
Towards a Theory of Factors that
Influence Text Comprehension of Code
Documents

Patrick Rein, Marcel Taeumel, and Robert Hirschfeld

Abstract The design of domain-specific software systems can benefit from partic-
ipatory design practices making domain experts and programmers equal, collabo-
rating partners. The source code of such a system might be a viable communication
artifact to mediate the perspectives of the two groups. However, source code
written in a general-purpose programming language is often considered too difficult
to comprehend for untrained readers. At the same time, it is yet unclear what
makes general-purpose programming languages difficult to understand. Based on
our previous study and related work from programming pedagogy and cognitive
psychology, we develop an initial theory of factors that might influence the com-
prehensibility of source code documents by untrained readers. This theory covers
factors stemming from the features of source code, factors related to the visual
appearance of source code, and factors concerned with aspects independent of code
documents. This chapter discusses and illustrates these potential factors and points
out initial hypotheses about how these factors can influence comprehensibility.

1 Motivation: Code Documents for Participatory Design

Software can generate value in many domains whose experts are not necessarily pro-
grammers themselves. Thus, the evolution of software in domain-specific projects
leads to a collaboration of domain experts and programmers. This is particularly
important for software systems which are highly domain-specific, for example
payroll accounting systems, or geographic information systems. Participatory
design can serve as a framework for the collaboration between domain experts
and programmers as it regards them as equal partners in the design of the software
system (Asaro 2000).

P. Rein (�) · M. Taeumel · R. Hirschfeld
Hasso Platter Institute, Potsdam, Germany
e-mail: patrick.rein@hpi.uni-potsdam.de; marcel.taeumel@hpi.uni-potsdam.de;
robert.hirschfeld@hpi.uni-potsdam.de

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
C. Meinel, L. Leifer (eds.), Design Thinking Research, Understanding Innovation,
https://doi.org/10.1007/978-3-030-62037-0_14

307

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62037-0_14&domain=pdf
mailto:patrick.rein@hpi.uni-potsdam.de
mailto:marcel.taeumel@hpi.uni-potsdam.de
mailto:robert.hirschfeld@hpi.uni-potsdam.de
https://doi.org/10.1007/978-3-030-62037-0_14

308 P. Rein et al.

Participatory design emphasizes mutuality, reciprocity, and mutual learning. In
the described situation of domain-specific software development, experts can learn
technical possibilities and constraints from programmerswith regard to the software
to be created. Programmers can learn from the domain experts the inner workings
of the domain, its vocabulary, and its constraints. Eventually, such a collaboration
of groups from both areas of expertise can yield the creation of something more
valuable than the sum of its individual contributions (Asaro 2000; Muller 1108;
Rein et al. 2020).

To facilitate the participatory design process, teams use various practices such
as playing out situations in dramas, collaborative game design, and mock-ups. Part
of the purpose of these practices is the creation of concrete artifacts representing
a shared language between the different groups participating in the design process.
These artifacts should improve the mutual understanding of each others perspectives
and needs, while creating a sense of shared ownership of the language (Muller 1108;
Ehn 1988).

We argue that the source code of a software system has the potential to serve as
a useful concrete artifact representing a shared language in a team of programmers
and domain experts (Rein et al. 2020). First of all, source code explicitly expresses
all domain knowledge relevant for the behavior of the system. Further, source code
can be open to different interpretations. For domain experts it can serve as a written
out formal model of domain knowledge. The exact execution semantics of the
code might not matter much, as long as the meaning of the domain knowledge is
sufficiently clear. At the same time, for programmers source code serves as a static
description of the dynamic behavior of a computer. It describes the mapping from
domain knowledge to technical infrastructure such as user interface components,
or hardware input and output. Bringing these two perspectives together is a major
challenge for software development, therefore source code, which combines these
two perspectives, is an interesting artifact for participatory design.

1.1 The Challenges of Code as a Communication Artifact

Formal descriptions of the behavior of software systems have previously been
proposed and have been used in participatory design in software development
teams (Kensing and Munk-Madsen 1993; Barrett and Oborn 2010; Evans 2004;
Luebbe and Weske 2012). However, multidisciplinary teams use descriptions con-
taining specialized representations, such as diagrams or domain-specific languages
(DSL) instead of the actual source code. This makes the described behavior more
accessible to the domain experts. At the same time, these specialized representations
require extra effort as they increase the distance between the domain experts and the
actual system description in source code. This distance has to be bridged either by
developers mapping these descriptions to actual code or by additional infrastructure
and tools which have to be maintained (for example a DSL compiler and a
corresponding debugger). In contrast to that, the actual source code of the system is

Towards a Theory of Factors that Influence Text Comprehension of Code Documents 309

always available. Further, changes to the source code are directly executable and no
additional infrastructure has to be maintained.

How can program source code be used as a frequent communication artifact
when exploring (or discussing) domain-specific terms and rules, which can
also be expressed as natural-language text?

While source code written in a general-purpose programming language is readily
available as a communication artifact, it is currently often regarded as difficult to
understand for non-trained readers. Many of the mentioned formalism designed to
be accessible for non-programming readers are motivated by this assumption. In a
previous study, we investigated whether this assumption holds for object-oriented
programs in a domain with simple rules (Rein et al. 2020).

The results of our text comprehension study showed that inexperienced readers
performed worse on a process description expressed in object-oriented code than
they performed on the English text variant. At the same time, the effect size in
our experiment was rather small. As this was only a first study on the topic, final
conclusions cannot be drawn. However the small effect size is still surprising as
one would expect a formal document format such as source code to be generally
difficult for inexperienced readers to read. Based on previouswork, we again see that
the mere fact that code documents are written in a language with formal semantics
does not directly result in incomprehensible documents (Nardi 1993). Other features
of code seem to influence the comprehensibility of source code. Thus, our refined
research question is:

Which features of code documents make them more “difficult” to understand
than English texts for readers with little to no programming experience?

A detailed understanding of what actually makes code “difficult” to understand
could help designers of future languages in targeting non-programming readers
to make conscious design choices for or against language features. Existing
observations of difficulties faced by novice programmers are not sufficient in this
regard, as novice programmers aim to learn to programwhile our target group might
not necessarily intend to do so.

310 P. Rein et al.

1.2 Overview of the Theory and a First Example

In order to investigate the obstacles to understanding code documents written
in general-purpose programming languages, we describe an initial set of factors
that potentially influence how well readers can comprehend the content of these
documents. Thereby, we aim to create a theory of which features of source code,
used to express dynamic processes, are difficult for readers with no programming
background to understand.

We argue that existing theories on program comprehension do not apply as
they are mostly concerned with the comprehension process of trained program-
mers (Von Mayrhauser and Vans 1995). Further, even theories from programming
pedagogy can only be applied to a limited extent, as they mostly deal with learners
specifically trying to learn how to program (Robins et al. 2003). In contrast, we
investigate situations in which readers have no prior experience and in which readers
do not intend to learn programming. Further, we take inspiration from cognitive
psychology research results on the process of reading (Rayner et al. 2012). Our
theory, however, focuses on the results of that process and does not try to contribute
to the existing theories of the cognitive processes happening during text or program
comprehension.

When untrained readers encounter a source code document, they face content
presented in an unfamiliar form (for an example see Listing 1). In order to try to
understand the content, they have to overcome several “obstacles” at different levels:
from strange formatting, to alien vocabulary, and unfamiliar semantics.

The underlying challenge is the representation of domain knowledge through
programming languages. For untrained readers, the document is, in fact, written
in an unknown language. The language might include English vocabulary, but the
grammar and semantics of the language are different from the grammar and the
semantics of natural languages. We, argue that this can be somewhat mitigated by
programming languages as long as the grammar and semantics are similar to the
grammar and semantics of natural languages. Readers can then use their knowledge
of natural languages to try to understand the source code. However, even with
a completely familiar grammar and semantics, source code remains a means for
expressing technical knowledge. Thus, the domain knowledge might be encoded in
technical descriptions or the description of domain knowledge might be mingled
with technical vocabulary. Both make it more difficult for readers to find relevant
domain knowledge.We describe these factors, all resulting directly from the features
of source code, in Sect. 2.

While the described features are inherent to source code, untrained readers might
not notice them at first but will first notice that source code also looks different
from natural language text. Due to its inner structure, source code is formatted
and styled differently. For example, indentation is often used to visualize the
underlying structure of phrases in programming languages. This can result in source
code documents in which no two consecutive lines have the same indentation. We
describe the factors concerning the visual appearance of source code in Sect. 3.

Towards a Theory of Factors that Influence Text Comprehension of Code Documents 311

Finally, the comprehensibility of a document is not a property of the document
itself but of a particular document and a particular reader. The background and
attitude of readers with regard to formal languages might influence the compre-
hensibility. For example, readers familiar with complex sets of production rules,
for example chemical reaction formulas, might have less difficulty when trying
to understand a program written in a rule-based logic programming language. We
discuss factors that are independent off a particular code document in Sect. 4.

The resulting list of factors is by no means complete but serves as a starting
point to generate initial hypotheses to test. We expect that new factors will come up
during testing the initial hypotheses and that some of the initial factors will turn out
to be irrelevant. Our initial list of factors is informed by related work on program
comprehension, programming pedagogy, results of cognitive psychology research
on reading, and the qualitative results of our previous study.

Before explaining each group, we will give an overview of how these groups
relate to each other. We will also introduce a running example, which we will use
to illustrate the different levels of factors whenever suitable. The example shows
how a step in a conference registration process is described in source code of the
programming language Smalltalk (Goldberg et al. 1983).

1.3 Running Example

The following example is one step in the registration process of a commercially used
conference registration system one of the authors worked on. Both excerpts are from
the material we used in the experiments to test some of the initial hypotheses (Rein
et al. 2020).

The English text version of the process step reads as following:

Fifth, the participant will select the workshop they want to attend. Therefore, the system first
determines all workshops available for the participant to attend. A workshop is available if
it has capacity left and if the workshop is open for the participant type of the participant.
[...] The system asks the user to select a workshop from the set of available workshops.

This text describes the interactions between a user, called “the participant,” and
the registration system. The workshop registration step is only one of several steps in
the registration process. The longer text fromwhich this excerpt is taken also defines
the relevant concepts such as participants, the conference, and why the workshop
registration matters to the overall process. The ellipsis in the middle of the excerpt
includes rules describing what defines whether a workshop has capacity left and
whether a workshop is open for particular types of participants. These rules are
omitted as they are also omitted in the source code excerpt below. This does not
mean that the description in source code does not express these rules, but that they
are not expressed in the excerpt used.

312 P. Rein et al.

Listing 1 The example process step expressed in the Smalltalk programming language. The
process step is expressed in a method called processStepFiveSelectWorkshop

1 Con f e r e n c eR e g i s t r a t i o nP r o c e s s >>p ro c e s sS t e pF i v eSe l e c tWo rk shop
2
3 | a v a i l a b l eWork shop s |
4 av a i l a b l eWork shop s := s e l f a l lWorkshops s e l e c t : [: workshop |
5 workshop h a sC a p a c i t yL e f t and : [
6 workshop canBeAttendedBy : p a r t i c i p a n t]] .
7
8 p a r t i c i p a n t se tSe l ec t edWorkshopTo : (
9 s e l f askUserToChooseWorkshopFrom : ava i l a b l eWork shop s) .

Now, compare the textual description above to the following excerpt in Listing 1
describing the same process step in the Smalltalk programming language (Goldberg
et al. 1983).

We will briefly outline what some of the elements mean and how they map to
the description in the English text. The first line tells us that we are looking at
the class ConferenceRegistrationProcess and at the method processStepFiveSelectWorkshop

. For the discussion of factors, it is sufficient to know that classes are collections
of methods and methods include code. Further, when explaining the code, we will
sometimes refer to statements. As a heuristic, statements in programming languages
are what sentences are in natural languages. Line 4 to 6 are a statement that describes
the rules defining which workshops are available. To get the list of all available
workshops, we go through allWorkshops and select each one that hasCapacityLeft and
canBeAttendedBy the participant . Finally, we say that we set the selected workshop
property of the participant to the result of asking the user to choose a workshop
from the availableWorkshops.

2 Factors Resulting from the Features of Source Code

By its very nature, source code is expressed in a formally defined language,
such as the Smalltalk programming language (Goldberg et al. 1983). This alone
might already explain why source code is difficult to comprehend to untrained
readers: source code is written in a language they do not know. The meaning of
a source code document depends largely on the semantics of the programming
language, which is unknown to untrained readers, thus preventing them from
comprehending the document. However, as our initial experiment has shown,
even readers completely unfamiliar with programming can still comprehend large
parts of a source code documents. So, missing knowledge about the underlying
semantics of the programming language does not make source code completely
incomprehensible but only hampers comprehension to some degree.

Further, our past experiment implies that other features of source code are also
relevant. In a debriefing questionnaire, we asked for specific difficulties readers

Towards a Theory of Factors that Influence Text Comprehension of Code Documents 313

encountered. Besides general expressions of uncertainty with regard to the meaning
of the document, participants mentioned specific aspects such as particular syntactic
elements, as well as technical vocabulary such as “nil”.

Therefore, we shall take a closer look at features of source code documents
that might influence comprehensibility. We identified four potential sources of
difficulty: discoverability of grammar, familiarity of semantics, decomposition
versus linearization, and representation of domain knowledge.

2.1 Discoverability of Grammar

The grammar of a programming language, just like the grammar of a natural
language, determines which sequences of characters are valid phrases in the
language and what role a word plays in a phrase. We argue that the discoverability
of grammatical rules could potentially influence the comprehensibility of source
code documents for untrained readers. In detail, we argue that the discoverability is
determined by the familiarity or explicitness of symbols denoting special grammat-
ical structures in code.

For programming languages, the strict adherence to the grammar is important,
as the grammar is later used to determine how the code should be executed. The
grammar of natural languages has a similar role. Research on the process of reading
shows that one part of understanding the meaning of a natural language sentence
is to associate individual words with their grammatical roles, such as subject and
verb (Rayner et al. 2012). Assuming that untrained readers try to apply a similar
process of reading to source code, readers would also try to use a grammar to assign
roles to words in source code. However, the grammar of programming languages
might be completely unfamiliar to them.

In addition to the above, the role of words or phrases in programming languages
is often denoted by special symbols. These symbols can be whole words or special
characters, among them punctuation characters. In our example above, the bars
(“| ... |”) mark the beginning and the end of a list of temporary variables, in our case a
list with only one variable called “availableWorkshops”. The usage of special words
and symbols in programming language grammars can be located along a spectrum
ranging from using only explicit words to using unfamiliar special characters.

The implicit meaning of special characters in general might make the grammar
less discoverable. Thus, some programming languages avoid punctuation characters
and use words instead, for example the language AppleScript (Cook 2007). We
expect such explicit representations of the syntax to be more discoverable and in
turn easier to comprehend than implicit representations. In Listing 2, we can see the
difference between the two approaches by replacing some punctuation characters
with explicit descriptions of what parts of the code mean:

314 P. Rein et al.

Listing 2 A variant of the example method rewritten according to a grammar that makes the
grammatical roles of elements more explicit

1 Con f e r e n c eR e g i s t r a t i o nP r o c e s s >>p ro c e s sS t e pF i v eSe l e c tWo rk shop
2
3 t empora ry v a r i a b l e s : a v a i l a b l eWork shop s .
4 s e t ava i l a b l eWork shop s t o s e l f a l lWorkshops s e l e c t : do
5 a rgumen t s : workshop
6 workshop h a sC a p a c i t yL e f t and : [
7 workshop canBeAttendedBy : p a r t i c i p a n t]
8 end .
9

10 p a r t i c i p a n t se tSe l ec t edWorkshopTo : (
11 s e l f askUserToChooseWorkshopFrom : ava i l a b l eWork shop s) .

Somewhere between these two extremes is another option: to use punctuation
characters from natural language. These punctuation characters are used to denote
something similar to what they indicate in natural language. The programming
language Smalltalk uses special characters in this way, as do many other pro-
gramming languages. In our example above, we can see that the period is used
to separate statements just as the period separates sentences from one another in
natural language. We assume that this improves accessibility because untrained
readers simply employ their familiar understanding of punctuation characters. In
contrast, if we use unfamiliar special characters or common punctuation characters
in unfamiliar ways, the grammar would become less discoverable and consequently
the document less comprehensible. In replacing known characters with unusual
ones, we can expect the document to become less comprehensible for untrained
readers. This can be seen in Listing 3.

Listing 3 A variant of the example method rewritten according to a grammar that uses unfamiliar
characters to denote grammatical roles

1 Con f e r e n c eR e g i s t r a t i o nP r o c e s s >>p ro c e s sS t e pF i v eSe l e c tWo rk shop
2
3 / av a i l a b l eWork shop s /
4 < ava i l a b l eWork shop s <− s e l f : a l lWorkshops : s e l e c t −>[: workshop /
5 workshop : h a sC a p a c i t yL e f t : and−>[
6 workshop : canBeAttendedBy−>p a r t i c i p a n t]] >
7
8 < p a r t i c i p a n t : s e tSe l ec t edWorkshopTo −>(
9 s e l f : askUserToChooseWorkshopFrom−>ava i l a b l eWork shop s) >

Towards a Theory of Factors that Influence Text Comprehension of Code Documents 315

2.2 Familiarity of Semantics

The meaning of a statement in a programming language is formally defined by what
happens in the computer when that statement is executed. So, in order to fully
understand what a given statement in a programming language means, one needs
to know the complete set of evaluation rules for that language. These evaluation
rules are called the semantics of the programming language. We assume that two
dimensions could influence text comprehension for untrained readers: similarity of
semantics to common sense, and number and combinations of evaluation rules used.

The first aspect is again grounded in the process of reading (Rayner et al. 2012).
In order to understand a sentence, readers of natural text first assign grammatical
roles to words, then combine words into phrases structures, and finally combine
these phrase structures into sentence structures1 (Rayner et al. 2012). The grammar
of the language and the lexical information for each word provide the information on
the relation between the words in the sentence. These relations are then interpreted
through the readers knowledge about the world.

For source code documents, untrained readers do not have any knowledge of
the evaluation rules and thereby about the actual relations between words in the
document. In order to still be able to understand the meaning of statements in the
document, they might heuristically use their natural language grammar and lexical
information. This in turn would mean that evaluation rules which are similar to
common sense should make a document more accessible. Statements which make
use of evaluation rules that are close to common sense could then be understood in
the same way as natural language text. For example, for native English speakers,
time should flow from top to bottom through the document, or names that have been
defined at some point should be available from then on.

The following example snippet illustrates the spectrum between what might be
regarded as common sense and what is special to programming language semantics.

1 ava i l a b l eWork shop s := s e l f a l lWorkshops s e l e c t : [: workshop |
2 workshop i s A v a i l a b l e] .
3 l a s tWorkshop := workshop .

In this snippet, the execution of statements happens from top to bottom, so
time flows in the reading direction. After executing the first statement, the variable
availableWorkshops contains all workshops which are currently available. We can
use the variable availableWorkshops from now on. At the same time, the usage
of the variable workshop in the assignment to lastWorkshop is not possible, as the
name “workshop” is only valid within the block denoted by square brackets

1This is a simplified depiction of the full version of one of the theories on the process of reading.
This part of the theory is sufficient for our argument.

316 P. Rein et al.

(“[...]”). However, for an untrained reader the name was used beforehand in
this snippet, so it seems plausible to assume that it could be used further down.
Consistently interpreting the scopes in which a name is valid is a task which can
also be challenging for programmers when they do not know the programming
language (Wilson et al. 2017).

Beyond the familiarity of the used evaluation rules, the number and combinations
of rules used in a document might also influence the text comprehension.

2.3 Decomposed Versus Linearized

The way source code documents are structured is fundamentally different from how
most natural language texts are structured. Natural language text is mostly written to
be read linearly. In contrast, source code is decomposed into many small elements
which are referenced from many different locations within the source code, similar
to the way an encyclopedia is structured. We argue that this fundamental difference
is a main obstacle for untrained readers who are used to consuming text in a linear
fashion, from the beginning of the text to the end. In order to understand code, it has
to be read by jumping from one element of the source code to another.

Code is decomposed to improve the maintainability of source code. The goal
is to try to avoid any duplication so that every relevant domain concept is only
expressed once within the document. At the same time, the code can also become
less accessible for untrained readers. This is also indicated by related work on
programming pedagogy2 (Robins et al. 2003).

For example, to answer any questions about concrete scenarios based on our
original example method, readers would need to first look up further information.
The method processStepFiveSelectWorkshop describes the general steps to get the avail-
able workshops, but intentionally leaves out several details. To answer questions
on whether one specific participant would be able to select a specific workshop,
readers would need to know how canBeAttendedBy: is actually defined. To learn about
its definition, they would have to scan the document and look for the definition of
canBeAttendedBy: and read that definition.

Assuming that a linear version of our example would be more accessible, we
could directly include the definitions of all other relevant methods directly within
our example method. The resulting code might look similar to Listing 4.

2For example, a survey on studies on how to teach and learn programming found that object-
oriented programming was difficult for novices because the program text was distributed across
many small elements (Robins et al. 2003).

Towards a Theory of Factors that Influence Text Comprehension of Code Documents 317

Listing 4 A linearized variant of the example method that includes the definitions of relevant other
methods

1 Con f e r e n c eR e g i s t r a t i o nP r o c e s s >>p ro c e s sS t e pF i v eSe l e c tWo rk shop
2
3 | a v a i l a b l eWork shop s |
4 av a i l a b l eWork shop s := s e l f a l lWorkshops s e l e c t : [: workshop |
5 workshop i sUn i v e r s i t yWork shop i f T r u e : [c a p a c i t y := 1 5] .
6 workshop isCompanyWorkshop i f T r u e : [c a p a c i t y := 2 0] .
7 workshopHasCapac i t yLe f t := workshop a t t e n d a n c e < c a p a c i t y .
8 workshopCanBeAt t e ndedByPar t i c i p an t := workshop

isCompanyWorkshop or : [
9 workshop i sUn i v e r s i t yWork shop and : [p a r t i c i p a n t

i s L o c a l S t u d e n t]] .
10 workshopHasCapac i t yLe f t and : [

workshopCanBeAt t e ndedByPar t i c i p an t]] .
11
12 p a r t i c i p a n t se tSe l ec t edWorkshopTo : (
13 s e l f askUserToChooseWorkshopFrom : ava i l a b l eWork shop s) .

Now, when answering questions about which participant can attend which
workshop, readers do not have to refer to other methods. The phrases workshop

hasCapacityLeft and workshop canBeAttendedBy: participant have been expanded with
their definitions (see line 5 to 7 and line 8 to 9).

2.4 Representation of Domain Knowledge

Code always expresses the domain knowledge of the application domain in some
way. At the same time, source code is also primarily a means to describe the
behavior of a technical machine. Thus, source code necessarily intertwines the two
aspects. We argue that two dimensions of this relationship have an influence on the
comprehensibility of code: how explicit the domain knowledge is expressed and the
relative proportion of technical and domain vocabulary in the document.

The first dimension influences comprehension as it determines how much the
source code expresses logic of the domain versus how much it expresses the
underlying operations of the computer. To create a software system, programmers
inevitably have to map the domain knowledge to underlying operations of the
execution environment at some point. At the same time, programming languages
allow programmers to abstract from these underlying operations, for example by
putting them in a separate method and giving the method a name which reflects the
domain logic expressed through these underlying operations. We can then use this
method wherever that domain logic is needed. Readers encountering the method
name can understand what happens in terms of the domain and do not have to know
which primitive operations are executed in the computer.

318 P. Rein et al.

Listing 5 illustrates how a version of our example method would look with a
somewhat less explicit description of the rules to determine which workshops are
available. First of all, the explicit method hasCapacityLeft was removed as the method
name describes knowledge of the domain. Second, the code expressing that we
select specific workshops was replaced by a loop which iterates over the offsets
in a primitive collection of numbers (line 5). The offset, called workshopIndex is
used to look up the type of the workshop with that number in the mapping called
workshopTypes. The type of the workshop itself is represented as a number which we
compare to some known numbers (line 7 and 10).

Listing 5 A variant of the example method which represents domain knowledge through
underlying data structures and operations, thereby making the expression of domain knowledge
less explicit

1 Con f e r e n c eR e g i s t r a t i o nP r o c e s s >>p ro c e s sS t e pF i v eSe l e c tWo rk shop
2
3 | wo rk shop sAva i l a b l e i s C a p a c i t y L e f t |
4 wo rk shop sAva i l a b l e := Array new : s e l f typesOfWorkshops s i z e .
5 s e l f workshopTypes indexDo : [: workshopIndex |
6 i s C a p a c i t y L e f t := f a l s e .
7 (s e l f workshopTypes a t : workshopIndex) = 1 i f T r u e : [
8 i s C a p a c i t y L e f t := (s e l f
9 workshopAt t endances a t : workshopIndex) < 1 5] .

10 (s e l f workshopTypes a t : workshopIndex) = 2 i f T r u e : [
11 i s C a p a c i t y L e f t := (s e l f
12 workshopAt t endances a t : workshopIndex) < 2 0] .
13 (i s C a p a c i t y L e f t and : [s e l f workshop : workshopIndex

canBeAttendedBy : s e l f p a r t i c i p a n t]) i f T r u e : [
14 wo rk shop sAva i l a b l e a t : workshopIndex pu t : 1] .
15
16 p a r t i c i p a n t se tSe l ec t edWorkshopTo : (
17 s e l f askUserToChooseWorkshopFrom : wo rk shop sAva i l a b l e) .

The overall structure looks similar to Listing 4. However, while Listing 4 still has
method nameswhich reflect knowledge about the name, such as isUniversityWorkshop,
the code in Listing 5 no longer contains any method names with this vocabulary..

However, making much of the domain knowledge explicit and hiding all
underlying operations might not be a guarantee for creating comprehensible source
code. The domain logic could still be mixed with logic concerned with technical
infrastructure, for example maintaining data structure or handling in- and output
mechanisms such as user interface interactions. We assume that the more technical
logic and vocabulary is intermixed with the domain logic, the less comprehensible
the source code becomes. One argument for this is that the domain logic becomes
less dense. Non-technical readers have to filter the technical details as noise to get
to the actual domain knowledge in the document.

For example, Listing 6 shows how our example method would look if more
technical logic were introduced. The most prominent part is visible at the bottom.
The method askUserToChooseWorkshopFrom was removed and replaced with explicit

Towards a Theory of Factors that Influence Text Comprehension of Code Documents 319

handling of the user interface interactions (lines 10 to 17). The fact that the user is
asked to choose a workshop is still expressed in these lines. However, the relevant
words and phrases are intermixed with technical code, such as the unwrapping and
converting of the result of the user interaction (lines 14 and 15).

Listing 6 A variant of the example method, which includes a mixture of domain vocabulary and
technical vocabulary dealing with user interactions

1 Con f e r e n c eR e g i s t r a t i o nP r o c e s s >>p ro c e s sSe l e c tWo rk shop
2
3 | a v a i l a b l eWork shop s u i R e q u e s t R e s u l t chosenWorkshopIndex |
4 av a i l a b l eWork shop s := O r d e r e dCo l l e c t i o n new .
5 s e l f a l lWorkshops do : [: workshop |
6 (workshop h a sC a p a c i t yL e f t and : [
7 workshop canBeAttendedBy : p a r t i c i p a n t]) i f T r u e : [
8 av a i l a b l eWork shop s add : workshop]] .
9

10 u i R e q u e s t R e s u l t := UIManager d e f a u l t
11 chooseFrom : av a i l a b l eWork shop s
12 v a l u e s : a v a i l a b l eWork shop s
13 t i t l e : ’ P l e a s e choose a workshop ’ .
14 chosenWorkshopIndex := (u i R e q u e s t R e s u l t a t : # i ndex)
15 wi thBlanksTr immed asNumber .
16 p a r t i c i p a n t se l ec t edWorkshop : (a v a i l a b l eWork shop s
17 a t : chosenWorkshopIndex) .

As can be seen from a comparison of Listings 5 and 6, the two dimensions of
how domain knowledge is represented are not completely orthogonal.When domain
knowledge is encoded implicitly in technical data structures, the source code will
necessarily contain the operations to work with these technical data structures and
thereby add noise to the representation of domain knowledge.

3 Factors Related to Visual Appearance

As illustrated in the previous section, code is more structured than natural language
text. Understanding the described behavior of the system fully, requires a complete
understanding of the respective structure. Furthermore, the decomposed form
of code, forces readers to often jump between sections in the code document.
Thus, programmers often use visual cues to help them navigate the documents or
recognize the structure of a statement more easily. In the following we will look at
two aspects which determine the visual appearance of code documents, namely the
layout of the document and the formatting and styling.

320 P. Rein et al.

3.1 Document Layout

While, typically, source code is semantically decomposed into small elements,
source code documents are still layouted just as natural language text is. Natural
language documents linearly show one paragraph after another and source code
shows one semantic unit after another, such as a class, method, function, or
procedure. For example, the structure of the document containing our example
method may look like Listing 7 (the content of the methods is omitted).

Listing 7 A shortened version of the source code document in which the example method is
included, illustrating how the elements within a document might be ordered. The content of the
methods is omitted

1 Obj ec t s u b c l a s s : # Con f e r e n c eR e g i s t r a t i o n
2 i n s t a n c eVa r i a b l eNames : ’ p a r t i c i p a n t ’
3 Con f e r e n c eR e g i s t r a t i o n s t a r t R e g i s t r a t i o n [. . .]
4 Con f e r e n c eR e g i s t r a t i o n p r o c e s s S t e pOn eP e r s o n a lD e t a i l s [. . .]
5 Con f e r e n c eR e g i s t r a t i o n processStepTwoEven tType [. . .]
6 Con f e r e n c eR e g i s t r a t i o n p r o c e s s S t e pTh r e e P a r t i c i p a n t T y p e [. . .]
7 Con f e r e n c eR e g i s t r a t i o n p r o c e s sS t e pFou rBook i ng s [. . .]
8 Con f e r e n c eR e g i s t r a t i o n p r o c e s sS t e pF i v eSe l e c tWo rk shop [. . .]
9 Con f e r e n c eR e g i s t r a t i o n l im i t O fWo r k s h o pP a r t i c i p a n t s [. . .]

10 Con f e r e n c eR e g i s t r a t i o n l i m i t O f P a r t i c i p a n t s [. . .]
11 Con f e r e n c eR e g i s t r a t i o n n umb e rO fR e g i s t e r e d P a r t i c i p a n t s [. . .]
12 Con f e r e n c eR e g i s t r a t i o n numbe rO fReg i s t e r e dBache l o rS t ud en t s [. . .]

We argue that the ordering of the semantic elements within a document, might
influence the comprehensibility for untrained readers.

For experienced programmers, an alphabetic ordering of the elements, or a
grouping of methods according to a unifying topic, might ease navigation while
jumping between methods. However, for untrained readers an ordering that cor-
responds to the likely navigation on the first reading might be more helpful. For
example, the first method should be the most high-level method. All methods used
by this high-level method should be listed below that high-level method. After these
methods, all methods used by them are listed, and so on. Note, that this assumes
that readers employ a top-down strategy when encountering the source code for the
first time (Von Mayrhauser and Vans 1995). A reverse order might be used for the
assumption that readers employ a bottom-up strategy (Von Mayrhauser and Vans
1995).

3.2 Formatting and Styling

The question as to how source code should be formatted has been discussed in the
software engineering community for more than 40 years (Miara et al. 1983). We are
more interested in only the distinguishing features of the code, independent of its

Towards a Theory of Factors that Influence Text Comprehension of Code Documents 321

presentation. However, as research on code presentation shows that some features
can impact comprehension levels and speed, we would briefly like to discuss some
of the common features: syntax highlighting, indentation, and identifier styles.

Syntax highlighting is a technique to enrich the visual information of source
code. To highlight syntax elements, colors and text emphasis are added to parts
of the source code that have special meaning. For example, a section of our
original example might look like Listing 8 with some syntax highlighting added
to emphasize the methods being sent.

Listing 8 A rendering of an excerpt from the example method with syntax highlighting empha-
sizing the names of methods used in the statement

1 ava i l a b l eWork shop s := s e l f al lWorkshops s e l e c t : [: workshop |
2 workshop hasCapac i tyLef t and : [
3 workshop canBeAttendedBy : p a r t i c i p a n t]] .

Several empirical studies have investigated the effects of syntax highlighting.
One study found that for reading source code in text books, syntax highlighting
does not affect comprehension levels or speed (Beelders and Plessis 2016). Another
study found that for novices trying to solve program comprehension tasks, based on
small examples, syntax highlighting does significantly change the comprehension
level (Hannebauer et al. 2018). While this does not imply that syntax highlighting
does not help professional programmers or novices in writing code, it hints that the
impact of syntax highlighting might be less important for our research question on
factors influencing the comprehensibility of source code documents.

Another common question of code presentation is indentation. In all previous
listings we have used the indentation of lines to show which statements belong
together. For example, all lines within the example method were indented by one
space and every statement within the square brackets of the first line was indented
by at least three spaces. Indentation is said to improve the visual perception of such
groups of statements. Without indentation it is more difficult to recognize these
groups quickly. For example, the excerpt of Listing 8 would look like Listing 9
without indentation and coloring:

Listing 9 A rendering of an excerpt from the example method without indentation

1 ava i l a b l eWork shop s := s e l f a l lWorkshops s e l e c t : [: workshop |
2 workshop h a sC a p a c i t yL e f t and : [
3 workshop canBeAttendedBy : p a r t i c i p a n t]] .

In this version it is less obvious that the second and third line contribute to the list
of available workshops in comparison to the original version. Correspondingly, one
of the few studies on the topic found that indentation does indeed influence program
comprehension (Miara et al. 1983). The effect on comprehension levels was rather
small. For novices the effect was stronger than for professional participants. Further,

322 P. Rein et al.

participants reported a higher subjective difficulty of comprehending the source
code when indentation was missing. Whether the impact of indentation on the
comprehension levels of untrained readers is positive or negative remains unclear.
While indentation might help discovering the hidden semantics of source code, it
could also hinder the reading process by making the code visually more difficult to
read linearly.

The final consideration with regard to formatting is the way names used in code
are generated. Two major styles can be distinguished in contemporary programming
languages: camel case and underscores. The following listing shows an example for
each of the two styles:

1 canBeAttendedBy : " camel c a s e "
2 c an_be_a t t e nd ed_by : " u n d e r s c o r e s "

Program comprehension research shows that for experienced programmers and
novices alike, there is no difference in correctness between the two styles (Sharif
and Maletic 2010; Binkley et al. 2013). However, a one eye-tracking study found
that the style using underscore results in some speed up (Sharif and Maletic 2010).
The effect was larger for novices than it was for experienced programmers, indicat-
ing that with increased experience the influence weakens. While a similar effect
might occur with untrained readers, we are mostly interested in comprehension
levels not speed.

4 Factors Independent Off the Document

With this project, we aim to improve the code documents in order to improve
comprehensibility. Thus, the factors presented so far focus on features of code
documents directly. However, we also include factors beyond the features of code
documents in our initial theory in order to inform future experiment setups. The
first set of factors are concerned with the readers themselves. For example, beyond
the basic reading and comprehension skill of readers, their past experience with
any kind of formalism might influence how well they can deal with source code.
The second set of factors captures the influence from the application domain. For
example, a complex domain might make it even more difficult for readers to deal
with the unknown format of source code.

4.1 Reader

While reading source code is different from reading natural language text, we
suspect the general reading comprehension skill impacts how well a particular
reader can comprehend the domain knowledge of a source code document.

Towards a Theory of Factors that Influence Text Comprehension of Code Documents 323

The general comprehension skill level of readers is probably also influenced by
whether they are native speakers of the language the code document is written in.
While this seems like an obvious statement at first, it is important to keep in mind
when considering source code. Most source code is written in English. Moreover,
most programming languages use English words as keywords. Past studies have
shown that this factor impacts comprehension by novice programmers (Guo 2018).

While we focus on untrained readers, a reader’s past experience with document
formats other than natural language text might influence how well the person can
comprehend the code document. We assume that if readers have an educational
background in a domain which makes heavy use of formal models, such as
mathematics or systems theory, they might struggle less with the hidden semantics
of the unknown programming language.

Beyond general and specific comprehension skills, the overall perception of the
readers own assessment of their ability to understand a particular document format
might influence the level of comprehension (Ashcraft 2002; Zhang et al. 2013).

4.2 Domain

Finally, for a given source code document, the level of comprehension a reader can
achieve also depends on the domain described in the document. Two aspects of the
domain might influence the comprehension level: the complexity of the domain and
the familiarity with the domain.

The complexity of the content of a document influences how difficult it is for a
reader to understand the document. Thus, more complex domain logic will make
any kind of document harder to understand. However, complex domain logic might
interact with the difficulty of comprehending the unknown format of source code for
untrained readers. A more complex domain might in code result in more complex
dynamic behavior, which on top of all the aforementioned challenges adds the
requirement of being able to simulate that behavior in the readers mind. While this
might influence future experiments, it can, in general, also not be solved, as the
complexity of the domain is what we mainly want to express (Brooks Jr 1995).
Reducing this complexity will subtract from what we initially wanted to express.

Finally, the familiarity with the domain has been shown to influence the program
comprehension strategies used by professional programmers (Shaft and Vessey
1995). Programmers familiar with the application domain employ a top-down
strategy to program comprehension, going from the high-level, domain-specific
parts of the code to the more technical ones. Programmers who were not familiar
with the application domain employed a bottom-up strategy, presumably going
from what they know—this means from the low-level technical parts to the high-
level, domain-specific parts. The study did not investigate whether the familiarity
of the domain influenced comprehension levels. Nevertheless, we would argue that,
for untrained readers, the difficulty of understanding an unfamiliar domain might

324 P. Rein et al.

interact with the difficulty of understanding the unusual format of source code and
result in a decrease in overall comprehension.

5 Conclusion

Being able to read general-purpose source code, enables participatory design on
the level of the fundamental definitions of the domain logic of a system. Enabling
participatory design on this level is relevant in a variety of settings. For example,
general software development can benefit when teams working on applications in
domains with complex rules, or citizens might be able to participate in discussing
how public administration processes are defined in open-source software. However,
so far, the approach of language designers has been to provide representations
of domain logic that were designed to be accessible to readers unfamiliar with
source code. However, these representations require additional effort to keep them
consistent with the actual source code. Consequently, we posed the research
question of how to make general-purpose source code accessible to untrained
readers.

This chapter did not answer this question, but instead described an initial theory
of what might influence howwell a reader can comprehend a source code document.
In particular, we listed features of source code which might pose a challenge—
namely the discoverability of the grammar, the familiarity of the semantics, whether
code was presented in a decomposed or a linear form, and how explicit the domain
knowledge was encoded. This theory is an initial proposal used to generate first
hypotheses to be tested in experiments.

A more profound version of a theory would describe why untrained readers
struggle with comprehending source code. Therefore helping future language and
tool designers. General-purpose programming language designers can take the
described obstacles into consideration and domain-specific language designers
could even try to avoid these obstacles altogether.

References

Asaro, P. M. (2000). Transforming society by transforming technology: the science and politics of
participatory design. Accounting, Management and Information Technologies, 10(4), 257–290.

Ashcraft, M. H. (2002). Math anxiety: Personal, educational, and cognitive consequences. Current
Directions in Psychological Science, 11(5), 181–185.

Barrett, M., & Oborn, E. (2010). Boundary object use in cross-cultural software development
teams. Human Relations, 63(8), 1199–1221.

Beelders, T., & Plessis, J. P. (2016). Syntax highlighting as an influencing factor when reading and
comprehending source code. Journal of Eye Movement Research, 9, 2207–2219.

Binkley, D., Davis, M., Lawrie, D., Maletic, J.I., Morrell, C., Sharif, B. (2013). The impact of
identifier style on effort and comprehension. Empirical Software Engineering, 18(2), 219–276.
https://doi.org/10.1007/s10664-012-9201-4

https://doi.org/10.1007/s10664-012-9201-4

Towards a Theory of Factors that Influence Text Comprehension of Code Documents 325

Brooks Jr, F. P. (1995). The mythical man-month. Addison-Wesley Longman Publishing Co., Inc.,
USA ISBN: 0201835959

Cook, W. R. (2007). Applescript. In Proceedings of the Third ACM SIGPLAN Conference on
History of Programming Languages, HOPL III (pp. 1–1–1–21). , New York, NY: ACM. https://
doi.org/10.1145/1238844.1238845

Ehn, P. (1988). Work-oriented design of computer artifacts. Ph.D. thesis, Arbetslivscentrum.
Evans, E. (2004). Domain-driven design: Tackling complexity in the heart of software. Addison-

Wesley Professional.
Goldberg, A., & Robson, D. (1983). Smalltalk-80: The language and its implementation. Boston,

MA: Addison-Wesley Longman.
Guo, P. J. (2018). Non-native English speakers learning computer programming: Barriers, desires,

and design opportunities. In: Proceedings of the 2018 CHI Conference on Human Factors in
Computing Systems (p. 396). New York: ACM.

Hannebauer, C., Hesenius, M., & Gruhn, V. (2018). Does syntax highlighting help programming
novices? Empirical Software Engineering, 23(5), 2795–2828. https://doi.org/10.1007/s10664-
017-9579-0

Kensing, F., & Munk-Madsen, A. (1993). Pd: Structure in the toolbox. Communications of the
ACM, 36(6), 78–85. http://doi.acm.org/10.1145/153571.163278

Luebbe, A., & Weske, M. (2012). When research meets practice: Tangible business process
modeling at work (pp. 211–229). Berlin: Springer. https://doi.org/10.1007/978-3-642-31991-
4_12

Miara, R. J., Musselman, J. A., Navarro, J. A., & Shneiderman, B. (1983). Program indentation
and comprehensibility. Communications of the ACM, 26(11), 861–867.

Muller, M. J. (2007). Participatory design: the third space in HCI. In The human-computer
interaction handbook (pp. 1087–1108). Boca Raton: CRC Press.

Nardi, B. (1993). A small matter of programming: perspectives on end user computing. Cambridge,
MA: MIT Press.

Rayner, K., Pollatsek, A., & Ashby Jr., C. (2012). Psychology of reading. Hove: Psychology Press.
https://doi.org/10.4324/9780203155158

Rein, P., Taeumel, M., & Hirschfeld, R. (2020). Towards empirical evidence on the comprehen-
sibility of natural language versus programming language (pp. 111–131). Cham: Springer
International Publishing. https://doi.org/10.1007/978-3-030-28960-7_7

Robins, A., Rountree, J., & Rountree, N. (2003). Learning and teaching programming: A review
and discussion. Computer Science Education, 13(2), 137–172. https://doi.org/10.1076/csed.
13.2.137.14200

Shaft, T. M., & Vessey, I. (1995). The relevance of application domain knowledge: The case of
computer program comprehension. Information Systems Research, 6(3), 286–299.

Sharif, B., & Maletic, J. I. (2010). An eye tracking study on camelcase and under_score identifier
styles. In 2010 IEEE 18th International Conference on Program Comprehension (pp. 196–
205). Piscataway: IEEE.

Von Mayrhauser, A., & Vans, A. M. (1995). Program comprehension during software maintenance
and evolution. Computer, 28(8), 44–55.

Wilson, P., Pombrio, J., & Krishnamurthi, S. (2017). Can we crowdsource language design? In
Proceedings of the Symposium on New Ideas, New Paradigms, and Reflections on Programming
and Software (Onward!) 2017. New York: ACM Press. https://doi.org/10.1145/3133850.
3133863

Zhang, S., Schmader, T., & Hall, W. M. (2013). L’eggo my ego: Reducing the gender gap in math
by unlinking the self from performance. Self and Identity, 12(4), 400–412.

https://doi.org/10.1145/1238844.1238845
https://doi.org/10.1145/1238844.1238845
https://doi.org/10.1007/s10664-017-9579-0
https://doi.org/10.1007/s10664-017-9579-0
http://doi.acm.org/10.1145/153571.163278
https://doi.org/10.1007/978-3-642-31991-4_12
https://doi.org/10.1007/978-3-642-31991-4_12
https://doi.org/10.4324/9780203155158
https://doi.org/10.1007/978-3-030-28960-7_7
https://doi.org/10.1076/csed.13.2.137.14200
https://doi.org/10.1076/csed.13.2.137.14200
https://doi.org/10.1145/3133850.3133863
https://doi.org/10.1145/3133850.3133863

	Towards a Theory of Factors that Influence Text Comprehension of Code Documents
	1 Motivation: Code Documents for Participatory Design
	1.1 The Challenges of Code as a Communication Artifact
	1.2 Overview of the Theory and a First Example
	1.3 Running Example

	2 Factors Resulting from the Features of Source Code
	2.1 Discoverability of Grammar
	2.2 Familiarity of Semantics
	2.3 Decomposed Versus Linearized
	2.4 Representation of Domain Knowledge

	3 Factors Related to Visual Appearance
	3.1 Document Layout
	3.2 Formatting and Styling

	4 Factors Independent Off the Document
	4.1 Reader
	4.2 Domain

	5 Conclusion
	References

