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Abstract. The essence of knowledge representation learning is to embed
the knowledge graph into a low-dimensional vector space to make knowl-
edge computable and inferable. Semantic discriminate models greatly
improve the performance of knowledge embedding through increasingly
complex feature engineering. For example, the projection calculation
based on matrixes can achieve more detailed semantic interactions and
higher accuracies. However, complex feature engineering results in high
time complexity and discriminate parameters pressure, which make them
difficult to effectively applied to large-scale knowledge graphs. TransGate
is proposed to relieve the pressure of the huge number of parameters in
semantic discriminate models and obtains better performance with much
fewer parameters. We find that the gate filtering vector obtained by the
traditional gate used by TransGate would rapidly fall in the state of a
nearly boundary binary-valued distribution (most values are near 0 or
near 1) after only a few hundred rounds of training. This means that
most filtering gate values either allow the information element to pass
completely or not at all, which can be called extreme filtering. We argue
that this filtering pattern ignore the interaction between information
elements. In this paper, TransMVG model is proposed to improve the
traditional boundary binary-valued gate to a multiple-valued gate on the
premise of ensuring the randomness. The experiments results show that
TransMVG outperforms the state-of art baselines. This means it is fea-
sible and necessary to multivalue the filter gate vectors in the process of
knowledge representation learning based-on the gate structure.
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1 Introduction

Nowadays, knowledge graph has become an important resource to support AI
related applications, including relation extraction, question answering, semantic
search and so on. Generally, a knowledge graph is a set of facts, usually repre-
sented as a triplet (head, relation, tail), denoted as (h, r, t). Although the current
knowledge graph, such as WordNet [14] and Freebase [1], has a large amount of
data, it is far from perfect. For example, according to Google, 71% of the people
in Freebase lack birthplace records and 75% lack nationality records. The lack of
completeness of knowledge graph seriously affects the downstream applications.

Semantic indiscriminate models assume that the vector representation of
entities and relations in any condition should be the same, regardless of the
importance of semantic environments. Semantic discriminate models are pro-
posed to distinguish multiple semantics. TransH [22] embeds entities in the rela-
tion hyperplane to distinguish relation-specific information. TransR [13] learns
a mapping matrix for each relation and map each entity into the relation space
respectively. TranSparse [11] replaces the mapping matrix in the TransR with
two sparse matrices for each relation. TransD [10] dynamically constructs two
mapping matrices for each triplet by setting projection vectors for each entity
and relation. TransG [23] models the different semantics of the same relation
into different Gaussian distributions and assumes that all semantics of a rela-
tion contribute to the fractional function of the fact triples. These models have
greatly improved accuracies through increasingly complex feature engineering,
but the problem of large number of parameters and high computation complex-
ity also come. Despite their high accuracies, it is difficult to apply these models
to large-scale real knowledge graphs.

The primary cause of the large number of parameters in the semantic dis-
criminated models is that they do not pay attention to the intrinsic correlation
between relations, and by default they assume relations are independent. As a
result, these models have to learn a set of parameters for each relation for a
relation-specific semantic discrimination. TransGate [25] is proposed to relieve
the pressure of the huge number of parameters in semantic discriminate models
with two fixed-size shared parameter gates based on the traditional Long Short
Term Memory (LSTM) [26] gate by utilizing the inherent correlation between
relations. It obtains better performance with much fewer parameters. Unlike
relation-specific matrices in other models, the two learned global shared param-
eter gates of TransGate [25] will not grow with the expansion of the data set
and makes it much easier to be applied to the large-scale real knowledge graphs.

We run TransGate [25] on FB15K [2] multiple times with different parameter
configurations and find that the gate filtering vector obtained by the traditional
gate rapidly falls in the state of a nearly boundary binary-valued distribution
(most values are near 0 or near 1) after only a few hundred rounds of training.
It means that most filtering gate values either allow the information element to
pass completely or not at all. This extreme filtering pattern is shown in Fig. 1
(The parameter configuration is the same with Fig. 4). We argue that it ignores
the interaction between information elements. We believe that the gate filtering
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vector should choose how much information elements to pass through rather
than whether to pass through. In different semantic environments, the proportion
combinations of information elements allowed to pass by the gate filtering vector
are different. This is the fundamental reason why the same vector can express
multiple semantics. Inspired by [12], TransMVG proposed in this paper not only
inherites the advantages of global parameter sharing of TransGate [25], but also
makes the gate filtering vector have stronger information selection ability.

Fig. 1. The extreme filtering of TransGate

Our main contributions are as the following:

Contribution I : We find that extreme filtering phenomenon exists in the gate
filtering vectors obtained by the traditional shared gate method. We propose
that the gate filtering vector should choose how much information elements to
pass through instead of whether to pass through, so as to obtain richer semantic
interaction and more refined semantic expression.

Contribution II : The proposed TransMVG model improves the traditional
boundary binary-valued gate to the multiple-valued gate, which means all values
between 0 and 1 can be randomly selected as a filtering gate value, not mostly
0 and 1. In this way, more different proportion combinations of information ele-
ments allowed to pass by the gate filtering vector make the learned semantics
more precise and clear.

Contribution III : Experiments show that TransMVG obtains some significant
improvement compared to most state-of-art baselines with fewer parameters.
This indicates that it is feasible and necessary to filter information elements
precisely by using the multiple-valued gate.

2 Related Work

2.1 Semantic Indiscriminate Models

Indiscriminate models usually focus more on the scalability on real-world knowl-
edge graphs. They assume that the vector representations of entities and rela-
tions are consistent in any semantic environment. As a result, they often have
low accuracies:



TransMVG: Knowledge Graph Embedding Based on Multiple-Valued Gates 289

TransE [2] represents a relation as a translation vector r indicating the seman-
tic translation from the head entity h to the tail entity t, so that the pair of
embedded entities in a triplet (h, r, t) can be connected by r with low error. The
score function is fr (h, t) = ‖h + h − t‖22. It is very efficient, but only suitable
for 1 − to − 1 relations, and has flaws in dealing with 1 − to − N , N − to − 1 and
N − to − N relations.

DistMult [24] has the same time and space complexity as TransE. It uses
weighted element-wise dot product to define the score function fr (h, t) =∑

hkrktk. Although DistMult has better overall performance than TransE, but
it is unable to model asymmetric relations.

ComplEx [21] makes use of complex valued embeddings and Hermitian dot
product to address the antisymmetric problem in DistMult. However, TransE
and DistMult perform better on symmetry relations than ComplEx.

CombinE [19] considers triplets features from two aspects: relation rp ≈
hp + tp and entity rm ≈ hm − tm. The score function is fr (h, t) =
‖hp + tp − rp‖2L1/L2 + ‖hm − tm − rm‖2L1/L2. CombinE doubles the parameter
size of TransE, but does not yield significant boost in performance.

2.2 Semantic Discriminate Models

Discriminate models focus more on precision. They assume that the vector rep-
resentations should depend on the specific semantic environment. They usually
contain two stages: relation-specific information discrimination and score com-
putation.

TransH [22] is proposed to enable an entity to have distinct distributed rep-
resentations when involved in different relations. TransH projects the entity
embeddings to the hyperplane with a certain norm vector. By projecting entity
embeddings into relation hyperplanes, it allows entities playing different roles
for different relations.

TransR/CTransR [10] is proposed based on the idea that entities and rela-
tions should be considered in two different vector spaces. TransR set a mapping
matrix for each relation to map entity embedding into a relation vector space.
CTransR is a clustering-based extension of TransR, where diverse head-tail entity
pairs are clustered into different groups and each group has only one relation
vector for all pairs in the group.

TranSparse [11] consider the heterogeneity (some relations link many entity
pairs and others do not) and the imbalance (the number of head entities and
that of tail entities in a relation could be different) of knowledge graphs. It uses
adaptive sparse matrices to replace transfer matrices, in which the sparse degrees
are determined by the number of entity pairs linked by relations.

KG2E [10] uses Gaussian embedding to explicitly model the certainty of
entities and relations. Each entity or relation is represented by a Gaussian dis-
tribution, where the mean denotes its position and the covariance can properly
represent its certainty. It performs well on 1 − to − N and N − to − 1 relations.
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TransG [23] can discover the latent semantics of a relation automatically
through Chinese Restaurant Process, and leverages a mixture of multiple
relation-specific components for translating entity pair to address new issues.

TransGate [25] is proposed to relieve the pressure of the huge number of
parameters in semantic discriminate models. Across the whole knowledge graph,
it establishes two fixed-size shared parameter gates based on the traditional
LSTM [26] gate by utilizing the inherent correlation between relations. The
shared parameter gate is used to filter entity vectors according to certain seman-
tic environment, and the filtered entity vectors only represent the semantic in
the current semantic environment.

2.3 Other Models

Many researches attempt to introduce some novel techniques of deep learn-
ing into knowledge graph embedding. KBGAN [4] introduces GAN (Genera-
tive Adversarial Networks) to boost several embedding models. ProjE [17] uses
a learnable combination operator to combine embeddings and feeds combined
embeddings in a multi-class classifier to handle complex relations. R-GCN [16]
and ConvE [5] introduces multi-layer convolution network in knowledge graph
embedding. ConvKB [15] employs a convolutional neural network to capture
global relations and transitional characteristics between entities and relations .

TransMVG does not use many sets of semantic parameters specific to each
relationship, nor does it use deep learning frameworks. It only uses a smaller set
of global shared parameters based on two multiple-valued gates and a shallow
learning framework to get a better performance on link prediction task and
triplet classification task.

3 Embedding Based on Multiple-Valued Gate

In this paper, we propose the TransMVG model. Its gate filtering vectors of all
dimensions can take the values between 0 and 1 with nearly the same proportions,
ensuring that the values of each dimension obey different Bernoulli distribution
respectively at the same time. In this section, we first introduce some background
knowledge and then introduce the TransMVG model and its training methods.
Finally, we perform a complexity analysis, comparing TransMVG with other base-
lines.

3.1 Background Knowledge

LSTM. LSTM [26] is a kind of recurrent neural network which overcomes long-
term dependence. It consists of a memory cell and three gates, namely input
gate, forget gate and output gate. The input gate selects which information
elements are related to the existing state and can be added to the memory cell.
The forget gate determines which information elements can be filtered out. The
output gate determines which inputs can be entered to the next step based on
the existing state.
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Fig. 2. Traditional gate

Gate is the core mechanism of LSTM, and its function is to let information
pass selectively. A gate consists of a full connection layer and a sigmoid activation
function. The gate vector and the vector to be filtered perform the Hadamard
product operation to finish the information filtering. The feedforward form of
gate is:

f = σ (W [input , state ] + b) (1)

i
′
= i

⊙
f (2)

∀x ∈ R, σ (x) = 1
1+exp(−x) , 0 ≤ σ (x) ≤ 1. That is, all the values of gate

filtering vector f is between 0 and 1. As shown in Figure 2, input represents
new information of the current gate, and state represents the memory sum of
all previous input information. Based on the current state and the new input ,
a gate filtering vector f is generated. Each value of f indicates how much of each
information element in a vector should be allowed passing and how much should
be forgotten. i is the vector to be filtered, i

′
is the vector filtered through the

gate structure,
⊙

is the counterpoint multiplication.

Noise Theorem. The following theorem has already been proved in [12]. It
can be used to extend one Bernoulli distribution to many independent Bernoulli
distributions by adding random noise. The value of G (α, τ) can be controlled
by controlling the temperature parameter τ . τ is a parameter greater than
zero, which controls the soft degree of sigmoid. The higher the temperature, the
smoother the generated distribution. The lower the temperature, the closer the
generated distribution is to the discrete one-hot distribution.

Theorem 1. Assume σ (·) is the sigmoid function. Given α ∈ R and tempera-
ture τ > 0, we random variable Dα ∼ B (σ (α)) where B (σ (α)) is the Bernoulli
distribution with parameter σ (α), and define

G (α, τ) = σ

(
α + logU − log (1 − U)

τ

)

(3)

where U ∼ Uniform (0, 1). Then the distribution of G (α, τ) can be considered
as an approximation of Bernoulli distribution B (σ (α)).
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3.2 TransMVG

A value of each dimension of entity vectors and relation vectors corresponds
to an information element. In different semantic environment, the information
elements of each dimension pass through the gate in different proportions. The
essence of multiple semantics is the combination of information elements with
different proportions. Our main contribution is eliminating the extreme filtering
of traditional gates and making the information elements get more accurate
combinations.

Model. Shown in Fig. 3, TransMVG uses three real number vectors h, r, t ∈ R
m

in a same vector space to represent each triplet in a knowledge graph. Two full
connection layers W h·[h, r] + bh and W t·[t, r] + bt are set for learning the global
shared parameter gates of head entity vectors and tail entity vectors respectively.
Gate filtering vectors fh and ft generated by full connection layers after a sigmoid
operation will carry on Hadamard multiplication with head entity vectors and
tail entity vectors respectively to select how much the information element of
each dimension should pass.

Fig. 3. TransMVG

The relation vector (semantic environment) in a triplet can be regarded as the
state in the aforementioned LSTM gate. Taking the head gate as an example,
the working object of the full connection weight in the traditional LSTM gate
is the concatenation of new input and the current state. The new input can be
understood as the entity vector to be filtered h , and the current state can be
regarded as the semantic environment, namely the relation vector r . Therefore,
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the object that the full connection layer will work on is the concatenating of
the head entity vector h and the relation vector r . The weight matrix of full
connection layer is W h ∈ R

m×2m, the bias is bh ∈ R
m. The output of the head

entity gate is the filtering vector fh of the head entity vector h . A Hadamard
multiplication is performed between fh and h to realize the specific semantic
representation of entity h in the sematic environment r . In a similar way, the
specific semantic representation of entity t in the sematic environment r can be
obtained.

The values gate filtering vectors generated by traditional gates are mostly
in a boundary binary-valued state(0 or 1). We use the Theorem 1 to change
the extreme filtering pattern to a general one. α in Eq. 3 can be regarded as
any value of the vector generated by the full connection layer, (noiseh)i and
(noiset)i can be regarded as the noise for each dimension. According to Eq. 3,
we can get Eqs. 6 and 7 as following:

(W h · [h, r] + bh)i = (αh)i (4)

(W t · [t, r] + bt)i = (αt)i (5)

(noiseh)i = log (uh)i − log(1 − (uh)i) (6)

(noiset)i = log (ut)i − log(1 − (ut)i) (7)

i = 1, ..., k,k is the number of the vector dimension. Then, according to Theorem
1, values of the i-th dimension of all head filtering gates and all tail filtering gates
nearly obey Bernoulli distribution respectively, as Eqs. 8 and 9.

σ

(
(W h · [h, r] + bh)i + (noiseh)i

τ

)

∼ Bernoulli (8)

σ

(
(W t · [t, r] + bt)i + (noiset)i

τ

)

∼ Bernoulli (9)

For the whole vector generated by the full connection layer, the above opera-
tion is performed for each dimension. Then we can get general vectors by adding
noise to each dimension respectively, as Eqs. 10-13:

fh = σ

(
W h · [h, r] + bh + noiseh

τ

)

(10)

ft = σ

(
W t · [t, r] + bt + noiset

τ

)

(11)

noiseh = logUh − log (1 − Uh) (12)

noiset = logU t − log (1 − U t) (13)

The temperature τ is a hyper-parameter and the gate value of the gate fil-
tering vectors can be approximated to the none-flat region (The blue part of
the sigmoid function in Fig. 3) of the sigmoid function by adjusting τ . The
elements in Uh and U t are independent with each other and are sampled from
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a uniform distribution (0,1) respectively. Since the noise added for the values of
each dimension is independent with each other, the gate values obtained for each
dimension will conform to the Bernoulli distribution with different independent
distributions respectively, that is, all values between 0 and 1 can be possible to
be taken with similar possibilities.

After generating the gate filtering vector with precise filtering function, the
entity can achieve the specific semantic representation in a certain semantic envi-
ronment as shown in Eqs. 14 and 15.

hr = h
⊙

fh (14)

tr = t
⊙

ft (15)

After the semantic representation filtering, we make a translation in a specific
semantic environment to obtain the distance function:

dr (h, t) = ‖hr + r − tr‖L1/L2 (16)

The smaller the distance, the better for the correct triplets, and the larger the
distance, the better for the wrong triplets.

Training. In the training process, the maximum interval method is used to opti-
mize the objective function to enhance the distinguishing ability of knowledge
representation. For each (h, r, t) and its negative sample (h′, r, t′), TransMVG
aims to minimize the hinge-loss as following:

L = max (γ + dr (h, t) − dr (h′, t′) , 0) (17)

where γ is a margin hyper-parameter and (h′, r, t′) is a negative sample from the
negative sampling set. A negative sample can be obtained by randomly replacing
the head or the tail of a correct triplet with an entity from the entity list. The
loss function 17 is used to encourage discrimination between training triplets and
corrupted triplets by favoring lower scores for correct triplets than for corrupted
ones. The training process of TransMVG is carried out using Adam optimizer
with constant learning rate.

Complexity Analyisis. As shown in Table 1, we compare TransMVG with
famous semantic discriminate models and some classical indiscriminate models.
The statistics of parameters of these models are from [25]. Ne is the number of
entities, m is the dimension of entities, Nr is the number of relations, n is the
dimension of relations. k is the number of hidden nodes of a neural network and
s is the number of slice of a tensor. Θ̂ denotes the average sparse degree of all
transfer matrices.

From the table, we can see TransMVG enables semantic discrimination with
fewer parameters and lower complexity, and requires no pretraining. Compared
with TransGate, TransMVG adds only one hyper parameter τ to get noise and
temperature control for all values of the fully connected layers.
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4 Experiments

In this section, we empirically evaluate TransMVG on two key tasks: link pre-
diction and triplet classification. We demonstrate that TransMVG outperforms
most state-of-art baselines on multiple benchmark datasets.

Table 1. Complexity analyisis

Models Embedding
parameters

Discriminate
parameters

Hyper
parameters

Time
complexity

Pre-training

TransE O(Nem +
Nrn), (m = n)

None 2 O(m) None

TransH O(Nem +
Nrn), (m = n)

O(Nrn) 4 O(m) TransE

DistMult O(Nem +
Nrn), (m = n)

None 2 O(m) None

TransR O(Nem + Nrn) O(Nrmn) 3 O(mn) TransE

CTransR O(Nem + Nrn) O(Nrmn) 4 O(mn) TransR

TransD O(Nem + Nrn) O(Nem + Nrn) 3 O(m) TransE

TranSparse O(Nem + Nrn) O(2Nr(1 −
θ̂)mn), (0 ≤ θ̂ ≤
1)

5 O(2(1 −
θ̂)mn), (0 ≤ θ̂ ≤
1)

TransE

ComplEx O(2Nem +
2Nrn), (m = n)

None 2 O(m) None

CompbinE O(2Nem +
2Nrn), (m = n)

None 2 O(2m) None

ProjE O(Nem +Nrn +
5m), (m = n)

None 2 O(Nem + 2m) None

TransGate O(Nem +
Nrm + 5m)

O(4m2 + 2m) 2 O(m2) None

TransMVG O(Nem+Nrn+
5m)

O(4m2 + 2m) 3 O(m2) None

4.1 Datasets

Link prediction and triplets classification are implemented on two large-scale
knowledge bases: WordNet [14] and Freebase [1]. Twodata sets are employed
from WordNet. Among them, WN11 [2] is for link prediction, and WN18RR
[5] is for triplet classification. Three datasets from Freebase are used. Among
them, FB15K [2] and FB15K-237 [20] are for link prediction, and FB13 [18] is
for triplet classification. The details of these datasets are in Table 2.

4.2 Link Prediction

Link prediction aims to predict the missing h or t for a triplet (h, r, t). i.e.,
predict t given (h, r) or predict h given (r, t). Instead of giving one best answer,
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Table 2. Statistics of datasets

Datasets Rel Ent Train Valid Test

WN11 [2] 11 38,696 112,581 2,609 10,544

WN18RR [5] 11 40,943 86,835 3,034 3,134

FB13 [18] 13 75,043 316,232 5,908 23,733

FB15K [2] 1,345 14,951 483,142 50,000 59,071

FB15K-237 [20] 237 14,541 272,115 17,535 20,466

this task ranks a set of candidate entities from the knowledge graph. For each
testing triplet (h, r, t), we corrupt it by replacing the tail t with every entity
e in the knowledge graph and calculate all distance scores. Then we rank the
scores in ascending order, and get the rank of the original. In fact, a corrupted
triplet may also exist in the knowledge graph, which should be also considered
as correct.

We filter out the correct triplets from corrupted triplets that have already
existed in the knowledge graph to get the filtered results. With use of these
filtered ranks, we get three commonly used metrics for evaluation: the average
rank of all correct entities (Mean Rank), the mean reciprocal rank of all correct
entities (MRR), and the proportion of correct entities ranked in top k(Hits@k).
A good link prediction result expects a lower Mean Rank, a higher MRR, and a
higher (Hits@k).

In this task, we use three datasets: WN18RR [5], FB15K [2] and FB15K-
237 [20]. For three datasets, we search the learning rate α for Adam among
{0.001, 0.01, 0.1}, the temperature τ among {100, 200, 500} the margin γ among
{2, 4, 6, 8, 10}, the embedding dimension m among {50, 100, 200}, and the batch
size B among {1440, 2880, 5760}. The optimal configurations are as follow: on
WN18RR, γ = 8, α = 0.1, τ = 200, m = 200, B = 2880 and taking L1 distance;
on FB15K, γ = 4, α = 0.1,τ = 200, m = 200, B = 5760 and taking L1 distance;
on FB15K-237, γ = 4, α = 0.1, τ = 200, m = 200, B = 5760 and taking L1
distance.

In Table 3, the best scores are in bold, while the second best scores are in
underline. In the table, we observe that: (1) On FB15K-237, TransMVG out-
performs all baselines at MRR, Hits@10 and Hits@1 metrics, improved by 1.4%,
6.0% and 20.7% respectively compared with the underlined second ranks. (2) On
FB15K, TransMVG outperforms all baselines at Mean Rand metric and get a
second good rank at Hits@10 metric. (3) On WN18RR, TransMVG outperforms
all baselines at Hits@10 metric, improved by 2.7% compared with the under-
lined second ranks. This indicates the great ability of TransMVG on precise link
prediction.

As the reversing relations have been removed in WN18RR, the semantic
hierarchy of the relations in the database is no longer complete. As a result,
the TransMVG model does not have a complete corpus to adequately learn
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Table 3. Evaluation results on link prediction

Datasets WN18RR FB15K FB15K-237

Metrics MRR MR Hits@10 Hits@1 MRR MR Hits@10 Hits@1 MRR MR Hits@10 Hits@1

TransE [2] 0.226 3384 50.1 - 0.220 125 47.1 23.1 0.294 347 46.5 14.7

DistMult [24] 0.43 5110 49.0 39 0.654 97 82.4 54.6 0.241 254 41.9 15.5

TransD [10] - - 42.8 - 0.252 67 77.3 23.4 - - 45.3 -

CombineE [19] - - - - 0.283 - 85.2 55.4 - - - -

ComplEX [21] 0.44 5261 51.0 41.0 0.692 - 84.0 59.9 0.247 339 42.8 15.8

KB-LRN [6] - - - - 0.794 44 87.5 74.8 0.309 209 49.3 21.9

NLFeat [20] - - - - 0.822 - 87.0 - 0.249 - 41.7 -

RUGE [7] - - - - 0.768 - 86.5 70.3 - - - -

KBGAN [4] 0.213 - 48.1 - - - - - 0.278 - 45.8 -

R-GCN [16] - - - - 0.696 - 84.2 60.1 0.248 - 41.7 15.3

TransG [23] - - - - 0.657 51 83.1 55.8 - - - -

ConvE [5] 0.43 4187 52.0 40.0 0.657 51 83.1 55.8 0.325 244 50.1 23.7

ConvKB[15] 0.248 2554 52.5 - 0.768 - - - 0.396 257 51.7 -

TransGate [25] 0.409 3420 51.0 39.1 0.832 33 91.4 75.5 0.404 177 58.1 25.1

TransMVG 0.253 4391 53.9 3.9 0.630 31 88 46.5 0.410 223 61.2 30.3

the information element interactions of various relations. Thus, TransMVG only
perform best on one metirc on WN18RR.

FB15K contains a number of redundant relations. This may inhibit fine
semantic recognition ability of TransMVG to some extent. Therefore, on FB15K,
TransMVG only performed best in one metric. Fb15K-237 is obtained by remov-
ing the redundant relations in FB15K. TransMVG has a good performance
almost beyond various baselines at all metrics. The result also shows that the
multi-valued gate in TransMVG have more powerful multi-semantic learning
ability than the boundary binary-valued gate in TransGate.

4.3 Triplet Classification

Triplet classification aims to judge whether a given triplet (h, r, t) is correct or
not. It is first used in [18] to evaluate knowledge graph embeddings learned by
NTN model. In this paper we use WN11 [2] and FB13 [18] as the benchmark
datasets for this task. These two datasets contain positive and negative triplets.
For each triplet (h, r, t), if the value calculated by the distance score Eq. 16 is
above a relation-specific threshold Δ, then the triplet will be classified as positive,
otherwise it will be classified as negative.

For WN11 and FB13, we compare TransMVG with baselines reported in
[25]. In training, for the two datasets, we search the learning rate α among
{0.001, 0.01, 0.1}, the temperature τ among {100, 200, 500}, the margin γ among
{2, 4, 6, 8, 10}, the embedding dimension m among {50, 100, 200}, the batch
size B among {1440, 2880, 5760}. The optimal configurations are as follow: On
WN11, γ = 10, α = 0.01, τ = 100, m = 100, B = 2880 and taking L1 distance.
On FB13, the best configurations are: γ = 6, α = 0.001, τ = 100, m = 100,
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Table 4. Evaluation results on triplet classification

Datasets WN11 FB13

SE [3] 53.0 75.2

SME [3] 70.0 63.7

LFM [9] 73.8 84.4

SLM [18] 69.9 85.3

NTN [18] 70.4 87.1

TransE [2] 75.9 70.9

TransH [22] 77.7 76.5

Trans R[13] 85.5 74.7

CTransR [13] 85.7 -

KG2E [8] 85.4 85.3

TransD [10] 85.6 89.1

TransSparse [11] 86.8 86.5

TransG [23] 87.4 87.3

TransGate [25] 87.3 88.8

TransMVG 89.5 84

B = 2880 and taking L1 distance. Table 4 shows the detailed evaluation results
of triplets classification. From the table, we observe that: (1) On WN11, our
method obtains the accuracy of 89.5% and outperforms all baseline models. (2)
On FB13, the accuracy of our method is only in the middle of the rank list.

The WN11 dataset includes 1−1, 1−N , N −1 three relation types. There are
113,000 triples in its training set. The FB13 dataset includes N − 1, N − N two
relation types. There are 316,000 triplets in its training set. This indicates that
FB13 is more dense than WN11 both in relation nature and the number of entity
pairs connected by each relation. So we guess if the dimension of TransMVG can
go beyond the current maximum set 200, it will achieve better performance
under richer proportion combination of more information elements.

4.4 Distribution Visualization

As shown in Fig. 5, we run TransGate and TransMVG on FB15K with the same
settings, the initial values of the two models conform to both nearly binary-
valued distributions. TransGate has an obvious trend of boundary binary-valued
trend when it is run 100 times. TransMVG, on the other hand, obtains multiple-
valued gates in a gentle manner. In fact, in both the TransGate and TransMVG
models, the value of any dimension of the gate filtering vector conforms to a
binary distribution, and each dimension distribution is independent with each
other. The binary distribution of the gate values of each dimension in TransGate
tends to be a boundary binary-valued distribution, while that of the gate values
in TransMVG tends to be many independent different distributions due to the
addition of noise, resulting in a mutiple-valued gate.
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Fig. 4. The value distributions of the gate filtering vectors in TransGate and Trans-
MVG

5 Conclusion

In this paper, we focus on embedding the knowledge graph into a low-dimension
vector space for knowledge graph completion. We find that extreme filtering
problem exsits in the traditional method based on shared parameter gate, and
the main reason is the boundary binary-valued distribution of its gate filter val-
ues. We propose an information element interaction mechanism to explain the
multi-semantic representation of the same vector in different semantic environ-
ments. Our TransMVG model refined the interaction of information elements by
adding independently distributed noise to the full connection layer of the shared
parameter gate and pushing the gate values to be multi-valued. We have conduct
a number of experiments on link prediction task and triplet classification task.
The experiments results show that TransMVG almost outperforms state-of-the-
art baselines. This means it is feasible and necessary to multivalue the filter gate
vectors in the process of knowledge representation learning.

In TransMVG, only the multi-semantics of entities have been taken into
consideration. In the future, we will try to deal with the multi-semantics of both
entities and relations at the same time.
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