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Abstract. The collaborative knowledge graphs such as Wikidata exces-
sively rely on the crowd to author the information. Since the crowd is
not bound to a standard protocol for assigning entity titles, the knowl-
edge graph is populated by non-standard, noisy, long or even sometimes
awkward titles. The issue of long, implicit, and nonstandard entity rep-
resentations is a challenge in Entity Linking (EL) approaches for gain-
ing high precision and recall. Underlying KG in general is the source of
target entities for EL approaches, however, it often contains other rel-
evant information, such as aliases of entities (e.g., Obama and Barack
Hussein Obama are aliases for the entity Barack Obama). EL models
usually ignore such readily available entity attributes. In this paper,
we examine the role of knowledge graph context on an attentive neu-
ral network approach for entity linking on Wikidata. Our approach con-
tributes by exploiting the sufficient context from a KG as a source of
background knowledge, which is then fed into the neural network. This
approach demonstrates merit to address challenges associated with entity
titles (multi-word, long, implicit, case-sensitive). Our experimental study
shows ≈8% improvements over the baseline approach, and significantly
outperform an end to end approach for Wikidata entity linking.

Keywords: Knowledge graph context · Wikidata · Entity linking

1 Introduction

Entity linking (EL) over Web of data often referred as Named Entity Disam-
biguation (NED) or Entity Disambiguation is a long-standing field of research
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in various research communities such as information retrieval, natural language
processing, semantic web, and databases since early approaches in 2003 [2]. EL
generally comprises two subtasks: entity recognition that is concerned with the
identification of entity surface forms in the text, and entity disambiguation that
aims at linking the surface forms with structures and semi-structured knowl-
edge bases (e.g. Wikipedia), or structured knowledge graphs (e.g. DBpedia [1],
Freebase [4] or Wikidata [24]).

Research Objectives, Approach, and Contribution. Uniqueness of Wiki-
data is that the contents are collaboratively edited. As at April 2020; Wikidata
contains 83,151,903 items and a total of over 1.2B edits since the project launch1.
User-created entities add additional noise and vandalism in Wikidata [13] since
users do not follow a strict naming convention nor a standardised approach;
for instance, there are 1788134 labels in which each label matches with at least
two different URIs. The previous approaches for EL [18,19] on the textual con-
tent consider the well-established knowledge bases such as Wikipedia, Freebase,
YAGO [22], and particularly DBpedia. Thereby, Wikidata as the core back-
ground KG along with its inherent challenges, has not been studied particularly
for the task of EL.

Besides the vandalism and noise in underlying data of Wikidata, collabora-
tive editing of its content adds several aliases of the entities and its description
as entity properties (attributes). This enables Wikidata as a rich source of addi-
tional information which may be useful for EL challenges. Thus, in this work, we
analyse the impact of additional context from Wikidata on Attentive Neural Net-
works (NN) for solving its entity linking challenges. We develop a novel approach
called Arjun, first of its kind to recognise entities from the textual content and
link them to equivalences from Wikidata KG. An important strength of Arjun is
an ability to link non-Wikipedia entities of Wikidata by exploiting unique char-
acteristic of the Wikidata itself (i.e. availability of entity aliases as explained
in Sect. 2). Please note, focus of this paper is not to propose a black-box deep
learning approach for entity linking using latest deep learning models such as
transformers or graph neural networks. In this paper we hypothesise that even
though Wikidata is noisy and challenging, but its special property to provide
aliases of entities can help an NN better understand the context of the potential
entities. Since the concept of informing a neural network using contextual data
from a KG is our proposed-solution in this work, we believe that traditional neu-
ral networks make it more transparent to understand the impact of KG context.
Hence, our approach contributes to model attentive neural networks respecting
the contextual content and trained on a sizable dataset. In particular, Arjun is
a pipeline of two attentive neural networks coupled as follows:

1. In the first step, Arjun utilises a deep attentive neural network to identify
the surface forms of entities within the text.

2. In the second step, Arjun uses a local KG to expand each surface form from
previous step to a list of potential Wikidata entity candidates. Unlike [15],

1 https://www.wikidata.org/wiki/Wikidata:Statistics.

https://www.wikidata.org/wiki/Wikidata:Statistics
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Arjun does not use a pre-computed entity candidate list and search entity
candidates among all the Wikidata entities.

3. Finally, the surface forms, coupled with potential Wikidata candidates, are
fed into the second attentive neural network to disambiguate the Wikidata
entities further.

Although simple, our approach is empirically powerful and shows ≈8% improve-
ment over the baseline. We also release the source code and all utilised data
for reproducibility and reusability on Github2. The remainder of the article is
structured as follows: Sect. 2 motivates our work by discussing Wikidata specific
entity linking challenges. Section 3 discusses related work. This is followed by
the formulation of the problem in Sect. 4. Section 5 describes the approach. In
Sect. 6 we discuss the experimental setup and the results of the evaluation. We
conclude in Sect. 7.

2 Motivating Examples

We motivate our work by highlighting some challenges associated with link-
ing entities in the text to Wikidata. Wikidata is a community effort to collect
and provide an open structured encyclopedic data. The total number of entities
described in Wikidata is over 54.1 million [24]. Wikidata entities are represented
by unique IDs known as QID and QIDs are associated with entity labels. Figure 1
shows three sentences extracted from the dataset released by ElSahar et al.
[9] which aligns 6.2 million Wikipedia sentences to associated Wikidata triples
(<subject, predicate, object>).

Fig. 1. Wikidata Entity linking Challenges: Besides the challenge of capitalisation of
surface forms and implicit nature of entities, Wikidata has several specific challenges,
such as very long entity labels and user created entities.

In the first sentence S1, the surface form ASIC is linked to a Wikidata entity
wiki:Q217302 and the entity is implicit (i.e. no exact string match between sur-
face form and entity label). However, ASIC is also known as ‘Application Specific
2 https://github.com/mulangonando/Arjun.

https://github.com/mulangonando/Arjun
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Integrated Circuit’ or Custom Chip. Therefore to disambiguate this entity, back-
ground information about the surface form will be useful. Please note, we will use
this sentence as a running example “Sentence S1”. In the second sentence S2 the
surface form Andhra Pradesh High Court is linked to wiki:Q3276107 which
has 14 words in the full entity label3. It is also important to note here that the
surface form Andhra Pradesh High Court also contains two sub-surface forms
Andhra Pradesh and High Court which are the entity labels of the two Wiki-
data entities wiki:Q1159 and wiki:Q671721. An ideal entity linking tool first
has to identify Andhra Pradesh High Court as a single surface form then dis-
ambiguate the surface form to a long entity label. In Wikidata, entity labels
and associated aliases can be long (e.g. wiki:Q1156234, wiki:Q15885502).
In addition there are long erroneous entity labels and aliases, such as entity
wiki:Q441697904 with 62 words in the label and entity wiki:Q12766033 with
129 words in one alias. Presence of long multi-word entity labels is also specific
to Wikidata and poses another challenge for entity linking. Furthermore, in sen-
tence S3 illustrated in the Fig. 1, the surface form tetrahydrofolate is linked to
wiki:Q168453 which not only has a multi-word entity label and lowercase surface
forms but also contains several numeric and special, non-alphanumeric ASCII
characters. Such entities are not present in other public KGs. This is because
unlike Wikidata other KGs do not allow users to create new entities and the
entity extraction process depends on unique IRIs of Wikipedia pages, WordNet
taxonomy, and GeoNames. A large number of user-created entities poses specific
challenges for entity linking. Therefore, it is evident that in addition to generic
entity linking challenges such as the impact of capitalisation of surface forms
and the implicit nature of entities which are tackled up to a certain extent by
approaches for entity linking over Wikipedia and DBpedia [19], Wikidata adds
some specific challenges to the entity linking problem.

3 Related Work

Several comprehensive surveys exist that detail the techniques employed in entity
linking (EL) research; see, for example, [2]. An elaborate discussion on NER has
been provided by Yadav Bethard [25]. However, the use of Knowledge Graph as
background knowledge for EL task is a relatively recent approach. Here, a knowl-
edge graph is not only used for the reference entities but also offers additional
signals to enrich both the recognition and the disambiguation processes. For
entity linking, FALCON [19] introduces the concept of using knowledge graph
context for improving entity linking performance over DBpedia. Falcon creates
a local KG fusing information from DBpedia and Wikidata to support entity
and predicate linking of questions. We reused the Falcon Background knowledge
base and then expand it with all the entities present in the Wikidata (specially
non standard entities).
3 High Court of Judicature at Hyderabad for the States of Telangana and Andhra

Pradesh.
4 https://www.wikidata.org/wiki/Q44169790.

https://www.wikidata.org/wiki/Q44169790
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The developments in deep learning has introduced a range of models that
carry out both NER and NED as a single end to end step using various neural
network based models [15]. Kolitsas et al. [15] enforces during testing that gold
entity is present in the potential list of candidates, however, Arjun doesn’t have
such assumption and generates entity candidates on the fly. This is one reason
Arjun is not compared with Kolitsas’s work in the evaluation section. Please note,
irrespective of the model opted for entity linking, the existing EL approaches
and their implementations are commonly evaluated over standard datasets (e.g.
CoNLL (YAGO) [14]). These datasets contain standard formats of the entities
commonly derive from Wikipedia URI label. Recently, researchers have explicitly
targeted EL over Wikidata by proposing new neural network-based approach [5].
Contrary to our work, authors assume entities are recognised (i.e. step 1 of Arjun
is already done), inputs to their model is a “sentence, one wrong Wikidata Qid,
one correct Qid” and using an attention-based model they predict correct Qid
in the sentence- more of a classification problem. Hence, 91.6F-score in Cetoli et
al.’s work [5] is for linking correct QID to Wikidata, given the particular inputs.
Their model is not adaptable for an end to end EL due to input restriction.
OpenTapioca [6]) is an end to end EL approach to Wikidata that relies on topic
similarities and local entity context, but ignores the Wikidata specific challenges
(Sect. 2). Works in [10,20] are other attempts for Wikidata entity linking.

4 Problem Statement

Wikidata is an RDF5 knowledge graph that contains a set of triples (s, p, o) ∈
R × P × (R ∪ L), where R = C ∪ E ∪ P is the union of all RDF resources.
(C,P, E are respectively a set of classes, properties, and entities), and L is the
set of literals (L∩R = ∅). An RDF knowledge graph represents a directed graph
structure which is formally defined as:

Definition 1 (Knowledge Graph). A knowledge graph KG is a directed
labelled graph G(V,E), where V = E � C � L is a disjoint union of entities
E, classes C, and literal values L. The set of directed edges is denoted by E = P,
where P are properties connecting vertices. Please note that there is no outgoing
edge from literal vertices.

In this paper, we target end to end EL task. The EL for us is defined as
recognising the surface forms of entities in the text and then map them to the
entities in the background KG. The EL task can be defined as follows:

Definition 2 (Entity Linking). Assume a given text is represented as a
sequence of words w = (w1, w2, ..., wN ) and the set of entities of a KG is rep-
resented by set E. The EL task maps the text into a subset of entities denoted
as Θ : w → E ′ where E ′ ⊂ E. Herein, the notion of Wididata entity refers to
the representation of an entity based on the corresponding label because Wikidata
might consider a variety of identifiers (called Q values) for the same label.
5 https://www.w3.org/RDF/.

https://www.w3.org/RDF/
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The EL task can be divided into two individual sub-tasks. The first sub-task
Surface Form Extraction is recognising the surface forms of the entities in the
text. This task is similar to Named Entities Recognition (NER). However, it
disregards identifying the type of entities (e.g. person, place, date, etc.).

Definition 3 (Surface form Extraction). Let w = (w1, w2, ..., wN ) be a text
represented as a sequence of words. The surface form extraction is then a function
θ1 : w → S, where the set of surface forms is denoted by S = (s1, s2, ..., sK)
(K ≤ N) and each surface form sx is a sequence of words from start position i

to end position j: s
(i,j)
x = (wi, wi+1, ..., wj).

The second sub-task Entity Disambiguation (ED) is mapping each surface
form into a set of the most probable entities from the background KG.

Definition 4 (Entity Disambiguation). Let S be the set of surface forms and
E the set of entities of the background KG. Entity Disambiguation is a function
θ2 : S → P(E), which assigns a set of entities to each surface form.

Please note that a single surface form potentially might be mapped into multiple
potentially suitable entities.

5 Arjun: A Context-Aware Entity Linking Approach

Fig. 2. Proposed Approach Arjun: Arjun consists of three tasks. First task identifies
the surface forms using an attentive neural network. Second task induces background
knowledge from the Local KG and associate each surface form with potential entity
candidates. Third task links the potential entity candidates to the correct entity labels.

Arjun is illustrated in Fig. 2. Arjun performs three sub-tasks:
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1. surface form extraction which identifies the surface forms of the entities,
2. entity mapping (or candidate generation) which maps the surface forms to a

list of candidate entities from the Local KG,
3. entity disambiguation which selects the most appropriate candidate entity for

each surface form.

We devise a context-aware approach based on attentive neural networks for tasks
(1) and (3). We initially introduce our derived Local KG. Then we present the
details of our approach for the tasks (1), (2) and (3).

Local KG and Refinement Strategies. Arjun relies on Wikidata as the background
knowledge graph. Wikidata consists of over 100 million triples in RDF format.
Wikidata provides dumps of all the entities and associated aliases6. Although
Wikidata has specific challenges for EL, its unique characteristic to provide entity
aliases can be utilised in developing an approach for entity linking. Since the
training dataset is in English, we extracted all 38.6 million Wikidata entities
with English labels and 4.8 million associated aliases from the dumps. We use
entity labels and aliases as indexed documents in the Local KG and large portion
of it is reused from Local KG built by Sakor et al. [19]. For example, the entity
described in exemplary “Sentence S1” (cf. Fig. 1), entity wiki:Q217302 with
label application-specific integrated circuit is enriched in the Local KG with its
aliases: ASIC, Custom Chip, and Custom-Chip.

Model Architecture. For task (1) and (3), our attentive neural model is
inspired by the work of Luong et al. [16] and consists of an encoder, a decoder,
and an attention layer. We don’t claim that an extension of Luong’s NN archi-
tecture used in this work as novelty, indeed we experiment with already estab-
lished concepts of LSTM and attentive Neural Networks. We view our attempt
of combining these NNs with background contextual knowledge from a KG as an
interesting perspective for researchers within the community to solve Wikidata
KG challenges and is our main novelty. The model in the task (1) is used to
identify the surface forms of the entities in the input text. The similar attentive
neural model used in the task (3) that selects the most appropriate candidate
entity for each surface form (cf. Fig. 2).

We extended Luong’s model by using a Bidirectional Long Short-Term
Memory (Bi-LSTM) model for the encoder and one-directional LSTM model
for the decoder. The input of the encoder is the source text sequence w =
(w1, w2, ...., wn, .., wN ) where wn is the n-th word at time step n and N is the
length of the text. The encoder encodes the complete sequence and the decoder
unfolds this sequence into a target sequence y = (y1, y2, .., ym, ..., yM ) where ym
is the m-th word at time step m and M is the length of the target sequence. In
our assumption each target sequence ends with EOS (end of sequence) token.
The N and M values can be considered as the last time steps of the source
sequence w and the target sequence y respectively.

6 https://dumps.wikimedia.org/wikidatawiki/entities/.

https://dumps.wikimedia.org/wikidatawiki/entities/
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Each word of the source sequence is projected to its vector representation
acquired from an embedding model Rd with dimensionality d. The transforma-
tion of the input is represented in the matrix X as:

X = [x1, x2, ., xn, ..., xN ] (1)

where xn is a vector with the size d and represents the low dimensional embed-
ding of the word wn.

The LSTM Layer: In our model, the encoder and the decoder consist of single
layer of Bi-LSTM and LSTM respectively. Now we explain the LSTM layer.

We model the first layer of our network using a LSTM layer since it has been
successfully applied to various NLP tasks. Each LSTM unit contains three gates
(i.e., input i, forget f and output o), a hidden state h and a cell memory vector
c. The forget gate is a sigmoid layer applied on the previous state ht−1 at time
step t-1 and the input xt at time step t to remember or forget its previous state
(Eq. 2).

ft = σ(W f [xt, ht−1] + bf ) (2)

Please note that W is the weight matrix and b is the bias vector. The next step
determines the update on the cell state. The input gate which is a sigmoid layer
updates the internal value (Eq. 3), and the output gates alter the cell states
(Eq. 4).

it = σ(W i[xt, ht−1] + bi) (3)

ot = σ(W o[xt, ht−1] + bo) (4)

The next tanh layer computes the vector of a new candidate for the cell state
C̃t (Eq. 5). Then the old state Ct−1 is updated by the new cell state Ct via
multiplying the old state with the forget gate and adding the candidate state to
the input gate (Eq. 6). The final output is a filtering on the input parts (Eq. 4)
and the cell state (Eq. 7).

C̃t = tanh(WC [xt, ht−1] + bC) (5)

Ct = ft � Ct−1 + it � C̃t (6)

ht = ot � tanh(Ct) (7)

where the model learning parameters are weight matrices W f ,W i,W o,WC

and bias vectors bf , bi, bo, bC . The σ denotes the element-wise application of the
sigmoid function and

⊙
denotes the element-wise multiplication of two vectors.

The Bi-LSTM of the encoder consists of two LSTM layers. The first layer
takes an input sequence in forward direction (1 to N) and the second layer takes
the input in backward direction (N to 1). We employ same Eqs. 2, 3, 4, 5, 6, 7
for each LSTM Layer. The final encoder hidden state is produced by the sum of
hidden states from both LSTM layers (hn =

−→
hn +

←−
hn) at timestep n.

Attention and Decoder Layer. The decoder layer takes SOS token (start of
the sequence) vector and the encoder final states (hN and CN ) as the initial
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inputs to start decoding source text sequence into a target text sequence. Here
we differentiate between the encoder hidden state and decoder hidden state by
using the notations hn at time step n and hm time step m respectively. Below
we explain how the decoder generates target text sequence words ym one by one.

In the attention layer, we define attention weights as am = [am1,
am2, ...., amN ] for a decoder state at time step m which has the size equals
to the number of total time steps in the encoder side. The attention weights
contain only scalar values which are calculated by comparing all encoder states
hn and decoder state hm. To calculate the attention weight (amn) of an encoder
state at time step n wrt. A decoder state at time step m, we use the following
Eq. (8) [16].

amn =
exp(hm · hn)

∑
N
n′=1

exp(hm · hn′)
(8)

Where (hm · hn) denotes the dot product. The Eq. 9 computes the context
vector Vm as weighted average over all the encoder hidden states (hn) that
captures the relevant encoder side information to help in predicting the current
target sequence word ym at time step m and can be defined as:

Vm =
N∑

n=1

amnhn (9)

We calculate Attention Vector (h̃m) using the concatenation layer on the
context vector Vm and decoder hidden state hm for combining information from
both the vectors. The Eq. 10 represent it mathematically (where tanh is an
activation function same as describe in [16]).

h̃m = tanh (Wv[vm;hm]) (10)

Finally, we apply softmax layer on the attention vector h̃m for predicting a
word of a target text sequence from the predefined vocabulary of the complete
target text sequences.

p(ym|y<m, x) = softmax(Wsh̃m) (11)

Where Ws is weight matrix of softmax layer and p is probability. Please
note that the decoder stops producing words once it encounters EOS (end of
sequence) token or m is equal to M.

5.1 Entity Mapping Process

The local KG acts as a source of background knowledge. It is an indexed graph
(created using the same methodology proposed by Sakor et al. [19] and reusing a
large portion of the indexed graph built by the authors) where each entity label
is extended with its aliases from Wikidata. Once Task 1 identifies surface forms
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in the input sentence, the entity mapping step (Task 2) takes each surface form
and retrieves all the entities for which entity label(s) in the local KG matches
with the surface form. Next, the full list of the entity candidates is then passed
into the Step 3 of Arjun as input to predict (disambiguate) the best Wikidata
entity labels.

Let us trace our approach for the sentence S1 of Fig. 1 to understand the
steps better. The sentence S1 ASIC is an integrated circuit developed
for particular use as opposed to a general-purpose device is fed to
the attentive neural model comprises of an encoder (Bi-LSTM), decoder
(LSTM), and an attention layer as an input for the surface form extraction
task. Thereby, the term ASIC is recognised as a surface form. Then, for the
entity mapping task, we populate a Local KG to generate candidate entities
associated with this surface form. We employ semantic search (reused from Fal-
con [19]) to identify entity candidate labels for ASIC which returns Application
Specific Integrated Circuit. The last step of Arjun is entity disambigua-
tion. In this step, the surface form ASIC along with Application Specific
Integrated Circuit is fed into the encoder as the input sequence. Here, we
utilise identical attentive neural network used for surface form extraction task.
This attentive neural network decides the context of ASIC using extra infor-
mation in the form of associated alias to correctly link to the Wikidata entity
application-specific integrated circuit (Q217302).

6 Experimental Setup

6.1 Dataset

We rely on the recently released T-REx [9] dataset that contains 4.65 million
Wikipedia extracts (documents) with 6.2 million sentences. These sentences are
annotated by 11 million Wikidata triples. In total, over 4.6 million surface forms
are linked in the text to 938,642 unique entities. T-REx is the only available
dataset for Wikidata with such a large number of triple alignment. We are not
aware of any other dataset explicitly released for Wikidata entity linking chal-
lenges. Please note that the popular entity linking datasets (e.g. CoNLL (YAGO)
[14]) have linked entities either to Wikipedia, YAGO, Freebase or DBpedia. Work
in [5,6] attempt to develop approaches for EL over Wikidata and simply align
(map using owl:sameAs) existing Wikipedia based dataset to Wikidata. How-
ever, our focus in this paper is to solve Wikidata specific challenges and these
datasets do no embrace Wikidata specific challenges for entity linking. We divide
the T-REx dataset into an 80:20 ration for training and testing.

6.2 Baseline

In this work, we pursue the following research question: “How well does the
attentive neural network perform for entity linking task leveraging background
knowledge particularly for a challenging KG such as Wikidata?” To the best
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of our knowledge, it is a pioneering work for the task of entity linking on the
Wikidata knowledge graph where it considers the inherent challenges (noisy
nature, long entity labels, implicit entities). Therefore, we do not compare our
approach to generic entity linking approaches which typically either do not use
any background knowledge or employ the well-established knowledge graphs such
as DBpedia, YAGO, Freebase. Our approach Arjun comprises all three tasks
illustrated in Fig. 2. To elaborate the advantage of inducing additional context
post NER step, we built a “baseline” which is an end to end neural model.
The “baseline” in our case is the attentive neural network employed in Task
1 without any background knowledge (or can be seen as end to end EL using
attentive neural network). In fact, in the task (1) (cf. Fig. 2), the baseline directly
maps the text to a sequence of Wikidata entities without identifying surface form
candidates. Hence, the baseline approach is the modified version of Arjun. With
a given input sentence, the baseline implicitly identifies the surface forms and
directly links them to Wikidata entities. Unlike Arjun, the baseline does not use
any KG context for the expansion of the surface forms. We also compare Arjun
with recently released SOTA for Wikidata entity linking- OpenTapioca [6] which
is an end to end EL approach. We are not aware of any other end to end EL
tool/approach released for Wikidata.

6.3 Training Details

Implementation Details. We implemented all the models using the PyTorch
framework. The local KG and the semantic search is implemented using Apache
Lucene Core7 and Elastic search [12]. The semantic search returns entity can-
didates with a score (higher is better). We reuse the implementation of Falcon
local KG [19] for the same. After empirically observing the performance, we
set the threshold score to 0.85 for selecting the potential entity candidates per
surface form (i.e. the parameter is optimised on the test set). We reused pre-
trained word embeddings from Glove [17] for the attention based neural network.
These embeddings have been pre-trained on Wikipedia 2014 and Gigaword 58.
We employ 300-dimensional Glove word vectors for the training and testing of
Arjun. The models are trained and tested on two Nvidia GeForce GTX1080 Ti
GPUs with 11 GB size. Due to brevity, detailed description of training details
can be found in our public Github.

Dataset Preparation. We experimented initially with higher text sequence
lengths but resorted to 25 words due to GPU memory limitation. In total, we
processed 983,257 sentences containing 3,133,778 instances of surface forms (not
necessarily unique entities) which are linked to 85,628 individual Wikidata enti-
ties. From these 3,133,778 surface forms occurrences, approximately 62% do not
have exact match with a Wikidata entity label.

7 https://lucene.apache.org/core/.
8 https://nlp.stanford.edu/projects/glove/.

https://lucene.apache.org/core/
https://nlp.stanford.edu/projects/glove/
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6.4 Results

Table 1 summarises performance of Arjun compared to the baseline model and
another NED approach. We observe nearly 8% improvement in the performance
over baseline and Arjun significantly outperforms another end to end EL tool
OpentTapioca. Arjun and OpenTapioca generate entity candidates on the fly,
i.e., out of Millions of Wikidata entities, the task here is to reach to top-1 entity.
This contrasts with other end to end entity linking approaches such as [15], which
rely on a pre-computed list of 30 entity candidates per surface form. This trans-
lates into extra complexity due to the a large search space for generating entity
candidates in the case of Arjun. Our solution demonstrates a clear advantage
of using KGs as background knowledge in conjunction with a attention neural
network model. We now detail some success and failure cases of Arjun.

Table 1. Performance of Arjun compared to the Baseline.

Method Precision Recall F-Score

baseline 0.664 0.662 0.663

OpenTapioca [6] 0.407 0.829 0.579

Arjun 0.714 0.712 0.713

Success Cases of Arjun. Arjun achieves 0.77F-Score for the surface form
extraction task. Arjun identifies the correct surface form for our exemplary sen-
tence S1 (i.e. ASIC) and links it to the entity label Application Specific Integrated
Circuit of wiki:Q217302. The baseline can not achieve the linking for this sen-
tence. In the Local KG, the entity label of wiki:Q217302 is enriched with aliases
that also contain ASIC. This allows Arjun to provide the correct linking to the
Wikidata entity containing the long label. Background knowledge induced in the
attentive neural network also allows us to link several long entities correctly. For
example, in the sentence “The treaty of London or London convention or simi-
lar may refer to,” the gold standard links the surface form London convention
with the label Convention on the Prevention of Marine Pollution by Dumping of
Wastes and Other Matter (c.f. wiki:Q1156234). The entity label has 14 words,
and Arjun provides correct linking. OpenTapioca on the other hand have high
recall(it has high number of False Positives), however, the precision is relatively
quite low. The limited performance of OpenTapioca was due to the fact that
it finds limitation in linking non Wikipedia entities which constitute a major
portion in the dataset. This demonstrate strength of Arjun in also linking non
standard, noisy entities which are not part of Wikipedia.

Failure Cases of Arjun. In spite of the successful empirical demonstration
of Arjun, we have a few types of failure cases. For example in the sentence:
‘Two vessels have borne the name HMS Heureux, both of them captured from
the French’ has two gold standard entities (Heureux to French ship Heureux
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(wiki:Q3134963) and French to French (wiki:Q150)). Arjun links Heureux to
L’Heureux (wiki:Q56539239). This issue is caused by the semantic search over
the Local KG while searching for the potential candidates per surface form. In
this case, L’Heureux is also returned as one of the potential entity candidates
for the surface form Heureux. A similar problem has been observed in correctly
mapping the surface form Catalan to wiki:Q7026 (Catalan Language) where
Arjun links Catalan to Catalan (wiki:Q595266). Another form of failure case
is when Arjun identifies and links other entities which are not part of the gold
standard. The sentence ‘Tom Tailor is a German vertically integrated lifestyle
clothing company headquartered in Hamburg’ has two gold standard entity
mappings: vertically integrated to vertical integration (wiki:Q1571520 and
Hamburg to Hamburg (wiki:Q1055). Arjun identifies Tom (wiki:Q3354498) and
Tailor (wiki:Q37457972) as the extra entities and can not link vertically
integrated. For brevity, a detailed analysis of the failure cases per entity type
(very long label, noisy nonstandard entity), performance loss due to semantic
search can be found in our Github.

Limitations and Improvements for Arjun. Arjun is the first step towards
improving a deep learning model with additional contextual knowledge for EL
task. Arjun can be enhanced in various directions considering current limitations.
We list some of the immediate future extensions:

1. Enhancing Neural Network with Multiple layers: Arjun currently has a Bi-
LSTM and a single layer LSTM for the encoder and the decoder respectively.
It has been empirically observed in sequence to sequence models for machine
translations that the models show significant improvements if stacked with
multiple layers [21]. Therefore, with more computing resources, the neural
network model used in Arjun can be enhanced with multiple layers.

2. Alternative Models: In this article, our focus is to empirically demonstrate how
background knowledge can be used to improve an attentive neural network
for entity linking. Several recent approaches [7,8,23] enhance the performance
NER and can be used in our models for task (1) and task (3).

3. Improving NER: there is a room of improvement regarding surface form
extraction where Arjun currently achieves an F-score of 0.77. The latest
context-aware word embeddings [3] can be re-used in Arjun or completely
replacing NER part with latest language models such as BERT [7].

4. Replacing Semantic Search: Another possibility of improvement is in the sec-
ond step of our approach (i.e., inducing background knowledge). Currently,
we rely on very trivial semantic search (same as [19]) over the Local KG to
extract Wikidata entity candidates per surface form. Ganea et al. [11] devel-
oped a novel method to embed entities and words in a common vector space
to provide a context in an attention neural network model for entity link-
ing. This approach could potentially replace semantic search. Classification
is seen as one of the most reasonable and preferred ways to prevent out of
scope entity labels [15]. On the contrary, Sakor et al. [19] illustrated that
expanding the surface forms the way we did, works pretty well for short text.
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Our hypothesis was that it should also work for Arjun, which is not com-
pletely true if we see our empirical results. Hence, in this paper, we do not
claim that every step we took was the best, but after our empirical study,
we demonstrate that the candidate expansion by Sakor et al. doesn’t work
well. However, it solves our purpose of inducing context in the NN which is
the main focus of the paper. It leads to an interesting discussion: what is the
most efficient way to induce KG context in a NN, maybe the classification
one?- one need to empirically prove and we leave it for future work.

5. Coverage restricted to Wikidata: Effort can be made in the direction to
develop common EL approach targeting multiple knowledge graphs with stan-
dard and nonstandard entity formats.

7 Conclusion

In this work, we focused on introducing the limitations of EL on Wikidata in
general, presented the novel approach Arjun, and outlined deficiencies of Arjun,
which in particular will guide future work on this topic. In this work, we empir-
ically illustrate that for a challenging KG like Wikidata, if a model is fused with
additional context post-NER step, it improves entity linking performance. How-
ever, this work was our first attempt towards a longer research agenda. We plan
to extend our contribution particularly in the following directions (i) extend-
ing towards joint entity and predicate linking and use latest language models
for NER task, (ii) enriching the background KG to several interlinked KG from
Linked Open Data (DBpedia, Freebase, YAGO), (iii) extending Arjun for the
learning entities across languages (currently limited to English).
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