word List Recall. Word List Recall (WLR) is used to evaluate learning and
verbal memory abilities. In particular, the participants are shown 30 semantically
unrelated words. After 1 min, the list disappears and the participants have to
recall all the words they remember. The number of words correctly recalled is
then calculated, and the participants are assigned a score from 0 to 30, with
higher scores indicating better performance.

Attentive Matrices. To assess selective visual attention, we employed the
Attentive matrices (AM) test [16]. It consists of three matrices with numbers
arranged in a random sequence. The participant has to check the matrices to
find and tick the target numbers shown at the top of the screen within 45 s
(see Fig. 1). Then, the participant is assigned a score ranging from 0 (worst
performance) to 60 (best performance).

Rey–Osterrieth Complex Figure. The Rey–Osterrieth Complex Figure
(ROCF) is often used for the assessment of visuo-constructional and planning

1 SoftBank Robotics https://www.softbankrobotics.com.

https://www.softbankrobotics.com
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Fig. 1. Pepper performing the Attentive Matrices Test on its in-built tablet.

abilities, due to the complexity of the figure [19]. Participants are asked to copy
the complex figure and show the sheet to Pepper (see Fig. 2). The image was
then scored according to the number of elements present in the complex figure
correctly copied so that higher scores indicate better performance (range 0–36).
When the test is administered by a human psychologist, the 18 elements com-
posing the ROCF are evaluated individually, applying a particular scoring grid.

3.1 Pepper’s Behavioral Features

We programmed Pepper to behave in a friendly way. In the following, we describe
the characterizing features of the friendly personality we adopted. Pepper’s eye
color was set to yellow. According to the color-wheel model by Plutchik yellow
is typically associated with positive emotions such as joy and serenity [12]. Its
gestures are frequent and open to give a sense of rhythm to its speech [8]. The
openness of gestures is typically related also to the display of positive emotions
[13]. Both the speed of speech and voice pitch are high, 90% and 100% of the
default value respectively which are associated with a more entertaining robot
[9]. For what regards the proxemics, we adopted Hall’s personal space (0.3–
1m) because reaches the right balance between greater persuasiveness and low
discomfort: The language type used is informal to promote intimacy [2]. Finally,
Pepper’s gaze is fixed on the user during deliveries and distracted during the
execution [2]. To enhance the perception of the robot’s friendly personality, we
adopted different motivational strategies: phrases of positive encouragement [1]
are randomly repeated every 10 s, and a yellow smile is shown on Pepper’s tablet
during waiting times.
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Fig. 2. A participant showing Pepper his reproduction of ROCF.

3.2 Automatic Cognitive Tests Administration

The interaction is entirely guided and supervised by Pepper, who first intro-
duces itself and then explains the purpose of interaction to the participant.
Subsequently, it proceeds to administer the cognitive tests, in the same way a
human psychologist would, in the following order:

1. First phase: Pepper shows on the tablet the image of the original ROCF
model, and asks the participant to copy the image on a white sheet. This
task is meant to assess the subject’s visuospatial and visuo-constructional
abilities but also abilities of planning and organization. Pepper waits for the
participant to say “I’m done” before continuing;

2. Second phase: in this phase, Pepper administers the two other proposed cog-
nitive exercises (WL first, and then AM) in order to fill the interval before
the ROCF delayed recall with other neuropsychological tasks;

3. Third phase: in this phase, the participant is asked to recall the ROCF.
Particularly, through this task, it is possible to evaluate the subject’s long
term spatial memory. Pepper asks the participant to draw on a white sheet
all the details s/he remembers of the original model shown in step one. At the
end of the exercise, Pepper asks the participant to position the drawing in
front of its eyes and takes a photo that is then used for automatic evaluation
(see Fig. 2).

Finally, Pepper thanks the participant for the collaboration and ends the inter-
action. Note that all of our experiments were performed under controlled con-
ditions. A human operator checked that the lighting conditions were fit for the
task, and that Pepper’s camera was correctly aligned to the sheet when capturing
the image.

3.3 Automatic Cognitive Tests Evaluation

Word List Recall. To automatically administrate WLR, we used the tablet
screen embedded in the robot to display the word list, and the speech recognition
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module to record and take note of the recalled words. In case a word is recognized,
Pepper repeats it for confirmation. The speech recognition module allows one
to set a sensitivity value that represents how accurately the word has to be
pronounced to be recognized. We set the sensitivity to 60% after a series of
preliminary tests conducted to find the best trade-off between false positives
(incorrect words recognized as correct, or correct words recognized as other words
in the list) and false negatives (correct words not recognized). In particular, we
looked for the lowest value that did not produce any false positive, since false
negatives can be managed by simply ignoring the word.

Attentive Matrices. AM test was administered by showing the matrices on
Pepper’s tablet. The subject was asked to tick the numbers by tapping on them
over the screen. The final score was the number of correctly ticked numbers.

Rey–Osterrieth Complex Figure. ROCF score assessment algorithm was
based on the comparison between the image drawn by the subject and the one
stored in the robot’s memory to return a score. The sheet included a black
frame (2.5 cm of thickness) on the border, ensuring that the subject did not
cover the drawing area with fingers when showing the sheet to Pepper. To make
the drawn image comparable with the original, the following preprocessing phase
were applied:

– Binarization (see Fig. 3 for an example)
– Selection of the maximum bounding box of contiguous foreground pixels: each

pixel outside the bounding box was set to 0
– Perspective linear transformation
– Border artifacts removal: each region of contiguous background pixel touching

the border was set to foreground value 1.

The following steps were performed both on the preprocessed image and
the original one. The aim was to compute an N by M similarity matrix that
contained a score for each pair (Oi,Dj) of graphic elements (i.e. foreground
connected regions) belonging to the original and the drawn image respectively:

– Labeling: contiguous pixels were labeled with the same integer value (see
Fig. 3 for a pictorial representation). Regions were arranged in a list structure

– Background removal: the region with the larger bounding box area, was
removed from the list

– Removal of small regions: regions composed of less than 50 pixels were
not considered and removed from the list.

Both the shape similarity and the correct positioning of drawn elements with
respect to the originals had to be quantified. Let Oi and Dj the ith and jth

(1 ≤ i ≤ N , 1 ≤ j ≤ M) elements of the regions lists from the original image
and that drawn by the subject, respectively. For each pair (Oi,Dj) we compute
the following similarity metrics:
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Fig. 3. A ROCF drawing after the binarization phase (left) and labeling phase (right).
In the right picture, different colors correspond to differently labeled areas of the figure.
(Color figure online)

Jaccard Index (JI): It is a value that takes into account the overlap of regions
and it is defined as

JI(Oi,Dj) =
S(Oi ∩ Dj)
S(Oi ∪ Dj)

(1)

where S(x) represents the number of pixels in a region and set operators are
applied by considering regions as sets of pixels;

Orientation Similarity (OS): Let be αO, αD ∈ [0, π] the orientations of the
major axes of the ellipses approximating the regions Oi and Dj , respectively.
Let be RO and RD the ratios between lengths of major and minor axes of the
ellipses. We computed the orientation similarity as follows:

OS(Oi,Dj) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if (RO ≥ 0.5 ∧ RD < 0.5)∨
(RO < 0.5 ∧ RD ≥ 0.5)

0.5 if RO ≥ 0.5 ∧ RD ≥ 0.5
(1 − |sin(αO − αD)|) if RO < 0.5 ∧ RD < 0.5

(2)

Normalized Distance (ND): It is computed as

ND(Oi,Dj) = 1 − d(C(Oi), C(Dj))
max

1≤n≤N, 1≤m≤M
d(C(On), C(Dm))

(3)

where C(X) is the coordinates vector of the centroid of region X and d(y, z) is
the Euclidean distance between points y and z.

Surfaces ratio (SR): It represents the similarity in terms of the number of
pixels composing the regions:

SR(Oi,Dj) =
min(|Oi|, |Dj |)
max(|Oi|, |Dj |) (4)
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where |X| is the number of pixels belonging to region X.
The computed metrics were combined in a weighted sum and the N by M

matrix A was filled as follows:

A(i, j) =
w1JI(Oi,Dj) + w2OS(Oi,Dj) + w3ND(Oi,Dj) + w4SR(Oi,Dj)

w1 + w2 + w3 + w4
(5)

At this point, A was analyzed to compute a total score of the test. We devel-
oped two algorithms, named A1 and A2, respectively. Attention had to be paid in
avoiding the “overloading” of drawn elements (when paired with several original
regions). For these reasons, both algorithms implemented penalization mecha-
nisms. Note that, since previous steps led to a division of the original image in
18 regions and each element of A was in the range [0, 1], picking and summing an
element of A for each original region, would produce a score in the range [0, 18],
thus the following algorithms also had to normalize the score to the range [0, 36].

A1 comprised the following steps:

BEGIN
score=0;
WHILE max(A)>0

find max(A) (let x and y be the indices);
score = score + max(A);
set each element in the x-th row of A to 0;
multiply each element in the y-th column of A by PF;

END
RETURN 2*score;

END

At each step, it found the maximum score pair in the matrix and add the value to
the final score. Then, to exclude the already considered regions between original,
it set the corresponding row to 0 (in this way, each original region was paired
with exactly one drawn region). Moreover, to avoid that a drawn region was
selected repeatedly, the algorithm penalized it by multiplying the values in the
corresponding column by a penalization factor PF ∈ [0, 1]. Setting PF = 0 is
equivalent to make the algorithm behave with a hard constraint with respect to
overloading: at most one original region will be paired with each drawn region,
since, once a regions’ pair is selected, the corresponding row and column is
set to 0. On the contrary, PF = 1 means that no penalty will be applied for
overloading. In this work, we tested the algorithm with values of PF = 0, 0.5, 1.

A2 is a simplification that addressed the correctness of the paired regions
by using an overall metric, instead of computing penalty for every single region.
The final score was computed as follows:

s =
N∑

i=1

(max(A[i, :])) ∗ P (6)
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where P = 2N
N+(N−M)2 was the weight term (P ∈ [0, 2]) that considered the

number of original and drawn regions.

Table 1. Correlation scores (Pearson’s r, Spearman’s ρ, and Cronbach’s α) between
our automatic evaluation algorithms of a task and the human psychologist’s evaluation.
All results are significant (p < 0.01).

r ρ α

A1 with PF = 1 0.73 0.82 0.71

A1 with PF = 0 0.79 0.84 0.87

A1 with PF = 0.5 0.75 0.86 0.85

A2 0.75 0.81 0.86

4 Evaluation and Results

We wanted to make sure our evaluation methods are reliable, in the sense that
they must show a strong correlation with respect to a human psychologist’s
evaluation. To this aim, we asked 37 participants (19 male, 18 female, aged
23–38) to take the three tests (WL, AM, and ROCF) under the supervision
of a human. These tests were evaluated by both a psychologist and by our
algorithms. We obtained 100% accuracy when scoring WL and AM, as these
tests are performed using the robot’s tablet and speech recognition software.
Thus, in the following, we focus on ROCF. We tested algorithm A1 for PF
equal to 0, 0.5 and 1, and algorithm A2. Then, we compared the expert’s scores
to the automatically calculated ones.

Table 1 shows two measures of correlation between our algorithms and the
expert’s evaluation. It is worth noting that A1 with PF equal to 0 and 0.5 show
higher correlation scores when compared to A2.

To further investigate our algorithms for ROCF evaluation we also did regres-
sion analysis using a linear model (see Fig. 4). The slope test for all models
rejected the hypothesis that they have a slope equal to 0 (p < 0.001), again
implying correlation with the human psychologist’s evaluation. Unfortunately,
the slope test also rejects the hypothesis that models of A1 with PF equal to
0, 0.5, and 1 have a slope equal to 1 (p < 0.01). This hypothesis is not rejected
for A2, which possibly indicates that A2 is the best choice as an automatic eval-
uation metric for ROCF straight out-of-the-box. On the other hand, A1 with
PF = 0 and PF = 0.5 have higher correlation scores than A2. This seems to
suggest that these two methods only differ from the expert’s evaluation by a
scale/rotation factor and, if appropriately tweaked as to systematically adjust
their slope, might overperform A2. More data is needed to verify this hypothesis
and use it to improve our method. We intend to do so in future work.



378 S. Sangiovanni et al.

0 5 10 15 20 25 30 35
0

10

20

30

Human Eval (x)

A
1
w
it
h
P
F

=
1
(y
)

0 5 10 15 20 25 30 35
0

10

20

30

Human Eval (x)

A
1
w
it
h
P
F

=
0
(y
)

0 5 10 15 20 25 30 35
0

10

20

30

Human Eval (x)

A
1
w
it
h
P
F

=
0.
5
(y
)

0 5 10 15 20 25 30 35
0

10

20

30

Human Eval (x)

A
2
(y
)

Fig. 4. Linear models of our two algorithms. The equations of the four models (dashed
lines) are: y = 0.33x + 17.05 (A1 with PF = 1, shown in Fig. 4a) with R2 = 0.54,
y = 0.66x− 0.39 (A1 with PF = 0, shown in Fig. 4b) with R2 = 0.62, y = 0.66x+4.84
(A1 with PF = 0.5, shown in Fig. 4c) with R2 = 0.56, y = 0.76x + 2.35 (A2, shown in
Fig. 4d) with R2 = 0.56. For reference, we display a y = x solid line in every plot.

5 Conclusion and Future Work

In this work, we developed and implemented a series of tools that aim to automa-
tize the administration and evaluation of cognitive tests. These tasks are typically
carried out by a human psychologist and a psychologist. However, we demon-
strated that the human operator can be reliably supported by an HRI system
(a Pepper Robot, in our application). Indeed, our results suggest that there is
a strong correlation between our automatic evaluation methods and that of a
human psychologist. In particular, our implementation of algorithms to automat-
ically score the Rey-Osterrieth Complex Figure showed a high correlation with
scores assigned by a psychologist. In future work, we plan to improve these algo-
rithms by collecting more data, which would allow us to fine-tune the automatic
evaluations, and refine the recognition of finer details.
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It is worth noting here that participants in our pilot study are healthy
young adults (aged 23–38). This constitutes a limitation of our work, as
older/cognitively impaired individuals may reproduce highly distorted ROCF
figures that may be harder for our algorithms to correctly evaluate. As previ-
ously noted, another source of image distortion may be due to user-independent
factors such as non-uniform lighting conditions, partially acquired images, mis-
aligned camera, etc. We did not observe such limit conditions here, as a human
operator always made sure the environmental conditions were fit. We plan to
further investigate these possible limitations in future work.

Another objective for future work is to contribute an open dataset for the
evaluation of the ROCF. We believe a standard set of figures captured from
Pepper’s camera would greatly help comparing different algorithms for the eval-
uation of ROCF, and would be beneficial for Social Assistive Sobotics studies
that aim to automatize similar tasks.

These findings may prove useful for further development of similar fully
autonomous agents for the administration of tests, to be employed e.g. in health-
care services and interactive cognitive training. Our tools may also turn useful to
standardize the evaluation of tests, as they are independent of external factors
that may affect a human operator, such as personality and subjective marking
criteria.
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