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Chapter 8
Stability and Release Behavior of Bioactive 
Compounds (with Antioxidant Activity) 
Encapsulated by Pickering Emulsion

Bakht Ramin Shah

8.1  Introduction

Recently, emulsions have attracted tremendous scientific attentions owing to their 
wide range of useful applications in the field of cosmetics, food, pharmaceuticals 
and paint, etc. The word “emulsion” is derived from the Latin word mulgeo, 
mulgere, which means “milk”, as milk is a typical example of emulsion containing 
fat and water, along with other constituents. Emulsions are thermodynamically 
unstable systems comprising of droplets of a liquid dispersed in another immiscible 
or partially miscible liquid (Chen et al. 2011). The phase that is present in the form 
of droplets is known as the dispersed phase, and the phase in which the droplets are 
suspended is called the continuous phase, whereas the boundary between them is 
called the “interface”. During their passage through the emulsions, these interfaces 
emit lights which give cloudy appearances to the emulsions (Loi et  al. 2019). 
Common emulsions formed spontaneously are not stable and tend to destabilization 
because of droplets coalescence. However, the potential applications of emulsions 
are strongly dependent on their stability, which is to maintain their characteristics as 
long as possible. Therefore, in order to stabilize these emulsions, the oil and water 
mixtures require (i) the addition of emulsifiers in the form of amphiphiles which 
adsorb to the bare oil-water interface, thus preventing droplets coalescence, and (ii) 
energy input– through exposure to prolong periods of mechanical agitation, stirring, 
homogenizing or power ultrasound (Kentish et al. 2008). In simple words, it can be 
stated that an emulsion consists of oil, water and stabilizer (amphiphiles). These 
emulsions may be of the oil-in-water (O/W) or water-in-oil (W/O) types depending 
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on whether the oil is dispersed as droplets in water, or vice versa. If a droplet of the 
emulsion is dispersed in pure water it is of O/W type, conversely if a droplet is dis-
persed in pure oil it is regarded as W/O (McClements 2012). Nowadays the most 
commonly known emulsions used as delivery systems are nano, micro or solid par-
ticles stabilized Pickering emulsions. It is important to specify precisely the kind of 
emulsion used in a particular study, because this affects the most appropriate method 
used to synthesize them, the foremost factors affecting their stability (such as pH, 
temperature, presence of salts, etc.) and their physicochemical and functional 
properties.

Before going to detail about Pickering emulsion, it is important to clarify briefly 
the confusion between nano and micro emulsions, which are often, miscomprehend 
due to the prefixes nano and micro relating their droplets size. A nanoemulsion is a 
conventional surfactant stabilized emulsion with very small particles (r < 100 nm) 
(Tadros et al. 2004). Actually, these kinds of emulsions can be fabricated without 
surfactants as stabilizer, but practically they will be highly unstable to droplet 
coalescence and hence surfactants are needed to impart them kinetic stability during 
storage (McClements 2015). On the other hand, microemulsions are conventional 
surfactant stabilized emulsions which may also have very small particles 
(r < 100 nm) but are thermodynamically stable contrary to the nanoemulsions which 
are kinetically stable.

Another important class of emulsions, which are stabilized by solid particles 
instead of surfactants, is called Pickering emulsions and is discussed in the next sec-
tion in detail.

8.2  Pickering Emulsions (PEs)

The phenomenon of PE was first introduced one century ago by Ramsden (Ramsden 
1904) and later by Pickering (Pickering 1907) Substituting solid particles for tradi-
tional surfactants in these emulsions not only make them more stable against coales-
cence but also impart them many useful properties. For example, some food grade 
particles as PE stabilizers have lower toxicity, and thus are safe for usage in vivo. In 
addition, the solid particles confer useful characteristics of enhanced conductivity, 
responsiveness and porosity. The significant stability of PEs against coalescence 
can be contributed to the irreversible adsorption of the solid particles onto the inter-
faces of the dispersed and continuous phases (Low et al. 2017).

The high resistance against coalescence and Oswald ripening makes it possible 
to preserve the droplets under high concentration of dispersed phase and even they 
are allowed to dry and re-disperse (Akartuna et al. 2008; Frelichowska et al. 2009). 
Furthermore, they also have shown enhanced stability against the influence of envi-
ronmental factors such as pH, temperature, oil composition, ionic strengths and so 
forth (Shah et al. 2016a). In short, these promising properties make PEs as useful 
candidates in various disciplines especially in food and nutrition, pharmaceutics and 
cosmetics where the use of toxic surfactants are undesirable. Therefore, in recent 
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years scientific community has been paid tremendous attention in the development 
of cost effective, facile and novel PEs. A simple sketch of the particles stabilized 
O/W Pickering emulsion has been given in Fig. 8.1.

A wide range of materials has been employed as particulate emulsifier for the 
fabrication of the PEs including organic particles (e.g. polymer latex and polymer 
micelle) and inorganic particles (such as silica, hydroxides, and clay particles). To 
be adsorbed at the interfaces, the particles used should be partially wetted by both 
the oil and water phases. Depending on the degree of relative wettability of the par-
ticles, the emulsions can be classified as either O/W or W/O. The relative wettability 
of the liquid phases for the solid particles is determined by the three-phase contact 
angle θ and should be greater than 0° and less than 180°. If the contact angle mea-
sured through the aqueous phase is greater than 90°, then the solid particles are rela-
tively more wetted by the oil phase, and in such situations, W/O emulsions are 
generally formed. When the contact angle θ is less than 90°, the particles are pref-
erentially wetted by the aqueous phase and in such situations, O/W emulsions are 
formed. In case of θ = 90°, both liquid phases equally wet the particles equally, and 
in such situations, there is no preferred emulsion O/W or W/O (Fig. 8.2).

Generally, the contact angle is measured through sessile drop method. Briefly, 
the particles with a specified volume fraction (φp) are dispersed in water and are 
spin-coated onto glass cover slips. The samples are then air-dried overnight before 
use. Both advancing and receding contact angle measurements are made, and the 
average used is regarded as the equilibrium contact angle (French et al. 2015).

Fig. 8.1 Schematic diagram of the formation of an O/W Pickering
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8.3  Different Types of Particles Used as Stabilizers/
Emulsifiers for PEs

As stated earlier, PEs are the emulsions that are stabilized by solid particles instead 
of surfactants. These particles are partly wetted by both the phases of PEs i.e. oil and 
water. Available literature shows that so far various types of particles have been used 
as emulsifiers to kinetically stabilize the PEs. The particles could be either from 
inorganic or organic sources and have been discussed below in details.

8.3.1  Inorganic Particles

Inorganic particles such as silica particles have been used extensively as Pickering 
emulsifiers due to their simple preparation and modification (Jiang et  al. 2020). 
Besides, these particles are of interest as they are commercially available with desir-
able characteristics such as varying well-defined sizes, surface areas as well as 
hydrophobicity. Although, these particles were first used as model emulsifiers in the 
preparation of non-food grade emulsions (Gautier et al. 2007; Horozov and Binks 
2006), later on some studies, they were used as food grade emulsifiers as well (Pichot 
et al. 2010; Skelhon et al. 2012). Both United States Food and Drug Administration 
(FDA) and the European Food Safety Authority (EFSA) have approved silica and 
other insoluble forms of silicates as safe food additives (up to 1500 mg SiO2 per day) 
(EFSA. 2009; FDA. 1979). However, their inorganic and synthetic origin still left a 

Fig. 8.2 Emulsion types based on wetting conditions of the particles described in terms of contact 
angle θ between the phases
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huge gap for critics on their suitability for food applications. This provided a turning 
point to the scientific community for paying substantial attention towards biocom-
patible and biodegradable organic nutrient-based particles as particulate emulsifiers 
for stabilizing PEs.

8.3.2  Protein-Based Particles

Various protein-based particles have been successfully applied as emulsifiers for the 
preparation of O/W PEs (McClements 2004). This includes both plant proteins such 
as zein or soy protein and animal proteins such as whey protein. Zein is a major food 
grade protein found in corn and is capable of self-assembling to form nano or micro 
particles. Zein is insoluble in water but soluble in aqueous alcoholic solutions. 
Consequently, it was supposed that zein-based colloidal particles hold great poten-
tial as stabilizers for PEs without surface modification (de Folter et  al. 2012). 
Unfortunately, PEs stabilized solely by zein were unstable and separation was 
observed only after 3 days of storage. The reason was attributed to the overly hydro-
phobic nature of the particles obtained through antisolvent approach that facilitated 
the formation of agglomerates at the aqueous medium. This behavior hinders the 
particles to be adsorbed at oil droplet surface. Favorably, the problem was solved by 
combing zein with other hydrophobic compounds such as sodium stearate, chitosan, 
sodium caseinates (NaCas) etc. that impart significant stability to the synthesized 
PEs (Gao et al. 2014), (Feng and Lee 2016; Wang et al. 2016). Similarly, PEs stabi-
lized by soy protein for instance soy protein isolate (SPI) or its principal component 
glycinin (Liu and Tang 2016; Luo et al. 2013) and whey protein isolate (WPI) based 
PEs have been reported previously (Wu et al. 2015) .

8.3.3  Lipid-Based Particles

In fact, biomaterials with lower environmental influence are considered better can-
didates in the synthesis of stable PEs. In this context, lipid nanoparticles (NPs) have 
found a privileged place in the field. Different lipid-based particles have been 
reported to be efficient PEs stabilizers (Pawlik et al. 2016). The lipid or lipophilic 
molecules that used for the formation of particulate emulsifiers generally have one 
or several polar groups (e.g, phytosterols, flavonoids, glyceryl stearyl citrate, or 
lactylate). The particles from these molecules in aqueous media can be synthesized 
by mechanical treatments in same way as emulsification process and sometimes 
may require high temperatures in the case of lipids with high melting points (Gupta 
and Rousseau 2012).

Lipid based particles were found to stabilize the emulsions of either type i.e., 
W/O or O/W. For example, fat crystals stabilized W/O PEs like edible spreads were 
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prepared by various research groups (Dickinson 2012; Rousseau 2013). Most 
recently W/O as well as O/W PEs as a delivery systems stabilized by solid lipid NPs 
were reported (Dieng et al. 2019; Pawlik et al. 2016).

8.3.4  Carbohydrate-Based Particles

Modified starch-based particles comprise a large group of food grade emulsifiers for 
PEs. Particular attention has been given to these materials owing to their striking 
advantages of being natural ingredient, ample in nature, renewable, biocompatible, 
biodegradable, sustainable and comparatively cheaper (Dufresne 2014). In order to 
use them for stabilizing oil-water interfaces, it is necessary to modify them chemi-
cally because starches are originally highly hydrophilic. The chemical modification 
is aimed to create hydrophobicity in these starches and is mostly achieved by partial 
hydrophobization with octenyl succinic anhydride (OSA) (Miao et  al. 2014; 
Timgren et al. 2013). Consequently, the wetting properties and affinity of the parti-
cles for both phases are improved. Most commonly used carbohydrates-based par-
ticles include chitin, cocoa powder and cocoa fibers, cellulose and chitin nanocrystals, 
chitosan and so forth. Among them, in recent years chitosan (CS) has attracted 
much attention due to its wide range of useful applications in many fields such as 
biomedical, pharmaceuticals, metal chelation, food additives, and other industrial 
applications (Guibal et al. 2001; Kumar et al. 2004; Rabea et al. 2003).

CS is a renewable linear cationic polysaccharide composed of randomly distrib-
uted β-(1–4)-linked D-glucosamine and N-acetyl-D- glucosamine units (Fig. 8.3a), 
produced by the deacetylation of chitin. The degree of deacetylation (DD) and 
molecular weight of CS are the two main characteristics which have a significant 
impact on its physical and chemical characteristics such as emulsification capacity, 
aggregation activity, rheological and solution properties (Bodnar et  al. 2005). 
Furthermore, CS has been known as a pH responsive polymer and its amine groups 
are protonated and positively charged at low pH, giving CS a water-soluble cationic 
polyelectrolyte character. On contrary, CS amines are deprotonated at high pH and 
it loses its charge thereby making it insoluble in aqueous medium. Considering this 
information, a number of attempts were made to synthesize pH tunable CS-NPs as 
stabilizers for PEs (Asfour et al. 2017; Liu et al. 2012; Wang and Heuzey 2016). In 
this regard, another important approach for the synthesis of CS-NPs is ionic gela-
tion that involves the ionic interaction between the positively charged primary 
amino groups of CS and negatively charged groups of poly anions (Konecsni et al. 
2012). As an example, using ionic gelation, tripolyphosphate (TPP) crosslinked 
CS-NPs were synthesized. These NPs were then used as stabilizers for PEs, the 
preparation of which was optimized first by preparing the PEs at fixed concentration 
(5 wt%) of medium chain triglyceride (MCT) and subsequently by increasing MCT 
content to 10, 20, 30 and 50 wt%. As a result, PEs prepared with CS:TPP ratio of 
5:5 (w/w) and 50 wt% MCT showed best qualities in term of stability against the 
tested parameters such as storage time, salts, pH, etc. (Shah et al. 2016a).
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8.4  Factors Influencing Formation and Stability of Pickering 
Emulsions

In a broader way, emulsion stability denotes the capability of an emulsion to retain 
its characteristics unchanged over a period of time and against different influencing 
factors, such as pH, ionic strength, temperature, oil-water ratios, nature of biopoly-
mers and medium, presence of other agents (e.g. surfactants) in the system and 
charge of biopolymers, etc. Stability of an emulsion is prerequisite for its applica-
tions in different industries. Therefore, numerous experimental studies have been 
conducted on evaluating the stability of PEs to understand the possible physical 

Fig. 8.3 Chemical structures of (a) Chitosan, (b) Resveratrol, (c) Curcumin in Keto form, (d) 
β-carotene, (e) α-tocopherol, (f) Tannic acid, (g) Quercetin, (h) vitamina D2 and (i) vitamin D3
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mechanisms that prevent droplet coalescence (Frith et al. 2008). This implies that 
controlling and modification of these procedures will help in enhancing stability 
and hence significant usage of the PEs. There are various underlying mechanisms 
corresponding to the destabilization of PEs, which may be influenced by the above- 
mentioned factors. These mechanisms are as follow:

Gravitational Separation The first common and visually observable mechanism 
is gravitation separation (GS) of the emulsion into upper cream layer and lower 
serum layer. The separation occurs because of the difference in density of the con-
tinuous and dispersed phases and is explained by Stokes law as below (Eq. 8.1) (Pal 
2019):
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where v is the GS rate (m/s); g is the gravitational acceleration (m/s2); r is the drop-
let radius (m); ρ1 and ρ2 are the densities of the dispersed and continuous phases (kg/
m3), respectively and η1 is the continuous phase viscosity (kg/m·s).

From the Stokes equation, certain important presumptions can be withdrawn as 
follow; (i) depending on the density differences, emulsion droplets will either sedi-
ment or cream and (ii) GS rate is directly proportional to the droplet size but 
inversely proportional to the viscosity of the continuous phase. This means that GS 
can be slowed down by reducing the droplet size and/or increasing the viscosity of 
the continuous phase and can be used as a strategy to delay creaming.

Flocculation: is the process of flocs formation that happens due to the aggrega-
tion of two or more emulsion droplets, though the droplets maintain their individual 
identity. It can occur if the attractive forces between dispersed phase droplets over-
come the repulsive forces. The droplets stay in close proximity to each other but 
they do not reach close enough to flocculate by merging into each other. The phe-
nomenon can be explained by Van der Waals interactions/forces, which are always 
attractive in these dispersions and needs to be counterbalanced by either electro-
static or steric repulsions. The electrostatic interactions can be greatly influenced by 
the solvent conditions, particularly ionic strength and pH (Mcclements 2007).

Coarsening or Ostwald ripening: is defined as the growth of larger droplets at 
the expense of smaller ones, either due to the diffusion of disperse phase molecules 
through the continuous phase or because the solubility of the material within a 
spherical droplet in the surrounding continuous phase increases as the radius of the 
droplet decreases. Simply stated, Ostwald ripening is the process of disappearance 
of small particles or droplets by dissolution and deposition on the larger particles or 
droplets (Bommana et al. 2019).

Corresponding to the preceding statements, a research group attempted to evalu-
ate the effect of pH, NaCl and oil contents on the PE gels stabilized by wheat protein 
NPs. In their study, 70% oil content, pH 5.5 and 6.0 in the absence of NaCl were the 
favorable conditions to obtain a stable PE (Zhu et al. 2018). In another study, it was 
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found that PEs stabilized by TPP cross linked CS-NPs showed enhanced stability to 
all the tested parameters including storage time, oil-water ratio, pH and salts (Shah 
et al. 2016a). Similarly, particle concentration also plays an important role in emul-
sion stability by preventing Ostwald ripening. One research group defined a mini-
mum particle concentration required to prevent Ostwald ripening, if water-soluble 
substances are partially in the oil phase. In this study, toluene-in-water emulsions 
formed at very low concentrations of silanised fumed silica NPs. It was observed 
that droplets size increased and flocculated together even after gentle rotation of the 
emulsions. However, increasing the particle concentration to 1 wt%, significantly 
reduced the rate of droplets coarsening and prevented droplets flocculation. These 
findings suggested the possible approach for controlling the stability of emulsions 
formulated with polar, slightly hydrophilic oils at low silica particle concentrations 
(Juárez and Whitby 2012). Another research group demonstrated similar correlation 
by describing the influence of particle concentration on the average drop diameter 
in the emulsion. The particles used in this study were based on partially hydropho-
bic silica at primary diameter and concentration of 25 nm and 0.7 wt%, respectively. 
In order to evaluate the effect of particle concentration, all emulsions were prepared 
by homogenization of the water and oil phases (at an oil volume fraction of 0.33) 
together for 3 min. The results showed that with increasing particle concentration, 
emulsion droplet size decreased until a minimum size (≈ 5–20 μm) is reached as the 
extent of coalescence during drop formation is reduced (Binks and Whitby 2004).

8.5  PEs as Delivery Systems for Bioactive Compounds 
with Antioxidant Properties

Antioxidants also called free-radical scavengers (FRS) are substances/compounds that can 
prevent or slow down oxidation. Oxidation is a chemical process damaging the cells caused 
by free radicals, unstable molecules that the body produces as a reaction to environmental 
and other pressures (Lobo et al. 2010).

There are two types of antioxidants i.e. endogenous antioxidants that are pro-
duced by the body and exogenous ones, which come from outside the body. In 
exogenous, particular attention is being paid to natural antioxidants including poly-
phenols, carotenoids, glucosinolates and different kinds of vitamins such as vitamin 
E, C, etc.

It is a well-known fact that antioxidants can aid in preventing life threatening 
pathologies including heart disease, liver disease and some cancers (such as oral, 
oesophageal, stomach and bowel cancers). Many people have common practice of 
taking antioxidants in the form of supplements as a defense against these diseases. 
However, antioxidants available in the form of commercial food additives are pre-
pared synthetically and may contain high contents of preservatives. Several reports 
claim that synthetic antioxidants, such as butylated hydroxyanisole (BHA), butyl-
ated hydroxytoluene (BHT), and tertiary butyl hydroquinone (TBHQ), can produce 
toxins or act as carcinogens resulting in the development and progression of cancer 
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(Nieva˗Echevarría et al. 2015). At this point, it is inevitable to discover and rely on 
vital natural antioxidant sources as an alternative for the synthetic ones to ensure 
better health. Food is the source of essential nutrients for growth and maintenance; 
however, other phytochemicals promote health by combating the aging process and 
preventing disease. Consequently, this provoked the attention of scientific commu-
nity, food manufacturers, cultivators, and consumers towards the antioxidant con-
stituents from plant materials and their magnificent roles in maintaining human 
health. Nevertheless, most of these materials based on dietary sources or other phy-
tochemicals have problem concerning their bioavailability implying that they may 
not be adequately absorbed to stimulate any biological effects (Aqil et al. 2013). 
This low absorption could most probably because of their hydrophobic nature and 
therefore, an utmost need was left to develop effective strategies to encapsulate and 
deliver them to enhance their stability, solubility and bioactivity.

In this regard, biocompatible, biodegradable and food grade materials-based 
emulsion technology (e.g. PEs) to encapsulate, protect, and release these com-
pounds provided a well-suited platform to accomplish the task. Some examples of 
the natural lipophilic compounds, which have been known for their potential anti-
oxidants activities encapsulated in PEs, are discussed in the following subsections.

8.5.1  Resveratrol

Resveratrol is a naturally occurring polyphenolic compound (trans-3,5,4′-
trihydroxystilbene) (Fig.  8.3b) with efficient antioxidant, cardioprotective, anti- 
inflammatory and anticancer potentials. It is mainly found in red grapes, red wine, 
white wine, peanuts, blueberries and pistachios.

According to some reports, comparatively peanuts have more resveratrol contents 
than red grapes which could maybe due to more water contents in red grapes than 
peanuts (Burns et al. 2002; Sanders et al. 2000). It is believed that low solubility of 
resveratrol in water (<0.05 mg/mL), caused by its chemical structure affects its absorp-
tion in aqueous medium. Moreover, several other problems hindering its biological 
activities are its photosensitive nature, short biological half-life, and rapid metabolism 
and elimination. To overcome these issues, numerous resveratrol nano-formulations 
have been synthesized and evaluated, including liposomes, solid lipid NPs, polymeric 
NPs and cyclodextrins which have been studied in great detail (Summerlin et  al. 
2015). However, PEs based formulations to encapsulate and deliver resveratrol dem-
onstrated better outcome among them as hallmarked by several studies.

Similarly, the same research group formulated quinoa starch particles stabilized 
PEs with a mixture of miglyol and orange oil (in ratio 1:9) as dispersed phase. In 
comparison to the surfactant (Tween 20) stabilized O/W emulsions, the Pickering 
emulsions showed higher stability against creaming phenomena and superior encap-
sulation efficiency (up to 98%), although both types of emulsions had similar drop-
let sizes. Their formulated system confirmed to be an appropriate resveratrol carrier 
system for further use in functional food formulations (Matos et al. 2018).
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8.5.2  β-Carotene

The term carotenoids is collectively applied to a class of natural coloring agents 
generally found in fruits and vegetables, and have been used in various food, cos-
metic, and pharmaceutical products so far. Besides their role as colorants, carot-
enoids are also well-appreciated for their health benefits as pro-vitamin A, as well 
as antioxidants to prevent many chronic diseases, such as cancer, cardiovascular 
disease, macular degeneration (Rodriguez-Amaya 2015).

Among different carotenoids, β-carotene (Fig. 8.3d) has attracted special atten-
tion, due to its abundance and potential bioactive nature. However, the applicability 
of naturally occurring β-carotene is detained by its highly hydrophobic characteris-
tics as consequence of its unsaturated structure, which makes it insoluble in water 
and liable to degradation. Furthermore, β-carotene commonly participates in mak-
ing protein complexes, which hinder its adsorption by human body, thereby signifi-
cantly lowering its bioavailability. The discussion implies that incorporation of 
β-carotene into food systems is no doubt challenging but a mandatory job 
(Rodriguez-Amaya 2015). Therefore, intensive research work has thus been per-
formed in recent years to incorporate β-carotene into functional foods by encapsu-
lating it in PEs in particular, to fulfil its health potentials. In this context, two kinds 
of PEs stabilized by different concentrations of either whey protein isolate (WPI) or 
sodium caseinate (NaCas) (0.1 to 2.0 wt%) in 30 wt% sucrose aqueous solution 
were synthesized with the aim of seeing their comparative protective effects on 
β-carotene. The outcome of the study showed that the system formulated with 
0.8  wt% concentrations of protein had high β-carotene stability. Nevertheless, 
NaCas provided a better barrier than WPI, probably due to the different amino acid 
composition and interface structure which significantly reduced β-carotene degra-
dation rate (Cornacchia and Roos 2011). In line with this study, other researchers 
synthesized O/W PEs based on pea protein isolate (PPI) at pH 3.0 to be used as a 
delivery system for β-carotene. The required emulsions were produced by microflu-
idization at a specified protein concentration of 6.0% (w/v) and varying oil fractions 
(ϕ) between 0.2–0.6. The same procedure was used to prepare β-carotene-loaded 
PPI emulsions, but the oil phase used here contained β-carotene (30 wt%) which 
was directly mixed with preheated (~ 45  °C) soy oil to a final concentration of 
0.2 wt%. The results demonstrated that increasing ϕ favored the gel-like network 
strengthening of these emulsions. Most importantly, by conducting the in vitro sim-
ulated digestion analysis, it was found that the release of β-carotene during the 
intestinal digestion of these emulsions was controllable by changing ϕ. The gel-like 
emulsion at higher oil fractions (ϕ = 0.6) showed much lower release of β-carotene, 
but higher stability towards degradation during the digestion, than that at ϕ = 0.3. 
The authors concluded that the reported formulation could be an important tool for 
the design of novel delivery systems for lipophilic bioactive components in general 
and for the development of plant protein-based formulations in particular (Shao and 
Tang 2016).
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The same research group in another study prepared an O/W emulsion stabilized 
by soy glycinin particles as a delivery system for β-carotene. They evaluated the 
release behavior of β-carotene under simulated intestinal conditions. Their findings 
suggested that β-carotene in the PE was released at a much lower rate than that in a 
conventional emulsion, and β-carotene was rather stable during the digestion pro-
cess (Liu and Tang 2016). Most recently, β-carotene was encapsulated in wheat 
gluten nanoparticles (WGNP) or wheat gluten nanoparticle-xanthan gum 
(WGNP-XG) complexes. Comparing the two formulations, it was found that the 
WGNP-XG emulsions had larger initial mean particle diameters (23.9 μm) than the 
WGNP ones (9.4 μm), but they were still stable against aggregation in wide range 
of pH values (4–8) and ionic strengths (0–1000 mM NaCl). Furthermore, these PEs 
demonstrated enhanced protection of the encapsulated β-carotene from chemical 
degradation during storage, with around 94.3% and 70.1% of the carotenoids being 
retained after one-month storage at 25 and 37 °C, respectively. Conducting the in 
 vitro digestion experiment, it was found that that β-carotene had a higher bio- 
accessibility in the WGNP-XG emulsions than in the WGNP ones (Fu et al. 2019).

8.5.3  Curcumin

Curcumin, is a natural and typical flavonoid compound extracted from turmeric 
Curcuma longa, predominantly exists in keto-enol form (1,7-bis(4-hydroxy- 3-
methoxyphenyl)1,6-heptadiene-3,5-dione) (Fig. 8.3c).

Curcumin is widely used as a spice and food coloring agent in different cuisines 
and food products as well as in traditional medicine for many centuries in countries 
such as India and China. Over the past decades, numerous research studies have 
signified the importance of curcumin as antioxidant, anti-inflammatory, antiar-
thritic, anti-amyloid, hepatoprotective, thrombo-suppressive, anti-HIV, antimicro-
bial and antitumor agent (Patra and Sleem 2013).

Although the exact mechanism(s) through which curcumin performs these activ-
ities is still unknown, the antioxidant ability of this yellow pigment appears to be an 
indispensable constituent underlying its pleiotropic biological activities. In fact, 
curcumin has been reported to hinder lipid peroxidation and to efficiently scavenge 
superoxide anion and hydroxyl radicals (Ruby et al. 1995). Besides its inherent abil-
ity to attenuate the reactivity of oxygen free radical species, curcumin has been 
shown in vivo to enhance the activities of detoxifying enzymes such as glutathione- 
S- transferase (Piper et  al. 1998). Furthermore, curcumin has established potent 
inducing effect on heme oxygenase-1 (HO-1), which is one of the genes encoding 
for proteins having antioxidant characteristics. This pathway supported the enhanced 
heme oxygenase activity to be an important pillar in curcumin-mediated cytoprotec-
tion against oxidative stress (Motterlini et al. 2000).

However, the clinical advancement of curcumin is hindered by its low water 
solubility (i.e. 0.0004  mg  mL−1 at pH  7.3) and degradation under physiological 
conditions. To improve its solubility and hence bioavailability, encapsulation and 
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delivery approaches based on nanotechnology have been remained the fundamental 
interest of scientific community from time to time. A wide range of particles have 
been used for encapsulation of curcumin including liposome, silk fibroin and chito-
san, chitosan, β-cyclodextrin inclusion complex, PLGA NPs, nanospheres, phos-
pholipids, cyclodextrin, silica particles and polymeric NPs, etc. (Patra and Sleem 
2013; Zhao et al. 2012). Among different formulations, PEs have been shown to 
efficiently fulfill the duties of encapsulation and delivery. A research group evalu-
ated stability and release behavior of curcumin encapsulated in silica NPs stabilized 
PEs during storage and simulated gastric and intestinal digestion. Stability and 
release kinetics of curcumin were characterized describing encapsulated curcumin 
with stability approximately 100 fold higher than the stability of curcumin sus-
pended in distilled water. Furthermore, the steady release profile confirmed sus-
tained release of over 80% of the encapsulated curcumin in 36 h. During simulated 
gastric digestion model experiment (2 h), above 80% of the encapsulated curcumin 
was retained. In addition, incubation in simulated intestinal environment resulted in 
destabilization of the emulsion and approximately 60% of the encapsulated cur-
cumin was released within 2 h of incubation. Overall, these results demonstrated 
that PEs has a potential for effective delivery of bioactive compounds (Tikekar et al. 
2013). In another report, preparation of TPP crosslinked CS-NPs stabilized PEs for 
the encapsulation and delivery of curcumin was reported. The preparation of the 
PEs was optimized, and the emulsions showed enhanced stability during storage 
and against different pH ranges and salts concentration. The in  vitro release profile 
of the encapsulated curcumin form the PEs confirmed its sustained release over 
extended period, thereby supporting these PEs as efficient delivery vehicles for 
curcumin and other bioactive compounds (Shah et al. 2016a). Similarly, in another 
study, curcumin encapsulated PEs or nanoemulsions were prepared by dissolving 
curcumin at a concentration of 0.1 wt% either in MCT or LCT (long chain triglyc-
eride) such as corn oil. PE was prepared by homogenizing the aqueous phase con-
taining TPP crosslinked CS-NPs and the oil phase at a speed of 10,000  rpm for 
3 min. On the other hand, curcumin encapsulated nanoemulsions were prepared 
using nonionic surfactants (Span80 and Tween80 at ratio of 1.5:8.5) and the oil 
phase (5 wt% MCT or LCT) at surfactant to oil ratio (SOR) of 2:1. Results demon-
strated slower rate of digestion and consequently lower bioaccessibility values of 
curcumin in PEs than for nanoemulsions. The authors also indicated that in 
 comparison to the free curcumin, curcumin encapsulated in PEs had higher radical 
scavenging potentials, which acknowledged the protective effect of the emulsion 
systems on antioxidant activity of curcumin (Shah et al. 2016b). Another research 
group synthesized gel-like PE (50%, v/v, oil) stabilized by zein/Tannic acid (TA) 
complex colloidal particles as a new encapsulation system for lipophilic ingredients 
such as curcumin. Compared with NaCas-stabilized emulsions and bulk oil, the 
emulsions stabilized by zein/TA exhibited enhanced shielding effects on the chemi-
cal stability of the encapsulated curcumin after exposure to UV light, where the 
lipid oxidation rate also decreased significantly in these emulsions. It was postu-
lated that the zein particle layers loaded with TA around the oil droplets could 
protect them versus severe gastric environment, decelerating the release of free 
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fatty acids (FFA) and curcumin at the time of in vitro simulated digestion. The 
authors concluded that zein/TA stabilized PEs are promising encapsulating agent to 
protect bioactive compounds from degradation and control their release during 
digestion, which can further enhance the bioavailability of these ingredients (Zou 
et al. 2017). Most recently, PEs stabilized by milled starch particles were fabricated 
to enhance the bioaccessibility of curcumin via controlling the digestion of lipids in 
the human gastrointestinal (GI) tract. Through obtaining data from two different 
evaluating techniques, it was found that the bioaccessibility of encapsulated cur-
cumin in PEs was 27.6% and 50.7%, respectively, in comparison to free curcumin 
suspended in bulk oil phase, which was 22.1% and 7.8%, respectively. Based on 
this huge difference in bioaccessibilities of encapsulated and free curcumin, the 
synthesized PEs were regarded as potential delivery systems for lipophilic bioac-
tive compounds such as curcumin (Lu et al. 2019).

8.5.4  α-Tocopherol

Vitamin E is a collective name used for a group of fat-soluble vitamins that have 
been known for their distinctive antioxidant activities. Various sources of vitamin E 
include dietary sources (nuts, such as almonds, peanuts and hazelnuts and vegetable 
oils such as sunflower, wheat germ, safflower, corn and soybean oils). Some leafy 
vegetables such as spinach and broccoli also contain vitamin E. Naturally vitamin E 
occurs in 8 different forms, with 4 tocopherols (alpha, beta, gamma and delta) and 
4 tocotrienols. Among these, alpha- (or α-) tocopherol (Fig. 8.3e) is the most com-
mon and most potent form that is recognized to meet human requirements (Alqahtani 
et al. 2015). Substantial evidences acknowledge that daily intake of α-tocopherol 
may benefit human health due to its antioxidant potency and ability to inhibit vari-
ous diseases. However, being a strongly hydrophobic molecule, making it difficult 
to disperse directly into foods and beverages that have an aqueous continuous phase. 
Additionally, exposure to light, heat, and oxygen promotes the chemical degrada-
tion of α-tocopherol during storage, leading to a reduction in its biological activity 
and nutritional benefits. To overcome these challenges, α-tocopherol can be encap-
sulated and protected using colloidal delivery systems such as PEs. A research 
group fabricated WPI stabilized O/W emulsion for the encapsulation and delivery 
of both α-tocopherol and β-carotene. Summarizing their results, they concluded that 
highly concentrated O/W emulsions were synthesized with oil fractions of up to 
60%. Encapsulation of α-tocopherol and β-carotene did not affect stability of the 
emulsions rather interestingly confirmed enhanced protection of the encapsulants 
i.e. α-tocopherol and β-carotene against degradation most likely by the protein layer 
surrounding the oil droplets (Gaspar et al. 2017).
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8.5.5  Vitamin D

Vitamin D is a lipophilic compound, which not only contributes in maintaining 
normal calcium metabolism, but also plays a vital role in a wide range of non- 
classic actions. Previous studies have shown that vitamin D has both anti- 
inflammatory and antiperoxidative activity (Ke et al. 2016). Normally, vitamin D 
accumulates in adipose tissues and it is believed that a typical adult adipose contain 
sufficient amounts equivalent to its several months of daily reference intake (DRI) 
(Hengist et al. 2019). There are two main forms of this vitamin, namely vitamin D2 
(ergocalciferol) (Fig. 8.3h) and vitamin D3 (cholecalciferol) (Fig. 8.3i). Although 
foods such as beef liver, dairy products, egg yolk and fish contain small amounts of 
vitamin D, the main source is sunlight which is needed to modify its precursor 
7-dehydrocholesterol into a bio-functional form known as vitamin D3 (Borel et al. 
2015). This implies that people who have little exposure to sunlight or have underly-
ing pathological conditions such as obesity, hyperparathyroidism or gastrointestinal 
diseases are at high risk of vitamin D3 deficiency (Cashman 2019). Therefore, there 
is an intense need to formulate vitamin D3 enriched functional foods with particular 
focus on emulsions based encapsulated systems to overcome its oxidative instability 
as well as to enhance its bioavailability in aqueous environments (Winuprasith et al. 
2018). In this regard, in a study O/W PE stabilized by nanofibrillated cellulose 
(NFC) extracted from mangosteen was developed to encapsulate vitamin D3. The 
formulated emulsions contained 10 wt% oil (0.01 wt% vitamin D3 and 9.99 wt% 
soybean oil) and 1 wt% NFC as emulsifier. In order to evaluate the impact of NFC 
on lipid digestion and vitamin bioaccessibility, the in vitro gastrointestinal (GIT) 
environment consisted of all the three phases i.e. mouth, stomach and small intes-
tine was simulated. The authors observed that an increase in NFC concentration led 
to a decrease in lipid digestion and vitamin bioaccessiblity. In addition, the results 
indicated that mangosteen fiber can be used as potential stabilizer for an O/W PE, 
that exhibited minor effect on lipid digestion and encapsulated vitamin D3 bioacces-
sibility when used at relatively low levels (Winuprasith et al. 2018). One year later, 
a similar study was conducted by the same authors, in which vitamin D3 was encap-
sulated in 10% wt soybean O/W PEs stabilized by either NFC or WPI at 0.3 wt%, 
0.5 wt% and 0.7 wt%. Stability of the prepared vitamin D3-loaded emulsions were 
tested against temperature (30 °C to 90 °C), pH (2 to 8), and ionic strength (0 to 
500 mM NaCl). Based on the obtained results, it was concluded that NFC can be 
used as an efficient emulsifier for producing vitamin enriched emulsions with good 
long-term stability (Mitbumrung et  al. 2019). In a very recent study, vitamin D3 
fortified PEs stabilized by nanochitin (NCh) were prepared. The authors evaluated 
the effect of emulsifier format (molecular vs particles) on the GIT fate of the emul-
sions by examining their physicochemical properties, microstructure, digestibility, 
and bioaccessibility using an in vitro human GIT model. PEs were prepared by 
homogenization of a 90 wt% aqueous NCh (0.11 wt%) suspension with a 10 wt% 
oil phase (2 wt% vitamin D3 in corn oil). The final stock PE contained 0.1 wt% NCh 
and 10.0 wt% oil. The behavior of these emulsions was compared to those of a 
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Tween 80-stabilized emulsion, as well as to emulsions containing a combination of 
nanochitin and Tween 80. After analyzing the results, it was found that the NCh- 
emulsions experienced much more droplet aggregation within the simulated GIT as 
compared to the Tween 80-stabilized ones. Vitamin D3 bioaccessibility was 45% 
less and lipid digestion was 30% less and for the NCh-emulsions than for the Tween 
80-stabilized ones. In conclusion, their findings proposed that NCh decelerate lipid 
digestion, which may be useful for developing high-satiety foods, however, on the 
other hand as it also decrease vitamin D3 bioaccessibility, it could be a bottleneck of 
the current system from nutritional point of view (Zhou et al. 2020).

8.5.6  Tannic Acid

Tannic acid (TA), is a specific form of tannin and is a naturally occurring plant poly-
phenol, composed of a central glucose molecule derivatized at its hydroxyl groups 
with one or more galloyl residues (Gülçin et al. 2010) (Fig. 8.3f). It can be found in 
practically all aerial plant tissues but mostly in tea, nettle, wood, berries, Chinese 
galls and oak is believed to be its richest source (Robles 2014). Early studies have 
shown that TA inhibited skin, lung and forestomach tumors induced by polycyclic 
aromatic hydrocarbon carcinogens and N-methyl-N-nitrosourea in experimental 
mice models (Bance and Teel 1989). Furthermore, a line of reports have described 
that TA has antimutagenic and anticarcinogenic, antihypertensive activities which 
could be related in part to its antioxidant potential, being a polyphenol (Andrade Jr. 
et al. 2005). To confirm this claim, the antioxidant and radical scavenging properties 
of TA with different analytical methodology such as DPPH (2,2-diphenyl-1-picryl-
hydrazyl- hydrate) and ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic 
acid)) assays were studied. It was concluded that TA has significant antioxidant 
potential compared with standard antioxidant compounds e.g. BHA, BHT, tocoph-
erol and trolox (Gülçin et al. 2010). The addition of TA to conventional emulsions 
can also improve the chemical stability of lipophilic bioactives, which was again 
attributed to the antioxidant properties of TA (Li et al. 2019; Liu et al. 2020). In this 
context, some researchers incorporated TA in the formulation of PEs, for example 
in one of pioneering studies, zein/TA colloidal particles were synthesized based on 
the hydrogen-bonding interaction between zein and TA in aqueous ethanol solution. 
Then using these particles at different concentrations (0.25–1.5 wt %), stable PE 
gels with high corn oil volume fraction (> 50%) were prepared (Zou et al. 2015). 
Rheological behavior of these PE gels, formulated over a wide range of zein/TA 
particle concentration (1–5%, w/v) and oil fractions (5–60%, v/v), was investigated 
as well. Based on the obtained results, it was concluded that the microstructure and 
rheological properties of the synthesized PE can be switched by altering both the 
particle concentration as well as the oil content (Zou et al. 2018). In another study, 
PEs stabilized by zein/TA NPs with weight ratios of zein to TA of 4:1, 2:1 and 1:1 
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with varying zein concentrations (0.1%, 0.2% or 0.3%, w/v) were prepared. Where 
the optimum ratio was found to be 0.3% concentration of zein and zein to TA of 1:1. 
And the emulsion formed at this ratio showed dramatically improved the oxidative 
stability as compared to others (Zhou et al. 2019).

8.5.7  Quercetin

Quercetin, is an another important representative of polyphenols (Fig. 8.3g), which 
is mainly found in a variety of human foods including red onions, grapes, apples, 
berries, cherries, broccoli, citrus fruits, tea (Camellia sinensis) and at considerable 
high concentrations (180 mg per 100 g) in capers and lovage. Quercetin has shown 
a wide range of biological benefits such as antioxidant activity in radical scaveng-
ing, lowering of blood pressure and ameliorating hyperglycemia-related diseases 
(Bischoff 2008). In aim to enhance the efficacy of the quercetin by enhancing its 
stability and accessibility, quercetin was encapsulated in W/O PEs stabilized by an 
interfacial complex of water-insoluble polyphenol crystals and protein. The out-
comes found that polyphenol crystals of either curcumin or quercetin absorb at the 
interface and stabilized water droplets for several days when used alone; however, 
when WPI was added to the polyphenols, the water-oil interface exhibited a signifi-
cant improvement in the stabilization of the system (Zembyla et al. 2019). Quercetin 
was also encapsulated in olive oil in SPI/Pectin-stabilized O/W emulsion. To fabri-
cate the desired emulsions, first SPI/pectin complex particle dispersions were pre-
pared by blending SPI aqueous dispersions (5.0% protein w/w) with specified 
concentrations of pectin samples (1.0% w/v) in SPI/pectin ratio of 1/1(v/v). 
Thereafter, this SPI/pectin complex particle suspension was homogenized with oil 
phase (olive oil 50%) by ultrasonic for 6 min to obtain the required O/W emulsions. 
The same procedure was applied to formulated quercetin loaded emulsions where 
2.0 mL quercetin (0.1 mg/mL) was first dissolved in the oil phase and added to the 
preceding SPI/pectin complex and was homogenized as mentioned above to prepare 
the ultimate SPI/pectin complex particle stabilized emulsions with encapsulated 
quercetin. Stability of the prepared emulsions against pH was further evaluated in 
different conditions (pH 3.0 to pH 9.0). The results showed that emulsion at pH 3.0 
exhibited enhanced stability stable after storage for 30 days’ at 4 °C and also showed 
best freeze-thaw stability after 3  cycles. Moreover, rheological measurements of 
these emulsions revealed a broad viscoelasticity zone and had the best viscoelastic-
ity stability. In vitro intestinal digestion experiment was performed too and  quercetin 
availability reached 15.94% at pH 7.0 and 7.8% at pH 3.0. Regarding these values 
for availability, the authors concluded that quercetin can be consumed in a green 
and healthful way, being encapsulated in SPI/Pectin-stabilized emulsions (Wang 
et al. 2020).
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8.6  Conclusion

Since long time ago, plant-based compounds have been a great source of materials 
used in beneficial medical treatments. Many plant extracts have been shown antioxi-
dant potentials thereby aiding in treatment and prevention of pathologies like car-
diovascular diseases, liver diseases, cancers and other related conditions. However, 
issues of poor oral bioavailability of these compounds hinder their clinical advance-
ments, and hence need delivery systems to ensure their efficient delivery.

Synthesis of these delivery vehicles are principally aimed to protect the encapsu-
lants from harsh environments e.g. human gut and also to ensure their targeted 
delivery. Furthermore, most importantly, by maintaining their sustained and con-
trolled release, these systems are supposed to enhance bioavailability of the encap-
sulated hydrophobic bioactive compounds which have low solubility in aqueous 
medium that hinder their potential applications in food, pharmaceutical and cos-
metic industries. These advantages can be significantly achieved if the synthesized 
system is of better quality in terms of long-term stability during storage and against 
different influencing factors such as pH, salts, heat and so on, as well as have 
reduced toxicity towards the organisms.

In this perspective, among different formulations, PEs have shown to perform the 
duties proficiently due to their better qualities in terms of long-term stabile and non- 
toxic nature as compared to the others. PEs are actually-stabilized by biodegradable 
components derived from different nutrients (e.g. polymers, proteins, fats etc.), dif-
fering them from conventional emulsions which are stabilized by surfactants where 
toxicity is an issue. On these grounds, therefore, in the current chapter we particu-
larly focused on the PEs, firstly on their synthesis, characterization and factors influ-
encing their stability, and thereafter their vital role for encapsulating and delivery of 
bioactive compounds with well-known antioxidant potentials.
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