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Abstract. Designing a graph neural network for heterogeneous graph
which contains different types of nodes and links have attracted increas-
ing attention in recent years. Most existing methods leverage meta-
paths to capture the rich semantics in heterogeneous graph. However,
in some applications, meta-path fails to capture more subtle semantic
differences among different pairs of nodes connected by the same meta-
path. In this paper, we propose Fine-grained Semantics-aware Graph
Neural Networks (FS-GNN) to learn the node representations by pre-
serving both meta-path level and fine-grained semantics in heteroge-
neous graph. Specifically, we first use multi-layer graph convolutional
networks to capture meta-path level semantics via convolution on edge
type-specific weighted adjacent matrices. Then we use the learned meta-
path level semantics-aware node representations as guidance to capture
the fine-grained semantics via the coarse-to-fine grained attention mecha-
nism. Experimental results semi-supervised node classification show that
FS-GNN achieves state-of-the-art performance.

Keywords: Graph neural network · Heterogeneous graph ·
Fine-grained semantics · Meta-path

1 Introduction

Graph neural networks (GNNs), which can learn from graph-structured data, have
been successfully applied in various tasks, such as node classification [6,8], graph
classification [10,26], link prediction [14] and recommendation [16]. Most of the
existing GNNs perform on homogeneous graphs, where all objects and relations
are of the same type. However, real-world data tends to be presented as a hetero-
geneous graph that contains multiple types of objects and relations.

A heterogeneous graph combines different aspects of information. Figure
1 illustrates a toy example of heterogeneous graph, including three types of
objects (author, paper, and conference) and six types of relations (cite/cited,
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Fig. 1. A toy example of heterogeneous graph.

write/written, and publish/published). Due to the heterogeneity of nodes and
edges, a heterogeneous graph contains more comprehensive information and
rich semantics. Meta-path [20], a composite relation connecting two nodes, is
a widely used structure to capture the semantics. For example, the “Author
write−−−→ Paper written−−−−−→ Author” path means authors collaborating on the same
papers, while “Author write−−−→ Paper

published−−−−−−→ Conference” path means authors
publishing papers on conferences. Due to the complexity of heterogeneous graph,
traditional graph neural networks cannot be directly applied to heterogeneous
graph.

Designing a graph neural network for heterogeneous graph have attracted
increasing attention in recent years. [24] proposed HAN which transforms a het-
erogeneous graph into homogeneous graphs by predefined meta-paths and gen-
erates nodes representations by fusing the representations learned on each con-
structed homogeneous graph. This approach requires hand-crafted meta-paths
for each problem, but it is hard to exhaustively enumerate and select valuable
meta-paths manually. To address this issue, [15] proposed GTN to learn to trans-
form a heterogeneous graph into useful meta-path graphs for each task without
any predefined meta-paths and generate node representations via convolution on
the learned meta-path graphs.

The key idea of these methods is to identify useful meta-paths to capture the
rich semantics in heterogeneous graph. However, in some applications, meta-
path fails to capture more subtle semantics. It is because that the information
passing by the meta-path, such as features of heterogeneous nodes, is lost in
the process of generating meta-path based neighbors. For example, the “Author
write−−−→ Paper written−−−−−→ Author” path describes the collaboration relation among
authors. However, it cannot depict the fact that Philip S. Yu and Jiawei Han
have many collaborations in data mining field but they seldom collaborate in
information retrieval field. This motivates us to design a novel graph neural
network to capture the fine-grained semantics under the same meta-path.
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In this paper, we propose Fine-grained Semantics-aware Graph Neural Net-
works (FS-GNN) to learn the node representations preserving both meta-path-
level and fine-grained semantics in heterogeneous graph without any predefined
meta-paths. Specifically, given the node features as input, we first use the type-
specific transformation matrix to project different types of node features into
the same space. Then we use a pre-trained meta-path level semantics-aware net-
work to learn the node representations for preserving meta-path level semantics.
Afterward, we use the learned node representations to guide the fine-grained
semantics-aware network to capture more subtle semantics between pairs of
nodes connected by the same relation via the coarse-to-fine grained attention
mechanism. It enforces the model to learn the optimal combination of the fea-
tures of heterogeneous neighbors and lead to better node representations.

We conduct extensive experiments on node classification to evaluate our
proposed model. And experimental results on several datasets show that FS-
GNN achieves state-of-the-art performance. The source code of this paper can
be obtained from https://github.com/jadbin/FS-GNN.

2 Related Work

We briefly mention related work in the field of heterogeneous graph mining,
graph embedding, and graph neural networks.

Heterogeneous Graph Mining. In recent years, heterogeneous graph analysis
attracts much attention because of rich structural and semantic information
in this kind of network [18]. As a general information modeling method, the
heterogeneous graph has been widely applied to many data mining tasks such as
link prediction [28], classification [1] and recommendation [17]. Meta-path [20]
can effectively capture subtle semantics among objects, and many works have
exploited meta-path based mining tasks. For example, [27] proposed a meta-
path based deep convolutional classification model for collective classification in
heterogeneous graph.

Graph Embedding. Graph embedding is proposed to embed graph-structured
data into a low dimensional space while preserving the graph structure and
property so that the learned embeddings can be applied to the downstream
tasks. For example, inspired by word2vec [12,13] proposed DeepWalk which uses
SkipGram to learn node embeddings from node sequences generated via random
walks over the graph. To address the heterogeneity of graph, [3] introduced
meta-path guided random walks and proposed metapath2vec for representation
learning in heterogeneous graph. HIN2Vec [4] learns representations of nodes
and meta-paths simultaneously via multiple prediction training tasks. Besides
these random the random walk based methods, many other approaches have
been proposed, such as the deep neural network based methods [22], the matrix
factorization based methods [23], etc. Furthermore, attributed graph embedding
models [9,11,25] have been proposed to leverages both graph structure and node
attributes for learning node embeddings.

https://github.com/jadbin/FS-GNN
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Graph Neural Networks. Graph neural networks (GNNs) extend the deep neural
network to deal with graph-structured data. Recently, many works generalizing
convolutional operation on the graph, and they are often categorized as spec-
tral methods and spatial methods. Spectral methods define graph convolution
based on the spectral graph theory. [2] developed convolution operation based
graph Fourier transformation. [8] then simplified the previous method by using a
linear filter to operate one-hop neighboring nodes. GTN [15] generates node rep-
resentations via convolution on the learned meta-path graphs. Spatial methods
which define convolution directly on the graph, operating on groups of spatially
close neighbors. For instance, GraphSAGE [6] performs various aggregators such
as mean-pooling over a fixed-size neighborhood of each node. GAT [21] adopts
attention mechanisms to learn the relative weights between two connected nodes.
HAN [24] leverages node-level attention and semantic-level attention to model
the importance of nodes.

Unlike the existing GNNs designed for heterogeneous network which learn the
node representations preserving meta-path level semantics, we introduce coarse-
to-fine grained attention to capture more subtle semantics difference among the
different pairs of nodes connected by the same meta-path. And experiments show
that this can further improve the effectiveness of the learned node representa-
tions.

3 Preliminaries

A heterogeneous graph, denoted as G = (V, E), consists of a node set V and a
link set E . A heterogeneous graph is also associated with a node type mapping
function φ : V → A and a link type mapping function ψ : E → R. A and R
denote the sets of predefined node types and link types. Figure 1 shows a toy
example of heterogeneous graph. It consists of three types of objects (author,
paper, and conference) and six types of relations (cite/cited, write/written, and
publish/published).

In heterogeneous graph, two nodes can be connected via different semantic
paths, which are called meta-paths. A meta-path is defined as a path in the
form of A1

R1−−→ A2
R2−−→ · · · Rl−→ Al+1, which describes a composite relation

R = R1 ◦ R2 ◦ · · · ◦ Rl between objects A1 and Al+1, where ◦ denotes the
composition operator on relations. Different meta-paths always reveal different
semantics. For example, as shown in Fig. 1, the “Author write−−−→ Paper written−−−−−→
Author” path means authors collaborating on the same papers, while “Author
write−−−→ Paper

published−−−−−−→ Conference” path means authors publishing papers on
conferences.

Existing graph neural networks designed for heterogeneous graph [15,24]
leverage meta-paths to capture the rich semantics. However, due to the infor-
mation passing by the meta-path, such as features of heterogeneous nodes, is
lost in the process of aggregating features of meta-path based neighbors, these
models fail to capture more subtle semantic difference among different pairs of
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Fig. 2. The overall architecture of FS-GNN.

nodes connected by the same meta-path. In this paper, we propose a graph neu-
ral network, namely FS-GNN, to exploit fine-grained semantics under the same
meta-path in heterogeneous graph.

4 Proposed Model

In this section, we will give more details of FS-GNN. The overall structure of
FS-GNN is shown in Fig. 2. FS-GNN consists of a Meta-path Level Semantics-
aware Network (MSN) and a Fine-grained Semantics-aware Network (FSN). We
first use MSN to capture meta-path level semantics without any predefined meta-
paths. We then use the node representations learned by the MSN as guidance for
FSN to capture fine-grained semantics via the coarse-to-fine grained attention.
Finally, we present the objectives for model training.

4.1 Meta-path Level Semantics-Aware Network

The goal of MSN is to learn the node representations preserving meta-path
level semantics without any predefined meta-paths. Following [15], we view the
meta-path as a combination of a list of edges with specific types and assign a
type-specific weight to each edge to evaluate the importance of the meta-path.

Specifically, we use a multi-layer graph convolutional network [8] to aggregate
the features of neighboring nodes on the weighted adjacent matrices. The layer-
wise propagation rule of feature convolution can be defined as follows:

f (l+1) = σ
(
D̃(l)−1

Ã(l)f (l)W (l)
f

)
(1)

Here, Ã(l) is the layer-wise weighted adjacency matrix as explained in the fol-
lowing paragraph. D̃(l)−1

is the degree matrix of Ã(l), and D̃
(l)
ii =

∑
j Ã

(l)
ij . σ (·)

denotes an activation function such as ReLU(·) = max(0, ·). f (l) ∈ R
|V|×d

(l)
f

denotes the hidden representations of node i in the lth layer.



76 Y. Wang et al.

The heterogeneous graph can be represented as a set of adjacency matrices
{Ar}r∈R, and Ar is a standard adjacency matrix with the edge type r. Fol-
lowing [15], we include an identity matrix in A as a specific type of edge for
self-connections. This trick allows the MSN to learn any length of meta-paths
up to l when l layers are stacked. The layer-wise weighted adjacent matrix can
be calculated as follows:

Ã(l) =
∑
r∈R

ω(l)
r Ar (2)

where ω
(l)
r is a type-specific weight factor which can be calculated from a learn-

able parameter w(l)
r ∈ R

|R| as follows:

ω(l)
r =

exp(w(l)
r )∑

k∈R exp(w(l)
k )

(3)

Due to the heterogeneity of nodes in heterogeneous graph, different types of
nodes have different feature spaces. Therefore, initially, we apply a type-specific
transformation Mφ(i) ∈ R

d
(0)
f ×d

φ(i)
in to project the features of different types of

nodes into the same feature space:

f (0)i = Mφ(i)xi (4)

where x can be either attribute features of nodes or one-hot vector for the nodes
without attributes.

The node representations f (l+1) are obtained by aggregating information from
the features of their neighborhoods f (l). After going through L layers of feature
convolution, the output representation of node i learned by MSN can be rep-
resented as fi = f (L)

i . We use the output f as meta-path level semantics-aware
node representations to guide FSN to capture the subtle semantics difference
under the same meta-path.

To stabilize the learning process of MSN, we have found extending our
method to employ multi-head mechanism to be beneficial, similarly to [21].
Specifically, with K heads executing the procedure of Eq. 1, we concatenate
the low-dimensional vectors of different heads and output the representation of
each node in the layer l + 1 as follows:

f (l+1)
i =

K

‖
k=1

f (l+1,k)
i (5)

where ‖ is the concatenation operator and M denotes the number of heads.

4.2 Fine-Grained Semantics-Aware Network

The goal of FSN is to exploit the fine-grained semantics in heterogeneous graph
to learn better node representations under the guidance of meta-path level
semantics-ware node representations.



Fine-Grained Semantics-Aware Heterogeneous Graph Neural Networks 77

FSN consists of several stacked layers. In each layer l, we would like the
output h(l+1)

i to be composed of K independent components, i.e., h(l+1)
i =

[c(l+1,1)
i , c(l+1,2)

i , · · · , c(l+1,K)
i ] where ck ∈ R

d
(l+1)
h

K (1 ≤ k ≤ K). Each compo-
nent ck is for describing the aspect of node i with fine-grained semantics. The
key challenge is to identify which neighbors actually affect the kth aspect of node
i. To this end, we propose the coarse-to-fine grained attention mechanism which
is presented as follows.

In each layer, similar to MSN, we first apply a type-specific linear transfor-

mation W
(l,k)
c ∈ R

d
(l+1)
h

K × d
(l)
h
K to each node i:

ĉ(l,k)i = W (l,k)
c c(l,k)i (6)

where h(l)
i ∈ R

d
(l)
h denotes the hidden representations of node i in the lth layer.

We use the meta-path level semantics-aware node representations learned
from MSN to guide FSN to capture the fine-grained semantics via the coarse-
to-fine grained attention. The attention scores between connected nodes can be
calculated as follows:

a
(l,k)
ij = v(l)� tanh(W (l)

1 f (l+1)
i + W

(l)
2 f (l+1)

j + W
(l)
3 ĉ(l,k)i + W

(l)
4 ĉ(l,k)j ) (7)

Here v(l) ∈ R
d
(l)
h is a learnable attention vector. W

(l)
1 ∈ R

d
(l+1)
h ×d

(l+1)
f , W

(l)
2 ∈

R
d
(l+1)
h ×d

(l+1)
f , W

(l)
3 ∈ R

d
(l+1)
h × d

(l+1)
h

K and W
(l)
4 ∈ R

d
(l+1)
h × d

(l+1)
h

K are trainable trans-
formation matrices. ·� represents transposition. Then we can obtain the atten-
tion weights by normalizing the attention scores with the softmax function:

α
(l)
ij =

exp(ω(l)
ψi,j

aij)
∑

k∈Ni
exp(ω(l)

ψi,k
aik)

(8)

where Ni is the neighborhood of node i in the graph. ω
(l)
S is a edge type-specific

weight factor which can be calculated from a learnable parameter w(l)
S ∈ R

|R|:

ω(l)
r =

exp(w(l)
r )∑

k∈R exp(w(l)
k )

(9)

The representation of node i in aspect k can be aggregated by the projected
features with the corresponding coefficients as follows:

z(l+1,k)
i = σ

⎛
⎝ ∑

j∈Ni

αij ĉ
(l)
j

⎞
⎠ (10)

Finally, we concatenate the low-dimensional vectors of different aspects and
output the representation of each node in the layer l + 1 as follows:

h(l+1)
i =

K

‖
k=1

z(l+1,k)
i (11)
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Similar to MSN, initially, we apply a type-specific transformation Mφ(i) ∈
R

d
(0)
h ×d

φ(i)
in to project the features of different types of nodes into the same feature

space as follows:
h(0)

i = Mφ(i)xi (12)

The node representations h(l+1) are obtained by aggregating information
from the features of their neighborhoods h(l). After going through L attention
layers, the output representation of node i learned by FSN can be represented
as hi = h(L)

i . And hi can be transferred to downstream tasks such as node
classification.

4.3 Model Training

We train MSN and FSN separately and here we give the objective functions. To
optimize the representations toward semi-supervised node classification task, we
integrate the node representations learned by the MSN or FSN into a classifier
implemented with a one-layer MLP with softmax function to predict the labels
of nodes as follows:

ŷi = softmax(MLPθ(oi)) (13)

where θ is the trainable parameters of the classifier, oi is output representation
of node i from MSN or FSN, i.e., oi = fi or oi = hi. Then we can minimize
the cross-entropy loss over all labeled nodes between the ground-truth and the
prediction:

L = − 1
|VL|

∑
i∈VL

C∑
j=1

yij · log ŷT
ij (14)

where VL is the set of labeled nodes and C denotes the number of classes.

5 Experiments

This section first introduces datasets and experimental settings, and then
presents performance comparison results with baselines in order to validate the
effectiveness of FS-GNN.

5.1 Datasets and Baselines

We follow existing studies [15,24] and use three heterogeneous graph benchmark
datasets for evaluation, including two citation network datasets ACM, DBLP and
one movie dataset IMDB. The statistics of datasets are summarized in Table 1.

ACM contains three types of nodes (paper (P), author (A), subject (S))
and four types of edges (PA, AP, PS, SP). The papers are labeled according to
the conference they published and divided into three classes (Database, Wireless
Communication, Data Mining). Paper features correspond to elements of a bag-
of-words represented of keywords.
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Table 1. The statistics of datasets.

Dataset ACM DBLP IMDB

# Nodes 8,994 18,405 12,772

# Edges 25,922 67,946 37,288

# Edge Type 4 4 4

# Features 1,902 334 1,256

# Classes 3 4 3

# Training 600 800 300

# Validation 300 400 300

# Test 2,125 2,857 2,339

DBLP contains three types of nodes (paper (P), author (A), conference (C))
and four types of edges (PA, AP, PC, CP). The authors are labeled research
area according to the conferences they submitted, and they are divided into
four areas (Database, Data Mining, Machine Learning, Information Retrieval).
Author features are the elements of a bag-of-words represented of keywords.

IMDB contains three types of nodes (movie (M), actor (A), director (D))
and four types of edges (MA, AM, MD, DM). The movies are divided into
three classes (Action, Comedy, Drama) according to their genre. Movie features
correspond to elements of a bag-of-words represented of plots.

To evaluate the performance of our proposed FS-GNN, we compare against
several state-of-the-art baselines as specified in [15], including the graph embed-
ding methods and graph neural network based methods.

DeepWalk [13] A graph embedding method that learns node embeddings
from the node sequences generated via random walks.

metapath2vec [3] A heterogeneous graph embedding method which per-
forms meta-path based random walk and utilizes skip-gram with negative sam-
pling technique to generate node embeddings.

GCN [8] A graph convolutional network which utilizes a localized first-order
approximation of the spectral graph convolution.

GAT [21] A graph neural network which uses attention mechanism to model
the differences between the node and its one-hop neighbors.

HAN [24] A graph neural network that exploits manually selected meta-
paths and leverages node-level attention and semantic-level attention to model
the importance of nodes and meta-paths respectively.

GTN [15] A graph neural network transforms a heterogeneous graph into
multiple new graphs defined by meta-paths and generates node representations
via convolution on the learned meta-path graphs.
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5.2 Experimental Setup

In our experiments, we conduct the semi-supervised node classification task to
evaluate the performance of our proposed model. The partition of datasets is
the same as the previous studies [15,24].

We train a two-layer FS-GNN for IMDB, and a three-layer FS-GNN for
ACM and DBLP. We initialized parameters w(l) in each layer of MSN and FSN
with a constant value. We randomly initialize other parameters following [5].
We adopt the Adam optimizer [7] for parameter optimization with weight decay
as 0.0005. We set the learning rate as 0.005 for DBLP and 0.001 for ACM and
IMDB. We apply dropout [19] with p = 0.5 to both layers’ inputs, as well as to
the normalized attention coefficients. For a fair comparison, we set the output
dimension to 64 following [15,24]. We set the number of heads M in MSN as 8,
and this means the output dimension of each head is 8. The number of different
aspects of each node in FSN is set as 8.

5.3 Node Classification Results

The results of the semi-supervised node classification task are summarized
in Table 2, where the best results are highlighted in bold. Following [15], we use
the Macro-F1 metric for quantitative evaluation. We present the mean F1 score
over 10 runs of our method and reuse the results already reported in [15] for
baselines. FS-GNN-M denotes that we only use the output of MSN to predict
the labels of nodes.

We can observe that: (1) Our FS-GNN outperforms all the baselines and
achieve state-of-the-art results. The performance gain is from two folds. First, the
guidance from MSN enforces the model to capture the meta-path level semantics.
Second, the model successfully learns to capture fine-grained semantics under the
same meta-path via the coarse-to-fine grained attention. (2) FS-GNN-M consis-
tently outperforms GCN and GAT which are designed for homogeneous graph.

Table 2. Results of node classification in terms of F1 score (%). Bold marks highest
number among all models. � marks statistically significant improvements over GTN
with p < 0.01 under a student t-test.

Method ACM DBLP IMDB

DeepWalk [13] 67.42 63.18 32.08

metapath2vec [3] 87.61 85.53 35.21

GCN [8] 91.60 87.30 56.89

GAT [21] 92.33 93.71 58.14

HAN [24] 90.96 92.83 56.77

GTN [15] 92.68 94.18 60.92

FS-GNN-M (ours) 92.46 93.81 60.54

FS-GNN (ours) 93.57� 94.72� 63.20�
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This proves that capturing rich semantics in heterogeneous graph leads to effective
node representations to achieve better performance. (3) FS-GNN-M achieves com-
petitive results compared with GTN. It demonstrates that the multi-layer convo-
lution on type-specific weighted adjacent matrices is capable of learning the impor-
tance of meta-path.

6 Conclusion

In this paper, we propose FS-GNN to learn the node representations of a hetero-
geneous network without any predefined meta-paths. It is able to learn meta-path
level semantics-aware node representations via multi-layer convolution on type-
specific weighted adjacent matrices. And it learns fine-grained semantics-aware
node representations under the guidance of the meta-path level semantics-aware
node representations via the coarse-to-fine grained attention mechanism. Exper-
imental results demonstrate that our FS-GNN achieves state-of-the-art perfor-
mance on several semi-supervised node classification benchmarks. The future
directions include studying the efficacy of coarse-to-fine grained attention lay-
ers combined with other GNNs such as GTN [15]. Also, we will try to extend
FS-GNN and apply it to other tasks such as graph classification [10,26].
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