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Abstract. Bus travel time estimation in urban city is of great impor-
tance, which reduces passengers’ waiting time and improves the quality
of service of bus transportation. However, the travel time estimation is
affected by various factors, including spatio-temporal dependencies (e.g.
traffic conditions and road networks) and external factors (e.g. weather).
Moreover, the bus dwelling and transit time are predominantly affected
by different factors and hence have different patterns, with a fact that
there are not so much study on how to divide the dwelling and tran-
sit areas and to build independent models for them. In this paper, we
propose an end-to-end deep learning framework for Bus Travel Time
Estimation (called DeepBTTE) where the target path is of arbitrary
length. Two independent spatio-temporal components that use 1D-CNN
and LSTM are adopted to estimate the dwelling time and transit time
separately, which are then combined for the final estimation. We con-
duct experiments to evaluate our model using a real-world dataset. The
experimental results show that our approach significantly outperforms
other existing methods.

Keywords: Bus travel time estimation · Spatio-temporal model ·
Deep learning

1 Introduction

With the development of urban transportation and data sensing technolo-
gies, a large amount of data is created every day within transportation, so
there is a trend of using data for the Intelligent Transportation Systems (ITS)
[13,14] where travel time estimation plays a critical role [5]. Through travel time
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estimation, it becomes possible, to reduce passenger’s waiting time and bring
about various ITS applications. Among different transportation modes, the bus
system has the largest coverage and the lowest overall cost. Hence, bus travel
and arrival time estimation are of crucial importance for the efficiency and the
quality of public transportation service.

The traditional methods for predicting travel time or arrival time are based
on historical data. There are research that treated the traffic trajectory as time
series data, and used the Autoregressive Integrated Moving Average (ARIMA)
model to predict the travel time of vehicles on the highway [4]. And Wu et al.
[22] used Support Vector Machine (SVM) to predict the travel time in next time
step by the data from past time steps. These methods enable relatively accurate
predictions of arrival time for taxis or private cars, but are not very effective
for the buses. The bus runs on a fixed route and needs to stop at various bus
stations. Therefore, the dwelling time of a station has a great influence on the
total travel time. Moreover, the bus dwelling and transit time are affected by
different factors and hence have different patterns. Using existing methods to
directly predict the travel time similar to those of taxis or private cars may lead
to inaccurate results. Actually, the estimation of dwelling time and transit time
of buses could be viewed as two different tasks which need further optimization
and integration, yet few studies have focused on how to divide the dwelling and
transit areas and how to build independent models for them [18].

To address the limitations of previous work, in this paper we propose an
end-to-end framework for Bus Travel Time Estimation based on 1D-CNN and
LSTM, called DeepBTTE. The primary contributions are summarized as follows:

• We use a spatio-temporal component to learn the spatio-temporal dependen-
cies from raw GPS sequences. The component consists of two parts: 1) a
convolutional layer that transforms the GPS sequences to a series of feature
maps and captures the spatial dependencies from consecutive GPS points
directly; 2) a recurrent layer that learns the temporal dependencies of the
obtained features and the embedded external features.

• We adopt an attribute component to embed the external factors, including
temperature, weather condition, day of the week, distance of the path, vehicle
conditions, the habits of drivers, etc. The latent representations are fed into
the model to enhance the representation capability of these external factors.

• We propose a model for the bus travel time estimation which handles arbitrary
length of bus trajectories. Given any two stations pa and pb in bus route,
the model outputs the estimation of the cost of time from pa to pb. Two
separated components are used to estimate the transit time and the dwelling
time respectively.

• We conduct extensive experiments on real-world datasets to verify the per-
formance of the proposed model. The mean absolute percentage error on
real-world dataset is 6.82%, which significantly outperforms existing meth-
ods.

The remainder of this paper is organized as follows. Section 2 describes the
related works. Section 3 introduces our problem and the data preprocessing pro-
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cess. Section 4 shows three components of our model. Section 5 shows the experi-
mental setup, and Sect. 6 compares the estimate performance between our model
and other methods on a real-world dataset. Section 7 presents the conclusion and
future work.

2 Related Work

There are a large number of studies on the travel time estimation. Various mod-
els, such as models based on historical data, statistical models, Kalman Filtering
models and models based on Deep Learning have been proposed [1]. Wall et al.
[20] presented a model to predict the travel time based on historical average.
Chen et al. [7] used a dynamic model for bus travel time predicting. The model
consists of two elements, an artificial neural network model and a Kalman Filter
based model. Balasubramanian et al. [3] proposed a bus travel time prediction
model which took the periodicity of data into consideration and it also used the
real-time bus information to improve the prediction accuracy.

There are some researches on bus travel time prediction based on deep learn-
ing. The followings describe the travel time prediction methods for taxis or
private cars used deep learning. Existing solutions could be divided into two
categories, route-based methods and OD-based methods [19]. The former pre-
dicts the travel time with path route given and the latter predicts the travel
time only with the origin and destination given.

Route-based methods [2,17] can be categorized as segment-based methods
and sub-path-based methods. Segment-based methods treat a path as a sequence
of independent road segments and then predict the travel time of each segment
individually. Segment-based methods ignore the correlation between segments
and it will accumulate the prediction error of each segment, which leads to
inaccurate predictions. Different from segment-based methods, sub-path-based
methods consider the correlation between different segments and treat a path
as a set of sub-paths. For example, Zhang et al. [24] proposed a method called
DEEPTRAVEL to predict the travel time based on neural network with auxiliary
supervision, which used dual interval loss mechanism to optimize loss function
both forward and backward. Duan et al. [8] and Liu et al. [16] predicted the
travel time based on LSTM, and the results showed that LSTM has a great
ability on capturing the temporal dependencies of temporal sequences. However,
these two methods didn’t consider the influence of weather and other external
factors, so they are limited in improving the accuracy of travel time prediction.

Jindal et al. [11] proposed a model called ST-NN(Spatio-Temporal Neural
Network) based on deep neural network, which can predict the travel time when
only the origin and destination are given. Then the paper developed a carpool
system based on reinforcement learning (RL). In ECML/PKDD Discovery Chal-
lenge 2015 competition, Lam et al. [15] estimated the travel time of taxis in real-
time based on trip matching and ensemble learning without knowing the whole
path. Wang et al. [21] presented a method called DeepTTE using Attribute
Component, Spatio-Temporal Component and Multi-task Learning Component
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to capture the external features and spatio-temporal correlations individually,
and finally combining them to predict travel time. In this paper, we propose an
end-to-end deep learning framework to learn the pattern of bus travel time. In
this way, bus travel time can be effectively estimated.

3 Preliminaries and Data Preprocessing

In this section, we briefly introduce the bus travel time prediction problem and
the data preprocessing process.

3.1 Bus Travel Time Prediction Problem

The travel time of a bus are composed of the dwelling time at stations and
transit time between stations. Therefore, we defined some concepts as follows.

Historical Trajectory. The trajectory of one bus from station i to station j
is defined as T = {pi, ..., pj}, pi = {pi.lat, pi.lng, pi.in, pi.out}, containing the
latitude, longitude, inbound time and outbound time of station i. Moreover, for
each trajectory T , we add weather, temperature, carID, driverID, timeslotID
and weekday as external features.

Dwelling Time. The dwelling time of station i is defined as

pi.dt = pi.out − pi.in (1)

Transit Time. The transit time of station i − 1 to station i is defined as

pi.tt = pi.in − pi−1.out (2)

Arrival Time. The arrival time of station i is defined as

pi.at = pi.dt + pi.tt (3)

Previous Dwelling Time. The previous dwelling time of station i is the
dwelling time of previous time slot (length of time slot is 10 min) at station
i, which is written as

pti.pdt = pt−1
i .dt (4)

The notations and their meanings are shown in Table 1. We first construct
deep models on the estimation of the transit time and dwelling time of the
given path and the corresponding external factors, based on the spatio-temporal
features extracted from trajectories. Then given a departure time and any two
stations pa and pb in bus route, the model outputs the estimation of the cost of
time from pa to pb. We assume that the travel path from pa to pb is the sub-path
of bus route with arbitrary path length.
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Table 1. Notations and their meanings

Notation Meaning Notation Meaning

T A trajectory of a bus pi Station i

pi.lat The latitude of station i pi.lng The longitude of station i

pi.in Bus arrival time at station i pi.out Bus departure time at station i

carID Identity of the vehicle driverID Identity of the driver

timeslotID The time slot of day weekday The day of week

weather Weather information pi.tt Transit time of station

pi.dt Dwelling time of station i pi.at Arrival time of station i

pi.pdt Previous dwelling time of station i

3.2 Data Preprocessing Process

Trajectory Data Processing. The raw bus-to-departure data includes all
inbound and outbound information. Before performing feature extraction, we
need to drop duplicate and invalid data. Then, group the data by date, direc-
tion(uplink or downlink) and carID. For each trajectory, the dwelling time and
transit time of each station are calculated. We fill in the dwelling time and transit
time according to two situations. In weekdays, we populate them with weekdays’
average value. And on weekends, we fill them with weekends’ average value. If
more than 50% station data of a trajectory is lost, then drop this trajectory.

External Feature Processing. External features include weather condition,
driverID, carID, timeslotID and weekday. We fill the weather data with the
latest hour data if there is any missing data. And we choose temperature and
weather description as two features from weather information which have great
impact on bus travel time. We also associate each trajectory with a driver accord-
ing to the schedule data.

4 Model Description

As shown in Fig. 1, this model consists of three components. The attribute com-
ponent is used to process the external factors (e.g. weather) and basic infor-
mation (e.g. start time). The output of the attribute component will be part
of the input of other components. The spatio-temporal component is the main
component that learns the spatial correlations and temporal dependencies from
the GPS sequences. Finally, the fusion estimation component forecasts the bus
travel time of a given path based on the previous two components.

4.1 Attribute Component

The travel time of a bus is affected by many factors. For instance, in the peak
hour there are many vehicles on the road and numerous passengers waiting at
the station, so buses have to spend more time to finish a route. But in non-peak
hour, the travel time is shorter. So the travel time is time-varying. Furthermore,
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Fig. 1. Overall Framework. Dis denotes distance, DrID denotes driverID, Wea denotes
weather, Tslot denotes time slot, CID denotes carID, PDT denotes previous dwelling
time, Concat denotes concatenation operation.

the travel time is also affected by many external factors, like weather, driver
habit, bus running information and day of week. We use a simple and efficient
component to incorporate such factors into our model, which we call attribute
component.

As shown in Fig. 1, we use weather, driverID, carID, weekday to repre-
sent external factors respectively, the timeslot represents the start time. These
attributes are categorical values that can not be fed into the neural network
directly. So we need to use the embedding method [9] to transform each cat-
egorical attribute into the low-dimensional real vector. More specifically, the
embedding method maps each categorical value x ∈ [V ] to a real space RE×1,
where V represents the vocabulary size of categories value and E represents
the dimension of embedding space. Usually, E << V . The embedding method
effectively reduces the input dimensions and thus reduces the computational
complexity.

Besides the embedded attributes, other important attributes (e.g. travel
distance and dwelling time of the previous time slot) are incorporated. We
use Δdpa

→ dpb
to denote the total distance traveling from station pa to pb

along the path, i.e., Δdpa
→ dpb

=
∑b−1

i=a Dis (pi, pi+1) where Dis is the geo-
graphical distance between two bus stations. Similarly, we use Δtpa

→ tpb
to

denote the total dwelling time of previous time slot between pa and pb, i.e.,
Δtpa

→ tpb
=

∑b−1
i=a Time (pi, pi+1) where Time is the total dwelling time of

previous time slot between two bus stations. Then, we concatenate the obtained
embedded vector together with Δdp1 → d|T | and Δtp1 → t|T |, respectively. We
denote the concatenation as the output of attribute component.
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4.2 Spatio-Temporal Component

The spatio-temporal component has two sub-components. Dwelling time estima-
tion component is used to predict the total dwelling time of each station, and
the transit time estimation component is used to predict the total transit time
between stations. These two components have the same structure, they are com-
posed of two parts. The first part is a geo-convolutional neural network which
transforms raw station GPS sequences to a series of feature maps. The second
part is the recurrent neural network which learns the temporal correlations of
obtained feature maps from the previous part.

Geo-Conv Layer. As we mentioned before, a historical trajectory T is a
sequence of GPS points

{
p1, ..., p|T |

}
where each pi represents one bus station

which contains the corresponding longitude, latitude, arrival and departure time.
Extracting spatial dependencies from GPS sequences is critical to dwelling time
and transit time estimation. The convolutional neural network has been widely
used for capturing spatial relationships. A typical convolutional network consists
of multiple convolutional filters and the filters learn the spatial relationships in
the input by applying the convolution operation. Since the spatial dependency
cannot be obtained directly from GPS coordinates, Zhang et al. [25] found a way
to transform the GPS coordinates to capture the spatial feature. They first par-
titioned the area where all GPS records are located into I×J grids and then map
each GPS coordinate into a grid cell, and finally, they used 2D-CNN to extract
the spatial correlation from the number of the grid cell. However, in our case,
directly mapping the GPS coordinates into grid cells is unsuitable. Firstly, the
GPS coordinates of each bus station are fixed and limited, and they don’t need
to be mapped. Secondly, if two stations are mapped to the same cell we can’t
distinguish them. Thus, we use a Geo-Conv layer which can capture the spatial
dependency in geo-location sequences while retains the location information.

Fig. 2. Illustration of Structure of the Geo-Conv Layer. Dis denotes distance, PDT
denotes previous dwelling time.
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The architecture of Geo-Conv layer is shown in Fig. 2. We first use a non-
linear mapping to transform each station GPS point pi in the sequence into
vector. loci ∈ R8.

loci = tanh (Wloc · [pi.lat ◦ pi.lng]) (5)

where ◦ denotes the concatenate operation and Wloc is a learnable weight matrix.
Thus, the output sequence loc ∈ R8×|T | indicates the non-linear mapping for
each GPS point. loci can be seen as an 8-channel input. Each channel represents
the geographical features of the original GPS sequence. We use a 1D-CNN [21],
with parameter matrix Wconv ∈ Rk×8, to extract spatial features where k is the
kernel size of a filter. It applies the convolutional operation on the sequence loc,
along with a one-dimensional sliding window. The i-th dimension of its output
is denoted as:

locconvi = σ (Wconv ∗ loci:i+k−1 + b) (6)

where ∗ denotes the convolutional operation, b is the bias term, loci:i+k−1 is the
subsequence of loc from i to i + k − 1 and the σ is an activation function.

The sub-sequence from station pi to pi+k−1 is defined as the i-th local path.
The locconvi represents the spatial feature of the i-th local path. We get the
feature map of local paths with shape Rc×(|T |−k+1), where c is the number of
filters.

However, in our task, the transit time and dwelling time are highly correlated
with the total distance of the path and the total dwelling time of previous time
slot, respectively. We can’t extract the geometric distance and previous dwelling
time from latitude/longitude through 1D-CNN. Therefore, we further append a
column to the previously obtained feature map in Geo-Conv layer. As shown in
Fig. 2, in transit time estimation component, the i-th element of new appended
column is the distance of the i-th local path, i.e.,

∑j+k−1
j=i+1 Dis (pj−1, pj). Sim-

ilarly, in dwelling time estimation component, the i-th element of new column
is the previous dwelling time of the i-th local path, i.e,

∑j+k−1
j=i+1 Time (pj−1, pj).

Finally, we obtain the feature map of shape R(c+1)×(|T |−k+1) by Geo-Conv layer.
These feature maps are denoted as locd and loct.

Recurrent Layer. The feature maps locd and loct capture the spatial depen-
dencies from all local paths. To further capture temporal dependencies, we intro-
duce the recurrent layers. The recurrent neural network (RNN) is widely used
for capturing the temporal dependency in sequential learning. The RNN can
‘memorize’ the history in the processed sequence. When processing sequences
in each time step, it updates its memory (i.e., hidden state) according to the
current input and the hidden state of the previous step. The output of the RNN
is the hidden state sequence of the input sequence at all time steps.

In both sub-components of spatio-temporal component, the feature map (i.e.,
locd and loct) by the Geo-Conv layer is set as the input of the recurrent neural
networks. As mentioned before, the length of feature map is |T |−k+1. To further
improve the estimating ability of recurrent layers, we incorporate the attributes’
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information (i.e., attrd and attrt) obtained from the attribute component. A
simple updating rule of the RNN can be expressed as:

hi = σ
(
Wx · locfi + Wh · hi−1 + Wa · attr

)
(7)

where hi represents the hidden state after the processing of the i-th local path
and σrnn is the activation function. Wx, Wh and Wa are learnable parameters’
matrix of spatial features. However, the RNN usually fails when processing the
long sequence due to the vanishing gradient and exploding gradient problem [10].
To overcome this issue, we use Long Short-term Memory [10] layer to replace it.
Compared with RNN, the LSTM uses the input gate and forget gate to control
the in/out information flow. Such gates enable LSTM to retain important infor-
mation and filter out the unimportant information which effectively mitigates
the gradient vanishing/exploding problem.

Now, we obtain the spatio-temporal sequence
{
h1, h2, ..., h|T |−k+1

}
from raw

data by utilizing the Geo-Conv layer and the recurrent layer.

Estimation. Since the length of each bus trajectory is variable, the length of
spatio-temporal feature sequence {hi} is also variable. To estimate the transit
time/dwelling time of the entire path directly, we need an attention model that
can calculate sets of hidden states of different sizes. The attention mechanism is
essentially the weighted sum of sequence {hi}, where the weights are parameters
learned by model. Thus, we have that:

hatt =
|T |−k+1∑

i=1

αi · hi (8)

where αi is the weight for the i-th local path, and the summation of all weights
equals to 1. In our case, the weight of each local path is related to the spatial
information of the local paths, as well as external features such as start time
slot, the weekday and the weather condition. The attention mechanism can be
expressed as:

zi = 〈σatt (attr) , hi〉
αi =

ezi
∑

j ezj
(9)

where attr represents the external factors captured by attribute component, {hi}
represents the spatial-temporal feature of local path, 〈·〉 represents the inner
operator and the σattr is a non-linear mapping which maps attr to a vector with
the same length as hi. Substituting Eq. (9) into Eq. (8), we obtain the attention
based vector hattr.

Finally, we pass hattr to several Residual fully-connected layers with equal
size. In our model, we use σfi to denote the i-th layer. For the first layer, the
output of this layer is σf1(x). For the rest of the residual fully-connected layers,
we use x to denote the output of i-th layer. Then, the output of the (i + 1)-th
express as x ⊕ σfi+1(x) where the ⊕ is the element-wise add operation. At the
last layer, we use a single neuron to obtain the estimation.
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4.3 Fusion Estimation Component

In fusion estimation component, we combine the previous components and esti-
mate the total arrival time of the input path:

total = ˆttransit ◦ ˆtdwell ◦ attr (10)

where total represents the input of fusion estimation component, ˆttransit repre-
sents the estimation of transit time, ˆtdwell represents the estimation of dwelling
time, and attr represents the embedded vector of external features. We pass
total to several fully-connected layers. At the last layer, we use a single neuron
to obtain the estimation.

5 Experimental Setup

5.1 Data Description

We evaluated our model on a real-world dataset. This experiment is based on
the bus-to-departure data and the corresponding bus schedule data of Xiamen
22 bus from September 1, 2018, to February 28, 2019. The bus-to-departure
data contains 301,130 records. After data preprocessing, as mentioned in Data
Preprocessing Process, we obtain 9523 trajectories information. The route map
of 22 bus is shown in Fig.3, where the total route length is about 14 km. Due
to the departure interval of 22 bus is 10 min, we set the length of time slot as
10 min. Each trajectory information contains the longitude, latitude, dwelling
time, transit time of each station. Finally, we intercept arbitrary-length paths
from complete trajectory information. The shortest trajectory contains 10 sta-
tions and the longest trajectory contains 25 stations (Number of bus station on
Route 22).

The trajectories in Xiamen dataset are associated with the corresponding
weekday, timeslot, driverID, and carID.

5.2 Parameter Setting

The parameters we used in our experiment are described as follows:

• In attribute component, we embed driverID to R3, carID to R3, weekID to R3,
timeslotID to R4, temperature to R3 and corresponding weather condition to
R3.

• We set the same parameters of Geo-conv for both sub-components of spatio-
temporal component. The number of filters c = 32 and we use the ELU as
the activation function. The ELU is defined as ELU(x) = ex − 1 for x ≤ 0
and ELU(X) = x for x > 0. For kernel size k, which represents the length of
local path, we set the size of k to 3 to evaluate our model.

• We set the same parameters of the recurrent layer for both sub-components.
We use tanh as the activation function and set the size of the hidden vector
as 128.
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Fig. 3. Route of No. 22 Bus in Xiamen City.

• In fusion estimation component, the ReLU function is as the activation func-
tion of the fully-connected layers. We set the number of the fully-connected
layers as 2 and the size of each layer as [64, 32].

In the Xiamen dataset, we divided the trajectories generated in February
2019 into two parts, one for evaluation and the other for test. Except for the
trajectories generated in February 2019, the rest of trajectories are used as the
training set. We adopt an Adam optimization algorithm to train the parameters.
The learning rate of Adam is le−4, the batch size during training is 64 and the
epochs of training are 50.

Our model is implemented with PyTorch 1.1.0, a widely used Deep Learning
Python library. We train/test our model on the server with one NVIDIA TITAN
X GPU.

6 Results and Analyses

6.1 Performance Comparison

Because there is little research on bus arrival time estimation, to demonstrate
the strength of our model, we use Root Mean Square Error (RMSE) [6], Mean
Absolute Error (MAE) [6], and Mean Absolute Percentage Error (MAPE) [12]
as metrics to compare our model with other baseline methods, including:

• AVG: AVG simply calculates the average transit time and dwelling time of
each station on the training set, and estimates the arrival time of given trajec-
tory based on the average transit time/dwelling time calculated on training
set.
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• GBDT: Gradient Boosting Decision Tree (GBDT) [23] is a powerful ensemble
method. In our case, the input of GBDT is the same as the input of our model,
including all the inputs of attribute component and the raw GPS sequences.
We use a GBDT to estimate the arrival time. Because of the lengths of GPS
sequences are variable, GBDT can’t handle the sequences directly. Thus, we
transform each GPS sequence to fixed length of 25.

• MLPBTTE: Multi Layer perception, a 5-layer Perception is used to estimate
the time of arrival. The activation function of Mlp is ReLU, the input of Mlp
is the concatenation of GPS sequences and embedded external features. The
size of hidden layers in Mlp is fixed as 128.

• Single Spatio-Temporal Model: In the case of not estimating the dwelling
time and transit time separately, a single spatio-temporal component is used
to estimate the bus arrival time. We concatenate the output of spatio-
temporal component and attribute component and the concatenation is
passed to a residual fully-connected layer to obtain the estimation.

• RnnBTTE: RnnBTTE is a simplified model of our model. We replace the
LSTM in the recurrent layer with RNN and use mean pooling to process the
output of the recurrent layer into a 128-dimensional feature vector. We con-
catenate the feature vector and the output of attribute component. Finally,
the concatenation is passed to the fusion estimation component to obtain the
estimation.

Table 2. Performance comparison

RMSE MAE MAPE

AVG 602.3859 423.2324 25.7433

GBDT 506.1589 389.7922 21.6339

MlpBTTE 281.6376 200.4457 10.3773

RnnBTTE 195.2742 144.9747 7.5667

DeepBTTE 172.5082 127.8042 6.8258

Single Spatio-Temporal Model 203.4458 147.6104 7.7000

As shown in Table 2, simply using the average transit time and dwelling time
of each station leads to a very inaccurate result. The ensemble method GBDT
is much better than AVG. MlpBTTE shows a better performance than AVG
and GBDT. However, it does not consider the spatio-temporal dependencies in
data. The RnnBTTE uses the RNN in recurrent layers to capture the spatio-
temporal dependencies in data. It achieves 7.57% on Xiamen dataset which is
much better than above mentioned methods. Our DeepBTTE model further
significantly outperforms RnnBTTE and other methods. The mean absolute
percentage error of Xiamen dataset is only 6.82%.
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6.2 Effect of Separate Estimation

We use single spatio-temporal model to estimate bus arrival time. Compared
with DeepBTTE, single spatio-temporal model makes an overall estimation of
arrival time. As shown in Table 2, Our DeepBTTE model outperforms single
spatio-temporal model. More specifically, the bus dwelling time and transit time
are affected by different factors and hence have different patterns. In our model,
we use two independent components to estimate dwelling and transit time sep-
arately which can enhance the estimation performance.

6.3 Effect of External Factors

To evaluate the effectiveness of different external factors, We devise a series of
controlled experiments on Xiamen dataset. For each experiment, we eliminate
one attribute. As shown in Table 3, we find that weekdays affect the estimation
significantly. This conforms to reality that the traffic condition of 22 bus line
is completely different on weekdays and weekends. The average arrival time on
weekends is longer than that of weekdays. Eliminating the weather causes an
error growth of 0.47%. This also confirms to reality that the average arrival time
will be longer under bad weather condition. Eliminating the driver and vehicle
information have little effect on the results.

Table 3. Effect of different attributes

RMSE MAE MAPE

Eliminate carID 175.0516 131.7047 6.9885

Eliminate driverID 173.0027 128.1601 6.8483

Eliminate weekday 194.3426 145.1981 7.5775

Eliminate weather 181.0990 136.6376 7.3041

Without eliminate 172.5082 127.8042 6.8258

6.4 Training and Predicting Time

Table 4 shows the training and predicting time of each method (i.e., AVG,
GBDT, MlpBTTE, RnnBTTE and DeepBTTE), the GPU we used to train our
model is a TITAN X. Despite the training time of RnnBTTE and DeepBTTE
are longer, it is acceptable in offline training. In practical applications, we can
obtain a lot of offline resources for pre-training. During the test phase, estimat-
ing about 1000 paths takes DeepBTTE 0.0015 s, RnnBTTE 0.0018 s, MlpBTTE
0.0005 s on GPU.
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Table 4. Comparative training time and testing time

Training time (s) Predicting time (s)

GBDT 3505 0.0132

MlpBTTE 161 0.0005

RnnBTTE 306 0.0018

DeepBTTE 355 0.0015

Single Spatio-Temporal Model 231 0.0016

7 Conclusion and Future Work

In this paper, we study the problem of estimating bus travel time for any given
path in one route. We propose an end-to-end framework based on 1D-CNN and
LSTM network. This model can effectively capture the spatio-temporal depen-
dencies from raw GPS sequences. Our model also considers various external fac-
tors such as weather condition and time which may affect the arrival time. We
evaluate our model on a real-world dataset. The results show that our method
achieves a high estimation accuracy and outperforms the other methods signifi-
cantly. For future work, we will enhance the performance of our model and add
additional data as model inputs, such as GPS points of intersections and traffic
lights and the number of passengers getting on and off at each station.
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